

TUGAS AKHIR - TF 181801

PERANCANGAN SISTEM PENGENDALIAN TEMPERATURE PADA NEW COOLER (SHELL AND TUBE TYPE) MENGGUNAKAN AIR SEBAGAI MEDIA PENDINGIN DI MP COMPRESSOR SYSTEM PT. SAKA INDONESIA PANGKAH LIMITED

WIDYASARI PUTRI DEWI NRP. 02311540000066

Dosen Pembimbing I: Hendra Cordova, S.T., M.T

Dosen Pembimbing II: Dr. Ir. Totok Soehartanto, DEA

DEPARTEMEN TEKNIK FISIKA Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2019

TUGAS AKHIR - TF 181801

PERANCANGAN SISTEM PENGENDALIAN TEMPERATURE PADA NEW COOLER (SHELL AND TUBE TYPE) MENGGUNAKAN AIR SEBAGAI MEDIA PENDINGIN DI MP COMPRESSOR SYSTEM PT. SAKA INDONESIA PANGKAH LIMITED

WIDYASARI PUTRI DEWI NRP. 02311540000066

Dosen Pembimbing I: Hendra Cordova, S.T., M.T

Dosen Pembimbing II: Dr. Ir. Totok Soehartanto, DEA

DEPARTEMEN TEKNIK FISIKA Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2019

FINAL PROJECT - TF 181801

DESIGN OF TEMPERATURE CONTROL SYSTEM IN NEW COOLER (SHELL AND TUBE TYPE) USING WATER AS A COOLING MEDIUM IN MP COMPRESSOR SYSTEM PT. SAKA INDONESIA PANGKAH LIMITED

WIDYASARI PUTRI DEWI NRP. 02311540000066

Adivisor Lecturer I : Hendra Cordova, S.T., M.T

Adivisor Lecturer II: Dr. Ir. Totok Soehartanto, DEA

ENGINEERING PHYSICS DEPARTMENT Faculty of Industrial Technology Sepuluh Nopember Institute of Technology Surabaya 2019

PERNYATAAN BEBAS PLAGIARISME

Saya yang bertanda tangan dibawah ini

Nama	: Widyasari Putri Dewi
NRP	: 02311540000066
Departemen / Prodi	: Teknik Fisika / S1 Teknik Fisika
Fakultas	: Fakultas Teknologi Industri
Perguruan Tinggi	: Institut Teknologi Sepuluh Nopember

Dengan ini menyatakan bahwa Tugas Akhir dengan judul "PERANCANGAN SISTEM PENGENDALIAN TEMPERATURE PADA NEW COOLER (SHELL AND TUBE TYPE) MENGGUNAKAN AIR SEBAGAI MEDIA PENDINGIN DI MP COMPRESSOR SYSTEM PT. SAKA INDONESIA PANGKAH LIMITED" adalah benar karya saya sendiri dan bukan plagiat dari karya orang lain. Apabila di kemudian hari terbukti terdapat plagiat pada Tugas Akhir ini, maka saya bersedia menerima sanksi sesuai ketentuan yang berlaku.

Demikian surat pernyataan ini saya buat dengan sebenar-benarnya.

Surabaya₁₂₉ April 2019 METERA pernyataan, **TEMPE** BF0B6AFF9213 5000 Widyasari Putri Dewi

NRP.02311540000066

LEMBAR PENGESAHAN TUGAS AKHIR

PERANCANGAN SISTEM PENGENDALIAN TEMPERATURE PADA NEW COOLER (SHELL AND TUBE TYPE) MENGGUNAKAN AIR SEBAGAI MEDIA PENDINGIN DI MP COMPRESSOR SYSTEM PT. SAKA INDONESIA PANGKAH LIMITED

Oleh:

Widvasari Putri Dewi NRP.02311540000066

Surabaya, 29 Maret 2019

Menyetujui,

Pembimbing I Pembimibing II ordy Hendra Cordova, ST, MT Dr. Ir. Totok Soehartanto, DEA NIP. 19690530 199412 1 001 NIP. 19650309 199002 1 001 Mengetahui, Ketua Departemen ik Fisika FTI-ITS tta, S.T., M.Si., Ph.D. 0002 200312 1 002 **TEKNIK FISIKA** vii

LEMBAR PERSETUJUAN

PERANCANGAN SISTEM PENGENDALIAN TEMPERATURE PADA NEW COOLER (SHELL AND TUBE TYPE) MENGGUNAKAN AIR SEBAGAI MEDIA PENDINGIN DI MP COMPRESSOR SYSTEM PT. SAKA INDONESIA PANGKAH LIMITED

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Progam Studi S-1 Departemen Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

Oleh: WIDYASARI PUTRI DEWI NRP.02311540000066

Disetujui oleh Tim Penguji Tugas Akhir :

Hendra Cordova, S.T.,M.T.
Dr. Ir. Totok Sochartanto, DEA
Ir. Matradji, M. Sc
Muh. Kamalul Wafi, S.T., M. T., D.I.C

SURABAYA JUNI, 2019

PERANCANGAN SISTEM PENGENDALIAN TEMPERATURE PADA NEW COOLER (SHELL AND TUBE TYPE) MENGGUNAKAN AIR SEBAGAI MEDIA PENDINGIN DI MP COMPRESSOR SYSTEM PT. SAKA INDONESIA PANGKAH LIMITED

Nama	: Widyasari Putri Dewi
NRP	: 02311540000066
Departemen	: Teknik Fisika FTI-ITS
Dosen Pembimbing I	: Hendra Cordova, S.T., M.T
Dosen Pembimbing II	: Dr. Ir. Totok Soehartanto, DEA

ABSTRAK

MP Separator di CPP unit akan memisahkan hydrocarbon gas dari minyak dan air. Ketika temperature output hydrocarbon gas dari MP Separator terlalu tinggi yaitu sebesar 62 °C-70 °C maka akan meningkatkan potensi shutdown MP Compressor. Maka dari itu perlu ditambahkan new cooler tipe shell and tube dengan media pendingin air untuk menurunkan temperature output hvdrocarbon gas menjadi 45 °C. Shell and tube memiliki dimensi 2 shell dengan diameter 44", 1200 tube dengan panjang 9.9 meter dan diameter 1". Lalu dilakukan perancangan sistem pengendalian temperature pada shell and tube dengan memberi pengendali PI yang diperoleh dari metode kurva reaksi dengan Kp 17.27 dan τ_i 2.21. Performansi yang diperoleh yaitu rise time sebesar 14 detik, settling time sebesar 26.3 detik, serta overshoot sebesar 0%. Mode pengendali PI mampu beradaptasi ketika diberikan variasi berupa perubahan mass flowrate air, temperature inlet hydrocarbon gas, dan temperature inlet air.

Kata kunci : CPP unit, *MP Separator*, *MP Compressor*, *shell and tube*, , pengendali PI, *rise time*, *settling time*, *overshoot*.

DESIGN OF TEMPERATURE CONTROL SYSTEM IN NEW COOLER (SHELL AND TUBE TYPE) USING WATER AS A COOLING MEDIUM IN MP COMPRESSOR SYSTEM PT. SAKA INDONESIA PANGKAH LIMITED

Name	: Widyasari Putri Dewi
NRP	: 02311540000066
Department	: Teknik Fisika FTI-ITS
Adivisor Lecturer I	: Hendra Cordova, S.T., M.T
Adivisor Lecturer II	: Dr. Ir. Totok Soehartanto, DEA

ABSTRACT

MP Separator in the CPP unit will separate the hydrocarbon gas from oil and water. When the hydrocarbon gas output temperature of MP Separator is too high at 62 °C – 70 °C it will increase the potential for MP Compressor shutdown. Therefore it is necessary to add a shell and tube type with water cooling media to reduce the hydrocarbon gas output temperature to 45 °C. Shell and tube has dimensions of 2 shells with 44" of diameter, 1200 tubes with a length of 9.9 meters and a diameter of 1". Then a shell and tube temperature control system design was carried out by giving PI controllers obtained from the reaction curve method with Kp 17.27 and τ_i 2.21. The performance obtained is a rise time of 14 s, a settling time of 26.3 s, and overshoot of 0 %. PI controller mode is able to adapt when given variations in the form of changes in water mass flowrate, temperature inlet of hydrocarbon gas, and temperature inlet of water.

Keyword : CPP unit, MP Separator, MP Compressor, shell and tube, rise time, settling time, overshoot.

KATA PENGANTAR

Puji syukur kehadirat Allah SWT yang senantiasa melimpahkan rahmat dan hidayah-Nya serta shalawat dan salam kepada Nabi Muhammad SAW sehingga dapat terselesaikannya tugas akhir beserta laporan tugas akhir vang beriudul **"PERANCANGAN** SISTEM PENGENDALIAN TEMPERATURE PADA NEW COOLER (SHELL AND TUBE MENGGUNAKAN AIR SEBAGAI **MEDIA** TYPE) PENDINGIN DI MP COMPRESSOR SYSTEM PT. SAKA INDONESIA PANGKAH LIMITED".

Penulis telah banyak memperoleh bantuan dari berbagai pihak dalam penyelesaian tugas akhir dan laporan tugas akhir ini. Penulis mengucapkan terima kasih kepada:

- 1. Bapak Agus Muhamad Hatta, S.T., M.Si., Ph.D selaku Ketua Departemen Teknik Fisika ITS yang telah memberikan ilmu, bimbingan serta sarana dan prasarana selama menempuh pendidikan di Teknik Fisika ITS.
- 2. Ayah, Ibu, Kakak, dan Keluarga atas segala, doa, perhatian, serta dukungan moril dan materiil yang telah diberikan.
- 3. Bapak Hendra Cordova, S.T., M.T dan bapak Dr. Ir. Totok Soehartanto selaku dosen pembimbing yang telah dengan sabar memberikan petunjuk, ilmu, serta bimbingan dalam pengerjaan tugas akhir ini.
- 4. Bapak Ir. Heri Joestiono, M.T dan Bapak Hendra Cordova, S.T., M.T selaku dosen wali selama masa perkuliahan saya..
- 5. Seluruh dosen Teknik Fisika ITS atas segala ilmu dan dukungan yang bermanfaat serta seluruh pegawai TU yang telah membantu saya dalam administrasi perkuliahan.
- 6. Seluruh teman-teman dan TA-wan Laboratorium *Workshop Instrumentation* telah memberi dukungan serta bantuan dalam mengerjakan tugas akhir.
- 7. Seluruh teman-teman *Transcendent Frontier* yang telah menjadi teman seperjuangan dalam menuntut ilmu dan menjadi keluarga baru saya di Teknik Fisika

- 8. Untuk HMTF ITS yang telah menjadi wadah saya untuk belajar berorganisasi serta seluruh warga HMTF ITS yang telah menjadi keluarga baru saya.
- 9. Seluruh teman-teman terdekat saya yang telah memberikan dukungan, masukan, bantuan serta perhatian dalam penyelesaian tugas akhir ini.
- 10. Untuk Perpustakaan Pusat ITS yang telah berjasa dalam peminjamanan buku selama perkuliahan saya.
- 11. Serta seluruh pihak yang tidak dapat saya sebutkan satu persatu, yag telah memberikan dukungan baik secara langsung maupun tidak langsung.

Penulis sadar bahwa penulisan laporan tugas akhir ini masih terdapat kekurangan. Namun, semoga laporan ini dapat memberikan kontribusi yang berarti dan menambah wawasan yang bermanfaat bagi pembaca, keluarga besar Teknik Fisika ITS khususnya, dan civitas akademika ITS pada umumnya. Semoga laporan tugas akhir ini dapat bermanfaat sebagai referensi pengerjaan laporan tugas akhir bagi mahasiswa lainnya.

Surabaya, 4 Juni 2019

Penulis

DAFTAR ISI

HALA	MAN JUDULi
COVE	R PAGEiii
PERN	YATAAN BEBAS PLAGIARISMEv
LEME	BAR PENGESAHANvii
LEME	BAR PERSETUJUANix
ABST	RAKx
ABST	RACTxii
KATA	A PENGANTARxiv
DAFT	AR ISIxvi
DAFT	AR GAMBARxx
DAFT	AR TABELxxii
BAB I	PENDAHULUAN1
1.1	Latar Belakang1
1.2	Rumusan Masalah3
1.3	Tujuan Penelitian3
1.4	Batasan Masalah3
1.5	Sistematika Laporan4
BAB I	I TEORI PENUNJANG7
2.1	Central Processing Platform Unit7
2.2	Sistem Pendinginan Hydrocarbon Gas pada Shell and Tube Heat Exchanger9
2.3	Control Valve17
2.4	Temperature Transmitter20
2.5	Sistem Pengendalian <i>Temperature</i> pada <i>Shell and</i> <i>Tube</i> 22

2.6 <i>Tuning</i> PID Metode Kurva Reaksi
BAB III METODOLOGI PENELITIAN27
3.1 Identifikasi Parameter Proses pada <i>MP Compressor</i> Suction Scrubber
3.2 Pemilihan <i>New Cooler</i> Tipe <i>Shell and Tube</i> Dengan Media Air
3.3 Pemodelan Matematis Shell and Tube, Control Valve, Temperature Transmitter
3.3.1 Shell and Tube
3.3.2 Control Valve
3.3.3 Temperature Transmitter
3.4 Perancangan dan Simulasi Sistem Pengendalian Temperature pada New Cooler Tipe Shell and Tube Dengan Media Air
3.4.1. Pemberian Sinyal Uji Step Terhadap Plant43
3.4.2. Pengamatan pada Hasil Kurva Reaksi Respon Dinamik <i>Shell and Tube</i> 43
3.4.3. Perhitungan Nilai Kp, τi , dan τd
BAB IV HASIL DAN PEMBAHASAN47
4.1 Analisa Hasil Simulasi47
4.2 Pembahasan
BAB V KESIMPULAN DAN SARAN61
5.1 Kesimpulan61
5.2 Saran
DAFTAR PUSTAKA63
LAMPIRAN A
LAMPIRAN B
LAMPIRAN C

LAMPIRAN D LAMPIRAN E

DAFTAR GAMBAR

Gambar 2.1	Central Processing Platform Unit7
Gambar 2.2	Skema Pemasangan New Cooler9
Gambar 2.3	Shell and Tube Heat Exchanger10
Gambar 2.4	Skema Input-Output Shell and Tube11
Gambar 2.5	Distribusi Temperature Untuk Counter Flow
	Heat Exchanger14
Gambar 2.6	Control Valve
Gambar 2.7	Grafik Respon Orde 1
Gambar 2.8	Sensor RTD
Gambar 2.9	Grafik Respon Orde 1
Gambar 2.10	Diagram Blok Sistem Pengendalian
	Temperature Shell and Tube23
Gambar 2.11	P&ID Shell and Tube23
Gambar 2.12	Parameter Tuning PID Metode Kurva Reaksi
Gambar 3.1	Diagram Alir Tugas Akhir27
Gambar 3.2	Central Processing Platform Unit
Gambar 3.3	Simulasi Sistem Pengendalian Temperature
	pada Shell and Tube
Gambar 3.4	Pemberian Sinyal Uji Step pada <i>Plant Shell</i>
	<i>and Tube</i>
Gambar 3.5	Kurva Reaksi Respon Dinamik Shell and Tube
Gambar 4.1	Hasil Simulasi Pemodelan Shell and Tube
	Dengan Mass Flowrate Air 10.03 kg/s47
Gambar 4.2	Hasil Simulasi Pemodelan Control Valve49
Gambar 4.3	Hasil Simulasi Pemodelan Temperature
	Transmitter
Gambar 4.4	Model Simulink Sistem Pengendalian
	Temperature pada Shell and Tube (Pengendali
	P)
Gambar 4.5	Model Simulink Sistem Pengendalian
	Temperature pada Shell and Tube (Pengendali
	PI)

Gambar 4.6	Model Simulink Sistem Pengendalian
	Temperature pada Shell and Tube (Pengendali
	PID)
Gambar 4.7	Hasil Simulasi Sistem Pengendalian Temperature
	pada Shell and Tube Dengan Mass Flowrate Air
	Sebesar 9.7 kg/s
Gambar 4.8	Hasil Simulasi Sistem Pengendalian Temperature
	pada Shell and Tube Dengan Mass Flowrate Air
	Sebesar 12 kg/s
Gambar 4.9	Hasil Simulasi Sistem Pengendalian Temperature
	pada Shell and Tube Dengan Temperature Input
	Hydrocarbon Gas Sebesar 62 °C
Gambar 4.10	Hasil Simulasi Sistem Pengendalian Temperature
	pada Shell and Tube Dengan Temperature Input
	Hydrocarbon Gas Sebesar 85 °C
Gambar 4.11	Hasil Simulasi Sistem Pengendalian Temperature
	pada Shell and Tube Dengan Temperature Input
	Air Sebesar 27 °C
Gambar 4.12	Model Simulink Sistem Pengendalian
	Temperature pada Shell and Tube Dengan
	Temperature Inlet Hydrocarbon Gas Bervariasi
	(<i>Random</i>)
Gambar 4.13	Hasil Simulasi Sistem Pengendalian Temperature
	pada Shell and Tube Dengan Temperature Inlet
	Hydrocarbon Gas Bervariasi (Random)58

DAFTAR TABEL

Tabel 3.1	Kondisi Operasi CPP Unit
Tabel 4.1	Pengaruh Variasi Mass Flowrate Air Terhadap
	Temperature Outlet Hydrocarbon Gas
Tabel 4.2	Performansi Mode Pengendali P, PI, dan PID53
Tabel 4.3	Performansi Mode Pengendali PI Dengan Variasi
	Mass Flowrate Air55

xxiii

BAB I PENDAHULUAN

1.1 Latar Belakang

PT. Saka Indonesia Pangkah Limited memiliki dua proses yaitu offshore production facility dan onshore production facility. Salah satu unit yang ada di offshore production facility adalah CPP (central processing platform) yang bertugas untuk memproses lanjutan dari sumur (WHP-A dan WHP-B) yang kemudian disalurkan ke onshore production facility. Gas dan minyak dari WHP A dan WHP B akan dipompa menuju *MP Separator*. Gas dari WHP A dan WHP B terdiri dari natural gas dan associated gas. Sedangkan minyaknya mengandung air dan crude oil (Yudanto, Kandungan Gas dan Minyak Dari WHP, 2019). Gas dan minyak tersebut akan dipisahkan di MP Separator 3 fasa sehingga terbagi menjadi minyak, air, dan hydrocarbon gas (T. Ahmed, N. Makwashi, & M. Hameed, 2017). Hydrocarbon gas yang telah dipisahkan oleh MP Separator selanjutnya diteruskan ke MP Compressor Suction Scrubber untuk dihilangkan kadar air yang masih terkandung di hydrocarbon gas. Hydrocarbon gas yang telah murni selanjutnya dipompa menuju MP Compressor untuk dinaikkan tekanannya.

Namun masalah terjadi ketika *temperature hydrocarbon gas* yang dihasilkan oleh *MP Separator* cukup tinggi yang disebabkan adanya fluktuasi *temperature* di *equipment* tersebut serta pengaruh dari *temperature* lingkungan sekitar. Sehingga ketika *hydrocarbon gas* memiliki *temperature* yang tinggi, lalu dipompa ke *MP Compressor*, maka tekanan *outlet hydrocarbon gas* dari *MP Compressor* akan semakin besar. Ketika terjadi peningkatan tekanan, maka *discharge temperature hydrocarbon gas* juga akan meningkat. *Hydrocarbon gas* dengan *range temperature* 57 °C -67 °C akan menghasilkan *discharge temperature MP Compressor* sekitar 165 °C yang mana sangat mendekati dengan *setpoint* dari dari *high high* alarm yaitu 170 °C. Tingginya *temperature hydrocarbon gas* akan memengaruhi *integrity located* dimana ada beberapa material yang terbuat dari karet di *MP Compressor* yang tidak tahan panas. Ketika *temperature hydrocarbon gas* mendekati atau bahkan lebih dari 170 °C, maka akan terjadi deformasi dari material tersebut. Deformasi material tersebut akan meningkatkan potensi *shutdown MP Compressor*, yang mana ketika *MP Compressor shutdown* dapat menyebabkan berkurangnya produksi (Yudanto, Kandungan Gas dan Minyak Dari WHP, 2019).

Salah satu cara yang tepat untuk menurunkan temperature hydrocarbon gas, yaitu dengan menambahkan new cooler pada CPP Unit. Terdapat beberapa opsi media pendingin yang dapat digunakan di new cooler yaitu udara Air Cooeld Tube exchanger), air (shell and tube), dan refrigerant package (Yudanto, Study Report For Cooling System at CPP Compressors Inlet, 2019). Pada penelitian ini dilakukan kajian mengenai sistem pengendalian temperature pada new cooler yaitu shell and tube dengan menggunakan air sebagai media pendingin. Shell and tube akan mendinginkan temperature hydrocarbon gas yang berada di tube dengan mentransfer panas dari gas tersebut ke air laut yang berada di shell (Acharya & Vishal H, 2017) (Arangi, Sivaram, & Babu, 2015). Shell and tube akan mencegah pencampuran dua fluida Suresh Kumar. tersebut (Nitheesh Krishnan 2016). & Pengendalian *temperature shell and tube* ini juga ditunjang dengan adanya kontroler serta temperature transmitter. Shell and tube akan dipasang di antara MP Separator dan MP Compressor Suction Scrubber untuk mengurangi potensi terjadinya perubahan fasa hydrocarbon gas (Yudanto, Study Report For Cooling System at CPP Compressors Inlet, 2019). Untuk mendesain shell and tube, diperlukan data mengenai mass flowrate, tekanan, dan temperature air serta gas akan ditinjau kembali (Arangi, Sivaram, & Babu, 2015) (Mukadam, Naik, Naik, & Yekane, 2018). Dari parameter tersebut ditentukan bahwa process variablenya adalah temperature hydrocarbon gas dan manipulated variablenya adalah mass flowrate air. Hasil penelitian ini diharapkan dapat membantu PT. Saka Indoneisa Pangkah Limited dalam mendapatkan desain shell and tube maupun desain sistem pengendalian temperature pada shell and tube itu sendiri.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah disebutkan, adapun permasalahan yang diangkat dalam tugas akhir ini adalah :

- Bagaimana pemilihan sistem pendingin *hydrocarbon gas* sebagai *inlet* ke *MP Compressor Suction Scrubber?*
- Bagaimana perancangan sistem pengendalian *temperature* pada *shell and tube* bermedia pendingin air?
- Bagaimana analisa kinerja hasil simulasi sistem pengendalian *temperature* pada *shell and tube* bermedia pendingin air?

1.3 Tujuan Penelitian

Berdasarkan latar belakang dan rumusan masalah, maka tujuan penelitian yang ingin dicapai dalam pengerjaan tugas akhir ini adalah sebagai berikut :

- Akan dilakukan pemilihan sistem pendingin *hydrocarbon gas* sebagai *inlet* ke *MP Compressor Suction Scrubber*.
- Akan dilakukan perancangan sistem pengendalian *temperature* pada *shell and tube* bermedia pendingin air.
- Akan dilakukan analisa kinerja hasil simulasi sistem pengendalian *temperature* pada sistem pendingin bermedia air?

1.4 Batasan Masalah

Berdasarkan identifikasi masalah maka batasan masalah dari penelitian tugas akhir ini adalah sebagai berikut :

- Lokasi pengambilan data adalah di PT. Saka Indonesia Pangkah *Limited*.
- Sistem pendingin yang akan dirancang belum terdapat di PT. Saka Indonesia Pangkah *Limited*.
- Desain *new cooler (shell and tube)* yang dilakukan hanya sebatas peninjauan kalor yang dilepaskan oleh

hydrocarbon gas serta *mass flowrate* air yang dibutuhkan sehingga dapat ditentukan dimensi yang sesuai.

- Pemodelan matematis pada *shell and tube* menggunakan hukum kesetimbangan energi.
- Pemodelan matematis *control valve* dan *temperature transmitter* dilakukan berdasarkan spesifikasi di industri dan menggunakan sistem orde satu.
- Perancangan sistem pengendalian *temperature* untuk menjaga kestabilan *temperature* gas dari *MP Compressor* yang akan dikirim ke OPF dilakukan melalui pengaturan jumlah *mass flowrate* air.
- *Temperature inlet* air diasumsikan sebagai *temperature* tertinggi serta *temperature outlet* air telah ditentukan tanpa meninjau proses selanjutnya.
- Untuk mengetahui kinerja sistem pengendalian *temperature* pada *shell and tube* digunakan Matlab Simulink.

1.5 Sistematika Laporan

Laporan tugas akhir ini terdiri dari lima bab dan dilengkapi dengan daftar pustaka. Secara garis besar, sistematika dari penulisan laporan tugas akhir ini adalah sebagai berikut :

- BAB I PENDAHULUAN Pada bab I ini terdiri dari latar belakang, rumusan masalah, tujuan penelitian, batasan masalah dan sistematika laporan.
- BAB II DASAR TEORI Pada bab II ini dibahas mengenai teori-teori yang berkaitan dengan penelitian yang dilakukan, seperti *CPP unit, shell and tube heat exchanger, control valve, temperature transmitter,* sistem pengendalian *temperature,* serta tuning PID metode kurva reaksi.

• BAB III METODOLOGI PENELITIAN

Pada bab III ini berisi mengenai rancangan dari penelitian yang dilakukan, metode, dan langkah-langkah dalam penelitian.

• BAB IV ANALISA DATA DAN PEMBAHASAN Pada bab IV ini berisi tentang analisa hasil simulasi sistem pengendalian *temperature* pada *shell and tube*.

• BAB V PENUTUP Pada bab V ini diberikan kesimpulan tentang tugas akhir yang telah dilakukan berdasarkan hasil yang diperoleh, serta diberikan saran sebagai penunjang dalam pengembangan tugas akhir selanjutnya.

Halaman ini sengaja dikosongkan

BAB II TEORI PENUNJANG

2.1 Central Processing Platform Unit

Gambar 2.1 Central Processing Platform Unit (Yudanto, Study Report For Cooling System at CPP Compressors Inlet, 2019)

Central Processing Platform Unit (CPP Unit) merupakan proses yang berlangsung di bagian *offshore* dari PT. Saka Indonesia Pangkah Limited. CPP Unit adalah bagian yang memproses lanjutan dari WHP-A dan WHP-B sebagai sumur milik PT. Saka Indonesia Pangkah Limited untuk kemudian disalurkan ke OPF (*Onshore Processing Facility*). Terdapat beberapa proses pada *equipment-equipment* di unit CPP yaitu sebagai berikut :

• MP Separator

Gas dan minyak dari WHP-A dan WHP-B akan masuk *MP* Separator 3 fasa guna dipisahkan antara minyak, air dan gas (T. Ahmed, 2017). Gas dari WHP A dan WHP B terdiri dari natural gas dan associated gas. Sedangkan minyaknya mengandung air dan crude oil (Yudanto, Kandungan Gas dan Minyak Dari WHP, 2019) Hydrocarbon gas yang terpisahkan akan naik terevaporasi ke atas lalu dialirkan ke MP Compressor Suction Scrubber.

- MP Compressor Suction Scrubber Pada MP Compressor Suction Scrubber 1 terjadi penghilangan debu dan kotoran dari hydrocarbon gas. pada equipment ini hydrocarbon gas dijaga agar tidak terjadi perubahan fasa. Hydrocarbon gas yang telah murni selanjutnya dipompa menuju MP Compressor.
- MP Compressor

Pada *MP Compressor*, gas dimampatkan sehingga tekanan dan *temperaturenya* naik. Berdasarkan data study report dari PT. Saka Indonesia Pangkah Limited (Yudanto, Study Report For Cooling System at CPP Compressors Inlet, 2019), kondisi operasi dari *MP Compressor* memiliki suction *temperature* sebesar 62,57 °C dan *discharge temperature* sebesar 157,96 °C. Serta suction *pressure* sebesar 16,44 barg dan *discharge pressure* sebesar 45,91 barg.

• MP Compressor Aftercooler

MP Compresor Aftercooler yang berada setelah *MP Compressor* yang berfungsi untuk mendinginkan gas yang keluar dari *MP Compressor* yang berfungsi untuk mendinginkan gas yang keluar dari *MP Compressor* dan selanjutnya akan dipompa ke WHP-A, baru ke OPF guna diproses lebih lanjut.

- *Produced Water Treater Produced water treater* berfungsi untuk menginjeksi air yang telah dipisahkan di separator ke WHP-B.
- *Reject Oil Vessel Reject oil vessel* berfungsi untuk menampung minyak yang telah dipisahkan di separator dan dipompa kembali ke WHP-A dan WHP-B.
- *HP Fuel Gas Scrubber HP fuel gas scrubber* berfungsi untuk memproses gas buangan dan memisahkan dari kotoran-kotoran sehingga aman ketika dibuang.

Namun masalah terjadi ketika *discharge temperature hydrocarbon gas* mendekati atau bahkan lebih dari 170 °C, maka akan terjadi deformasi dari material tersebut. Deformasi material tersebut akan meningkatkan potensi *shutdown MP Compressor*, yang mana ketika *MP Compressor shutdown* dapat menyebabkan berkurangnya produksi (Yudanto, Kandungan Gas dan Minyak Dari WHP, 2019). Sehingga *discharge temperature* dari *MP Compressor* harus dijaga agar tidak mendekati bahkan melebih 170 °C. Serta dengan tingginya *temperature discharge* maka potensi unit *shutdown* akan semakin tinggi sehingga unit semakin tidak aman ketika beroperasi.

2.2 Sistem Pendinginan Hydrocarbon Gas pada Shell and Tube Heat Exchanger

Gambar 2.2 Skema Pemasangan New Cooler (Yudanto, Study Report For Cooling System at CPP Compressors Inlet, 2019)

Hydrocarbon gas yang masuk ke MP Compressor Suction Scrubber terlalu tinggi, maka diperlukan pemasangan sistem pendingin yang baru (new cooler) untuk menurunkan temperature hydrocarbon gas dari 62.66 °C menjadi 45 °C sehingga discharge temperature dari MP compressor akan turun dan tidak mendekati batas high high alarm yaitu 170 °C. Rencana pemasangan new cooler pada CPP unit dapat dilihat pada gambar 2.2.

New cooler ini dipasang di antara MP Separator dan MP Compressor Suction Scrubber guna menghindari terjadinya perubahan fasa dari *hydrocarbon gas* menjadi bentuk lain (Yudanto, Study Report For Cooling System at CPP Compressors Inlet, 2019). Sehingga pemasangan *new cooler* pada lokasi ini bertujuan untuk langsung memroses dan mengkondisikan *temperature hydrocarbon gas* yang keluar dari *MP Separator*.

Gambar 2.3 Shell and Tube Heat Exchanger (DeWitt, Bergman, Incropera, & Lavine, 2005) (Cengel, 2003)

Alat penukar panas (*heat exchanger*) yang cocok digunakan untuk proses pendinginan *hydrocarbon gas* adalah tipe *shell and tube*. *Shell and tube heat exchanger* dibuat dari tabung bundar yang dipasang sejajar dengan *shell*. Komponen utama dari *shell and tube heat exchanger* adalah tabung, *baffle, shell*, kepala depan, kepala belakang, dan nozel. Cara kerja *shell and tube* sebagai *new cooler* di CPP unit yaitu *hydrocarbon gas* akan masuk ke *tube-tube* dan fluida pendingin akan berada *shell* atau di luar *tube*. Sehingga panas dari *hydrocarbon gas* yang berada di dalam *tube* akan diserap oleh air laut melalui dinding-dinding *tube* (Acharya & Vishal H, 2017) (Thulukkanam, 2013).

Air laut yang akan digunakan sebagai media pendingin sendiri harus melewati proses demineralisasi terlebih dahulu untuk menghilangkan kandungan-kandungan mineral. Proses pemurnian air laut ini terjadi di penukar ion, dimana kation akan ditukar dengan hydrogen dan anion akan ditukar dengan hidroksil. Sehingga zat-zat pengotor yang berada dalam air laut, akan diambil oleh resin dan akan diregenerasi secara berulang untuk mengembalikannya ke bentuk ion semula (LTD, 2019).

Gambar 2.4 Skema Input-Output Shell and Tube

Dengan adanya perpindahan panas ini, maka kalor yang dilepaskan oleh *hydrocarbon gas* akan sama besar seperti kalor yang diterima oleh air sebagai media pendinginnya. dan dapat dirumuskan. Sehingga berlaku hukum kesetimbangan energi seperti pada persamaan 2.1 (DeWitt, Bergman, Incropera, & Lavine, 2005) (Cengel, 2003).

$$\dot{Q}_{terima} = \dot{Q}_{lepas}$$
 (2.1)

Dengan

 \dot{Q} = heat transfer $\left(\frac{J}{s}\right)$

Kalor lepas (Q_{lepas}) merupakan kalor dari hydrocarbon gas yang akan dilepaskan melaui tube-tube. Kalor lepas ini diperoleh dengan perkalian antara mass flowrate, specific heat, serta selisih dari temperature masuk dan keluar dari hydrocarbon gas. Sehingga perhitungan Q_{lepas} dari hydrocarbon gas dapat dirumuskan pada persamaan 2.2 dan 2.2a (DeWitt, Bergman, Incropera, & Lavine, 2005) (Cengel, 2003):

$$\dot{Q}_{lepas} = \dot{m}_{gas} \cdot c_{p \ gas} \cdot \Delta T \tag{2.2}$$

$$= \dot{m}_{gas} \cdot c_{p \ gas} \cdot (T_{out} - T_{in})$$
 (2.2a)

Dengan

 \dot{Q}_{lepas} = heat transfer rate hydrocarbon gas $\left(\frac{J}{s}\right)$

 $\dot{m}_{gas} = mass flow rate hydrocarbon gas \left(\frac{kg}{s}\right)$ $c_{p gas} = kalor jenis hydrocarbon gas \left(\frac{J}{kg} \circ K\right)$

 ΔT = perbedaan temperature hydrocarbon gas (°C)

Sesuai hukum kesetimbangan energi dimana jumlah Q_{lepas} dan Q_{terima} sama besar, maka diperlukan perhitungan untuk mendapatkan besarnya mass flowrate air dengan menggunakan nilai Q_{lepas} sebagai Q_{terima} untuk mendinginkan hydrocarbon gas. Perhitungan mass flowrate air dapat dihitung dengan persamaan 2.3 sampai dengan 2.3b (DeWitt, Bergman, Incropera, & Lavine, 2005) (Cengel, 2003):

$$\hat{Q}_{terima} = \dot{m}_{air} \cdot c_{p \ air} \cdot \Delta T$$
 (2.3)

$$= \dot{m}_{air} \cdot c_{p \ air} \cdot (T_{out} - T_{in}) \qquad (2.3a)$$

$$\dot{m}_{air} = \frac{Q_{terima}}{c_{p air} . (T_{out} - T_{in})}$$
(2.3b)

Dengan

$$\dot{Q}_{terima} = heat transfer rate air \left(\frac{J}{s}\right)$$

 $\dot{m}_{air} = mass flowrate air \left(\frac{kg}{s}\right)$
 $c_{p air} = kalor jenis air \left(\frac{J}{kg} \circ K\right)$
 $\Delta T = perbedaan temperaure air (°C)$

Pada dasarnya dimensi dari *shell and tube* akan menginterpresentasikan kapasitas dari *mass flowrate hydrocarbon gas* dan air yang berada di dalamnya. Sehingga ketika telah diketahui *mass flowrate hydrocarbon gas* dan air yang dibutuhkan, maka dapat dilakukan perhitungan untuk mengetahui panjang *tube*. Dimana dengan dimensi tersebut harus mampu menampung banyaknya *hydrocarbon gas* dan air dalam kondisi maksimal.

Perhitungan panjang tube diawali dengan persamaan heat transfer rate menggunakan metode Log Mean Temperature

Difference (LMTD). Dari penggunaan persamaan LMTD, maka dapat diketahui bahwa panjang *tube* akan memengaruhi perbedaan temperature ketika hydrocarbon gas masuk ke tube-tube dan air yang berada diluar tube. Dimana semakin panjang tube tersebut, maka semakin lama pula proses pendinginan yang terjadi di pada dasarnya LMTD dalamnya. Sehingga akan mengiterpresentasikan bahwa perbedaan temperature pada setiap bagian shell and tube tidaklah sama. Untuk perhitungan heat transfer dengan metode LMTD dapat dirumuskan seperti pada persamaan 2.4 (DeWitt, Bergman, Incropera, & Lavine, 2005) (Cengel, 2003). (2.4)

$$\dot{Q} = U \cdot A_s \cdot \Delta T_{lm} \tag{2.5}$$

$$A_s = \pi . D . L \tag{2.6}$$

$$\Delta T_{lm} = \frac{(T_{h,i} - T_{c,o}) - (T_{h,o} - T_{c,i})}{\ln[(T_{h,i} - T_{c,o})/(T_{h,o} - T_{c,i})]}$$
(2.0)

Dengan

$$\dot{Q}$$
 = heat transfer rate $\left(\frac{J}{s}\right)$

$$U = overall heat transfer coefficient (W/m2K)$$

$$A_s = area \ perpindahan \ panas \ (m^2)$$

 $\Delta T_{lm} = log mean temperature difference for counter flow tube exchanger (°C)$

$$T_{h,i}$$
 = temperature hydrocarbon gas inlet (°C)

$$T_{h,o}$$
 = temperature hydrocarbon gas outlet (°C)

$$T_{c,i}$$
 = temperature air inlet (°C)

$$T_{c.o}$$
 = temperature air outlet (°C)

$$D_i = diameter \ tube \ (m)$$

$$L = panjang \ tube \ (m)$$

Perhitungan LMTD yang digunakan dalam persamaan 2.6 digunakan untuk *shell and tube* dengan arah aliran *counter flow*. *Counter flow* dipilih karena perpindahan panas antara *hydrocarbon gas* dan air akan berlangsung lebih cepat daripada

parallel flow. Grafik distribusi temperature dari counter flow dapat dilihat pada gambar 2.5. Dimana dari grafik tersebut ditunjukkan bahwa temperature inlet hydrocarbon gas akan mengalami penurunan, sedangkan temperature inlet air akan mengalami kenaikan. Sehingga dari grafik distribusi temperature tersebut sudah sesuai dengan proses pendinginan di shell and tube yang akan digunakan.

Gambar 2.5 Distribusi *Temperature* Untuk *Counter Flow Heat Exchanger* (DeWitt, Bergman, Incropera, & Lavine, 2005) (Cengel, 2003)

Untuk mendapatkan nilai overall heat transfer coefficient U, maka diperlukan perhitungan untuk mendapatkan koefisien konveksi dari masing-masing fluida (h_i dan h_o) terlebih dahulu. Perhitungan yang digunakan dalam mendapatkan nilai U dapat dilihat pada persamaan 2.7 (DeWitt, Bergman, Incropera, & Lavine, 2005) (Cengel, 2003)

$$U = \frac{1}{\frac{1}{h_i} + \frac{1}{h_o}}$$
(2.7)

Dengan

$$h_i = koefisien konveksi hydrocarbon gas (W/m2K)
 $h_o = koefisien konveksi air (W/m2K)$$$

Dalam menghitung nilai $(h_i \text{ dan } h_o)$, diawali dengan perhitungan Reynold number dan Prandtl number. Reynold number adalah rasio antara gaya inersia terhadap gaya viskositas yang dapat menentukan aliran dari hydrocarbon gas dan air adalah laminar, transisi atau turbulent. Sedangkan Prandtl number adalah suatu nilai yang digunakan untuk menentukan distribusi temperature dan distribusi kecepatan pada suatu aliran. Reynold number dan Prandtl number dari hydrocarbon gas dan air dapat dihitung dengan persamaan 2.8 dan 2.9 (DeWitt, Bei Incropera, & Lavine, 2005). (2.8)

$$Re_D = \frac{4\,\dot{m}}{\pi\,D\,\mu} \tag{2.9}$$

$$Pr = \frac{\mu \cdot cp}{k} \tag{2.9}$$

Dengan

$$D = diameter(m)$$

$$\mu$$
 = viskositas fluida ketika temperature tertentu $\left(N, \frac{3}{m^2}\right)$

$$k = konduktivitas termal\left(\frac{w}{m}.K\right)$$

$$C_p = kalor jenis\left(\frac{J}{kg}\circ K\right)$$

$$P_0 = P_{output} ds Number$$

Re = Reynolds Number

Pr = *Prandtl* number

Dari perolehan *Reynold number* dan *Prandtl number*, selanjutnya dilakukan perhitungan untuk mendapatkan *Nusselt number hydrocarbon gas* dan air. *Nusselt number* sendiri adalah perbandingan antara perpindahan panas konveksi dan perpindahan panas konduksi pada lapisan fluida tersebut. Sehingga perhitungan *Nusselt number hydrocarbon gas* dan air dapat dirumuskan dengan persamaan 2.10 (DeWitt, Bergman, Incropera, & Lavine, 2005)

$$Nu_D = 0.023. Re^{0.8}. Pr^{0.3}$$
(2.10)

Dengan

Re = *Reynolds Number*

Pr = Prandtl number $Nu_D = Nusselt Number$

Setelah diperoleh Nusselt number dari hydrocarbon gas dan air, maka dapat dihitung koefisien konveksinya. Ketika nilai h_i dan h_o diketahui, maka overall heat transfer coefficient pada persamaan 2.7 dapat dihitung. Untuk nilai h_i dapat dihitung dengan persamaan 2.11 dan h_o dengan persamaan 2.12 (DeWitt, Bergman, Incropera, & Lavine, 2005).

$$h_i = N u_D. \frac{k}{D_i} \tag{2.11}$$

$$h_o = N u_D \cdot \frac{k}{D_o} \tag{2.12}$$

Dengan

$$h_i = koefisien konveksi hydrocarbon gas (W/m2K)$$

$$h_o = koefisien konveksi air (W/m2K)$$

 $Nu_D = Nusselt Number$

$$k = konduktivitas termal\left(\frac{W}{m}.K\right)$$

$$D_i = diameter \ tube \ (m)$$

 $D_0 = diameter \ shell(m)$

Selanjutnya setelah nilai *overall heat transfer coefficient U* diperoleh, maka dapat dilakukan pula perhitungan luas permukaan perpindahan panas A_s dengan merubah persamaan 2.4 menjadi persamaan 2.13 seperti berikut (DeWitt, Bergman, Incropera, & Lavine, 2005) (Cengel, 2003) :

$$A_s = \frac{\dot{Q}}{U \,\,\Delta T_{lm}} \tag{2.13}$$

Dengan

$$\dot{Q} = heat \ transfer \ rate\left(\frac{J}{s}\right)$$

$$U = overall \ heat \ transfer \ coefficient \ (W/m^2K)$$

$$A_s = area \ perpindahan \ panas \ (m^2)$$

= log mean temperature difference for counter flow tube ΔT_{lm} exchanger (°C)

Sehingga setelah luas permukaan perpindahan panas telah diperoleh, maka dapat dihitung panjang tube yang diperlukan untuk menampung hydrocarbon gas di equipment shell and tube dengan merubah persamaan 2.5 menjadi persamaan 2.14 (DeWitt, Bergman, Incropera, & Lavine, 2005) (Cengel, 2003).

$$L = \frac{A_S}{\pi . D_i} \tag{2.14}$$

Dengan

$$A_s = area \ perpindahan \ panas \ (m^2)$$

 $D_i = diameter \ tube \ (m)$
 $L = panjang \ tube \ (m)$

Dengan mengasumsikan bahwa panjang tube dan panjang shell adalah sama serta telah diketahuinya diameter dari shell dan tube itu sendiri, maka dapat dikatakan bahwa dengan dimensi shell and tube yang telah dihitung mampu menampung banyaknya mass flowrate dari hydrocarbon gas dan air dalam proses pendinginan. Hal ini mengacu pada persamaan 2.15 (DeWitt, Bergman, Incropera, & Lavine, 2005).

$$\dot{m}_{air} = \rho \,.\,\dot{V} \tag{2.15}$$

$$= \rho . A . V \tag{2.15a}$$

$$= \rho . \pi . r^2 . V \tag{2.15b}$$

Dengan

 $\dot{m}_{alr} = mass \ flow rate \ air \ (kg/s)$ = densitas air (kg/m³) ρ

= jari-jari shell (m) r

= kecepatan aliran air (m/s) V

2.3 Control Valve

Control valve merupakan suatu alat mekanis yang mengatur aliran dan tekanan suatu fluida dalam sebuah sistem. Control valve akan mengatur aliran dengan menggunakan berbagai macam fungsi, seperti menghentikan dan memulai aliran fluida, mengatur jumlah *mass flowrate* fluida yang akan dialirkan, mengatur arah aliran fluida. Pada *plant shell and tube* digunakan *control valve* jenis *globe valve* (V. J. Sonawane).

Gambar 2.6 Control Valve (V. J. Sonawane)

Prinsip kerja dari globe valve adalah ketika valve digerakkan untuk membuka, maka disk akan terangkat dan jauh dari seatnya. Sehingga aliran fluida dapat masuk ketika disk terangkat. Dengan menggunakan globe valve sebagai control valve, diharapkan dapat mengatur banyaknya mass flowrate air yang digunakan untuk mendinginkan temperature hydrocarbon gas menjadi 45 °C. Keuntungan penggunaan globe valve sendiri adalah tingkat kebocoran fluida sangat kecil dikarenakan kontak antara cincin dan *seat*nya sangat rapat. Sehingga memungkinkan penutupan valve akan maksimal dengan menggunakan disk tersebut. Dalam penggunaan globe valve sebagai pengatur banyaknya mass flowrate suatu fluida pada sebuah sistem, maka diperlukan perhitungan fungsi transfernya. Untuk persamaan fungsi transfer dapat dirumuskan pada persamaan control valve 2.16 (Stephanopoulos, 1984).

$$\frac{M(s)}{I(s)} = \frac{K}{1+\tau s} \tag{2.16}$$

Dengan

K = gain control valve

 τ = time constant control value (s)

Gain control valve (K) dapat dihitung dengan perbandingan antara output dan input. Output dari globe valve adalah selisih dari mass flowrate maksimum dan minimum air sedangkan inputnya adalah span arus. Sedangkan time constant diperoleh melalui datasheet globe valve. Time constant merupakan waktu yang dibutuhkan oleh sistem untuk mencapai 63% keadaan final value ketika diberikan sinyal uji step.

Untuk gain control valve dapat dirumuskan seperti pada persamaan 2.17.

$$K = \frac{\Delta \dot{m}}{\Delta A} \tag{2.17}$$

Dengan

 $\Delta \dot{m} = selisih \ mass \ flow rate \ max \ dan \ min \ fluida \left(\frac{kg}{s}\right)$ $\Delta A = span \ arus \ (mA)$

Pemvalidasian fungsi transfer *control valve* dapat dihitung dengan menggunakan persamaan interpolasi antara *input* dan *output* dari *control valve* itu sendiri seperti pada persamaan 2.18.

$$\frac{\dot{m}_{a} - \dot{m}_{b}}{I_{a} - I_{b}} = \frac{\dot{m} - \dot{m}_{b}}{I - I_{b}}$$
(2.18)

Dengan

I = sinyal input yang diberikan (mA)

 $I_a = batas atas arus control valve (mA)$

 I_b = batas bawah arus control valve (mA)

 \dot{m} = keluaran mass flowrate yang dihasilkan $\left(\frac{kg}{s}\right)$ \dot{m}_a = batas atas mass flowrate control value $\left(\frac{kg}{s}\right)$

$$\dot{m}_b = batas \ bawah \ mass \ flow rate \ control \ valve \left(\frac{kg}{s}\right)$$

Berdasarkan persamaan 2.16, persamaan fungsi transfer untuk *control valve* termasuk persamaan orde 1 karena memiliki grafik eksponensial ketika diberikan sinyal uji step pada inputnya. Grafik respon orde 1 dapat dilihat pada gambar 2.7.

Gambar 2.7 Grafik Respon Orde 1

2.4 Temperature Transmitter

Temperature transmitter merupakan suatu alat yang digunakan untuk mengirim sinyal hasil sensing dari suatu sensor temperature ke temperature indicator atau ke temperature controller. Pada plant shell and tube digunakan sensor temperature yaitu resistance temperature detecetor (RTD). RTD adalah sebuah alat untuk mengukur temperature dengan prinsip kerjanya adalah tahanan atau resistor dari alat tersebut akan berubah seiring dengan perubahan temperature yang diukur (Ibrahim, 2002) (C. Nandhini & M. Jagadeeswari, 2016). Sensor RTD pada umumnya terbuat dari nikel, platinum, paduan nikel, dan lain-lain.

Gambar 2.8 Sensor RTD

Pengukuran yang dilakukan oleh RTD menggunakan prinsip perubahan resistansi atau hambatan listrik logam yang dipengaruhi oleh perubahan suhu. Ketika *temperature* elemen RTD meningkat, maka resistansi elemen tersebut juga akan meningkat. Dengan kata lain, kenaikan *temperature* logam yang menjadi elemen resistor RTD berbanding lurus dengan resistansinya. Elemen RTD biasanya ditentukan sesuai dengan resistansi mereka dalam ohm pada nol derajat *celcius* (0° C). Salah satu jenis RTD yang paling umum adalah 100 Ω atau RTD PT100, yang berarti bahwa pada suhu 0 °C, elemen RTD harus menunjukkan nilai resistansi 100 Ω .

Untuk mencari nilai fungsi transfer dari sensor RTD dapat digunakan persamaan 2.19 (Stephanopoulos, 1984).

$$\frac{I(s)}{T(s)} = \frac{K}{1+\tau s} \tag{2.19}$$

Keterangan

K = gain RTD $\tau = time \ constant \ RTD \ (s)$

Gain RTD (*K*) dapat dihitung dengan perbandingan antara *output* dan *input*. *Output* dari RTD adalah span arus sedangkan *input*nya adalah *instrumentation range* (selisih *temperature* maksimum dan minimum). Sehingga *gain RTD* dapat dirumuskan seperti pada persamaan 2.20.

$$K = \frac{\Delta A}{\Delta T} \tag{2.20}$$

Dengan

 ΔT = selisih temperature maksimum dan minimum (°C) ΔA = span arus (mA)

Pemvalidasian fungsi transfer *control valve* dapat dihitung dengan menggunakan persamaan interpolasi antara *input* dan *output* dari *control valve* itu sendiri seperti pada persamaan 2.21.

$$\frac{I_a - I_b}{T_a - T_b} = \frac{I - I_b}{T - T_b}$$
(2.21)

Dengan

- T = masukan temperature yang diberikan (°C)
- $T_a = batas atas temperature TT (°C)$
- T_{b} = batas bawah temperature TT (°C)
- I = keluaran arus yang dihasilkan (mA)
- $I_a = batas atas arus TT (mA)$
- $I_b = batas bawah arus TT (mA)$

Berdasarkan persamaan 2.20, persamaan fungsi transfer untuk *temperature transmitter* termasuk persamaan orde 1 yang memiliki grrafik eksponensial ketika diberikan sinyal uji step pada inputnya. Grafik respon orde 1 dapat dilihat pada gambar 2.9.

Gambar 2.9 Grafik Respon Orde 1

2.5 Sistem Pengendalian Temperature pada Shell and Tube

Sistem pengendalian adalah integrasi dari beberapa komponen dan *plant* yang dirancang untuk mendapatkan *output* sistem seperti yang diharapkan berdasarkan *input* yang diberikan pada sistem itu sendiri. Salah satunya adalah *feedback control*. *Feedback control* akan berusaha mencapai dan menjaga nilai *output* sistem untuk mencapai *set point*. Nilai *output* tersebut akan dibandingkan dengan nilai pengukuran sensor yang telah dipasang terhadap *plant*. Ketika nilai *output* dan *input* memiliki selisih *(error)*, maka nilai *error* itulah yang akan digunakan sebagai referensi oleh kontroler atau pengendali (Ogata, 2012). Digunakannya shell and tube heat exchanger sebagai equipment pendingin hydrocarbon gas dengan menggunakan media air maka sangat diperlukan sistem pengendalian temperature agar temperature dari hydrocarbon gas yang keluar dari shell and tube dapat mencapai temperature set point. Sistem pengendalian temperature pada shell and tube diawali dengan dibuatnya diagram pengendalian feedback control yang berisikan kontroler, aktuator, plant serta sensor yang akan digunakan.

Gambar 2.10 Diagram Blok Sistem Pengendalian Temperature Shell and Tube

Pada sistem pengendalian *temperature* ini digunakan aktuator yaitu *control valve* yang bertugas untuk mengatur banyaknya *mass flowrate* air yang masuk ke *shell and tube*. Lalu sensor yang digunakan adalah *temperature transmitter*. Serta diberikan pula mode pengendali pada sistem tersebut. Untuk diagaram blok sistem pengendalian *temperature* dapat dilihat pada gambar 2.11.

Gambar 2.11 P&ID Shell and Tube

Gambar 2.12 menunjukkan rancangan P&ID *shell and tube*, dimana dari gambar tersebut dapat dilihat rencana pemasangan

dari *control valve, temperature transmitter*, dan kontroler. Dari gambar 2.12 dapat dilihat juga sudah ditentukan bahwa *manipulated variablenya* adalah *mass flowrate air* dan *process variablenya* adalah *temperature gas outlet cooler* (*shell and tube*) (P. Sivakumar, D. Prabhakaran, & T. Kannadasan, 2012).

Sistem pengendalian shell and tube digunakan mode pengendali PI. Pengendali PI merupakan suatu algoritma kontrol yang terdiri dari pengendali proportional dan integral. Mode pengendali ini digunakan untuk menghitung besarnya koreksi yang diperlukan suatu alat pengendali untuk mengendalikan sebuah proses. Pengendali proportional digunakan sebagai pembesar sinyal atau penguat sehingga process variable dapat mencapai set point. Pada dasarnya dalam sistem pengendalian khususnya temperature, karena respon dari perubahan temperature cukup lama maka mode pengendali yang digunakan cukup proportional saja. Namun penambahan gain proportional akan meninggalkan offset atau error steady state. Oleh karena itu, kekurangan dari pengendali proportional yang selalu meninggalkan offset diperbaiki pengendali integral untuk menghilangkan offset tersebut. Fungsi pengendali integral adalah menghasilkan respon sistem yang memiliki error steady state nol. Salah satu metode untuk menentukan nilai Kp dan Ti untuk sistem pengendalian adalah trial and error.

Adapun beberapa parameter dalam algoritma PI yang harus diketahui dalam suatu system closed loop adalah maximum overshoot, settling time, dan error steady state

• *Maximum (percent) overshoot* merupakan nilai puncak tertinggi respon sistem pengukuran terhadap keadaan yang diinginkan.

 $Maximum \ Overshoot = \frac{y_p - y_{ss}}{y_{ss}} \ x \ 100\%$ (2.22) dengan yp merupakan nilai maksimum respon sistem dan yss adalah nilai *steady state* sistem

• *Settling time* adalah waktu yang dibutuhkan respon sistem untuk mencapai dan berada direntang ±5% atau ±2% dari nilai akhir.

• *Error steady state* adalah nilai *error* yang dihasilkan dari keadaan *steady* ketika belum mencapai *set point* yang diinginkan.

2.6 Tuning PID Metode Kurva Reaksi

Salah satu metode tuning PID yang dapat digunakan adalah metode kurva reaksi. Tuning PID metode kurva reaksi sendiri merupakan suatu metode *tuning* yang diperoleh dari kurva reaksi yang dihasilkan oleh respon dinamik plant ketika diberi sinyal uji step (Coughanowr, 1991). Dari kurva reaksi tersebut, akan diperoleh beberapa parameter seperti *slope, time constant,* dan *lag ratio* dari *plant :*

Gambar 2.12 Parameter Tuning PID Metode Kurva Reaksi (Coughanowr, 1991)

Adapun dari gambar 2.12 parameter K, L, M dan N diperoleh melalui perhitungan dan pengamatan pada kurva reaksi dari *plant*. Berikut adalah penjelasan dari parameter yang akan digunakan *tuning* :

- Slope : N
- *Time constant* : T (K/N)
- Lag ratio : R(L/T)

Setelah parameter-parameter tersebut diperoleh, maka selanjutnya dapat dilakukan tuning pengendali PID dengan persamaan-persamaan berikut (Coughanowr, 1991) :

• Pengendali mode P

$$K_p = \frac{M}{NL} \left(1 + \frac{R}{3} \right) \tag{2.23}$$

• Pengendali mode PI

$$K_p = \frac{M}{NL} \left(\frac{9}{10} + \frac{R}{12} \right)$$
(2.24)

$$\tau_i = L\left(\frac{30+3R}{9+20R}\right) \tag{2.25}$$

• Pengendali mode PID

$$K_p = \frac{M}{NL} \left(\frac{4}{3} + \frac{R}{4}\right) \tag{2.26}$$

$$\tau_i = L\left(\frac{32+6R}{13+8R}\right) \tag{2.27}$$

$$\tau_d = L\left(\frac{4}{11+2R}\right) \tag{2.28}$$

BAB III METODOLOGI PENELITIAN

Gambar 3.1 Diagram Alir Tugas Akhir

Berdasarkan diagram alir pada gambar 3.1, tahapan-tahapan pelaksanaan tugas akhir ini adalah sebagai berikut:

3.1 Identifikasi Parameter Proses pada MP Compressor Suction Scrubber

Berdasarkan studi literatur yang telah dilakukan serta pengamatan *Process Flow Diagram* pada CPP unit pada bab 2, diperoleh parameter-parameter yang diperlukan untuk melakukan pengendalian *temperature* pada *new cooler* tipe *shell and tube*.

Gambar 3.2 Central Processing Platform Unit (Yudanto, Study Report For Cooling System at CPP Compressors Inlet, 2019)

Dari gambar 3.2 dapat dilihat bahwa parameter utama yang digunakan untuk mendinginkan hydrocarbon gas pada shell and tube adalah didasari pada inlet dari MP Compressor Suction Scrubber. Sehingga hydrocarbon gas yang keluar dari shell and tube akan sesuai dengan masukan dari MP Compressor Suction Scrubber. Parameter-parameter tersebut adalah sebagai berikut :

Mass flowrate hydrocarbon gas inlet MP Compressor Suction
 Scrubber

- Temperature hydrocarbon gas inlet MP Compressor Suction Scrubber
- Specific tube (vapor) hydrocarbon gas inlet MP Compressor Suction Scrubber

 Tabel 3.1 Kondisi Operasi CPP Unit (Yudanto, Study Report For Cooling System at CPP Compressors Inlet, 2019)

Parameter		Current Condition
Inlet 1st Stage MP Compressor Suction Scrubber	Temperature (C)	62 - 70
	Pressure (Barg)	16.62
	Density (kg/m ³)	13.26
	Specific Heat Liquid (kJ/kg.K)	4.316
	Specific Heat Vapor (kJ/kg.K)	2.21
	Viscosity (cp)	0.0131
	Thermal Conductivity (W/m K)	0.0377

Selanjutnya diidentifikasi pula process variable dan manipulated variable dari shell and tube. Berdasarkan gambar tabel 3.1 dapat diketahui bahwa process variablenya adalah temperature outlet hydrocarbon gas. untuk mengendalikan temperature hydrocarbon gas agar sesuai dengan set point, maka manipulated variablenya adalah banyaknya mass flowrate air yang dibutuhkan dalam proses pendinginan.

3.2 Pemilihan *New Cooler* Tipe *Shell and Tube* Dengan Media Air

Setelah dilakukan identifikasi parameter yang diperlukan untuk proses pendinginan *hydrocarbon gas* sehingga mencapai *set point*, maka dilakukan perhitungan untuk mengetahui dimensi dari *shell and tube* itu sendiri. Perhitungan dimensi dari *shell and tube* harus sesuai dengan *mass flowrate* maksimum dari *hydrocarbon gas* dan air. Pada perhitungan dimensi *shell and tube*, pertamatama diasumsikan sebagai berikut :

• Diameter *tube* = 1" atau 0.0254 meter

- Diameter *shell* = 44" atau 1.12 meter
- Jumlah *tube* = 1200

Berdasarkan data dari plant yang meliputi :

$m_{gas} = 22.88 \frac{1}{s}$	
$C_{p gas} = 2210 \frac{J}{kg} \circ$	K
$T_{in \max gas} = 70 ^{\circ}\mathrm{C}$	
$T_{in \min gas} = 62.66 ^{\circ}\mathrm{C}$	
$T_{sp \ gas} = 45 \ ^{\circ}\mathrm{C}$	

Maka dilakukan perhitungan kalor maksimum yang dilepaskan oleh *hydrocarbon gas* terlebih dahulu dnegan menggunakan *temperature inlet* maksimum yaitu 70 °C. Sehingga Q_{lepas} dapat dihitung dengan menggunakan persamaan 3.1 sebagai berikut :

$$Q_{lepas} = \dot{m}_{gas} \cdot c_{p \ gas} \cdot (T_{in} - T_{out})$$
(3.1)
= 22.88 x 2210 x (70 - 45)
= 1264120

Dengan

$$\dot{Q}_{lepas}$$
 = heat transfer rate hydrocarbon gas $\left(\frac{I}{s}\right)$
 \dot{m}_{gas} = mass flowrate hydrocarbon gas $\left(\frac{kg}{s}\right)$
 $c_{p \ gas}$ = kalor jenis hydrocarbon gas $\left(\frac{J}{kg} \circ K\right)$
 ΔT = perbedaan temperaure hydrocarbon gas (°C)

Sesuai dengan *hukum* kesetimbangan energi, maka besarnya Q_{lepas} dan Q_{terima} adalah sama. Sehingga dengan mengasumsikan bahwa Q_{lepas} adalah kalor yang dilepaskan *hydrocarbon gas* dalam kondisi maksimum serta *temperature inlet* air adalah 30 °C, maka dapat dihitung banyaknya *mass flowrate* air yang dibutuhkan untuk mendinginkan *hydrocarbon gas*. Jumlah *mass flowrate* air dapat dihitung berdasarkan data berikut :

 $C_{p \ air} = 4200 \frac{J}{kg} ^{\circ} K$ $T_{in \ air} = 30 ^{\circ} C$ $T_{out \ air} = 60 ^{\circ} C$

Perhitugan *mass flowrate* air dapat dihitung dengan menggunakan persamaan 3.2 sebagai berikut :

$$\dot{m}_{air} = \frac{Q_{terima}}{c_{p \ air \ (T_{out} - T_{in})}}$$

$$= \frac{1264120}{4200 \ (60 - 30)}$$

$$= 10.0327$$
(3.2)

Dengan

$$\dot{Q}_{terima} = heat \ transfer \ rate \ air\left(\frac{J}{s}\right)$$

 $\dot{m}_{air} = mass \ flow rate \ air\left(\frac{kg}{s}\right)$
 $c_{p\ air} = kalor \ jenis \ air\left(\frac{J}{kg}\circ K\right)$
 $\Delta T = perbedaan \ temperaure \ air\left(\circ C\right)$

Untuk menghitung panjang *tube* yang dibutuhkan, maka perlu dilakukan perhitungan nilai *overall heat transfer coefficient* dan luas permukaan perpindahan panas di *shell and tube* dengan metode LMTD seperti persamaan 3.3.

$$\dot{Q} = U \cdot A_s \cdot \Delta T_{lm} \tag{3.3}$$

Dengan

$$\dot{Q}$$
 = heat transfer rate $\left(\frac{J}{s}\right)$

$$U = overall heat transfer coefficient (W/m2K)$$

$$A_s$$
 = area perpindahan panas (m^2)

 $\Delta T_{lm} = log mean temperature difference for counter flow heat exchanger (°C)$

Pertama-tama dalam menghitung overall heat transfer coefficient (U), perlu dilakukan terlebih dahulu perhitungan Reynold number dan Prandtl number untuk hydrocarbon gas dan

air. *Reynold number hydrocarbon gas* dihitung berdasarkan data berikut :

 $\dot{m}_{gas} = 22.88 \frac{kg}{s}$ $\mu_{gas} = 0.000131 N \cdot \frac{s}{m^2}$ $D_i = 1$ " atau 0.0254 meter

Dari data tersebut maka *Reynold number hydrocarbon gas* dihitung dengan persamaan 3.4. Asumsi yang digunakan adalah nilai viskositas *hydrocarbon gas* adalah konstan berdasarkan data dari lapangan.

$$Re_{D} gas = \frac{4 \dot{m}}{\pi D \mu}$$
(3.4)
= $\frac{4 x 22.88}{3.14 x 0.0254 x 0.000131}$
= 8759541.028

Berdasarkan *Reynold number hydrocarbon gas* senilai 8759541.028, maka jenis aliran *hydrocarbon gas* adalah *turbulent*. Sedangkan untuk *Prandtl number hydrocarbon gas* dihitung berdasarkan data berikut :

$$\mu_{gas} = 0.000131 N \cdot \frac{s}{m^2}$$

$$k_{gas} = 0.0377 \frac{W}{m} \cdot K$$

$$C_{p gas} = 2210 \frac{J}{kg} \circ K$$

Dari data tersebut maka *Prandtl number hydrocarbon gas* dihitung dengan persamaan 3.5.

$$\Pr gas = \frac{\mu \cdot cp}{k}$$
(3.5)
= $\frac{0.000131 \times 2210}{0.0377}$
= 7.68

Setelah *Reynold number* dan *Prandtl number hydrocarbon* gas dihitung, maka *Nusselt number* dapat dihitung pula dengan persamaan 3.6.

$$Nu_D gas = 0.023. Re^{0.8}. Pr^{0.3}$$
(3.6)
= 0.023 x 8759541.028^{0.8} x 7.68^{0.3}
= 15181.32

Setelah diperoleh *Nusselt number* dari *hydrocarbon gas*, maka dapat dihitung koefisien konveksinya dengan persamaan 3.7.

$$h_{i} = Nu_{D} gas x \frac{k}{D_{i}}$$

$$= 15181.32 x \frac{0.0377}{0.0254}$$

$$= 22532.91$$
(3.7)

Persamaan 3.4 sampai dengan persamaan 3.7 juga digunakan untuk menghitung koefisien konveksi dari air. *Reynold number* air dihitung berdasarkan data berikut :

$$\dot{m}_{air} = 10.0327 \ \frac{kg}{s}$$

$$\mu_{air} = 0.000796 \ N \ \frac{s}{m^2} \text{ ketika temperature air } 30 \ ^{\circ}C$$

$$D_0 = 22^{\circ} \text{ atau } 1.12 \text{ meter}$$

Dari data tersebut maka *Reynold number* air dihitung dengan persamaan 3.8. Asumsi yang digunakan adalah nilai viskositas air pada *temperature* $30 \,^{\circ}C$.

$$Re_{D} air = \frac{4 \dot{m}}{\pi D \mu}$$
(3.8)
= $\frac{4 x 10.0327}{3.14 x 1.12 x 0.000796}$
= 14596.28

Berdasarkan *Reynold number* air sebesar 14331.78, maka jenis aliran air pada *shell* adalah *turbulent*. Sedangkan untuk *Prandtl number* air dihitung berdasarkan data berikut:

$$\mu_{air} = 0.000796 N \cdot \frac{s}{m^2}$$

$$k_{air} = 0.614 \frac{W}{m} \cdot K$$

$$C_{p gas} = 4200 \frac{J}{kg} \circ K$$

Dari data tersebut maka *Prandtl number hydrocarbon gas* dihitung dengan persamaan 3.9.

$$\Pr air = \frac{\mu \cdot cp}{k}$$
(3.9)
= $\frac{0.000796 \ x \ 4200}{0.614}$

Setelah *Reynold number* dan *Prandtl number* air dihitung, maka *Nusselt Number* dapat dihitung dengan persamaan 3.10.

$$Nu_D air = 0.023. Re^{0.8}. Pr^{0.4}$$
(3.10)
= 0.023 x 14331.78^{0.8} x 5.44^{0.4}
= 97.17

Setelah diperoleh *Nusselt number* dari *air*, maka dapat dihitung koefisien konveksinya dengan persamaan 3.11.

$$h_{o} = Nu_{D} \operatorname{air} x \frac{k}{D_{i}}$$
(3.11)
= 97.167x $\frac{0.614}{1.12}$
= 54.24

Setelah diketahui nilai koefisien konveksi dari hydrocarbon gas dan air, maka dapat dihitung nilai overall heat transfer coefficient (U) dengan persamaan 3.12.

$$U = \frac{1}{\frac{1}{h_i} + \frac{1}{h_o}}$$
(3.12)
$$= \frac{1}{\frac{1}{\frac{1}{22532.91} + \frac{1}{54.24}}}$$

= 54.11

Dengan

 $h_i = koefisien konveksi hydrocarbon gas (W/m²K)$ $h_o = koefisien konveksi air (W/m²K)$

Setelah nilai *overall heat transfer coefficient U*, maka dapat dilakukan pula perhitungan luas permukaan perpindahan panas A_s dengan menggunakan persamaan 3.13.

$$A_{s} = \frac{\dot{Q}}{U \cdot \Delta T_{lm}}$$
(3.13)
$$= \frac{\dot{Q}}{U x \frac{(T_{h,i} - T_{c,0}) - (T_{h,0} - T_{c,i})}{\ln[(T_{h,i} - T_{c,0})/(T_{h,0} - T_{c,i})]}$$
$$= \frac{1264120}{54.11 x \frac{(70 - 60) - (45 - 30)}{\ln[(70 - 60)/(45 - 30)]}$$
$$= 1894.61$$

Dengan

$$\dot{Q}$$
 = heat transfer rate $\left(\frac{J}{s}\right)$

$$U = overall heat transfer coefficient (W/m2K)$$

 A_s = area perpindahan panas (m²)

$$\Delta T_{lm} = log mean temperature difference for counter flow heat exchanger (°C)$$

Setelah area perpindahan panas diperoleh, maka dapat dihitung pula banyak *shell* serta panjang total *tube* yang

dibutuhkan oleh *shell and tube*. Panjang total *tube* dapat dihitung dengan persamaan 3.14.

$$L = \frac{A_s}{\pi . D_i}$$
(3.14)
= $\frac{2745.05}{3.14 x \ 0.0254}$
= 23755.14

Dengan

persamaan 3.15.

 $\begin{array}{l} A_s &= area \; perpindahan \; panas \; (m^2) \\ D_i &= diameter \; tube \; (m) \\ L &= panjang \; per \; tube \; atau \; panjang \; shell \; (m) \end{array}$

Dengan panjang total *tube* adalah 34968.85 meter dan termasuk sangat panjang, maka pada penelitian ini digunakan 2 *shell* pass. Sehingga panjang per *tube* dapat dihitung dengan

$$L/_{tube} = \frac{L}{N_{shell} \times N_{tube}}$$
(3.15)
$$= \frac{23755.14}{2 \times 1200}$$

$$= 9.9 \text{ meter}$$

Desain dari *shell and tube* diasumsikan dapat menampung *mass flowrate hydrocarbon gas* dan air dalam kondisi maksimum. Sehingga dimensi *shell and tube* sendiri termasuk kategori sangat panjang dan membutuhkan 2 *shell* untuk memangkas panjang *tube* agar tidak terlalu panjang. Hal ini mengingat bahwa *mass flowrate hydrocarbon gas* dan air cukup besar. Sehingga dimensi *shell and tube* dalam sistem pengendalian ini adalah sebagai berikut :

- Diameter *tube* = 1" atau 0.0254 meter
- Panjang per *tube* = 14.57 meter
- Jumlah *tube* = 1200
- Diameter *shell* = 44" atau 1.12 meter
- Panjang *shell* = 9.9 meter

• Jumlah *shell* = 2

3.3 Pemodelan Matematis Shell and Tube, Control Valve, Temperature Transmitter

Pemodelan matematis dilakukan dengan menurunkan pemodelan matematis dilakukan dengan menurunkan persamaan-persamaan dasar dari *shell and tube, control valve, temperature transmitter*, dan pengendali.

3.3.1Shell and Tube

Pemodelan matematis *shell and tube* digunakan hukum kesetimbangan energi dalam mencari *heat transfer* berdasarkan data *mass flowrate*, kalor jenis serta perbedaan *temperature*. Dimana panas yang diterima (air) harus sama besar dengan panas yang dilepas (gas). Asumsi yang digunakan antara lain :

- *Temperature outlet* air adalah 60 °C
- Digunakan *temperature inlet* maximum *hydrocarbon gas* yaitu 70 °C.
- Mass flowrate hydrocarbon gas konstan.

Untuk membuat pemodelan matematis *shell and tube*, pertama-tama dilakukan perhitungan kalor yang dilepaskan oleh *hydrocarbon gas* berdasarkan data dari *plant*.

ṁ _{gas}	$= 22.88 \frac{kg}{s}$
C _{p gas}	$=2210 \frac{J}{ka}^{\circ} K$
T _{in max gas}	= 70 °C
$T_{in \min gas}$	= 62.66 °C
T _{out gas}	= 45 °C

Perhitungan Q_{lepas} dilakukan dengan menggunakan persamaan 3.16.

$$Q_{lepas} = \dot{m}_{gas} \cdot c_{p \ gas} \cdot (T_{in} - T_{out})$$
(3.16)
= 22.88 x 2210 x (70 - 45)
= 1264120 $\left(\frac{J}{s}\right)$

Dengan

$$Q_{lepas} = heat \ transfer \ rate \ air\left(\frac{J}{s}\right)$$

$$\dot{m}_{air} = mass \ flow rate \ air\left(\frac{kg}{s}\right)$$

$$c_{p \ air} = kalor \ jenis \ air\left(\frac{J}{kg}\circ K\right)$$

$$\Delta T = perbedaan \ temperature \ air\left(\circ C\right)$$

Dikarenakan Q_{lepas} harus sama dengan Q_{terima} , maka dilakukan perhitungan dengan menggunakan nilai Q_{lepas} sebagai Q_{terima} untuk mengetahui banyaknya mass flowrate air yang dibutuhkan dalam proses pendinginan. Perhitungan mass flowrate air ini dilakukan berdasarkan data berikut :

$$C_{p \ air} = 4200 \frac{f}{kg} {}^{\circ}K$$
$$T_{in \ air} = 30 {}^{\circ}C$$
$$T_{out \ air} = 60 {}^{\circ}C$$

Berdasarkan data-data tersebut, perhitugan *mass flowrate* air dapat dihitung dengan menggunakan persamaan 3.17 sebagai berikut :

$$\dot{m}_{air} = \frac{Q_{terima}}{c_{p \ air} \cdot (T_{out} - T_{in})}$$

$$= \frac{1264120}{4200 \cdot (60 - 30)}$$

$$= 10.03$$
(3.17)

Dengan

$$Q_{terima} = heat \ transfer \ rate \ air (J) \ atau \ (Watt)$$

$$\dot{m}_{air} = mass \ flow rate \ air \left(\frac{kg}{s}\right)$$

$$c_{p \ air} = kalor \ jenis \ air \left(\frac{J}{kg} \circ K\right)$$

$$\Delta T = perbedaan \ temperaure \ air \ (\circ C)$$

3.3.2 Control Valve

Pada dasarnya *control valve* akan mengatur banyaknya *mass flowrate* air yang akan masuk ke *shell and tube* untuk menurunkan *temperature* dari *hydrocarbon gas*. Sehingga dengan tugas *control valve* tersebut, maka diperlukan pula pemodelan matematisnya berupa fungsi transfer. Berikut merupakan *datasheet globe valve* :

Span mass flowrate $(\Delta \dot{m}) = 0.12 \frac{kg}{s}$ Span arus $(\Delta A) = 4.20 \text{ mA}$ Time konstan $(\tau) = 3 \text{ detik}$

Persamaan fungsi transfer *control valve* dapat dirumuskan pada persamaan 3.18.

$$\frac{M(s)}{I(s)} = \frac{K}{1+\tau s} \tag{3.18}$$

Dengan

 $K = gain \ control \ valve$

 τ = time constant control value (s)

Untuk *gain control valve* dapat dirumuskan seperti pada persamaan 3.19.

$$K = \frac{\Delta \dot{m}}{\Delta A}$$

$$= \frac{(12-0)}{(20-4)}$$

$$= 0.75$$
(3.19)

Sehingga nilai fungsi transfer dari *control valve* adalah sebagai berikut :

$$\frac{M(s)}{I(s)} = \frac{0.75}{3\,s+1} \tag{3.20}$$

Pada pemvalidasian fungsi transfer *control valve* ini dicoba dengan mengasumsikan bahwa sinyal *input*nya adalah 15 mA.

Sehingga diperoleh jumlah keluaran *mass flowrate control valve*. Pemvalidasian dapat dihitung dengan persamaan 3.21.

$$\frac{\dot{m}_{a} - \dot{m}_{b}}{I_{a} - I_{b}} = \frac{\dot{m} - \dot{m}_{b}}{I - I_{b}}$$
(3.21)
$$\frac{12 - 0}{20 - 4} = \frac{\dot{m} - 0}{15 - 4}$$

$$\dot{m} = 8.25$$

Dengan

I = sinyal input arus yang diberikan (mA) $I_a = arus maksimum control valve (mA)$ $I_b = arus minimum control valve (mA)$ $\dot{m} = keluaran mass flowrate yang dihasilkan \left(\frac{kg}{s}\right)$ $\dot{m}_a = mass flowrate maksimum control valve \left(\frac{kg}{s}\right)$ $\dot{m}_b = mass flowrate minimum control valve \left(\frac{kg}{s}\right)$

Setelah dilakukan perhitungan validasi fungsi transfer *control valve*. maka dibuat simulasi pada Matlab Simulink dengan memberikan sinyal uji step pada fungsi transfer *control valve*. Dari simulasi tersebut dapat diketahui pula karakteristik respon dari *control valve* guna mencocokkan kesesuaian antara hasil perhitungan dengan grafik respon yang dihasilkan. Pada sinyal step diberi *final value* sebesar 15 mA.

3.3.3 Temperature Transmitter

Pada sistem pengendalian *temperature shell and tube* untuk mendinginkan *temperature hydrocarbon gas*, diperlukan pula sensor *temperature* dan *temperature transmitter* untuk mengetahui bahwa *hydrocarbon gas* sudah mencapai *temperature set point* (45 °C). Untuk spesifikasi sensor RTD pada *temperature transmitter* adalah sebagai berikut :

Manufacturer : Rosemount *Instrumentation Range* : -50 – 450 °C Untuk membuat pemodelan matematis *temperature transmitter* maka perlu dilakukan perhitungan fungsi transfer dengan persamaan 3.22.

$$\frac{I(s)}{T(s)} = \frac{K}{1+\tau s} \tag{3.22}$$

Dimana nilai *gain K* dihitung melalui perbandingan span *output* (arus) dengan span *input* (instrumentation range). Sehingga didaptkan nilai *K* sebgai berikut :

$$K = \frac{(20-4) mA}{(450-50) C}$$
(3.23)
= 0.032

Dengan menggunakan persamaan 3.22 dan memasukkan nilai *K* dan *time constant*, maka fungsi transfer *temperature transmitter* adalah sebgai berikut :

$$\frac{I(s)}{H(s)} = \frac{0.032}{0.5 \, s+1} \tag{3.24}$$

Pada pemvalidasian fungsi transfer *temperature transmitter* ini dicoba dengan mengasumsikan bahwa sinyal *input*nya adalah 80 mA. Sehingga diperoleh jumlah keluaran arus *temperature transmitter*. Pemvalidasian dapat dihitung dengan persamaan 3.25.

$$\frac{I_a - I_b}{T_a - T_b} = \frac{I - I_b}{T - T_b}$$
(3.25)
$$\frac{20 - 4}{450 - (-50)} = \frac{I - 4}{80 - (-50)}$$

$$I = 8.16$$

Dengan

T = masukan temperature yang diberikan (°C)

 $T_{a} = batas \ atas \ temperature \ TT (°C)$ $T_{b} = batas \ bawah \ temperature \ TT (°C)$ $I = keluaran \ arus \ yang \ dihasilkan (mA)$ $I_{a} = batas \ atas \ arus \ TT (mA)$ $I_{b} = batas \ bawah \ arus \ TT (mA)$

Setelah dilakukan perhitungan validasi fungsi transfer *temperature transmitter*.. maka dibuat simulasi pada Matlab Simulink dengan memberikan sinyal uji step pada fungsi transfer *temperature transmitter*.. Dari simulasi tersebut dapat diketahui pula karakteristik respon dari *temperature transmitter* guna mencocokkan kesesuaian antara hasil perhitungan dengan grafik respon yang dihasilkan. Pada sinyal step diberi *final value* sebesar 80.

3.4 Perancangan dan Simulasi Sistem Pengendalian *Temperature* pada *New Cooler* Tipe *Shell and Tube* Dengan Media Air

Gambar 3.3 Simulasi Sistem Pengendalian Temperature pada Shell and Tube

Perancangan dan simulasi sistem pengendalian *temperature* pada *shell and tube* dilakukan dengan mengacu pada diagram blok sistem pengendalian. Selanjutnya dibuat simulasi pada Matlab Simulink dengan memasukkan pemodelan matematis dari *shell and tube*, fungsi transfer *control valve dan temperature transmitter* serta pemberian kontroler seperti pada gambar 3.3.

Selanjutnya dilakukan tuning PID pada sistem pengendalian *temperature* pada *shell and tube* dengan menggunakan kurva respon reaksi. Tuning PID dilakukan dengan memberikan sinyal uji input step pada plant untuk mengetahui kurva reaksinya.

Setelah itu dilakukan pengukuran untuk mendapatkan nilai *slope, time constant* dan *lag ratio.* Dari parameter-parameter tersebut digunakan untuk menghitung nilai Kp dan Ti.

3.4.1. Pemberian Sinyal Uji Step Terhadap Plant

Gambar 3.4 Pemberian Sinyal Uji Step pada Plant Shell and Tube

Sinyal uji step yang digunakan merupakan sinyal uji *manipulated variable* yakni mass flowrate air sebesar 10.0327 kg/s sesuai dengan pemodelan matematis *plant* yang telah dilakukan pada subab 3.3.1 Sehingga berikut adalah model simulink pemberian sinyal uji input pada plant dapat dilihat pada gambar 3.4.

3.4.2.Pengamatan pada Hasil Kurva Reaksi Respon Dinamik Shell and Tube

Berdasarkan pemberian sinyal uji step pada *shell and tube*, selanjutnya dilakukan pengamatan untuk mendapatkan nilai *slope*, *time constant*, dan *lag ratio* seperti pada gambar 3.5.

Gambar 3.5 Kurva Reaksi Respon Dinamik Shell and Tube

Berdasarkan pengamatan yang telah dialukan pada gambar 3.5, maka diperoleh parameter sebagai berikut :

- N = 1.87
- K = 25

Selanjutnya dilakukan perhitungan untuk mencari *time constant* (T) dengan persamaan 3.26.

$$T = \frac{K}{N}$$
(3.26)
= $\frac{25}{1.87}$
= 13.37

Untuk lag ratio (R) dapat dihitung dengan persamaan 3.27.

$$R = \frac{L}{T}$$
(3.27)
= $\frac{0.7}{13.37}$
= 0.0523

3.4.3. Perhitungan Nilai Kp, τ_i , dan τ_d

Berdasarkan parameter kurva reaksi yang didapat, selanjutnya dilakukan perhitungan untuk setiap mode pengendali yaitu P, PI, dan PID. Untuk mode pengendali *proportional* dapat dihitung dengan menggunakan persamaan 3.28.

$$K_p = \frac{M}{NL} \left(1 + \frac{R}{3} \right)$$

$$= \frac{25}{1.87 \times 0.7} \left(1 + \frac{0.0523}{3} \right)$$

$$= 19.43$$
(3.28)

Untuk mode pengendali PI dapat dihitung dengan menggunakan persamaan 3.29 dan 3.30.

$$K_{p} = \frac{M}{NL} \left(\frac{9}{10} + \frac{R}{12}\right)$$
(3.29)
$$= \frac{25}{1.87 \times 0.7} \left(\frac{9}{10} + \frac{0.0523}{12}\right)$$
$$= 17.27$$

$$\tau_{i} = L \left(\frac{30+3R}{9+20R}\right)$$
(3.30)
$$= 0.7 \left(\frac{30+3 \times 0.0523}{9+20 \times 0.0523}\right)$$
$$= 2.1$$

Untuk mode pengendali PID dapat dihitung dengan menggunakan persamaan 3.31 sampai dengan 3.33.

$$K_{p} = \frac{M}{NL} \left(\frac{4}{3} + \frac{R}{4}\right)$$
(3.31)

$$= \frac{25}{1.87 \times 0.7} \left(\frac{9}{10} + \frac{0.0523}{12}\right)$$

$$= 25.71$$

$$\tau_{i} = L \left(\frac{32+6R}{13+8R}\right)$$
(3.32)

$$= 0.7 \left(\frac{32+6 \times 0.0523}{13+8 \times 0.0523}\right)$$

$$= 1.68$$

$$\tau_{d} = L \left(\frac{4}{11+2R}\right)$$
(3.33)

$$= 0.7 \left(\frac{4}{11+2 \times 0.0523}\right)$$

$$= 0.252$$

Halaman ini sengaja dikosongkan
BAB IV HASIL DAN PEMBAHASAN

Setelah dilakukan simulasi sistem pengendalian *temperature* dengan menggunakan Simulink, maka selanjutnya dilakukan analisa kinerja sistem pengendalian *temperature* pada *Shell and tube* dilakukan dengan mengamati grafik karakteristik respon sistem serta performansi dari kontroler terhadap sistem Untuk grafik karakteristik respon sistem, dilihat tentang keberhasilan sistem dalam mencapai *set point* serta bentuk kurva yang diperoleh. Sedangkan performansi dilihat tentang kemampuan kontroler dalam mengendalikan sistem agar *temperature set point* tercapai. Di bawah ini akan dijelaskan hasil dari simulasi beberapa keadaan yang berbeda-beda untuk mengetahui kinerja dari sistem pengendalian *temperature* pada *shell and tube*.

4.1 Analisa Hasil Simulasi

Dari hasil pemodelan *shell and tube* pada subab 3.3.1 diperoleh hasil simulasi sebagai berikut.

Gambar 4.1 Hasil Simulasi Pemodelan Shell and Tube Dengan Mass Flowrate Air 10.03 kg/s

Adapun $T_{in gas}$ sebesar 70 °C dan $T_{out gas}$ adalah sebesar 45 °C. Sedangkan $T_{in air}$ sebesar 30 °C dan $T_{out air}$ adalah sebesar 60 °C. Dari gambar 4.1 diperoleh hasil bahwa dengan \dot{m}_{air} sebesar 10.0327 kg/s dapat menurunkan *temperature hydrocarbon gas* dari 70 °C menjadi 45.01 °C. Sehingga diperoleh *error* sebesar

0.000149 %. Pada simulasi tersebut dipergunakan data hasil perhitungan pada subab 3.3.1 dan mendapatkan hasil yang sama. Maka dari itu dapat dikatakan bahwa pemodelan yang telah dilakukan pada subab 3.3.1 dapat dianggap benar dan valid.

Pada *shell and tube, mass flowrate* air adalah variabel yang dimanipulasi guna melihat pengaruh sedikit banyaknya *mass flowrate* air terhadap penurunan *temperature hydrocarbon gas.* Pada penelitian ini dilakukan variasi *mass flowrate* dengan range $(9.7 - 10.54) \frac{kg}{s}$ dengan selisih *mass flowrate* air sebesar $0.03 \frac{kg}{s}$ seperti pada tabel 4.1.

Variasi m _{air} Terhadap T _{out gas}						
$\dot{m}_{air}\left(\frac{kg}{s}\right)$	Tout gas (°C)	$\dot{m}_{air}\left(\frac{kg}{s}\right)$	Tout gas (°C)			
0	70	10.12	44.78246			
9.7	45.82904	10.15	44.7077			
9.73	45.75428	10.18	44.63295			
9.76	45.67952	10.21	44.55819			
9.79	45.60477	10.24	44.48344			
9.82	45.53001	10.27	44.40868			
9.85	45.45526	10.3	44.33392			
9.88	45.3805	10.33	44.25917			
9.91	45.30575	10.36	44.18441			
9.94	45.23099	10.39	44.10966			
9.97	45.15624	10.42	44.0349			
10	45.08148	10.45	43.96015			
10.03	45.00672	10.48	43.88539			
10.06	44.93197	10.51	43.81064			
10.09	44.85721	10.54	43.73588			

Tabel 4.1 Pengaruh Variasi Mass Flowrate Air TerhadapTemperature Outlet Hydrocarbon Gas

Berdasarkan tabel 4.1, dapat dilihat bahwa mass flowrate air yang paling sesuai untuk menurunkan temperature hydrocarbon gas dari 70 °C menjadi 45.00672 °C adalah 10.03 $\frac{kg}{s}$ dengan error 0.000149 %. Setelah dilakukan perhitungan mass flowrate air dengan persamaan 3.2 serta telah dilakukan variasi jumlah mass flowrate air seperti pada tabel 4.1, sehingga dapat dilihat pengaruh perubahan mass flowrate air terhadap $T_{out gas}$.

Kemudian analisa data dilanjutkan dengan hasil pemodelan *control valve* sampai dengan diperolehnya fungsi transfer, maka untuk validasinya dilakukan pemberian sinyal uji step seperti pada subab 3.3.2. Validasi ini dilakukan dengan mengunakan persamaan interpolasi dengan mengasumsikan bahwa dengan diberikan *input* arus sebesar 15 mA akan mengalirkan \dot{m}_{air} sebesar 8.25 kg/s. Pada blok "step" diberikan nilai step time 0. Sehingga diperoleh hasil seperti pada gambar 4.2.

Gambar 4.2 Hasil Simulasi Pemodelan Control Valve

Pada gambar 4.2 dapat dihitung nilai dari *time constant. Time constant* sendiri adalah nilai yang dibutuhkan suatu sistem untuk mencapai 63% dari nilai akhirnya. Sehingga dengan kata lain 8.25 kg/s dikalikan 63%, hasilnya adalah 5.1975. Dimana pada grafik dapat dilihat bahwa nilai 5.1975 berada pada detik ke-3. Dari gambar 4.2 juga diperoleh kurva eksponensial yang menunjukkan bahwa grafik tersebut adalah respon dari sistem orde 1. Sehingga

dari hasil perhitungan dan model Simulink dapat dikatakan bahwa pemodelan *control valve* sudah benar.

Sedangkan untuk hasil pemodelan *temperature transmitter* hingga diperoleh fungsi transfer, maka untuk validasinya diberikan pula sinyal uji step seperti pada subab 3.3.3. Validasi ini dilakukan dengan mengunakan persamaan interpolasi dengan mengasumsikan diberi *input temperature* 80 °C akan menghasilkan *output* arus 8.16 mA. Sehingga diperoleh hasil seperti pada gambar 4.3.

Gambar 4.3 Hasil Simulasi Pemodelan Temperature Transmitter

Pada gambar 4.3 dapat dihitung pula nilai dari *time constant*. Nilai *time constant temperature transmitter* dihitung dengan mengurangi 8.16 mA dengan 4 karena arus minimumnya adalah 4 mA. Lalu hasilnya dikalikan dengan 63 % dan ditambah 4. Sehingga diperoleh nilai 6.62 yang berada pada detik ke-0.5. dapat dilihat bahwa nilai 5.1408 berada pada detik ke-0.5. Dari gambar 4.3 juga diperoleh kurva eksponensial yang menunjukkan bahwa grafik tersebut adalah respon dari sistem orde 1. Sehingga dari hasil perhitungan dan model Simulink dapat dikatakan bahwa pemodelan *temperature transmitter* sudah benar.

Setelah validasi yang telah dilakukan pada *plant, control valve*, serta *temperature transmitter* sudah benar, selanjutnya dianalisa sistem pengendalian *temperature* dengan diberikan berbagai mode pengendali. Pada subab 3.4 telah dilakukan perancangan dan

simulasi sistem pengendalian *temperature* pada *shell and tube* dengan menggunakan mode pengendali P, PI dan PID. Untuk mode pengendali P diperoleh nilai Kp sebesar 19.43. Adapun hasil simulasi dari model simulink dengan pengendali P dapat dilihat pada gambar 4.4.

Pada gambar 4.4 dapat dilihat bahwa $T_{in \ gas}$ sebesar 70 °C dan $T_{out \ gas}$ adalah sebesar 60.85 °C. *Temperature hydrocarbon gas* mengalami penurunan terlebih dahulu hingga 60.3 °C. Pada dasarnya perubahan temperature membutuhkan waktu yang cukup lama, sehingga mode pengendali P sudah cukup. Namun pada sistem pengendalian *temperature* pada *shell and tube* ini, mode pengendali P saja tidak mampu memnurunkan $T_{out \ gas}$ menjadi 45 °C. Performansi dari pengendali P sendiri dengan \dot{m}_{air} sebesar 10.0327 kg/s dan Kp sebesar 19.43 yakni *rise time* sebesar 7.51 detik, *settling time* sebesar 19.8 detik, dan *overshoot* 3.21 %.

Gambar 4.4 Model Simulink Sistem Pengendalian *Temperature* pada *Shell and Tube* (Pengendali P)

Selanjutnya model Simulink untuk sistem pengendalian *temperature* pada *shell and tube* dengan menggunakan mode pengendali PI diberikan nilai Kp sebesar 17.27 dan τ_i sebesar 2.1. Hasil simulasi dari model simulink dengan pengendali PI dapat dilihat pada gambar 4.5.

Pada gambar 4.5 dapat dilihat bahwa $T_{in gas}$ sebesar 70 °C dan $T_{out gas}$ adalah sebesar 45 °C. Sehingga dengan menggunakan

mode pengendali PI, *temperature hydrocarbon gas* dapat mencapai *set point* yaitu 45 °C. Pada dasarnya penambahan mode pengendali integral ini dilakukan untuk mengurangi *error* yang dihasilkan oleh pengendali P. Serta untuk membantu sistem mencapai *set point*. Performansi dari pengendali PI sendiri dengan \dot{m}_{air} sebesar 10.0327 kg/s dan Kp sebesar 17.27 serta τ_i sebesar 2.1 yakni *rise time* sebesar 14 detik, *settling time* sebesar 26.3 detik, serta *overshoot* sebesar 0 %.

Gambar 4.5 Model Simulink Sistem Pengendalian *Temperature* pada *Shell and Tube* (Pengendali PI)

Selanjutnya model Simulink untuk sistem pengendalian *temperature* pada *shell and tube* dengan menggunakan mode pengendali PID diberikan nilai Kp sebesar 25.71, τ_i sebesar 1.68, τ_d sebesar 0.252. Hasil simulasi dari model simulink dengan pengendali PI dapat dilihat pada gambar 4.6.

Pada gambar 4.6 dapat dilihat bahwa $T_{in \ gas}$ sebesar 70 °C dan $T_{out \ gas}$ adalah sebesar 45.14 °C. Sehingga dengan menggunakan mode pengendali PI, *temperature hydrocarbon gas* dapat mencapai *set point* yaitu 45 °C. Pada dasarnya pemberian mode pengendali PID sama-sama mampu membantu sistem mencapai *set point*. Namun pada *real plant*, pemberian mode pengendali PID ini tidak dapat diterapkan karena tidak aman untuk sistem. Performansi dari pengendali PI sendiri dengan \dot{m}_{air} sebesar 10.0327 kg/s dan Kp sebesar 25.71, τ_i sebesar 1.68, τ_d

sebesar 0.252 yakni *rise time* sebesar 27.9 detik, *settling time* sebesar 65.6 detik, dan *overshoot* sebesar 0 %.

Gambar 4.6 Model Simulink Sistem Pengendalian *Temperature* pada *Shell and Tube* (Pengendali PID)

Untuk mengetahui perbedaan performansi mode pengendali P, PI, dan PID dengan lebih mudah dapat dilihat pada tabel 4.2.

Performansi Mode Pengendali						
Keterangan	Р	PI	PID			
T _{out gas}	60.85 °C	45 °C	45.14 °C			
Rise time	7.51 s	14 s	27.9 s			
Settling time	19.8 s	26.3 s	65.6 s			
Overshoot	3.21 %	0 %	0 %			
Peak Time	0.509 s	0.999 s	0.997 s			

Tabel 4. 2 Performansi Mode Pengendali P, PI, dan PID

Berdasarkan hasil simulasi yang telah dilakukan dan performansi pengendali yang didaptkan dengan menggunakan mode pengendali P, PI, dan PID dapat disimpulkan bahwa mode pengendali yang paling cocok untuk sistem pengendalian *temperature* pada *shell and tube* adalah mode pengendali PI. Untuk mengetahui sejauh mana mode pengendali PI dapat beradaptasi dengan berbagai kondisi yang berubah tiba-tiba, maka dilakukan variasi dengan mengubah *mass flowrate* air, *temperature input hydrocarbon gas*, serta *temperature input* air.

Untuk variasi *mass flowrate* air, dirubah dengan mengganti 10.0327 kg/s menjadi 9.7 kg/s dan 12 kg/s seperti pada tabel 4.1. Hasil simulasi dengan *mass flowrate* air sebesar 9.7 kg/s dapat dilihat pada gambar 4.7. Sedangkan hasil simulasi dengan *mass flowrate* air sebesar 12 kg/s dapat dilihat pada gambar 4.8.

Gambar 4.7 Hasil Simulasi Sistem Pengendalian *Temperature* pada *Shell and Tube* Dengan *Mass Flowrate* Air Sebesar 9.7 kg/s

Gambar 4.8 Hasil Simulasi Sistem Pengendalian Temperature pada Shell and Tube Dengan Mass Flowrate Air Sebesar 12 kg/s

Dari hasil simulasi dari pemberian variasi *mass flowrate* air dengan mengganti 10.0327 kg/s menjadi 9.7 kg/s dan 12 kg/s, dapat dilihat bahwa mode pengendali PI masih mampu beradaptasi dengan perubahan tersebut walaupun diberikan input maksimal yaitu 12 kg/s. Serta sistem pun masih dapat mencapai set point yaitu 45 °C. Performansi mode pengendali PI dapat dilihat pada tabel 4.3.

Performansi Mode Pengendali PI Dengan Variasi Mass Flowrate Air							
Keterangan 9.7 kg/s 10.0327 kg/s 12 kg/s							
T _{out gas}	45 °C	45 °C	45 °C				
Rise time	14.7 s	14 s	11 s				
Settling time	28.5 s	26.3 s	17.8 s				
Overshoot	0 %	0 %	0 %				
Peak Time	1 s	0.999 s	1 s				

 Tabel 4.3 Performansi Mode Pengendali PI Dengan Variasi Mass

 Flowrate Air

Selanjutnya untuk variasi *temperature input hydrocarbon* gas akan dirubah dari 70 °C menjadi 62 °C dan 85 °C. Hasil simulasi dengan *temperature input hydrocarbon gas* sebesar 62 °C dapat dilihat pada gambar 4.9. Sedangkan hasil simulasi dengan *temperature input hydrocarbon gas* sebesar 85 °C dapat dilihat pada gambar 4.10.

Berdasarkan hasil simulasi dari pemberian variasi *temperature input hydrocarbon gas* dari 70 °C menjadi 62 °C dan 85 °C diperoleh bahwa mode pengendali PI juga mampu beradaptasi dengan perubahan tersebut. Untuk performansi dari sistem sendiri dari ketiga variasi tersebut masih sama yaitu 1 yakni *rise time* sebesar 14 detik, *settling time* sebesar 26.3 detik, dan *overshoot* sebesar 0 %.

Gambar 4.9 Hasil Simulasi Sistem Pengendalian *Temperature* pada *Shell and Tube* Dengan *Temperature Input Hydrocarbon Gas* Sebesar 62 °C

Gambar 4.10 Hasil Simulasi Sistem Pengendalian Temperature pada Shell and Tube Dengan Temperature Input Hydrocarbon Gas Sebesar 85 °C

Selanjutnya untuk variasi *temperature input* air akan dirubah dari 30 °C menjadi 27 °C. Hasil simulasi tersebut dapat dilihat pada gambar 4.11. Berdasarkan hasil simulasi dari pemberian variasi *temperature input* air dari 30 °C menjadi 27 °C diperoleh bahwa mode pengendali PI juga mampu beradaptasi dengan perubahan tersebut. Untuk performansi mode pengendali PI setelah diberi variasi adalah *rise time* sebesar 12.3 detik, *settling time* sebesar 21 detik, serta *overshoot* sebesar 0 %.

Gambar 4.11 Hasil Simulasi Sistem Pengendalian *Temperature* pada *Shell and Tube* Dengan *Temperature Input* Air Sebesar 27 °C

Selain dilakukan variasi terhadap mass flowrate air, temperature input hydrocarbon gas, serta temperature input air, dapat pula nilai $T_{inlet gas}$ dirubah menjadi random value dengan range 62 °C - 70 °C yang mengacu pada data dari *plant* yaitu $T_{inlet gas}$ minimum adalah 62 °C dan $T_{inlet gas}$ maksimum adalah 70 °C seperti pada gambar 4.12.

Gambar 4.12 Model Simulink Sistem Pengendalian Temperature pada Shell and Tube Dengan Temperature Inlet Hydrocarbon Gas Bervariasi (Random)

Gambar 4.13 Hasil Simulasi Sistem Pengendalian Temperature pada Shell and Tube Dengan Temperature Inlet Hydrocarbon Gas Bervariasi (Random)

Hasil simulasi dari model Simulink dapat dilihat pada gambar 4.10 dapat dilihat bahwa nilai $T_{out \ gas}$ turun menjadi 45.44 °C. Dimana nilai tersebut adalah nilai yang keluar pada detik terakhir grafik. Hasil grafiknya pun fluktuatif karena pengaruh dari *random value* yang diberikan. Selain memberikan variasi temperature inlet hydrocarbon gas dengan random value.

Sehingga dari gambar 4.7 sampai dengan gambar 4.13 dapat disimpulkan dengan berbagai macam variasi yang diberikan, pengendali PI dengan Kp sebesar 17.27 dan τ_i sebesar 2.1 sangat mampu beradaptasi dengan variasi yang diberikan dan mampu menurunkan $T_{out \ gas}$ menjadi 45 °C.

4.2 Pembahasan

Berdasarkan hasil simulasi yang telah dilakukan pada *plant* shell and tube yakni gambar 4.1 diperoleh bahwa pemodelan matematis yang telah dilakukan pada subab 3.3.1 sudah benar. Dengan \dot{m}_{air} sebesar 10.03 kg/s mampu menurunkan temperature hydrocarbon gas dari 70 °C hingga 45 °C. Serta diperoleh bahwa dengan memberi variasi pada \dot{m}_{air} sekecil apapun maka akan memengaruhi pula perubahan $T_{out \ gas}$.

Untuk hasil simulasi yang telah dilakukan pada *control valve* yakni pada gambar 4.2 diperoleh bahwa pemodelan matematis yang telah dilakukan pada subab 3.3.2 sudah benar. Hal ini ditunjang dengan persamaan interpolasi yang telah dilakukan menghasilkan grafik respon yang sesuai, yaitu ketika diberi sinyal uji step dengan memberi *final value* sebesar 15 mA pada *control valve*, akan membuat *control valve* mengalirkan 8.25 kg/s dengan *time constant*nya adalah 3 detik. Serta kurva yang diperoleh juga berbentuk eksponensial yang menunjukkan bahwa grafik tersebut adalah respon dari sistem orde 1.

Selanjutnya untuk hasil simulasi yang telah dilakukan pada *temperature transmitter* yakni pada gambar 4.3 diperoleh bahwa pemodelan matematis yang telah dilakukan pada subab 3.3.3 sudah benar. Hal ini ditunjang dengan persamaan interpolasi yang telah dilakukan menghasilkan grafik respon yang sesuai, yaitu ketika diberi sinyal uji step dengan memberi *final value* sebesar 80 °C pada *temperature transmitter*, akan membuat *temperature transmitter* mengeluarkan arus sebesar 8.16 kg/s dengan *time constant*nya adalah 0.5 detik. Serta kurva yang diperoleh juga berbentuk eksponensial yang menunjukkan bahwa grafik tersebut adalah respon dari sistem orde 1.

Untuk sistem pengendalian *temperature* pada *shell and tube* secara keseluruhan, diperoleh bahwa pengendali yang cocok digunakan untuk sistem tersebut adalah PI dengan nilai Kp sebesar 17.27 dan nilai τ_i sebesar 2.21. Nilai tersebut diperoleh dengan metode kurva reaksi. Pada umumnya *temperature* memiliki respon yang lama, maka hanya diperlukan pengendali *proportional* saja. Namun dalam penelitian ini diberikan pengendali *integral* juga guna memperbaiki *error*. Karena pada dasarnya nilai Kp hanyalah sebagai *gain* saja tanpa memberi efek dinamik pada kinerja pengendali.

Secara keseluruhan pengendali PI dengan nilai Kp sebesar 17.27 dan nilai τ_i sebesar 2.21 dapat menurunkan *temperature hydrocarbon gas* menjadi 45 °C walaupun telah dilakukan variasi terhadap \dot{m}_{air} yang awalnya sebesar 10.0327 kg/s menjadi 9.7 kg/s dan 12 kg/s. Performansi dari pengendali \dot{m}_{air} sebesar 10.0327 kg/s yakni *rise time* sebesar 14 detik, *settling time* sebesar 26.3 detik, serta *overshoot* sebesar 0 %. Performansi dari pengendali \dot{m}_{air} sebesar 9.7 kg/s yakni *rise time* sebesar 14.7 detik, *settling time* sebesar 28.5 detik, serta *overshoot* sebesar 0 %. Performansi dari pengendali \dot{m}_{air} sebesar 12 kg/s yakni *rise time* sebesar 11 detik, *settling time* sebesar 17.8 detik, serta *overshoot* sebesar 0 %.

Selain itu untuk melihat sejauh mana pengendali PI dapat beradaptasi, maka dilakukan pula pemberian variasi $T_{in \ gas}$ dari 70 °C menjadi 65 °C dan 85 °C. Dari pemberian variasi tersebut diperoleh bahwa performansi mode pengendali PI masih sama yaitu *rise time* sebesar 14 detik, *settling time* sebesar 26.3 detik, serta *overshoot* sebesar 0 %. Sedangkan ketika diberikan variasi $T_{in \ air}$ dari 30 °C menjadi 27 °C diperoleh pula bahwa mode pengendali PI masih mampu beradaptasi dengan perubahan yang diberikan dengan performansi *rise time* sebesar 12.3 detik, *settling time* sebesar 21 detik, dan *overshoot* sebesar 0 %.

Selanjutnya untuk *random value* dengan *range* 62 °C–70 °C. Grafik yang dihasilkan dari sistem yang baru ini adalah tetap terjadi penurunan *temperature hydrocarbon gas* walaupun tidak benar-benar pas 45 °C, yakni 45.4 °C dengan mengacu pada toleransi *error* 2.5 %. Dari hasil simulasi juga menjukkan bahwa *temperature hydrocarbon gas* mengalami fluktuasi. Sehingga secara keseluruhan dapat dikatakan bahwa pengendali PI dengan nilai Kp sebesar 17.27 dan nilai τ_i sebesar 2.21 sangat mampu membantu sistem untuk menurunkan *temperature hydrocarbon gas* menjadi 45 °C.

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil dan pembahasan pada penelitian ini diperoleh kesimpulan sebagai berikut :

- Pemilihan sistem pendingin hydrocarbon gas sebagai inlet ke MP Compressor Suction Scrubber dilakukan dengan mengidentifikasi parameter hydrocarbon gas terlebih dahulu. Sehingga diperoleh bahwa mass flowrate air yang dibutuhkan adalah 10.0327 kg/s. Selanjutnya juga diperoleh dimensi shell and tube berdasarkan mass flowrate hydrocarbon gas dan mass flowrate air. Sehingga dimensi shell and tube adalah 2 shell pass dengan diameter shell adalah 44" dan panjangnya 9.9 meter, serta untuk diameter tube adalah 1" dangan jumlah tube adalah 1200 buah.
- Perancangan sistem pengendalian *temperature* pada *shell and tube* bermedia pendingin air dilakukan dengan melakukan pemodelan matematis terlebih dahulu untuk *plant, control valve,* dan *temperature transmitter.* Setelah dilakukan simulasi dan validasi untuk setiap pemodelan, maka dilanjutkan dengan menggabungkan semua komponen menjadi satu kesatuan pada model Simulink dengan memasukkan nilai-nilai yang ada. Selanjutnya ditambahkan pengendali PI dengan Kp sebesar 17.27 dan nilai τ_i sebesar 2.21 yang diperoleh dari metode kurva reaksi.
- Kinerja dari sistem pengendalian *temperature* pada *shell and tube* bermedia pendingin air sudah cukup bagus. Hal tersebut dibuktikan dengan pengendali PI dengan nilai Kp sebesar 17.27 dan τ_i sebesar 2.21 diperoleh dari mode pengendali PI adalah *rise time* sebesar 14 detik, *settling time* sebesar 26.3 detik, serta *overshoot* sebesar 0%. Serta mode pengendali PI mampu beradaptasi ketika diberikan variasi yaitu perubahan *mass flowrate* air, *temperature inlet hydrocarbon gas*, dan *temperature inlet* air.

5.2 Saran

Adapun saran yang dapat diberikan untuk penelitian ini adalah dilakukannya studi lebih dalam lagi terkait penambahan *shell and tube heat exchanger* pada CPP Unit sehingga perhitungan dimensi serta sistem pengendalian *temperature* pada *equipment* tersebut dapat memperoleh hasil yang lebih baik.

DAFTAR PUSTAKA

- Acharya, & Vishal H. (2017). A Review on Investigation of Shell and Tube Heat Exchanger For Different Parameter. *international Research Journal of Engineering and Technology (IRJET)*, 1.
- Arangi, H., Sivaram, P., & Babu, D. (2015). Analysis of Inlet Air Temperauter Effect on Gas Turbine Compressor Performance. *International Research Journal of Engineering and Technology (IRJET)*, 845-853.
- Automation Technologies Online. (n.d.). Retrieved from RTD Sensor, PT100, Sheath, 3 Wire: https://www.ato.com/rtdsensor-pt100-sheath-3-wire
- C. Nandhini, & M. Jagadeeswari. (2016). MEASUREMENT OF TEMPERATURE USING RTD AND SOFTWARE SIGNAL CONDITIONING USING LABVIEW. International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE), 326-329.
- Cengel, Y. (2003). Heat Transfer Second Edition.
- Coughanowr, D. R. (1991). Process Systems Analysis and Control (2/e). New York: McgrawHill.
- DeWitt, D., Bergman, T., Incropera, F., & Lavine, A. (2005). Fundamentals of Heat and Mass Transfer Sixth Edition. USA: John Wiley & Sons, Inc.
- Ibrahim, D. (2002). *Temperature Sensors. Microcontroller Based Temperature Monitoring and Control.* Elsevier.
- LTD, E. T. (2019, May 13). *Demineralization (DM) Water Treatment Plants*. Retrieved from Envira Care Systems: http://www.envicaresystems.com/demineralization-watertreatment-plants-pune.html
- Mukadam, S., Naik, O., Naik, P., & Yekane, A. (2018). Temperature Analysis of Shell and Tube Heat Exchanger. *International Research Journal of Engineering and Technology (IRJET)*, 3264-3269.

- Nitheesh Krishnan, M., & Suresh Kumar, B. (2016). An Over View on Shell and Tube Heat Exchanger. *International Journal* of Engineering Science and Computing, 2632.
- Ogata, K. (2012). *Modern Control Engineering*. New Jersey: Prentice-Hall.
- P. Sivakumar, D. Prabhakaran, & T. Kannadasan. (2012). Temperature Control of Shell and Tube Heat Exchanger by Using Intelligent Controller. *International Journal of Computer Application*, 5-11.
- Stephanopoulos, G. (1984). *Chemical Process Control an Introduction To Theory and Practice*. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.
- T. Ahmed, N. Makwashi, & M. Hameed. (2017). A Review of Gravity Three-Phase Separators. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS), 147.
- The Math Works. (2004). Using Simulink Version 6. Cortlandt Manor: The Math Works.
- Thulukkanam, K. (2013). *Heat Exchanger Design Handbook* Second Edition. London: CRC Press.
- V. J. Sonawane, T. J. (n.d.). Design and Analysis of Globe Valve as Control Valve Using CFD Software. *IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)*, 63-71.
- Yudanto, R. (2019, Mei 8). Kandungan Gas dan Minyak Dari WHP. (W. P. Dewi, Interviewer)
- Yudanto, R. (2019). Study Report For Cooling System at CPP Compressors Inlet. Gresik: PGN SAKA Indonesia.

LAMPIRAN A

Kondisi Operasional CPP Unit

	Parameter	Current Condition
	Temperature (C)	62-70
	ParameterCurrent ConditMP for A/BTemperature (C)62-70Pressure (Barg)16.62Flowrate (MMscfd)65.44Mass Flow Rate (kg/h)82388Specific Heat Liquid (kJ/kg.K)4.316Specific Heat Vapor (kJ/kg.K)2.21Temperature (C)62.66Pressure (Barg)16.61Flowrate (MMscfd)44.66Specific Heat Liquid (kJ/kg.K)82388Specific Heat Liquid (kJ/kg.K)2.21Temperature (C)62.66Pressure (Barg)16.61Flowrate (MMscfd)44.66Specific Heat Liquid (kJ/kg.K)4.316Specific Heat Vapor (kJ/kg.K)2.21Suction Temperature (C)62.57Suction Pressure (Barg)16.44Discharge Temperature (C)157.96Discharge Pressure (Barg)45.91Flowrate (MMscfd)44.66	16.62
Outlet MP	Flowrate (MMscfd)	Current Condition 62-70 16.62 65.44 h) 82388 (kJ/kg.K) 4.316 (kJ/kg.K) 2.21 62.66 16.61 44.66 1 h) 82388 (kJ/kg.K) 2.21 62.66 1 16.61 44.66 h) 82388 (kJ/kg.K) 2.21 c(C) 62.57 urg) 16.44 ure (C) 157.96 (Barg) 45.91 44.66 2584) 157.96 (C) 36.65 -4079 -4079 Fan (kW) 64.453 e for New 5.29 MMscfd / 8.5 BPD 38.85 MMscfd / 62.45 BPD 38.85 MMscfd / 62.45
Separator A/B	Mass Flow Rate (kg/h)	
	Specific Heat Liquid (kJ/kg.K)	
	Specific Heat Vapor (kJ/kg.K)	2.21
	Temperature (C)	62.66
	Pressure (Barg)	16.61
Inlet 1st Stage MP	Flowrate (MMscfd)	44.66
Compressor Suction Scrubber	Mass Flow Rate (kg/h)	82388
	Specific Heat Liquid (kJ/kg.K)	4.316
	Specific Heat Vapor (kJ/kg.K)	2.21
	Suction Temperature (C)	62.57
	Suction Pressure (Barg)	16.44
1st Stage MP	Discharge Temperature (C)	157.96
Compressor	Discharge Pressure (Barg)	45.91
	Flowrate (MMscfd)	44.66
	Power (kW)	2584
	Inlet temperature (C)	157.96
	Outlet Temperature (C)	36.65
	Duty (kW)	-4079
1st Stage MP	Maximal Abs Power Fan (kW)	64.453
Discharge Cooler	MP Recycle Flowrate for New Recycle Line	5.29 MMscfd / 8.5 BPD
	<i>Outlet Temperature at New MP</i> <i>Recycle Line (C)</i>	20.2
	Flowrate to MP Separator Oil Pump	38.85 MMscfd / 62.45 BPD
	Temperature (C)	69.74

Inlet 1st Stage GL	Pressure (Barg)	16.29
Suction Scrubber	Flowrate (MMscfd)	26.12
	Suction Temperature (C)	69.66
	Suction Pressure (Barg)	16.12
1st Stage GL	Discharge Temperature (C)	155.24
Compressor	Discharge Pressure (Barg)	40.8
	Flowrate (MMscfd)	26.12
	Power (kW)	1365
	Inlet temperature (C)	155.24
	Outlet Temperature (C)	51.66
1st Stage GL	Duty (kW)	2013
Discharge Cooler	Maximal Abs Power Fan (kW)	1.89
	Recycle Flowrate	-
	Flowrate to 2nd GLC	25.87 MMscfd / 34.03 BPD
	Temperature (C)	51.66
Inlet 2nd Stage GL	Pressure (Barg)	40.62
Suction Schubber	Gas Flowrate (MMscfd)	25.87 MMscfd / 34.03 BPD
	Suction Temperature (C)	51.33
	Suction Pressure (Barg)	39.91
2nd Stage GL	Discharge Temperature (C)	132.34
Compressor	Discharge Pressure (Barg)	94.83
	Flowrate (MMscfd)	25.7
	Power (kW)	1162
	Inlet temperature (C)	132.34
	Outlet Temperature (C)	39.48
2nd Stage GL	Duty (kW)	-1892
Discharge Cooler	Maximal Abs Power Fan (kW)	3.71
	Recycle Flowrate	-
	Flowrate to 2nd GLC	25.80 MMscfd / 9.06 BPD

LAMPIRAN B Datasheet Temperature Transmitter

PT. CONTROL SYSTEMS BELTWAY OFFICE IPARK Building A, 2nd Floer, JI, Ampera Yaya No. 9-10 Jakarta Scham TEL : (021) 7807881/FAX : (021) 7807879

			Tempera	Temperature		4	of	
Client	PT.GU	NANUSA UTAMA FABRICATORS	Transmitter & T	hermowells	Doc No.	UPD-WP-W4-JN- DS-614J	Rev.	D1
roject	CPP 4	AUP EPCC LUUNG PANCKAH	Specification	n Sheet			-	-
	DEVE	OPMENT OFFSHOPE BHASE H			1			
	wardt	et man or renords minas if	_		CHKD	ма	APPR	NK/NV
	11	Tag No.	532-TT-059A	-				1
	2	Description of Service	MP SEPARATOR A	TEMPERAT	URE			
GENERAL	3	P&ID No.	UPD-WP-W4-PR-DP	2-1034				
	4	Line Number ; Equipment No	N/A		532-V-02A	_		
	5	Line Size ; Line Schedule					_	-
	6	Hazardous Area Classification	Class I, Zone 2, Grou	up IIA, T3			20	
	7	Enclosure Protection	ЕЕх d II C Т6ЛР 68					
	T		Minimum	Operating	Maximum	Desi	gn	Uni
PROCESS	8	Pressure		21 TO 40		95		bar-
	9	Process Temperature		25 TO 50		65	-	*C
CONDITIONS	10	Ambient Temperature						
	u	Fluid ; State	Hydrocarbon	Gas				
	12	Density KG/M3	19.5					
	13	Flow Rate MMSCFD	119	-				
	14	Velocity (max) M/S	0.7	-				
	15	Viscosity cP	0.012					
	16	Manufacturer	Rosemount					
	17	Model Number	3144PD6A1E1M5CNC	2C4Q4XA				
TRANSMITTER	18	Mounting; Mounting Bracket	Head Mounted		N/A			
	19	LCD Meter	LCD display	10-10		007 M02	1.0.00	00
	20	Housing	Field Mount Housing	(Dual-Comp	artiticent), 310	5 SST, M20 x	1.5 (CN	120)
	21	Power Supply	12.0 10 42.4 vdc					
	22	Accuracy	0.02% of Span		100	**		
	23	Calibration Range			100	-C	-	
	25	instrument Range	-50	<u> </u>	450	C	-	
	26	Response Time	0.5 seconds for single sensor					
	27	Sil. Requirement	NU					
	29	Voltage Riltor	Transmitter-Sensor Matching - Trim to Specific Rosemount RTD					
	30	Pailure Mode	I ransmitter-sensor Matching - 1 nm to Specific Rosemount RTD					
	1"	and Pide	Low Astalin	1 2.12 11/				
	29	Model Number	EB212VCD17011001H0	01, TW-FLG-BI	K-F-I-NC-U04	ID-TL0490-316L	4"-1500	bs
THERMOWELL	30	Thermowell Stem Style	Flanged 4-inch 900	# RTJ. Tapere	d			
	31	Thermowell Material	1.4404 (316L SS)					
	32	Thermowell Length	490 mm					
	33	Thermowell Lagging Length	80 mm					
	34	Thermowell Immersion Length	410 mm					
	35	NACE Compliance	Yes, MR-0175 Lates	t Edition			_	
	36	Construction Type/Shape	Drilled bar Stock/Ta	pered				
	37	Stress and Wake Frequency Calculation	Yes					
	38	Hydrotest Certificates	Yes				_	
	39	Weld Option	Full Penetration Wel	d (applicable	for RTJ Typ	c)		
RTD	40	Model Number	0065N32J0080N057	OEIVIOXAW	/0046			_
SENSOR	41	Product Description	Resistance Thermom	eter, Pt 100 O	lun RTD			
	42	Sensor Lead Wire Termination	Spring Loaded Adap	ter - 1/2- inch	NPT			
	43	Sensor Type	RTD, Dual Element,	3 Wire -50 to	450oC (-58	to 8420F)		
	44	Extension Length	80 mm					
	45	Sensor Length	570 mm					
	46	Sensor Diameter	7 mm					
	47	Specials	316SST TAGGING					
	48	8		-				
	49	Nozzle Length ; Nozzle Schedule	a 312.25 mm	NA, ID = 97.	28 mm			
	50	·						
NOTES	5							

PT. CONTROL SYSTEMS

BELTWAY OFFICE PARK Building A. 2nd Floor, J. Ampera Raya No, 9-10 Jakarta Sciasa TEL: (021) 7807851/FAX: (021) 7807879

			Temperature		Sheet	5	of	
Client	PT.GU	NANUSA UTAMA FABRICATORS	Transmitter & T	Thermowells	Doc No.	UPD-WP-W4-JN-	Rev.	D1
Project	CPP & ALP EPCC LILING PANGPAN		Specification Sheet			(D) 4141		_
	DEVE	ODVENT OFFENDE DUACE I	operation	on oneer	1			
	DEVEN	OFMENT OFFShure Pringe I			CHIPCTD	lua .	APPP	HIN CHINA
	1	Tae No.	532-TT-059B	-	Crite	1 min	ATTA.	INK/AT
	2	Description of Service	MP SEPARATOR	BTEMPERAT	URE			
GENERAL	3	P&ID No.	UPD-WP-W4-PR-DR-1035					
	4	Line Number : Equipment No	N/A (32, V, 628					
	5	Line Size ; Line Schedule			222-1-020			
	6	Hazardous Area Classification	Class L. Zone 2, Group IIA, T3					
	7	Enclosure Protection	EEx d II C T6/IP 68				_	
			Minimum	Operating	Maxumum	Desi	157	Unit
PROCESS	8	Pressure		21 TO 40		95		bar-g
	9	Process Temperature		25 TO 50		65		*C
CONDITIONS	10	Ambient Temperature						
	11	Fluid ; State	Hydrocarbon	Gas				
	12	Density KG/M3	19.5					
	13	Flow Rate MMSCFD	119	1				
	14	Velocity (max) M/S	0.7	7				
	15	Viscosity cl ²	0.012	1				
	16	Manufacturer	Rosemount					
	17	Model Number	3144PD6A1E1M50	NC2C4Q4XA				
TRANSMITTER	18	Mounting ; Mounting Bracket	Head Mounted		N/A			
	19	1.CD Meter	LCD display					
	20	Housing	Field Mount Housin	g (Dual-Comp	artment), 31	6 SST, M20 ;	1.5 (C)	(20)
	21	Power Supply	12.0 to 42.4 vdc					
	22	Accuracy	0.02% of Span					
	23	Calibration Range	1	0 -	100	°C		
	25	Instrument Range	-5	- 0	450	°C		
	26	Response Time	0.5 seconds for single sensor					
	27	SIL Requirement	NO					
	29	Calibration Certificate	use C4 option for n 5-point calibration cert					
	30	Voltage Filter	Transmitter-Sensor Matching - Trim to Specific Rosemount RTD					
	31	Failure Mode	Low Alarm	<= 3.75 m/	1			
	29	Model Number	EB212VCD17011001	HOO1, TW-FLG-	BK-F-I-NC-UC	410-TL0490-3	16L-4*-1	SCOlbs
THERMOWELL	30	Thermowell Stem Style	Flanged 4-inch 90	ON RTJ. Tapen	ed			
	31	Thermowell Material	1.4404 (316L SS)					
	32	Thermowell Length	490 mm					
	33	Thermowell Lagging Length	80 mm					
	34	Thermowell Immersion Length	410 mm					
	35	NACE Compliance	Yes, MR-0175 Late	st Edition				
	36	Construction Type/Shope	Utilled bar Stock/T	apered				
	37	Stress and Wake Frequency Calculation	Yes					
	38	Hydrotest Certificates	Yes	1				
	39	Weld Option	Full Penetration We	eld (applicable	for RTJ Typ	ve)		
RTD	40	Model Number	0065N3230080N05	70EIVIOXAV	V0046			
SENSOR	41	Product Description	Resistance Thermometer, Pt 100 Ohm RTD					
	42	Sensor Lead Wire Termination	n Spring Loaded Adapter - 1/2- inch NPT					
	43	Sensor Type	RTD, Dual Elemen	1, 3 Wire - 50 to	5450°C (-58	to \$42°F)		
	44	Extension Length	80 mm					
	43	Sensor Lengu	370 mm					
	46	Speciality Speciality	310SST TAUGING	,			-	
	47	Sensor Diameter	/					
	48		112.26				_	
	49	Nozzie Length : Nozzie Schedule	312.25 mm	INA, ID = 97.3	28 mm			
ALC: NO.	50							
NOTES	51				-			
	1 52							

LAMPIRAN C PFD Central Processing Platform Unit

LAMPIRAN D

Model Simulink Hasil Pemodelan Matematis *Shell and Tube, Control Valve,* dan *Temperature Transmitter.*

a. Shell and Tube

b. Control Valve

c. Temperature Transmitter

LAMPIRAN E

Validasi Model Simulink Shell and Tube, Control Valve, dan Temperature Transmitter.

a. Shell and Tube

b. Control Valve

c. Temperature Transmitter

BIODATA PENULIS

Penulis bernama lengkap Widyasari Putri Dewi yang akrab disapa Widy. Penulis merupakan anak terakhir dari dua bersaudara. Lahir di kota Surabaya pada tanggal Maret 1997. Penulis 29 menempuh pendidikan di SDN JAGIR 1/393 lulus tahun 2009, SMPN 13 Surabaya lulus tahun 2012, dan SMAN 3 Surabaya lulus tahun 2015. Pendidikan sarjana ditempuh di Departemen Teknik

Fisika, FTI ITS melalui jalur SBMPTN 2015. Selama aktif menjadi mahasiswa, penulis bergabung dalam organisasi kemahasiswaan HMTF-ITS pada periode 2016-2017 sebagai staff Event External Team & 2017-2018 sebagai Bendahara Umum HMTF. Selain itu, penulis juga aktif dalam GERIGI ITS 2017 sebagai mentor. Selain aktif dalam berorganisasi, penulis juga aktif di Event Tahunan Teknik Fisika yaitu Engineering Physics Week 2016 da 2017. Pengalaman internship program selama 1 bulan di PT. PJB UP Paiton pada bulan Juli 2018. Bidang minat penulis dalam mengerjakan Tugas Akhir adalah rekayasa instrumentasi dan control. Apabila terdapat saran, kritik, ataupun diskusi terhadap Tugas dihubungi melalui Akhir ini. penulis dapat email widyasariputrid@ymail.com.