

TUGAS AKHIR – MO 184804

STUDI EKSPERIMEN ANALISIS HEAVE DAMPING PADA SPAR AKIBAT PENAMBAHAN HEAVE PLATE DI KEEL

Fikri Ardhianutama NRP. 04311540000110

Dosen Pembimbing : Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. Ir. Murdjito, M.Sc.Eng. Baharuddin Ali S.T., M.Eng.

DEPARTEMEN TEKNIK KELAUTAN

Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya 2019

FINAL PROJECT – MO 184804

EXPERIMENTAL STUDY OF HEAVE DAMPING ANALYSIS DUE TO HEAVE PLATE ADDITIONS AT SPAR KEEL

Fikri Ardhianutama NRP. 04311540000110

Supervisors :

Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D.

Ir. Murdjito, M.Sc.Eng.

Baharuddin Ali S.T., M.Eng.

OCEAN ENGINEERING DEPARTMENT

Faculty of Marine Technology Institut Teknologi Sepuluh Nopember Surabaya 2019 Studi Eksperimen Analisis *Heave Damping* Pada SPAR Akibat Penambahan *Heave Plate di Keel*

LEMBAR PENGESAHAN

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik Pada Program Studi S-1 Departemen Teknik Kelautan

Fakultas Teknologi Kelautan

Institut Teknologi Sepuluh Nopember

Oleh :

Fikri Ardhianutama

NRP. 04311540000110

	Disetujui Oleh :
1.	Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. (Pembimbing 1)
2.	Ir. Murdjito, M.Sc.Eng.
3.	Baharuddin Ali S.T., M. Eng
4.	Dr. Eng. Rudi Walujo Prastianto, S. T., M. T., M. C. (Penguji 1)
5.	Dr. Eng. Shade Rahmawati, S.T., M.T.

SURABAYA, JULI 2019

Studi Eksperimen Analisis *Heave Damping* Pada SPAR Akibat Penambahan *Heave Plate di Keel*

Nama	: Fikri Ardhianutama
NRP	: 04311540000110
Departemen	: Teknik Kelautan FTK -ITS
Dosen Pembimbing	: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D.
	Ir. Murdjito, M.Sc.Eng.
	Baharuddin Ali S.T., M.Eng.

ABSTRAK

Studi pada penelitian tugas akhir ini merupakan studi eksperimen free decay test pada SPAR, dengan uji coba bagaimana pengaruh adanya penambahan heave plate di keel terhadap heave damping. Kegiatan eksperimen dikerjakan di Kolam Manuevering Ocean Engineering Basin, Balai Teknologi Hidrodinamika - BPPT. Model SPAR yang dibuat mengikuti model Classic SPAR dengan skala 1:125. Sistem tambat yang digunakan pada model SPAR ini adalah tipe taut dengan konfigurasi 4 tali identik. Uji coba eksperimen yang dikerjakan hanyalah uji coba heave decay test, sehingga gerakan yang diteliti pada eksperimen kali ini hanyalah gerakan heave. Heave plate yang digunakan untuk eksperimen memiliki rasio diameter sebesar 1.3x dari diameter model SPAR. Analisis yang dilakukan setelah uji coba eksperimen adalah membandingkan hasil eksperimen dengan perhitungan analitis dan menggunakan Strip Theory. Hasil dari eksperimen tersebut menyatakan bahwa adanya heave plate pada keel SPAR dapat menambah besarnya heave damping hingga 49 %. Begitu juga dengan analisis metode analitis dan Strip Theory yang hasilnya tidak terpaut jauh dari nilai hasil eksperimen dimana terjadi peningkatan nilai heave damping hingga 54 %. Selain menimbang komponen redaman, analisis yang dikerjakan juga berpengaruh terhadap komponen massa tambah. Baik dari hasil eksperimen, analitis, maupun Strip Theory menyimpulkan bahwa heave plate pada SPAR dapat menambah besarnya heave added mass hingga 77 %.

Kata Kunci: SPAR, damping, heave plate, added mass

Experimental Study of Heave Damping Analysis Due To Heave Plate Additions At Keel SPAR

Name	: Fikri Ardhianutama				
NRP	: 04311540000110				
Department	: Ocean Engineering FTK -ITS				
Supervisors	: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D.				
	Ir. Murdjito, M.Sc.Eng.				
	Baharuddin Ali S.T., M.Eng.				

ABSTRACT

Study in this thesis is a free decay test's experiment of SPAR, how the impact of heave damping due to heave plate addition at keel. The experiment was doing at Manuevering Ocean Engineering Basin, Balai Teknologi Hidrodinamika - BPPT. The SPAR model refer to the model of Classic SPAR with 1:125 scale. Mooring system which used in the SPAR model is taut type with 4-mooring identical configuration. This experiment is only do the heave decay test, so the motion which is researched is only a heave motion. The heave plate which is used for the experiment has a 1.3 diameter ratio of SPAR model diameter. Analyses was doing after the experiment are comparing experiment result with the analytical and Strip Theory calculation. The experiment result claim that heave plate addition at the SPAR's keel can increase heave damping up to 49 %. Likewise the results of analytical and Strip Theory method is close to the experiment result that it happened an increase of heave damping up to 54 %. Not only consider the damping component, but the analysis of an added mass is also investigated. The results of experimental, analytical, and Strip Theory analysis concluse a heave plate of SPAR can increase a heave added mass value up to 77%.

Keywords: SPAR, damping, heave plate, added mass

KATA PENGANTAR

Pertama-tama penulis mengucapkan rasa puji sykur atas kehadirat Allah SWT, Tuhan Yang Maha Esa, karena atas ridho dan karunia yang diberikan oleh-Nya, penulis dapat menyelesaikan Tugas Akhir dengan judul "Studi Eksperimen Analisis *Heave Damping* pada SPAR Akibat Penambahan *Heave Plate* di *Keel*".

Tugas akhir ini merupakan salah satu syarat penting bagi penulis dalam menyelesaikan studi perkuliahan serta memperoleh gelar sarjana (S-1) dari Departemen Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember Surabaya.

Secara umum, penelitian tugas akhir ini melakukan studi eksperimen *free decay test* untuk gerakan *heave* dengan analisis pengaruh adanya penambahan *heave plate* pada *keel* SPAR. Penelitian mengenai *damping* ini diharapkan bisa menjadi ilmu yang sangat bermanfaat bagi pembaca. Serta menjadi rujukan atau acuan bagi mahasiswa-mahasiswa yang akan melanjutkan penelitian sejenis nantinya.

Masih banyak kekurangan yang terdapat pada pengerjaan tugas akhir ini, oleh karena itu adanya kritik dan saran menjadi sangat penting bagi penulis. Semoga semua kritik dan saran tersebut dapat bermanfaat bagi tugas akhir ini agar menjadi lebih baik lagi. Begitu pula dengan tugas akhir ini semoga memberikan banyak manfaat kedepannya.

Surabaya Juli 2019

Fikri Ardhianutama

UCAPAN TERIMA KASIH

Penyusunan tugas akhir ini penulis susun atas dukungan, bimbingan, bantuan, dan do'a dari beberapa pihak. Dalam kesempatan ini penulis tidak bisa menyebutkan seluruh pihak yang telah membantu. Namun tanpa dukungan mereka, penulis yakin bahwa akan banyak kesulitan yang dialami dalam proses penelitian tugas akhir ini. Ungkapan terimakasih penulis sampaikan kepada:

- 1. Kedua orang tua penulis yang selalu rutin mendoakan dan memberi dukungan atas keberlangsungan pengerjaan tugas akhir ini.
- Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. dan Ir. Murdjito, M.Sc.Eng selaku dosen pembimbing kami yang selalu memberikan banyak masukan dan ilmu terhadap penyusunan tugas akhir ini.
- 3. Bapak Baharuddin Ali, S.T., M.Eng. selaku pembimbing kami di Balai Teknologi Hidrodinamika – BPPT yang selalu memberikan kontribusi berupa masukan dan bantuan-bantuan dalam tugas akhir kami. Serta seluruh karyawan BTH yang telah banyak membantu eksperimen tugas akhir kami.
- 4. Teman-teman seperjuangan tugas akhir eksperimen SPAR tahun ini; Hanif, Gilrandi, dan Brian yang selalu saling membantu satu sama lain mulai dari awal sampai akhir penyusunan tugas akhir kami. Semua hambatan dan rintangan terasa sangat ringan atas bantuan mereka semua.
- Teman-teman pengurus Laboratorium Hidrodinamika FTK ITS yang selalu menemani penulis dalam mengerjakan tugas akhir ini.
- 6. Seluruh teman-teman ITS TV yang selalu memberikan motivasi penuh di kantor kepada penulis selama 4 tahun ini.

DAFTAR ISI

COVER		i				
HALAMA	AN JUDUL	.ii				
LEMBAR	PENGESAHAN	iii				
ABSTRA	К	iv				
KATA PE	NGANTAR	vi				
UCAPAN	TERIMA KASIH	<i>ii</i>				
DAFTAR	ISIvi	iii				
DAFTAR	GAMBAR	. X				
DAFTAR	TABELx	ii				
DAFTAR	LAMPIRANxi	iii				
BAB I PE	NDAHULUAN	. 1				
1.1 L	atar Belakang	. 1				
1.2 R	Rumusan Masalah	.4				
1.3 T	'ujuan Penelitian	.4				
1.4 E	Batasan Penelitian	.4				
1.5 N	Manfaat					
1.6 S	istematika Penulisan	.5				
BAB II TI	NJAUAN PUSTAKA DAN DASAR TEORI	.7				
2.1 T	`injauan Pustaka	.7				
2.2 D	Dasar Teori	.8				
2.2.1	SPAR Platform	.8				
2.2.2	Beban Hidrodinamik1	0				
2.2.3	Teori Gerak Bangunan Apung1	0				
2.2.4	Gaya Reaksi1	1				
2.2.5	Gaya Eksitasi1	3				
2.2.6	Persamaan Gerak Bangunan Apung1	5				
2.2.7	Added Mass2	22				
2.2.8	Damping2	23				
2.2.9	Free Decay Test	23				
2.2.10) Linear and Quadratic Damping2	25				

2.2.11	Teori Pemodelan	27			
2.2.12	Strip Theory	31			
BAB III METODOLOGI PENELITIAN					
3.1 Di	agram Alir Penelitian				
3.2 Pro	osedur Penelitian				
3.2.1	Studi Literatur	35			
3.2.2	Persiapan dan Analisis Pemodelan				
3.2.3	Perancangan Model	36			
3.2.4	Persiapan Instrumen Laboratorium	39			
3.2.5	Pengujian Model	41			
3.2.6	Pengolahan Data	41			
3.2.7	Perhitungan Analitis	41			
3.2.8	Perhitungan Strip Theory	41			
3.2.9	Analisis dan Perbandingan Hasil Studi Analisis	42			
3.2.10	Kesimpulan	42			
BAB IV AN	NALISIS DAN PEMBAHASAN	43			
4.1 Pe	modelan Struktur	43			
4.1.1	Distribusi Massa	46			
4.1.2	Kalibrasi KG	46			
4.1.3	Kalibrasi jari-jari girasi	47			
4.2 Pe	modelan Kekakuan Sistem Tali Tambat	47			
4.3 Da	ta dan Properti SPAR Keseluruhan				
4.4 Ins	strumen Pengukuran				
4.4.1	Kalibrasi Perangkat Qualysis Motion Capture Camera	53			
4.5 An	alisis Metode Ekperimen	53			
4.5.1	Analisis Eksperimen Free Decay Test	54			
4.5.2	Respon Redaman Struktur	61			
4.5.3	Gaya Reaksi Struktur	63			
4.6 An	alisis Metode Analitis	65			
4.6.1	Massa Tambah	65			
4.6.2	Damping	65			
4.6.3	Periode Natural	65			

4.6.4	Kekakuan	66
4.7 Ar	nalisis Metode Strip Theory	66
4.8 Pe	rbandingan Hasil Studi Analisis	68
4.8.1	Perbandingan Hasil Eksperimen dengan Analitis	68
4.8.2	Perbandingan Hasil Eksperimen dengan Strip Theory	68
4.8.3	Perbandingan Hasil Eksperimen dengan Analitis dan Strip Th	eory71
BAB V PE	NUTUP	72
5.1 Ke	esimpulan	72
5.2 Sa	ran	73
DAFTAR F	PUSTAKA	74

DAFTAR GAMBAR

Gambar 1.1 Jenis-Jenis SPAR Platform	2
Gambar 1.2 Konfigurasi SPAR Dengan Heave Plate	4
Gambar 2.1 Gambaran Truss SPAR Dan Classic SPAR	9
Gambar 2.2 Ilustarsi Gerakan 6 Derajat Kebebasan Pada SPAR Platform	11
Gambar 2.3 Gerakan Osilasi Bebas Teredam Akibat Eksitasi Harmonik	17
Gambar 2.4 Sudut Fase Antara Elevasi Gerakan Heave Dengan Gelombang	19
Gambar 2.5 Respons Sistem Massa-Pegas Akibat Gaya Harmonik Eksternal	21
Gambar 2.6 Sudut Fase Respon Terhadap Sumber Eksitasi	21
Gambar 2.7 Hasil Pengujian Free Decay Test	24
Gambar 2.8 P-Q Analisis Dari Decay Test	27
Gambar 2.9 Penentuan Logarithmic Decrement	32
Gambar 3.1 Diagram Alir Penelitian	33
Gambar 3.2 Rancang Model SPAR Dengan Heave Plate Tampak Samping	37
Gambar 3.3 Model SPAR Dengan Heave Plate Tampak Atas	38
Gambar 3.4 Konfigurasi Sistem Tambat Tampak Atas Dan Samping	38
Gambar 3.5 Qualysis Motion Capture Camera	40
Gambar 3.6 Passive Markers	40
Gambar 3.7 Calibration Kit	40

Gambar 4.1 Model Mini SPAR Dengan Topside Dan Heave Plate	.44
Gambar 4.2 Silinder Besi Dan Ulir Untuk Memodelkan Ballast	.44
Gambar 4.3 Konfigurasi Ballast	.45
Gambar 4.4 Proses Kalibrasi KG	.46
Gambar 4.5 Konfigurasi Model Tali Tambat	.48
Gambar 4.6 Kalibrasi Kekakuan Tali Tambat	.48
Gambar 4.7 Qualysis Motion Capture Camera Yang Telah Dipasang	.53
Gambar 4.8 Konfigurasi Instalasi SPAR Dan Alat Perekam	.54
Gambar 4.9 Model SPAR Tertambat Dengan Passive Markers	.54
Gambar 4.10 Model SPAR Tertambat Tampak Dari Bawah Air	.55
Gambar 4.11 Grafik Free Decay Model SPAR Sebelum Diskalakan	.55
Gambar 4.12 Grafik Free Decay Model SPAR + Heave Plate Sebelum Diskala	kan
	.56
Gambar 4.13 Ketidakhalusan Uji Coba 1 Pada Grafik Hasil Free Decay Test	.57
Gambar 4.14 Grafik Heave Decay SPAR Dengan Dan Tanpa Heave Plate	.58
Gambar 4.15 Grafik Perubahan Heave Damping	.59
Gambar 4.16 Perubahan Koefisien Linear Dan Quadratic Heave Damping	.60
Gambar 4.17 Respon Sistem Massa-Pegas SPAR	.61
Gambar 4.18 Grafik Sudut Fase Respon SPAR Terhadap Sumber Eksitasi	.62
Gambar 4.19 Gaya Reaksi Heave SPAR	.64
Gambar 4.20 Gaya Reaksi Heave SPAR + Heave Plate	.64
Gambar 4.21 Grafik Heave Decay Hasil Perhitungan Strip Theory	.67
Gambar 4.22 Grafik Decay SPAR Perbandingan Eksperimen Dan Strip Theory	.69
Gambar 4.23 Grafik Decay SPAR + Heave Plate Perbandingan Eksperimen Da	n
Strip Theory	.69

DAFTAR TABEL

Tabel 2.1 Persamaan Massa Tambah Untuk Bentuk Silinder	12
Tabel 2.2 Model to Prototype Commonly Used in Froude Scaling	29
Tabel 3.1 Dimensi Mini SPAR	35
Tabel 3.2 Data Kolam MOB BTH - BPPT	36
Tabel 4.1 Hasil Skala Menggunakan Aturan Froude	43
Tabel 4.2 Spesifikasi Komponen Ballast	45
Tabel 4.3 Perhitungan Massa Total Model	46
Tabel 4.4 Jari-Jari Girasi Model	47
Tabel 4.5 Hasil Kalibrasi Kekakuan Model Tali Tambat	49
Tabel 4.6 Hasil Penskalaan Kekakuan Karet	49
Tabel 4.7 Kekakuan Wire Sling Model Eksperimen dan Full Scale	50
Tabel 4.8 Kekakuan Tali Tambat Gabungan	50
Tabel 4.9 Panjang Tali Tambat Pre – Tension	51
Tabel 4.10 Kekakuan Total Heave Tali Tambat	52
Tabel 4.11 Data dan Properti SPAR Keseluruhan	52
Tabel 4.12 Amplitudo Puncak Decay SPAR Model	56
Tabel 4.13 Amplitudo Puncak Decay SPAR + Heave Plate Model	57
Tabel 4.14 Amplitudo Puncak Decay Full Scale	58
Tabel 4.15 Hasil Eksperimen Free Decay Test	59
Tabel 4.16 Hasil Analisis Linear dan Quadratic Damping	60
Tabel 4.17 Hasil Analisis Respon Redaman SPAR	62
Tabel 4.18 Parameter Stokastik Gaya Reaksi Heave	64
Tabel 4.19 Parameter Hasil Perhitungan Analitis	66
Tabel 4.20 Hasil Perhitungan Strip Theory	67
Tabel 4.21 Perbandingan Hasil Eksperimen dengan Analitis	68
Tabel 4.22 Perbandingan Amplitudo Hasil Eksperimen dengan Strip Theory	70
Tabel 4.23 Perbandingan Parameter Eksperimen dengan Strip Theory	70
Tabel 4.24 Perbandingan Hasil Eksperimen dengan Analitis dan Strip Theory.	71

DAFTAR LAMPIRAN

LAMPIRAN A (PERHITUNGAN KALIBRASI KG DAN JARI-JARI GIRASI) LAMPIRAN B (DATA OUTPUT EKSPERIMEN *FREE DECAY TEST*) LAMPIRAN C (CODING MATLAB PENGOLAHAN DATA EKSPERIMEN) LAMPIRAN D (TABEL PERHITUNGAN PENGOLAHAN DATA EKSPERIMEN) LAMPIRAN E (TABEL PERHITUNGAN ANALITIS) LAMPIRAN F (CODING MATLAB PENGOLAHAN DATA NUMERIS) LAMPIRAN G (DATA *HEAVE DECAY* OUTPUT NUMERIS MATLAB)

BAB I PENDAHULUAN

1.1 Latar Belakang

Kemajuan peradaban manusia saat ini diikuti pula dengan meningkatnya permintaan untuk memenuhi kebutuhan energi, termasuk kebutuhan terhadap minyak dan gas bumi. Berkembangnya teknologi pengeboran migas lepas pantai, membuat suatu anjungan lepas pantai yang terpancang (*fixed platform*) menjadi tidak ekonomis jika dibandingkan dengan anjungan terapung (*floating platform*) yang dapat berpindah dari suatu lokasi ke lokasi yang lain (Herwanzah, 2015). Selain dirancang dengan teknologi tinggi, struktur terapung juga memerlukan biaya yang tidak sedikit. Oleh karena itu para perancang harus berhati-hati dalam melakukan perancangan. Baik itu perancangan awal sampai pemeliharaan agar struktur terawat dengan baik (Wijaya, 2015).

Saat ini, bangunan lepas pantai terpancang digunakan pada kedalaman mencapai 300 m. Struktur terapung lainnya seperti *Semi-submersible* dan *Floating Production Ship* dapat beroperasi di lingkungan laut yang lebih dalam (> 300 m). Sedangkan struktur lentur seperti TLP (*Tension Leg Platform*) dan SPAR (*Single Point Anchor Reservoir*) merupakan jenis struktur terapung yang beroperasi pada laut sangat dalam (*ultra-deepwater*) mencapai kedalaman lebih dari 1000 m. Sehingga struktur jenis terpancang tidak memungkinkan untuk beroperasi di laut dalam karena kurang efektif baik dari sisi teknis maupun ekonomis (Chan, 1990). Salah satu faktor yang mempengaruhi efektivitas pengoperasian suatu sistem terapung di laut adalah faktor keselamatan. Keselamatan dalam hal ini ialah keselamatan para teknisi yang berada pada sistem anjungan tersebut. Maka diperlukan kemampuan perancangan untuk memprediksi perilaku bangunan laut ketika laut yang ganas harus dihadapi (Dinaryo, 2016).

SPAR *Platform* merupakan salah satu struktur produksi jenis terapung. Sejak instalasi pertamanya, SPAR menjadi semakin banyak digunakan karena kestabilan dan biayanya yang cukup efektif untuk bangunan lepas pantai. Pertama kali dibuat pada tahun 1990an untuk Ladang Neptune di Gulf of Mexico (GoM), SPAR yang masih sederhana ini terdiri dari satu silinder dengan *draught* yang cukup dalam berada di bawah air (Dev, 2016). Di dunia hulu migas, SPAR *Platforms* dapat dibagi menjadi tiga jenis: *Classic SPAR, Truss SPAR*, dan *Cell SPAR* yang dapat dilihat pada Gambar 1.1. SPAR memiliki banyak fungsi, seperti untuk *drilling, production,* dan *storage*. Struktur *platform* SPAR umumnya terbagi kedalam empat bagian, bagian atas tersusun atas dua dari empat *layer deck*, badan utama didukung oleh *upper deck, riser,* dan *mooring system* (Shen, 2011). Struktur SPAR sangatlah kuat dan rumit, oleh karena itu, SPAR sangatlah cocok untuk beroperasi di laut dalam.

Gambar 1.1 Jenis-jenis SPAR *Platform* (Liew, 2012)

Struktur lepas pantai tentunya sangat dipengaruhi oleh beberapa kondisi beban lingkungan seperti angin, gelombang, dan arus (Li, 2011). Badan lambung SPAR umumnya memiliki *Helical Strakes* untuk mengurangi VIV (*Vortex-Induced Vibrations*) pada arus. Selain itu SPAR juga ditambat menggunakan sistem tambat *taut* atau *catenary* dengan jumlah enam hingga dua puluh tali ditambat pada dasar laut (Sudhakar, 2014). Tali tambat digunakan untuk menjaga struktur terapung tetap pada posisi yang direncanakan. Biasanya tali tambat berupa *heavy chain, steel wire ropes,* atau

synthetic polyester ropes (Stendal, 2015). Periode natural heave dari classic SPAR umumnya relatif panjang, sekitar 25 hingga 30 detik. Hal tersebut dikarenakan amplitudo redaman pada badan vertikal SPAR yang tidak terlalu signifikan. Oleh karena itu *classic* SPAR menunjukkan sebuah solusi desain yang andal untuk kegiatan eksplorasi migas pada wilayah laut yang ganas dan tentunya terdapat cadangan minyak yang melimpah (Sudhakar, 2014).

SPAR memiliki kemampuan *heave* yang lebih baik karena ketinggian *draught*-nya yang cukup dalam (Subbulakshmi, 2015). Untuk mengurangi gerakan *heave* tersebut, diperlukan adanya penambahan *heave damping* dari sistem SPAR *platform. Heave Plate* menjadi solusi alternatif sebagai penambahan *heave damping* untuk mengurangi gerakan *heave* sehingga jika sistem SPAR tersebut memiliki *riser, riser* tersebut akan lebih aman akibat gerakan *heave*-nya yang minimum. *Heave Plate* ditambahkan pada bagian *keel* dari *SPAR*, oleh sebab itu dampak yang ditimbulkan tidak hanya *heave damping* dan *motions*, namun juga akan menambah *added mass* dari sistem. Sebelumnya Uma pada tahun 2017, telah meniliti lebih dalam mengenai pengaruh *heave damping* akibat penambahan *circular plates* di keel pada badan lambung SPAR.

Dalam penelitian tugas akhir kali ini, akan dilakukan studi eksperimen dari *classic* SPAR yang diadaptasi dari model Mini SPAR. Topik yang dibahas pada penelitian ini adalah mengenai analisis *heave damping* akibat modifikasi penambahan *heave plate* di bagian *keel* SPAR. Studi eksperimen akan diawali dengan perhitungan parameter-parameter yang dibutuhkan untuk melakukan eksperimen seperti kalibrasi kekakuan tali tambat, perhitungan stabilitas, serta jari-jari girasi dari model SPAR yang telah dibuat. *Heave plate* yang digunakan sebagai eksperimen merupakan *single heave plate* dengan diameter rasio 1,3x diameter SPAR pada model, seperti tampak pada Gambar 1.2. Studi eksperimen ini akan menghasilkan beberapa parameter nilai seperti *heave damping*, periode natural *heave*, dan *heave added mass* dari SPAR dengan dan tanpa penambahan *heave plate*.

Gambar 1.2 Konfigurasi SPAR dengan heave plate

1.2 Rumusan Masalah

Adapun permasalahan yang akan dikaji pada penelitian tugas akhir ini yaitu:

- a) Sejauh mana perbedaan besaran *heave damping* pada SPAR akibat pengaruh penambahan *heave plate* di *keel*?
- b) Bagaimana besarnya *heave damping* pada SPAR dari hasil eksperimen dibandingkan dengan perhitungan analitis dan *Strip Theory*?
- c) Bagaimana perbandingan *heave added mass* pada SPAR terhadap penambahan *heave plate*?

1.3 Tujuan Penelitian

Tujuan yang ingin dicapai penulis pada penelitian tugas akhir ini yaitu:

- a) Mengetahui sejauh mana perbedaan besaran *heave damping* pada SPAR akibat pengaruh penambahan *heave plate* di *keel*.
- b) Mengetahui perbandingan besarnya *heave damping* pada SPAR antara hasil eksperimen dengan perhitungan analitis dan *Strip Theory*.
- c) Mengetahui perbandingan *heave added mass* pada SPAR terhadap penambahan *heave plate*.

1.4 Batasan Penelitian

Karena banyak aspek yang tidak dapat diteliti pada penelitian tugas akhir ini, maka untuk memperjelas lingkup penelitian diperlukan batasan-batasan sebagai berikut:

- a) Studi eksperimen dilakukan pada model dari Mini SPAR
- b) Studi eksperimen menyesuaikan kondisi dan keadaan Kolam *Manuevering* Ocean Engineering Basin (MOB), Balai Teknologi Hidrodinamika - BPPT

- c) Studi eksperimen dilakukan tanpa adanya interaksi gelombang
- d) Analisis damping SPAR hanya dilakukan pada gerakan heave
- e) Studi eksperimen dilakukan dengan kondisi tegangan tali tertambat
- f) Analisis olah gerak SPAR tidak dipertimbangkan pada penelitian ini
- g) Pola aliran di sekitar struktur dan heave plate tidak dipertimbangkan

1.5 Manfaat

Adapun manfaat yang diharapkan dari penelitian tugas akhir ini adalah:

- a) Dapat digunakan sebagai acuan dan pertimbangan dalam menganalisis damping pada umumnya.
- b) Dapat digunakan sebagai acuan dan pertimbangan dalam menganalisis pengaruh penggunaan *heave plate* pada *classic* SPAR.
- c) Dapat dijadikan referensi untuk penelitian mengenai pengaruh penambahan *heave plate* terhadap *heave damping* dari SPAR.
- d) Dapat dijadikan referensi untuk penelitian mengenai pengaruh penggunaan heave plate pada SPAR terhadap heave added mass.

1.6 Sistematika Penulisan

Susunan dan sistematika penulisan tugas akhir ini adalah:

- a) BAB I : Pendahuluan, dijelaskan mengenai latar belakang dari penelitian tugas akhir ini, rumusan masalah apa yang diteliti, tujuan yang ingin dicapai, serta manfaat yang diharapkan dari tugas akhir ini. Bab ini juga berisi mengenai batasan-batasan dari penelitian dan sistematika penulisan tugas akhir.
- b) BAB II : Tinjauan Pustaka dan Dasar Teori, menjelaskan dengan ringkas mengenai teori-teori menjadi dasar dan acuan dari tugas akhir ini, serta persamaan-persamaan yang digunakan dalam analisis dan pembahasan.
- c) BAB III : Metodologi Penelitian, berisi alur dan tahapan penelitian, analisis, dan pola penyelesaian permasalahan. Bab ini juga membahas datadata yang akan digunakan.
- d) BAB IV : Analisis dan Pembahasan, berisi uraian hasil analisis dari penelitian serta pembahasannya yang mendalam mulai dari cara

mendapatkan dan mengolah data, studi analisis eksperimen serta hasil perhitungan analitis dan *Strip Theory*.

 e) BAB V : Penutup, berisi kesimpulan yang didapat dari hasil analisis penelitian tugas akhir, dan saran-saran dari penulis sebagai pertimbangan untuk penelitian berikutnya.

BAB II

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 Tinjauan Pustaka

SPAR merupakan satu-satunya jenis *platform* yang memiliki gerakan *heave* dan *pitch* yang cukup kecil agar *riser* yang terpasang pada SPAR menjadi aman dan ekonomis. Bahkan hingga badai 100 tahunan, SPAR masih dapat menahan gerakannya dengan didukung oleh sistem tambat *taut* (Chakrabarti, 2005). Oleh karena kemampuannya untuk bertahan pada lingkungan yang ekstrem, telah banyak penelitian dilakukan dengan objek SPAR *Platform*. (Dinaryo, 2013) telah meneliti operabilitas *seakeeping* dari SPAR *Platform* tipe *truss* di Selat Makassar, dengan hasil analisis bahwa besarnya gerakan rata-rata struktur SPAR masih belum melampaui jauh dari kriteria operasi. Sebelumnya Koo et al. pada tahun 2004 juga telah meneliti SPAR *Platform* dengan terpasang *mooring lines* dan *riser system* yang diasumsikan berada pada kondisi badai di *North Sea*, juga masih dalam kondisi yang sangat stabil untuk respon gerakan *heave* dan *pitch*.

Pada penelitian lain yang dilakukan oleh (Jain dan Agarwal, 2003), kekakuan serta redaman dari SPAR *Platform* dengan sistem tambat *catenary* dianalisis menggunakan Teori Gelombang *Airy* dan Gaya *Morison*. Penelitian tersebut menghasilkan kesimpulan bahwa besarnya kekakuan tali tambat mempengaruhi respon gerakan yang cukup signifikan. Berikutnya (Jameel et al., 2017) meneliti pengaruh *mooring drag* dan *inertia* pada respon dari SPAR *Platform* dengan kesimpulan bahwa konfigurasi sistem *mooring lines* berpengaruh pada besarnya gaya *drag* dan *inertia* akibat adanya besarnya *hydrodynamic damping*.

Respon gerak dari SPAR *Platforms* merupakan sebuah pengaruh yang penting. Konsep desain dibalik *draught* SPAR yang cukup dalam ialah untuk mengurangi gaya eksitasi *heave* (Haslum, 2000). Haslum meneliti thesis mengenai metode yang dapat digunakan untuk memperkirakan perbedaan frekuensi gelombang linier orde satu dan dua dari SPAR *Platforms*. Analisis yang digunakan merupakan perhitungan analitis meliputi *Linear Frequency*

Domain, respon model frekuensi gelombang, serta respon dari gerakan *heave* atau *pitch.* Untuk eksperimen model hanya menguji *free decay test* sehingga didapatkan nilai *Heave Drag* (Cd,z) dan *Pitch Drag* (Cd,x).

(Herdayanditya, 2017) telah membuat model mini SPAR dengan analisis olah gerak serta dinamika tegangan tali tambat dengan variasi *heading* gelombang. Penelitian tersebut menunjukkan arah gelombang mempengaruhi besar gerak dan tegangan tali tambat. Berikutnya (Gumelar, 2018) memodelkan SPAR *Helical Strakes* pada sistem tambat *taut* dengan analisis studi eksperimen dan numeris. Variasi ketinggian *fairlead* menjadi perbedaan pada penelitian tersebut dengan hasil bahwa *Helical Strakes* dapat mengurangi nilai maksimum dari mode gerakan *heave* dan *pitch*.

2.2 Dasar Teori

2.2.1 SPAR Platform

SPAR adalah jenis anjungan lepas pantai dengan tipe *deep draught installation* yang terdiri dari *hull system* dengan *topside deck* yang berada di atasnya. Bagian *hull* dari struktur ini terbagi atas *upper hull, mid-section,* dan *lower hull.* Sedangkan bagian *topside deck* berupa *deck* yang berjenis *space frame truss* yang menyediakan ruang untuk peralatan produksi, *workover* dan *drilling rig* (ABS, 2003).

SPAR sendiri umumnya di kenakan jangkar hingga ke dasar laut dengan menggunakan lebih dari satu tautan mooring. SPAR *Platform* dikembangkan pada tahun 1990 dan jenis SPAR *Platform* yang pertama kali diinstal adalah *Neptune* SPAR pada tahun 1996 di Teluk Meksiko. Pada tahun-tahun berikutnya SPAR *Platform* telah menjadi salah satu platform yang banyak digunakan dalam proses eksplorasi dan eksploitasi di laut dalam sehingga pengembangan teknologi pada SPAR *Platform* terus ditingkatkan. Desain dari SPAR *Platform* berbeda dari anjungan lepas pantai yang lain. Jika bangunan lepas pantai terapung lain umumnya berbentuk persegi, SPAR *Platform* berbentuk silinder yang berfungsi untuk mempertahankan posisinya saat sedang beroperasi (Kurian, 2012). Silinder diberi beban di bagian bawah dengan mengisi ruangan dengan material yang rapat dibandingkan dengan air laut sehingga dapat menurunkan *Center of Gravity* (CoG) dari struktur sampai berada di bawah

Center of Bouyancy (CoB) dan memberi stabilitas pada struktur (Chakrabarti, 2005).

Konsep penggunaan SPAR dalam kebutuhan *drilling*, produksi, dan *storage system* sebenarnya sudah diterapkan pada tahun 1980-an. Setelah dilakukan beberapa kajian dan usaha atas kerjasama industri minyak dan gas pada tahun 1996, *Oryx energy* dan CNG berhasil memasang SPAR. Semua SPAR *Platform* beroperasi di Teluk Meksiko dan hanya satu SPAR *Platform* yang beroperasi di luar Teluk Meksiko yaitu di Malaysia. Hingga saat ini sudah terdapat 3 generasi jenis SPAR *Platform* yaitu *Classic SPAR*, *Truss SPAR*, dan *Cell SPAR* (Dinaryo, 2016). *Truss SPAR* seperti tampak pada Gambar 2.1, terdiri dari lambung berbentuk silinder yang dengan fungsi yang relatif sama dengan *Classic* SPAR yaitu untuk menunjang *topside* struktur, menyimpan hasil produksi minyak dan gas serta menjaga stabilitas struktur dari beban lingkungan. Yang membedakan antara *Truss* SPAR dengan *Classic* SPAR adalah pada ukuran lambung silinder yang lebih pendek dikarenakan adanya pemasangan struktur berbentuk *truss* pada bagian bawah struktur *Truss* SPAR.

Gambar 2.1 Gambaran Truss SPAR dan Classic SPAR (Marval, 2017)

Cell SPAR diperkenalkan pada tahun 2004. Properti dari *Cell SPAR* hampir sama dengan jenis SPAR yang lain akan tetapi hanya saja ada perbedaan konstruksi. Untuk bagian lambung tersusun atas *multiple ring-stiffened tubes* atau disebut sebagai *Cell*, yang terkoneksi oleh pelat horisontal dan vertikal. Metode konstruksi ini lebih murah daripada menggunakan metode pelat konvensional dan metode *frame*.

2.2.2 Beban Hidrodinamik

Suatu struktur terapung akan menerima beban hidrodinamika. Beban hidrodinamika yang diterima oleh struktur terapung dapat dipahami sebagai 2 sub masalah (Faltinsen, 1990) diantaranya:

- 1. Gaya dan momen yang dirasakan struktur terapung, saat benda ditahan untuk berosilasi namun menerima gelombang datang. Beban ini disebut sebagai beban akibat eksitasi gelombang. Beban ini secara umum terdiri dari gaya tekanan (yang biasa disebut *Froude Krylov Force*) dan gaya difraksi.
- 2. Gaya dan momen yang dirasakan struktur terapung, saat struktur digetarkan dengan frekuensi yang sama dengan gaya eksitasi gelombang yang datang. Namun, pada kali ini, tidak ada gelombang yang mengenai struktur. Beban hidrodinamika yang didapat dari sub masalah ini adalah beban massa tambah (*added mass*), beban redaman (*damping*) dan beban kekakuan (*restoring force*). Beban ini bisa juga dianggap sebagai beban reaksi akibat pergerakan struktur.

Sub masalah 1 dan 2 tersebut dapat dihubungkan secara linear sehingga gaya hidrodinamik total pada strukutur terapung merupakan penjumlahan sub-masalah 1 dan sub-masalah 2.

2.2.3 Teori Gerak Bangunan Apung

Gerakan bangunan apung yang terdiri dari 6 derajat kebebasan dibagi menjadi dua kelompok besar yaitu gerak translasi dan gerak rotasi (Journee, et al., 2001). Gerak translasi yaitu merupakan gerak dimana bangunan apung berpindah atau bergeser terhadap satu sumbu, seperti gerak lurus. Sedangkan gerak rotasi merupakan gerak dimana bangunan apung berputar dengan poros putar sumbu tertentu. 6 Jenis gerak dari struktur terapung mempunyai penamaan masing-masing yaitu:

- 1. Mode gerak translasi
 - a. Surging, gerakan translasi arah sumbu x.

- b. Swaying, gerakan translasi arah sumbu y.
- c. *Heaving*, gerakan translasi arah sumbu z.
- 2. Mode gerak rotasi
 - a. Rolling, gerakan rotasi di sumbu x.
 - b. Pitching, gerakan rotasi di sumbu y.
 - c. Yawing, gerakan rotasi di sumbu z.

Gerakan translasi dan rotasi dari SPAR *Platform* digambarkan pada Gambar 2.2

Gambar 2.2 Ilustarsi Gerakan 6 Derajat Kebebasan Pada SPAR Platform

2.2.4 Gaya Reaksi

Gaya reaksi pada struktur dipengaruhi massa tambah (*added mass*), redaman (*damping*) dan kekakuan (*stiffness*). Berikut penjelasan masing-masing komponen tersebut.

1. Massa Tambah (Added Mass)

Bessel pada tahun 1828 melakukan eksperimen osilasi dalam bentuk pendulum di air dan di udara. Ia menemukan bahwa walaupun dengan massa pendulum yang sama, pendulum yang di dalam air mempunyai masssa yang lebih besar daripada pendulum yang di udara. Bessel kemudian menginterpertasikan hal ini sebagai masa tambah (*added mass*) (Sarpkaya, 2010). Sebenarnya tidak ada massa yang ditambahkan ke dalam sistem, efek penambahan massa ini diakibatkan oleh ikut bergeraknya fluida di sekitar benda terapung. Ikut bergeraknya fluida tersebut menambah energi kinetik, sehingga diperlukan gaya eksternal. Gaya tersebut jika dibagi dengan percepatan benda maka akan menghasilkan komponen massa. Massa inilah yang dianggap sebagai massa tambah (Sarpkaya, 2010). Massa tambah bergantung terhadap bentuk benda serta mode gerak. Persamaan (2.1) merupakan formula dari gaya masa tambah, dimana merupakan perkalian antara massa tambah dengan percepatan gerak benda terapung. (Sarpkaya, 2010) menemukan beberapa nilai masa tambah untuk beberapa bentuk sederhana.

$$Fa = ai\xi i \tag{2.1}$$

dengan,

i = mode gerak struktur dengan 1 (*surge*), 2 (*sway*), 3 (*heave*), 4 (*roll*), 5 (*pitch*) dan 6 (*yaw*)

a = massa tambah (kg)

 ξ = respon percepatan gerak struktur (m/s²)

Persamaan massa tambah untuk bentuk silinder dijelaskan pada Tabel 2.1 dibawah ini.

Tabel 2.1	Persamaan	Massa	Tambah	Untuk	Bentuk	Silinder	(Sarpkaya,
			2010)				

BENTUK	ADDED MASS PER UNIT LENGTH
CIRCLE	ρπc²
CIRCULAR DISK	$\frac{8}{3} ho c^3$

2. Redaman (*damping*)

Redaman merupakan dampak yang didapat akibat adanya disipasi energi dari struktur. Redaman akan membuat struktur kehilangan energi kinetiknya. Jika struktur digetarkan di air yang tenang, maka energi kinetik struktur (gerakan) semakin lama akan semakin mengecil, hal inilah yang disebut sebagai redaman. Sama seperti massa tambah, nilai redaman bergantung dari bentuk benda dan mode gerak benda. Sebagai gaya reaksi, gaya ini mempunyai Persamaan (2.2). Persamaan ini merupakan perkalian antara redaman benda dengan kecepatan gerak benda. Nilai koefisien redaman dapat dicari dengan menggunakan analisis numeris (Chakrabarti, 1994)

$$Fb = bi\xi i \tag{2.2}$$

dengan,

i = mode gerak struktur dengan 1 (*surge*), 2 (*sway*), 3 (*heave*), 4 (*roll*), 5 (*pitch*) dan 6 (*yaw*)

b = redaman sistem (N s/m)

 ξ = respon kecepatan gerak struktur (m/s)

3. Kekakuan (stiffness)

Ketika struktur terapung bergerak di permukaan air tenang, tanpa gelombang, struktur tersebut mempunyai kekauan untuk kembali ke posisi awalnya. Fenomena ini hanya terjadi pada 3 mode gerak struktur. Mode gerak tersebut adalah gerak *heave* (ξ_3), *pitch* (ξ_4) dan *roll* (ξ_5) (Djatmiko, 2012). Gaya ini dipengaruhi oleh karakter hidrostatik struktur. Gaya reaksi yang berfungsi untuk mengembalikan posisi benda disebut gaya pengembali (*restoring force*) yang mempunyai Persamaan (2.3). Persamaan ini merupakan perkalian antara kekakuan dengan displacement gerak.

$$Fc = ci\xi i \tag{2.3}$$

dengan,

i = mode gerak struktur dengan 1 (*surge*), 2 (*sway*), 3 (*heave*),
4 (*roll*), 5 (*pitch*) dan 6 (*yaw*)

c = kekakuan struktur (N/m)

 ξ = respon gerak struktur (m)

2.2.5 Gaya Eksitasi

Gaya eksitasi yang diterima dari struktur terjadi akibat adanya distribusi tekanan yang tidak merata dari gelombang. Dampak dari tekanan yang tidak merata ini disebut sebagai gaya *Froude-Krillof* (Faltinsen, 1990). Selain itu, pada struktur dengan ukuran yang cukup besar, keberadaan strukur juga akan menyebabkan perubahan distribusi

tekanan (Journee, et al., 2001). Efek dari perubahan distribusi tekanan akibat adanya struktur yang besar ini disebut dengan gaya difraksi.

Gaya Froude-Krylof dapat dicari menggunakan Persamaan (2.4), dengan p merupakan distribusi tekanan, n merupakan unit vector dan dA merupakan luasan kecil dari suatu benda.

$$F_{FKi} = \int pn_i \, dA \tag{2.4}$$

Persamaan (2.4) menghubungkan antara distribusi tekanan yang diakibatkan medan gelombang dengan luas permukaan dari struktur. Distribusi tekanan gelombang di laut dalam untuk struktur didapat dengan menurunkan persamaan potensial gelombang dengan persamaan berneouli sehingga didapat persamaan (2.5). Sedangkan gaya difraksi pada struktur terapung perlu dilakukan peninjauan syarat batas dari setiap kasus dan memerlukan pendekatan matematis yang kompleks (Faltinsen, 1990).

$$p = \rho g \zeta oekz \sin(\omega t - kx) \tag{2.5}$$

dengan,

 ρ = massa jenis air sekitar struktur (kg/m)

g = percepatan gravitasi (m/s²)

 ζo = amplitudo gelombang (m)

k = angka gelombang (rad/m)

z = posisi di sumbu vertikal, dengan nilai 0 di permukaan air (m)

 ω = frekuensi gelombang (rad/s)

t =waktu (s)

x = posisi di sumbu horizontal, searah dengan arah gelombang (m)

Besarnya gaya eksitasi *heave* (F_3) pada gelombang terbagi menjadi Gaya *Froude-Krylov*, **F**_{FK} (Gaya tekan akibat ketidakpastian aliran fluida) dan Gaya Difraksi **F**_{DIF} (Gaya tekan saat struktur mengalami perubahan tekanan oleh adanya eksistensi air) seperti dijelaskan pada Persamaan (2.6).

$$F_3 = F_{FK} + F_{DIF} \tag{2.6}$$

Gaya induksi oleh gelombang F_w merupakan penjumlahan dari gaya gelombang insiden F_I dan gaya gelombang difraksi F_D (Djatmiko, 2012). Gaya gelombang induksi juga dikenal sebagai gaya eksitasi gelombang, yang karena besarnya akan bervariasi terhadap perubahan waktu, maka dapat dituliskan sebagai:

$$F_w = (F_I + F_D)e^{-i\omega t}$$
(2.7)

dengan $i = \sqrt{-1}$

Pada kondisi ini, Gaya *Froude-Krylov* didapatkan oleh hubungan tekanan dinamis selama badan SPAR terendam di bawah air. Tekanan dapat diperoleh dari Persamaan *Bernoulli* dan Gaya Difraksi dapat didapatkan dengan menggunakan Teori Gelombang Linear (Philip, 2012). Gaya total dapat ditunjukkan dalam Persamaan (2.8)

$$F_3 = -\int P_z n_3 ds + A_{33} a_z \tag{2.8}$$

Dengan mensubstitusikan P_z dan a_z, Persamaan tersebut menjadi Persamaan (2.9):

$$F_{3} = \left[\rho A_{w}g \frac{H}{2} \frac{\cosh(k(d+h))}{\cosh(kd)} - \omega^{2} A_{33} \frac{H}{2} \frac{\sinh(k(d+h))}{\sinh(kd)}\right] \cos(kx - \omega t)$$
(2.9)
Dimana

Η	= Tinggi gelombang

- ω = Frekunsi gelombang
- T = Periode gelombang
- k = Wave number
- A_w = Water Plane Area
- $g = \text{Gravitasi} (9.81 \text{ m/sec}^2)$
- x & t = koordinat horizontal dan waktu

Besarnya *water plane area* dapat diformulasikan menjadi Persamaan (2.10):

$$A_w = \frac{\pi D^2}{4} \tag{2.10}$$

2.2.6 Persamaan Gerak Bangunan Apung

Gerak dari bangunan apung dapat dianalis menggunakan hukum II Newton sesuai Persamaan (2.11):

$$\sum F = mi\xi i \tag{2.11}$$

dengan,

i = mode gerak struktur dengan 1 (*surge*), 2 (*sway*), 3 (*heave*),
4 (*roll*), 5 (*pitch*) dan 6 (*yaw*)

$$\sum F$$
 = resultan gaya (N)

$$m$$
 = massa struktur (kg)

 ξ [•] = percepatan struktur (m/s²)

Persamaan di atas menunjukkan hubungan antara resultan gaya dengan massa benda dan percepatan benda. Resultan gaya untuk benda terapung merupakan pengurangan gaya aksi dengan gaya reaksi. Hal ini dikarenakan gaya aksi (gaya eksitasi) memberi gaya kepada struktur sedangkan gaya reaksi merupakan gaya yang yang melawan gaya aksi.

$$\sum F = F_{eksitasi} - F_{reaksi} \tag{2.12}$$

Dengan memasukkan pengertian gaya eksitasi dan gaya reaksi pada struktur terapung yang terkena gelombang, maka persamaan (2.12) dapat dikembangkan menjadi persamaan (2.13)

$$\sum F = F_{eksitasi} - (F_a + F_b + F_c) \tag{2.13}$$

dengan,

 $\sum F$ = resultan gaya (N)

$$F_a =$$
gaya inersia (N)

 F_b = gaya redaman (N)

 F_c = gaya pengembali (N)

Dengan memasukkan persamaan (2.1), (2.2), dan (2.3) ke persamaan (2.12) dan (2.13) maka didapat persamaan (2.14) dan (2.15):

$$m_i\xi_i = F_{eks} - (a_i\xi_i + b_i\xi_i + c_i\xi_i)$$
(2.14)

$$(m_i + a_i)\xi_i + b_i\xi_i + c_i\xi_i = F_w$$
(2.15)

dengan,

i = mode gerak struktur dengan 1 (*surge*), 2 (*sway*), 3 (*heave*),
4 (*roll*), 5 (*pitch*) dan 6 (*yaw*)

$$F_{eks}$$
 = gaya eksitasi gelombang (N)

$$m = massa struktur (kg)$$

$$a = \text{massa tambah (kg)}$$

- ξ = respon percepatan gerak struktur (m/s²)
- b = nilai redaman sistem (N s/m)
- ξ = respon kecepatan gerak struktur (m/s)
- c = kekakuan struktur (N/m)
- ξ = respon posisi gerak struktur (m)

Persamaan (2.15) mudah sekali dikenali sebagai getaran sistem massa-pegas teredam dalam gerakan 1-derajat kebebasan pada arah gaya harmonik eksternal yang mengenainya, seperti diilustrasikan oleh Gambar 2.3.

Dalam sistem yang dibahas ini gaya gelombang harmonik dalam Persamaan (2.7) dapat digantikan oleh elevasi gaya yang mempunyai amplitudo F_{w0} dan frekuensi ω_t maka Persamaan (2.16) menjadi:

$$(m_i + a_i)\xi_i + b_i\xi_i + c_i\xi_i = F_{w0}\sin(\omega t)$$
(2.16)

Dengan memberikan harga amplitudo $F_{w0} = 0$, getaran bebas akan mempresentasikan penyelesaian umum yang dinamakan penyelesaian transien yakni:

$$(m_i + a_i)\xi_i + b_i\xi_i + c_i\xi_i = 0 \tag{2.17}$$

Jika diasumsikan penyelesaian tersebut memiliki bentuk

$$\zeta_z = \zeta_{z0} e^{qt} \tag{2.18}$$

Dengan ζ_{z0} dan q adalah konstanta yang belum diketahui, menyubstitusikan Persamaan (2.18) ke dalam Persamaan (2.17) memberikan

$$\zeta_{z0}((m+a)q^2 + bq + k)e^{qt} = 0$$
(2.19)

yang harus memenuhi untuk semua t. Kemudian

$$(m+a)q^2 + bq + k = 0 (2.20)$$

akan menghasilkan dua harga untuk q, yakni

$$q_{1,2} = -\frac{b}{2(m+a)} \pm \sqrt{\left(\frac{b}{2(m+a)}\right)^2 - \frac{k}{m+a}}$$
(2.21)

Penyelesaian umum dari ζ_z dapat juga dituliskan sebagai

$$\zeta_z = A_1 e^{q_1 t} + A_2 e^{q_2 t} \tag{2.22}$$

Konstanta sembarang A_1 dan A_2 dapat ditentukan dari nilai-nilai awal untuk permasalahan ini tergantung dari bagaimana pola gerakan dimulai. Melihat Persamaan (2.21), jika hasil perhitungan suku-suku di dalam tanda akar menghasilkan harga nol maka hanya akan didapat satu penyelesaian dari q. Kondisi ini dinamakan sistem teredam kritis, dan koefisien redamannya dinamakan koefisien redaman kritis, b_c . Oleh karena itu bila suku-suku di dalam tanda akar diberikan harga nol maka redaman kritisnya adalah:

$$b_c = 2\sqrt{k(m+a)} \tag{2.23}$$

Rasio antara redaman *b* dengan redaman kritis b_c , adalah disebut sebagai faktor redaman $b_f = b/b_c$. Nilai faktor redaman ini seringkali dipakai untuk menjelaskan besarnya redaman pada suatu sistem dinamis. Suatu sistem yang teredam kritis ($b_f = 1$) akan memiliki gerakan nonosilatori aperiodik. Sistem dengan $b_f > 1$ disebut sebagai sangat teredam atau *overdamped* dan bila $b_f < 1$ disebut kurang teredam atau *underdamped* (Djatmiko, 2012).

Dengan adanya eksitasi gaya eksternal, misalnya gelombang, yang bekerja terus menerus maka silinder terapung juga akan bergerak dengan amplitudo dan frekuensi tetap, atau *steady-state-oscillation*. Kondisi ini akan dipresentasikan oleh solusi partikular dalam bentuk:

$$\zeta_z = \zeta_{z0} \sin(\omega t - \varepsilon_z) \tag{2.24}$$

Dalam persamaan (2.24) diatas, ζ_{z0} adalah amplitudo gerakan osilasi dan ε_z adalah sudut fase antara gerakan dengan gaya eksitasi. Arti

dari adanya sudut fase ini adalah bahwa pada saat gelombang pertama kali berpropagasi melewati silinder, silinder masih dalam keadaan diam, dan baru beberapa saat kemudian silinder akan bergerak. Waktu yang diukur antara puncak gelombang dan puncak gerakan yang berurutan bila dibagi dengan periode gerakan dan dikalikan dengan satu siklus gerakan (2π rad) akan memberikan sudut fase. Secara jelasnya, sudut fase respon digambarkan pada Gambar 2.4.

Dengan mendeferensiasikan *x* pada Persamaan (2.24) terhadap waktu, dan mensubstitusikan ke dalam Persamaan (2.16) akan diperoleh: - $(m + a) \omega^2 \zeta_{z0} \sin(\omega t - \varepsilon_z) + b\omega \zeta_{z0} \cos(\omega t - \varepsilon_z) + k \zeta_{z0} \sin(\omega t - \varepsilon_z) =$ $F_{w0} \sin(\omega t - \varepsilon_z)$ (2.25)

Karena Persamaan tersebut harus berlaku untuk semua harga t, maka suku sin ωt dan cos ωt dapat diambil sama dengan 0. Maka Persamaan (2.25) menjadi:

$$-(m+a) \omega^2 \zeta_{z0} \cos \varepsilon_z + b \omega \zeta_{z0} \sin \varepsilon_z + k \zeta_{z0} \cos \varepsilon_z = F_{w0}$$
(2.26)
dan

 $(m+a)\,\omega^2\zeta_{z0}\sin\varepsilon_z + b\omega\zeta_{z0}\cos\varepsilon_z - k\,\zeta_{z0}\sin\varepsilon_z = F_{w0} \qquad (2.27)$

Penyelesaian kedua persamaan ini untuk ζ_{z0} dan ε_z memberikan:

$$\zeta_{Z0} = \frac{F_{W0}}{\sqrt{[\{k - (m+a)\omega^2\}^2 + (b\omega)^2]}}$$
(2.28)

dan

$$\tan \varepsilon_z = \frac{b\omega}{k - (m + a)\omega^2} \tag{2.29}$$

Meninjau kembali Gambar 2.3, bila peredan dihilangkan sehingga b=0 dan pada sistem dikenakan gaya statis sebesar F_{w0} , yaitu amplitudo gaya eksitasi harmonik, maka sistem massa-pegas akan terdefleksi ke bawah sebesar ζ_{zs} . Dengan begitu defleksi yang terjadi merupakan defleksi statis dan memiliki persamaan:

$$\zeta_{zs} = F_{w0}/k \tag{2.30}$$

Melihat hubungan $\omega_n = \sqrt{k/(m+a)}$, $b_f = b/b_c$, dan $b_c = 2(m+a)\omega_n$, penyelesaian dari Persamaan (2.28) dapat dituliskan dalam bentuk non-dimensi berikut:

$$\frac{\zeta_{z0}}{\zeta_{zs}} = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)\right]^2 + \left[2b_f\left(\frac{\omega}{\omega_n}\right)\right]^2}}$$
(2.31)

dan

$$\tan \varepsilon_{Z} = \frac{2b_{f}(\omega/\omega_{n})}{1 - (\omega/\omega_{n})^{2}}$$
(2.32)

Mengacu ke Persamaan (2.31), perhitungan tersebut digunakan untuk memperoleh data respons non-dimensi ζ_{z0}/ζ_{zs} sebagai fungsi perubahan faktor redaman b_f dan rasio frekuensi eksitasi terhadap frekuensi alami ω/ω_n . Rasio ζ_{z0}/ζ_{zs} merupakan perbandingan antara respons atau defleksi sitem dinamis dengan respons statis. Data yang dihasilkan kemudian diplot dalam grafik hubungan antara ζ_{z0}/ζ_{zs} dan ω/ω_n dengan kurva yang berubah mengikuti besarnya harga faktor redaman b_f , seperti ditunjukkan dalam Gambar 2.5.

Harga rasio ζ_{z0}/ζ_{zs} akan membesar atau mengecil tergantung dari perubahan faktor redaman dan frekuensi, maka nilai rasio tersebut dapat dinamakan juga faktor pembesaran atau *magnification factor*. Pada sistem yang teredam kritis, yakni pada saat $b_f = 1.0$, akan memberikan harga ζ_{z0}/ζ_{zs} dibawah 1.0. Sistem yang tidak punya redaman atau $b_f = 0$, bila terkena eksitasi pada frekuensi alaminya akan mempunyai respon yang besarnya tidak berhingga. Sehingga dalam perancangan nanti, operasi bangunan laut tersebut akan menimbulkan resonansi yang membuat respon sistem menjadi berlebihan.

Berikutnya meninjau karakteristik sudut fase respons ε_z , dengan mengacu Persamaan (2.32). Hasil perhitungan dari persamaan tersebut telah diplot dalam grafik pada Gambar 2.6, sebagai fungsi perubahan rasio frekuensi ω/ω_n untuk sejumlah variasi nilai b_f . Pada nilai $b_f = 1.0$, kenaikan ε_z terjadi bersamaan dengan kenaikan ω/ω_n . Bila nilai b_f mengecil maka perubahn kenaikan ε_z lebih lambat pada awalnya, ditunjukkan dengan kurva yang landai, kemudian kenaikan terjadi dengan cepat di sekitar $\omega/\omega_n = 1.0$, dan kemudian melambat lagi pada harga-harga ω/ω_n lebih tinggi. Sudut fase respons saat $\omega/\omega_n = 1.0$, atau saat kondisi resonansi, mempunyai harga 90°.

Gambar 2.6 Sudut Fase Respon Terhadap Sumber Eksitasi

Dalam perancangan, sudut fase beberapa mode respons gerakan harus diupayakan mempunyai nilai yang berbeda cukup besar. Bila tidak maka gerakan kopel akan menjadi bertambah besar secara signifikan, sehingga gerakan relatifnya terhadap gelombang mengalami eskalasi dan cenderung menimbulkan adanya *slamming*.

2.2.7 Added Mass

Untuk menanggulangi dampak resonansinya, pada struktur *Classic* SPAR di bagian *keel* nya dipasangkan pelat tipis dengan diameter lebih besar dari diameter *Classic* SPAR. Pelat tipis ini berfungsi untuk mereduksi respon gerak *heave* yang signifikan besarnya akibat resonansi, sehingga disebut sebagai *heave plate*. Pemasangan *heave plate* dapat menambah karakteristik massa tambah dan redaman struktur *Classic* SPAR pada arah gerak *heave*, kemudian berdampak pada penambahan nilai periode natural struktur sehingga resonansi pada struktur dapat dihindarkan (Molin *et al.*, 2007). Besarnya penambahan nilai dari karakteristik massa tambah dan redaman sangat erat bergantung pada bentuk, ukuran, porositas, jumlah dan peletakkan dari *heave plate* pada struktur *Classic* SPAR (Holmes *et al.*, 2001).

Heave added mass untuk silinder dapat dirumuskan dalam Persamaan (2.33) (Tao dan Molin, 2007):

$$A_{33} = 2.09\rho r^3 \tag{2.33}$$

Heave added mass dari silinder + *heave plate* dapat ditemukan secara teori oleh (Tao dan Molin, 2007) menggunakan hubungan Persamaan (2.34) dan (2.35).

$$m_a = A_{33} = \frac{1}{12} \rho \left[2D_d^{\ 3} + 3\pi D_d^{\ 2} z - \pi^3 z^3 - 3\pi D_s^{\ 2} z \right]$$
(2.34)

Dimana,

$$z = \frac{1}{\pi} \sqrt{D_d^2 - D_s^2}$$

$$D_s = \text{Diameter SPAR}$$

$$D_d = \text{Diameter Heave Plate}$$

$$U_s = 0 \text{ (2.35)}$$

Koefisien *added mass* C_a kemudian dihitung dalam Persamaan (2.36):
$$C_a = \frac{A_{33}}{M + A_{33}} \tag{2.36}$$

Dengan M merupakan massa struktur. Lalu periode natural *heave* dapat ditemukan menggunakan Persamaan (2.37) dibawah ini.

$$T_{N,3} = 2\pi \sqrt{\frac{h(1+C_a)}{g}}$$
 (2.37)

2.2.8 Damping

Dari persamaan gerak bangunan apung pada Bagian 2.2.6, telah dijelaskan mengenai Persamaan 6 derajat kebebasan untuk persamaan gerak dari struktur terapung. Lalu untuk besarnya koefisien *heave damping*, *B*₃₃, *dan C*₃₃, gaya kekakuan didapatkan oleh Persamaan (2.38) dan (2.39) (Philip, 2012):

$$B_{33} = 2\xi_3 \sqrt{(A_{33} + M)C_{33}} \tag{2.38}$$

$$\mathcal{L}_{33} = \rho g A_w \tag{2.39}$$

Setelah disubsitusikan ke Persamaan (2.13), didapatkan Persamaan (2.40):

$$\xi_3 = \frac{F_3(t) - (M + A_{33})\ddot{\eta} - C_{33}\eta_3}{2\eta_3 \sqrt{(A_{33} + M)C_{33}}}$$
(2.40)

Dimana:

M = Massa Struktur (Kg)

 C_{33} = Gaya Kekakuan *Heave* (N/m)

A₃₃ = Heave Added Mass (Kg)

Damping ratio, ξ_3 , dapat didapatkan dengan solusi Persamaan (2.40) menggunakan F₃ sebagai gaya eksitasi *heave* dan $\ddot{\eta}_3$ merupakan percepatan (Philip, 2012).

2.2.9 Free Decay Test

Free Decay Test dengan model dicoba di air dapat dilakukan tidak hanya untuk gerakan-gerakan tertentu yang memiliki gaya atau momen hidromekanik seperti gerakan *heave*, *pitch*, dan *roll*. Tetapi juga dapat dilakukan untuk gerakan lainnya: *surge*, *sway*, dan *yaw* (Journee dan Massie, 2001).

Dari *free decay test*, periode natural dan *damping coefficients* dapat diperoleh. Gambar 2.7 dibawah menunjukkan contoh hasil perekaman

selama *motion decay test* untuk gerakan teredam sempurna, contoh dibawah merupakan kapal dengan gerakan *heave free floating* (MARIN Report No. 22808-3-OB).

Gambar 2.7 Hasil pengujian free decay test (MARIN Report No. 22808-3-OB)

Dimana:

- $\phi(t)$ = rentang waktu gerakan ϕ
- ϕ_n = amplitudo gerakan dari osilai ke-n, (m), (°)

 T_{ϕ} = periode natural dari gerakan ϕ , (s)

- Persamaan Gerak

Diasumsikan bahwa gerakan $\phi(t)$ dalam *free decay test* dapat dideskripsikan oleh Persamaan gerak (2.41) berikut ini:

$$a_{\phi\phi}.\,\ddot{\phi} + b_{\phi\phi}^{(1)}.\,\dot{\phi} + b_{\phi\phi}^{(2)}.\,\dot{\phi}.\,|\phi| + c_{\phi\phi}.\,\phi = 0$$
(2.41)

Dimana:

 $a_{\phi\phi}$ = massa total (massa struktur + *added mass*), (t), (t.m²)

 $b_{\phi\phi}^{(1)}$ = Koefisien *linear damping*, (kNs/m), (kNms/rad)

$$b_{\phi\phi}^{(2)}$$
 = Koefisien *quadratic damping*, (kNs²/m²), (kNm²s²/rad)

 $c_{\phi\phi}$ = *Restoring coefficient*, (kN/m), (kNm/rad)

Berikutnya dari hasil *free decay test* dapat ditentukan koefisien *linear damping* dengan solusi Persamaan (2.42) berikut (MARIN Report No. 22808-3-OB).

$$\phi(t) = e^{-\frac{b_{\phi\phi}}{2a_{\phi\phi}}t} . (c_1 . \cos \omega_n t + c_2 . \sin \omega_n t)$$
(2.42)

Dimana:

 ω_n = frekuensi natural, (rad/s)

 $c_1, c_2 = \text{Konstanta}$

Dimana δ adalah *logarithmic decrement*. δ dapat ditentukan menggunakan Persamaan (2.43) berikut (Sudhakar, 2014).

$$\delta = \frac{1}{N} \ln \left(\frac{\phi_N - 1}{\phi_N} \right) \tag{2.43}$$

Dimana:

N = Jumlah *cycle*

 ϕ_N = Amplitudo puncak dari osilasi ke-N, (m), (°)

 ϕ_{N-1} = Amplitudo puncak dari osilasi ke-*N*-1, (m), (°)

Selanjutnya *damping ratio* dapat ditemukan dari *logarithmic decrement* pada Persamaan (2.44):

$$\xi = \frac{1}{\sqrt{1 + \left(\frac{2\pi}{\delta}\right)^2}} \tag{2.44}$$

Damping ratio dapat digunakan untuk menemukan frekuensi natural tidak teredam ω_n dari frekuensi natural teredam ω_d seperti Persamaan (2.45):

$$\omega_d = \frac{2\pi}{T} \tag{2.45}$$

Dimana T, Periode osilasi, merupakan waktu antara 2 amplitudo puncak. Frekuensi natural dan periode natural dapat mudah ditemukan dengan Persamaan (2.46) dan (2.47) (Sudhakar, 2014):

$$\omega_n = \frac{\omega_d}{\sqrt{1-\xi^2}} \tag{2.46}$$

$$T_n = \frac{2\pi}{\omega_n} \tag{2.47}$$

Heave Added Mass, A_{33} juga dapat ditentukan dari periode natural *heave,* $T_{N,3}$ sebagai berikut pada Persamaan (2.48) (Philip, 2012):

$$\Rightarrow A_{33} = \frac{T_{N,3}^2}{4\pi^2} \cdot C_{33} - M \tag{2.48}$$

2.2.10 Linear and Quadratic Damping

Jika suatu sistem hanya menggunakan *linear damping* saja maka bila *decrement amplitude* gerak ϕ seperti pada Gambar 2.7 yang diasumsikan

merupakan fungsi eksponensial, maka hubungan antara nilai ϕ_N dan ϕ_{N-1} dari dua puncak amplitudo gerak ϕ sehingga:

$$\Delta = \frac{\phi_{N-1}}{\phi_N} = e^{\delta} \tag{2.49}$$

Dimana δ adalah *logaritmic decrement*. Untuk sistem dengan *linear damping* saja, penurunan logaritmik adalah konstan dan nilai konstanta tersebut dapat ditentukan menggunakan Persaman (2.43). Maka *linear damping coefficient* dapat dihitung dengan persamaan berikut:

$$b_{1\phi} = \frac{\delta\sqrt{c_{\phi}a_{\phi}}}{\pi} = \frac{2 c_{\phi}T_0\delta}{4\pi^2}$$
(2.50)

Pada asumsi sistem linier T_0 periode natural dan *relative damping* β dapat dihitung pada kondisi *displacement* tertentu Δ , dirumuskan

$$T_0 = 2\pi \sqrt{\frac{\Delta + a_\phi}{c_\phi}} \tag{2.51}$$

sedangkan

$$\beta = \frac{b_{1\phi}}{b_{critical}} = \frac{b_{1\phi}}{\sqrt{(2\Delta + a_{\phi})c_{\phi}}} = -\frac{\delta}{2\pi}$$
(2.52)

Koefisien *linear* dan *quadratic damping* dapat diperoleh melalui *decay test* melalui langkah berikut, pertama *decrease of motion amplitude* $\phi_{N-1} - \phi_N$ dibagi dengan *mean motion amplitude* $(\phi_{N-1} + \phi_N)/2$ dan diplotkan sebagai *mean motion amplitude*, lebih jelasnya lihat Gambar 2.8 dibawah ini.

Nilai p dan q dapat diperoleh melalui *fitting line* dari titik-titik data yang diperoleh melalui *decay test*. Koefisien p dan q dapat digunakan untuk mendapatkan *linear* $b_{1\phi}$ dan *quadratic* $b_{2\phi}$ *damping coefficients* melalui rumusan masing-masing seperti berikut:

$$b_{1\phi} = \frac{2 \, p \, a_{\phi}}{T_0} \tag{2.53}$$

dan

$$b_{2\phi} = \frac{3}{8}q \ a_{\phi} \tag{2.54}$$

Gambar 2.8 p-q analisis dari decay test

2.2.11 Teori Pemodelan

Apabila model bangunan apung akan diuji pada *towink tank* atau *wave basin*, maka pertanyaan berikutnya adalah bagaimana memastikan bahwasanya kondisi pada saat pengujian yang diskalakan dapat secara akurat merepresentasikan kondisi sesungguhnya yang akan diterima oleh bangunan apung. Untuk menjawab pertanyaan ini, kondisi saat pengujian harus disamakan secara geometri, kinematika fluida, dan dinamika dari struktur yang dikenai oleh fluida di sekitarnya (Munson, et al., 2013).

1. Kesamaan Geometri

Dalam pengujian eksperimen, model yang dibuat haruslah identik terhadap struktur aslinya dalam hal geometri. Perbedaan dimensi antara model dan struktur asli dapat dilakukan dengan penskalaan sehingga model dapat dikatakan sebanding dengan struktur asli. Untuk suatu satuan yang memiliki komponen panjang (meter) maka penskalaan dapat dilakukan dengan Persamaan (2.55):

$$\lambda = \frac{Ls}{Lm} \tag{2.55}$$

Dimana *Ls* dan *Lm* dua dimensi (diameter, panjang, dll) yang bersesuaian dari dua struktur yang dinamakan prototipe dan model, dan λ merupakan rasio skala diantara keduanya. Adapun untuk satuan inersia yang memiliki

komponen berat (ton) dan luas (m²), maka faktor skala menjadi berubah sebagaimana Persamaan (2.56):

$$\lambda^5 = \frac{Is}{Im} \tag{2.56}$$

2. Kesamaan Kinematik

Dalam hal kesamaan kinematika, rasio dari kecepatan dan percepatan yang digunakan dalam eksperimen konstan. Hal ini berlaku pada seluruh kecepatan termasuk kecepatan partikel fluida, angin, towing, model pada arah tertentu (Herdayanditya, 2017). Sama seperti sebelumnya, rasio dari percepatan model harus sama dengan struktur asli, tetapi dengan rasio yang berbeda dengan kecepatan. Ketika percepatan dan kecepatan model sudah sama dengan struktur asli, maka keduanya dapat dikatakan memiliki kesamaan kinematik.

3. Kesamaan Hidrodinamik

Rasio dari gaya merupakan hal yang menentukan dalam penentuan hukum skala hidrodinamik. Beberapa hal yang meliputi ini adalah konstanta pegas pada sistem, dan faktor redaman. Dalam kebanyakan kasus, hanya satu dari beberapa hukum skala tersebut yang dapat memenuhi model struktur. Oleh karena itu, hal penting yang perlu dipahami adalah proses fisik yang dialami oleh struktur. Kemudian memilih hukum skala yang paling penting yang mengatur proses tersebut.

4. Bilangan *Froude*

Bilangan *Froude* adalah suatu ukuran dari hubungan gaya inersia, gravitasi, dan *viscous* yang bekerja pada aliran di sekitar kapal atau bangunan apung dan modelnya (Lloyd, 1989). Bilangan *Froude* didefinisikan sebagaimana Persamaan (2.57) dan (2.58),

$$F_N = \sqrt{\frac{gaya \text{ inersia}}{gaya \text{ gravitasi}}} \tag{2.57}$$

$$F_N = \frac{U}{\sqrt{(gL)}} \tag{2.58}$$

Rasio antara gaya inersia dengan gaya *viscous* dapat digambarkan pada Persamaan (2.59):

$$\frac{\rho U^2 L^2}{\mu_w U L} = \frac{\rho U L}{\mu_w}$$
(2.59)

Dengan mengasumsikan faktor skala kesamaan geometri adalah λ , hubungan antara model dengan prototipe untuk bermacam parameter dapat diperoleh. Tabel 2.2 merupakan faktor skala dari variabel-variabel yang umum digunakan dan memenuhi persyaratan model *Froude*.

Tabel 2.2 Model to Prototype Multiplier for The Variables Commonly Used inMechanics Under Froude Scaling (Chakrabarti, 1994)

VARIABLE	UNIT	SCALE	REMARKS
		FACTOR	
	GEC	DMETRY	
Length	L	λ	Any Characteristic
			dimension of
			the object
Volume	L^3	λ^3	For any portion of
			the object
Angle	None	1	e.g., between
			members or solid
			angle
Radius of	L	λ	Measured from a
Gyration			fixed point
Moment of Inertia	ML^2	λ^5	Taken about fixed
Mass			point
Center of Gravity	L	λ	Measured from a
			reference point
Natural Period	Т	$\lambda^{1/2}$	Period at which
			inertia force =
			restoring force
	WAVE M	IECHANICS	
Wave Height	L	λ	Consecutive crest
			to trough
			distance

VARIABLE	UNIT	SCALE	REMARKS
		FACTOR	
	WAVE M	ECHANICS	
Wave Period	Т	$\sqrt{\lambda}$	Time between two
			successive
			crests passing a
			point
Wave Length	L	λ	Distance between
			two successive
			crests at a given
			time
Wave Elevation	L	λ	Form of wave
			(distance from
			still waterline)
	KINEMATIC	S & DYNAMICS	
Time	Т	$\lambda^{1/2}$	Same reference
			point (e.g.,
			starting time) is
			considered as
			zero time
Displacement	L	λ	Position at rest is
			considered as
			zero
Spring Constant	MT^{-2}	λ^2	Force per unit
(Linear)			length of
			extension
Damping Factor	None	1	Ratio of damping
			and critical
			damping
			coefficient

Tabel 2.2 Model to Prototype Multiplier for The Variables Commonly Used in
Mechanics Under Froude Scaling (Chakrabarti, 1994) (lanjutan)

2.2.12 Strip Theory

Strip Theory merupakan teori yang berdasarkan teori aliran potensial. Teori ini juga menyatakan bahwa efek *viscous* tidak dipertimbangkan, yang mana dapat membawa masalah serius ketika memprediksikan gerakan *heave* pada frekuensi resonansi. Dalam aplikasinya, untuk efek *viscous heave damping* dapat dihitung cukup dengan metode empiris. *Strip Theory* memang disarankan untuk mempertimbangkan struktur hull yang *rigid*, terapung dalam permukaan dengan fluida ideal, yang mana homogen, bebas dari tegangan permukaan, dan tanpa adanya viskositas (Journee dan Adegeest, 2003).

Pada kasus murni *free heaving* untuk silinder pada kondisi *still water*, persamaan linier dari gerakan *heave* dari titik *center of gravity*, *G*, diberikan Persamaan (2.60) yang mana merupakan persamaan dasar gerak bangunan apung.

$$(m+a).\ddot{\phi} + b.\dot{\phi} + c.\phi = 0$$
 (2.60)

Dimana persamaan di atas dapat ditulis sebagai Persamaan (2.61).

$$\ddot{\phi} + 2\nu.\,\dot{\phi} + \omega_0^{\ 2}.\,\phi = 0 \tag{2.61}$$

Dalam koefisien redaman dan frekuensi natural tidak teredam yang didefinisikan oleh Persamaan (2.62) dan (2.63), kedua persamaan ini yang membuat Persamaan (2.60) menjadi Persamaan (2.61).

$$2\nu = \frac{b}{m+a} \tag{2.62}$$

$$\omega_0^2 = \frac{c}{m+a} \tag{2.63}$$

Koefisien redaman non-dimensional, k, ditulis dalam Persamaan (2.64) yang mana juga menunjukkan adanya Persamaan (2.62) dan (2.63).

$$k = \frac{v}{\omega_0} = \frac{b}{2\sqrt{(m+a).c}} \tag{2.64}$$

Koefisien redaman ini ditulis sebagai pecahan antara koefisien redaman actual, *b*, dan koefisien redaman kritis, $b_c = 2\sqrt{(m+a).c}$; jadi untuk redaman kritis: $k_c=1$. Bersama ini, Persamaan (2.65) dapat ditulis sebagai:

$$\ddot{\phi} + 2k\omega_0 \cdot \dot{\phi} + \omega_0^2 \cdot \phi = 0 \tag{2.65}$$

Struktur didefleksikan dengan *initial vertical displacement*, $\phi_{a,s}$ dalam keadaan *still water* yang kemudian dilepaskan. Solusi dari Persamaan (2.61) dari gerakan *decay* ini menjadi formulasi matematis Persamaan (2.66).

$$\phi = \phi_a e^{-\nu t} \cdot \left\{ \cos(\omega_n \cdot t) + \frac{\nu}{\omega_n} \cdot \sin(\omega_n \cdot t) \right\}$$
(2.66)

Dimana $\phi_a e^{-v.t}$ merupakan pengurangan dari puncak amplitudo setelah satu periode. Nilai *k* dapat mudah ditemukan ketika hasil *decay test* dengan model dalam keadaan *still water* telah dilakukan. Gambar 2.9 menunjukkan fenomena yang biasanya terjadi serta penentuan *logarithmic decrement* (Journee dan Massie, 2001).

Gambar 2.9 Penentuan Logarithmic Decrement

BAB III METODOLOGI PENELITIAN

3.1 Diagram Alir Penelitian

Metodologi penelitian yang digunakan dalam penelitian tugas akhir ini dapat direpresentasikan melalui diagram alir pada Gambar 3.1 di bawah ini.

Gambar 3.1 Diagram Alir Penelitian

Gambar 3.1 Diagram Alir Penelitian (Lanjutan)

3.2 Prosedur Penelitian

3.2.1 Studi Literatur

Pada tahap ini dilakukan studi literatur dari berbagai literasi mengenai halhal yang berkaitan dengan penelitian tugas akhir ini. Literasi yang dipelajari merupakan literasi yang berhubungan dengan penelitian tentang SPAR *platform* baik dalam lingkup pemodelan numeris ataupun eksperimen, literatur mengenai *damping*, massa tambah, dll. Pada tahap ini juga dilakukan pengumpulan data-data SPAR yang digunakan sebagai acuan yang diperlukan untuk penelitian. Pada penelitian ini, data SPAR yang digunakan adalah data dari model Mini SPAR.

Tabel 3.1 berikut ini menunjukkan data dimensi model Mini SPAR yang digunakan sebagai acuan. Data dimensi ini akan dimodelkan yang lalu semua parameternya diskala disesuaikan dengan kondisi kolam *Maneuvering and Ocean Engineering Basin* (MOB) Balai Teknologi Hidrodinamika (BTH) – BPPT, lalu setelah itu dibuat model untuk dianalisis secara eksperimen.

Mini SPAR				
Deskripsi	Besaran	Satuan		
Lambung				
Diameter SPAR (Ds)	17.50	m		
Draft	129.95	m		
Tinggi	154.25	m		
Fairlead dari Keel	146.25	m		
Deck	Deck			
Panjang	50.29	m		
Lebar	50.29	m		
Tinggi	19.57	m		
Mass Distribution				
Weight	32421.875	kg		

Tabel 3.1 Dimensi Mini SPAR

Deskripsi	Kuantitas	Satuan
Panjang	60	m
Lebar	35	m
Kedalaman (penuh)	2.5	m
Kedalaman (operasi)	2.5	m
Maximum Waves Period	0.5 - 3	S
Waves Direction	0° - 90°	Degree
Hs	0-0.3	m

Tabel 3.2 Data Kolam MOB BTH - BPPT

3.2.2 Persiapan dan Analisis Pemodelan

Pada tahap ini, data yang telah terkumpul dari properti SPAR, dimensi SPAR, sistem tambat, dll, akan digunakan sebagai acuan dalam membuat model SPAR. Pemodelan eksperimen dari Mini SPAR dilakukan dengan cara menskala parameter-parameter dimensi dan distribusi massanya. Pertama skala ditentukan dengan mempertimbangkan aspek kesamaan geometris, kinematis, dan dinamis. Ketersediaan material di pasar dan kondisi kolam MOB BTH – BPPT juga menjadi pertimbangan dalam menentukan skala model. *Froude* sistem digunakan pada tahap kesamaan dinamis. Dari berbagai pertimbangan di atas, didapatkan skala model terhadap data asli sebesar 1:125.

Pemodelan *heave plate* SPAR mengacu pada hasil penelitian yang dilakukan Subbulakshmi, dkk. Pada tahun 2015 yang bertema "*Effect of Viscous Damping on Hydrodynamics Response of SPAR with Heave Plate*". Pada penelitian tersebut didapatkan dimensi *heave plate* paling optimal dari beberapa percobaan yaitu 1,3 kali diameter SPAR.

3.2.3 Perancangan Model

Pada tahap ini dilakukan perancangan *scale model* untuk diuji di kolam MOB BTH – BPPT. Langkah-langkah dalam perancangan model dapat dibagi menjadi beberapa tahap sebagai berikut. Tahapan dari perancangan *scale model* ini terbagi menjadi 3 tahap:

1. Revitalisasi Model

Pada tahap ini, model SPAR yang telah dibuat Ivandito dkk pada tahun 2017 kembali digunakan namun dengan berbagai perubahan. Model mini SPAR polos tersebut diberi tambahan perangkat peredam gerak, yaitu *heave plate* yang berbentuk lingkaran pipih dan diletakkan di bagian bawah *keel* SPAR. Bahan untuk membuat model antara lain, pipa PVC untuk bagian lambung, akrilik untuk bagian *keel* sekaligus menjadi penutup, besi pemberat (ballast), dan besi ulir. Selanjutnya dilakukan pengaturan ulang dalam pendistibusian berat karena ditemukan kesalahan pada posisi titik KG lama yang menyebabkan model tidak bisa mengapung dengan stabil saat berada di air. Pengaturan ulang distribusi berat ini bertujuan untuk mencari posisi KG dan jari-jari girasi yang baru.

2. Pemodelan Heave Plate

Heave Plate dimodelkan sebagai piringan pipih berbentuk bundar yang berfungsi sebagai perangkat tambahan untuk menambah redaman. Akrilik dipilih sebagai bahan untuk *heave plate* karena bahannya yang ringan sehingga posisi titik KG dan jari-jari girasi tidak berubah akibat pemasangan *heave plate* pada SPAR. *Heave plate* dipasang pada bagian *keel* dari SPAR. Diameter *heave plate* yang digunakan sebesar 18.2 cm dengan ketebalan sebesar 0.5 cm. Gambar 3.2 dan 3.3 menampilkan rancang model SPAR dengan *heave plate* tampak samping dan tampak atas.

Gambar 3.2 Rancang Model SPAR dengan Heave Plate Tampak Samping

Gambar 3.3 Model SPAR dengan heave plate tampak atas

3. Pembuatan Sistem Tambat

Pada tahap ini, sistem tambat dimodelkan di fasilitas MOB dengan berbagai aspek pertimbangan seperti kemudahan pekerjaan, ketersediaan bahan di pasar, dan sebagainya. Hal pertama yang dilakukan adalah menentukan konfigurasi sistem yang akan digunakan. Konfigurasi sistem tambat yang dipilih adalah 4x1. SPAR akan ditambat dari *fairlead* ke dasar kolam dengan 4 *mooring line* secara *taut. Mooring line* dibuat menggunakan kombinasi antara karet pegas dan *nylon coated wire* yang disambungkan ke karabiner lalu dikaitkan ke *fairlead*. Di dasar kolam, masing-masing tali tambat dikaitkan ke pemberat seberat 50 Kg yang ditenggelamkan di dasar kolam. Konfigurasi tali tambat pada penelitian ini dapat dilihat pada Gambar 3.4 berikut.

Gambar 3.4 Konfigurasi Sistem Tambat Tampak Atas dan Samping

Dalam membuat model sistem tambat, perlu memperhatikan beberapa parameter yang mempengaruhi fungsi dari sistem tambat. Parameter-parameter tersebut adalah - Kekakuan Tali Tambat

Pemodelan dari tali tambat menggunakan senar nylon. Kekakuan dari senar akan diwakilkan oleh karet yang dipasang pada setiap konfigurasi *mooring line*. Penggunaan karet ini diperlukan untuk mengetahui *pre-tension* mooring dan menghindari terjadinya *slack* pada senar.

- Posisi fairlead

Posisi *fairlead* disesuaikan dengan data asli yang ada pada tabel 3.1 dan disesuaikan dengan skala model. Posisi *fairlead* berada diatas muka air dan di atas titik pusat massa total model (*center of gravity* (COG)).

- Sudut tali tambat dengan model pada *fairlead* Sudut tali tambat dengan *fairlead* akan menyesuaikan kedalaman
 Laboratorium Hidrodinamika Indonesia (LHI) yaitu sebesar 30°.
- Jenis sistem tambat
 Jenis sistem tambat yang digunakan pada tugas akhir ini adalah jenis *taut mooring*.

3.2.4 Persiapan Instrumen Laboratorium

Instrumen yang digunakan dalam eksperimen SPAR adalah seperangkat sistem penangkap gerak dari *QUALISYS*. Secara garis besar dalam sistem ini terdapat beberapa komponen utama yang dapat digunakan untuk menangkap gerak dari SPAR dalah 6 mode gerakan. Komponen-komponen tersebut adalah:

1. Motion Capture Camera

Kamera ini dapat menangkap posisi daripada *marker* yang dipasang pada bagian *deck* SPAR. Posisi *marker* yang berubah-berubah dapat ditangkap kamera dengan *frame rate* sekitar 180-1750 fps. Gambar 3.5 menampilkan *Qualysis Motion Capture Camera* pada saat proses kalibrasinya.

Gambar 3.5 Qualysis Motion Capture Camera

2. Passive Markers

Marker ini khusus digunakan untuk menandakan posisi titik dimana SPAR itu bergerak. Ketika SPAR dikenai getaran sewaktu eksperimen, posisi *marker* di setiap detiknya akan ditangkap oleh kamera, dan dikumpulkan menjadi *time history*. Secara lebih jelasnya, Gambar 3.6 menampilkan bentuk dari *passive markers*.

Gambar 3.6 Passive Markers

3. Calibration Kit

Alat ini digunakan untuk mengkalibrasi posisi sumbu x dan y agar sesuai dengan keinginan pengguna. Kalibrasi posisi sumbu penting untuk dilakukan agar tidak terjadi kesalahan dalam membaca gerak dari SPAR. Gambar 3.7 menunjukkan *Calibration Kit* saat proses kalibrasi *Qualysis*.

Gambar 3.7 Calibration Kit

3.2.5 Pengujian Model

Model akan diuji di fasilitas MOB BTH-BPPT. *heave plate* akan dipasang di *keel* SPAR dan diuji dengan mencelupkan model kearah sumbu z (*heave*). Pengujian akan berhenti sampai model benar-benar teredam atau berhenti. Hasil dari pengujian berupa *time history* yang akan diolah pada tahap selanjutnya untuk menentukan amplitudo osilasi redaman.

3.2.6 Pengolahan Data

Pengolahan data dilakukan menggunakan program yang telah dibuat dengan bantuan perangkat lunak Matlab. Dari hasil olahan ini akan didapatkan amplitudo osilasi redaman yang selanjutnya akan dihitung hingga memperoleh nilai periode natural, *damping ratio*, serta *heave added mass*. Sehingga komponen *heave damping* pun dapat mudah ditemukan dari analisis tersebut.

3.2.7 Perhitungan Analitis

Perhitungan Analitis mengacu pada jurnal "Damping Characteristics of Heave Plates Attached to SPAR Hull" (Philip, 2012) yang mana karakteristik redaman sistem SPAR yang diteliti pada jurnal tersebut sama dengan eksperimen yang dilakukan pada tugas akhir ini yaitu *underdamped* atau kurang teredam. Perhitungan analitis ini akan menghasilkan nilai *damping ratio* yang didapatkan dari perhitungan gaya reaksi. Yang kemudian digunakan untuk menentukan besarnya *heave damping* dengan mengetahui nilai *heave added mass* dan kekakuan terlebih dahulu.

3.2.8 Perhitungan Strip Theory

Perhitungan Strip Theory yang dilakukan mengacu pada Strip Theory Program "SEAWAY for Windows" (Journee dan Adegeest, 2003) serta Offshore Hydromechanics (Journee dan Massie, 2001) yang dibantu dengan bantuan software Matlab. Output dari perhitungan Strip Theory merupakan grafik heave decay seperti hasil eksperimen. Dari grafik decay tersebut, maka parameter-parameter seperti periode natural, heave damping, dan massa tambah dapat dihitung sehingga nantinya menjadi pembanding dari hasil eksperimen. Selain daripada itu, perhitungan ini juga sebagai pembuktian apakah model perhitungan Strip Theory bisa digunakan pada beberapa kondisi struktur, terutama akibat dari dampak penambahan *heave plate* pada *keel* SPAR.

3.2.9 Analisis dan Perbandingan Hasil Studi Analisis

Setelah pengujian eksperimen dan perhitungan telah dilakukan, langkah selanjutnya adalah menganalisis hasil dari masing-masing metode dan membandingkannya. Perbandingan analisis terbagi menjadi 2 yaitu antara hasil eksperimen dengan analitis serta hasil eksperimen dengan *Strip Theory*. Selain membandingkan parameter-parameter seperti periode natural, *damping*, dll. Grafik *decay* antara hasil eksperimen dengan *Strip Theory* juga dibandingkan dalam satu kesatuan grafik.

3.2.10 Kesimpulan

Semua analisis yang telah dilakukan akan ditarik masing-masing kesimpulannya sehingga kesimpulan tersebut akan menjawab daripada rumusan-rumusan masalah yang terdapat pada bagian awal tugas akhir.

BAB IV ANALISIS DAN PEMBAHASAN

4.1 Pemodelan Struktur

Dalam melakukan eksperimen, skala yang digunakan sebesar 1:125 terhadap ukuran aslinya. Bagian *hull* SPAR dimodelkan menggunakan pipa PVC berdiameter 14 cm dengan *fairlead* berupa kait besi, sedangkan untuk bagian *topside* digunakan triplek kayu dengan tebal 1.8 cm. Untuk *heave plate*, menggunakan material akrilik dengan diameter 21 cm yang memiliki ketebalan 0.5 cm. Ukuran-ukuran utama dari *scale model* yang digunakan dalam penelitian ini dapat dilihat pada Tabel 4.1.

Parameter	Dimensi Model	Faktor Skala	Dimensi Full Scale
Diameter SPAR (m)	0.140	λ	17.5
Draft (m)	1.034	λ	129.25
Tinggi SPAR (m)	1.234	λ	154.25
Diameter Heave Plate (m)	0.182	λ	22.75
Tebal Heave Plate (m)	0.005	λ	0.625
Tinggi Fairlead (m)	1.170	λ	146.25

 Tabel 4.1 Hasil skala menggunakan aturan Froude

Pipa PVC yang digunakan untuk memodelkan *hull* SPAR dipotong sesuai dengan ukuran yang ditentukan, lalu bagian bawah pipa ditutup dengan tutup pipa yang direkatkan dengan lem untuk mencegah kebocoran. *Scale model* yang telah dibuat dapat dilihat pada Gambar 4.1.

Selain dimensi-dimensi utama dari struktur, *Keel to Gravity* (KG) dan jari-jari girasi juga perlu dikalibrasi untuk mendapatkan karakteristik distribusi massa struktur. Distribusi massa dimodelkan dengan menggunakan *ballast* berupa silinder besi yang dirangkai menggunakan ulir panjang. *Ballast* besi ini kemudian diatur ketinggiannya hingga keseimbangan SPAR di dalam air sesuai dengan yang diharapkan.

Gambar 4.1 Model Mini SPAR dengan topside dan heave plate

Kalibrasi KG dan jari-jari girasi menggunakan meja osilator untuk mendapatkan nilainya. *Ballast* kemudian ditanam di dalam pipa PVC sebelum *fairlead* dipasang. *Silinder* besi yang digunakan sebagai *ballast* dapat dilihat pada Gambar 4.2, dengan spesifikasi tiap silindernya pada Tabel 4.2 dan konfigurasinya pada Gambar 4.3.

Gambar 4.2 Silinder besi dan ulir untuk memodelkan ballast

Ko	omponen	Tebal (cm)	Jumlah	Massa Total (Kg)
	Ballast 1	2	1	
D1-1-A	Ballast 2	2	1	
BIOK A	Ballast 3	2.5	1	
	Ballast 4	1	1	10.941
D1a1a D	Ballast 5	2.5	1	
BIOK B	Ballast 6	0.5	1	
Rangka	Ulir (130 cm)	-	1	

Tabel 4.2 Spesifikasi komponen ballast

Gambar 4.3 Konfigurasi Ballast

Prosedur untuk mendapatkan distribusi massa dari SPAR adalah sebagai berikut:

4.1.1 Distribusi Massa

Untuk mendapatkan massa total dari model eksperimen, masingmasing komponen dari model eksperimen ditimbang lalu dijumlahkan. Hasil dari pengukuran dapat dilihat pada tabel 4.3.

Komponen	Massa (Kg)
Silinder besi + ulir (ballast)	10.941
Pipa PVC (Hull SPAR)	4.81
Topside (Plywood)	0.607
Heave Plate	0.145
Total	16.503

 Tabel 4.3 Perhitungan massa total model

4.1.2 Kalibrasi KG

Untuk mendapatkan besar *Keel to Gravity* (KG) dari *scale model*, setelah model dirangkai bersama dengan ballast-nya, model diletakkan di atas meja osilator. Untuk mengukur KG, digunakan *waterpass* yang diletakkan di permukaan meja osilator. Peletakan SPAR dirubah berulang kali hingga *waterpass* seimbang, yang artinya meja osilator juga seimbang. Lalu jarak antara titik rotasi meja osilator dan *keel* dari SPAR diukur untuk mendapatkan KG dari SPAR. Dari kalibrasi didapatkan KG model sebesar 45.7 cm dari *keel*. Proses kalibrasi dapat dilihat pada Gambar 4.4.

Gambar 4.4 Proses kalibrasi KG

4.1.3 Kalibrasi jari-jari girasi

Kalibrasi jari-jari girasi dilakukan untuk mendapatkan besar jari-jari girasi dari *scale model*. Karena bentuk struktur adalah silinder, maka jarijari girasi yang diukur hanya jari-jari girasi *roll* (Rxx), dan jari-jari girasi *pitch* (Ryy). Dimana keduanya memiliki besar yang sama karena bentuk SPAR yang simetris. Proses kalibrasi jari-jari girasi dilakukan bersamaan dengan kalibrasi KG seperti tampak pada Gambar 4.4.

Alat yang digunakan dalam kalibrasi jari-jari girasi adalah *stopwatch* dan meja osilator. Pertama-tama periode natural meja osilator diukur menggunakan *stopwatch* tanpa ada model diatasnya, lalu setelah meja osilator dikalibrasi, kalibrasi KG model dilakukan dengan meletakkan *scale model* di atas meja osilator. Meja osilator digerakkan agar berosilasi tanpa merubah posisi model dari titik setimbang (pada KG). Kemudian periode natural dari meja dan model diukur menggunakan *stopwatch* berdasarkan lama osilasi tiap satu getarannya. Sehingga, dari rangkaian prosedur kalibrasi didapatkan inersia dari meja osilator tanpa model di atasnya, dan inersia dari meja osilator dengan model di atasnya. Selisih inersia dari keduanya merupakan inersia model. Dari didapatkannya inersia model, maka jari-jari girasi dari model dapat dikalkulasi seperti yang tertera pada lampiran. Hasil dari kalibrasi jari-jari girasi ditampilkan pada bagian Lampiran A.

Tabel 4.4 Jari-jari girasi model

Rxx (m)	Ryy (m)
0.55	0.55

4.2 Pemodelan Kekakuan Sistem Tali Tambat

Tali tambat dimodelkan dengan merangkai karet, *stainless steel wire*, dan beberapa komponen lain. Di bagian dasar kolam, rangkaian tali tambat ini dikaitkan dengan pemberat beton seberat 50 kg, sedangkan di ujung yang lain dikaitkan ke *fairlead* pada struktur SPAR. Konfigurasi rangkaian model tali tambat dapat dilihat pada Gambar 4.5.

Gambar 4.5 Konfigurasi Model Tali Tambat

Untuk memodelkan kekakuan tali tambat pada eksperimen ini, digunakan 4 karet serta *wire sling* yang dipasang pada masing-masing rangkaian tali tambat. Karet ini kemudian dikalibrasi kekakuannya dengan menggunakan neraca gantung, lalu karet diberi penambahan beban secara konstan. Kalibrasi dilakukan dua kali, yang pertama yaitu penambahan secara konstan, lalu yang kedua yaitu pengurangan beban secara konstan. Kegiatan kalibrasi dapat dilihat seperti pada Gambar 4.6.

Gambar 4.6 Kalibrasi Kekakuan Tali Tambat

Dari proses kalibrasi didapatkan data penambahan panjang karet akibat beban yang digantung, sehingga kekakuan karet dapat dihitung menggunakan hukum *Hooke*, dengan persamaan sebagai berikut.

$$F = EA/l \, dx = Kdx \tag{4.1}$$

$$K = F/dx \tag{4.2}$$

Dimana,

F	= Gaya beban (N)
Ε	= Modulus young (kg/ms ²)
dx	= Penambahan panjang tali (m)
K	= Kekakuan (N/m)

l = Panjang tali (m)

A = Luas penampang tali (m^2)

Data penambahan panjang dan kalkulasi kekakuan tersebut dapat dilihat pada Tabel 4.5 berikut.

Beban (Kg)	F (N)	Uji Coba 1 x (cm)	Uji Coba 2 x (cm)	K (N/m)
0.02	0.1962	20.15	20.15	130.80
0.04	0.3924	20.35	20.35	112.11
0.06	0.5886	20.55	20.55	107.02
0.08	0.7848	20.75	20.75	104.64
0.1	0.9810	20.95	20.95	103.26
Kavg (Kekakuan Rata-Rata), N/m				111.567

Tabel 4.5 Hasil kalibrasi kekakuan model tali tambat

Dari kalibrasi tersebut didapatkan kekakuan tali tambat model adalah sebesar 98.1 N/m. Selanjutnya kekakuan tali tambat model diskalakan kembali ke skala sebenarnya menggunakan hukum *Froude*. Karena dalam eksperimen, kolam menggunakan air tawar yang memiliki massa jenis yang berbeda dari air laut, maka penskalaan menggunakan hukum *Froude* harus dikalikan dengan rasio massa jenis air laut dan air tawar (Newman, 2017). Sehingga formulasinya menjadi sebagai berikut.

$$\varepsilon = \rho_{Sea} / \rho_{water} \tag{4.3}$$

$$K_{full\,scale} = K_{model}\lambda^2\varepsilon \tag{4.4}$$

Hasil dari penskalaan ke ukuran *full scale* dapat dilihat pada Tabel 4.6 berikut.

Tabel 4.6 Hasil Penskalaan Kekakuan Karet

K Model (N/m)	K Model (kN/m)	Skala	K Full Scale ($\lambda^2 \epsilon$) (kN/m)
111.567	111.567 x 10 ⁻³	1:125	1768.817

Dari Tabel 4.6 di atas didapatkan *stiffness* karet yang digunakan pada *full scale* adalah 1768.817 kN/m. Berikutnya untuk mengkalkulasi kekakuan *wire sling*, harus ditentukan terlebih dahulu bahan, diameter dan panjang *wire sling* yang akan digunakan dalam model eksperimen, sebagaimana ditunjukkan pada Persamaan (4.5) (Haslum, 2000).

$$C_{ml} = \frac{EA}{L_0} \tag{4.5}$$

Diketahui bahwa bahan *wire sling* adalah *stainless steel*, maka dengan hal tersebut nilai parameter Modulus Young (*E*) bahan *wire sling* yang digunakan dalam eksperimen adalah 1200 kp/mm², diameternya (D_w) sebesar 0.15 mm diukur dengan penggaris dan panjang *wire sling* (L_o) sebesar 2.04 m. Setelah dikalikan dengan rasio densitas akibat perbedaan fluida dan diskalakan ke dalam *full scale*. Hasil kekakuan *wire sling* ditampilkan pada Tabel 4.7.

Tabel 4.7 Kekakuan Wire Sling Model Eksperimen dan Full Scale

Ukuran	Model	Ukuran
(Model)	Skala	(Full Scale)
1732.496 N/m	λ^2	27747.005 kN/m

Berikutnya nilai kekakuan gabungan antara karet dan *wire sling* dihasilkan menggunakan Persamaan (4.6) dan (4.7) dan ditampilkan hasilnya berdasarkan faktor *full scale* dalam Tabel 4.8.

$$\frac{1}{C_{ml}} = \frac{1}{k_K} + \frac{1}{k_W}$$
(4.6)

$$C_{ml} = \frac{k_K k_W}{k_K + k_W} \tag{4.7}$$

 Tabel 4.8 Kekakuan Tali Tambat Gabungan Model Eksperimen dan Full Scale

Ukuran	Model	Ukuran
(Model)	Skala	(Full Scale)
104.817 N/m	λ^2	1678.712 kN/m

Kemudian untuk mengetahui besarnya kekakuan total *heave* tali tambat, diperlukan untuk menentukan besarnya sudut antara tali tambat dan *seabed* (α) dengan menggunakan Persamaan (4.8).

$$\alpha = \sin^{-1}(\frac{h_{ml}}{\sqrt{(h_{ml}^2 + l_{ml}^2)}})$$
(4.8)

Dimana jarak horisontal antara *anchor* dengan *fairlead* (l_{ml}) adalah 1.334 m dan tinggi antara *anchor* dengan *fairlead* (h_{ml}) adalah 2.536 m. Sehingga didapatkan nilai α sebesar 27.9°. Lalu dilanjutkan dengan menghitung besarnya *pre-tension* dengan menggunakan Persamaan (4.9) dan (4.10).

$$F_{PT} = (\rho_f \pi D^2 \Delta T_S) / (16 \cos(\beta)) \tag{4.9}$$

$$T_{PT} = F_{PT}g \tag{4.10}$$

Dimana penambahan sarat yang terjadi (ΔT_S) adalah sebesar 0,08 meter. Dan sudut relatif terhadap *fairlead* (β) dihitung dengan menggunakan Persamaan (4.11).

$$\beta = \sin^{-1}(\sqrt{1 - \sin^2 a}) \tag{4.11}$$

Dari perhitungan diatas didapatkan nilai β sebesar 62.1°. Sehingga nilai *pretension* yang didapatkan adalah 3.5 N dalam skala model, atau 6841.40 kN dalam *full scale*. Lalu besarnya panjang tali tambat *pre-tension* dapat diketahui dengan menggunakan Persamaan (4.12) (Faltinsen, 1990).

$$L = L_0 (1 + \frac{T_{PT}}{EA})$$
(4.12)

Dari persamaan tersebut didapatkan panjang tali *pre-tension* yang disajikan dalam Tabel 4.9.

Tabel 4.9 Panjang Tali Tambat Pre – Tension Model Eksperimen dan Full Scale

Deskripsi	Ukuran (Model)	Model Skala	Ukuran (Full Scale)
Panjang Tali <i>pre - tension</i> karet (L _k)	0.231 m		28.92 m
Panjang Tali pre - tension wire sling (L _w)	2.042 m	2	255.25 m
Panjang Total Komponen Pendukung (Carabiner dan Tumbuckle)	0.630 m	λ	78.78 m
Panjang Tali total pasca pre – tension (L)	2.903 m		362.95 m

Setelah perhitungan-perhitungan di atas, maka didapatkan nilai kekakuan *heave* total dari tali tambat (C_{ML}) dengan menggunakan Persamaan (4.13) dan lalu mengkalikannya sejumlah banyaknya tali tambat yaitu konfigurasi 4 tali tambat. Hasil perhitungan di bawah ini ditampilkan dalam Tabel 4.10.

$$\frac{\partial V_{ml}}{\partial h_{ml}} = C_{ml} \sin^2 \alpha + \frac{T_{PT}}{L} \cos^2 \alpha \tag{4.13}$$

Deskripsi	Ukuran	Model	Ukuran
	(Model)	Skala	(Full Scale)
Kekakuan Total <i>heave</i> Tali Tambat (C ₃₃)	328.505 N/m	λ^2	5261.207 kN/m

Tabel 4.10 Kekakuan Total Heave Tali Tambat

Nilai kekakuan yang didapatkan adalah sama baik untuk SPAR tanpa maupun dengan *heave plate*. Sedangkan nilai kekakuan hidrostatik tidak dipertimbangkan dalam kondisi tertambat karena pengaruhnya yang tidak terlalu signifikan terhadap kekakuan sistem.

4.3 Data dan Properti SPAR Keseluruhan

Pada tahap ini telah didapatkan keseluruhan data dari model SPAR yang digunakan dalam eksperimen. Secara keseluruhan, data dari struktur SPAR yang diuji secara ekseperimen dalam skala model dan *full scale* dapat dilihat pada Tabel 4.11.

SPAR Properties (Skala 1:125)						
Doromotor	Satuan	Dimensi Scale	Faktor	Dimensi Full		
I diameter		Model	Skala	Scale		
Diameter	m	0.140	λ	17.5		
Draught Free Floating	m	1.034	λ	129.25		
Draught Tertambat	m	1.114	λ	139.25		
Tinggi SPAR dari keel	m	1.234	λ	154.25		
Tinggi <i>Fairlead</i> dari keel	m	1.170	λ	146.25		
Massa	kg	16.503	λ^3	32232421.88		
Keel to Gravity (KG)	m	0.457	λ	57.125		
Roll radius of gyration	m	0.550	у	68 75		
(Rxx)		0.550		00.75		
Pitch radius of gyration	m	0.550	λ	68 75		
(Ryy)		0.000	<i>7</i> 0	00.75		

Tabel 4.11 Data dan Properti SPAR Keseluruhan

4.4 Instrumen Pengukuran

Dalam uji eksperimen, terdapat instrumen utama yang digunakan untuk mengukur elevasi pergerakan struktur. Perangkat instrument tersebut adalah *Qualysis Motion Capture Camera*. Alat ini perlu dikalibrasi terlebih dahulu sebelum digunakan.

4.4.1 Kalibrasi Perangkat Qualysis Motion Capture Camera

Untuk mengukur gerakan respons SPAR saat eksperimen, diperlukan instrumen khusus yang dapat merekam perpindahan posisi dari SPAR ketika terkena gelombang. Pada eksperimen ini digunakan perangkat alat rekam yaitu *Qualysis Motion Capture Camera* yang dapat merekam gerakan respons SPAR pada arah x, y, dan z baik translasi maupun rotasi, dengan cara merekam perpindahan dari bola *qualysis* yang diletakkan diatas *topside* SPAR. Alat ini perlu dikalibrasi terlebih dahulu sebelum digunakan, dengan cara merekam posisi awal SPAR sehingga alat perekam dapat mengetahui titik nol dari bola-bola yang dipasang di atas *topside* SPAR agar dapat merekam jarak perpindahan bola dengan presisi. Hasil dari rekaman perpindahan bola-bola ini kemudian dikelompokkan berdasarkan enam arah derajat kebebasan sesuai teori gerak bangunan apung, lalu dibuat *time history* pada masing-masing gerakan untuk kemudian dianalisis pada metode berikutnya. Gambar 4.7 *Qualysis Motion Capture Camera* yang telah dipasang untuk merekam gerakan ekspreimen SPAR.

Gambar 4.7 Qualysis Motion Capture Camera yang telah dipasang

4.5 Analisis Metode Ekperimen

Analisis eksperimen dilakukan pada kolam *Maneuvering and Ocean Engineering Basin* (MOB) Balai Teknologi Hidrodinamika (BTH) – BPPT. SPAR dan tali tambatnya dirangkai pada kolam uji menyesuaikan dengan kondisi kolam MOB BTH – BPPT. Konfigurasi instalasi SPAR dan alat perekam *Qualysis* dapat dilihat pada Gambar 4.8 di bawah ini.

Gambar 4.8 Konfigurasi Instalasi SPAR dan Alat Perekam

Pengujian eksperimen dilakukan pada 2 kondisi yaitu:

- 1. Free Decay Test pada SPAR tanpa heave plate
- 2. Free Decay Test pada SPAR dengan heave plate

Titik koordinat dari *Passive Markers* seperti tampak pada Gambar 4.9 di bawah ini. Saat eksperimen *Free Decay Test* akibat getaran *heave* atau searah sumbu z, direkam oleh *Qualysis* yang hasilnya akan diplot menjadi grafik *heave decay* seperti dijelaskan pada sub-bab berikut ini.

Gambar 4.9 Model SPAR Tertambat dengan Passive Markers Berada Di Topside

4.5.1 Analisis Eksperimen Free Decay Test

Pengujian eksperimen *free decay test* dilakukan pada model SPAR yang telah tertambat pada kolam MOB – Balai Teknologi Hidrodinamika. Dengan dua kondisi model yaitu SPAR tanpa *heave plate* dan SPAR dengan *heave plate*, pengujian dilakukan dengan menggetarkan searah mode *heave* yaitu pada sumbu z negatif (-) dengan amplitudo awal sebesar 1 cm. Skala yang digunakan pada eksperimen ini sebesar 1:125. Gambar 4.10 di bawah ini menampilkan model SPAR tertambat di bawah air.

Pengujian dilakukan 1x pada setiap kondisi model. Jika hasil pengujian tidak begitu baik, maka pengujian akan diulang. Pada kondisi SPAR tanpa *heave plate* pengujian dilakukan 1x, sedangkan untuk kondisi SPAR dengan *heave plate*, dilakukan 2x pengujian. Data *decay* hasil olahan dari *Qualysis* baik sebelum maupun sesudah diskala dapat dilihat pada bagian Lampiran B. Seperti dijelaskan sebelumnya, hasil eksperimen *free decay test* merupakan titik koordinat yang menunjukkan posisi struktur pada salah satu derajat kebebasan. Yang pada eksperimen kali ini diwakilkan dalam mode gerakan *heave*. Gambar 4.11 dan Gambar 4.12 menunjukkan grafik *heave decay* pada SPAR tanpa dan dengan adanya penambahan *heave plate* dengan ukuran berdasarkan model yang belum diskalakan.

Gambar 4.11 Grafik Free Decay Model SPAR Sebelum Diskalakan

Dari grafik *decay* diatas, dapat dinalisis besar penurunan amplitudo puncak yang terjadi serta periode nya. Dengan menjumlah seluruh periode dan membaginya dengan jumlah siklus, maka akan didapat periode rata-rata atau nilai periode natural mode gerak *heave* (T_n). Tabel 4.12 di bawah ini berisi data siklus sesuai grafik *decay* SPAR di atas.

Siklus ke-	Periode, $T(s)$	Amplitudo Puncak, z (cm)
1	1.461	2.030
2	1.440	1.618
3	1.450	1.283
4	1.414	1.046
5	1.452	0.880
6	1.421	0.693
7	1.431	0.557
8	1.402	0.469
9	1.411	0.348
10	1.393	0.286
11	1.398	0.223
12	1.406	0.184
13	1.314	0.177
14	1.420	0.161
15	1.440	0.156
Periode Rata-Rata, T_n (s)	1.417	

Tabel 4.12 Amplitudo Puncak Decay SPAR Model

Dari Tabel 4.12 di atas dapat diketahui bahwa model SPAR tanpa *heave plate* memiliki periode natural *heave* sebesar 1.417 s. Berikutnya Gambar 4.12 menunjukkan grafik *heave decay* pada SPAR dengan penambahan *heave plate* sesuai ukuran berdasarkan model yang belum diskalakan.

Gambar 4.12 Grafik Free Decay Model SPAR + Heave Plate Sebelum Diskalakan

Seperti Tabel 4.12, Tabel 4.13 juga berisi data siklus sesuai grafik *decay* SPAR + *Heave Plate* di atas. Namun karena terdapat 2 uji coba, maka Tabel 4.13 turut disertai dengan perbandingan nilai amplitudo maupun periode. Serta besar penurunan puncak amplitudo pada tiap siklus yang ditulis sebagai $(z_1 - z_2)$.

Periode, $T(s)$		Caliaih	Amplitudo Puncak, z (cm)				Caliaih	
SIKIUS	Uji	Uji	T(04)	Uji	Coba-1	Uji Cot	oa-2	$\frac{5e11s1n}{7(94)}$
KC-	Coba-1	Coba-2	I (70)	Z.	$z_1 - z_2$	Z.	$z_1 - z_2$	2. (70)
1	1.523	1.529	0.4%	2.47	0.83	2.34	0.83	5%
2	1.459	1.465	0.4%	1.64	0.41	1.51	0.40	8%
3	1.489	1.497	0.6%	1.23	0.35	1.11	0.36	10%
4	1.455	1.463	0.5%	0.88	0.24	0.75	0.22	14%
5	1.511	1.524	0.9%	0.64	0.25	0.53	0.25	17%
6	1.443	1.460	1.2%	0.39	0.06	0.28	0.05	29%
7	1.341	1.348	0.5%	0.33	-0.09	0.22	-0.08	33%
8	1.403	1.432	2.1%	0.43	0.10	0.31	0.09	28%
9	1.422	1.458	2.5%	0.32	0.07	0.22	0.07	33%
10	1.406	1.411	0.3%	0.25	-0.01	0.15	-0.01	42%
11	1.345	1.422	5.8%	0.27		0.16		40%
$T_n(s)$	1.436	1.455	1.3 %		-		-	

 Tabel 4.13 Amplitudo Puncak Decay SPAR + Heave Plate Model

Tabel 4.13 di atas menunjukkan bahwa terdapat selisih puncak amplitudo yang cukup signifikan antara uji coba pertama dan uji coba kedua. Serta perbedaan nilai periode natural sebesar 1.3 %.

Namun dari kedua grafik *free decay* model SPAR diatas, dapat dilihat bahwa uji coba eksperimen SPAR tanpa *heave plate* tampak baik dan halus, maka uji coba hanya dilakukan 1x. Sedangkan untuk uji coba eksperimen SPAR + *Heave Plate*, terdapat bagian grafik yang kurang halus yaitu waktu 10 - 12 s seperti Gambar 4.13 di bawah ini.

Gambar 4.13 Ketidakhalusan Uji Coba 1 Pada Grafik Hasil Free Decay Test

Dengan mengikuti teori pemodelan, hasil analisis *free decay test* diubah ke faktor skala baik dari waktu maupun amlitudo mode gerak *heave*. Gambar 4.14 menunjukkan grafik *heave decay* SPAR tanpa dan dengan *heave plate* dengan ukuran yang sudah diskalakan.

Gambar 4.14 Grafik *Heave Decay* SPAR Dengan Dan Tanpa *Heave Plate* Dengan Faktor Skala 1:125

Berikutnya Tabel 4.14 menjelaskan penurunan puncak amplitudo yang terjadi dan rentang periode nya dalam satu siklus redaman dengan skala *full scale*. Serta selisih periode dan puncak amplitudo nya antara SPAR tanpa *heave plate* dengan SPAR + *heave plate*.

	Periode $T(s)$			Amplit		
Siklus	1 011				Selisih	
ke-	SPAR	SPAR +	(%)	SPAR	SPAR +	(%)
		neuve r luie			neuve r iule	
1	16.334	17.091	4.6%	2.54	2.92	15%
2	16.102	16.378	1.7%	2.02	1.89	7%
3	16.206	16.739	3.3%	1.60	1.39	13%
4	15.814	16.351	3.4%	1.31	0.94	28%
5	16.239	17.036	4.9%	1.10	0.66	40%
6	15.889	16.325	2.7%	0.87	0.35	60%
7	16.004	15.067	5.9%	0.70	0.28	60%
8	15.675	16.015	2.2%	0.59	0.39	34%
9	15.776	16.296	3.3%	0.43	0.27	37%
10	15.571	15.770	1.3%	0.36	0.19	48%
11	15.631	15.904	1.7%	0.28	0.20	29%
T_n (s)	15.841	16.270	2.7%			

Tabel 4.14 Amplitudo Puncak Decay Full Scale
Dari Tabel 4.14 di atas, dapat dilihat bahwa adanya *heave plate* berpengaruh terhadap puncak amplitudonya yang menandakan bahwa sistem tersebut lebih cepat teredam, akibat periode nya yang lebih panjang pada beberapa siklus.

Setelah mengetahui besarnya periode natural, kita dapat mencari besarnya *heave added mass* dengan menerapkan Persamaan 2.48. Lalu dengan menggunakan persamaan yang telah dijelaskan pada sub-bab 2.2.9, kita dapat mengetahui besarnya *damping ratio* serta *heave damping* dari hasil eksperimen *free decay test* tersebut. Besarnya *heave damping* ditentukan dari analisis puncak terakhir pada eksperimen *free decay test* dengan mengetahui nilai *damping ratio* terlebih dahulu. Secara lebih jelasnya, tabel perhitungan *heave damping* dapat dilihat pada bagian Lampiran D. Tabel 4.15 dibawah menunjukkan hasil eksperimen dari uji coba *free decay test* pada SPAR.

Parameter	SPAR	SPAR + Heave Plate	Peningkatan
Periode Natural Heave, Tn	15.84 s	16.27 s	3 %
Heave Damping Ratio, b_f	0.029 (2.92 %)	0.043 (4.28 %)	47 %
Heave Added Mass, A ₃₃	1488 ton	2536 ton	70 %
Heave Damping, B ₃₃	772.66 kNs/m	1148.15 kNs/m	49 %

 Tabel 4.15 Hasil Eksperimen Free Decay Test

Untuk memudahkan analisis eksperimen, dari Tabel 4.15 diatas dibuatlah grafik yang menunjukkan sejauh mana peningkatan besarnya *heave damping* dari SPAR akibat dari penambahan *heave plate*. Grafik ditunjukkan pada Gambar 4.15 dibawah ini.

Gambar 4.15 Grafik Perubahan Heave Damping

Dari grafik Gambar 4.15 dan Tabel 4.15 dapat dilihat bahwa adanya penambahan *heave plate* di *keel* SPAR dapat menambah besarnya *heave damping* hingga 49%. Salah satu faktor yang mempengaruhi nilai tersebut, yaitu besarnya nilai *damping ratio*, untuk SPAR memiliki nilai sebesar 0.029 dan SPAR + *Heave Plate* sebesar 0.043 dimana nilai tersebut berada kurang dari satu ($b_f < 1.0$) yang berarti sistem dari dua jenis struktur model SPAR ini adalah *underdamped* atau kurang teredam (Djatmiko, 2012).

Berikutnya, analisis perubahan *heave damping* dilanjutkan dengan mengetahui bagaimana pengaruh *linear* dan *quadratic damping* terhadap sistem SPAR. Untuk menganalisisnya, diharuskan untuk menganalisis nilai p dan q terlebih dahulu dengan bantuan grafik PQ Analysis. Grafik didapatkan dengan bantuan software MATLAB seperti tampak pada Gambar 2.7. Dari gambar grafik tersebut, nilai p dan q dari setiap kondisi SPAR akan diketahui yang kemudian selanjutnya digunakan untuk menentukan nilai Linear dan Quadratic Damping. Untuk hasil analisisnya dapat dilihat pada Tabel 4.16 di bawah ini.

 Tabel 4.16 Hasil Analisis Linear dan Quadratic Damping

Parameter	SPAR	SPAR + Heave Plate	Peningkatan
<i>Linear Heave</i> Damping, b ₃₃ ⁽¹⁾	532 kNs/m	1143 kNs/m	115 %
Quadratic Heave Damping, $b_{33}^{(2)}$	62001 kNs²/ m²	101287 kNs ² / m ²	63 %

Untuk memudahkan analisis pengaruh adanya penambahan *heave plate* pada SPAR terhadap besarnya *linear* dan *quadratic heave damping*, Gambar 4.16 di bawah ini menunjukkan sejauh mana perubahan besarnya *linear* dan *quadratic damping* pada SPAR.

Gambar 4.16 Perubahan Koefisien Linear dan Quadratic Heave Damping pada SPAR

Dari Tabel 4.16 dan Gambar 4.16 di atas dapat diperhatikan bahwa adanya peningkatan *heave damping* sebesar 49 % akibat penambahan *heave plate* pada *keel* SPAR, dipengaruhi oleh 2 kriteria yaitu peningkatan *linear damping*, b₃₃⁽¹⁾ sebesar 610 kNs/m atau 115 % serta *quadratic damping*, b₃₃⁽²⁾ sebesar 39285 kNs²/m² atau 63 %.

4.5.2 Respon Redaman Struktur

Setelah kita analisis nilai-nilai dari hasil Eksperimen Heave Decay Test seperti damping ratio, heave damping, baik linear maupun quadratic damping. Serta sejauh mana perbedaan dengan adanya penambahan heave plate di keel SPAR terhadap parameter-parameter tersebut. Selanjutnya analisis dilanjutkan bagaimana pengaruh nilai-nilai tersebut terhadap respon struktur akibat gaya harmonik eksternal. Sebelummya pada bab dasar teori, telah dijelaskan secara teoritis mengenai aspek ini. Pengaruh nilai damping ratio (b_f) terhadap respon lebih mudahnya akan didefinisikan menggunakan grafik respon sistem massapegas dengan hubungan yang ditampilkan adalah antara ζ_{z0}/ζ_{zs} dan ω/ω_n dengan kurva yang berubah mengikuti besarnya harga faktor redaman atau damping ratio (b_f). Gambar 4.17 dibawah ini merupakan grafik respon SPAR dengan dan tanpa heave plate akibat gaya harmonik eksternal.

merupakan frekuensi natural struktur yang telah ditentukan pada sub-bab sebelumnya. Hasilnya, adanya penambahan *heave plate* pada *keel* SPAR berdampak pada energi yang dibangkitkan akibat adanya pembangkitan gelombang yang terjadi. Respon maksimum dan respon area dari SPAR dengan dan tanpa *heave plate* dapat dilihat pada Tabel 4.17 di bawah ini.

	SPAR	SPAR + Heave Plate	Reduksi
Respon Maksimum	16.33 m/m	10.57 m/m	54 %
Respon Area	6.51 m ²	5.1 m ²	30 %

 Tabel 4.17 Hasil Analisis Respon Redaman SPAR

Memperhatikan Tabel 4.17 di atas, dapat diketahui bahwa adanya penambahan *heave plate* pada *keel* SPAR dapat mengurangi respon maksimum hingga 54 % serta pembangkitan energi respon yang berkurang sebesar 30 % akibat dari gaya harmonik eksternal yang ditumbulkan. Sehingga risiko terjadinya resonansi pun akan semakin berkurang akibat penambahan *heave plate* tersebut.

Berikutnya selain meninjau grafik perbandingan diatas, penting juga untuk menganalisis sudut fase respon dari SPAR tanpa maupun dengan *heave plate*. Dengan mengacu Persamaan (2.29), hasil perhitungan dari persamaan tersebut telah diplot dalam grafik pada Gambar 4.18, sebagai fungsi perubahan rasio frekuensi ω/ω_n untuk sejumlah variasi nilai *damping ratio*, b_f .

Gambar 4.18 Grafik Sudut Fase Respon SPAR Terhadap Sumber Eksitasi

Memperhatikan Gambar 4.18 diatas, adanya penambahan *heave plate* pada SPAR, tidak lantas membuat kurva sudut fase menjadi lebih landai. Meskipun adanya penambahan *heave plate* dapat memperbesar nilai faktor redaman (b_f)

dan mengurangi besar respon yang terjadi, akan tetapi tidak membuat kurva sudut fase lebih landai yang juga tidak terlalu signifikan. Hal ini dikarenakan nilai faktor redaman yang dihasilkan dari eksperimen sangat kecil ($b_f < 0.05$). Namun dibalik fenomena tersebut, dapat dilihat bahwa perubahan sudut fase respon yang muncul pada awalnya sangat lambat lalu saat mendekati rasio frekuensi satu, perubahan sudut fase menjadi sangat cepat, lalu melambat lagi saat ω/ω_n mulai membesar. Karena perubahan sudut fase yang tidak bersamaan dengan perubahan rasio frekuensi tersebut, dapat disimpulkan bahwa kemungkinan struktur SPAR mengalami resonansi akan sangat kecil baik itu tanpa maupun dengan adanya penambahan *heave plate*.

4.5.3 Gaya Reaksi Struktur

Dapat diketahi bahwa Eksperimen *Free Decay Test* yang dilakukan pada struktur SPAR adalah dengan memberikan getaran awal pada struktur dengan amplitudo tertentu lalu membiarkan model bergetar sampai berhenti. Hasil berupa grafik gaya reaksi *heave* SPAR dengan dan tanpa *heave plate* dapat dilihat pada Gambar 4.19 dan 4.20 di bawah ini. Akibat dari getaran tersebut, maka struktur SPAR mengalami gaya reaksi akibat dari perubahan massa tambah (gaya inersia), gaya redaman, serta gaya kekakuan. Dari data *decay test*, dapat dianalisis dengan mengetahui gaya reaksi struktur dari setiap perubahan posisi yang muncul akibat getaran yang terjadi.

Dari kedua grafik tersebut, dapat dilihat bahwa penambahan *heave plate* pada *keel* SPAR selain dapat mengurangi respon, penambahan plat tersebut juga berpengaruh terhadap gaya reaksi yang timbul akibat getaran yang diberikan. Hasilnya menunjukkan bahwa penambahan *heave plate* pada SPAR dapat mengurangi gaya reaksi pada struktur SPAR itu sendiri.

Untuk mengetahui besarnya pengurangan gaya reaksi yang terjadi, Tabel 4.18 dibawah ini menunjukkan beberapa parameter stokastik dari gaya reaksi yang berkurang akibat dari penambahan *heave plate* dengan menggunakan formulasi *simpson*. Paramater-parameter yang dianalisis adalah gaya reaksi F_{rms} , gaya rata-rata, gaya signifikan, gaya maksimum, gaya reaksi $F_{1/10}$, dan gaya ekstrem pada setiap kondisi SPAR. Tabel perhitungan parameter stokastik gaya reaksi *heave* ditampilkan pada bagian Lampiran E.

Gambar 4.20 Gaya Reaksi Heave SPAR + Heave Plate

	SPAR	SPAR + Heave Plate	
m0	2.4 x 10 ⁵	1.3 x 10 ⁵	
m1	1.9 x 10 ⁷	$1.0 \ge 10^7$	
m2	3.5 x 10 ¹⁰	1.1 x 10 ¹⁰	
m4	1.1 x 10 ¹⁹	9.9 x 10 ¹⁶	
Gaya Reaksi (kN)	SPAR	SPAR + Heave Plate	Reduksi
F _{rms}	1344	875	35 %
F_{avg}	1218	904	26 %
F _{signifikan}	1379	1024	26 %
F _{max}	4064	3599	11 %
F _{1/10}	1761	1307	26 %
F _{extreme}	3992	2910	27 %

Tabel 4.18 Parameter Stokastik Gaya Reaksi Heave

4.6 Analisis Metode Analitis

Metode pendekatan analitis dilakukan untuk menentukan besarnya massa tambah, koefisien massa tambah, kekakuan, *damping ratio* atau faktor redaman, *heave damping* (B_{33}), serta periode natural. Perhitungan metode analitis yang dilakukan mengikuti Persamaan-Persamaan dari (Philip, 2012).

4.6.1 Massa Tambah

Massa tambah mode gerak *heave* untuk silinder maupun silinder dengan *plate* berada di bagian *keel* berdasarkan Tao dan Molin (2007) sesuai persamaan-persamaan yang terdapat pada sub-bab 2.2.7. Dengan massa jenis (ρ) 1.025 kg/m³, diameter SPAR (Ds) 17.5 m, dan diameter *heave plate* (Dp) 22.75 m. Hasil perhitungan dapat dilihat pada Tabel 4.19.

4.6.2 Damping

Perhitungan analitis nilai *heave damping ratio* adalah untuk mengkoreksi besarnya *heave damping ratio* dari hasil eksperimen. Berdasarkan sub-bab 4.5.3 dengan mengetahui besar gaya reaksi *heave* (F₃) yang terjadi, gaya reaksi dapat diketahui dengan mengetahui parameter diatas terlebih dahulu yaitu massa tambah, kekauan, serta *damping*. *Damping* dihitung dengan mengetahui nilai *damping ratio* dari hasil eksperimen. Sehingga dapat diketahui nilai *damping* analitis dengan menggunakan Persamaan 2.40. Besar nilai waktu, perpindahan, kecepatan, serta percepatan ditentukan dari data eksperimen *free decay test*. Massa SPAR sebesar 31949.22 ton dan massa *heave plate* 283.2 ton. Hasil perhitungan *heave damping ratio* (b_f) dan *heave damping* (B₃₃) dapat dilihat pada Tabel 4.19. Tabel perhitungan *damping* dapat dilihat pada bagian Lampiran E.

4.6.3 Periode Natural

Selain *heave damping*, penting juga untuk mengetahui nilai periode natural struktur. Periode natural analitis dihitung menggunakan Persamaan 2.37 dengan disesuaikan berdasarkan nilai massa tambahnya. Periode natual disini merupakan periode natural SPAR dengan kondisi *free floating*. Karena hanya bergantung pada nilai massa tambah dan geometri struktur. Berbeda dengan periode natural hasil eksperimen yang merupakan kondisi tertambat dan didapatkan dari grafik *free decay test*. Hasil perhitungan analitis untuk periode natural kondisi *free floating* dapat dilihat pada Tabel 4.19.

4.6.4 Kekakuan

Kekakuan mode gerak *heave* dapat dihitung dengan menggunakan Persamaan 2.48. Dengan mengetahui besar *heave added mass* dan periode natural tertambat yang telah dihitung sebelumnya, serta massa struktur yang tetap, besar kekakuan *heave* untuk SPAR tanpa dan dengan *heave plate* ditampilkan pada Tabel 4.19.

Parameter	SPAR	SPAR + Heave Plate	Peningkatan
Periode Natural, <i>Tn</i> (<i>free floating</i>)	24.17 s	24.58 s	2 %
Damping Ratio, b _f	0.029 (2.92 %)	0.044 (4.44 %)	52 %
Massa Tambah, A ₃₃	1435 ton	2536 ton	77 %
Koefisien Massa Tambah, Ca	0.043	0.073	71 %
Heave Damping, B ₃₃	771.36 kNs/m	1192.46 kNs/m	55 %
Kekakuan <i>Heave</i> , C ₃₃	5252 kN/m	5185 kN/m	-1 %

Tabel 4.19 Parameter Hasil Perhitungan Analitis

4.7 Analisis Metode Strip Theory

Analisis metode *Strip Theory* utamanya merupakan analisis yang digunakan untuk membandingkan hasil dari eksperimen dengan hasil dari analisis menggunakan metode *Strip Theory*. Selain pada itu, analisis ini juga digunakan untuk membuktikan apakah hasil metode *Strip Theory* dapat digunakan pada kedua kondisi SPAR yang tanpa maupun dengan *heave plate*. Hal tersebut diindikasikan dari seberapa besar *error* yang dihasilkan dari perbandingan antara hasil analisis *Strip Theory* dengan hasil metode eksperimen.

Analisis metode ini dihitung dengan bantuan program Matlab berdasarkan Persamaan (2.66). Nilai frekuensi natural yang digunakan merupakan hasil dari eksperimen. Amplitudo awal yang diberikan disamakan dengan eksperimen yaitu 1 cm dalam skala model atau 1.25 m sesuai *full scale*. Rentang waktu yang diinput disamakan juga dengan eksperimen. *Coding script* serta data *output decay* dari Matlab ditampilkan dalam bagian Lampiran F dan G. Hasil grafik *decay* dari perhitungan *Strip Theory* terlihat seperti pada Gambar 4.21 di bawah ini.

Gambar 4.21 Grafik Heave Decay Hasil Perhitungan Strip Theory

Seperti pada analisis metode eksperimen, dalam perhitungan *Strip Theory* pun grafik *heave decay* di atas akan dianalisis untuk beberapa parameter untuk dibandingkan dengan hasil eksperimen. Tabel 4.20 menampilkan parameter-parameter hasil perhitungan *Strip Theory* yang didapatkan dengan bantuan program Matlab. Nilai-nilai yang dianalisis pun sama dengan analisis hasil eksperimen. Yaitu periode natural, *damping ratio, heave damping,* serta *heave added mass.* Persamaan yang digunakan untuk analisis pada program Matlab pun sama dengan analisis metode eksperimen.

Parameter	SPAR	SPAR + Heave Plate	Peningkatan
Periode Natural Heave, Tn	15.844 s	16.279 s	3%
Heave Damping Ratio, b_f	0.029 (2.91 %)	0.043 (4.28 %)	47%
Heave Damping, B ₃₃	770.68 kNs/m	1149.94 kNs/m	49%
Heave Added Mass, A ₃₃	1446.59 ton	2572.34 ton	77%

 Tabel 4.20 Hasil Perhitungan Strip Theory

Setelah mengetahui nilai-nilai seperti tampak pada Tabel 4.20 di atas, kemudian studi dilanjutkan dengan membandingkan hasil eksperimen dengan perhitungan analitis serta *Strip Theory*.

4.8 Perbandingan Hasil Studi Analisis

4.8.1 Perbandingan Hasil Eksperimen dengan Analitis

Seluruh analisis baik dari percobaan eksperimen *free decay test*, perhitungan analitis, dan perhitungan *Strip Theory* telah dilakukan. Perbandingan hasil analisis terdiri dari 2 yaitu antara hasil eksperimen dengan perhitungan analitis serta hasil eksperimen dengan perhitungan *Strip Theory* yang disajikan dalam bentuk persentase perbedaan (%). Inti dari tugas akhir ini merupakan eksperimen *heave decay* pada SPAR akibat penambahan *heave plate*. Oleh karena itu perbandingan antara perhitungan analitis dan perhitungan *Strip Theory* tidak ditampilkan. Perbandingan antara hasil eksperimen dengan perhitungan analitis ditampilkan pada Tabel 4.21.

Parameter	Kondisi	Eksperimen	Analitis	Perbedaan
Heave Damping Ratio, b _f	SPAR	2.9150 %	2.9153 %	0.01 %
	SPAR + Heave Plate	4.2755 %	4.4406 %	3.86 %
Heave Added Mass, A ₃₃ Heave Damping, B ₃₃	SPAR	1488.45 ton	1435.14 ton	3.58 %
	SPAR + Heave Plate	2535.69 ton	2536.24 ton	0.02 %
	SPAR	772.66 kNs/m	771.36 kNs/m	0.17 %
	SPAR + Heave Plate	1148.15 kNs/m	1192.46 kNs/m	3.86 %

 Tabel 4.21 Perbandingan Hasil Eksperimen dengan Analitis

4.8.2 Perbandingan Hasil Eksperimen dengan Strip Theory

Perbandingan hasil eksperimen dengan perhitungan *Strip Theory* dapat diketahui dengan membandingkan grafik *heave decay* yang dihasilkan dengan menganalisis puncak amplitudonya pada tiap siklus. Dengan menganalisis beberapa parameter nilai seperti *damping ratio*, *heave damping*, periode natural, dan massa tambah, maka hasil beberapa parameter itu pun dapat dibandingkan juga dengan parameter-paremeter dari hasil eksperimen.

Berikutnya untuk perbandingan antara hasil eksperimen dengan perhitungan *Strip Theory* disajikan dalam grafik *decay* dan tabel. Grafik seperti pada Gambar 4.22 dan 4.23 merupakan perbandingan *heave decay* antara hasil eksperimen yang telah diubah dalam *full scale* dengan hasil perhitungan *Strip Theory*.

Gambar 4.22 Grafik Decay SPAR Perbandingan Eksperimen dan Strip Theory

Silehua	SPAR		SP	SPAR + Heave Plate			
ke-	Strip Theory	Eksperimen	%	Strip Theory	Eksperimen	%	
1	2.28	2.54	11%	1.91	2.92	53%	
2	1.90	2.02	6%	1.46	1.89	29%	
3	1.58	1.60	1%	1.12	1.39	24%	
4	1.32	1.31	-1%	0.85	0.94	11%	
5	1.10	1.10	0%	0.65	0.66	2%	
6	0.91	0.87	-5%	0.50	0.35	-30% -26%	
7	0.76	0.70	-9%	0.38	0.28		
8	0.63	0.59	-8%	0.29	0.39	33%	
9	0.53	0.43	-18%	0.22	0.22 0.27		
10	0.44	0.36	-19%	0.17	0.19	9%	
11	0.37	0.28	-24%	0.13	0.20	53%	
12	0.31	0.23	-25%				
13	0.25	0.22	-13%				
14	0.21	0.20	-5%				
15	0.18	0.20	11%				

Tabel 4.22 Perbandingan Amplitudo (m) Hasil Eksperimen dengan Strip Theory

Dari Tabel 4.22 di atas dapat disimpulkan bahwa ternyata *Strip Theory* memiliki error yang lebih besar jika bentuk geometri struktur nya lebih kompleks. Dapat dilihat bahwa adanya penambahan *heave plate* membuat grafik *decay* hasil *Strip Theory* memiliki perbedaan puncak amplitudo yang cukup besar jika dibandingkan dengan hasil eksperimen. Terlihat pada siklus pertama dan terakhir *decay* SPAR + *Heave Plate*, puncak amplitudo *Strip Theory* memiliki perbedaan yang paling besar diantara yang lain yaitu sebesar 53%. Hal ini lah yang menyebabkan *Strip Theory* hanya berlaku untuk struktur yang bentuknya *rigid*, serta tidak mempertimbangkan pola atau kecepatan aliran viskositas fluida yang bergerak. Namun daripada itu, kita bisa meninjau bagaimana perbandingan parameter lainnya meliputi periode natural, *added mass*, dan *damping* yang terdapat pada Tabel 4.23.

Parameter	Kondisi	Eksperimen	Strip Theory	Perbedaan
Periode Natural	SPAR	15.840 s	15.844 s	0.03 %
Heave, Tn	SPAR + Heave Plate	16.270 s	16.279 s	0.05 %

 Tabel 4.23 Perbandingan Parameter Hasil Eksperimen dengan Strip Theory

Parameter	Kondisi	Eksperimen	Strip Theory	Perbedaan
Heave Damping Ratio, b _f	SPAR	2.915 %	2.910 %	0.17 %
	SPAR + Heave Plate	4.276 %	4.280 %	0.10 %
Heave Added Mass, A ₃₃	SPAR	1488.45 ton	1446.59 ton	2.81 %
	SPAR + Heave Plate	2535.69 ton	2572.34 ton	1.45 %
Heave Damping, B ₃₃	SPAR	772.66 kNs/m	770.68 kNs/m	0.26 %
	SPAR + Heave Plate	1148.15 kNs/m	1149.94 kNs/m	0.16 %

Tabel 4.23 Perbandingan Parameter Hasil Eksperimen dengan Strip Theory (lanjutan)

Dari Tabel 4.23 di atas dapat disimpulkan kembali walaupun amplitudonya memiliki perbedaan yang cukup jauh pada beberapa sikus, fenomena itu tidak terlalu berpengaruh terhadap perubahan parameter yang terjadi. Perbedaan nilai parameter yang terjadi hanyalah dibawa angka 3%.

4.8.3 Perbandingan Hasil Eksperimen dengan Analitis dan Strip Theory

Untuk memudahkan hasil akhir analisis, maka perbandingan dari ketiga metode baik dari eksperimen, analitis, dan *Strip Theory*, ditampilkan dalam Tabel 4.24.

Parameter	Kondisi	Eksperimen	Analitis	Strip Theory	% Exp. dan Analitis	% Exp. dan <i>Strip Theory</i>
Periode Natural <i>Heave</i> (s)	SPAR	15.840		15.844		0.03 %
	SPAR + Heave Plate	16.270	-	16.279	-	0.05 %
Heave Damping Ratio (%)	SPAR	2.9150	2.9153	2.9102	0.01 %	0.17 %
	SPAR + Heave Plate	4.2755	4.4406	4.2800	3.86 %	0.10 %
Heave Added Mass (ton)	SPAR	1488.45	1435.14	1446.59	3.58 %	2.81 %
	SPAR + Heave Plate	2535.69	2536.24	2572.34	0.02 %	1.45 %
Heave Damping (kNs/m)	SPAR	772.66	771.36	770.68	0.17 %	0.26%
	SPAR + Heave Plate	1148.15	1192.46	1149.94	3.86 %	0.16 %

Tabel 4.24 Perbandingan Hasil Eksperimen dengan Analitis dan Strip Theory

BAB V PENUTUP

5.1 Kesimpulan

Dari semua analisis dan pembahasan yang telah dilakukan pada Bab IV, maka hasilnya haruslah menjawab dari rumusan-rumusan masalah pada tugas akhir ini. Kesimpulan dari seluruh analisis tersebut adalah

- Studi analisis dari metode eksperimen *free decay test* menunjukkan bahwa adanya penambahan *heave plate* pada *keel* SPAR dengan rasio diameter *heave plate* sebesar 1.3x dari diameter SPAR, dapat menambah besarnya *heave damping* hingga 49%.
 - Peningkatan besarnya *heave damping* disebabkan oleh hasil eksperimen yang menunjukkan bahwa adanya *heave plate* dapat mengurangi besarnya amplitudo pada tiap siklus serta mempercepat redaman yang terjadi.
 - Peningkatan nilai *heave damping* yang terjadi, sebagian besar dipengaruhi oleh adanya *liniear heave damping*. Yang mana juga akan berpengaruh terhadap besarnya respon serta gaya reaksi yang terjadi pada struktur SPAR. Dari analisis tersebut, diketahui bahwa *heave plate* yang terdapat pada *keel* SPAR dapat mengurangi besarnya respon hingga 54% serta gaya reaksi hingga 35%.
- 2. Studi analisis metode analitis dan *Strip Theory* menunjukkan hasil yang tidak jauh dari hasil eksperimen.
 - Untuk SPAR tanpa *heave plate*, perbedaan besarnya *heave damping* antara hasil eksperimen dengan analitis dan *Strip Theory* berada dibawah 0.3%.
 - Untuk SPAR dengan *heave plate*, perbedaan *heave damping* yang terjadi antara hasil eksperimen dengan analitis adalah sebesar 4%. Sedangkan antara hasil eksperimen dengan *Strip Theory*, perbedaan besar *heave damping*-nya yaitu sebesar 0.2%.
 - Analisis metode *Strip Theory* menunjukkan bahwa metode ini hanya bisa dilakukan pada bentuk SPAR yang rigid atau silinder polos. Karena

semakin kompleks bentuk strukturnya, maka *error* yang dihasilkan pada *decay*-nya pun akan lebih besar. Hal ini terlihat pada perbandingan grafik *decay* SPAR + *Heave Plate* yang menunjukkan besar *error* amplitudonya mencapai 53% pada siklus pertama dan terakhir.

- 3. Dari seluruh analisis baik dari metode eksperimen, analitis, dan *Strip Theory* menunjukkan bahwa parameter *heave added mass* juga bertambah akibat dari adanya *heave plate* pada *keel* SPAR.
 - Peningkatan nilai added mass yang terjadi yaitu hingga 77%.
 - Peningkatan tersebut diakibatkan oleh bentuk dari *heave plate* yang ditambahkan pada arah gerakan *heave*-nya, serta perbedaan besarnya periode natural yang juga bertambah 3%.

5.2 Saran

Pada proses pengerjaan penelitian tugas akhir ini, masih banyak kekurangan yang ada, sehingga diharapkan akan terdapat penelitian-penelitian sejenis berikutnya. Beberapa saran yang diberikan penulis antara lain:

- 1. Uji coba eksperimen free decay test dilakukan minimal tiga kali percobaan.
- 2. Disertai eksperimen perhitungan tegangan tali tambat menggunakan *load cell*.
- 3. Uji coba eksperimen dengan variasi kondisi SPAR *free floating* dan tertambat.
- 4. Dilakukan pemodelan numerik aliran fluida di sekitar *heave plate* dengan ANSYS CFD.
- 5. Variasi SPAR dengan double heave plates.
- 6. Uji free decay dilakukan pada 3 gerakan (surge, roll, heave).

DAFTAR PUSTAKA

- ABS. 2003. *Guide for Building and Classing Floating Production Installation*. Texas: American Bureau of Shipping.
- Chakrabarti, S.K. 1994. *Hydrodynamics of Offshore Structure*. Dorchester: Computational Mechanics Publications.
- Chakrabarti, Subrata. 2005. Handbook of Offshore Engineering Volume I. USA: Elsevier.
- Chan, H. S. 1990. A Three Dimensional Technique for Predicting First- and Second-Order Hydrodynamic Forces on a Marine Vehicle Advancing in Waves. Thesis, Department of NA & OE, University of Glasgow, UK.
- Dev, Arun dan Nigel Tan Tai Dou. 2016. *Comparative Analysis on Mooring of SPAR Platforms*. Proceedings of 7th PAAMES and AMEC2016, Hong Kong.
- Djatmiko, Eko Budi. 1992. *Hydro-structural studies on swath type vessel*. Glasgow: Glasgow Theses Service.
- Djatmiko, Eko Budi. 2012. Perilaku dan Operabilitas Bangunan Laut di Atas Gelombang Acak. Surabaya: ITS Press.
- Dinaryo, Muhammad. 2016. *Studi Operabilitas SPAR Platform Tipe Truss di Selat Makassar dengan Sistem Tambat Taut*. Surabaya: Institut Teknologi Sepuluh Nopember.
- Faltinsen, O.M. 1990. *Sea Loads on Ships and Offshore Structures*. Cambridge, UK: Cambridge University Press.
- Finn, L. & Maher, J., 2003. The Cell Spar for Marginal Field Development. Marseille: Deep Offshore Technology Conference.
- Gumelar, Grandhis. 2018. Studi Numerik dan Eksperimen Olah Gerak dan Dinamika Tegangan Sistem Tambat Taut SPAR Helical Strakes dengan Variasi Ketinggian Fairlead. Surabaya: Institut Teknologi Sepuluh Nopember.
- Haslum, Herbjorn Alf. 2000. Simplified Methods Applied to Nonlinear Motion of a SPAR Platforms. Trondheim, Norwegia: Norwegian University od Science and Technology.

- Herdayanditya, Ivandito. 2017. Studi Analitis, Numeris, dan Eksperimen Olah Gerak dan Dinamika Tegangan Tali Tambat SPAR dengan Variai Heading Gelombang. Surabaya: Institut Teknologi Sepuluh Nopember.
- Herwanzah, Fachrul. 2015. Analisis Tegangan Dinamis Flexible Riser Akibat Gerakan Semi-Submersible Pada Kondisi Operasi. Surabaya: Institut Teknologi Sepuluh Nopember
- Holmes, Samuel et al. 2001. "Heave Plate with Computational Fluid Dynamics". Journal of Offshore Mechanics and Arctic Engineering.
- Jain, A.K. dan Agarwal, A.K. 2002 *Dynamic Analysis of Offshore SPAR Platforms*. New Delhi: Indian Institute of Technology.
- Jameel et al. 2017. Effect of Moorings Drag and Inertia on Response of SPAR Platform. KSCE Journal of Civil Engineering.
- Journee, J.M.J. dan Adegeest, L.J.M. 2003. Theoretical Manual of Strip Theory Program "SEAWAY for Windows". TU Delft Report No. 1370 Revision: 14-12-2003.
- Journee, J.M.J. dan Massie, W.W. 2001. *Offshore Hydromechanics First Edition*. Delft University of Technology.
- Koo, B.J. et al. 2004. *Mathieu Instanbility of A SPAR Platform with Mooring and Risers*. Texas: Texas A&M University.
- Kurian, V. J. 2011. Effect of Slowly Varying Drift Forces on The Motion Characteristics of Truss SPAR Platforms. Ocean Engineering 38 (2011) 1417-1429.
- Li, Hao S et al. 2011. China Offshore Platform. China: IOP Conference Series
- Liew, M.s. et al. 2012. "Dynamic Responses of Truss Spar Due to Wave Actions". Research Journal of Applied Sciences, Engineering, and Technology. Malaysia.
- Lloyd, A. R. J. M., 1989. *Seakeeping: Ship Behaviour in Rough Water 1st ed.* Chichester: Ellis Horwood Limited.
- Marval, Juan Pablo. 2017. SPAR Platform Design. Oceanhub Post 26633.
- Munson, B. R. et al. 2013. *Fundamentals of Fluid Mechanics 7th ed.* Hoboken, NJ: John Wiley & Sons, Inc.
- Newman, J. N. 2017. Marine Hydrodynamics. Cambridge: The MIT Press.

- Philip, Nimmy Thankom et al. 2012. "Damping Characteristics of Heave Plates Attached to SPAR Hull". *Proceedings of the ASME 2012 31st Internasional Conference on Ocean, Offshore, and Arctic Engineering*. India.
- Sarpkaya, Turgut. 2010. *Wave Forces on Offshore Structures*. Cambridge Universuty Press.
- Shen, W J dan Tang Y G. 2011. "Fracture Analysis for Torsion Problems of a SPAR Platform with Cracks under Wind Load". *Journal of Marine Science and Applications*. China.
- Soedjono, J. J. 1999. *Teknologi Produksi dan Perawatan Bangunan Laut*. Surabaya: Jurusan Teknik Kelautan ITS.
- Stendal, L. C. 2015. Analysis Methods for Mooring Systems with Focus on Accidental Limit State. Trondheim: Norwegian University of Science and Technology.
- Subbulakshmi, et al. 2015. *Effect of Viscous Damping on Hydrodynamic Response* of SPAR with Heave Plate. Chennai: Indian Institute of Technology Mardras.
- Sudhakar, S. Dan Nallayarasu, S. 2014. "Hydrodynamic Responses of a SPAR Hull with Single and Double Heave Plates in Random Waves". *Internasional Journal of Ocean System* Engineering. Chennai, India.
- Tao, Longbin dan Cai, Shunqing. 2004. *Heave Motion Suppression of a SPAR with a Heave Plate*. Australia: Griffith University.
- Tao, L. Dan Molin, B. 2007. "Spacing Effects on Hydrodynamics of Heave Plates on Offshre Structures". *Journal of Fluids and Structures*, 23, 1119-1136.
- Uma, P. 2017. "Heave Damping Effects Due To Circular Plates Attached at Keel To SPAR Hull". Internasional Journal of Modern Trends in Engineering and Research.
- Wijaya, Moh. Sueni. 2011. Analisis Tegangan Dinamis Flexible Riser Akibat Motion FPSO saat Kondisi Fully Loaded dan Ballast dengan Variasi Panjang Flexible Riser. Surabaya: Institut Teknologi Sepuluh Nopember.

MARIN Report No.22808-3-OB

https://www.rigzone.com/training/insight.asp?insight_id=307, diakses 14 Februari 2018.

LAMPIRAN A

PERHITUNGAN KALIBRASI JARI-JARI GIRASI

APPARATUS FOR MEASUREMENT OF SHIP MODEL PITCH INERTIA MOMENT

Determination of the required natural period of the oscillation table with the model to realize a specified mass distribution for the complete ballasted model

<u>1.</u> Determination of the springmoment constant of the empty oscillation table by attaching to the table a weight Mw at position x and z from the hinge A.

Hinge location of the table coincides with specified centre of gravity of the model.

	Mass of weight: Position of weight:		Mw = x = z =	0.653 2.000 0.095	kg m
	Measured inclination angle due to weigl	nt: in radians:	phi = phi =	2.723 0.0475	deg rad
	Springmoment constant: Cy = g . Mw (>	(/phi - z)	Cy =	269.013	Nm / rad
<u>2.</u>	Determination of the mass moment of in free oscillation of the empty table.	nertia lyt of the oscillati	on table o	only by	
	Measured natural period:		Tnt =	3.352	s
	Natural frequency:	Wnt = 2.pi / Tnt	Wnt =	1.874	rad / s
	Mass moment of inertia of the table:	lyt = Cy / Wn^2	lyt =	76.564	kg m ²
<u>3.</u>	Calculation of the required natural perio	d of the oscillation tabl	e with the	e ballasted	<u>d model.</u>
	Required total mass of model:		Mm =	16.600	kg
	Required radius of gyration of model:		kym =	0.492	m
	Mass moment of inertia of the model:	lym = Mm.ky^2	lym =	4.018	kg m2
	Required natural frequency of oscillation	n table with model:			
	Wn = (Cy / (lyt	+ lym)) ^½	Wn =	1.827	rad / s
		Г			
	Required natural period:	Tn = 2.pi / Wn	Tn =	3.439	S
<u>4.</u>	Calculation of obtained radius of gyratic	on from measured natu	ral period		
	Measured natural period:		Tn =	3. 4 60	S
	Measured natural frequency:		Wn =	1.816	rad/sec
	"Measured" mass moment of inertia:		lym =	5.013	kg m ²
	"Measured" radius of gyration:		kym =	0.550	m

LAMPIRAN B

DATA OUTPUT EKSPERIMEN FREE DECAY TEST

						SPAR				
t model (s)	z(cm)	t full scale (s)	z(m)	t model (s)	z(cm)	t full scale (s)	z(m)	t model (s)	z(cm)	t full scale (s) z(m
0	-1	0	-1.3	1.56	-0.07	17.44133022	-0.08	3.12	0.648	34.88266045 0.8
0.02	-0.86	0.223606798	-1.1	1.58	0.086	17.66493702	0.107	3.14	0.75	35.10626725 0.9
0.04	-0.67	0.447213595	-0.8	1.6	0.237	17.88854382	0.296	3.16	0.844	35.32987404 1.0
0.06	-0.47	0.670820393	-0.6	1.62	0.385	18.11215062	0.481	3.18	0.929	35.55348084 1.1
0.08	-0.27	0.894427191	-0.3	1.64	0.528	18.33575742	0.661	3.2	1.005	35.77708764 1.2
0.1	-0.08	1.118033989	-0.1	1.66	0.667	18.55936421	0.834	3.22	1.073	36.00069444 1.3
0.12	0.119	1.541640786	0.15	1.08	0.799	19.00657781	1 1 57	3.24	1.131	36.44790803 1.4
0.16	0.501	1.788854382	0.63	1.72	1.043	19.23018461	1.304	3.28	1.224	36.67151483 1.5
0.18	0.684	2.01246118	0.85	1.74	1.152	19.4537914	1.44	3.3	1.255	36.89512163 1.5
0.2	0.858	2.236067977	1.07	1.76	1.25	19.6773982	1.562	3.32	1.274	37.11872843 1.5
0.22	1.025	2.459674775	1.28	1.78	1.339	19.901005	1.673	3.34	1.283	37.34233522 1.
0.24	1.183	2.683281573	1.48	1.8	1.415	20.1246118	1.768	3.36	1.281	37.56594202 1.
0.26	1.328	2.906888371	1.66	1.82	1.479	20.3482186	1.849	3.38	1.269	37.78954882 1.5
0.28	1.463	3.130495168	1.83	1.84	1.532	20.57182539	1.915	3.4	1.247	38.01315562 1.5
0.3	1.586	3.354101966	1.98	1.86	1.572	20.79543219	1.965	3.42	1.217	38.23676242 1.5
0.32	1.696	3.5///08/64	2.12	1.88	1.6	21.01903899	1.999	3.44	1.1/8	38.46036921 1.4
0.34	1.791	3.801313362	2.24	1.9	1.015	21.24204379	2.019	2.40	1.129	20 00750201 1.4
0.30	1.072	4.024922339	2.34	1.92	1.018	21.40023238	2.022	3.40	1.072	39 13118961 1.2
0.38	1.984	4.472135955	2.42	1.94	1.585	21.91346618	1.981	3.52	0.931	39.3547964 1.1
0.42	2.015	4.695742753	2.52	1.98	1.549	22.13707298	1.936	3.54	0.849	39.5784032 1.0
0.44	2.03	4.91934955	2.54	2	1.501	22.36067977	1.877	3.56	0.762	39.80201 0.9
0.46	2.03	5.142956348	2.54	2.02	1.441	22.58428657	1.802	3.58	0.667	40.0256168 0.8
0.48	2.013	5.366563146	2.52	2.04	1.37	22.80789337	1.713	3.6	0.568	40.24922359 0.7
0.5	1.981	5.590169944	2.48	2.06	1.289	23.03150017	1.611	3.62	0.465	40.47283039 0.5
0.52	1.935	5.813776741	2.42	2.08	1.198	23.25510697	1.497	3.64	0.358	40.69643719 0.4
0.54	1.873	6.037383539	2.34	2.1	1.097	23.47871376	1.372	3.66	0.248	40.92004399 0.3
0.56	1.796	6.260990337	2.25	2.12	0.989	23.70232056	1.236	3.68	0.137	41.14365079 0.1
0.58	1./0/	6.484597135	2.13	2.14	0.8/2	23.92592/36	1.091	3./	0.024	41.36/25/58 0.0
0.6	1.605	6.708203932	2.01	2.16	0.749	24.14953416	0.937	3.72	-0.09	41.59086438 -0.
0.62	1 364	7 155417528	1.00	2.18	0.621	24.37314093	0.776	3.74	-0.2	41.81447118 -0.
0.66	1.228	7.379024326	1.54	2.22	0.35	24.82035455	0.437	3.78	-0.41	42.26168477 -0.
0.68	1.081	7.602631123	1.35	2.24	0.21	25.04396135	0.263	3.8	-0.52	42.48529157 -0.
0.7	0.926	7.826237921	1.16	2.26	0.07	25.26756815	0.087	3.82	-0.62	42.70889837 -0.
0.72	0.763	8.049844719	0.95	2.28	-0.07	25.49117494	-0.09	3.84	-0.71	42.93250517 -0.
0.74	0.595	8.273451517	0.74	2.3	-0.21	25.71478174	-0.26	3.86	-0.8	43.15611197 -
0.76	0.422	8.497058314	0.53	2.32	-0.35	25.93838854	-0.43	3.88	-0.88	43.37971876 -1.
0.78	0.247	8.720665112	0.31	2.34	-0.48	26.16199534	-0.6	3.9	-0.96	43.60332556 -1.
0.8	0.07	8.94427191	0.09	2.36	-0.61	26.38560213	-0.76	3.92	-1.03	43.82693236 -1.
0.82	-0.11	9.167878708	-0.1	2.38	-0.74	26.60920893	-0.92	3.94	-1.09	44.05053916 -1.
0.84	-0.28	9.391485505	-0.4	2.4	-0.85	26.83281573	-1.07	3.96	-1.14	44.27414595 -1.
0.88	-0.40	9.813092303	-0.8	2.42	-0.97	27.05042255	-1.21	5.96	-1.19	44.49775275 -1.
0.88	-0.79	10.0623059	-0.8	2.44	-1.17	27.50363612	-1.46	4.02	-1.25	44.94496635 -1.
0.92	-0.95	10.2859127	-1.2	2.48	-1.26	27.72724292	-1.57	4.04	-1.27	45.16857315 -1.
0.94	-1.1	10.50951949	-1.4	2.5	-1.33	27.95084972	-1.67	4.06	-1.27	45.39217994 -1.
0.96	-1.24	10.73312629	-1.5	2.52	-1.4	28.17445652	-1.75	4.08	-1.27	45.61578674 -1.
0.98	-1.37	10.95673309	-1.7	2.54	-1.46	28.39806331	-1.83	4.1	-1.26	45.83939354 -1.
1	-1.49	11.18033989	-1.9	2.56	-1.51	28.62167011	-1.88	4.12	-1.25	46.06300034 -1.
1.02	-1.61	11.40394669	-2	2.58	-1.54	28.84527691	-1.93	4.14	-1.22	46.28660713 -1.
1.04	-1.71	11.62755348	-2.1	2.6	-1.57	29.06888371	-1.96	4.16	-1.19	46.51021393 -1.
1.06	-1.8	11.85116028	-2.2	2.62	-1.58	29.29249051	-1.97	4.18	-1.15	46.73382073 -1.
1.08	-1.87	12.0/4/6/08	-2.3	2.64	-1.58	29.5160973	-1.97	4.2	-1.1	46.95/42/53 -1.
1.1	-1.93	12.2303/388	-2.4	2.00	-1.50	29.7597041	-1.90	4.22	-1.05	47.10103433 -1.
1.12	-2.01	12.74558747	-2.5	2.08	-1.51	30.1869177	-1.88	4.24	-0.91	47.62824792 -1
1.16	-2.03	12.96919427	-2.5	2.72	-1.46	30.41052449	-1.82	4.28	-0.83	47.85185472 -
1.18	-2.04	13.19280107	-2.5	2.74	-1.4	30.63413129	-1.75	4.3	-0.75	48.07546152 -0.
1.2	-2.03	13.41640786	-2.5	2.76	-1.34	30.85773809	-1.67	4.32	-0.66	48.29906831 -0.
1.22	-2.01	13.64001466	-2.5	2.78	-1.26	31.08134489	-1.58	4.34	-0.57	48.52267511 -0.
1.24	-1.97	13.86362146	-2.5	2.8	-1.18	31.30495168	-1.48	4.36	-0.48	48.74628191 -0.
1.26	-1.92	14.08722826	-2.4	2.82	-1.09	31.52855848	-1.36	4.38	-0.38	48.96988871 -0.
1.28	-1.86	14.31083506	-2.3	2.84	-0.99	31.75216528	-1.24	4.4	-0.29	49.1934955 -0.
1.3	-1./8	14.53444185	-2.2	2.86	-0.89	31.9/5//208	-1.11	4.42	-0.19	49.41/1023 -0.
1.32	-1.69	14.75804865	-2.1	2.88	-0.78	32.1993/888	-0.97	4.44	-0.09	49.0407091 -0.
1.34	-1.0	15 20526225	-2	2.9	-0.00	32.42290307	-0.63	4.46	0.007	50 0879337 0 1
1.30	-1.45	15.42886904	-1.7	2.52	-0.33	32.04033247	-0.08	4.40	0.107	50 31152949 0 2
1.30	-1.25	15.65247584	-1.6	2.94	-0.3	33.09380607	-0.38	4.52	0.307	50.53513629 0.3
1.42	-1.12	15.87608264	-1.4	2.98	-0.18	33.31741286	-0.22	4.54	0.405	50.75874309 0.5
1.44	-0.98	16.09968944	-1.2	3	-0.06	33.54101966	-0.07	4.56	0.497	50.98234989 0.6
1.46	-0.84	16.32329624	-1	3.02	0.068	33.76462646	0.085	4.58	0.585	51.20595668 0.7
1.48	-0.69	16.54690303	-0.9	3.04	0.19	33.98823326	0.238	4.6	0.668	51.42956348 0.8
1.5	-0.53	16.77050983	-0.7	3.06	0.309	34.21184006	0.387	4.62	0.742	51.65317028 0.9
1.52	-0.38	16.99411663	-0.5	3.08	0.426	34.43544685	0.533	4.64	0.807	51.87677708 1.0
1.54	-0.22	17.21772343	-0.3	3.1	0.54	34.65905365	0.674	4.66	0.867	52.10038388 1.0

t model (s)	z(cm)	t full scale (s)	z(m)	t model (s) z(cm)	t full scale (s)	z(m)	t model (s)	z(cm)	t full scale (s)	z(m)
4.68	0.916	52.32399067	1.15	6.32 0.816	70.65974809	1.02	7.96	0.244	88.9955055	0.31
47	0.955	52 54759747	1 19	6 34 0 782	70 88335489	0 978	7 98	0.19	89 2191123	0.24
4 72	0.096	52.51135717	1 22	6 26 0 741	71 10606169	0.026	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.127	80 4427101	0.17
4.72	0.980	52.77120427	1.25	0.30 0.741	71.10090108	0.920	0.02	0.137	89.4427191	0.17
4.74	1.012	52.99481107	1.27	6.38 0.692	/1.33056848	0.865	8.02	0.084	89.6663259	0.1
4.76	1.029	53.21841/86	1.29	6.4 0.639	/1.5541/528	0.799	8.04	0.027	89.8899327	0.03
4.78	1.04	53.44202466	1.3	6.42 0.58	71.77778208	0.725	8.06	-0.03	90.11353949	-0
4.8	1.046	53.66563146	1.31	6.44 0.519	72.00138888	0.649	8.08	-0.09	90.33714629	-0.1
4.82	1.045	53.88923826	1.31	6.46 0.457	72.22499567	0.571	8.1	-0.15	90.56075309	-0.2
4.84	1.035	54.11284506	1.29	6.48 0.392	72.44860247	0.49	8.12	-0.21	90.78435989	-0.3
4.86	1 017	54 33645185	1 27	65 0 322	72 67220927	0.403	8 1/	-0.27	91 00796668	-0.3
4.00	0.001	54.55045185	1.27	6.52 0.322	72.07220527	0.403	0.14	-0.27	01 22157249	-0.3
4.88	0.991	54.56005865	1.24	6.52 0.254	/2.8958160/	0.318	8.16	-0.32	91.23157348	-0.4
4.9	0.957	54.78366545	1.2	6.54 0.185	73.11942286	0.231	8.18	-0.36	91.45518028	-0.5
4.92	0.913	55.00727225	1.14	6.56 0.114	73.34302966	0.143	8.2	-0.4	91.67878708	-0.5
4.94	0.861	55.23087904	1.08	6.58 0.044	73.56663646	0.055	8.22	-0.43	91.90239388	-0.5
4.96	0.801	55.45448584	1	6.6 -0.02	73.79024326	-0.03	8.24	-0.46	92.12600067	-0.6
4.98	0.734	55.67809264	0.92	6.62 -0.09	74.01385006	-0.11	8.26	-0.48	92.34960747	-0.6
5	0.661	55 90169944	0.83	6 64 -0 16	74 23745685	-0.2	8.28	-0.51	92 57321427	-0.6
5 03	0.001	55.50105544	0.03	6.66 0.22	74.25745005	0.2	0.20	0.51	02 70682107	0.0
5.02	0.567	56.12550624	0.75	0.00 -0.23	74.40100303	-0.28	0.3	-0.52	92.79682107	-0.7
5.04	0.511	56.34891303	0.64	6.68 -0.3	/4.6846/045	-0.37	8.32	-0.54	93.02042786	-0.7
5.06	0.432	56.57251983	0.54	6.7 -0.36	74.90827725	-0.46	8.34	-0.56	93.24403466	-0.7
5.08	0.352	56.79612663	0.44	6.72 -0.43	75.13188404	-0.54	8.36	-0.57	93.46764146	-0.7
5.1	0.269	57.01973343	0.34	6.74 -0.49	75.35549084	-0.61	8.38	-0.58	93.69124826	-0.7
5.12	0.182	57.24334022	0.23	6.76 -0.54	75.57909764	-0.68	8.4	-0.58	93.91485505	-0.7
5 14	0.093	57,46694702	0.12	6.78 -0.59	75.80270444	-0.74	8 47	-0.57	94.13846185	-07
5.14 E 16	0.002	57 6000000		£ 0 0 64	76 02621122	_0 0	0.42	-0 56	04 36306065	-07
5.16	0.003	57.03055582	0	0.0 -0.64	76.24004.002	-0.0	0.44	-0.50	34.30200605	-0.7
5.18	-0.09	57.91416062	-0.1	0.82 -0.68	/6.24991803	-0.85	8.46	-0.55	94.5856/545	-0.7
5.2	-0.18	58.13776741	-0.2	6.84 -0.71	/6.47352483	-0.89	8.48	-0.52	94.80928225	-0.7
5.22	-0.27	58.36137421	-0.3	6.86 -0.74	76.69713163	-0.93	8.5	-0.5	95.03288904	-0.6
5.24	-0.36	58.58498101	-0.5	6.88 -0.76	76.92073843	-0.96	8.52	-0.47	95.25649584	-0.6
5.26	-0.45	58.80858781	-0.6	6.9 -0.78	77.14434522	-0.98	8.54	-0.44	95.48010264	-0.6
5,28	-0.52	59.03219461	-0.7	6.92 -0.79	77,36795202	-0,99	8.56	-0.41	95,70370944	-0.5
5.20	-0 50	59 2558014	-0.7	6 9/ _0 70	77 50155892	-0 00	Q E 0	-0.35	95 97721672	-0 =
5.3	-0.55	59.2338014	-0.7	6.04 -0.75	77.33133882	-0.55	0.50	-0.38	06 15002202	-0.5
5.32	-0.66	59.4794082	-0.8	6.96 -0.79	//.81516562	-0.99	8.6	-0.34	96.15092303	-0.4
5.34	-0.71	59.703015	-0.9	6.98 -0.78	78.03877241	-0.98	8.62	-0.3	96.37452983	-0.4
5.36	-0.77	59.9266218	-1	7 -0.77	78.26237921	-0.96	8.64	-0.25	96.59813663	-0.3
5.38	-0.82	60.15022859	-1	7.02 -0.75	78.48598601	-0.94	8.66	-0.2	96.82174343	-0.3
5.4	-0.87	60.37383539	-1.1	7.04 -0.74	78.70959281	-0.92	8.68	-0.16	97.04535022	-0.2
5.42	-0.92	60.59744219	-1.1	7.06 -0.71	78,93319961	-0.89	8.7	-0.11	97,26895702	-0.1
5.44	-0.95	60 82104899	-1.2	7.08 -0.68	79 1568064	-0.85	8 72	-0.07	97 49256382	-0.1
5.44	-0.55	00.82104833	-1.2	7.00 -0.08	70.2004122	-0.05	0.72	-0.07	07.45250582	-0.1
5.46	-0.98	61.04465579	-1.Z	7.1 -0.64	79.3804132	-0.8	8.74	-0.02	97.71617062	-0
5.48	-1	61.26826258	-1.3	7.12 -0.6	/9.60402	-0.75	8.76	0.035	97.93977741	0.04
5.5	-1.01	61.49186938	-1.3	7.14 -0.55	79.8276268	-0.68	8.78	0.091	98.16338421	0.11
5.52	-1.01	61.71547618	-1.3	7.16 -0.49	80.05123359	-0.62	8.8	0.148	98.38699101	0.19
5.54	-1	61.93908298	-1.2	7.18 -0.44	80.27484039	-0.55	8.82	0.208	98.61059781	0.26
5.56	-0.98	62.16268977	-1.2	7.2 -0.38	80.49844719	-0.48	8.84	0.263	98.83420461	0.33
5 58	-0.95	62 38629657	-1.2	7 22 -0 33	80 72205399	-0.41	8.86	0.312	99.0578114	0.39
5.50	0.00	62.50025057	1.1	7.22 0.33	80.04566070	0.74	0.00	0.312	00 2814182	0.33
5.0	-0.91	02.00990337	-1.1	7.24 -0.27	80.94300079	-0.34	0.00	0.334	99.2014102	0.44
5.62	-0.87	62.83351017	-1.1	7.26 -0.21	81.16926758	-0.27	8.9	0.389	99.505025	0.49
5.64	-0.83	63.05711697	-1	7.28 -0.15	81.39287438	-0.19	8.92	0.418	99.7286318	0.52
5.66	-0.78	63.28072376	-1	7.3 -0.09	81.61648118	-0.11	8.94	0.442	99.95223859	0.55
5.68	-0.73	63.50433056	-0.9	7.32 -0.02	81.84008798	-0.02	8.96	0.465	100.1758454	0.58
5.7	-0.68	63.72793736	-0.8	7.34 0.05	82.06369477	0.062	8.98	0.486	100.3994522	0.61
5.72	-0.62	63.95154416	-0.8	7.36 0.121	82.28730157	0.151	9	0.506	100.623059	0.63
5 74	-0.55	64,17515095	-0.7	7.38 0 189	82.51090837	0,237	9 0 2	0.523	100.8466658	0.65
5.74	-0.49	64 30875775	-0.6	7 / 0 257	82 72/151517	0 3 2 1	0.02	0 5 2 7	101 0702726	0.67
5.70	0.40	61 6333673773	_0 F	7.4 0.237	87 05010107	0.321	5.04	0.557	101 2020704	0.07
5./8	-0.4	04.02230455	-0.5	7.42 0.322	02.93012197	0.403	9.06	0.548	101.2938/94	0.08
5.8	-0.32	04.8459/135	-0.4	7.44 0.382	83.181/28/6	0.478	9.08	0.555	101.51/4862	0.69
5.82	-0.23	65.06957815	-0.3	7.46 0.435	83.40533556	0.544	9.1	0.557	101.741093	0.7
5.84	-0.14	65.29318494	-0.2	7.48 0.483	83.62894236	0.603	9.12	0.553	101.9646998	0.69
5.86	-0.05	65.51679174	-0.1	7.5 0.523	83.85254916	0.654	9.14	0.544	102.1883066	0.68
5.88	0.029	65.74039854	0.04	7.52 0.559	84.07615595	0.698	9.16	0.53	102.4119134	0.66
5.9	0.105	65.96400534	0.13	7.54 0.59	84.29976275	0.737	9.18	0.513	102.6355202	0.64
5.07	0 177	66 18761212	0.22	7 56 0 619	84 57326055	0 772	0.10	0 402	102 850107	0.67
5.92	0.1//	66 41121002	0.22	7.50 0.010	04.32330333	0.772	9.2	0.474	102.03312/	0.02
5.94	0.247	00.41121893	0.51	7.58 0.639	04.74097035	0.799	9.22	0.4/1	102.062/338	0.59
5.96	0.317	00.03482573	0.4	7.6 0.658	84.97058314	0.822	9.24	0.445	103.3063406	0.56
5.98	0.387	66.85843253	0.48	7.62 0.672	85.19418994	0.84	9.26	0.415	103.5299474	0.52
6	0.458	67.08203932	0.57	7.64 0.682	85.41779674	0.853	9.28	0.379	103.7535542	0.47
6.02	0.524	67.30564612	0.66	7.66 0.689	85.64140354	0.861	9.3	0.339	103.977161	0.42
6.04	0.586	67.52925292	0.73	7.68 0.693	85.86501034	0.866	9.32	0.294	104.2007678	0.37
6.06	0.642	67,75285972	0.8	7.7 0.692	86.08861713	0,865	9.34	0.247	104.4243745	0.31
6.00	0.694	67 97646652	0.87	7 72 0 495	86 31 22 20 2	0.856	0.24	0 201	104 6470912	0.25
0.08	0.054	60 20007221	0.07	7.72 0.000	00.31222333	0.030	5.50	0.201	104.04/3013	0.23
0.1	0.741	06.20007331	0.93	7.74 0.673	00.035830/3	0.642	9.38	0.155	104.8/15881	0.19
6.12	0.783	68.42368011	0.98	7.76 0.657	86.75943753	0.821	9.4	0.109	105.0951949	0.14
6.14	0.819	68.64728691	1.02	7.78 0.635	86.98304432	0.793	9.42	0.064	105.3188017	0.08
6.16	0.849	68.87089371	1.06	7.8 0.608	87.20665112	0.76	9.44	0.018	105.5424085	0.02
6.18	0.868	69.0945005	1.08	7.82 0.577	87.43025792	0.721	9.46	-0.03	105.7660153	-0
6.2	0.878	69.3181073	1.1	7.84 0.541	87.65386472	0.676	9.48	-0.08	105.9896221	-0.1
6.22	0.88	69 54171/1	11	7 86 0 400	87 87747152	0.624	0 5	-0 12	106 2132280	-0.2
6.22	0.00	60 7652200	1 1	7 00 0 453	88 10107031	0.544	0.53	_0.12	106 4260257	0.2
6.24	0.078	09.7053209	1.1	7.08 0.453	00.1010/831	0.500	9.52	-0.1/	100.430835/	-0.2
6.26	U.869	69.9889277	1.09	/.9 0.403	88.32468511	0.504	9.54	-0.22	106.6604425	-0.3
6.28	0.857	70.21253449	1.07	7.92 0.351	88.54829191	0.439	9.56	-0.26	106.8840493	-0.3
6.3	0.839	70.43614129	1.05	7.94 0.298	88.77189871	0.372	9.58	-0.3	107.1076561	-0.4

			· · · · · ·	_	1				1		1
t model (s)	z(cm)	t full scale (s)	z(m)	t model (s)	z(cm)	t full scale (s)	z(m)	t model (s)	z(cm)	t full scale (s)	z(m)
9.6	-0.34	107.3312629	-0.4	11.24	-0.43	125.6670203	-0.53	12.8	8 -0.16	144.0027778	-0.2
9.62	-0.38	107.5548697	-0.5	11.26	-0.42	125.8906271	-0.53	12.	9 -0.13	144.2263845	-0.2
9.64	-0 41	107 7784765	-0.5	11.28	-0.41	126 1142339	-0.52	12 9	2 -0 1	144 4499913	-0.1
0.66	0.44	109.0020922	0.5	11.20	0.41	126 2279407	0.52	12.5	4 0.07	144.4455515	0.1
9.66	-0.44	108.0020855	-0.0	11.5	-0.4	120.3378407	-0.5	12.5	4 -0.07	144.0755961	-0.1
9.68	-0.47	108.2256901	-0.6	11.32	-0.39	126.5614475	-0.48	12.9	6 -0.04	144.8972049	-0.1
9.7	-0.49	108.4492969	-0.6	11.34	-0.37	126.7850543	-0.46	12.9	8 -0.02	145.1208117	-0
9.72	-0.51	108.6729037	-0.6	11.36	-0.34	127.0086611	-0.43	1	3 0.013	145.3444185	0.02
9 74	-0.52	108 8965105	-0.7	11 38	-0.32	127 2322679	-0.39	13.0	2 0 042	145 5680253	0.05
0.74	0.52	100.0000100	0.7	11.50	0.32	127.2522075	0.35	13.0	4 0.042	145.3000233	0.05
9.76	-0.55	109.1201173	-0.7	11.4	-0.29	127.4556747	-0.50	15.0	4 0.069	145.7916521	0.09
9.78	-0.54	109.3437241	-0.7	11.42	-0.26	127.6794815	-0.32	13.0	6 0.095	146.0152389	0.12
9.8	-0.54	109.5673309	-0.7	11.44	-0.23	127.9030883	-0.29	13.0	8 0.12	146.2388457	0.15
9.82	-0.54	109.7909377	-0.7	11.46	-0.2	128.1266951	-0.25	13	1 0.142	146.4624525	0.18
0.94	0.54	110 01/64/6	0.7	11.49	0.17	129 2502010	0.21	12.1	2 0 162	146 6960502	0.2
9.64	-0.54	110.0143443	-0.7	11.40	-0.17	128.5303019	-0.21	13.1	2 0.103	140.0800393	0.2
9.86	-0.53	110.2381513	-0.7	11.5	-0.14	128.5/3908/	-0.17	13.1	4 0.181	146.9096661	0.23
9.88	-0.51	110.4617581	-0.6	11.52	-0.1	128.7975155	-0.13	13.1	6 0.199	147.1332729	0.25
9.9	-0.5	110.6853649	-0.6	11.54	-0.07	129.0211223	-0.09	13.1	8 0.215	147.3568797	0.27
9.92	-0.47	110 9089717	-0.6	11 56	-0.03	129 2447291	-0.04	13	2 0 2 2 9	147 5804865	0.29
0.04	0.45	110.3003717	0.0	11.50		120.4602250	0.04	10.0	2 0.225	147.0040033	0.23
9.94	-0.45	111.1325785	-0.6	11.58	****	129.4683359	-0	13.2	2 0.242	147.8040933	0.3
9.96	-0.42	111.3561853	-0.5	11.6	0.034	129.6919427	0.043	13.2	4 0.255	148.0277001	0.32
9.98	-0.39	111.5797921	-0.5	11.62	0.068	129.9155495	0.085	13.2	6 0.266	148.2513069	0.33
10	-0.36	111.8033989	-0.4	11.64	0.101	130.1391563	0.126	13.2	8 0.275	148.4749137	0.34
10.02	-0.33	112 0270057	-0.4	11.66	0 132	130 3627631	0.164	13	3 0 282	1/18 6085205	0.35
10.02	-0.33	112.0270037	-0.4	11.00	0.152	130.3027031	0.104	13.	0.202	140.0303203	0.35
10.04	-0.29	112.2506125	-0.4	11.68	0.162	130.5863699	0.202	13.3	2 0.286	148.9221273	0.36
10.06	-0.25	112.4742193	-0.3	11.7	0.19	130.8099767	0.238	13.3	4 0.284	149.1457341	0.36
10.08	-0.21	112.6978261	-0.3	11.72	0.217	131.0335835	0.271	13.3	6 0.278	149.3693409	0.35
10.1	-0.17	112,9214329	-0.2	11 74	0.247	131.2571903	0,302	13 3	8 0.268	149.5929477	0.33
10.1	_0 12	112 1450207	-0.2	11 70	0.264	121 /007074	0.22	10.0	1 0 25 4	1/0 01/05/	0.00
10.12	-0.12	113.145039/	-0.2	11.76	0.204	131.460/9/1	0.33	13.	- 0.254	149.0105545	0.32
10.14	-0.08	113.3686465	-0.1	11.78	0.284	131.7044039	0.355	13.4	2 0.237	150.0401613	0.3
10.16	-0.04	113.5922533	-0	11.8	0.301	131.9280107	0.376	13.4	4 0.219	150.2637681	0.27
10.18	0.004	113.8158601	0.01	11.82	0.315	132.1516175	0.394	13 4	6 0.199	150.4873749	0.25
10.2	0.047	114 0304660	0.06	11.94	0 3 7 7	132 3752242	0.408	12 /	8 0 170	150 7100217	0.22
10.2	0.04/	114 2020707	0.00	11.04	0.327	102.07.02240	0.400	13.4	5 0.170	150.7105017	0.22
10.22	0.091	114.2630737	0.11	11.86	0.336	132.5988311	0.42	13.	5 0.157	150.9345885	0.2
10.24	0.136	114.4866804	0.17	11.88	0.342	132.8224379	0.428	13.5	2 0.138	151.1581953	0.17
10.26	0.18	114.7102872	0.22	11.9	0.346	133.0460447	0.432	13.5	4 0.121	151.3818021	0.15
10.28	0 222	114 933894	0.28	11 92	0 348	133 2696515	0 4 3 4	13 5	6 0 104	151 6054089	0.13
10.20	0.222	115 1575009	0.20	11.02	0.340	122 4022592	0.433	13.5	0 0.104	151.0054005	0.13
10.5	0.257	115.1575008	0.52	11.94	0.547	155.4952565	0.455	15.5	0.067	151.8290157	0.11
10.32	0.286	115.3811076	0.36	11.96	0.344	133.7168651	0.43	13.	6 0.067	152.0526225	0.08
10.34	0.312	115.6047144	0.39	11.98	0.339	133.9404719	0.424	13.6	2 0.042	152.2762293	0.05
10.36	0.335	115.8283212	0.42	12	0.332	134,1640786	0.415	13.6	4 0.014	152,4998361	0.02
10.29	0.259	116 051029	0.45	12.02	0.221	124 2976954	0.401	12.6	6 0.02	152 7224420	0.01
10.56	0.338	110.031928	0.43	12.02	0.321	134.3870834	0.401	13.0	0 -0.02	132.7234429	-0
10.4	0.38	116.2755348	0.47	12.04	0.306	134.6112922	0.383	13.6	8 -0.05	152.9470497	-0.1
10.42	0.401	116.4991416	0.5	12.06	0.288	134.834899	0.359	13.	7 -0.08	153.1706565	-0.1
10.44	0.421	116.7227484	0.53	12.08	0.265	135.0585058	0.332	13.7	2 -0.11	153.3942633	-0.1
10.46	0.439	116.9463552	0.55	12.1	0.24	135,2821126	0.3	13.7	4 -0.14	153.6178701	-0.2
10.49	0.452	117 160062	0.57	12.12	0.212	125 5057104	0.267	12 7	6 0 1 5	152 9/1/760	0.2
10.48	0.453	117.169962	0.57	12.12	0.213	135.5057194	0.267	13.7	6 -0.15	153.8414769	-0.2
10.5	0.463	117.3935688	0.58	12.14	0.185	135.7293262	0.231	13.7	8 -0.17	154.0650836	-0.2
10.52	0.468	117.6171756	0.59	12.16	0.156	135.952933	0.195	13.	8 -0.19	154.2886904	-0.2
10.54	0.469	117.8407824	0.59	12.18	0.127	136.1765398	0.158	13.8	2 -0.21	154,5122972	-0.3
10.56	0.465	118 0643892	0.58	12.2	0.098	136 4001466	0 122	13.8	4 -0.22	154 735904	-0.3
10.50	0.400	110.0043032	0.50	12.2	0.058	130.4001400	0.122	13.0	4 -0.22	134.735304	-0.5
10.58	0.458	118.287996	0.57	12.22	0.068	136.6237534	0.085	13.8	6 -0.24	154.9595108	-0.3
10.6	0.446	118.5116028	0.56	12.24	0.038	136.8473602	0.048	13.8	8 -0.25	155.1831176	-0.3
10.62	0.431	118.7352096	0.54	12.26	0.007	137.070967	0.009	13.	9 -0.27	155.4067244	-0.3
10 64	0,414	118,9588164	0.52	12.28	-0.02	137.2945738	-0.03	13 0	2 -0.28	155.6303312	-0 २
10.61	0.202	110 1924222	0.40	12.20	0.00	137 5191906	0.07	13.5	4 0.20	155,05000012	0.0
10.00	0.392	113.1024232	0.49	12.3	-0.06	137.3101000	-0.07	13.9	0.29	100.000938	-0.4
10.68	0.368	119.40603	0.46	12.32	-0.09	137.7417874	-0.11	13.9	ь -0.29	156.0775448	-0.4
10.7	0.339	119.6296368	0.42	12.34	-0.12	137.9653942	-0.15	13.9	8 -0.3	156.3011516	-0.4
10.72	0.306	119.8532436	0.38	12.36	-0.15	138.189001	-0.19	1	4 -0.3	156.5247584	-0.4
10 74	0.267	120.0768504	0.33	12 38	-0.18	138,4126078	-0.23	14 0	2 -03	156,7483652	-04
10.74	0 2207	120 2004572	0.35	12.30	.0.24	120 6262146	-0.25	14.0	4 0.5	156 071070	.0.4
10.76	0.220	120.3004572	0.28	12.4	-0.21	130.0302146	-0.20	14.0	0.3	120.9/19/2	-0.4
10.78	0.183	120.524064	0.23	12.42	-0.23	138.8598214	-0.29	14.0	6 -0.29	157.1955788	-0.4
10.8	0.141	120.7476708	0.18	12.44	-0.25	139.0834282	-0.32	14.0	8 -0.28	157.4191856	-0.3
10.82	0.1	120.9712776	0.12	12.46	-0.27	139.307035	-0.34	14.	1 -0.27	157.6427924	-0.3
10.84	0.061	121 1948844	0.08	12 / 9	-0.20	139 5306419	-0.36	14 1	2 -0.26	157 8663002	-0 3
10.04	0.001	121.1340044	0.00	12.40	0.29	120 75 42400	0.30	14.1	4 0.20	152,000000	0.3
10.86	0.023	121.4184912	0.03	12.5	-0.31	159./542486	-0.38	14.1	+ -0.25	129.02000	-0.3
10.88	-0.01	121.642098	-0	12.52	-0.32	139.9778554	-0.4	14.1	6 -0.23	158.3136128	-0.3
10.9	-0.05	121.8657048	-0.1	12.54	-0.33	140.2014622	-0.41	14.1	8 -0.22	158.5372196	-0.3
10.92	-0.09	122.0893116	-0.1	12.56	-0.34	140.425069	-0.42	14	2 -0.21	158.7608264	-0.3
10.04	-0 12	122 2120104	-0.2	17 = 0	-0.35	140 6486759	-0 /12	14 3	2 _0 10	158 08///222	-0.2
10.94	-0.12	122.3123104	-0.2	12.30	-0.35	140.0400730	-0.43	14.2	4 0.19	150.3044332	-0.2
10.96	-0.16	122.5365252	-0.2	12.6	-0.35	140.8722826	-0.44	14.2	4 -0.18	159.20804	-0.2
10.98	-0.2	122.760132	-0.2	12.62	-0.35	141.0958894	-0.44	14.2	6 -0.16	159.4316468	-0.2
11	-0.23	122.9837388	-0.3	12.64	-0.35	141.3194962	-0.44	14.2	8 -0.13	159.6552536	-0.2
11.02	-0.27	123,2073456	-0.3	12.66	-0.35	141.543103	-0.44	14	3 -0.11	159,8788604	-0.1
11.04	0.2	172 4200534	-0.4	12.00	.0.24	1/1 7667000	-0.42	14 7	2 0.00	160 1024672	.01
11.04	-0.3	123.4509524	-0.4	12.68	-0.34	141.0007098	-0.45	14.3	2 -0.08	100.1024672	-0.1
11.06	-0.32	123.6545592	-0.4	12.7	-0.33	141.9903166	-0.41	14.3	4 -0.06	160.326074	-0.1
11.08	-0.35	123.878166	-0.4	12.72	-0.32	142.2139234	-0.4	14.3	6 -0.03	160.5496808	-0
11.1	-0.37	124.1017728	-0.5	12.74	-0.31	142.4375302	-0.38	14.3	8 -0	160.7732876	-0
11 17	-0.39	124.3253795	-0.5	12 76	-0.29	142.661137	-0.37	14	4 0.019	160.9968944	0.02
11.12	0.00	124 5400000	0.5	12.70	0.29	142.001137	0.57	14	2 0 0 4 4	161 2205042	0.02
11.14	-0.4	124.5489863	-0.5	12.78	-0.28	142.884/438	-0.35	14.4	2 0.041	101.2205012	0.05
11.16	-0.41	124.7725931	-0.5	12.8	-0.26	143.1083506	-0.32	14.4	4 0.061	161.444108	0.08
11.18	-0.42	124.9961999	-0.5	12.82	-0.24	143.3319574	-0.29	14.4	6 0.081	161.6677148	0.1
11.2	-0.43	125.2198067	-0.5	12,84	-0.21	143.5555642	-0.26	14.4	8 0.099	161.8913216	0.12
11 22	_0 / 2	125 //2/125	-0 5	12.04	-0.10	1/12 770171	_0.20	14	5 0 117	162 1140294	0 15
11.22	-0.43	120.4404100	-0.5	12.00	-0.19	143.//31/1	-0.23	14.	J 0.11/	102.1147204	0.13

t model (s)	z(cm)	t full scale (s)	z(m)	t model (s)	z(cm)	t full scale (s)	z(m)	t model (s)	z(cm)	t full scale (s)	z(m)
19.44	-0.07	217.3458074	-0.1	21.08	-0.06	235.6815648	-0.08	0.88	-0.19	9.838699101	-0.2
19.40	-0.08	217.3094142	-0.1	21.12	-0.06	235.3031710	-0.07	0.92	-0.52	10.2859127	-0.4
19.5	-0.1	218.0166278	-0.1	21.14	-0.05	236.3523852	-0.07	0.94	-0.67	10.50951949	-0.8
19.52	-0.11	218.2402346	-0.1	21.16	-0.05	236.575992	-0.07	0.96	-0.83	10.73312629	-1
19.54	-0.11	218.4638414	-0.1	21.18	-0.05	236.7995988	-0.06	0.98	-0.97	10.95673309	-1.2
19.56	-0.12	218.6874482	-0.1	21.2	-0.05	237.0232056	-0.06	1.03	-1.1	11.18033989	-1.4
19.6	-0.12	219.1346618	-0.1	21.22	-0.05	237.4704192	-0.06	1.02	-1.35	11.62755348	-1.7
19.62	-0.12	219.3582686	-0.1	21.26	-0.04	237.694026	-0.05	1.06	-1.45	11.85116028	-1.8
19.64	-0.11	219.5818754	-0.1	21.28	-0.04	237.9176328	-0.05	1.08	-1.55	12.07476708	-1.9
19.66	-0.11	219.8054822	-0.1	21.3	-0.03	238.1412396	-0.04	1.1	-1.63	12.29837388	-2
19.68	-0.1	220.029089	-0.1	21.32	-0.02	238.3648464	-0.03	1.12	-1.7	12.52198067	-2.1
19.72	-0.09	220.2320938	-0.1	21.34	-0.01	238.81206	-0.02	1.14	-1.81	12.96919427	-2.2
19.74	-0.08	220.6999094	-0.1	21.38	0.011	239.0356668	0.013	1.18	-1.84	13.19280107	-2.3
19.76	-0.07	220.9235162	-0.1	21.4	0.023	239.2592736	0.028	1.2	-1.86	13.41640786	-2.3
19.78	-0.06	221.147123	-0.1	21.42	0.034	239.4828804	0.042	1.22	-1.86	13.64001466	-2.3
19.8	-0.05	221.3707298	-0.1	21.44	0.044	239.7064872	0.055	1.24	-1.86	13.86362146	-2.3
19.82	-0.04	221.5943366	-0	21.46	0.053	239.930094	0.066	1.26	-1.84	14.08722826	-2.3
19.86	-0.02	222.0415502	-0	21.40	0.066	240.3773076	0.083	1.20	-1.77	14.53444185	-2.2
19.88	-0.02	222.265157	-0	21.52	0.071	240.6009144	0.089	1.32	-1.71	14.75804865	-2.1
19.9	-0.01	222.4887638	-0	21.54	0.075	240.8245212	0.094	1.34	-1.65	14.98165545	-2.1
19.92	-0	222.7123706	-0	21.56	0.078	241.048128	0.097	1.36	-1.58	15.20526225	-2
19.94	0.009	222.9359774	0.01	21.58	0.079	241.2717348	0.099	1.38	-1.49	15.42886904	-1.9
19.90	0.019	223.383191	0.02	21.62	0.08	241.7189484	0.1	1.42	-1.4	15.87608264	-1.6
20	0.044	223.6067977	0.05	21.64	0.08	241.9425552	0.1	1.44	-1.19	16.09968944	-1.5
20.02	0.057	223.8304045	0.07	21.66	0.08	242.166162	0.101	1.46	-1.08	16.32329624	-1.3
20.04	0.069	224.0540113	0.09	21.68	0.08	242.3897688	0.1	1.48	-0.95	16.54690303	-1.2
20.06	0.082	224.2776181	0.1	21.7	0.079	242.6133756	0.098	1.5	-0.83	16.77050983	-1
20.08	0.092	224.5012249	0.12	21.72	0.076	242.8369824	0.095	1.52	-0.7	16.99411663	-0.9
20.12	0.101	224.9484385	0.13	21.74	0.075	243.0003032	0.051	1.56	-0.43	17.44133022	-0.5
20.14	0.115	225.1720453	0.14					1.58	-0.29	17.66493702	-0.4
20.16	0.12	225.3956521	0.15		SPAR +	Heave Plate		1.6	-0.15	17.88854382	-0.2
20.18	0.125	225.6192589	0.16	t model (s)	z(cm)	t full scale (s)	z(m)	1.62	-0.01	18.11215062	-0
20.2	0.129	225.8428657	0.16	0 02	-1	0 222606708	-1.25	1.64	0.123	18.335/5/42	0.15
20.22	0.132	226.2900793	0.17	0.02	-0.55	0.447213595	-0.69	1.68	0.237	18.78297101	0.32
20.26	0.139	226.5136861	0.17	0.06	-0.34	0.670820393	-0.43	1.7	0.515	19.00657781	0.64
20.28	0.142	226.7372929	0.18	0.08	-0.14	0.894427191	-0.17	1.72	0.637	19.23018461	0.8
20.3	0.145	226.9608997	0.18	0.1	0.069	1.118033989	0.086	1.74	0.754	19.4537914	0.94
20.32	0.149	227.1845065	0.19	0.12	0.274	1.341640786	0.342	1.76	0.866	19.6773982	1.08
20.34	0.151	227.6317201	0.19	0.14	0.674	1.788854382	0.390	1.78	1.069	20.1246118	1.34
20.38	0.156	227.8553269	0.2	0.18	0.867	2.01246118	1.084	1.82	1.158	20.3482186	1.45
20.4	0.155	228.0789337	0.19	0.2	1.054	2.236067977	1.318	1.84	1.239	20.57182539	1.55
20.42	0.151	228.3025405	0.19	0.22	1.232	2.459674775	1.54	1.86	1.31	20.79543219	1.64
20.44	0.145	228.5261473	0.18	0.24	1.4	2.683281573	1.75	1.88	1.37	21.01903899	1.71
20.46	0.137	228.7497341	0.17	0.28	1.559	3 130495168	2 132	1.9	1.421	21.24204579	1.70
20.40	0.118	229.1969677	0.15	0.20	1.839	3.354101966	2.299	1.94	1.49	21.68985938	1.86
20.52	0.109	229.4205745	0.14	0.32	1.958	3.577708764	2.448	1.96	1.507	21.91346618	1.88
20.54	0.1	229.6441813	0.12	0.34	2.06	3.801315562	2.575	1.98	1.512	22.13707298	1.89
20.56	0.09	229.8677881	0.11	0.36	2.145	4.024922359	2.681	2	1.507	22.36067977	1.88
20.58	0.082	230.0913949	0.0	0.38	2.213	4.248529157	2.766	2.02	1.492	22.58428057	1.85
20.62	0.063	230.5386085	0.08	0.42	2.304	4.695742753	2.88	2.06	1.433	23.03150017	1.79
20.64	0.052	230.7622153	0.06	0.44	2.328	4.91934955	2.91	2.08	1.389	23.25510697	1.74
20.66	0.04	230.9858221	0.05	0.46	2.338	5.142956348	2.922	2.1	1.336	23.47871376	1.67
20.68	0.028	231.2094289	0.03	0.48	2.332	5.366563146	2.915	2.12	1.274	23.70232056	1.59
20.7	0.014 8E-04	231.6566425	0.02	0.5	2.312	5.813776741	2.89	2.14	1.1203	23.92592736	1.5 1 4
20.74	-0.01	231.8802493	-0	0.54	2.223	6.037383539	2.778	2.18	1.037	24.37314095	1.3
20.76	-0.03	232.1038561	-0	0.56	2.155	6.260990337	2.693	2.2	0.943	24.59674775	1.18
20.78	-0.04	232.3274629	-0	0.58	2.074	6.484597135	2.592	2.22	0.843	24.82035455	1.05
20.8	-0.05	232.5510697	-0.1	0.6	1.978	6.708203932	2.472	2.24	0.738	25.04396135	0.92
20.82	-0.06	232.1140/05	-0.1	0.62	1.749	7,155417528	2.337	2.20	0.516	25.49117494	0.79
20.86	-0.07	233.2218901	-0.1	0.66	1.619	7.379024326	2.024	2.3	0.402	25.71478174	0.5
20.88	-0.07	233.4454969	-0.1	0.68	1.478	7.602631123	1.848	2.32	0.287	25.93838854	0.36
20.9	-0.07	233.6691036	-0.1	0.7	1.331	7.826237921	1.663	2.34	0.172	26.16199534	0.22
20.92	-0.07	233.8927104	-0.1	0.72	1.176	8.049844719	1.469	2.36	0.058	26.38560213	0.07
20.94	-0.07	234.11631/2	-0.1	0.74	0.849	0.2/345151/ 8 497058314	1.269	2.38	-0.06	20.00920893	-0.1
20.98	-0.07	234.5635308	-0.1	0.78	0.679	8.720665112	0.848	2.42	-0.28	27.05642253	-0.3
21	-0.07	234.7871376	-0.1	0.8	0.506	8.94427191	0.632	2.44	-0.38	27.28002933	-0.5
21.02	-0.07	235.0107444	-0.1	0.82	0.331	9.167878708	0.414	2.46	-0.49	27.50363612	-0.6
21.04	-0.06	235.2343512	-0.1	0.84	0.157	9.391485505	0.197	2.48	-0.58	27.72724292	-0.7
21.06	-0.06	235.457958	-0.1	0.86	-0.02	9.615092303	-0.02	2.5	-0.67	27.95084972	-0.8

				-					-		
t model (s)	z(cm)	t full scale (s)	z(m)	t model (s)	z(cm)	t full scale (s)	z(m)	t model (s)	z(cm)	t full scale (s)	z(m)
14.52	0.134	162.3385352	0.17	16.16	0.18	180.6742926	0.224	17.	3 0.112	199.01005	0.14
14.54	0.151	162.562142	0.19	16.18	0.178	180.8978994	0.222	17.8	2 0.1	199.2336568	0.13
14 56	0 168	162 7857488	0.21	16.2	0 176	181 1215062	0 221	17.8	1 0 087	199 4572636	0 11
14.50	0.100	162.0002556	0.21	16.22	0.176	101.1215002	0.221	17.0	0.007	100 6909704	0.11
14.38	0.102	103.00933330	0.23	10.22	0.170	181.343113	0.22	17.8	0.073	199.0808704	0.09
14.6	0.196	163.2329624	0.24	16.24	0.1/6	181.568/198	0.221	17.8	8 0.056	199.9044772	0.07
14.62	0.207	163.4565692	0.26	16.26	0.176	181.7923266	0.219	17.	9 0.04	200.128084	0.05
14.64	0.215	163.680176	0.27	16.28	0.171	182.0159334	0.214	17.9	2 0.024	200.3516908	0.03
14.66	0.219	163.9037828	0.27	16.3	0.163	182,2395402	0.204	17.9	4 0.01	200.5752976	0.01
14.68	0 222	16/ 1273805	0.28	16.32	0.1/0	182 463147	0.186	17.0	5 _0	200 7080044	-0
14.00	0.222	104.1273833	0.20	10.32	0.145	102.403147	0.100	17.5	-0	200.7385044	-0
14.7	0.223	164.3509963	0.28	16.34	0.13	182.6867538	0.163	17.9	-0.02	201.0225112	-0
14.72	0.222	164.5746031	0.28	16.36	0.108	182.9103606	0.136	1	3 -0.03	201.246118	-0
14.74	0.222	164.7982099	0.28	16.38	0.086	183.1339674	0.108	18.0	-0.04	201.4697248	-0.1
14.76	0.221	165.0218167	0.28	16.4	0.065	183.3575742	0.081	18.0	4 -0.05	201.6933316	-0.1
14 78	0 218	165 2454235	0.27	16.42	0.046	183 581181	0.058	18.0	5 -0.07	201 9169384	-0.1
14.70	0.210	165.2454255	0.27	16.44	0.040	103.301101	0.030	10.0	0.07	201.5105504	0.1
14.8	0.213	165.4690303	0.27	16.44	0.031	183.8047878	0.039	18.0	5 -0.08	202.1405452	-0.1
14.82	0.207	165.6926371	0.26	16.46	0.019	184.0283945	0.024	18.	1 -0.09	202.364152	-0.1
14.84	0.197	165.9162439	0.25	16.48	0.008	184.2520013	0.01	18.1	2 -0.1	202.5877588	-0.1
14.86	0.184	166.1398507	0.23	16.5	-0	184.4756081	-0	18.1	4 -0.1	202.8113656	-0.1
14.88	0.168	166.3634575	0.21	16.52	-0.02	184.6992149	-0.02	18.1	6 -0.11	203.0349724	-0.1
14.0	0.151	166 5970642	0.10	16 54	0.02	194 0229217	0.04	10.1	0 1 2	202 2595702	0.1
14.9	0.131	100.3870043	0.15	10.34	-0.03	104.9220217	-0.04	10.1	0.12	203.2383792	-0.1
14.92	0.132	100.8100/11	0.17	10.50	-0.06	185.1464285	-0.07	18.	2 -0.12	203.482186	-0.1
14.94	0.113	167.0342779	0.14	16.58	-0.08	185.3700353	-0.1	18.2	2 -0.12	203.7057928	-0.2
14.96	0.094	167.2578847	0.12	16.6	-0.1	185.5936421	-0.12	18.2	4 -0.12	203.9293995	-0.1
14.98	0.075	167.4814915	0.09	16.62	-0.12	185.8172489	-0.15	18.2	5 -0.12	204.1530063	-0.1
15	0.057	167 7050983	0.07	16.64	-0.12	186 0408557	-0.17	18.2	8 -0.11	204 3766131	-0.1
15 00	0.037	167 0207054	0.07	16.04	0.13	106 2644625	0.10	10.2	0.11	204.5700131	0.1
15.02	0.039	107.928/051	0.05	10.00	-0.14	100.2044025	-0.18	18.	-0.11	204.0002199	-0.1
15.04	0.02	168.1523119	0.03	16.68	-0.15	186.4880693	-0.18	18.3	z -0.1	204.8238267	-0.1
15.06	0.001	168.3759187	0	16.7	-0.15	186.7116761	-0.19	18.3	4 -0.1	205.0474335	-0.1
15.08	-0.02	168.5995255	-0	16.72	-0.15	186.9352829	-0.19	18.3	-0.09	205.2710403	-0.1
15.1	-0.04	168 8231323	-0	16 74	-0.16	187 1588897	-0.2	18 3	3 -0.08	205 4946471	-0.1
15.1	-0.04	160 0/67201	_0 1	16 76	_0.10	187 3824065	_0.2	10	1 _0 07	205 7102520	-0.1
15.12	-0.06	103.040/391	-0.1	10.76	-0.10	107.3024905	-0.21	18.	0.07	203.7162539	-0.1
15.14	-0.08	169.2703459	-0.1	16.78	-0.17	187.6061033	-0.22	18.4	2 -0.06	205.9418607	-0.1
15.16	-0.1	169.4939527	-0.1	16.8	-0.18	187.8297101	-0.23	18.4	4 -0.05	206.1654675	-0.1
15.18	-0.12	169.7175595	-0.1	16.82	-0.19	188.0533169	-0.24	18.4	-0.03	206.3890743	-0
15.2	-0.13	169.9411663	-0.2	16.84	-0.19	188.2769237	-0.24	18.4	3 -0.02	206.6126811	-0
15.22	-0.15	170 1647731	-0.2	16.86	-0.19	188 5005305	-0.24	18	5 -0	206 8362879	-0
15.22	0.15	170.1047731	0.2	10.00	0.10	100.3003303	0.24	10.		200.0502075	0.00
15.24	-0.16	1/0.3883/99	-0.2	16.88	-0.19	188.7241373	-0.23	18.5	2 0.016	207.0598947	0.02
15.26	-0.18	170.6119867	-0.2	16.9	-0.18	188.9477441	-0.22	18.5	4 0.035	207.2835015	0.04
15.28	-0.19	170.8355935	-0.2	16.92	-0.16	189.1713509	-0.2	18.5	5 0.051	207.5071083	0.06
15.3	-0.2	171.0592003	-0.3	16.94	-0.15	189.3949577	-0.19	18.5	8 0.069	207.7307151	0.09
15.32	-0.21	171.2828071	-0.3	16.96	-0.14	189.6185645	-0.17	18.	6 0.087	207,9543219	0.11
15.34	-0.22	171 506/130	-03	16.08	-0.13	180 8/21713	-0.16	18.6	0 000	208 1770287	0.12
15.34	-0.22	171.3004133	-0.5	10.58	-0.13	100.0057701	-0.10	10.0	0.000	200.1775287	0.12
15.36	-0.23	1/1./30020/	-0.3	1/	-0.12	190.0657781	-0.15	18.6	4 0.109	208.4015355	0.14
15.38	-0.24	171.9536275	-0.3	17.02	-0.12	190.2893849	-0.14	18.6	5 0.115	208.6251423	0.14
15.4	-0.24	172.1772343	-0.3	17.04	-0.11	190.5129917	-0.13	18.6	8 0.119	208.8487491	0.15
15.42	-0.24	172.4008411	-0.3	17.06	-0.1	190.7365985	-0.12	18.	7 0.12	209.0723559	0.15
15 44	-0 24	172 6244479	-0.3	17.08	-0.08	190 9602053	-0.11	18 7	0 1 2 3	209 2959627	0.15
15.11	0.24	172.0211173	0.5	17.00	0.00	101 1020121	0.00	10.7	0.125	200.5105605	0.16
15.40	-0.24	172.8480347	-0.5	17.1	-0.07	191.1656121	-0.09	18.7	+ 0.125	209.5195695	0.10
15.48	-0.23	1/3.0/16615	-0.3	17.12	-0.06	191.40/4189	-0.07	18.7	0.128	209./431/63	0.16
15.5	-0.22	173.2952683	-0.3	17.14	-0.04	191.6310257	-0.05	18.7	8 0.133	209.9667831	0.17
15.52	-0.22	173.5188751	-0.3	17.16	-0.02	191.8546325	-0.03	18.	8 0.138	210.1903899	0.17
15.54	-0.21	173.7424819	-0.3	17.18	-0.01	192.0782393	-0.01	18.8	2 0.144	210.4139967	0.18
15 56	-0 10	173 9660886	-0.2	17 0	0.011	192 3018461	0.012	18 9	4 0 140	210 6376035	0 10
10.00	-0.19	17/ 1906054	_0.2	17.2	0.011	102 525/501	0.013	10.0	5 0 155	210.0570033	0.10
15.58	-0.18	174.1090954	-0.2	17.22	0.03	192.3234329	0.057	18.8	0.155	210.0012103	0.19
15.6	-0.17	1/4.4133022	-0.2	17.24	0.049	192./490597	U.U61	18.8	s 0.159	211.0848171	0.2
15.62	-0.15	174.636909	-0.2	17.26	0.067	192.9726665	0.084	18.	9 0.161	211.3084239	0.2
15.64	-0.14	174.8605158	-0.2	17.28	0.085	193.1962733	0.106	18.9	2 0.161	211.5320307	0.2
15.66	-0.12	175.0841226	-0.1	17.3	0.1	193.4198801	0.125	18.9	4 0.16	211.7556375	0.2
15.68	-0.1	175.3077294	-0.1	17 32	0.11	193.6434869	0.138	18 9	6 0.157	211.9792443	0.2
15.00	-0.02	175 5010060	-0.1	17.32	0 117	103 9670036	0 1 4 7	10.0	2 0 1 5 4	212 2020511	0.10
15.7	-0.08	175 75 4042	-0.1	17.54	0.117	104 0007004	0.147	10.9	0.134	212.2020311	0.19
15.72	-0.06	1/5./54943	-0.1	17.36	0.122	194.0907004	0.153		0.151	212.4264579	0.19
15.74	-0.04	175.9785498	-0.1	17.38	0.125	194.3143072	0.156	19.0	2 0.148	212.6500647	0.18
15.76	-0.02	176.2021566	-0	17.4	0.127	194.537914	0.159	19.0	4 0.145	212.8736715	0.18
15.78	-0	176.4257634	-0	17.42	0.13	194.7615208	0.163	19.0	5 0.141	213.0972783	0.18
15.8	0.017	176,6493702	0.02	17 44	0.136	194,9851276	0.17	19.0	3 0.135	213,3208851	0.17
15.0	0.026	176 87207	0.04	17.44	0 144	195 2007244	0 170	10	1 0 1 26	213 5444010	0.16
15.62	0.030	1/0.0/29//	0.04	17.46	0.144	155.2067544	0.1/9	19.	0.120	213.3444919	0.10
15.84	0.053	1/7.0965838	0.07	17.48	0.152	195.4323412	0.19	19.1	2 0.114	213.7680986	0.14
15.86	0.07	177.3201906	0.09	17.5	0.16	195.655948	0.2	19.1	4 0.099	213.9917054	0.12
15.88	0.086	177.5437974	0.11	17.52	0.167	195.8795548	0.208	19.1	6 0.081	214.2153122	0.1
15.9	0.101	177.7674042	0.13	17.54	0.173	196.1031616	0.216	19 1	8 0.065	214,438919	0.08
15 02	0 115	177 991011	0 14	17.54	0 176	196 3267684	0.22	10	2 0 040	214 6625258	0.06
15.52	0.110	170 24 404 70	0.14	17.30	0.170	106 5500750	0.222	19.	0.049	214.0023230	0.00
15.94	0.129	1/6.21461/8	0.10	17.58	0.1//	190.5503/52	0.222	19.2	2 0.035	214.8861326	0.04
15.96	0.143	178.4382246	0.18	17.6	0.177	196.773982	0.221	19.2	4 0.024	215.1097394	0.03
15.98	0.154	178.6618314	0.19	17.62	0.174	196.9975888	0.217	19.2	5 0.016	215.3333462	0.02
16	0.164	178.8854382	0.21	17.64	0.169	197.2211956	0.211	19.2	0.01	215.556953	0.01
16 02	0.172	179 109045	0.21	17.66	0.163	197,4448024	0.204	19	3 0.005	215,7805598	0.01
10.02	0.177	170 2220043	0.21	17.00	0.103	107 660 40024	0.105	19.		216.0044666	0.01
16.04	0.1//	1/9.3326518	0.22	17.68	U.156	197.6684092	0.195	19.3	<u> </u>	216.0041666	-0
16.06	0.181	179.5562586	0.23	17.7	0.149	197.892016	0.186	19.3	4 -0.01	216.2277734	-0
16.08	0.184	179.7798654	0.23	17.72	0.143	198.1156228	0.179	19.3	-0.02	216.4513802	-0
16.1	0.184	180.0034722	0.23	17.74	0.136	198.3392296	0.171	19.3	-0.03	216.674987	-0
16.12	0 182	180 227070	0.23	17 76	0 1 2 9	198 5628364	0 161	10	1 -0.04	216 8985028	-01
10.12	0.103	190 4500050	0.23	17.70	0.123	100 700 4400	0.101	19.	. 0.04	210.0303330	0.1
10.14	0.182	100.4500858	0.23	17.78	0.121	190./804432	0.152	19.4	∠ -U.Ub	217.1222006	-0.1

t model (s)	z(cm)	t full scale (s)	z(m)	t model (s)	z(cm)	t full scale (s)	z(m)	t model (s)	z(cm)	t full scale (s)	z(m)
2.52	-0.75	28.17445652	-0.9	4.28	-0.87	47.85185472	-1.09	6.04	-0.02	67.52925292	-0
2.54	-0.83	28.39806331	-1	4.3	-0.84	48.07546152	-1.05	6.06	0.037	67.75285972	0.05
2.56	-0.9	28.62167011	-1.1	4.32	-0.8	48.29906831	-1	6.08	0.09	67.97646652	0.11
2.58	-0.96	28.84527691	-1.2	4.34	-0.76	48.52267511	-0.95	6.1	0.141	68.20007331	0.18
2.6	-1.02	29.06888371	-1.3	4.36	-0.72	48.74628191	-0.9	6.12	0.191	68.42368011	0.24
2.62	-1.06	29.29249051	-1.3	4.38	-0.67	48.96988871	-0.83	6.14	0.238	68.64728691	0.3
2.64	-1.1	29.5160973	-1.4	4.4	-0.61	49.1934955	-0.77	6.16	0.283	68.87089371	0.35
2.66	-1.13	29.7397041	-1.4	4.42	-0.56	49.4171023	-0.69	6.18	0.324	69.0945005	0.41
2.68	-1.16	29.9633109	-1.4	4.44	-0.49	49.6407091	-0.62	6.2	0.362	69.3181073	0.45
2.7	-1.17	30.1869177	-1.5	4.46	-0.43	49.8643159	-0.54	6.22	0.396	69.5417141	0.5
2.72	-1.18	30.41052449	-1.5	4.48	-0.36	50.0879227	-0.45	6.24	0.426	69.7653209	0.53
2.74	-1.18	30.63413129	-1.5	4.5	-0.3	50.31152949	-0.37	6.26	0.453	69.9889277	0.57
2.76	-1.17	30.85773809	-1.5	4.52	-0.23	50.53513629	-0.28	6.28	0.476	70.21253449	0.59
2.78	-1.15	31.08134489	-1.4	4.54	-0.16	50.75874309	-0.2	6.3	0.495	70.43614129	0.62
2.8	-1.12	31.30495168	-1.4	4.56	-0.09	50.98234989	-0.11	6.32	0.51	70.65974809	0.64
2.82	-1.08	31.52855848	-1.3	4.58	-0.01	51.20595668	-0.02	6.34	0.521	70.88335489	0.65
2.84	-1.03	31.75216528	-1.3	4.6	0.057	51.42956348	0.071	6.36	0.528	71.10696168	0.66
2.86	-0.97	31.97577208	-1.2	4.62	0.128	51.65317028	0.16	6.38	0.53	71.33056848	0.66
2.88	-0.91	32.19937888	-1.1	4.64	0.197	51.87677708	0.246	6.4	0.528	71.55417528	0.66
2.9	-0.84	32.42298567	-1.1	4.66	0.263	52.10038388	0.329	6.42	0.521	71.77778208	0.65
2.92	-0.77	32.64659247	-1	4.68	0.327	52.32399067	0.409	6.44	0.508	72.00138888	0.64
2.94	-0.69	32.87019927	-0.9	4.7	0.388	52.54759747	0.485	6.46	0.492	72.22499567	0.61
2.96	-0.61	33.09380607	-0.8	4.72	0.444	52.77120427	0.555	6.48	0.47	72.44860247	0.59
2.98	-0.52	33.31741286	-0.6	4.74	0.496	52.99481107	0.62	6.5	0.445	72.67220927	0.56
3	-0.43	33.54101966	-0.5	4.76	0.544	53.21841786	0.68	6.52	0.415	72.89581607	0.52
3.02	-0.33	33.76462646	-0.4	4.78	0.586	53.44202466	0.733	6.54	0.382	73.11942286	0.48
3.04	-0.23	33.98823326	-0.3	4.8	0.623	53.66563146	0.779	6.56	0.347	73.34302966	0.43
3.06	-0.13	34.21184006	-0.2	4.82	0.656	53.88923826	0.82	6.58	0.31	73.56663646	0.39
3.08	-0.03	34.43544685	-0	4.84	0.685	54.11284506	0.856	6.6	0.271	73.79024326	0.34
3.1	0.066	34.65905365	0.08	4.86	0.71	54.33645185	0.887	6.62	0.23	74.01385006	0.29
3.12	0.163	34.88266045	0.2	4.88	0.73	54.56005865	0.912	6.64	0.187	74.23745685	0.23
3.14	0.257	35.10626725	0.32	4.9	0.744	54.78366545	0.931	6.66	0.141	74.46106365	0.18
3.16	0.35	35.32987404	0.44	4.92	0.753	55.00727225	0.941	6.68	0.093	74.68467045	0.12
3.18	0.439	35.55348084	0.55	4.94	0.754	55.23087904	0.942	6.7	0.043	74.90827725	0.05
3.2	0.524	35.77708764	0.66	4.96	0.748	55.45448584	0.935	6.72	-0.01	75.13188404	-0
3.22	0.606	36.00069444	0.76	4.98	0.735	55.67809264	0.919	6.74	-0.06	75.35549084	-0.1
3.24	0.685	36.22430124	0.86	5	0.716	55.90169944	0.895	6.76	-0.11	75.57909764	-0.1
3.26	0.758	36.44790803	0.95	5.02	0.692	56.12530624	0.866	6.78	-0.16	75.80270444	-0.2
3.28	0.825	36.67151483	1.03	5.04	0.665	56.34891303	0.831	6.8	-0.21	76.02631123	-0.3
3.3	0.886	36.89512163	1.11	5.06	0.632	56.57251983	0.791	6.82	-0.26	76.24991803	-0.3
3.32	0.94	37.11872843	1.18	5.08	0.597	56.79612663	0.746	6.84	-0.3	76.47352483	-0.4
3.34	0.987	37.34233522	1.23	5.1	0.558	57.01973343	0.698	6.86	-0.35	76.69713163	-0.4
3.36	1.027	37.56594202	1.28	5.12	0.515	57.24334022	0.644	6.88	-0.39	76.92073843	-0.5
3.38	1.059	37.78954882	1.32	5.14	0.468	57.46694702	0.585	6.9	-0.43	77.14434522	-0.5
3.4	1.084	38.01315562	1.35	5.16	0.416	57.69055382	0.52	6.92	-0.46	77.36795202	-0.6
3.42	1.101	38.23676242	1.38	5.18	0.359	57.91416062	0.449	6.94	-0.5	77.59155882	-0.6
3.44	1.11	38.46036921	1.39	5.2	0.297	58.13776741	0.372	6.96	-0.53	77.81516562	-0.7
3.46	1.111	38.68397601	1.39	5.22	0.234	58.36137421	0.292	6.98	-0.56	78.03877241	-0.7
3.48	1.103	38.90758281	1.38	5.24	0.168	58.58498101	0.211	7	-0.59	78.26237921	-0.7
3.5	1.088	39.13118961	1.36	5.26	0.103	58.80858781	0.128	7.02	-0.61	78.48598601	-0.8
3.52	1.066	39.3547964	1.33	5.28	0.038	59.03219461	0.048	7.04	-0.63	78.70959281	-0.8
3.54	1.036	39.5784032	1.29	5.3	-0.02	59.2558014	-0.03	7.06	-0.65	78.93319961	-0.8
3.56	0.999	39.80201	1.25	5.32	-0.09	59.4794082	-0.11	7.08	-0.66	79.1568064	-0.8
3.58	0.956	40.0256168	1.19	5.34	-0.14	59.703015	-0.18	7.1	-0.66	79.3804132	-0.8
3.6	0.907	40.24922359	1.13	5.36	-0.2	59.9266218	-0.25	7.12	-0.66	79.60402	-0.8
3.62	0.852	40.47283039	1.06	5.38	-0.26	60.15022859	-0.33	7.14	-0.66	79.8276268	-0.8
3.64	0.791	40.69643719	0.99	5.4	-0.32	60.37383539	-0.4	7.16	-0.65	80.05123359	-0.8
3.66	0.725	40.92004399	0.91	5.42	-0.37	60.59744219	-0.47	7.18	-0.65	80.27484039	-0.8
3.68	0.654	41.14365079	0.82	5.44	-0.43	60.82104899	-0.53	7.2	-0.63	80.49844719	-0.8
3.7	0.579	41.36725758	0.72	5.46	-0.48	61.04465579	-0.6	7.22	-0.62	80.72205399	-0.8
3.72	0.501	41.59086438	0.63	5.48	-0.53	61.26826258	-0.66	7.24	-0.6	80.94566079	-0.7
3.74	0.42	41.81447118	0.52	5.5	-0.57	61.49186938	-0.71	7.26	-0.58	81.16926758	-0.7
3.76	0.336	42.03807798	0.42	5.52	-0.61	61.71547618	-0.76	7.28	-0.55	81.39287438	-0.7
3.78	0.251	42.26168477	0.31	5.54	-0.64	61.93908298	-0.8	7.3	-0.52	81.61648118	-0.7
3.8	0.165	42.48529157	0.21	5.56	-0.67	62.16268977	-0.84	7.32	-0.49	81.84008798	-0.6
3.82	0.078	42.70889837	0.1	5.58	-0.69	62.38629657	-0.86	7.34	-0.45	82.06369477	-0.6
3.84	-0.01	42.93250517	-0	5.6	-0.71	62.60990337	-0.88	7.36	-0.41	82.28730157	-0.5
3.86	-0.09	43.15611197	-0.1	5.62	-0.72	62.83351017	-0.89	7.38	-0.38	82.51090837	-0.5
3.88	-0.18	43.37971876	-0.2	5.64	-0.72	63.05711697	-0.9	7.4	-0.34	82.73451517	-0.4
3.9	-0.26	43.60332556	-0.3	5.66	-0.72	63.28072376	-0.9	7.42	-0.3	82.95812197	-0.4
3.92	-0.34	43.82693236	-0.4	5.68	-0.71	63.50433056	-0.89	7.44	-0.26	83.18172876	-0.3
3.94	-0.41	44.05053916	-0.5	5.7	-0.7	63.72793736	-0.88	7.46	-0.22	83.40533556	-0.3
3.96	-0.48	44.27414595	-0.6	5.72	-0.69	63.95154416	-0.86	7.48	-0.18	83.62894236	-0.2
3.98	-0.55	44.49775275	-0.7	5.74	-0.67	64.17515095	-0.84	7.5	-0.14	83.85254916	-0.2
4	-0.61	44.72135955	-0.8	5.76	-0.65	64.39875775	-0.81	7.52	-0.1	84.07615595	-0.1
4.02	-0.67	44.94496635	-0.8	5.78	-0.62	64.62236455	-0.78	7.54	-0.06	84.29976275	-0.1
4.04	-0.72	45.16857315	-0.9	5.8	-0.59	64.84597135	-0.74	7.56	-0.02	84.52336955	-0
4.06	-0.77	45.39217994	-1	5.82	-0.56	65.06957815	-0.7	7.58	0.018	84.74697635	0.02
4.08	-0.81	45.61578674	-1	5.84	-0.52	65.29318494	-0.65	7.6	0.054	84.97058314	0.07
4.1	-0.85	45.83939354	-1.1	5.86	-0.48	65.51679174	-0.6	7.62	0.087	85.19418994	0.11
4.12	-0.87	46.06300034	-1.1	5.88	-0.43	65.74039854	-0.54	7.64	0.117	85.41779674	0.15
4.14	-0.9	46.28660713	-1.1	5.9	-0.38	65.96400534	-0.48	7.66	0.145	85.64140354	0.18
4.16	-0.91	46.51021393	-1.1	5.92	-0.33	66.18761213	-0.42	7.68	0.17	85.86501034	0.21
4.18	-0.92	46.73382073	-1.2	5.94	-0.28	66.41121893	-0.36	7.7	0.193	86.08861713	0.24
4.2	-0.93	46.95742753	-1.2	5.96	-0.23	66.63482573	-0.29	7.72	0.213	86.31222393	0.27
4.22	-0.92	47.18103433	-1.2	5.98	-0.18	66.85843253	-0.23	7.74	0.231	86.53583073	0.29
4.24	-0.91	47.40464112	-1.1	6	-0.13	67.08203932	-0.16	7.76	0.247	86.75943753	0.31
4.26	-0.89	47.62824792	-1.1	6.02	-0.07	67.30564612	-0.09	7.78	0.259	86.98304432	0.32

t model (s)	z(cm)	t full scale (s)	z(m)	t model (s)	z(cm)	t full scale (s)	z(m)	t model (s)	z(cm)	t full scale (s)	z(m)
7.8	0.269	87.20665112	0.34	9.56	0.033	106.8840493	0.041	11.32	-0.19	126.5614475	-0.2
7.82	0.276	87.43025792	0.34	9.58	0.007	107.1076561	0.009	11.34	-0.2	126.7850543	-0.2
7.84	0.279	87.65386472	0.35	9.6	-0.02	107.3312629	-0.02	11.36	-0.21	127.0086611	-0.3
7.86	0.279	87.87747152	0.35	9.62	-0.04	107.5548697	-0.06	11.38	-0.22	127.2322679	-0.3
7.88	0.274	88.10107831	0.34	9.64	-0.07	107.7784765	-0.09	11.4	-0.22	127.4558747	-0.3
7.9	0.200	88 54829191	0.33	9.60	-0.1	108.0020833	-0.12	11.42	-0.22	127.0794813	-0.3
7.94	0.237	88 77189871	0.52	9.00	-0.12	108 4492969	-0.19	11.44	-0.23	128 1266951	-0.3
7.96	0.237	88 9955055	0.27	9.72	-0.18	108.4452505	-0.22	11.40	-0.23	128 3503019	-0.3
7.98	0.192	89 2191123	0.27	9.74	-0.2	108.8965105	-0.25	11.40	-0.22	128 5739087	-0.3
7.50	0.152	89 4427191	0.24	9.76	-0.23	109 1201173	-0.25	11.52	-0.22	128 7975155	-0.3
8.02	0.104	89 6663259	0.21	9.78	-0.25	109 3437241	-0.31	11.52	-0.21	120.7575155	-0.3
8.04	0.108	89 8899327	0.17	9.9	-0.27	109 5673309	-0.34	11.54	-0.21	129 2447291	-0.3
8.06	0.08	90 11353949	0.1	9.82	-0.29	109 7909377	-0.36	11.50	-0.2	129 4683359	-0.2
8.08	0.052	90 33714629	0.07	9.84	-0.3	110 0145445	-0.38	11.50	-0.19	129 6919427	-0.2
8.1	0.023	90 56075309	0.03	9.86	-0.32	110 2381513	-0.39	11.62	-0.17	129 9155495	-0.2
8.12	-0.01	90,78435989	-0	9.88	-0.33	110.4617581	-0.41	11.64	-0.16	130,1391563	-0.2
8 14	-0.04	91 00796668	-0.1	9.00	-0.34	110 6853649	-0.42	11.66	-0.15	130 3627631	-0.2
8.16	-0.08	91.23157348	-0.1	9,92	-0.35	110.9089717	-0.43	11.68	-0.13	130.5863699	-0.2
8.18	-0.12	91.45518028	-0.2	9.94	-0.35	111.1325785	-0.44	11.7	-0.11	130.8099767	-0.1
8.2	-0.16	91.67878708	-0.2	9.96	-0.36	111.3561853	-0.44	11.72	-0.09	131.0335835	-0.1
8.22	-0.2	91.90239388	-0.3	9.98	-0.36	111.5797921	-0.45	11.74	-0.07	131.2571903	-0.1
8.24	-0.24	92.12600067	-0.3	10	-0.36	111.8033989	-0.45	11.76	-0.05	131.4807971	-0.1
8.26	-0.28	92.34960747	-0.3	10.02	-0.35	112.0270057	-0.44	11.78	-0.03	131.7044039	-0
8.28	-0.31	92.57321427	-0.4	10.04	-0.35	112.2506125	-0.44	11.8	-0.01	131.9280107	-0
8.3	-0.34	92.79682107	-0.4	10.06	-0.34	112.4742193	-0.42	11.82	0.01	132.1516175	0.01
8.32	-0.37	93.02042786	-0.5	10.08	-0.33	112.6978261	-0.41	11.84	0.031	132.3752243	0.04
8.34	-0.4	93.24403466	-0.5	10.1	-0.32	112.9214329	-0.39	11.86	0.051	132.5988311	0.06
8.36	-0.42	93.46764146	-0.5	10.12	-0.3	113.1450397	-0.38	11.88	0.069	132.8224379	0.09
8.38	-0.45	93.69124826	-0.6	10.14	-0.29	113.3686465	-0.36	11.9	0.087	133.0460447	0.11
8.4	-0.48	93.91485505	-0.6	10.16	-0.27	113.5922533	-0.34	11.92	0.103	133.2696515	0.13
8.42	-0.5	94.13846185	-0.6	10.18	-0.25	113.8158601	-0.31	11.94	0.118	133.4932583	0.15
8.44	-0.52	94.36206865	-0.7	10.2	-0.23	114.0394669	-0.29	11.96	0.132	133.7168651	0.17
8.46	-0.54	94.58567545	-0.7	10.22	-0.21	114.2630737	-0.26	11.98	0.145	133.9404719	0.18
8.48	-0.56	94.80928225	-0.7	10.24	-0.19	114.4866804	-0.23	12	0.158	134.1640786	0.2
8.5	-0.57	95.03288904	-0.7	10.26	-0.16	114.7102872	-0.2	12.02	0.17	134.3876854	0.21
8.52	-0.58	95.25649584	-0.7	10.28	-0.14	114.933894	-0.17	12.04	0.181	134.6112922	0.23
8.54	-0.59	95.48010264	-0.7	10.3	-0.11	115.1575008	-0.14	12.06	0.191	134.834899	0.24
8.56	-0.59	95.70370944	-0.7	10.32	-0.08	115.3811076	-0.1	12.08	0.201	135.0585058	0.25
8.58	-0.58	95.92731623	-0.7	10.34	-0.05	115.6047144	-0.07	12.1	0.208	135.2821126	0.26
8.6	-0.58	96.15092303	-0.7	10.36	-0.03	115.8283212	-0.03	12.12	0.213	135.5057194	0.27
8.62	-0.57	96.37452983	-0.7	10.38	0.003	116.051928	0.004	12.14	0.216	135.7293262	0.27
8.64	-0.56	96.59813663	-0.7	10.4	0.032	116.2755348	0.04	12.16	0.218	135.952933	0.27
8.66	-0.54	96.82174343	-0.7	10.42	0.061	116.4991416	0.077	12.18	0.217	136.1765398	0.27
8.68	-0.53	97.04535022	-0.7	10.44	0.091	116.7227484	0.114	12.2	0.214	136.4001466	0.27
8.7	-0.51	97.26895702	-0.6	10.46	0.12	116.9463552	0.15	12.22	0.209	136.6237534	0.26
8.72	-0.49	97.49256382	-0.6	10.48	0.145	117.169962	0.182	12.24	0.203	136.8473602	0.25
8.74	-0.46	97.71617062	-0.6	10.5	0.169	117.3935688	0.212	12.26	0.195	137.070967	0.24
8.76	-0.43	97.93977741	-0.5	10.52	0.192	117.6171756	0.24	12.28	0.186	137.2945738	0.23
8.78	-0.4	98.16338421	-0.5	10.54	0.212	117.8407824	0.265	12.3	0.176	137.5181806	0.22
8.8	-0.37	98.38699101	-0.5	10.56	0.231	118.0643892	0.289	12.32	0.164	137.7417874	0.21
8.82	-0.34	98.61059781	-0.4	10.58	0.251	118.287996	0.314	12.34	0.152	137.9653942	0.19
8.84	-0.31	98.83420461	-0.4	10.6	0.269	118.5116028	0.336	12.36	0.139	138.189001	0.17
8.86	-0.27	99.0578114	-0.3	10.62	0.284	118.7352096	0.355	12.38	0.125	138.4126078	0.16
8.88	-0.24	99.2814182	-0.3	10.64	0.296	118.9588164	0.37	12.4	0.109	138.6362146	0.14
8.9	-0.21	99.505025	-0.3	10.66	0.305	119.1824232	0.381	12.42	0.092	138.8598214	0.12
8.92	-0.18	99.7286318	-0.2	10.68	0.308	119.40603	0.385	12.44	0.074	139.0834282	0.09
8.94	-0.14	33.35223859	-0.2	10.7	0.31	110.0522405	0.387	12.46	0.056	139.30/035	0.07
8.96	-0.00	100.1758454	-0.1	10.72	0.31	120.070000	0.38/	12.48	0.038	139.5306418	0.05
5.98	-0.05	100.3994522	-0.1	10.74	0.308	120.0708504	0.385	12.5	0.02	120 0770554	0.03
9	-0.05	100.023039	-0.1	10.76	0.304	120.3004572	0.38	12.52	_0.002	140 2014622	_0
9.02	0.02	101 0702726	0-0	10.78	0.301	120.324004	0.370	12.54	-0.01	140 425060	-0
9.04	0.046	101.2938794	0.06	10.87	0.291	120.9712776	0.363	12.50	-0.05	140.6486758	-0.1
9.08	0,076	101.5174862	0.09	10.84	0,283	121,1948844	0.354	12.50	-0.07	140,8722826	-0.1
9.1	0.103	101.741093	0.13	10.86	0.273	121.4184912	0.342	12.62	-0.08	141.0958894	-0.1
9.12	0.129	101.9646998	0.16	10.88	0.261	121.642098	0.326	12.64	-0.1	141.3194962	-0.1
9.14	0.151	102.1883066	0.19	10.9	0.245	121.8657048	0.306	12.66	-0.12	141.543103	-0.1
9.16	0.169	102.4119134	0.21	10.92	0.225	122.0893116	0.281	12.68	-0.13	141.7667098	-0.2
9.18	0.184	102.6355202	0.23	10.94	0.203	122.3129184	0.254	12.7	-0.15	141.9903166	-0.2
9.2	0.196	102.859127	0.25	10.96	0.179	122.5365252	0.224	12.72	-0.16	142.2139234	-0.2
9.22	0.206	103.0827338	0.26	10.98	0.154	122.760132	0.193	12.74	-0.18	142.4375302	-0.2
9.24	0.214	103.3063406	0.27	11	0.129	122.9837388	0.161	12.76	-0.19	142.661137	-0.2
9.26	0.219	103.5299474	0.27	11.02	0.106	123.2073456	0.132	12.78	-0.19	142.8847438	-0.2
9.28	0.223	103.7535542	0.28	11.04	0.084	123.4309524	0.105	12.8	-0.2	143.1083506	-0.2
9.3	0.225	103.977161	0.28	11.06	0.065	123.6545592	0.081	12.82	-0.2	143.3319574	-0.3
9.32	0.224	104.2007678	0.28	11.08	0.046	123.878166	0.057	12.84	-0.21	143.5555642	-0.3
9.34	0.221	104.4243745	0.28	11.1	0.027	124.1017728	0.033	12.86	-0.21	143.779171	-0.3
9.36	0.215	104.6479813	0.27	11.12	0.007	124.3253795	0.009	12.88	-0.21	144.0027778	-0.3
9.38	0.206	104.8715881	0.26	11.14	-0.01	124.5489863	-0.02	12.9	-0.21	144.2263845	-0.3
9.4	0.194	105.0951949	0.24	11.16	-0.04	124.7725931	-0.05	12.92	-0.21	144.4499913	-0.3
9.42	0.18	105.3188017	0.22	11.18	-0.06	124.9961999	-0.08	12.94	-0.21	144.6735981	-0.3
9.44	0.164	105.5424085	0.2	11.2	-0.09	125.2198067	-0.11	12.96	-0.21	144.8972049	-0.3
9.46	0.145	105.7660153	0.18	11.22	-0.11	125.4434135	-0.14	12.98	-0.2	145.1208117	-0.3
9.48	0.125	105.9896221	0.16	11.24	-0.13	125.6670203	-0.16	13	-0.19	145.3444185	-0.2
9.5	0.104	106.2132289	0.13	11.26	-0.15	125.8906271	-0.19	13.02	-0.19	145.5680253	-0.2
9.52	0.081	106.4368357	0.1	11.28	-0.16	126.1142339	-0.21	13.04	-0.17	145.7916321	-0.2
9.54	0.057	106.6604425	0.07	11.3	-0.18	126.3378407	-0.22	13.06	-0.16	146.0152389	-0.2

t model (s)	z(cm)	t full scale (s)	z(m)	t	model (s)	z(cm)	t full scale (s)	z(m)	t model (s)	z(cm)	t full scale (s)	z(m)
13.08	-0.15	146.2388457	-0.2		14.6	-0.06	163.2329624	-0.08	16.12	0.011	180.227079	0.01
13.1	-0.13	146.4624525	-0.2		14.62	-0.04	163.4565692	-0.06	16.14	0.021	180.4506858	0.03
13.12	-0.11	146.6860593	-0.1		14.64	-0.03	163.680176	-0.04	16.16	0.031	180.6742926	0.04
13.14	-0.1	146.9096661	-0.1		14.66	-0.01	163.9037828	-0.02	16.18	0.04	180.8978994	0.05
13.16	-0.08	147,1332729	-0.1		14.68	0.001	164,1273895	0.001	16.2	0.049	181,1215062	0.06
13 18	-0.07	147 3568797	-0.1	-	14.7	0.015	164 3509963	0.019	16.22	0.057	181 345113	0.07
13.2	-0.05	147 5804865	-0.1	_	14 72	0.028	164 5746031	0.035	16.24	0.065	181 5687198	0.08
13.2	-0.03	147.5004005	-0.1	-	14.72	0.028	164.7082000	0.035	16.24	0.003	181 7023266	0.00
12.22	0.04	149.0277001	0	-	14.74	0.04	165 0219167	0.05	16.20	0.070	192 0150224	0.05
13.24	-0.02	148.0277001	-0	-	14.70	0.032	165.0218107	0.000	16.28	0.075	182.0135334	0.1
13.20	-0.01	148.2515009	-0	-	14.78	0.064	105.2454255	0.08	10.5	0.085	162.2595402	0.11
13.28	0.01	148.4749137	0.01	_	14.8	0.075	165.4690303	0.094	16.32	0.089	182.463147	0.11
13.3	0.026	148.6985205	0.03	_	14.82	0.086	165.6926371	0.108	16.34	0.092	182.686/538	0.11
13.32	0.042	148.9221273	0.05	_	14.84	0.097	165.9162439	0.121	16.36	0.094	182.9103606	0.12
13.34	0.058	149.1457341	0.07		14.86	0.107	166.1398507	0.133	16.38	0.095	183.1339674	0.12
13.36	0.073	149.3693409	0.09		14.88	0.116	166.3634575	0.146	16.4	0.096	183.3575742	0.12
13.38	0.087	149.5929477	0.11		14.9	0.126	166.5870643	0.158	16.42	0.10	183.581181	0.12
13.4	0.099	149.8165545	0.12		14.92	0.135	166.8106711	0.169	16.44	0.095	183.8047878	0.12
13.42	0.11	150.0401613	0.14		14.94	0.144	167.0342779	0.18	16.46	0.095	184.0283945	0.12
13.44	0.119	150.2637681	0.15		14.96	0.15	167.2578847	0.188	16.48	0.093	184.2520013	0.12
13.46	0.125	150.4873749	0.16		14.98	0.155	167.4814915	0.194	16.5	0.09	184.4756081	0.11
13.48	0.131	150.7109817	0.16		15	0.158	167.7050983	0.197	16.52	0.087	184.6992149	0.11
13.5	0.137	150.9345885	0.17		15.02	0.159	167.9287051	0.199	16.54	0.083	184.9228217	0.1
13.52	0.141	151.1581953	0.18		15.04	0.159	168.1523119	0.199	16.56	0.078	185.1464285	0.1
13 54	0.144	151.3818021	0.18		15.06	0.158	168.3759187	0.198	16 58	0,073	185.3700353	0.09
13.54	0 147	151 6054089	0.18		15.00	0 157	168 5995255	0 197	16.50	0.068	185 5936421	0.02
12 50	0 1/9	151 8200157	0.10		15.00	0.150	168 8721272	0.10/	16.62	0.000	185 8172/00	0.00
13.38	0.140	152 05250157	0.19	⊢⊢	15.1	0.155	160.0231323	0.194	10.02	0.001	186 0400557	0.00
13.0	0.149	152.0520225	0.19	⊢⊢	15.12	0.152	160 2702450	0.19	10.04	0.054	196.0408557	0.07
13.62	0.148	152.2762293	0.19	⊢⊢	15.14	0.147	169.2703459	0.184	16.66	0.046	186.2644625	0.06
13.64	0.147	152.4998361	0.18		15.16	0.141	169.4939527	0.1/6	16.68	0.037	186.4880693	0.05
13.66	0.145	152.7234429	0.18	_	15.18	0.133	169./1/5595	0.166	16.7	0.027	186./116/61	0.03
13.68	0.143	152.9470497	0.18	_	15.2	0.124	169.9411663	0.155	16.72	0.017	186.9352829	0.02
13.7	0.14	153.1706565	0.18	_	15.22	0.114	170.1647731	0.143	16.74	0.006	187.1588897	0.01
13.72	0.135	153.3942633	0.17		15.24	0.104	170.3883799	0.13	16.76	-0.01	187.3824965	-0
13.74	0.129	153.6178701	0.16		15.26	0.093	170.6119867	0.116	16.78	-0.02	187.6061033	-0
13.76	0.121	153.8414769	0.15		15.28	0.082	170.8355935	0.102	16.8	-0.03	187.8297101	-0
13.78	0.111	154.0650836	0.14		15.3	0.07	171.0592003	0.088	16.82	-0.04	188.0533169	-0.1
13.8	0.099	154.2886904	0.12		15.32	0.059	171.2828071	0.074	16.84	-0.05	188.2769237	-0.1
13.82	0.086	154.5122972	0.11		15.34	0.047	171.5064139	0.059	16.86	-0.06	188.5005305	-0.1
13.84	0.072	154.735904	0.09		15.36	0.036	171.7300207	0.045	16.88	-0.07	188.7241373	-0.1
13.86	0.057	154.9595108	0.07		15.38	0.025	171.9536275	0.031	16.9	-0.08	188.9477441	-0.1
13.88	0.041	155.1831176	0.05		15.4	0.013	172.1772343	0.017	16.92	-0.09	189.1713509	-0.1
13.9	0.026	155,4067244	0.03		15.42	0.002	172.4008411	0.002	16.94	-0.1	189.3949577	-0.1
13 92	0.01	155 6303312	0.01	-	15 44	-0.01	172 6244479	-0.01	16.96	-0.11	189 6185645	-0.1
13 94	-0	155 853938	-0	-	15.46	-0.02	172 8480547	-0.03	16.98	-0.11	189 8421713	-0.1
13.96	-0.02	156 0775448	-0	_	15.48	-0.03	173 0716615	-0.04	17	-0.12	190.0657781	-0.2
13.98	-0.03	156 3011516	-0	_	15.5	-0.04	173 2952683	-0.05	17 02	-0.13	190 2893849	-0.2
14	-0.05	156 5247584	-0.1	-	15 52	-0.05	173 5188751	-0.07	17.02	-0.13	190 5129917	-0.2
14.02	-0.05	156 7483652	-0.1	-	15.52	-0.05	173 7/2/810	-0.08	17.04	-0.14	100 7365085	-0.2
14.02	-0.00	156 071072	-0.1		15.34	-0.00	172 0660006	-0.08	17.00	-0.14	100.0603053	-0.2
14.04	-0.06	157 1055 700	-0.1	⊢⊢	15.30	-0.07	174 1906054	-0.09	17.08	0.14	101 1020124	-0.2
14.06	-0.09	157.1955/88	-0.1		15.58	-0.08	174.1890954	-0.1	17.1	-0.15	191.1838121	-0.2
14.08	-0.1	157.4191856	-0.1	⊢⊢	15.6	-0.09	1/4.4133022	-0.11	17.12	-0.15	191.4074189	-0.2
14.1	-0.11	157.642/924	-0.1		15.62	-0.1	1/4.636909	-0.12	1/.14	-0.15	191.6310257	-0.2
14.12	-0.12	157.8663992	-0.2	⊢⊢	15.64	-0.1	1/4.8605158	-0.13	17.16	-0.15	191.8546325	-0.2
14.14	-0.13	158.090006	-0.2	-	15.66	-0.11	1/5.0841226	-0.14	17.18	-0.15	192.0782393	-0.2
14.16	-0.14	158.3136128	-0.2	L	15.68	-0.11	175.3077294	-0.14	17.2	-0.15	192.3018461	-0.2
14.18	-0.15	158.5372196	-0.2		15.7	-0.12	175.5313362	-0.15	17.22	-0.15	192.5254529	-0.2
14.2	-0.16	158.7608264	-0.2		15.72	-0.12	175.754943	-0.15	17.24	-0.15	192.7490597	-0.2
14.22	-0.16	158.9844332	-0.2	L	15.74	-0.12	175.9785498	-0.15	17.26	-0.15	192.9726665	-0.2
14.24	-0.16	159.20804	-0.2	L	15.76	-0.12	176.2021566	-0.15	17.28	-0.14	193.1962733	-0.2
14.26	-0.17	159.4316468	-0.2	Ľ	15.78	-0.12	176.4257634	-0.15	17.3	-0.14	193.4198801	-0.2
14.28	-0.17	159.6552536	-0.2	[15.8	-0.12	176.6493702	-0.15	17.32	-0.13	193.6434869	-0.2
14.3	-0.17	159.8788604	-0.2	Γ	15.82	-0.12	176.872977	-0.15	17.34	-0.13	193.8670936	-0.2
14.32	-0.17	160.1024672	-0.2	ΙĒ	15.84	-0.11	177.0965838	-0.14	17.36	-0.12	194.0907004	-0.2
14.34	-0.17	160.326074	-0.2	Γ	15.86	-0.11	177.3201906	-0.13	17.38	-0.11	194.3143072	-0.1
14.36	-0.17	160.5496808	-0.2		15.88	-0.1	177.5437974	-0.13	17.4	-0.11	194.537914	-0.1
14.38	-0.16	160.7732876	-0.2		15.9	-0.09	177.7674042	-0.12	17.42	-0.1	194.7615208	-0.1
14.4	-0.16	160,9968944	-0.2		15.92	-0.09	177.991011	-0.11	17.44	-0.09	194,9851276	-0.1
1/ /2	-0.15	161 2205012	-0.2	ŀ	15.02	-0.02	178 21/6170	_0.11	17.44	-0.02	195 20872//	-0.1
14.42	-0.15	161 444100	-0.2		15.54	-0.00	178 /2002//6	-0.00	17.40	-0.07	105 /200/ 344	_0.1
14.44	-0.13	161 66771 40	-0.2		15.90	-0.07	178 6610214	-0.09	17.40	-0.07	105 655049	-0.1
14.40	-0.14	161 0012240	-0.2	⊢⊢	15.98	-0.07	170.0018314	-0.08	17.5	105 4	-0.03/516943	-0.1
14.48	-0.13	162.11.0913216	-0.2	⊢⊢	16	-0.06	170.0054382	-0.07	17.48	195.4	-0.034516842	-0
14.5	-0.12	162.1149284	-0.2	-	16.02	-0.05	1/9.109045	-0.06	17.5	195.7	-0.02939/111	-0
14.52	-0.11	162.3385352	-0.1		16.04	-0.04	1/9.3326518	-0.05				
14.54	-0.1	162.562142	-0.1		16.06	-0.02	1/9.5562586	-0.03				
14.56	-0.09	162.7857488	-0.1		16.08	-0.01	179.7798654	-0.02				
14.58	-0.08	163.0093556	-0.1		16.1	-0	180.0034722	-0				

LAMPIRAN C

CODING MATLAB PENGOLAHAN DATA EKSPERIMEN

```
clear;clc;close all
filename = uigetfile('D*.xls', 'Pilih File');
A = xlsread(filename);
t = A(2:end, 1); q = A(2:end, 2);
k = 1: length(q); sfr = 1/(t(2)-t(1));
lenk = length(q);
     = find( (q(1:lenk-1) < 0 ) & (q(2:lenk) > 0 ) );
jup
njup = length( jup ) ;
nwave = njup - 1;
xf1
      = k(jup) + q(jup)' ./ ( q(jup)' - q(1+jup)' );
Т1
      = diff( xf1);
Т
      = T1 / sfr ;
Τn
     = mean(T);
for ii=1:nwave
       = [ jup(ii) : jup(ii+1) ] ;
    jj
    [y2max(ii), x2max(ii)] = max(q(jj));
    [ y2min(ii), x2min(ii) ] = min(q(jj));
end
Q=[y2max',y2min'];
8----
for i=1:length(Q)
    pmax = find(q==y2max(i));
    pmaxi(i)=pmax(end);
    pmin = find(q==y2min(i));
    pmini(i)=pmin(end);
end
% qp qm dqm lihat di buku futai no ryutai riki gaku
%positif
qp = Q(:, 1);
qm = abs((qp(1:end-1)+qp(2:end))/2);
dqm= abs(qp(1:end-1)-qp(2:end));
%negatif
qn = Q(:, 2);
qmn = abs((qn(1:end-1)+qn(2:end))/2);
dqmn= abs(qn(1:end-1)-qn(2:end));
y0 = y2max(1); yn = y2max(end);
py0= find(y2max==y0);
n = length(y2max)-py0;
d=1/n*\log(y0/yn);
s=1/sqrt(1+(2*pi/d)^2);
plot(t,q,t(pmaxi),y2max,'o',t(pmini),y2min,'o');grid
text(10,1.2,['Tn = ',num2str(Tn),' sec, Damp.ratio =
',num2str(s)]);
X = 0:0.25:3;
p1 = polyfit(qm,dqm./qm,1)
a = p1(1); b = p1(2); \& y = ax + b
Y = a * X + b;
```

```
figure(2)
h=plot(qm,dqm./qm,'ko',X,Y,'k-');
pn = {'Linewidth'};
pv = \{2\};
set(h,pn,pv);
set(gca, 'FontWeight', 'bold', 'FontSize', 12, 'LineWidth', 2);
grid;xlabel('\phi m', 'FontWeight', 'bold', 'FontSize',14);
ylabel('\Delta\phi / \phi m', 'FontWeight', 'bold', 'FontSize', 14);
p2 = polyfit([qm;qmn;0],[dqm;dqmn;0],2)
a = p2(2); b = p2(1);
Y = b*X.^2 + a*X; % y = bx^2 + ax
Nm = dqm./qm.^2;
Nmn = dqmn./qmn.^2;
N = a./X(2:end) + b;
figure(3)
h=plot(qm,dqm,'ko',qmn,dqmn,'ks',X,Y,'k-');
pn = {'Linewidth'};
pv = \{2\};
set(h,pn,pv);
set(gca, 'FontWeight', 'bold', 'FontSize', 12, 'LineWidth', 2);
legend('maxima','minima');
grid;xlabel('\phi m', 'FontWeight', 'bold', 'FontSize',14);
ylabel('\Delta\phi', 'FontWeight', 'bold', 'FontSize', 14);
text(0.5,0.7,['\Delta\phi = ',num2str(b),'\phi m^2+
',num2str(abs(a)),'\phi m'],'FontWeight','bold','FontSize',14);
k = \log(qp(1:end-1)./qp(2:end));
figure(4)
plot(qm, k, 'o');
```

```
XY = [X',Y']
XN= [(X(2:end))',N']
qmqmndqmdqmnNmNmn = [qm,qmn,dqm,dqmn,Nm,Nmn]
```

LAMPIRAN D

TABEL PERHITUNGAN PENGOLAHAN DATA EKSPERIMEN

HASIL PENGOLAHAN DATA EKSPERIMEN

➢ Grafik PQ Analysis

TABEL PERHITUNGAN ANALISIS RESPON

	SPA	٩R		S	PAR + He	eave Plat	te
ωn	bf			ωn	bf		
0.397	0.029			0.386	0.043		
ζz0/ζzs	ω	ω/ωn	εz	ζz0/ζzs	ω	ω/ωn	εz
1.00	0.0	0.00	0.00	1.00	0.0	0.00	0.00
1.07	0.1	0.25	0.90	1.07	0.1	0.26	1.36
1.34	0.2	0.50	2.26	1.37	0.2	0.52	3.47
2.32	0.3	0.76	5.89	2.51	0.3	0.78	9.52
16.33	0.4	1.01	106.18	10.57	0.4	1.04	129.41
1.68	0.5	1.26	172.89	1.47	0.5	1.29	170.70
0.77	0.6	1.51	176.08	0.71	0.6	1.55	174.63
0.47	0.7	1.76	177.21	0.44	0.7	1.81	176.12
0.33	0.8	2.02	177.80	0.30	0.8	2.07	176.92
0.24	0.9	2.27	178.17	0.23	0.9	2.33	177.42
0.19	1.0	2.52	178.43	0.18	1.0	2.59	177.78
0.15	1.1	2.77	178.62	0.14	1.1	2.85	178.04
0.12	1.2	3.03	178.76	0.12	1.2	3.11	178.24
0.10	1.3	3.28	178.88	0.10	1.3	3.37	178.40
0.09	1.4	3.53	178.97	0.08	1.4	3.63	178.54
0.08	1.5	3.78	179.05	0.07	1.5	3.88	178.65
0.07	1.6	4.03	179.12	0.06	1.6	4.14	178.74

PERHITUNGAN TOTAL

	Tanpa	Dengan
Parameter	Heave Plate	Heave Plate
Logarithmic		
Decrement (👌 =	0.18	0.27
Draught + plate=	139.875	
Draught=	139.25	139.875
Skala=	125	
N =	15	11
Amp.Punc -1 =	0.2012	0.1986
Amp.Punc =	0.1951	0.1858
H-D=	15	
Tebal Heave Plate		
(Model)=	0.005	
Tebal Heave Plate	0.625	
(Full Scale)=	0.025	
Ds=	17.5	
Dd=	22.75	
Model kg M=	16.358	16.503
Full Scale kg M=	31949218.8	32232421.9
t M=	31949.22	32232.42
Z=	4.63	
Aw=	240.53	
Displacement=	28251.10	28534.30
A33=	1435	2536
p=	0.1421	0.2992
=p	5.571	8.693

TABEL PERHITUNGAN HEAVE DAMPING DARI EKSPERIMEN FREE DECAY TEST

SPAR

Fungsi amplitudo puncak (peak - up):

Cuela (n)	Time (a)	Amplitude	Interval time	Logarithmic	Damping	Heave Frequency	Heave Frequency	Natural Heave Period	Heave Added	Coeff. Added	Heave	Coeff.
Cycle (n)	rime (s)	(m)	per cycle (s)	Decrement	Ratio (ζ)	(damped) (rad/s)	(undamped) (rad/s)	(undamped) (s)	Mass (ton)	Mass	Damping	Damping
0	5.367	2.538	-	-	-	-	-	-	-	-	-	-
1	21.913	2.022	16.547	0.227	0.036	0.380	0.380	16.536	4492.015	0.123	999.433	0.014
2	36.672	1.604	14.758	0.229	0.036	0.426	0.426	14.748	-2962.070	0.102	900.765	0.016
3	54.113	1.308	17.441	0.221	0.035	0.360	0.360	17.431	8540.784	0.211	1026.198	0.013
4	69.989	1.101	15.876	0.209	0.033	0.396	0.396	15.867	1603.896	0.048	882.727	0.013
5	86.312	0.866	16.323	0.215	0.034	0.385	0.385	16.314	3518.487	0.099	934.372	0.013
6	102.188	0.696	15.876	0.216	0.034	0.396	0.396	15.867	1601.444	0.048	911.427	0.014
7	121.307	0.586	19.118	0.209	0.033	0.329	0.329	19.108	16707.882	0.343	1065.373	0.011
8	133.717	0.434	12.410	0.221	0.035	0.506	0.507	12.403	-11449.565	0.559	728.851	0.018
9	149.369	0.357	15.652	0.218	0.035	0.401	0.402	15.643	662.246	0.020	907.471	0.014
10	164.798	0.279	15.429	0.221	0.035	0.407	0.407	15.419	-263.959	0.008	907.379	0.014
11	180.451	0.230	15.652	0.218	0.035	0.401	0.402	15.643	662.087	0.020	909.305	0.014
12	196.998	0.222	16.547	0.203	0.032	0.380	0.380	16.538	4501.449	0.123	894.873	0.012
13	211.979	0.201	14.982	0.195	0.031	0.419	0.420	14.974	-2066.004	0.069	777.765	0.013
14	228.303	0.195	16.323	0.183	0.029	0.385	0.385	16.316	3529.847	0.099	772.661	0.011

SPAR + Heave Plate

Fungsi amplitudo puncak (peak - up):

Cycle (n)	Time (s)	Amplitude (m)	Interval time per cycle (s)	Logarithmic Decrement	Damping Ratio (ζ)	Heave Frequency (damped) (rad/s)	Heave Frequency (undamped) (rad/s)	Natural Heave Period (undamped) (s)	Heave Added Mass (ton)	Coeff. Added Mass	Heave Damping (kNs/m)	Coeff. Damping
0	5.143	2.922	-	-	-	-	-	-	-	-	-	-
1	22.137	1.890	16.994	0.436	0.069	0.370	0.371	16.953	5517.836	0.146	1935.648	0.026
2	38.684	1.388	16.547	0.372	0.059	0.380	0.380	16.518	3603.474	0.101	1612.057	0.022
3	55.231	0.942	16.547	0.377	0.060	0.380	0.380	16.517	3600.017	0.100	1633.988	0.023
4	71.331	0.662	16.100	0.371	0.059	0.390	0.391	16.072	1693.282	0.050	1563.840	0.023
5	87.654	0.349	16.323	0.425	0.068	0.385	0.386	16.286	2604.226	0.075	1815.335	0.026
6	103.977	0.281	16.323	0.390	0.062	0.385	0.386	16.292	2629.341	0.075	1667.004	0.024
7	119.853	0.387	15.876	0.289	0.046	0.396	0.396	15.859	802.755	0.024	1201.512	0.018
8	135.953	0.272	16.100	0.297	0.047	0.390	0.391	16.082	1735.823	0.051	1252.319	0.018
9	152.053	0.186	16.100	0.306	0.049	0.390	0.391	16.081	1730.948	0.051	1291.875	0.019
10	167.929	0.199	15.876	0.269	0.043	0.396	0.396	15.862	811.989	0.025	1148.148	0.017

SUMMARY OF EXPERIMENT CALCULATION

		SPAR	SPAR + Heave Plate
Damping Ratio	=	0.0292	0.0428
Natural Heave Period (s)	=	15.8414	16.270131
A33 (ton)	=	1488.4512	2535.6851
B33 (kNs/m)	=	772.6608	1148.148
Gaya kekakuan SPAR (kN/m)		5261.207	5261.21

Tabel Gaya Reaksi diambil sampel hanya sampai rentang waktu 0.4 s pada setiap pada tiap 0.02 s Yang sebenarnya sampai pada rentang waktu 17.5 s (Model)

-

Tabel Gaya Reaksi Eksperimen SPAR

	Model Full Scale																
t(sec)	z (cm)	z'	7" (cm/s2)	t (sec)	z (m)	z' (m/s)	z" (m/s2)	FA (kN)	FB (kN)	FC (kN)	F3 (kN)	SUM	3232985	2.58E+08	4.76E+11	1.45E+20	F3^2
(500)	2 (0)	(cm/s)	2 (011/32)	(500)	2 ()	2 (, 3)	2 (, 52)		10 (111)	10 (1.11)	10 (111)	S	F3*S	t*F3*S	t*F3^2*S	t*F3^4*S	10 2
0	-1	0	0	0	-1.25	0	0	0	0	-6576.5	-6576.5	1	6576.509	0	0	0	43250467
0.02	-0.86	6.9995	349.975	0.22361	-1.08	0.7826	3.49975	117023	604.66	-5655.9	111972	4	447889.1	100151.1	1.12E+10	1.41E+20	1.25E+10
0.04	-0.667	9.6495	132.5	0.44721	-0.83	1.0788	1.325	44304.9	833.583	-4386.7	40751.8	2	81503.67	36449.55	1.49E+09	2.47E+18	1.66E+09
0.06	-0.472	9.758	5.425	0.67082	-0.59	1.091	0.05425	1813.99	842.956	-3103.2	-446.24	4	1784.969	1197.393	534327.5	1.06E+11	199132.1
0.08	-0.275	9.85	4.6	0.89443	-0.34	1.1013	0.046	1538.13	850.903	-1807.6	581.417	2	1162.834	1040.07	604714.1	2.04E+11	338045.5
0.1	-0.077	9.8833	1.665	1.11803	-0.1	1.105	0.01665	556.737	853.78	-507.67	902.85	4	3611.4	4037.668	3645408	2.97E+12	815138.1
0.12	0.119	9.8107	-3.63	1.34164	0.149	1.0969	-0.0363	-1213.8	847.508	782.736	416.457	2	832.9137	1117.471	465378.4	8.07E+10	173436.3
0.14	0.312	9.6295	-9.06	1.56525	0.39	1.0766	-0.0906	-3029.5	831.855	2049.31	-148.29	4	593.168	928.4547	137682.4	3.03E+09	21990.52
0.16	0.501	9.45	-8.975	1.78885	0.626	1.0565	-0.08975	-3001	816.349	3292.27	1107.58	2	2215.168	3962.613	4388926	5.38E+12	1226742
0.18	0.684	9.145	-15.25	2.01246	0.854	1.0224	-0.1525	-5099.2	790.001	4495.11	185.866	4	743.4631	1496.191	278090.6	9.61E+09	34546.08
0.2	0.858	8.74	-20.25	2.23607	1.073	0.9772	-0.2025	-6771.1	755.015	5644.68	-371.43	2	742.8607	1661.087	616978.2	8.51E+10	137960.5
0.22	1.025	8.3295	-20.525	2.45967	1.281	0.9313	-0.20525	-6863.1	719.553	6740.26	596.735	4	2386.941	5871.097	3503490	1.25E+12	356092.8
0.24	1.183	7.88	-22.475	2.68328	1.478	0.881	-0.22475	-7515.1	680.723	7776.72	942.328	2	1884.656	5057.062	4765410	4.23E+12	887981.7
0.26	1.328	7.295	-29.25	2.90689	1.661	0.8156	-0.2925	-9780.5	630.187	8736.23	-414.1	4	1656.39	4814.942	1993856	3.42E+11	171476.8
0.28	1.463	6.715	-29	3.1305	1.828	0.7508	-0.29	-9696.9	580.083	9619.46	502.618	2	1005.236	3146.885	1581680	4E+11	252624.6
0.3	1.586	6.16	-27.75	3.3541	1.982	0.6887	-0.2775	-9279	532.138	10429.7	1682.87	4	6731.481	22578.07	37995967	1.08E+14	2832052
0.32	1.696	5.495	-33.25	3.57771	2.12	0.6144	-0.3325	-11118	474.692	11152.4	509.11	2	1018.22	3642.894	1854634	4.81E+11	259192.9
0.34	1.791	4.77	-36.25	3.80132	2.239	0.5333	-0.3625	-12121	412.062	11779.8	70.7488	4	282.9953	1075.755	76108.38	3.81E+08	5005.398
0.36	1.872	4.025	-37.25	4.02492	2.34	0.45	-0.3725	-12456	347.704	12309.3	201.423	2	402.8469	1621.427	326593.5	1.33E+10	40571.4
0.38	1.937	3.24	-39.25	4.24853	2.421	0.3622	-0.3925	-13124	279.891	12735.4	-108.99	4	435.9411	1852.109	201852.6	2.4E+09	11877.79
0.4	1.984	2.38	-43	4.47214	2.48	0.2661	-0.43	-14378	205.599	13048.5	-1124.1	2	2248.296	10054.69	11302957	1.43E+13	1263709

Tabel Gaya Reaksi Eksperimen SPAR + Heave Plate

Model Full Scale					1												
t(sec)	7(cm)	z'	7" (cm/s2)	t(sec)	7(m)	z' (m/s)	7" (m/s7)	FA (kN)	FB (kN)	FC (kN)	F3 (kN)	SUM	1798476	1.37E+08	1.46E+11	1.35E+18	F3^2
(300)	2(em)	(cm/s)	2 (011/32)	(300)	2(11)	2 (11/3)	2 (11/32)		10 (KN)		13 (KN)	S	F3*S	t*F3*S	t*F3^2*S	t*F3^4*S	15 2
0	-1	0	0	0	-1.25	0	0	0	0	-6481.5	-6481.5	1	6481.502	0	0	0	42009874
0.02	-0.76	12.016	600.8	0.22361	-0.95	1.3434	6.008	-29066	1327.83	-3583	-31321	4	125285.1	28014.61	8.77E+08	8.61E+17	9.81E+08
0.04	-0.553	10.344	-83.6	0.44721	-0.69	1.1565	-0.836	1347.26	1337.77	-2232	453.004	2	906.0076	405.1789	183547.6	3.77E+10	205212.5
0.06	-0.344	10.422	3.875	0.67082	-0.43	1.1652	0.03875	-999.58	1330.39	-888.55	-557.74	4	2230.955	1496.57	834694.9	2.6E+11	311072.4
0.08	-0.137	10.364	-2.875	0.89443	-0.17	1.1587	-0.02875	-1150	1321.9	446.362	618.309	2	1236.617	1106.064	683888.9	2.61E+11	382305.5
0.1	0.069	10.298	-3.3075	1.11803	0.086	1.1513	-0.03307	-1090	1313.85	1773.14	1997.02	4	7988.072	8930.936	17835239	7.11E+13	3988081
0.12	0.274	10.235	-3.135	1.34164	0.342	1.1443	-0.03135	-1506.3	1302.73	3088.7	2885.1	2	5770.195	7741.529	22335065	1.86E+14	8323787
0.14	0.477	10.149	-4.3325	1.56525	0.596	1.1346	-0.04333	-4884.9	1266.66	4367.82	749.56	4	2998.24	4692.989	3517677	1.98E+12	561840.3
0.16	0.674	9.8675	-14.05	1.78885	0.842	1.1032	-0.1405	-3346.4	1241.95	5621.99	3517.51	2	7035.018	12584.62	44266523	5.48E+14	12372869
0.18	0.867	9.675	-9.625	2.01246	1.084	1.0817	-0.09625	-5901.9	1198.37	6832.15	2128.63	4	8514.535	17135.17	36474508	1.65E+14	4531082
0.2	1.054	9.3355	-16.975	2.23607	1.318	1.0437	-0.16975	-7657.7	1141.82	7985.21	1469.36	2	2938.716	6571.17	9655402	2.08E+13	2159013
0.22	1.232	8.895	-22.025	2.45967	1.54	0.9945	-0.22025	-8605.1	1078.28	9074.1	1547.28	4	6189.112	15223.2	23554530	5.64E+13	2394070
0.24	1.4	8.4	-24.75	2.68328	1.75	0.9391	-0.2475	-7649	1021.8	10106	3478.77	2	6957.55	18669.06	64945473	7.86E+14	12101874
0.26	1.559	7.96	-22	2.90689	1.949	0.89	-0.22	-11213	939.003	11054.2	780.491	4	3121.964	9075.202	7083114	4.31E+12	609166.4
0.28	1.706	7.315	-32.25	3.1305	2.132	0.8178	-0.3225	-11300	855.565	11918.2	1474.12	2	2948.233	9229.43	13605257	2.96E+13	2173020
0.3	1.839	6.665	-32.5	3.3541	2.299	0.7452	-0.325	-12256	765.066	12690.8	1200.09	4	4800.361	16100.9	19322533	2.78E+13	1440217
0.32	1.958	5.96	-35.25	3.57771	2.448	0.6663	-0.3525	-14863	655.313	13352.5	-855.51	2	1711.02	6121.531	5237031	3.83E+12	731897.4
0.34	2.06	5.105	-42.75	3.80132	2.575	0.5708	-0.4275	-15385	541.708	13899.6	-943.6	4	3774.39	14347.65	13538402	1.21E+13	890376.1
0.36	2.145	4.22	-44.25	4.02492	2.681	0.4718	-0.4425	-13820	439.656	14343.6	962.899	2	1925.797	7751.185	7463606	6.92E+12	927173.9
0.38	2.213	3.425	-39.75	4.24853	2.766	0.3829	-0.3975	-13560	339.53	14686.4	1466.4	4	5865.619	24920.26	36543184	7.86E+13	2150343
0.4	2.266	2.645	-39	4.47214	2.832	0.2957	-0.39	-13125	242.613	14931.4	2049.09	2	4098.18	18327.62	37554941	1.58E+14	4198770

SUMMARY

	SPAR	SPAR + Heave Plate	
m0	237495.74	131888	
m1	18981944.58	10082329	
m2	35023537021	1.07E+10	
m4	1.07229E+19	9.88E+16	%
Fs	1379.16	1023.60	26%
Favg	1218.34	904.24	26%
F1/10	1760.50	1306.63	26%
Frms	1344.25	875.22	35%
Feks	3992.46	2909.71	27%
Fmax	4063.961103	3598.878	11%
LAMPIRAN E

TABEL PERHITUNGAN ANALITIS

Full Scaled Calculation	
Simpangan awal saat t = 0 sekon:	-1.25 m
Densitas fluida (kg/m3)	1.025 ton/m3
Percepatan Gravitasi (m/s2)	9.81 m/s2
Diameter SPAR	17.5 m
Diameter Heave Plate	22.75 m
Tebal Heave Plate	0.625 m
Massa SPAR	31949.2 ton
Massa Heave Plate	283.203 ton
Gaya kekakuan SPAR (kN/m)	5251.87 kN/m
Gaya kekakuan SPAR + Heave Plate (kN/m)	5185.20 kN/m
Tinggi SPAR (m)	154.25 m
Draft SPAR (m)	139.25 m

Tabel Gaya Reaksi diambil sampel hanya sampai rentang waktu 24.15 s pada setiap pada tiap 0.22 s Yang sebenarnya sampai pada rentang waktu 200 s (*Full Scale*)

Tabel Gaya Reaksi Analitis SPAR

t(soc)	7(m)	7' (m/s)	7" (m/s2)				E3 (FVI)	Damping
(360)	2(11)	2 (11/3)	2 (11/32)				13 (KN)	Ratio
0.000	-1.250	0.000	0.000	0.000	0.000	-6564.843	-6564.843	-
0.224	-1.075	0.783	3.500	116836.910	604.115	-5645.831	111795.193	0.02915
0.447	-0.834	1.079	1.325	44234.276	832.831	-4378.882	40688.225	0.02915
0.671	-0.590	1.091	0.054	1811.101	842.196	-3097.687	-444.390	0.02915
0.894	-0.344	1.101	0.046	1535.681	850.136	-1804.413	581.404	0.02915
1.118	-0.096	1.105	0.017	555.850	853.010	-506.767	902.093	0.02915
1.342	0.149	1.097	-0.036	-1211.852	846.744	781.348	416.240	0.02915
1.565	0.390	1.077	-0.091	-3024.623	831.105	2045.671	-147.847	0.02915
1.789	0.626	1.057	-0.090	-2996.246	815.613	3286.426	1105.793	0.02915
2.012	0.854	1.022	-0.152	-5091.115	789.289	4487.136	185.310	0.02915
2.236	1.073	0.977	-0.203	-6760.333	754.334	5634.671	-371.328	0.02915
2.460	1.281	0.931	-0.205	-6852.140	718.904	6728.308	595.073	0.02915
2.683	1.478	0.881	-0.225	-7503.135	680.109	7762.927	939.902	0.02915
2.907	1.661	0.816	-0.293	-9764.925	629.619	8720.738	-414.568	0.02915
3.130	1.828	0.751	-0.290	-9681.464	579.560	9602.397	500.492	0.02915
3.354	1.982	0.689	-0.277	-9264.160	531.659	10411.185	1678.684	0.02915
3.578	2.120	0.614	-0.333	-11100.299	474.264	11132.662	506.626	0.02915
3.801	2.239	0.533	-0.362	-12101.830	411.690	11758.948	68.808	0.02915
4.025	2.340	0.450	-0.372	-12435.674	347.391	12287.418	199.135	0.02915
4.249	2.421	0.362	-0.392	-13103.361	279.639	12712.819	-110.903	0.02915
4.472	2.480	0.266	-0.430	-14355.274	205.414	13025.306	-1124.555	0.02915
4.696	2.519	0.17274	-0.4175	-13937.97	133.348	13228.16	-576.46209	0.02915
4.919	2.538	0.08385	-0.3975	-13270.283	64.7321	13326.63	121.081717	0.02915
5.143	2.537	-0.0028	-0.3875	-12936.439	-2.1577	13323.35	384.753054	0.02915
5.367	2.516	-0.0934	-0.405	-13520.665	-72.068	13213.72	-379.01677	0.02915

Hasil Analitis	SPAR	SPAR + Heave Plate
Natural Period free floating (s)	24.172	2 24.576
SPAR + HEAVE PLATE (A33) (ton)	1435.140	2536.245
Damping Ratio	0.029	9 0.044
Damping (B33) (kNs/m)	771.360	1192.464

Tabel Gaya Reaksi Analitis SPAR + Heave Plate

t(sec)	7(m)	z' (m/s)	7" (m/s2)	FA (kN)	FB (kN)	EC (kN)	F3 (kN)	Damping
((300)	2(11)	2 (11, 3)	2 (11, 32)		т D (К.ч)		13 (KN)	Ratio
0.000	-1.250	0.000	0.000	0.000	0.000	-6481.502	-6481.502	-
0.224	-0.950	1.343	6.008	208890.149	1542.441	-4923.868	205508.722	0.04441
0.447	-0.691	1.156	-0.836	-29066.605	1327.814	-3582.975	-31321.766	0.04441
0.671	-0.430	1.165	0.039	1347.286	1337.762	-2232.035	453.013	0.04441
0.894	-0.171	1.159	-0.029	-999.599	1330.381	-888.549	-557.767	0.04441
1.118	0.086	1.151	-0.033	-1149.974	1321.890	446.362	618.278	0.04441
1.342	0.342	1.144	-0.031	-1089.998	1313.842	1773.145	1996.988	0.04441
1.565	0.596	1.135	-0.043	-1506.352	1302.719	3088.695	2885.061	0.04441
1.789	0.842	1.103	-0.140	-4884.998	1266.648	4367.820	749.470	0.04441
2.012	1.084	1.082	-0.096	-3346.484	1241.938	5621.990	3517.444	0.04441
2.236	1.318	1.044	-0.170	-5901.981	1198.357	6832.152	2128.528	0.04441
2.460	1.540	0.994	-0.220	-7657.799	1141.812	7985.211	1469.225	0.04441
2.683	1.750	0.939	-0.247	-8605.245	1078.271	9074.103	1547.130	0.04441
2.907	1.949	0.890	-0.220	-7649.107	1021.790	10105.959	3478.642	0.04441
3.130	2.132	0.818	-0.322	-11212.895	938.995	11054.202	780.302	0.04441
3.354	2.299	0.745	-0.325	-11299.817	855.557	11918.187	1473.927	0.04441
3.578	2.448	0.666	-0.353	-12255.955	765.059	12690.782	1199.886	0.04441
3.801	2.575	0.571	-0.427	-14863.605	655.307	13352.543	-855.755	0.04441
4.025	2.681	0.472	-0.442	-15385.135	541.703	13899.582	-943.850	0.04441
4.249	2.766	0.383	-0.398	-13820.545	439.652	14343.565	962.672	0.04441
4.472	2.832	0.296	-0.390	-13559.780	339.527	14686.436	1466.184	0.04441
4.696	2.88	0.21131	-0.3775	-13125.172	242.6133	14931.44	2048.8788	0.04441
4.919	2.91	0.1364	-0.335	-11647.503	156.6075	15089.59	3598.69003	0.04441
5.143	2.922	0.05478	-0.365	-12690.563	62.89973	15153.1	2525.44099	0.04441
5.367	2.915	-0.0313	-0.385	-13385.937	-35.9427	15116.81	1694.9288	0.04441

Tabel Ga	ya Reak	si Analitis	SPAR (lanjutan
----------	---------	-------------	--------	----------

t(sec)	z(m)	z' (m/s)	z" (m/s2)	FA (kN)	FB (kN)	FC (kN)	F3 (kN)	Damping
(000)	-(,	- (, .,	- (, 52)	.,.(,				Ratio
5.59	2.477	-0.1761	-0.37	-12352.213	-135.94	13006.92	518.774219	0.02915
5.814	2.418	-0.2611	-0.38	-12686.056	-201.53	12700.35	-187.24275	0.02915
6.037	2.341	-0.3455	-0.3775	-12602.595	-266.7	12294.64	-574.65282	0.02915
6.261	2.245	-0.4276	-0.3675	-12268.752	-330.13	11792.43	-806.45721	0.02915
6.485	2.134	-0.497	-0.31	-10349.151	-383.65	11208.81	476.016977	0.02915
6.708	2.006	-0.5747	-0.3475	-11601.065	-443.63	10533.95	-1510.7475	0.02915
6.932	1.862	-0.6412	-0.2975	-9931.8468	-494.98	9780.96	-645.8712	0.02915
7.155	1.705	-0.7032	-0.2775	-9264.1596	-542.89	8955.103	-851.94308	0.02915
7.379	1.535	-0.7597	-0.2525	-8429.5506	-586.47	8062.941	-953.08261	0.02915
7.603	1.351	-0.8229	-0.2825	-9431.0814	-635.24	7096.596	-2969.7232	0.02915
7.826	1.157	-0.8682	-0.20275	-6768.6788	-670.24	6077.01	-1361.9049	0.02915
8.05	0.954	-0.9078	-0.17725	-5917.3776	-700.83	5010.879	-1607.331	0.02915
8.273	0.743	-0.9421	-0.15325	-5116.153	-727.29	3904.506	-1938.9333	0.02915
8.497	0.528	-0.9653	-0.1035	-3455.2811	-745.15	2770.955	-1429.4791	0.02915
8.721	0.309	-0.9788	-0.06075	-2028.0998	-755.64	1621.451	-1162.2884	0.02915
8.944	0.088	-0.9876	-0.039175	-1307.8323	-762.4	461.6595	-1608.5744	0.02915
9.168	-0.133	-0.9895	-0.0084	-280.42861	-763.85	-700.3375	-1744.6178	0.02915
9.391	-0.353	-0.9843	0.023325	778.690171	-759.83	-1856.209	-1837.3446	0.02915
9.615	-0.571	-0.9732	0.0495	1652.52576	-751.28	-2999.083	-2097.838	0.02915
9.839	-0.782	-0.9421	0.13925	4648.77197	-727.24	-4105.391	-183.86204	0.02915
10.06	-0.987	-0.9164	0.11475	3830.85518	-707.44	-5181.565	-2058.1456	0.02915
10.29	-1.183	-0.8774	0.1745	5825.57063	-677.31	-6211.918	-1063.6603	0.02915
10.51	-1.37	-0.8377	0.17725	5917.37761	-646.72	-7195.725	-1925.0641	0.02915
10.73	-1.547	-0.7893	0.2165	7227.7137	-609.34	-8122.681	-1504.3119	0.02915
10.96	-1.715	-0.7513	0.17	5675.34101	-580	-9004.996	-3909.6544	0.02915
11.18	-1.869	-0.6887	0.28	9347.62049	-531.67	-9813.785	-997.8303	0.02915
11.4	-2.01	-0.6328	0.25	8346.08972	-488.51	-10556.92	-2699.3466	0.02915
11.63	-2.136	-0.5646	0.305	10182.2295	-435.86	-11219.97	-1473.6073	0.02915
11.85	-2.247	-0.4947	0.3125	10432.6122	-381.92	-11800.96	-1750.2699	0.02915
12.07	-2.34	-0.4142	0.36	12018.3692	-319.78	-12287.42	-588.8249	0.02915
12.3	-2.416	-0.341	0.3275	10933.3775	-263.24	-12687.87	-2017.7393	0.02915
12.52	-2.475	-0.2644	0.3425	11434.1429	-204.12	-12998.39	-1768.3691	0.02915
12.75	-2.517	-0.1873	0.345	11517.6038	-144.57	-13218.31	-1845.2769	0.02915
12.97	-2.541	-0.1096	0.3475	11601.0647	-84.583	-13346.98	-1830.5019	0.02915
13.19	-2.549	-0.0358	0.33	11016.8384	-27.619	-13389	-2399.7789	0.02915
13.42	-2.54	0.04249	0.35	11684.5256	32.7976	-13339.11	-1621.7823	0.02915
13.64	-2.513	0.12131	0.3525	11767.9865	93.6458	-13196.65	-1335.0161	0.02915
13.86	-2.467	0.20516	0.375	12519.1346	158.378	-12955.72	-278.20619	0.02915
14.09	-2.404	0.2823	0.345	11517.6038	217.931	-12624.19	-888.65883	0.02915
14.31	-2.324	0.35777	0.3375	11267.2211	276.19	-12204.04	-660.63266	0.02915
14.53	-2.228	0.42933	0.32	10682.9948	331.428	-11699.86	-685.4409	0.02915
14.76	-2 117	0 49529	0 295	9848 38587	382 351	-11118 22	-887 48216	0.02915

Tabel	Gava	Reaksi	Analiti	s SPAR	+ Heave	Plate	(lan	iutan

aksi Analitis SPAR (lanjutan) Tabel Gaya Reaksi Analitis SPAR + <i>Heave Plate (lanjutan)</i>															
z' (m/s)	z" (m/s2)	FA (kN)	FB (kN)	FC (kN)	F3 (kN)	Damping Batio	t(sec)	z(m)	z' (m/s)	z" (m/s2)	FA (kN)	FB (kN)	FC (kN)	F3 (kN)	Damping Batio
-0 1761	-0.37	-12352 213	-135 94	13006 92	518 774219	0.02915	5 59	2.89	-0.114	-0.37	-12864 407	-130 934	14984 59	1989 24472	0 04441
-0.2611	-0.38	-12686.056	-201.53	12700.35	-187.24275	0.02915	5.814	2.844	-0.2052	-0.4075	-14168.232	-235.553	14746.71	342.929634	0.04441
-0.3455	-0 3775	-12602 595	-266.7	12294 64	-574 65282	0.02915	6.037	2 778	-0.2946	-0.4	-13907 467	-338.247	14405.14	159 426011	0.04441
-0 4276	-0.3675	-12268 752	-330.13	11792 43	-806 45721	0.02915	6 261	2 693	-0 379	-0.3775	-13125 172	-435 163	13965.69	405 358206	0.04441
-0 497	-0.31	-10349.151	-383.65	11208.81	476 016977	0.02915	6 485	2.592	-0 4517	-0 325	-11299 817	-518 602	13441.99	1623 56938	0.04441
-0 5747	-0 3475	-11601.065	-443.63	10533.95	-1510 7475	0.02915	6 708	2.552	-0 5389	-0.39	-13559 78	-618 728	12817 17	-1361 3369	0.04441
-0.6412	-0 2975	-9931.8468	-494.98	9780.96	-645 8712	0.02915	6 932	2.337	-0.6043	-0.2925	-10169 835	-693 823	12116 52	1252 86311	0.04441
-0.7032	-0 2775	-9264 1596	-542.89	8955 103	-851 94308	0.02915	7.155	2.186	-0.6731	-0.3075	-10691.365	-772 768	11336.15	-127 98537	0.04441
-0.7597	-0 2525	-8429 5506	-586.47	8062.941	-953 08261	0.02915	7 379	2 024	-0.7273	-0.2425	-8431 4016	-835.026	10492.9	1226 47659	0.04441
-0.8229	-0.2825	-9431.0814	-635.24	7096 596	-2969 7232	0.02915	7.603	1.848	-0 786	-0.2625	-9126 775	-902 419	9581.605	-447 58856	0.04441
-0.8682	-0.20275	-6768 6788	-670.24	6077.01	-1361.9049	0.02915	7.826	1.663	-0.8257	-0.1775	-6171 4383	-947 989	8624 287	1504 85997	0.04441
-0.9078	-0.17725	-5917.3776	-700.83	5010.879	-1607.331	0.02915	8.05	1.469	-0.867	-0.185	-6432.2033	-995.485	7619.006	191.318228	0.04441
-0.9421	-0.15325	-5116,153	-727.29	3904.506	-1938.9333	0.02915	8.273	1.269	-0.8983	-0.14	-4867.6133	-1031.43	6577.429	678.388077	0.04441
-0.9653	-0.1035	-3455.2811	-745.15	2770.955	-1429.4791	0.02915	8.497	1.06	-0.9315	-0.1485	-5163.147	-1069.55	5497.351	-735.3481	0.04441
-0.9788	-0.06075	-2028.0998	-755.64	1621.451	-1162.2884	0.02915	8.721	0.848	-0.9482	-0.0745	-2590.2657	-1088.68	4397.959	719.014132	0.04441
-0.9876	-0.039175	-1307.8323	-762.4	461.6595	-1608.5744	0.02915	8.944	0.632	-0.966	-0.0795	-2764.109	-1109.09	3277.955	-595.24314	0.04441
-0.9895	-0.0084	-280.42861	-763.85	-700.3375	-1744.6178	0.02915	9.168	0.414	-0.976	-0.04475	-1555.8978	-1120.58	2146.35	-530.12632	0.04441
-0.9843	0.023325	778.690171	-759.83	-1856.209	-1837.3446	0.02915	9.391	0.197	-0.9723	0.0165	573.682998	-1116.34	1019.022	476.362892	0.04441
-0.9732	0.0495	1652.52576	-751.28	-2999.083	-2097.838	0.02915	9.615	-0.019	-0.9652	0.031525	1096.08221	-1108.25	-100.1327	-112.29891	0.04441
-0.9421	0.13925	4648,77197	-727.24	-4105.391	-183.86204	0.02915	9.839	-0.233	-0.9563	0.03995	1389.00823	-1097.99	-1208.93	-917.91349	0.04441
-0.9164	0.11475	3830.85518	-707.44	-5181.565	-2058.1456	0.02915	10.06	-0.442	-0.936	0.091025	3164.81787	-1074.62	-2294.128	-203.93262	0.04441
-0.8774	0.1745	5825.57063	-677.31	-6211.918	-1063.6603	0.02915	10.29	-0.646	-0.9084	0.12325	4285.23815	-1042.98	-3347.372	-105.11407	0.04441
-0.8377	0.17725	5917.37761	-646.72	-7195.725	-1925.0641	0.02915	10.51	-0.843	-0.8819	0.1185	4120.08699	-1012.56	-4369.894	-1262.3641	0.04441
-0.7893	0.2165	7227.7137	-609.34	-8122.681	-1504.3119	0.02915	10.73	-1.032	-0.8441	0.169	5875.90465	-969.169	-5348.601	-441.86536	0.04441
-0.7513	0.17	5675.34101	-580	-9004.996	-3909.6544	0.02915	10.96	-1.211	-0.8047	0.17625	6127.97748	-923.92	-6281.613	-1077.5555	0.04441
-0.6887	0.28	9347.62049	-531.67	-9813.785	-997.8303	0.02915	11.18	-1.38	-0.7549	0.22275	7744.72048	-866.733	-7156.875	-278.88718	0.04441
-0.6328	0.25	8346.08972	-488.51	-10556.92	-2699.3466	0.02915	11.4	-1.538	-0.7072	0.2135	7423.11031	-811.92	-7976.785	-1365.5948	0.04441
-0.5646	0.305	10182.2295	-435.86	-11219.97	-1473.6073	0.02915	11.63	-1.684	-0.6513	0.25	8692.16664	-747.737	-8731.88	-787.45008	0.04441
-0.4947	0.3125	10432.6122	-381.92	-11800.96	-1750.2699	0.02915	11.85	-1.817	-0.5948	0.2525	8779.08831	-682.911	-9421.512	-1325.335	0.04441
-0.4142	0.36	12018.3692	-319.78	-12287.42	-588.8249	0.02915	12.07	-1.935	-0.5272	0.3025	10517.5216	-605.249	-10032.72	-120.44547	0.04441
-0.341	0.3275	10933.3775	-263.24	-12687.87	-2017.7393	0.02915	12.3	-2.039	-0.4668	0.27	9387.53997	-535.931	-10573.92	-1722.3145	0.04441
-0.2644	0.3425	11434.1429	-204.12	-12998.39	-1768.3691	0.02915	12.52	-2.128	-0.3969	0.3125	10865.2083	-455.702	-11034.11	-624.60361	0.04441
-0.1873	0.345	11517.6038	-144.57	-13218.31	-1845.2769	0.02915	12.75	-2.201	-0.3259	0.3175	11039.0516	-374.189	-11411.98	-747.11895	0.04441
-0.1096	0.3475	11601.0647	-84.583	-13346.98	-1830.5019	0.02915	12.97	-2.257	-0.2521	0.33	11473.66	-289.467	-11704.3	-520.10428	0.04441
-0.0358	0.33	11016.8384	-27.619	-13389	-2399.7789	0.02915	13.19	-2.298	-0.1834	0.3075	10691.365	-210.522	-11916.89	-1436.047	0.04441
0.04249	0.35	11684.5256	32.7976	-13339.11	-1621.7823	0.02915	13.42	-2.323	-0.1084	0.335	11647.5033	-124.516	-12042.63	-519.64403	0.04441
0.12131	0.3525	11767.9865	93.6458	-13196.65	-1335.0161	0.02915	13.64	-2.331	-0.0375	0.3175	11039.0516	-43.0029	-12086.06	-1090.0088	0.04441
0.20516	0.375	12519.1346	158.378	-12955.72	-278.20619	0.02915	13.86	-2.323	0.0341	0.32	11125.9733	39.15188	-12046.52	-881.39526	0.04441
0.2823	0.345	11517.6038	217.931	-12624.19	-888.65883	0.02915	14.09	-2.3	0.10342	0.31	10778.2866	118.7393	-11926.61	-1029.5867	0.04441
0.35777	0.3375	11267.2211	276.19	-12204.04	-660.63266	0.02915	14.31	-2.262	0.17162	0.305	10604.4433	197.043	-11727.63	-926.14416	0.04441
0.42933	0.32	10682.9948	331.428	-11699.86	-685.4409	0.02915	14.53	-2.209	0.23479	0.2825	9822.14831	269.5703	-11455.41	-1363.6888	0.04441
0.49529	0.295	9848.38587	382.351	-11118.22	-887.48216	0.02915	14.76	-2.143	0.29796	0.2825	9822.14831	342.0975	-11109.94	-945.69749	0.04441

Tabe	l Gaya	Reaksi	Analitis	SPAR (lanjutan)
------	--------	--------	----------	--------	-----------

					-			
t(sec)	7(m)	7' (m/s)	z" (m/s2)	FA (kN)	FR (kN)	EC (kN)	F3 (kN)	Damping
(300)	2(111)	2 (11,3)	2 (11, 32)		1 D (KIV)			Ratio
14.98	-1.995	0.54392	0.2175	7261.09806	419.896	-10479.46	-2798.4661	0.02915
15.21	-1.863	0.59424	0.225	7511.48075	458.735	-9781.617	-1811.4013	0.02915
15.43	-1.719	0.64231	0.215	7177.63716	495.848	-9027.316	-1353.8313	0.02915
15.65	-1.566	0.68591	0.195	6509.94998	529.509	-8221.81	-1182.3515	0.02915
15.88	-1.403	0.7284	0.19	6343.02819	562.306	-7366.411	-461.07657	0.02915
16.1	-1.23	0.77172	0.19375	6468.21953	595.751	-6460.134	603.836332	0.02915
16.32	-1.049	0.81052	0.1735	5792.18627	625.7	-5508.298	909.589104	0.02915
16.55	-0.861	0.84154	0.13875	4632.0798	649.651	-4520.026	761.705046	0.02915
16.77	-0.669	0.85932	0.0795	2654.05653	663.374	-3510.878	-193.44727	0.02915
16.99	-0.474	0.87145	0.05425	1811.10147	672.739	-2487.485	-3.6443077	0.02915
17.22	-0.278	0.87335	0.0085	283.767051	674.206	-1461.859	-503.88597	0.02915
17.44	-0.084	0.86855	-0.021475	-716.92911	670.499	-441.8731	-488.30282	0.02915
17.66	0.107	0.85662	-0.053375	-1781.8902	661.286	564.0973	-556.50705	0.02915
17.89	0.296	0.84547	-0.049825	-1663.3757	652.685	1556.984	546.293315	0.02915
18.11	0.481	0.82483	-0.092325	-3082.2109	636.748	2525.627	80.1636775	0.02915
18.34	0.661	0.80331	-0.09625	-3213.2445	620.133	3468.995	875.883508	0.02915
18.56	0.834	0.77737	-0.116	-3872.5856	600.11	4381.902	1109.42576	0.02915
18.78	0.999	0.73746	-0.1785	-5959.1081	569.297	5247.936	-141.87499	0.02915
19.01	1.157	0.70347	-0.152	-5074.4226	543.059	6074.056	1542.69235	0.02915
19.23	1.304	0.65774	-0.2045	-6827.1014	507.759	6846.475	527.132422	0.02915
19.45	1.44	0.60765	-0.224	-7478.0964	469.092	7560.074	551.069274	0.02915
19.68	1.562	0.54728	-0.27	-9013.7769	422.485	8202.772	-388.52016	0.02915
19.9	1.673	0.49753	-0.2225	-7428.0199	384.077	8787.043	1743.10024	0.02915
20.12	1.768	0.42541	-0.3225	-10766.456	328.407	9286.628	-1151.4207	0.02915
20.35	1.849	0.36001	-0.2925	-9764.925	277.916	9709.404	222.394999	0.02915
20.57	1.915	0.29404	-0.295	-9848.3859	226.994	10054.71	433.322289	0.02915
20.8	1.965	0.22696	-0.3	-10015.308	175.208	10321.25	481.147466	0.02915
21.02	1.999	0.15261	-0.3325	-11100.299	117.812	10500.47	-482.01976	0.02915
21.24	2.019	0.08665	-0.295	-9848.3859	66.8898	10602.22	820.726192	0.02915
21.47	2.022	0.01621	-0.315	-10516.073	12.5149	10621.26	117.702102	0.02915
21.69	2.01	-0.0576	-0.33	-11016.838	-44.449	10553.64	-507.64541	0.02915
21.91	1.981	-0.1291	-0.32	-10682.995	-99.687	10401.99	-380.68776	0.02915
22.14	1.936	-0.1979	-0.3075	-10265.69	-152.77	10169.6	-248.85905	0.02915
22.36	1.877	-0.2678	-0.3125	-10432.612	-206.71	9855.143	-784.18026	0.02915
22.58	1.802	-0.3349	-0.3	-10015.308	-258.5	9461.909	-811.89557	0.02915
22.81	1.713	-0.3963	-0.275	-9180.6987	-305.97	8996.462	-490.20421	0.02915
23.03	1.611	-0.4545	-0.26	-8679.9333	-350.85	8462.74	-568.04152	0.02915
23.26	1.497	-0.5115	-0.255	-8513.0115	-394.87	7862.057	-1045.8207	0.02915
23.48	1.372	-0.5601	-0.2175	-7261.0981	-432.41	7204.259	-489.2492	0.02915
23.7	1.236	-0.6075	-0.212	-7077.4841	-469.01	6490.792	-1055.6976	0.02915
23.93	1.091	-0.65	-0.18975	-6334.6821	-501.76	5727.498	-1108.9444	0.02915
24.15	0.937	-0.6875	-0.16775	-5600.2262	-530.72	4920.153	-1210.7898	0.02915

Tabel Gava Reaksi Analitis SPAR + Heave Plate (laniutan)

					,,			
t(sec)	z(m)	z' (m/s)	z" (m/s2)	FA (kN)	FB (kN)	FC (kN)	F3 (kN)	Damping Batio
14.98	-2.063	0.35553	0.2575	8952.93164	408.2064	-10697.72	-1336.5817	0.04441
15.21	-1.971	0.41311	0.2575	8952.93164	474.3153	-10218.74	-791.48976	0.04441
15.43	-1.867	0.46622	0.2375	8257.55831	535.2896	-9678.179	-885.33155	0.04441
15.65	-1.751	0.51709	0.2275	7909.87165	593.6965	-9078.64	-575.07235	0.04441
15.88	-1.624	0.56684	0.2225	7736.02831	650.8197	-8421.416	-34.568105	0.04441
16.1	-1.488	0.60933	0.19	6606.04665	699.5991	-7714.932	-409.28662	0.04441
16.32	-1.344	0.64399	0.155	5389.14332	739.3928	-6968.263	-839.72716	0.04441
16.55	-1.192	0.67781	0.15125	5258.76082	778.2238	-6182.381	-145.39653	0.04441
16.77	-1.034	0.70783	0.13425	4667.69349	812.6902	-5361.693	118.690467	0.04441
16.99	-0.872	0.72566	0.07975	2772.80116	833.1647	-4520.329	-914.36352	0.04441
17.22	-0.705	0.7469	0.095	3303.02332	857.5544	-3654.336	506.241875	0.04441
17.44	-0.534	0.76334	0.0735	2555.49699	876.4244	-2769.287	662.634622	0.04441
17.66	-0.362	0.77005	0.03	1043.06	884.1264	-1876.46	50.7265959	0.04441
17.89	-0.189	0.77139	0.006	208.611999	885.6668	-982.0772	112.201521	0.04441
18.11	-0.017	0.77271	0.005925	206.004349	887.1879	-86.15861	1007.03366	0.04441
18.34	0.154	0.76157	-0.04985	-1733.218	874.3897	796.8359	-61.992371	0.04441
18.56	0.321	0.74852	-0.058325	-2027.8825	859.4158	1664.709	496.242369	0.04441
18.78	0.485	0.73131	-0.077	-2677.1873	839.6473	2512.619	675.079182	0.04441
19.01	0.643	0.70962	-0.097	-3372.5607	814.7441	3335.381	777.56461	0.04441
19.23	0.796	0.6844	-0.11275	-3920.1672	785.7974	4128.911	994.54174	0.04441
19.45	0.943	0.65534	-0.13	-4519.9267	752.422	4888.738	1121.2334	0.04441
19.68	1.082	0.62286	-0.14525	-5050.1488	715.1315	5610.907	1275.88968	0.04441
19.9	1.214	0.58898	-0.1515	-5267.453	676.2363	6293.798	1702.58147	0.04441
20.12	1.336	0.54538	-0.195	-6779.89	626.1733	6926.134	772.4168	0.04441
20.35	1.447	0.49864	-0.209	-7266.6513	572.516	7504.284	810.148161	0.04441
20.57	1.548	0.45113	-0.2125	-7388.3416	517.9601	8027.341	1156.95918	0.04441
20.8	1.637	0.39746	-0.24	-8344.48	456.344	8488.176	600.039609	0.04441
21.02	1.713	0.33932	-0.26	-9039.8533	389.5933	8881.603	231.342737	0.04441
21.24	1.777	0.28454	-0.245	-8518.3233	326.6935	9211.511	1019.88148	0.04441
21.47	1.826	0.22305	-0.275	-9561.3833	256.0918	9470.123	164.831683	0.04441
21.69	1.862	0.15876	-0.2875	-9995.9916	182.2809	9654.198	-159.51289	0.04441
21.91	1.883	0.09503	-0.285	-9909.07	109.1118	9764.383	-35.574764	0.04441
22.14	1.89	0.03186	-0.2825	-9822.1483	36.58454	9801.328	15.7642215	0.04441
22.36	1.884	-0.0302	-0.2775	-9648.305	-34.659	9766.328	83.3638644	0.04441
22.58	1.865	-0.0833	-0.2375	-8257.5583	-95.6333	9669.753	1316.56191	0.04441
22.81	1.834	-0.1392	-0.25	-8692.1666	-159.817	9508.364	656.380763	0.04441
23.03	1.791	-0.1917	-0.235	-8170.6366	-220.149	9286.049	895.26283	0.04441
23.26	1.736	-0.2443	-0.235	-8170.6366	-280.481	9002.807	551.688775	0.04441
23.48	1.67	-0.2946	-0.225	-7822.95	-338.247	8661.232	500.0352	0.04441
23.7	1.592	-0.3494	-0.245	-8518.3233	-401.146	8256.138	-663.33177	0.04441
23.93	1.503	-0.3986	-0.22	-7649.1066	-457.628	7794.007	-312.72762	0.04441
24.15	1.404	-0.4433	-0.2	-6953.7333	-508.974	7280.024	-182.68416	0.04441

LAMPIRAN F

CODING MATLAB PENGOLAHAN DATA STRIP THEORY

PROGRAM UNTUK MENCARI DAMPING RATIO DARI STRIP THEORY

```
clear;clc;close all
%spar% oa=-1; v=0.129; w0=4.43446; t=21.8;
%spar+heaveplate% oa=-1; v=0.185; w0=4.32; t=17.5;
oa=-1;%Amplitudo Awal
v=0.185; %dari Persamaan (2.62)
w0=4.32; %Frekuensi Natural dari Eksperimen
t=0:0.02:17.5; %Waktu yang disamakan dengan Eksperimen
q=oa*exp(-v.*t).*(cos(w0*t)+v/w0.*sin(w0*t));%Persamaan (2.66)
%A = xlsread('Decay-SPAR-H-A2.xls'); %SPAR
A = xlsread('Decay-SPAR-H-B-2.xls'); %SPAR+Heave Plate
t1=A(:,1);
r1=A(:,2);
plot(t,q,t1,r1,'r');
k = 1: length(q); sfr = 1/(t(2)-t(1));
lenk = length(q);
    = find( ( q(1:lenk-1) < 0 ) & (q(2:lenk) > 0 ) ) ;
jup
njup = length( jup ) ;
nwave = njup - 1;
     = k(jup) + q(jup) ' ./ ( q(jup) ' - q(1+jup) ' );
xf1
т1
     = diff( xf1);
     = T1 / sfr ;
Т
     = mean(T);
Τn
for ii=1:nwave
       = [ jup(ii) : jup(ii+1) ] ;
    ij
    [y2max(ii), x2max(ii)] = max(q(jj));
    [ y2min(ii), x2min(ii) ] = min(q(jj));
end
Q=[y2max',y2min'];
8----
for i=1:length(Q)
   pmax = find(q==y2max(i));
   pmaxi(i)=pmax(end);
   pmin = find(q==y2min(i));
   pmini(i)=pmin(end);
end
% qp qm dqm lihat di buku futai no ryutai riki qaku
%positif
qp = Q(:, 1);
qm = abs((qp(1:end-1)+qp(2:end))/2);
dqm= abs(qp(1:end-1)-qp(2:end));
%negatif
qn = Q(:, 2);
qmn = abs((qn(1:end-1)+qn(2:end))/2);
dqmn= abs(qn(1:end-1)-qn(2:end));
```

```
y0 = y2max(1); yn = y2max(end);
py0= find(y2max==y0);
n = length(y2max)-py0;
d=1/n*\log(y0/yn);
s=1/sqrt(1+(2*pi/d)^2); %cari damping ratio
plot(t,q,t(pmaxi),y2max,'o',t(pmini),y2min,'o');grid
text(10,1.2,['
                                                        Damp.ratio =
',num2str(s)]);
X = 0:0.25:3;
p1 = polyfit(qm,dqm./qm,1)
a = p1(1); b = p1(2); % y = ax + b
Y = a * X + b;
figure(2)
h=plot(qm,dqm./qm,'ko',X,Y,'k-');
pn = {'Linewidth'};
pv = \{2\};
set(h,pn,pv);
set(gca, 'FontWeight', 'bold', 'FontSize', 12, 'LineWidth', 2);
grid;xlabel('\phi_m','FontWeight','bold','FontSize',14);
ylabel('\Delta\phi / \phi m', 'FontWeight', 'bold', 'FontSize', 14);
p2 = polyfit([qm;qmn;0],[dqm;dqmn;0],2)
a = p2(2); b = p2(1);
Y = b*X.^2 + a*X; % y = bx^2 + ax
Nm = dqm./qm.^2;
Nmn = dqmn./qmn.^2;
N = a./X(2:end) + b;
figure(3)
h=plot(qm,dqm,'ko',qmn,dqmn,'ks',X,Y,'k-');
pn = {'Linewidth'};
pv = \{2\};
set(h,pn,pv);
set(gca, 'FontWeight', 'bold', 'FontSize', 12, 'LineWidth', 2);
legend('maxima', 'minima');
grid;xlabel('\phi_m','FontWeight','bold','FontSize',14);
ylabel('\Delta\phi', 'FontWeight', 'bold', 'FontSize', 14);
text(0.5,0.7,['\Delta\phi = ',num2str(b),'\phi m^2+
',num2str(abs(a)),'\phi_m'],'FontWeight','bold','FontSize',14);
k = \log(qp(1:end-1)./qp(2:end));
figure(4)
plot(qm, k, 'o');
XY = [X', Y']
XN= [(X(2:end))',N']
qmqmndqmdqmnNmNmn = [qm,qmn,dqm,dqmn,Nm,Nmn]
```

PROGRAM UNTUK MENCARI PERIODE NATURAL DARI STRIP THEORY

```
clear;clc;close all
%spar% oa=-1; v=0.129; w0=4.43446; t=21.8;
%spar+heaveplate% oa=-1; v=0.185; w0=4.32; t=17.5;
oa=-1;%Amplitudo Awal
v=0.185; %dari Persamaan (2.62)
w0=4.32; %Frekuensi Natural dari Eksperimen
t=0:0.02:17.5; %Waktu yang disamakan dengan Eksperimen
q=oa*exp(-v.*t).*(cos(w0*t)+v/w0.*sin(w0*t));%Persamaan (2.66)
%A = xlsread('Decay-SPAR-H-A2.xls'); %SPAR
A = xlsread('Decay-SPAR-H-B-2.xls'); %SPAR+Heave Plate
t1=A(:,1);
r1=A(:,2);
plot(t,y,t1,r1,'r');
tor = [t', y'];
sfr = 1/(t(2)-t(1));
n=length(y);
k = find(y(1:n-1) < 0 \& y(2:n) > 0);
nk = length(k);
nwave = nk-1; %cari periode
for i=1:nwave
    j = k(i):k(i+1);
   ymax(i) = max(y(j)); %cari amplitudo
end
nymax = length(ymax);
for i=1:nymax
   pymax(i) = find(y==ymax(i));
end
dymax = diff(pymax);
tnymax = dymax/sfr;
tn=mean(tnymax); %periode natural model
tn s=tn*sqrt(125);%periode natural full scale
trapz(pymax,ymax);
```

LAMPIRAN G

DATA HEAVE DECAY OUTPUT STRIP THEORY MATLAB

					SPAR						
t model (s)	t full scale (s)	z (cm)	z (m)	t model (s)	t full scale (s)	z (cm)	z (m)	t model (s)	t full scale (s)	z (cm)	z (m)
0	0	-0.99	-1.24	1.56	17.44133022	0.15673	0.196	3.12	34.88266045	0.8684	1.086
0.02	0.223606798	-0.836	-1.05	1.58	17.66493702	0.29516	0.369	3.14	35.10626725	0.9479	1.185
0.04	0.447213595	-0.677	-0.85	1.6	17.88854382	0.43056	0.538	3.16	35.32987404	1.0195	1.274
0.06	0.670820393	-0.513	-0.64	1.62	18.11215062	0.56189	0.702	3.18	35.55348084	1.0828	1.353
0.08	0.894427191	-0.345	-0.43	1.64	18.33575742	0.68813	0.86	3.2	35.77708764	1.1372	1.422
0.1	1.118033989	-0.176	-0.22	1.66	18.55936421	0.80833	1.01	3.22	36.00069444	1.1825	1.478
0.12	1.341640786	-0.007	-0.01	1.68	18.78297101	0.92156	1.152	3.24	36.22430124	1.2182	1.523
0.14	1.565247584	0.1622	0.203	1.7	19.00657781	1.02698	1.284	3.26	36.44790803	1.2442	1.555
0.16	1.788854382	0.3288	0.411	1.72	19.23018461	1.1238	1.405	3.28	36.67151483	1.2602	1.575
0.18	2.01246118	0.492	0.615	1.74	19.4537914	1.2113	1.514	3.3	36.89512163	1.2664	1.583
0.2	2.236067977	0.6505	0.813	1.76	19.6773982	1.28884	1.611	3.32	37.11872843	1.2625	1.578
0.22	2.459674775	0.8031	1.004	1.78	19.901005	1.35587	1.695	3.34	37.34233522	1.2488	1.561
0.24	2.683281573	0.9486	1.186	1.8	20.1246118	1.41192	1.765	3.36	37.56594202	1.2253	1.532
0.26	2.906888371	1.0859	1.357	1.82	20.3482186	1.4566	1.821	3.38	37.78954882	1.1923	1.49
0.28	3.130495168	1.214	1.517	1.84	20.57182539	1.48962	1.862	3.4	38.01315562	1.1502	1.438
0.3	3.354101966	1.3319	1.665	1.86	20.79543219	1.51078	1.888	3.42	38.23676242	1.0992	1.3/4
0.32	3.577708764	1.4387	1.798	1.88	21.01903899	1.51998	1.9	3.44	38.46036921	1.0399	1.3
0.34	3.801313382	1.5557	1.917	1.9	21.24204379	1.51/2	1.090	3.40	38.08397001	0.9727	1.210
0.36	4.024922359	1.6162	2.02	1.92	21.46625258	1.50253	1.878	3.48	38.90758281	0.8982	1.123
0.38	4.246529157	1.0655	2.107	1.94	21.06965956	1.47015	1.645	3.5	39.13118901	0.8171	0.012
0.4	4.472133333	1.7413	2.177	1.90	21.91340018	1.43632	1.790	3.32	20 5794022	0.73	0.912
0.42	4 9193/42/33	1 8109	2.229	1.98	22.13707298	1 32982	1 662	3.54	39.3784032	0.5370	0.797
0.44	5.142956349	1 87/	2.203	2 02	22.58428657	1.26012	1 575	3.50	40.0256168	0.3407	0.570
0.40	5.366563146	1.8224	2.279	2.02	22.80789337	1.18088	1.476	3.30	40.24922359	0.3364	0.33
0.5	5.590169944	1.8075	2.259	2.04	23.03150017	1.09279	1.366	3.62	40.47283039	0.2307	0.288
0.52	5.813776741	1.778	2.223	2.08	23.25510697	0.99658	1.246	3.64	40.69643719	0.1237	0.155
0.54	6.037383539	1.7347	2.168	2.1	23.47871376	0.89304	1.116	3.66	40.92004399	0.0163	0.02
0.56	6.260990337	1.678	2.097	2.12	23.70232056	0.78303	0.979	3.68	41.14365079	-0.091	-0.11
0.58	6.484597135	1.6084	2.011	2.14	23.92592736	0.66744	0.834	3.7	41.36725758	-0.196	-0.25
0.6	6.708203932	1.5266	1.908	2.16	24.14953416	0.54721	0.684	3.72	41.59086438	-0.3	-0.38
0.62	6.93181073	1.4332	1.791	2.18	24.37314095	0.4233	0.529	3.74	41.81447118	-0.401	-0.5
0.64	7.155417528	1.329	1.661	2.2	24.59674775	0.29671	0.371	3.76	42.03807798	-0.498	-0.62
0.66	7.379024326	1.215	1.519	2.22	24.82035455	0.16844	0.211	3.78	42.26168477	-0.591	-0.74
0.68	7.602631123	1.0919	1.365	2.24	25.04396135	0.03951	0.049	3.8	42.48529157	-0.678	-0.85
0.7	7.826237921	0.961	1.201	2.26	25.26756815	-0.0891	-0.11	3.82	42.70889837	-0.76	-0.95
0.72	8.049844719	0.8232	1.029	2.28	25.49117494	-0.2163	-0.27	3.84	42.93250517	-0.835	-1.04
0.74	8.273451517	0.6796	0.85	2.3	25.71478174	-0.3411	-0.43	3.86	43.15611197	-0.904	-1.13
0.76	8.497058314	0.5315	0.664	2.32	25.93838854	-0.4627	-0.58	3.88	43.37971876	-0.965	-1.21
0.78	8.720665112	0.3799	0.475	2.34	26.16199534	-0.58	-0.72	3.9	43.60332556	-1.018	-1.27
0.8	8.94427191	0.2262	0.283	2.36	26.38560213	-0.6921	-0.87	3.92	43.82693236	-1.063	-1.33
0.82	9.167878708	0.0714	0.089	2.38	26.60920893	-0.7982	-1	3.94	44.05053916	-1.099	-1.37
0.84	9.391485505	-0.083	-0.1	2.4	26.83281573	-0.8976	-1.12	3.96	44.27414595	-1.127	-1.41
0.86	9.615092303	-0.236	-0.3	2.42	27.05642253	-0.9893	-1.24	3.98	44.49775275	-1.145	-1.43
0.88	9.838699101	-0.387	-0.48	2.44	27.28002933	-1.0728	-1.34	4	44.72135955	-1.155	-1.44
0.9	10.0623059	-0.533	-0.67	2.46	27.50363612	-1.14/5	-1.43	4.02	44.94496635	-1.155	-1.44
0.92	10.2859127	-0.675	-0.84	2.48	27.72724292	-1.2128	-1.52	4.04	45.16857315	-1.146	-1.43
0.94	10.50951949	-0.81	-1.01	2.5	27.95084972	-1.2682	-1.59	4.06	45.39217994	-1.128	-1.41
0.96	10.73312629	-0.939	-1.17	2.52	28.17445652	-1.3134	-1.64	4.08	45.01578074	-1.102	-1.38
0.98	11 18022000	-1.0b	-1.32	2.54	20.39800331	-1.3481	-1.09	4.1	45.63939354	-1.00/	-1.33
1 02	11 40304660	-1.1/1	-1.40	2.50	20.0210/011	-1.372	-1.72	4.12	46 28660712	-1.024	-1.28
1.02	11 627553/9	-1.2/3	-1.59	2.58	20.04327091	-1 3871	-1.73	4.14 A 16	46 51021302	-0.973	-1.22
1.04	11.85116029	-1 445	-1 81	2.0	29,29249051	-1 3782	-1 72	4.10	46,73382072	-0.849	-1.04
1.00	12.07476708	-1.513	-1.89	2.02	29.5160973	-1.3587	-17	4.10	46,95742753	-0.778	-0.97
1.1	12.29837388	-1.569	-1.96	2.66	29.7397041	-1.3285	-1.66	4.22	47.18103433	-0.7	-0.88
1.12	12.52198067	-1.613	-2.02	2.68	29.9633109	-1.2881	-1.61	4.24	47.40464112	-0.618	-0.77
1.14	12.74558747	-1.644	-2.05	2.7	30.1869177	-1.2378	-1.55	4.26	47.62824792	-0.531	-0.66
1.16	12.96919427	-1.661	-2.08	2.72	30.41052449	-1.178	-1.47	4.28	47.85185472	-0.441	-0.55
1.18	13.19280107	-1.666	-2.08	2.74	30.63413129	-1.1093	-1.39	4.3	48.07546152	-0.347	-0.43
1.2	13.41640786	-1.657	-2.07	2.76	30.85773809	-1.0323	-1.29	4.32	48.29906831	-0.251	-0.31
1.22	13.64001466	-1.636	-2.04	2.78	31.08134489	-0.9475	-1.18	4.34	48.52267511	-0.154	-0.19
1.24	13.86362146	-1.601	-2	2.8	31.30495168	-0.8557	-1.07	4.36	48.74628191	-0.056	-0.07
1.26	14.08722826	-1.555	-1.94	2.82	31.52855848	-0.7577	-0.95	4.38	48.96988871	0.0416	0.052
1.28	14.31083506	-1.496	-1.87	2.84	31.75216528	-0.6543	-0.82	4.4	49.1934955	0.1387	0.173
1.3	14.53444185	-1.426	-1.78	2.86	31.97577208	-0.5462	-0.68	4.42	49.4171023	0.2342	0.293
1.32	14.75804865	-1.345	-1.68	2.88	32.19937888	-0.4345	-0.54	4.44	49.6407091	0.3273	0.409
1.34	14.98165545	-1.254	-1.57	2.9	32.42298567	-0.3198	-0.4	4.46	49.8643159	0.4174	0.522
1.36	15.20526225	-1.154	-1.44	2.92	32.64659247	-0.2033	-0.25	4.48	50.0879227	0.5038	0.63
1.38	15.42886904	-1.045	-1.31	2.94	32.87019927	-0.0858	-0.11	4.5	50.31152949	0.5857	0.732
1.4	15.65247584	-0.928	-1.16	2.96	33.09380607	0.03181	0.04	4.52	50.53513629	0.6627	0.828
1.42	15.87608264	-0.805	-1.01	2.98	33.31741286	0.14855	0.186	4.54	50.75874309	0.734	0.918
1.44	16.09968944	-0.676	-0.85	3	33.54101966	0.26352	0.329	4.56	50.98234989	0.7992	0.999
1.46	16.32329624	-0.543	-0.68	3.02	33.76462646	0.37584	0.47	4.58	51.20595668	0.8578	1.072
1.48	16.54690303	-0.406	-0.51	3.04	33.98823326	0.48463	0.606	4.6	51.42956348	0.9094	1.137
1.5	16.77050983	-0.266	-0.33	3.06	34.21184006	0.58905	0.736	4.62	51.65317028	0.9536	1.192
1.52	16.99411663	-0.125	-0.16	3.08	34.43544685	0.68832	0.86	4.64	51.87677708	0.9901	1.238
1.54	17.21772343	0.0163	0.02	3.1	34.65905365	0./8167	0.977	4.66	52.10038388	1.0186	1.273

t model (s)	t full scale (s) z	z (cm)	z (m)	t model (s)	t full scale (s)	z (cm)	z (m)	t mode	l (s)	t full scale (s)	z (cm)	z (m)
4.68	52.32399067	1.0389	1.299	6.32	70.65974809	0.60623	0.758		7.96	88.9955055	-0.142	-0.18
4.7	52.54759747	1.0511	1.314	6.34	70.88335489	0.5486	0.686		7.98	89.2191123	-0.201	-0.25
4.72	52.77120427	1.0549	1.319	6.36	71.10696168	0.48697	0.609		8	89.4427191	-0.258	-0.32
4.74	52.99481107	1.0504	1.313	6.38	71.33056848	0.42183	0.527		8.02	89.6663259	-0.313	-0.39
4.76	53.21841786	1.0377	1.297	6.4	71.55417528	0.35371	0.442		8.04	89.8899327	-0.365	-0.46
4.78	53.44202466	1.0169	1.271	6.42	71.77778208	0.28317	0.354		8.06	90.11353949	-0.414	-0.52
4.8	53.66563146	0.9882	1.235	6.44	72.00138888	0.21077	0.263		8.08	90.33714629	-0.46	-0.57
4.82	53,88923826	0.9519	1.19	6.46	72,22499567	0.13708	0.171		8.1	90.56075309	-0.502	-0.63
4 84	54 11284506	0 9084	1 1 3 5	6.48	72 44860247	0.06271	0.078		8 12	90 78435989	-0 539	-0.67
4.86	54 33645185	0.8570	1.072	6.5	72 67220927	-0.0118	-0.01		8 1/	91 00796668	-0 572	-0.72
4.80	54.53045185	0.8379	1.072	6.52	72.07220927	-0.0118	-0.01		0.14	91.00790008	-0.372	-0.72
4.88	54.50005605	0.801	1.001	0.52	72.89581007	-0.0656	-0.11		0.10	91.25157548	-0.601	-0.75
4.9	54.78366545	0.7381	0.923	6.54	73.11942286	-0.1588	-0.2		8.18	91.45518028	-0.625	-0.78
4.92	55.00727225	0.6697	0.837	6.56	/3.34302966	-0.2301	-0.29		8.2	91.6/8/8/08	-0.643	-0.8
4.94	55.23087904	0.5964	0.745	6.58	/3.56663646	-0.2993	-0.37		8.22	91.90239388	-0.657	-0.82
4.96	55.45448584	0.5188	0.648	6.6	73.79024326	-0.3657	-0.46		8.24	92.12600067	-0.665	-0.83
4.98	55.67809264	0.4375	0.547	6.62	74.01385006	-0.429	-0.54		8.26	92.34960747	-0.668	-0.83
5	55.90169944	0.3532	0.442	6.64	74.23745685	-0.4885	-0.61		8.28	92.57321427	-0.666	-0.83
5.02	56.12530624	0.2666	0.333	6.66	74.46106365	-0.5439	-0.68		8.3	92.79682107	-0.658	-0.82
5.04	56.34891303	0.1784	0.223	6.68	74.68467045	-0.5948	-0.74		8.32	93.02042786	-0.646	-0.81
5.06	56.57251983	0.0891	0.111	6.7	74.90827725	-0.6407	-0.8		8.34	93.24403466	-0.628	-0.79
5.08	56.79612663	-3E-04	-0	6.72	75.13188404	-0.6814	-0.85		8.36	93.46764146	-0.606	-0.76
5.1	57.01973343	-0.089	-0.11	6.74	75.35549084	-0.7165	-0.9		8.38	93.69124826	-0.579	-0.72
5.12	57,24334022	-0.177	-0.22	6.76	75.57909764	-0.7458	-0.93		8.4	93,91485505	-0.547	-0.68
5 14	57 46694702	-0.263	-0.33	6.78	75 80270444	-0 7691	-0.96		8 42	94 13846185	-0 511	-0.64
5.16	57 69055382	-0.347	-0.43	6.8	76.02631123	-0.7863	-0.98		8 11	94 36206865	-0.472	-0.59
5.10	57 91/16062	-0 /127	-0 52	0.0 6 07	76 2/1001802	-0 7072	0.50		8 16	94 58567545	-0 420	-0.59
2.10	58 127767/1	-0 =02	-0.55	0.82	76 47252403	-0.9019	-1		Q 10	04 8002022	-0.202	_0.34
5.2	50.15//0/41	-0.503	-0.53	0.84	70.47352483	-0.8018	-1		0.48	94.00928225	-0.383	-0.48
5.22	58.3013/421	-0.5/6	-0.72	6.86	76.030733163	-0.8	-1		8.5	95.03288904	-0.334	-0.42
5.24	58.58498101	-0.643	-0.8	6.88	/6.920/3843	-0./92	-0.99		8.52	95.25649584	-0.283	-0.35
5.26	58.80858781	-0.705	-0.88	6.9	//.14434522	-0.7778	-0.97		8.54	95.48010264	-0.23	-0.29
5.28	59.03219461	-0.761	-0.95	6.92	77.36795202	-0.7576	-0.95		8.56	95.70370944	-0.175	-0.22
5.3	59.2558014	-0.811	-1.01	6.94	77.59155882	-0.7316	-0.91		8.58	95.92731623	-0.119	-0.15
5.32	59.4794082	-0.854	-1.07	6.96	77.81516562	-0.6999	-0.87		8.6	96.15092303	-0.063	-0.08
5.34	59.703015	-0.89	-1.11	6.98	78.03877241	-0.663	-0.83		8.62	96.37452983	-0.006	-0.01
5.36	59.9266218	-0.92	-1.15	7	78.26237921	-0.621	-0.78		8.64	96.59813663	0.0502	0.063
5.38	60.15022859	-0.941	-1.18	7.02	78.48598601	-0.5743	-0.72		8.66	96.82174343	0.106	0.132
5.4	60.37383539	-0.956	-1.19	7.04	78.70959281	-0.5234	-0.65		8.68	97.04535022	0.1606	0.201
5.42	60 59744219	-0.962	-12	7.06	78 93319961	-0 4686	-0.59		87	97 26895702	0 2136	0 267
5.42	60 8210/800	-0.961	-1.2	7.00	79 1568064	-0.4105	-0.51		8 72	97.49256382	0.2130	0.207
5.44	61 04465570	-0.501	1 10	7.08	70.2904122	0.4103	-0.51		0.72	07 71617062	0.2047	0.331
5.40	61 26926259	-0.933	-1.19	7.1	79.3804132	-0.3454	-0.44		0.74	97.71017002	0.3133	0.392
5.46	01.20820238	-0.937	-1.17	7.12	79.00402	-0.2659	-0.50		0.70	97.93977741	0.3590	0.449
5.5	61.49186938	-0.914	-1.14	7.14	/9.82/6268	-0.2204	-0.28		8.78	98.16338421	0.4026	0.503
5.52	61.71547618	-0.884	-1.1	7.16	80.05123359	-0.1536	-0.19		8.8	98.38699101	0.4422	0.553
5.54	61.93908298	-0.847	-1.06	7.18	80.27484039	-0.086	-0.11		8.82	98.61059781	0.4781	0.598
5.56	62.16268977	-0.803	-1	7.2	80.49844719	-0.0179	-0.02		8.84	98.83420461	0.5101	0.638
5.58	62.38629657	-0.754	-0.94	7.22	80.72205399	0.04985	0.062		8.86	99.0578114	0.538	0.672
5.6	62.60990337	-0.699	-0.87	7.24	80.94566079	0.11691	0.146		8.88	99.2814182	0.5615	0.702
5.62	62.83351017	-0.638	-0.8	7.26	81.16926758	0.1827	0.228		8.9	99.505025	0.5804	0.726
5.64	63.05711697	-0.573	-0.72	7.28	81.39287438	0.24672	0.308		8.92	99.7286318	0.5947	0.743
5.66	63.28072376	-0.504	-0.63	7.3	81.61648118	0.30848	0.386		8.94	99.95223859	0.6043	0.755
5.68	63.50433056	-0.431	-0.54	7.32	81.84008798	0.36749	0.459		8.96	100.1758454	0.609	0.761
5.7	63.72793736	-0.355	-0.44	7.34	82.06369477	0.42332	0.529		8.98	100.3994522	0.609	0.761
5 72	63 95154416	-0 277	-0.35	7 36	82 28730157	0 47554	0 594		9	100 623059	0 6042	0 755
5.72	64.17515095	-0 197	-0.25	7 29	82,51090837	0.52376	0.655		9 02	100 8466658	0.5947	0 743
5.74	64 39875775	-0 116	-0.1/	7.30	82 72/51517	0.56762	0.71		9.02	101 0702726	0.5805	0 776
5.70	64 67736455	-0.03v	-0.14	7.4	87 05812107	0.50705	0.71		9.04	101.0702720	0.5605	0.720
5.76	64 84507125	0.034	0.04	7.42	02.33012197 02.10171070	0.00081	0.759		0.00	101.2530/94	0.3019	0.702
5.8	65 06057045	0.04/3	0.059	7.44	03.101/20/0	0.04103	0.001		2.00	101.31/4002	0.5369	0.074
5.82	65 20210404	0.128	0.10	7.46	03.40333556	0.07004	0.000		9.1	101.0646000	0.5119	0.64
5.84	05.29318494	0.2072	0.259	/.48	03.02894236	0.09305	0.867		9.12	101.9646998	0.4809	0.601
5.86	05.516/91/4	0.2844	0.356	7.5	83.85254916	0.71169	0.89		9.14	102.1883066	0.4464	0.558
5.88	65.74039854	U.359	U.449	7.52	84.0/615595	0./2405	0.905		9.16	102.4119134	0.4085	U.511
5.9	65.96400534	0.4304	0.538	7.54	84.29976275	0.73067	0.913		9.18	102.6355202	0.3676	0.46
5.92	66.18761213	0.4981	0.623	7.56	84.52336955	0.73152	0.914		9.2	102.859127	0.3241	0.405
5.94	66.41121893	0.5615	0.702	7.58	84.74697635	0.72662	0.908		9.22	103.0827338	0.2782	0.348
5.96	66.63482573	0.6202	0.775	7.6	84.97058314	0.71605	0.895		9.24	103.3063406	0.2304	0.288
5.98	66.85843253	0.6737	0.842	7.62	85.19418994	0.69992	0.875		9.26	103.5299474	0.181	0.226
6	67.08203932	0.7216	0.902	7.64	85.41779674	0.67838	0.848		9.28	103.7535542	0.1305	0.163
6.02	67.30564612	0.7636	0.955	7.66	85.64140354	0.65162	0.815		9.3	103.977161	0.0791	0.099
6.04	67.52925292	0.7994	0.999	7.68	85.86501034	0.61989	0.775		9.32	104.2007678	0.0275	0.034
6.06	67.75285972	0.8288	1.036	7.7	86.08861713	0.58345	0.729		9.34	104.4243745	-0.024	-0.03
6.08	67.97646652	0.8515	1.064	7.72	86.31222393	0.54263	0.678		9.36	104.6479813	-0.075	-0.09
61	68,20007331	0.8674	1 084	7 74	86,53583073	0.49776	0 677		9 38	104 8715881	-0 126	-0.16
6 1 2	68 42368011	0.8764	1.004	7.74	86 750/3752	0 4/021	0.562		0.00	105 0051040	-0 175	_0.10
6 1 4	68 647206011	0.0704	1.050	7.70	86 09204422	0.44521	0.302		9.4	105 2100017	-0.175	-0.22
0.14	60 07000074	0.0700	1.090	7.78	00.30304432	0.35/39	0.497		0.42	105.5100017	-0.222	-0.28
6.16	60.0045005	0.0/3/	1.092	7.8	07.20065112	0.34272	0.428		9.44	105.5424085	-0.268	-0.33
6.18	09.0945005	0.8621	1.078	/.82	87.43025792	0.28563	0.357		9.46	105.7660153	-0.311	-0.39
6.2	69.3181073	0.8437	1.055	7.84	87.65386472	0.22661	0.283		9.48	105.9896221	-0.351	-0.44
6.22	69.5417141	0.8188	1.024	7.86	87.87747152	0.1661	0.208		9.5	106.2132289	-0.389	-0.49
6.24	69.7653209	0.7877	0.985	7.88	88.10107831	0.10461	0.131		9.52	106.4368357	-0.423	-0.53
6.26	69.9889277	0.7505	0.938	7.9	88.32468511	0.04261	0.053		9.54	106.6604425	-0.454	-0.57
6.28	70.21253449	0.7076	0.885	7.92	88.54829191	-0.0194	-0.02		9.56	106.8840493	-0.481	-0.6
6.3	70.43614129	0.6594	0.824	7.94	88.77189871	-0.081	-0.1		9.58	107.1076561	-0.504	-0.63
-				-								

t model (s)	t full scale (s)	z (cm)	z (m)	t model (s)	t full scale (s)	z (cm)	z (m)	t model (s)	t full scale (s)	z (cm)	z (m)
9.6	107.3312629	-0.523	-0.65	11.24	125.6670203	-0.3722	-0.47	12.88	144.0027778	0.0116	0.015
9.62	107 5548697	-0 538	-0.67	11.26	125 8906271	-0 3466	-0.43	12.9	144 2263845	0 0441	0.055
0.64	107.3340057	0.550	0.07	11.20	125.0500271	0.3400	0.43	12.0	144.4400013	0.076	0.005
9.64	107.7784765	-0.548	-0.69	11.28	126.1142339	-0.3185	-0.4	12.92	144.4499913	0.076	0.095
9.66	108.0020833	-0.555	-0.69	11.3	126.33/840/	-0.288	-0.36	12.94	144.6/35981	0.10/2	0.134
9.68	108.2256901	-0.556	-0.7	11.32	126.5614475	-0.2554	-0.32	12.96	144.8972049	0.1373	0.172
9.7	108.4492969	-0.554	-0.69	11.34	126.7850543	-0.221	-0.28	12.98	145.1208117	0.1663	0.208
9.72	108.6729037	-0.547	-0.68	11.36	127.0086611	-0.185	-0.23	13	145.3444185	0.1938	0.242
9 74	108 8965105	-0 536	-0.67	11 38	127 2322679	-0 1477	-0.18	13.02	145 5680253	0 2196	0 274
0.76	100.0303103	0.550	0.67	11.50	127.2522075	0.1005	0.10	12.04	145.3000233	0.2130	0.274
9.76	109.1201173	-0.52	-0.65	11.4	127.4556747	-0.1095	-0.14	13.04	145.7916521	0.2455	0.304
9.78	109.3437241	-0.501	-0.63	11.42	127.6794815	-0.0706	-0.09	13.06	146.0152389	0.2655	0.332
9.8	109.5673309	-0.478	-0.6	11.44	127.9030883	-0.0314	-0.04	13.08	146.2388457	0.2852	0.357
9.82	109.7909377	-0.451	-0.56	11.46	128.1266951	0.00788	0.01	13.1	146.4624525	0.3026	0.378
9.84	110.0145445	-0.421	-0.53	11.48	128.3503019	0.0469	0.059	13.12	146.6860593	0.3175	0.397
9.86	110.2381513	-0.388	-0.48	11.5	128.5739087	0.08535	0.107	13.14	146.9096661	0.3299	0.412
9.88	110 4617581	-0 352	-0.44	11 52	128 7975155	0 12293	0 154	13.16	147 1332729	0 3396	0.425
9.00	110 6853649	_0.313	-0.30	11.54	120.0211223	0.15036	0.100	13.10	147 3568797	0.3466	0.123
0.02	110.0800040	-0.313	-0.35	11.54	120.0211223	0.1000	0.135	13.10	147.5508757	0.3400	0.435
9.92	110.9089717	-0.272	-0.54	11.50	129.2447291	0.19454	0.245	15.2	147.5604605	0.5508	0.439
9.94	111.1325/85	-0.229	-0.29	11.58	129.4683359	0.22763	0.285	13.22	147.8040933	0.3523	0.44
9.96	111.3561853	-0.184	-0.23	11.6	129.6919427	0.25895	0.324	13.24	148.0277001	0.351	0.439
9.98	111.5797921	-0.139	-0.17	11.62	129.9155495	0.28808	0.36	13.26	148.2513069	0.3469	0.434
10	111.8033989	-0.092	-0.12	11.64	130.1391563	0.3148	0.394	13.28	148.4749137	0.3402	0.425
10.02	112.0270057	-0.045	-0.06	11.66	130.3627631	0.33891	0.424	13.3	148.6985205	0.3308	0.413
10.04	112 2506125	0.0022	0.003	11.68	130 5863699	0 36024	0.45	13 32	148 9221273	0 3189	0 399
10.04	112 /7/2102	0.0401	0.061	11.00	130 8000767	0 27062	0 472	10.02	149 1/1572/1	0 3045	0 201
10.00	112.4/42193	0.0491	0.001	11.7	121 0225025	0.37803	0.4/3	13.34	140 2002400	0.3043	0.301
10.08	112.09/8261	0.0954	0.119	11./2	131.0335835	0.39396	0.492	13.36	149.3093409	0.28/8	0.36
10.1	112.9214329	0.1407	0.1/6	11.74	131.25/1903	0.40612	0.508	13.38	149.5929477	0.2689	0.336
10.12	113.1450397	0.1846	0.231	11.76	131.4807971	0.41502	0.519	13.4	149.8165545	0.248	0.31
10.14	113.3686465	0.2269	0.284	11.78	131.7044039	0.42063	0.526	13.42	150.0401613	0.2253	0.282
10.16	113.5922533	0.2672	0.334	11.8	131.9280107	0.4229	0.529	13.44	150.2637681	0.2009	0.251
10.18	113.8158601	0.3052	0.382	11.82	132.1516175	0.42185	0.527	13.46	150.4873749	0.1751	0.219
10 2	114.0394669	0.3406	0,426	11.84	132,3752243	0.41749	0.522	13.48	150,7109817	0,1481	0,185
10.2	114 2630727	0 2722	0.466	11.04	132 5088311	0 40097	0.512	12 =	150 93/5895	0.12	0.15
10.22	114.2030737	0.3732	0.400	11.80	132.3366311	0.40987	0.312	13.3	130.9343883	0.12	0.13
10.24	114.4866804	0.4026	0.503	11.88	132.8224379	0.39908	0.499	13.52	151.1581953	0.0911	0.114
10.26	114.7102872	0.4287	0.536	11.9	133.0460447	0.38521	0.482	13.54	151.3818021	0.0616	0.077
10.28	114.933894	0.4514	0.564	11.92	133.2696515	0.3684	0.46	13.56	151.6054089	0.0319	0.04
10.3	115.1575008	0.4704	0.588	11.94	133.4932583	0.34877	0.436	13.58	151.8290157	0.002	0.002
10.32	115.3811076	0.4856	0.607	11.96	133.7168651	0.32652	0.408	13.6	152.0526225	-0.028	-0.03
10 34	115 6047144	0 4969	0.621	11 98	133 9404719	0 30181	0 377	13.62	152 2762293	-0.057	-0.07
10.34	115 8283212	0.4503	0.621	12.50	134 1640786	0.30101	0.3//	13.62	152.2702255	-0.086	-0.11
10.30	115.0205212	0.5042	0.03	12.02	124.2070054	0.27400	0.344	13.04	152.4338301	-0.080	-0.11
10.38	116.051928	0.5076	0.634	12.02	134.3876854	0.2459	0.307	13.66	152.7234429	-0.114	-0.14
10.4	116.2755348	0.5069	0.634	12.04	134.6112922	0.21515	0.269	13.68	152.9470497	-0.141	-0.18
10.42	116.4991416	0.5023	0.628	12.06	134.834899	0.18287	0.229	13.7	153.1706565	-0.166	-0.21
10.44	116.7227484	0.4937	0.617	12.08	135.0585058	0.14933	0.187	13.72	153.3942633	-0.191	-0.24
10.46	116.9463552	0.4814	0.602	12.1	135.2821126	0.11479	0.143	13.74	153.6178701	-0.213	-0.27
10.48	117.169962	0.4653	0.582	12.12	135.5057194	0.07952	0.099	13.76	153.8414769	-0.234	-0.29
10.5	117,3935688	0.4456	0.557	12.14	135,7293262	0.04381	0.055	13.78	154.0650836	-0.253	-0.32
10.52	117 6171756	0.4226	0.528	12.16	135 052033	0.0070/	0.01	13.8	154 2886904	-0.27	-0.34
10.52	117.0171730	0.4220	0.320	12.10	135.552555	0.00734	0.01	13.0	154.2000304	-0.27	-0.34
10.54	117.8407824	0.3963	0.495	12.18	136.1765398	-0.0278	-0.03	13.82	154.5122972	-0.284	-0.36
10.56	118.0643892	0.36/1	0.459	12.2	136.4001466	-0.0632	-0.08	13.84	154.735904	-0.297	-0.37
10.58	118.287996	0.3352	0.419	12.22	136.6237534	-0.0978	-0.12	13.86	154.9595108	-0.306	-0.38
10.6	118.5116028	0.3007	0.376	12.24	136.8473602	-0.1315	-0.16	13.88	155.1831176	-0.314	-0.39
10.62	118.7352096	0.2641	0.33	12.26	137.070967	-0.1641	-0.21	13.9	155.4067244	-0.319	-0.4
10.64	118.9588164	0.2257	0.282	12.28	137.2945738	-0.1951	-0.24	13.92	155.6303312	-0.321	-0.4
10.66	119.1824232	0.1856	0.232	12.3	137.5181806	-0.2245	-0.28	13.94	155.853938	-0.321	-0.4
10.50	119 /0602	0 1/1/2	0.19	12.5	137 7417974	-0 2510	-0.21	12 04	156 07754/19	-0 210	_0 /
10.00	110 6206269	0.1021	0 1 2 9	12.32	137 0652042	-0 2772	-0.31	10.00	156 2011516	-0 212	_0.4
10.7	110 9532420	0.1021	0.120	12.34	120 100001	0.2000	0.33	13.30	156 53/3504	-0.313	-0.39
10.72	119.8532436	0.0593	0.074	12.36	138.189001	-0.3003	-0.38	14	150.524/584	-0.306	-0.38
10.74	120.0768504	0.0162	0.02	12.38	138.4126078	-0.3209	-0.4	14.02	156./483652	-0.296	-0.37
10.76	120.3004572	-0.027	-0.03	12.4	138.6362146	-0.3388	-0.42	14.04	156.971972	-0.284	-0.35
10.78	120.524064	-0.069	-0.09	12.42	138.8598214	-0.354	-0.44	14.06	157.1955788	-0.269	-0.34
10.8	120.7476708	-0.111	-0.14	12.44	139.0834282	-0.3663	-0.46	14.08	157.4191856	-0.253	-0.32
10.82	120.9712776	-0.152	-0.19	12.46	139.307035	-0.3757	-0.47	14.1	157.6427924	-0.235	-0.29
10.84	121.1948844	-0.191	-0.24	12 48	139,5306418	-0.3821	-0 48	14 12	157,8663992	-0 215	-0.27
10.84	121 418/012	_0 220	-0.24	12.40	130 75/17/96	-0 3825	-0 /12	1/1/1/	158 000000	-0 102	_0.2/
10.00	121 642000	0.229	0.29	12.3	120 0770554	0.3055	0.40	14.14	150.030000	0.173	0.24
10.88	121.042098	-0.204	-0.33	12.52	139.9//8554	-0.3858	-0.48	14.16	150.5130128	-U.1/	-0.21
10.9	121.8657048	-0.298	-0.37	12.54	140.2014622	-0.3831	-0.48	14.18	158.53/2196	-0.146	-0.18
10.92	122.0893116	-0.328	-0.41	12.56	140.425069	-0.3774	-0.47	14.2	158.7608264	-0.12	-0.15
10.94	122.3129184	-0.356	-0.45	12.58	140.6486758	-0.3687	-0.46	14.22	158.9844332	-0.094	-0.12
10.96	122.5365252	-0.382	-0.48	12.6	140.8722826	-0.3573	-0.45	14.24	159.20804	-0.068	-0.08
10.98	122.760132	-0.404	-0.5	12.62	141.0958894	-0.343	-0.43	14.26	159.4316468	-0.041	-0.05
11	122.9837388	-0.422	-0.53	12.64	141.3194962	-0.3262	-0.41	14.28	159.6552536	-0.013	-0.02
11 02	123 2073456	-0 438	-0.55	12 66	141 543103	-0 3060	-0.38	14 2	159 8788604	0.0130	0.017
11.02	123 /200524	_0 45	-0 56	12.00	1/1 7667000	-0.2003	-0.36	14.22	160 1024672	0.0400	0.051
11.04	122.4309524	-0.45	-0.50	12.68	141.0000103	-0.2852	-0.30	14.32	160 22007	0.0409	0.051
11.06	123.6545592	-0.458	-0.57	12.7	141.9903166	-0.2615	-0.33	14.34	100.326074	0.06/4	0.084
11.08	123.878166	-0.462	-0.58	12.72	142.2139234	-0.2358	-0.29	14.36	160.5496808	0.0932	0.117
11.1	124.1017728	-0.463	-0.58	12.74	142.4375302	-0.2084	-0.26	14.38	160.7732876	0.1182	0.148
11.12	124.3253795	-0.461	-0.58	12.76	142.661137	-0.1795	-0.22	14.4	160.9968944	0.1421	0.178
11.14	124.5489863	-0.454	-0.57	12.78	142.8847438	-0.1493	-0.19	14.42	161.2205012	0.1648	0.206
11.16	124.7725931	-0.445	-0.56	12.8	143.1083506	-0.1182	-0.15	14.44	161.444108	0.1861	0.233
11 12	124 9961999	-0 421	-0.54	12 92	143 3319574	-0 0862	-0.11	14 /6	161 6677149	0.2058	0 257
11.10	125 2109067	-0 /15	_0 = 2	12.02	142 55554	-0 05002	_0.07	14.40	161 2012216	0 2220	0.207
11.2	125.2196067	-0.415	-0.52	12.84	143.3555042	-0.0538	-0.07	14.48	101.0913210	0.2238	0.28
11.22	125.4434135	-0.395	-0.49	12.86	145.//91/1	-0.0211	-0.03	14.5	102.1149284	0.2399	0.3

t model (s)	t full scale (s)	7 (cm)	z (m)	t model (s)	t full scale (s)	z (cm)	z (m)	t model (c)	t full scale (s)	z (cm)	z (m)
14 52	162 2205252	0.2541	0 219	16.16	180 6742026	0 21021	0 272	1	ہر م ح	100 01005	0.0276	2 (11)
14.52	102.3363332	0.2341	0.318	10.10	180.0742920	0.21031	0.273	1	7.0	199.01003	0.0270	0.033
14.54	162.562142	0.2662	0.333	16.18	180.8978994	0.20782	0.26	1/	.82	199.2336568	0.0104	0.013
14.56	162.7857488	0.2762	0.345	16.2	181.1215062	0.19576	0.245	17	.84	199.4572636	-0.007	-0.01
14.58	163.0093556	0.2839	0.355	16.22	181.345113	0.18223	0.228	17	.86	199.6808704	-0.024	-0.03
14.6	163,2329624	0.2894	0.362	16.24	181.5687198	0.16733	0.209	17	.88	199,9044772	-0.041	-0.05
14 62	163 4565692	0 2926	0.366	16.26	181 7923266	0 1512	0 189	1	79	200 128084	-0.057	-0.07
14.02	103.4505052	0.2024	0.300	10.20	102.0150224	0.1312	0.105	17	0.0	200.120004	0.037	0.07
14.64	163.680176	0.2934	0.367	16.28	182.0159334	0.13396	0.167	17	.92	200.3516908	-0.073	-0.05
14.66	163.9037828	0.292	0.365	16.3	182.2395402	0.11576	0.145	17	.94	200.5752976	-0.088	-0.11
14.68	164.1273895	0.2883	0.36	16.32	182.463147	0.09675	0.121	17	.96	200.7989044	-0.103	-0.13
14 7	164 3509963	0 2823	0 353	16 34	182 6867538	0 07708	0.096	17	98	201 0225112	-0 116	-0.15
14.72	164 5746021	0.2023	0.333	16.34	192.0007550	0.07700	0.050	17	10	201.0225112	0.110	0.10
14.72	104.3740031	0.2741	0.545	10.50	182.9103606	0.0509	0.071		10	201.240118	-0.129	-0.10
14.74	164.7982099	0.2639	0.33	16.38	8 183.1339674	0.03638	0.045	18	.02	201.4697248	-0.14	-0.18
14.76	165.0218167	0.2516	0.314	16.4	183.3575742	0.01568	0.02	18	.04	201.6933316	-0.151	-0.19
14.78	165.2454235	0.2374	0.297	16.42	183.581181	-0.005	-0.01	18	.06	201.9169384	-0.16	-0.2
1/1.8	165 / 690303	0 2214	0 277	16 //	183 80/7878	-0.0256	-0.03	18	08	202 1405452	-0.168	-0.21
14.0	103.4090303	0.2214	0.277	10.44	103.0047070	-0.0230	-0.03	10	.08	202.1403432	-0.108	-0.21
14.82	165.6926371	0.2038	0.255	16.46	184.0283945	-0.0459	-0.06	1	8.1	202.364152	-0.174	-0.22
14.84	165.9162439	0.1846	0.231	16.48	184.2520013	-0.0657	-0.08	18	.12	202.5877588	-0.179	-0.22
14.86	166.1398507	0.1641	0.205	16.5	184.4756081	-0.0849	-0.11	18	.14	202.8113656	-0.183	-0.23
14.88	166.3634575	0.1424	0.178	16.52	184,6992149	-0.1033	-0.13	18	.16	203.0349724	-0.185	-0.23
14.0	166 5970642	0 1109	0.15	16 5/	194 0229217	0.1209	0.15	19	10	202 2595702	0.196	0.22
14.9	100.3870043	0.1198	0.15	10.54	104.9220217	-0.1208	-0.13	10	.10	203.2383792	-0.100	=0.23
14.92	166.8106/11	0.0962	0.12	16.56	185.1464285	-0.1373	-0.17	1	8.2	203.482186	-0.185	-0.23
14.94	167.0342779	0.0721	0.09	16.58	185.3700353	-0.1526	-0.19	18	.22	203.7057928	-0.183	-0.23
14.96	167.2578847	0.0475	0.059	16.6	185.5936421	-0.1666	-0.21	18	.24	203.9293995	-0.179	-0.22
14.98	167.4814915	0.0227	0.028	16.62	185.8172489	-0.1793	-0.22	18	.26	204.1530063	-0.174	-0.22
15	167 7050092	0.002	0	16.6/	196 0409557	0.1004	0.24	19	20	204 2766121	0.169	0.21
15	107.7030983	-0.002	-0	10.04	180.0408337	-0.1904	-0.24	10	.20	204.3700131	-0.108	-0.21
15.02	167.9287051	-0.027	-0.03	16.66	186.2644625	-0.2001	-0.25	1	8.3	204.6002199	-0.16	-0.2
15.04	168.1523119	-0.051	-0.06	16.68	186.4880693	-0.2081	-0.26	18	.32	204.8238267	-0.151	-0.19
15.06	168.3759187	-0.075	-0.09	16.7	186.7116761	-0.2144	-0.27	18	.34	205.0474335	-0.141	-0.18
15.08	168,5995255	-0.098	-0.12	16 73	186,9352829	-0.2191	-0.27	18	36	205,2710403	-0.13	-0.16
15:00	100.0000200	0.000	0.12	10.72	107.1500007	0.2151	0.27	10	20	205.2710405	0.13	0.10
15.1	168.8231323	-0.121	-0.15	16.74	187.1588897	-0.2219	-0.28	18	.38	205.4946471	-0.118	-0.15
15.12	169.0467391	-0.142	-0.18	16.76	187.3824965	-0.2231	-0.28	1	8.4	205.7182539	-0.105	-0.13
15.14	169.2703459	-0.162	-0.2	16.78	187.6061033	-0.2224	-0.28	18	.42	205.9418607	-0.092	-0.11
15.16	169.4939527	-0.18	-0.23	16.8	187.8297101	-0.2201	-0.28	18	.44	206.1654675	-0.077	-0.1
15.10	160 7175505	0.100	0.25	16.93	100.0522160	0.216	0.20	10	16	206 2800742	0.062	0.00
13.18	109.7173393	-0.198	-0.23	10.82	188.0333109	=0.210	-0.27	10	.40	200.3890743	-0.003	-0.00
15.2	169.9411663	-0.213	-0.27	16.84	188.2769237	-0.2102	-0.26	18	.48	206.6126811	-0.047	-0.06
15.22	170.1647731	-0.227	-0.28	16.86	188.5005305	-0.2028	-0.25	1	8.5	206.8362879	-0.032	-0.04
15.24	170.3883799	-0.239	-0.3	16.88	188.7241373	-0.1939	-0.24	18	.52	207.0598947	-0.016	-0.02
15.26	170 6110867	-0 2/18	-0.31	16.0	188 0/77//1	-0 1835	-0.23	18	5/	207 2835015	-4E-04	-0
15.20	170.0115007	-0.240	-0.31	10.3	100.1712500	-0.1033	-0.23	10	.54	207.2033013	-4L-04	-0
15.28	170.8355935	-0.256	-0.32	16.92	189.1713509	-0.1/1/	-0.21	18	.56	207.5071083	0.0153	0.019
15.3	171.0592003	-0.262	-0.33	16.94	189.3949577	-0.1586	-0.2	18	.58	207.7307151	0.0308	0.038
15.32	171.2828071	-0.266	-0.33	16.96	189.6185645	-0.1443	-0.18	1	8.6	207.9543219	0.0459	0.057
15.34	171.5064139	-0.268	-0.33	16.98	189.8421713	-0.129	-0.16	18	.62	208.1779287	0.0607	0.076
15.31	171.3001103	0.260	0.00	10.50	100.0657791	0.1120	0.14	10	64	200.1775207	0.0749	0.007
15.50	1/1./50020/	-0.267	-0.55	17	190.0057781	-0.1128	-0.14	18	.04	208.4015555	0.0748	0.094
15.38	1/1.95362/5	-0.265	-0.33	17.02	190.2893849	-0.0957	-0.12	18	.66	208.6251423	0.0883	0.11
15.4	172.1772343	-0.26	-0.33	17.04	190.5129917	-0.078	-0.1	18	.68	208.8487491	0.1011	0.126
15.42	172.4008411	-0.254	-0.32	17.06	5 190.7365985	-0.0598	-0.07	1	8.7	209.0723559	0.113	0.141
15 44	172 6244479	-0 245	-0.31	17.08	190 9602053	-0.0411	-0.05	18	72	209 2959627	0 1239	0 155
15.44	172.0244473	-0.245	-0.31	17.00	100.0002000	-0.0411	-0.05	10	.72	205.2555027	0.1235	0.155
15.46	172.8480547	-0.235	-0.29	17.1	191.1838121	-0.0223	-0.03	18	.74	209.5195695	0.1338	0.167
15.48	173.0716615	-0.222	-0.28	17.12	191.4074189	-0.0034	-0	18	.76	209.7431763	0.1426	0.178
15.5	173.2952683	-0.208	-0.26	17.14	191.6310257	0.01546	0.019	18	.78	209.9667831	0.1503	0.188
15.52	173.5188751	-0.193	-0.24	17.16	191.8546325	0.03409	0.043	1	8.8	210.1903899	0.1567	0.196
15 54	172 7424910	0.176	0.22	17.10	102 0792202	0.05226	0.065	10	02	210 4120067	0.1610	0.202
15.54	1/5./424819	-0.176	-0.22	17.10	192.0782393	0.05250	0.065	18	.02	210.4159967	0.1019	0.202
15.56	1/3.9660886	-0.158	-0.2	17.2	192.3018461	0.07012	U.088	18	.84	210.6376035	0.1657	0.207
15.58	174.1896954	-0.138	-0.17	17.22	192.5254529	0.08724	0.109	18	.86	210.8612103	0.1683	0.21
15.6	174.4133022	-0.118	-0.15	17.24	192.7490597	0.10359	0.129	18	.88	211.0848171	0.1695	0.217
15.62	174,636909	-0.097	-0.12	17.26	192,9726665	0.11904	0.149	1	8.9	211.3084239	0.1694	0.212
15.52	174 9605150	-0.075	_0.00	17.20	102 1063733	0 12240	0.167	10	02	211 5220207	0 1670	0.24
15.64	174.0005158	-0.075	-0.09	17.28	193.1902/33	0.13348	0.10/	18	.92	211.332030/	0.10/9	0.21
15.66	1/5.0841226	-0.053	-0.07	17.3	193.4198801	0.14679	U.183	18	.94	211.7556375	U.1651	0.206
15.68	175.3077294	-0.03	-0.04	17.32	193.6434869	0.15889	0.199	18	.96	211.9792443	0.1611	0.201
15.7	175.5313362	-0.008	-0.01	17.34	193.8670936	0.16967	0.212	18	.98	212.2028511	0.1558	0.195
15 72	175.754943	0,0151	0.019	17 36	194.0907004	0,17907	0.274		19	212.4264579	0.1493	0.187
15.72	175 0705 400	0.0275	0.047	17.30	10/ 21/2072	0 10704	0.224	10	02	212 65006 47	0 1/17	0 17-
15.74	1/5.9/85498	0.0375	0.04/	17.38	194.31430/2	0.18/01	0.234	19	.02	212.0500647	0.1417	0.1//
15.76	176.2021566	0.0595	0.074	17.4	194.537914	0.19345	0.242	19	.04	212.8736715	0.133	0.166
15.78	176.4257634	0.0809	0.101	17.42	194.7615208	0.19834	0.248	19	.06	213.0972783	0.1233	0.154
15.8	176.6493702	0.1016	0.127	17.44	194.9851276	0.20164	0.252	19	.08	213.3208851	0.1127	0.141
15.82	176.872977	0,1214	0.152	17 46	195.2087344	0.20335	0.254	1	9.1	213.5444919	0.1013	0.127
15.02	177 0065020	0 1 4 0 1	0.175	17.40	105 4222442	0.20345	0.254		12	212 7690000	0.0001	0 114
15.84	111.0905838	0.1401	0.1/5	17.48	195.4323412	0.20345	0.254	19	.12	212.1080386	0.0891	0.111
15.86	177.3201906	0.1576	0.197	17.5	195.655948	0.20195	0.252	19	.14	213.9917054	0.0763	0.095
15.88	177.5437974	0.1738	0.217	17.52	195.8795548	0.19888	0.249	19	.16	214.2153122	0.0629	0.079
15.9	177.7674042	0.1886	0.236	17.54	196.1031616	0.19426	0.243	19	.18	214.438919	0.0492	0.061
15.02	177 001011	0 2010	0.252	17 54	196 3267694	0 18914	0.235	1	9.2	214 6625250	0.0251	0.044
15.92	177.331011	0.2018	0.232	17.50	100.320/084	0.10014	0.235		J.Z	214.0023238	0.0351	0.044
15.94	1/8.2146178	0.2133	0.267	17.58	196.5503/52	0.18057	0.226	19	.22	214.8861326	0.0208	0.026
15.96	178.4382246	0.2232	0.279	17.6	196.773982	0.17163	0.215	19	.24	215.1097394	0.0064	0.008
15.98	178.6618314	0.2312	0.289	17.62	196.9975888	0.16139	0.202	19	.26	215.3333462	-0.008	-0.01
16	178 8854382	0 2373	0 297	17.6/	197 2211056	0 14903	0 1 8 7	10	28	215 556952	-0.022	-0.03
10 10	170 100045	0.23/3	0.257	17.04	107 4440024	0 12720	0.107	19	.20 0 ?	215.550555	0.022	0.03
16.02	1/9.109045	0.2416	0.302	17.66	197.4448024	0.13/36	0.172		3.3	215.7805598	-0.036	-0.05
16.04	179.3326518	0.2439	0.305	17.68	197.6684092	0.12377	0.155	19	.32	216.0041666	-0.05	-0.06
16.06	179.5562586	0.2444	0.305	17.7	197.892016	0.10928	0.137	19	.34	216.2277734	-0.063	-0.08
16.08	179.7798654	0.2429	0.304	17.72	198.1156228	0.09401	0.118	19	.36	216.4513802	-0.075	-0.04
16 1	180 0024722	0 2205	0 200	17 7/	198 3202206	0.07909	0.000	10	30	216 674007	_0 007	_0 11
10.1	100.0034722	0.2395	0.299	17.74	100 500000	0.07608	0.098	19	.30	210.0/496/	-0.087	-0.1
16.12	180.227079	0.2342	0.293	17.76	198.5628364	0.06162	0.077	1	9.4	216.8985938	-0.099	-0.12
16.14	180.4506858	0.2271	0.284	17.78	198.7864432	0.04476	0.056	19	.42	217.1222006	-0.109	-0.14
-							_	-	-			

t model (s)	t full scale (s)	z (cm)	z (m)	t model (s)	t full scale (s)	z (cm)	z (m)	t model (s)	t full scale (s)	z (cm)	z (m)
19.44	217.3458074	-0.118	-0.15	21.08	235.6815648	-0.1234	-0.15	0.84	9.391485505	0.2521	0.315
19.46	217.5694142	-0.127	-0.16	21.1	235.9051716	-0.1196	-0.15	0.86	9.615092303	0.1283	0.16
19.40	218.0166278	-0.134	-0.17	21.12	236.3523852	-0.1094	-0.14	0.8	10.0623059	-0.118	-0.15
19.52	218.2402346	-0.146	-0.18	21.16	236.575992	-0.103	-0.13	0.92	10.2859127	-0.239	-0.3
19.54	218.4638414	-0.15	-0.19	21.18	236.7995988	-0.0958	-0.12	0.94	10.50951949	-0.358	-0.45
19.56	218.6874482	-0.153	-0.19	21.2	237.0232056	-0.0879	-0.11	0.96	10.73312629	-0.473	-0.59
19.58	218.911055	-0.154	-0.19	21.22	237.2468124	-0.0794	-0.1	0.98	11 18033989	-0.583	-0.73
19.62	219.3582686	-0.155	-0.19	21.24	237.694026	-0.0606	-0.03	1.02	11.40394669	-0.788	-0.99
19.64	219.5818754	-0.152	-0.19	21.28	237.9176328	-0.0506	-0.06	1.04	11.62755348	-0.881	-1.1
19.66	219.8054822	-0.149	-0.19	21.3	238.1412396	-0.0402	-0.05	1.06	5 11.85116028	-0.967	-1.21
19.68	220.029089	-0.144	-0.18	21.32	238.3648464	-0.0296	-0.04	1.08	12.07476708	-1.044	-1.31
19.7	220.2526958	-0.139	-0.17	21.34	238.5884532	-0.0187	-0.02	1.1	12.2983/388	-1.114	-1.39
19.72	220.4763026	-0.132	-0.17	21.36	239.0356668	0.00312	0.001	1.14	12.74558747	-1.174	-1.47
19.76	220.9235162	-0.116	-0.15	21.4	239.2592736	0.01396	0.017	1.16	5 12.96919427	-1.268	-1.58
19.78	221.147123	-0.107	-0.13	21.42	239.4828804	0.02464	0.031	1.18	13.19280107	-1.3	-1.63
19.8	221.3707298	-0.097	-0.12	21.44	239.7064872	0.03507	0.044	1.2	13.41640786	-1.322	-1.65
19.82	221.5943366	-0.086	-0.11	21.46	239.930094	0.04518	0.056	1.22	13.64001466	-1.335	-1.67
19.84	221.8179434	-0.075	-0.09	21.40	240.1337008	0.05487	0.069	1.24	13.86362146	-1.337	-1.67
19.88	222.265157	-0.05	-0.06	21.52	240.6009144	0.07275	0.091	1.20	3 14.31083506	-1.311	-1.64
19.9	222.4887638	-0.037	-0.05	21.54	240.8245212	0.0808	0.101	1.3	14.53444185	-1.284	-1.61
19.92	222.7123706	-0.025	-0.03	21.56	241.048128	0.08817	0.11	1.32	14.75804865	-1.248	-1.56
19.94	222.9359774	-0.011	-0.01	21.58	241.2717348	0.08724	0.109	1.34	14.98165545	-1.202	-1.5
19.96	223.1595842	0.0017	0.002	21.6	241.4953416	0.09393	0.11/	1.36	15.20526225	-1.148	-1.43
20	223.6067977	0.0148	0.018	21.62	241.7189484	0.10496	0.125	1.50	15.65247584	-1.085	-1.30
20.02	223.8304045	0.0402	0.05	21.66	242.166162	0.10922	0.137	1.42	15.87608264	-0.938	-1.17
20.04	224.0540113	0.0524	0.065	21.68	242.3897688	0.1126	0.141	1.44	16.09968944	-0.855	-1.07
20.06	224.2776181	0.0641	0.08	21.7	242.6133756	0.11509	0.144	1.46	6 16.32329624	-0.766	-0.96
20.08	224.5012249	0.0753	0.094	21.72	242.8369824	0.11666	0.146	1.48	16.54690303	-0.672	-0.84
20.1	224.7248317	0.0858	0.107	21.74	243.0605892	0.11731	0.147	1.5	16 99411663	-0.573	-0.72
20.12	225.1720453	0.1045	0.113	21.78	243.5078027	0.11705	0.140	1.54	17.21772343	-0.366	-0.46
20.16	225.3956521	0.1127	0.141	21.8	243.7314095	0.11376	0.142	1.56	5 17.44133022	-0.259	-0.32
20.18	225.6192589	0.1198	0.15					1.58	17.66493702	-0.151	-0.19
20.2	225.8428657	0.1261	0.158		SPAR + Heave F	late		1.6	5 17.88854382	-0.043	-0.05
20.22	226.0664725	0.1313	0.164	t model (s)	t full scale (s)	z (cm)	z (m)	1.62	18.11215062	0.0648	0.081
20.24	226.5136861	0.1334	0.103	0.02	0.223606798	-0.9137	-1.14	1.6	18.55936421	0.1713	0.345
20.28	226.7372929	0.1404	0.175	0.04	0.447213595	-0.7862	-0.98	1.68	18.78297101	0.3774	0.472
20.3	226.9608997	0.1412	0.177	0.06	0.670820393	-0.6538	-0.82	1.7	19.00657781	0.4755	0.594
20.32	227.1845065	0.1409	0.176	0.08	0.894427191	-0.5175	-0.65	1.72	19.23018461	0.5693	0.712
20.34	227.4081133	0.1396	0.174	0.1	1.118033989	-0.3783	-0.47	1.74	19.4537914	0.6582	0.823
20.30	227.0317201	0.1371	0.171	0.12	1.541040780	-0.2373	-0.12	1.70	19 901005	0.7413	1 023
20.4	228.0789337	0.129	0.161	0.16	1.788854382	0.04572	0.057	1.8	20.1246118	0.8892	1.112
20.42	228.3025405	0.1235	0.154	0.18	2.01246118	0.18569	0.232	1.82	20.3482186	0.9526	1.191
20.44	228.5261473	0.117	0.146	0.2	2.236067977	0.32325	0.404	1.84	20.57182539	1.0084	1.261
20.46	228.7497541	0.1096	0.137	0.22	2.459674775	0.45739	0.572	1.86	20.79543219	1.0563	1.32
20.48	228.9733609	0.1014	0.127	0.24	2.083281573	0.58714	0.734	1.80	21.01903899	1 1272	1.37
20.52	229.4205745	0.0828	0.104	0.28	3.130495168	0.82975	1.037	1.92	21.46625258	1.1498	1.437
20.54	229.6441813	0.0726	0.091	0.3	3.354101966	0.9409	1.176	1.94	21.68985938	1.1637	1.455
20.56	229.8677881	0.0618	0.077	0.32	3.577708764	1.04423	1.305	1.96	21.91346618	1.1688	1.461
20.58	230.0913949	0.0507	0.063	0.34	3.801315562	1.13901	1.424	1.98	22.13707298	1.1652	1.456
20.6	230.3150017	0.0392	0.049	0.36	4.024922359	1.22462	1.531	2.01	22.3000/9//	1.1529	1.441 1.415
20.82	230.7622153	0.0155	0.019	0.30	4.472135955	1.36609	1.708	2.04	22.30420037	1.1031	1.379
20.66	230.9858221	0.0035	0.004	0.42	4.695742753	1.42105	1.776	2.06	23.03150017	1.066	1.333
20.68	231.2094289	-0.008	-0.01	0.44	4.91934955	1.46501	1.831	2.08	23.25510697	1.0213	1.277
20.7	231.4330357	-0.02	-0.03	0.46	5.142956348	1.49775	1.872	2.1	23.47871376	0.9693	1.212
20.72	231.6566425	-0.032	-0.04	0.48	5.366563146	1.51909	1.899	2.12	23.70232056	0.9105	1.138
20.74	231.8802493	-0.043	-0.05	0.52	5 813776741	1.52697	1.911	2.14	23.92392730	0.8455	0.968
20.78	232.3274629	-0.064	-0.08	0.54	6.037383539	1.51443	1.893	2.18	24.37314095	0.6981	0.873
20.8	232.5510697	-0.074	-0.09	0.56	6.260990337	1.49031	1.863	2.2	24.59674775	0.6172	0.771
20.82	232.7746765	-0.084	-0.1	0.58	6.484597135	1.45526	1.819	2.22	24.82035455	0.5323	0.665
20.84	232.9982833	-0.092	-0.12	0.6	6.708203932	1.40963	1.762	2.24	25.04396135	0.4441	0.555
20.86	233.2218901	-0.1	-0.12	0.62	0.931810/3	1.35385	1.692	2.26	25.20/50815	0.3533	0.442
20.88	233.6691036	-0.113	-0.13	0.66	7.379024326	1.21382	1.517	2.20	25.71478174	0.1664	0.208
20.92	233.8927104	-0.118	-0.15	0.68	7.602631123	1.13077	1.413	2.32	25.93838854	0.0717	0.09
20.94	234.1163172	-0.122	-0.15	0.7	7.826237921	1.0399	1.3	2.34	26.16199534	-0.023	-0.03
20.96	234.339924	-0.125	-0.16	0.72	8.049844719	0.94196	1.177	2.36	26.38560213	-0.116	-0.15
20.98	234.5635308	-0.127	-0.16	0.74	8.273451517	0.83773	1.047	2.38	26.60920893	-0.208	-0.26
21	234.7871376	-0.129	-0.16	0.76	8.720665112	0.61372	0.91	2.4	20.032815/3	-0.298	-0.37
21.02	235.2343512	-0.128	-0.16	0.78	8.94427191	0.49568	0.62	2.44	27.28002933	-0.468	-0.59
21.06	235.457958	-0.126	-0.16	0.82	9.167878708	0.37482	0.469	2.46	27.50363612	-0.548	-0.68

t model (s)	t full scale (s)	z (cm)	z (m)	t model (s)	t full scale (s)	z (cm)	z (m)	t model (s)	t full scale (s)	z (cm)	z (m)
2.49	27 72724202	-0.622	-0.78	4.24	47 40464112	-0 7142	-0.80	e moder (b)	67 08202022	0.0686	0.096
2.40	21.12124292	-0.022	-0.78	4.24	47.40404112	-0.7142	-0.69		07.08203932	0.0080	0.080
2.5	27.95084972	-0.692	-0.86	4.26	47.62824792	-0.6848	-0.86	6.02	67.30564612	0.1154	0.144
2.52	28.17445652	-0.756	-0.94	4.28	47.85185472	-0.6505	-0.81	6.04	67.52925292	0.1609	0.201
2.54	20.200000221	0.012	1.02	4.2	40.07546152	0.0110	0.70	6.00	67.75205072	0.205	0.250
2.54	28.39800331	-0.813	-1.02	4.3	48.07540152	-0.6115	-0.76	0.00	07.75285972	0.205	0.250
2.56	28.62167011	-0.865	-1.08	4.32	48.29906831	-0.5683	-0.71	6.08	67.97646652	0.2472	0.309
2 58	28 84527691	-0.909	-1 14	4 34	48 52267511	-0 5212	-0.65	61	68 20007331	0 2872	0 359
2.50	20.01927031	0.040	1 10	4.20	40.74020101	0.3212	0.00	C 12	C0.422C0011	0.2072	0.000
2.0	29.06888371	-0.946	-1.18	4.30	48.74628191	-0.4706	-0.59	0.14	08.42308011	0.3248	0.406
2.62	29.29249051	-0.976	-1.22	4.38	48.96988871	-0.4168	-0.52	6.14	68.64728691	0.3597	0.45
2.64	29 5160973	-U 000	-1 25	4.4	49 1934955	-0 3603	-0.45	6.16	68 87089371	0 3917	0.49
2.04	25.5100575	0.555	1.25		45.1554555	0.5005	0.45	0.10	00.07005571	0.5517	0.45
2.66	29./39/041	-1.014	-1.27	4.42	49.41/1023	-0.3016	-0.38	6.18	69.0945005	0.4205	0.526
2.68	29.9633109	-1.021	-1.28	4.44	49.6407091	-0.241	-0.3	6.2	69.3181073	0.446	0.557
2.7	20 1960177	-1.021	-1.28	1.46	10 96/2150	-0 1701	-0.22	6.23	60 5/171/1	0.4670	0 5 8 5
2.7	30.1803177	-1.021	-1.20	4.40	49.8043139	-0.1791	-0.22	0.22	03.341/141	0.4075	0.385
2.72	30.41052449	-1.013	-1.27	4.48	50.08/922/	-0.1164	-0.15	6.24	69.7653209	0.4862	0.608
2.74	30.63413129	-0.997	-1.25	4.5	50.31152949	-0.0532	-0.07	6.26	69.9889277	0.5008	0.626
2 76	20 95772900	-0.074	-1 22	4.52	50 52512620	0 00005	0.012	6.29	70 21252440	0 5115	0 620
2.70	30.83773803	-0.374	-1.22	4.32	30.33313023	0.00333	0.012	0.20	70.21233449	0.5115	0.035
2.78	31.08134489	-0.944	-1.18	4.54	50.75874309	0.07253	0.091	6.3	70.43614129	0.5184	0.648
2.8	31.30495168	-0.908	-1.13	4.56	50.98234989	0.1341	0.168	6.32	70.65974809	0.5213	0.652
2 0 2	21 52055040	0.964	1.00	4 5 9	E1 20E0E669	0 10422	0 242	6.2/	70 00000 400	0 5 2 0 2	0.65
2.02	31.32833848	-0.804	-1.08	4.50	51.20555008	0.19422	0.243	0.34	70.88333483	0.5203	0.05
2.84	31./5216528	-0.815	-1.02	4.6	51.42956348	0.25246	0.316	6.36	/1.10696168	0.5155	0.644
2.86	31.97577208	-0.76	-0.95	4.62	51.65317028	0.30838	0.385	6.38	71.33056848	0.5068	0.634
2 99	22 10027999	-0.7	-0.97	1.64	51 97677709	0.2616	0.452	6/	71 55/17529	0 /0/5	0.619
2.00	32.13337000	0.7	0.07	4.04	51.07077700	0.3010	0.452	0	71.55417520	0.4545	0.010
2.9	32.42298567	-0.635	-0.79	4.66	52.10038388	0.41173	0.515	6.42	71.77778208	0.4785	0.598
2.92	32.64659247	-0.565	-0.71	4.68	52.32399067	0.45843	0.573	6.44	72.00138888	0.4591	0.574
2.04	32 87010027	-0 /07	-0.62	A 7	52 54750747	0 50126	0.627	E AG	72 22/005/7	0 4265	0 546
2.94	32.0/01332/	-0.492	-0.02	4./	52.54/59/4/	0.50130	0.02/	0.40	/2.2249990/	0.4505	0.540
2.96	33.09380607	-0.416	-0.52	4.72	52.77120427	0.54025	0.675	6.48	72.44860247	0.4107	0.513
2.98	33.31741286	-0.338	-0.42	4.74	52.99481107	0.57483	0.719	6.5	72.67220927	0.3821	0.478
2	33 54101066	-0 257	-0 32	1 70	53 218/1704	0 60/97	0.756	6 5	72 89591607	0 3509	0 420
3	22.24101200	-0.237	-0.52	4.70	55.21041/80	0.00467	0.750	0.52	/2.0330100/	0.3308	0.459
3.02	33.76462646	-0.175	-0.22	4.78	53.44202466	0.63019	0.788	6.54	73.11942286	0.3172	0.397
3.04	33.98823326	-0.093	-0.12	4.8	53.66563146	0.65063	0.813	6.56	73.34302966	0.2815	0.352
2.00	34 21194000	_0.01	-0.01	4 00	53 88033030	0 66607	0 0 0 0 0	6.50	73 56663646	0 2/20	0 205
3.06	34.21184006	-0.01	-0.01	4.82	33.00923820	0.0000/	0.833	0.50	/5.50005040	0.2439	0.305
3.08	34.43544685	0.0723	0.09	4.84	54.11284506	0.67644	0.846	6.6	73.79024326	0.2048	0.256
3.1	34.65905365	0.1533	0.192	4.86	54.33645185	0.68169	0.852	6.62	74.01385006	0.1644	0.205
2 1 2	24 99266045	0 2225	0.201	4.00	54 56005905	0.60100	0.052	6.0	74 22745605	0 1 2 2 1	0.154
3.12	34.00200045	0.2325	0.291	4.88	34.30005865	0.00103	0.852	0.64	/4.23/43085	0.1231	0.154
3.14	35.10626725	0.3095	0.387	4.9	54.78366545	0.6769	0.846	6.66	74.46106365	0.0812	0.102
3.16	35.32987404	0.3836	0.479	4.92	55.00727225	0.66695	0.834	6.68	74,68467045	0.039	0.049
2.10	35.52307101	0.0000	0.500	1.52	55.00727225	0.000000	0.001	0.00	71.00107015	0.000	0.0.0
3.18	35.55348084	0.4543	0.568	4.94	55.23087904	0.65212	0.815	b./	/4.90827725	-0.003	-0
3.2	35.77708764	0.521	0.651	4.96	55.45448584	0.63254	0.791	6.72	75.13188404	-0.045	-0.06
3.22	36.00069444	0.5835	0.729	4.98	55.67809264	0.60839	0.76	6.74	75.35549084	-0.086	-0.11
2.24	26.000000111	0.0000	0.004		55.07005201	0.00000	0.705	6.7	75.55515001	0.000	0.11
3.24	36.22430124	0.6411	0.801	5	55.90169944	0.57989	0.725	6.76	/5.5/909/64	-0.126	-0.16
3.26	36.44790803	0.6935	0.867	5.02	56.12530624	0.54728	0.684	6.78	75.80270444	-0.165	-0.21
3 28	36 67151483	0 7403	0 925	5.04	56 34891303	0 51084	0.639	6.5	76 02631123	-0 203	-0.25
5.20	30.07131403	0.7405	0.525	5.04	50.54051505	0.51004	0.055	0.0	70.02031123	0.205	0.25
3.3	36.89512163	0.7813	0.977	5.06	56.57251983	0.47086	0.589	6.84	/6.24991803	-0.239	-0.3
3.32	37.11872843	0.8162	1.02	5.08	56.79612663	0.42767	0.535	6.84	76.47352483	-0.272	-0.34
2 24	27 2/1222522	0 8447	1.056	5.1	57 010722/2	0.29162	0.477	6.96	76 60712162	-0.204	-0.28
5.54	37.34233322	0.6447	1.050	5.1	37.01973343	0.38102	0.477	0.80	70.09715105	-0.504	-0.56
3.36	37.56594202	0.8668	1.083	5.12	57.24334022	0.33306	0.416	6.88	76.92073843	-0.333	-0.42
3.38	37.78954882	0.8822	1.103	5.14	57.46694702	0.28238	0.353	6.9	77.14434522	-0.359	-0.45
2.4	28 01215562	0 8000	1 1 1 1	5 16	57 60055282	0 22007	0.297	6.03	77 26705202	-0.282	-0.48
5.4	38.01313302	0.8909	1.114	5.10	57.05055582	0.22337	0.207	0.92	77.30733202	-0.362	-0.48
3.42	38.23676242	0.893	1.116	5.18	57.91416062	0.17624	0.22	6.94	77.59155882	-0.402	-0.5
3.44	38.46036921	0.8883	1.11	5.2	58.13776741	0.12158	0.152	6.96	77.81516562	-0.42	-0.52
2.46	28 68207601	0 9771	1 006	5 22	59 26127/21	0.06643	0.092	6.05	79 029772/1	-0.424	-0.54
3.40	38.08337001	0.8771	1.050	J.22	38.30137421	0.00043	0.085	0.50	78.03877241	-0.434	-0.54
3.48	38.90758281	0.8595	1.074	5.24	58.58498101	0.01119	0.014	7	78.26237921	-0.444	-0.56
3.5	39.13118961	0.8356	1.044	5.26	58.80858781	-0.0437	-0.05	7.02	78.48598601	-0.451	-0.56
2 5 2	20 25/706/	0.8056	1 007	5.29	50.02210/61	-0.0070	-0.12	7.0/	79 70050291	-0.455	-0.57
3.52	33.3347304	0.8030	1.007	5.20	33.03213401	-0.0373	-0.12	7.04	78.70333281	-0.433	-0.57
3.54	39.5784032	0.7699	0.962	5.3	59.2558014	-0.151	-0.19	7.06	78.93319961	-0.456	-0.57
3.56	39.80201	0.7286	0.911	5.32	59.4794082	-0.2025	-0.25	7.08	79.1568064	-0.453	-0.57
3 20	40 0256169	0.6822	0.852	5.24	50 702015	-0 2522	-0 37		70 220/1122	-0 446	-0 56
3.30	40.0230100	0.0023	0.000	5.54	55.705015	0.2022	0.52	7.1	70.004102	0.4440	0.50
3.6	40.24922359	U.6312	0.789	5.36	59.9266218	-0.2996	-0.37	/.12	/9.60402	-0.436	-0.55
3.62	40.47283039	0.5758	0.72	5.38	60.15022859	-0.3444	-0.43	7.14	79.8276268	-0.424	-0.53
3.64	40,69643719	0.5165	0.646	5.4	60.37383539	-0,3863	-0.48	7 16	80.05123359	-0,408	-0.51
2.00	40.02004200	0.4520	0 5 6 7	F 43	60 50744340	_0 4254	.0.52	7.10	80 27404020	_0.200	-0.40
3.00	40.32004399	0.4539	0.307	5.42	00.39/44219	-0.4251	-0.53	/.18	00.2/484039	-0.389	-0.49
3.68	41.14365079	0.3882	0.485	5.44	60.82104899	-0.4604	-0.58	7.2	80.49844719	-0.367	-0.46
3.7	41.36725758	0.3202	0.4	5.46	61.04465579	-0.492	-0.62	7.22	80.72205399	-0.343	-0.43
2 72	41 59086429	0.2502	0 31 3	5 / 9	61 26826259	-0 5107	-0.65	7.2/	80 94566079	-0 317	-0 /
3.72	41 04 4 7 7 7 7	0.4700	0.313	5.40	C1 4040000	0.5157	0.03	7.24	01 1 000 07 3	0.31/	0.4
3.74	41.8144/118	0.1/91	0.224	5.5	61.49186938	-0.5434	-0.68	/.26	81.16926/58	-0.288	-0.36
3.76	42.03807798	0.107	0.134	5.52	61.71547618	-0.5628	-0.7	7.28	81.39287438	-0.258	-0.32
3.78	42,26168477	0.0347	0.043	5.54	61,93908298	-0,5779	-0.72	7 3	81.61648118	-0,225	-0.28
3.70	42 40520457	0.007	0.05	5.54	62 10200270	0.5005	0.72	7.5	01 04000700	0.104	0.24
3.8	42.4852915/	-0.037	-0.05	5.56	02.102089//	-0.5885	-0.74	/.34	01.84008798	-0.131	-0.24
3.82	42.70889837	-0.109	-0.14	5.58	62.38629657	-0.5947	-0.74	7.34	82.06369477	-0.157	-0.2
3.84	42.93250517	-0.178	-0.22	5.6	62.60990337	-0.5965	-0.75	7.36	82.28730157	-0.121	-0.15
2.04	A2 15611107	_0.247	_0.24	F.C2	62 02251017	_0 =0.200	.0.74	7.50	92 E1000007	_0.004	-0.11
3.86	43.1561119/	-0.247	-0.31	5.62	02.8335101/	-0.5938	-0.74	/.38	95.21090831	-0.084	-0.11
3.88	43.37971876	-0.312	-0.39	5.64	63.05711697	-0.5866	-0.73	7.4	82.73451517	-0.047	-0.06
3.9	43.60332556	-0.375	-0.47	5.66	63.28072376	-0.5752	-0.72	7.43	82.95812197	-0.011	-0.01
2.02	12 92602220	-0 425	-0 5 4	E C0	62 50422050	-0 5500	.07	7 4	82 10172070	0.0262	0.022
3.92	43.82093236	-0.435	-0.54	5.68	03.30433056	-0.5596	-0.7	7.44	03.181/28/6	0.0262	0.033
3.94	44.05053916	-0.491	-0.61	5.7	63.72793736	-0.5399	-0.67	7.46	83.40533556	0.0624	0.078
3,96	44.27414595	-0.543	-0,68	5.72	63,95154416	-0,5163	-0.65	7 49	83.62894236	0.0979	0,122
3.50	AA A0775 275	0.545	-0.74	5.72	64 17515005	_0 4004	.0.01		92 05 25 404 6	0 1224	0.100
3.98	44.497/52/5	-0.59	-0.74	5.74	04.1/515095	-0.4891	-0.61	/.5	03.85254916	0.1324	0.100
4	44.72135955	-0.633	-0.79	5.76	64.39875775	-0.4584	-0.57	7.52	84.07615595	0.1657	0.207
4.02	44,94496635	-0.671	-0.84	5.78	64.62236455	-0,4245	-0.53	7 54	84,29976275	0.1975	0.247
4.02		0.371	0.04	5.78	CA 0450310-	0.307-	0.00	7.54	04 5000005-	0.2275	0.247
4.04	45.16857315	-0.703	-0.88	5.8	64.84597135	-0.3878	-0.48	7.56	84.52336955	0.2276	0.285
4.06	45.39217994	-0.73	-0.91	5.82	65.06957815	-0.3484	-0.44	7.58	84.74697635	0.2558	0.32
4 08	45,61578674	-0.751	-0.94	5.84	65,29318494	-0.3067	-0.38	76	84,97058314	0,2819	0.352
4.00	AE 02020254	0.707	0.04	5.04	CE E1C70474	0.007	0.50	7.0	0E 10410004	0.2013	0.202
4.1	45.83939354	-0.767	-0.96	5.86	05.516/9174	-0.263	-0.33	7.62	85.19418994	0.3056	0.382
4.12	46.06300034	-0.777	-0.97	5.88	65.74039854	-0.2177	-0.27	7.64	85.41779674	0.327	0.409
A 1A	46,28660712	-0 781	-0 98	5.0	65,96400524	-0 1711	-0 21	7 64	85.64140354	0.3457	0.432
4.14	+0.20000713	0.701	0.50	3.9	05.50400554	0.1/11	0.21	7.00	05.04140354	0.3437	0.452
4.16	46.51021393	-0.779	-0.97	5.92	66.18761213	-0.1236	-0.15	7.68	85.86501034	0.3617	U.452
4.18	46.73382073	-0.771	-0.96	5.94	66.41121893	-0.0755	-0.09	7.7	86.08861713	0.3749	0.469
4.2	46 95742752	-0 750	-0.05	5.06	66 63/92572	_0 0272	-0.02	77	86 31 22202	0 3952	0 / 92
4.2	40.93/42/53	-0./58	-0.95	5.96	00.05482573	-0.02/2	-0.03		00.51222393	0.5852	0.482
4.22	47.18103433	-0.739	-0.92	5.98	66.85843253	0.02095	0.026	7.74	86.53583073	0.3926	0.491

1	6.11	- ()	- ()	h	1. C. II I (-)	- ()	- ()	1 1	h	6.11	- ()	- ()
t model (s)	t full scale (s)	z (cm)	z (m)	t model (s)	t full scale (s)	z (cm)	z (m)		t model (s)	t full scale (s)	z (cm)	z (m)
7.76	86.75943753	0.397	0.496	9.52	106.4368357	0.10652	0.133		11.28	126.1142339	-0.169	-0.21
7 70	06 00204422	0 2004	0.409	0.54	106 6604425	0.00262	0 102		11.2	126 2270/07	0 170	0.22
1.70	00.90304432	0.5964	0.496	9.54	100.0004425	0.08205	0.105		11.5	120.5576407	-0.178	-0.22
7.8	87.20665112	0.3968	0.496	9.56	106.8840493	0.05831	0.073		11.32	126.5614475	-0.186	-0.23
7.82	87 43025792	0 3023	0.49	9.58	107 1076561	0.03373	0.042	i 1	11 34	126 7850543	-0 192	-0.24
7.02	07.43023732	0.3525	0.45	5.50	107.1070501	0.03373	0.042		11.54	120.7050545	0.152	0.24
7.84	87.65386472	0.3849	0.481	9.6	107.3312629	0.00908	0.011		11.36	127.0086611	-0.197	-0.25
7.86	87 87747152	0 3747	0 468	9.62	107 5548697	-0.0155	-0.02		11 38	127 2322679	-0 201	-0.25
7.00	07.07747152	0.3747	0.400	5.02	107.5540057	0.0155	0.02		11.50	127.2522075	0.201	0.25
7.88	88.1010/831	0.3618	0.452	9.64	107.7784765	-0.0397	-0.05		11.4	127.4558747	-0.203	-0.25
79	88 32468511	0 3463	0 4 3 3	9.66	108 0020833	-0.0635	-0.08		11 42	127 6794815	-0 203	-0.25
715	00.52100511	0.0100	0.155	5.00	100.00200000	0.0000	0.00	-	11.12	12710751015	0.200	0.23
7.92	88.54829191	0.3283	0.41	9.68	108.2256901	-0.0866	-0.11		11.44	127.9030883	-0.202	-0.25
7.04	99 77190971	0 208	0.285	0.7	109 4402060	-0 1090	-0.14		11.46	128 1266051	-0.2	-0.25
7.54	88.77185871	0.308	0.385	5.7	108.4492909	-0.1085	-0.14		11.40	120.1200951	-0.2	-0.23
7.96	88.9955055	0.2855	0.357	9.72	108.6729037	-0.1302	-0.16		11.48	128.3503019	-0.196	-0.24
7.09	00 2101122	0.2611	0 226	0.74	100 0065105	0.1504	0.10		11 E	120 5720007	0.10	0.24
7.90	09.2191125	0.2011	0.520	9.74	108.8903103	-0.1304	-0.19		11.5	120.3739007	-0.19	-0.24
8	89.4427191	0.2349	0.294	9.76	109.1201173	-0.1693	-0.21		11.52	128.7975155	-0.183	-0.23
8.02	89 6663259	0 2072	0 259	9.78	109 3437241	-0 1869	-0.23	i 1	11 54	129 0211223	-0 175	<u>-</u> ∩ 22
0.02	05.0003255	0.2072	0.235	5.70	105.5457241	0.1005	0.23		11.54	125.0211225	0.175	0.22
8.04	89.8899327	0.1781	0.223	9.8	109.5673309	-0.2029	-0.25		11.56	129.2447291	-0.166	-0.21
8.06	90 113539/9	0 148	0 185	9.82	109 7909377	-0 2173	-0.27	i 1	11 58	129 4683359	-0 155	-0.19
0.00	50.115555545	0.140	0.105	5.02	105.7505577	0.2175	0.27		11.50	125.4003335	0.155	0.15
8.08	90.33714629	0.1169	0.146	9.84	110.0145445	-0.2299	-0.29		11.6	129.6919427	-0.143	-0.18
8.1	90.56075309	0.0852	0.107	9.86	110.2381513	-0.2408	-0.3		11.62	129,9155495	-0.131	-0.16
0.42	00.70405000	0.0524	0.000	0.00	440 4647504	0.2407	0.24		44.64	420.42045.02	0.447	0.45
8.12	90.78435989	0.0531	0.066	9.88	110.401/581	-0.2497	-0.31		11.04	130.1391503	-0.117	-0.15
8.14	91.00796668	0.0208	0.026	9.9	110.6853649	-0.2568	-0.32		11.66	130.3627631	-0.103	-0.13
0 1 6	01 22157240	0.011	0.01	0.02	110 0000717	0.2610	0.22		11 60	120 5062600	0 000	0.11
8.10	91.2315/348	-0.011	-0.01	9.92	110.9089717	-0.2619	-0.33		11.08	130.5863699	-0.088	-0.11
8.18	91.45518028	-0.043	-0.05	9.94	111.1325785	-0.265	-0.33		11.7	130.8099767	-0.072	-0.09
8.2	01 67979709	-0.074	-0.00	0.06	111 2561952	-0.2661	-0 22		11 72	121 0225925	-0.057	-0.07
0.2	51.07878708	-0.074	-0.05	5.50	111.5501855	-0.2001	-0.55		11.72	131.0333033	-0.037	-0.07
8.22	91.90239388	-0.105	-0.13	9.98	111.5797921	-0.2652	-0.33	1	11.74	131.2571903	-0.04	-0.05
0.04	92 12600067	-0 125	-0 17	10	111 8022090	-0 2624	-0.35		11 76	131 // 207071	-0 024	-0.05
0.24	02.212000007	0.135	0.17	10	111.0033303	0.2024	0.55		11.70	131.700/3/1	0.024	0.05
8.26	92.34960747	-0.163	-0.2	10.02	112.0270057	-0.2576	-0.32		11.78	131.7044039	-0.007	-0.01
R 7R	92,57321427	-0 19	-0.24	10 04	112.2506125	-0.2509	-0.31	[11 8	131.9280107	0.009	0.011
0.20	02 7000010-	0.10	0.07	10.04	112 47 1012	0.2555	0.01		44.0-	100 454 545	0.000	0.02
8.3	92./9682107	-0.215	-0.27	10.06	112.4/42193	-0.2424	-0.3	1 1	11.82	132.1516175	U.U252	U.U31
8.32	93.02042786	-0.238	-0.3	10.08	112.6978261	-0.2322	-0.29	1	11.84	132.3752243	0.0411	0.051
0.52	02.24402.00	0.0	0.00	10.00	112.007.0201	0.000-	0.00		41.07	122 500000	0.050-	0.07
8.34	93.24403466	-0.26	-0.32	10.1	112.9214329	-0.2203	-0.28	1 1	11.86	132.5988311	U.U566	U.U71
8.36	93.46764146	-0.279	-0.35	10.12	113.1450397	-0.2069	-0.26	1 [11.88	132.8224379	0.0715	0.089
0.00	02 60124020	_0.207	_0.27	10.12	112 2600405	0 100	.0.24	1	11.00	122 0400447	0.0050	0 107
8.38	33.09124826	-0.297	-0.37	10.14	113.3080405	-0.192	-0.24	1	11.9	100400447	0.0858	0.10/
8.4	93.91485505	-0.311	-0.39	10.16	113.5922533	-0.1758	-0.22		11.92	133.2696515	0.0994	0.124
0 4 2	04 12046105	0 224	0.4	10.19	112 0150601	0.1594	0.2		11.04	100 4000500	0 1121	0.14
8.4Z	94.13840185	-0.324	-0.4	10.18	113.8158601	-0.1584	-0.2		11.94	133.4932583	0.1121	0.14
8.44	94.36206865	-0.334	-0.42	10.2	114.0394669	-0.14	-0.17		11.96	133.7168651	0.1239	0.155
0.40		0.241	0.42	10.22	114 2020727	0.1200	0.15		11.00	122 0404710	0 1 2 4 7	0 1 0 0
8.40	94.58507545	-0.341	-0.43	10.22	114.2030/37	-0.1206	-0.15		11.98	133.9404719	0.1347	0.108
8.48	94.80928225	-0.346	-0.43	10.24	114.4866804	-0.1005	-0.13		12	134.1640786	0.1444	0.18
95	05 02288004	-0.248	-0.44	10.26	114 7102972	-0.0708	-0.1		12.02	12/ 207605/	0 15 20	0 101
0.5	55.05288504	-0.340	-0.44	10.20	114./1020/2	-0.0758	-0.1		12.02	134.3870834	0.1525	0.191
8.52	95.25649584	-0.348	-0.43	10.28	114.933894	-0.0587	-0.07		12.04	134.6112922	0.1603	0.2
8 54	95 48010264	-0 345	-0.43	10.3	115 1575008	-0.0373	-0.05	l 1	12.06	134 834899	0 1664	0 208
0.54	55.40010204	0.545	0.45	10.5	115.157 5000	0.0373	0.05		12.00	134.034033	0.1004	0.200
8.56	95.70370944	-0.339	-0.42	10.32	115.3811076	-0.0157	-0.02		12.08	135.0585058	0.1712	0.214
8 58	95 92731623	-0 331	-0.41	10 34	115 6047144	0.00579	0.007		12.1	135 2821126	0 1747	0 218
0.50	06.45000000	0.001	0.11	10.01	115.0017111	0.00575	0.007		10.10	105.2021120	0.17.17	0.210
8.6	96.15092303	-0.321	-0.4	10.36	115.8283212	0.02709	0.034		12.12	135.505/194	0.1/69	0.221
8.62	96.37452983	-0.308	-0.38	10.38	116.051928	0.04803	0.06		12.14	135.7293262	0.1777	0.222
0.64	00.50042002	0.202	0.07	10.4	446 2755240	0.00046	0.000		42.40	425.052022	0.4772	0.222
8.64	96.59813663	-0.293	-0.37	10.4	116.2755348	0.06846	0.086		12.16	135.952933	0.1772	0.222
8.66	96.82174343	-0.276	-0.34	10.42	116.4991416	0.08823	0.11		12.18	136.1765398	0.1754	0.219
0.00	07.04525022	0.257	0.22	10.44	110 7227404	0 10710	0 1 2 4		12.2	120 4001400	0 1722	0.215
8.08	97.04535022	-0.257	-0.32	10.44	110./22/484	0.10719	0.134		12.2	130.4001400	0.1723	0.215
8.7	97.26895702	-0.236	-0.3	10.46	116.9463552	0.12522	0.157		12.22	136.6237534	0.168	0.21
9 7 2	07 /0256292	-0.214	-0.27	10.49	117 160062	0 1/219	0 1 7 9		12.24	126 9/72602	0 1624	0 202
0.72	57.45250582	-0.214	-0.27	10.40	117.105502	0.14210	0.178		12.24	130.0473002	0.1024	0.203
8.74	97.71617062	-0.19	-0.24	10.5	117.3935688	0.15796	0.197		12.26	137.070967	0.1557	0.195
8 76	97 93977741	-0 165	-0.21	10 52	117 6171756	0 17245	0 2 1 6		12 28	137 2945738	0 1478	0 185
0.70	00.10000.101	0.100	0.17	10.52	117.0171750	0.17215	0.210		12.20	107.2515750	0.110	0.105
8.78	98.16338421	-0.139	-0.17	10.54	117.8407824	0.18554	0.232		12.3	137.5181806	0.139	0.1/4
8.8	98.38699101	-0.112	-0.14	10.56	118.0643892	0.19716	0.246		12.32	137.7417874	0.1291	0.161
0.00	00 (1050701	0.005	0.11	10.50	110 207000	0 20722	0.250		12.24	127.0052042	0 1 1 0 2	0 1 4 0
ð.ð2	30.01023181	-0.085	-0.11	10.58	110.28/996	0.20722	0.259		12.34	137.3053942	0.1193	0.148
8.84	98.83420461	-0.057	-0.07	10.6	118.5116028	0.21567	0.27		12.36	138.189001	0.1068	0.133
0.00	90 0570114	-0 020	_0.04	10.00	118 7252000	0 22245	0 270		10 00	138 /136070	0.0047	0 1 1 0
0.66	53.05/8114	-0.028	-0.04	10.02	110./352090	0.22245	0.2/8		12.38	100.41200/8	0.0945	0.110
8.88	99.2814182	-2E-04	-0	10.64	118.9588164	0.22752	0.284	1	12.4	138.6362146	0.0817	0.102
80	99,505025	0.0277	0.035	10.66	119,1874737	0.23086	0.289	1	12 42	138,8598214	0.0683	0.085
0.5	00 7000023	0.0277	0.000	10.00	440 100-202	0.20000	0.205		12.42	100.0000214	0.0000	0.000
8.92	99./286318	0.0553	0.069	10.68	119.40603	0.23245	0.291		12.44	139.0834282	0.0545	0.068
8.94	99.95223859	0.0822	0.103	10.7	119.6296368	0.23231	0.29	1	12.46	139.307035	0.0404	0.05
0.00	100 1750 45 1	0.1004	0.125	10 72	110 8533436	0 22042	0.200	1	13.40	120 5200440	0.0201	0.022
8.96	100.1758454	0.1084	0.132	10.72	113.0032430	0.23043	0.288		12.48	139.3306418	0.0261	0.033
8.98	100.3994522	0.1335	0.167	10.74	120.0768504	0.22685	0.284		12.5	139.7542486	0.0117	0.015
٥	100 623050	0 1575	0 197	10.76	120 2004572	0 22161	0 277		17 57	139 9778554	-0 003	_0
9	100.023039	0.1373	0.157	10.70	120.3004372	0.22101	0.277		12.32	135.5770554	0.005	
9.02	100.8466658	0.1801	0.225	10.78	120.524064	0.21476	0.268		12.54	140.2014622	-0.017	-0.02
9.04	101.0702726	0.2012	0.251	10.8	120,7476708	0.20636	0.258	1	12 56	140.425069	-0.031	-0.04
5.04	101.07.02720	0.2012	0.6	10.0	100 (0.20030	0.200		12.30	110.423009	0.001	0.04
9.06	101.2938794	U.2206	U.276	10.82	120.9/12776	U.19649	U.246	1 1	12.58	140.6486758	-0.045	-0.06
9.08	101.5174862	0.2383	0.298	10.84	121,1948844	0.18522	0,232	[12.6	140,8722826	-0.058	-0.07
5.50	101 744000	0.25	0.240	10.04	121 4404012	0.17000	0.242	1	12.0	141.0050001	0.071	0.00
9.1	101./41093	0.254	0.318	10.86	121.4184912	0.1/266	0.216		12.62	141.0958894	-0.0/1	-0.09
9.12	101.9646998	0.2677	0.335	10.88	121.642098	0.1589	0.199	[12.64	141.3194962	-0.083	-0.1
0.14	102 1993000	0 2704	0 2/0	10.0	121 9657049	0 1/1/07	0.10	1	17 50	141 542102	_0.004	_0 12
9.14	102.1003000	0.2794	0.549	10.9	121.005/048	0.1440/	0.10		12.00	141.343103	-0.094	-0.12
9.16	102.4119134	0.2889	0.361	10.92	122.0893116	0.12827	0.16		12.68	141.7667098	-0.105	-0.13
Q 19	102 6355202	0 2961	0 37	10 04	122 2120104	0 11162	0.14	1	12 7	141 9903166	-0 114	-0.14
	102.0000202	0.2501	0.07	10.94	400 50	0.00.00	0.14		12.7	142 010	0.114	0.14
9.2	102.859127	0.3011	0.376	10.96	122.5365252	0.09428	0.118		12.72	142.2139234	-0.123	-0.15
9.22	103.0827338	0.3039	0.38	10.98	122.760132	0.07636	0.095	1 1	12.74	142.4375302	-0.131	-0.16
5.22	102 2002 10 2	0.0000	0.00	10.30	122.000132		0.055		40 =-	142 00110-	0.101	0.10
9.24	103.3063406	U.3043	0.38	11	122.9837388	0.058	0.073	1	12.76	142.661137	-0.138	-0.17
9.26	103.5299474	0.3025	0.378	11.02	123.2073456	0.03935	0.049	1 [12.78	142.8847438	-0.144	-0.18
0.00	102 75255 12	0.000	0.272	44.02	122 420052 1	0.0205	0.000	1		142 1002525	0.4.40	0.40
9.28	103./535542	U.2984	0.3/3	11.04	123.4309524	0.02054	0.026		12.8	143.1083506	-0.148	-0.19
9.3	103.977161	0.2922	0.365	11.06	123.6545592	0.00171	0.002	[12.82	143.3319574	-0.152	-0.19
5.5	104 20070	0.000-	0.000	11.00	422 0701		0.002	1	12.02	140 55550174	0.152	0.13
9.32	104.2007678	0.2838	0.355	11.08	123.878166	-0.017	-0.02		12.84	143.5555642	-0.154	-0.19
9.34	104,4243745	0.2733	0.342	11 1	124,1017728	-0,0354	-0.04	[12.86	143,779171	-0.155	-0.19
0.0-	104 64700/-	0.200	0.000		124.225275	0.050-	0.07		10.00	144 000000000	0.1	0.10
9.36	104.64/9813	0.2609	0.326	11.12	124.3253795	-0.0535	-0.07		12.88	144.0027778	-0.155	-0.19
9.38	104.8715881	0.2467	0.308	11.14	124.5489863	-0.071	-0.09	[12.9	144.2263845	-0.154	-0.19
	105 0051043	0 2207	0.200		124 772500	0.0070	0.44	H	12.02	144 4400040	0.450	0.40
9.4	105.0951949	0.2307	U.288	11.16	124.//25931	-0.08/8	-0.11	1	12.92	144.4499913	-0.152	-0.19
9.42	105.3188017	0.2131	0.266	11.18	124.9961999	-0.1039	-0.13	1	12.94	144.6735981	-0.148	-0.19
0.44	105 5424005	0 1041	0.242	11.2	125 2100007	0 110	_0.15	1	12.00	144 9072040	_0 144	-0.10
9.44	103.3424085	0.1941	0.245	11.2	123.213900/	-0.119	-0.15		12.96	144.09/2049	-0.144	-0.18
9.46	105.7660153	0.1737	0.217	11.22	125.4434135	-0.1332	-0.17		12.98	145.1208117	-0.138	-0.17
0 / 0	105 9896221	0 1522	0 10	11 34	125 6670202	-0 1462	-0.19		10	145 3444195	-0 122	_0 1¢
J.40	105.3030221	0.1322	0.15	11.24	125.0070205	0.1405	0.10		10	145.5444103	0.152	0.10
9.5	106.2132289	U.1298	U.162	11.26	125.8906271	-0.1582	-0.2		13.02	145.5680253	-0.124	-0.16

t model (c)	t full scale (c)	z (cm)	7 (m)	t model (c)	t full scale (s)	7 (cm)	7 (m)	Γ.	model (c)	t full scale (s)	7 (cm)	z (m)
13.0	1 145 7916321	-0.116	-0.15	14 56	162 7857488	=0.0638	=0.08	ľ	16.08	179 7798654	=0.026	2 (III) -0 03
13.0	146.0152389	-0 107	-0.13	14.50	163 0093556	-0.0553	-0.07	ŀ	16.00	180 0034722	-0.019	-0.03
12.0	146.0152505	-0.007	-0.12	14.50	162 2220624	-0.0464	-0.06	F	16.12	180 227070	-0.012	-0.02
13.0	140.2308437	-0.097	-0.12	14.0	103.2329024	-0.0404	-0.00	H	10.12	100.227079	-0.012	-0.01
13.	146.4624525	-0.087	-0.11	14.62	103.4505092	-0.0372	-0.05	-	10.14	180.4506858	-0.005	-0.01
13.1.	146.6860593	-0.075	-0.09	14.64	163.680176	-0.0278	-0.03	-	16.16	180.6742926	0.0028	0.003
13.14	146.9096661	-0.064	-0.08	14.66	163.9037828	-0.0182	-0.02	-	16.18	180.8978994	0.01	0.013
13.1	5 147.1332729	-0.052	-0.07	14.68	164.1273895	-0.0086	-0.01	L	16.2	181.1215062	0.0172	0.021
13.1	3 147.3568797	-0.04	-0.05	14.7	164.3509963	0.00099	0.001		16.22	181.345113	0.0241	0.03
13.	147.5804865	-0.027	-0.03	14.72	164.5746031	0.01051	0.013		16.24	181.5687198	0.0308	0.039
13.2	147.8040933	-0.015	-0.02	14.74	164.7982099	0.01989	0.025		16.26	181.7923266	0.0372	0.047
13.24	148.0277001	-0.002	-0	14.76	165.0218167	0.02904	0.036		16.28	182.0159334	0.0433	0.054
13.2	148.2513069	0.0103	0.013	14.78	165.2454235	0.03792	0.047	F	16.3	182.2395402	0.0491	0.061
13.2	3 148.4749137	0.0226	0.028	14.8	165.4690303	0.04644	0.058	F	16.32	182.463147	0.0544	0.068
13	148 6985205	0.0347	0.043	14.82	165 6926371	0.05456	0.068	F	16 34	182 6867538	0.0593	0.074
12.2	148.0303203	0.0347	0.045	14.02	165 0162420	0.05450	0.000	F	16.26	182.0007550	0.0555	0.074
13.3	140.3221273	0.0404	0.038	14.04	166 1209507	0.0022	0.078	F	16.30	192 1220674	0.0037	0.00
13.3	149.1437341	0.0377	0.072	14.80	100.1598507	0.00955	0.087	-	10.56	103.1339074	0.0070	0.083
13.3	149.3693409	0.0685	0.086	14.88	166.3634575	0.0759	0.095	-	16.4	183.3575742	0.071	0.089
13.3	149.5929477	0.0787	0.098	14.9	166.5870643	0.08184	0.102	-	16.42	183.581181	0.0738	0.092
13.4	149.8165545	0.0882	0.11	14.92	166.8106711	0.08714	0.109		16.44	183.8047878	0.076	0.095
13.4	150.0401613	0.097	0.121	14.94	167.0342779	0.09174	0.115		16.46	184.0283945	0.0777	0.097
13.4	150.2637681	0.105	0.131	14.96	167.2578847	0.09563	0.12		16.48	184.2520013	0.0788	0.098
13.4	150.4873749	0.1122	0.14	14.98	167.4814915	0.09878	0.123	Γ	16.5	184.4756081	0.0793	0.099
13.4	3 150.7109817	0.1185	0.148	15	167.7050983	0.10117	0.126	F	16.52	184.6992149	0.0791	0.099
13	150,9345885	0.1238	0.155	15.02	167,9287051	0.10279	0.128	F	16 54	184,9228217	0.0784	0.099
13 5	151 1581052	0 1787	0.16	15.02	168 1523110	0 10363	0.12	ŀ	16 56	185 1464295	0 0772	0.004
12 5	151 2010021	0.1202	0.165	15.04	168 2750107	0 1027	0.13	ŀ	16 50	185 3700253	0.0752	0.090
13.54	151.3010021	0.1310	0.103	15.00	100.3/3318/	0.1037	0.13	ŀ	10.38	105.5700555	0.0733	0.094
13.5	151.0054089	0.134	0.108	15.08	108.5995255	0.10299	0.129	ŀ	10.6	185.5936421	0.0729	0.091
13.5	151.8290157	0.1354	0.169	15.1	168.8231323	0.10152	0.127	Ļ	16.62	185.8172489	0.07	0.087
13.	152.0526225	0.1358	0.17	15.12	169.0467391	0.0993	0.124	L	16.64	186.0408557	0.0666	0.083
13.6	152.2762293	0.1351	0.169	15.14	169.2703459	0.09636	0.12		16.66	186.2644625	0.0627	0.078
13.6	152.4998361	0.1335	0.167	15.16	169.4939527	0.09273	0.116		16.68	186.4880693	0.0583	0.073
13.6	5 152.7234429	0.1309	0.164	15.18	169.7175595	0.08843	0.111		16.7	186.7116761	0.0536	0.067
13.6	3 152.9470497	0.1273	0.159	15.2	169.9411663	0.0835	0.104	Γ	16.72	186.9352829	0.0485	0.061
13.	153,1706565	0.1228	0.153	15.22	170.1647731	0.07799	0.097	F	16.74	187,1588897	0.0431	0.054
13.7	153 3942633	0.1174	0.147	15.24	170 3883799	0.07194	0.09	F	16.76	187 3824965	0.0374	0.047
13.7	153.5542055	0.11174	0.147	15.24	170.5005755	0.07154	0.00	F	16.70	197 6061033	0.0314	0.047
13.74	153.0178701	0.1112	0.139	15.20	170.0119807	0.0034	0.082	H	10.78	187.0001033	0.0313	0.033
13.7	153.8414769	0.1042	0.13	15.28	170.8355935	0.05842	0.073	-	16.8	187.8297101	0.0253	0.032
13.7	3 154.0650836	0.0964	0.121	15.3	1/1.0592003	0.05105	0.064	-	16.82	188.0533169	0.0191	0.024
13.	154.2886904	0.088	0.11	15.32	1/1.28280/1	0.04336	0.054	L	16.84	188.2769237	0.0127	0.016
13.8	154.5122972	0.079	0.099	15.34	171.5064139	0.03541	0.044		16.86	188.5005305	0.0063	0.008
13.84	154.735904	0.0695	0.087	15.36	171.7300207	0.02725	0.034		16.88	188.7241373	-1E-04	-0
13.8	5 154.9595108	0.0596	0.074	15.38	171.9536275	0.01894	0.024		16.9	188.9477441	-0.006	-0.01
13.8	3 155.1831176	0.0493	0.062	15.4	172.1772343	0.01056	0.013		16.92	189.1713509	-0.013	-0.02
13.	155,4067244	0.0386	0.048	15.42	172.4008411	0.00216	0.003	F	16.94	189.3949577	-0.019	-0.02
13.9	155.6303312	0.0278	0.035	15.44	172.6244479	-0.0062	-0.01	F	16.96	189.6185645	-0.025	-0.03
13.9	155 853938	0.0169	0.021	15.46	172 8480547	-0 0144	-0.02	F	16.98	189 8421713	-0.031	-0.04
12.0	156.0775448	0.0105	0.021	15.40	172.0716615	-0.0225	-0.02	F	10.50	100.0657781	-0.031	-0.04
13.9	150.0773448	0.0039	0.007	15.40	173.0710013	-0.0223	-0.05	H	17 02	190.0037781	-0.030	-0.04
13.9	3 156.3011516	-0.005	-0.01	15.5	1/3.2952683	-0.0304	-0.04	-	17.02	190.2893849	-0.041	-0.05
14	156.5247584	-0.016	-0.02	15.52	1/3.5188751	-0.0379	-0.05	Ļ	17.04	190.5129917	-0.046	-0.06
14.0	156.7483652	-0.027	-0.03	15.54	173.7424819	-0.0452	-0.06	L	17.06	190.7365985	-0.05	-0.06
14.04	156.971972	-0.037	-0.05	15.56	173.9660886	-0.052	-0.07	L	17.08	190.9602053	-0.054	-0.07
14.0	5 157.1955788	-0.047	-0.06	15.58	174.1896954	-0.0584	-0.07		17.1	191.1838121	-0.058	-0.07
14.0	157.4191856	-0.057	-0.07	15.6	174.4133022	-0.0643	-0.08	Γ	17.12	191.4074189	-0.061	-0.08
14.	157.6427924	-0.066	-0.08	15.62	174.636909	-0.0697	-0.09	Γ	17.14	191.6310257	-0.064	-0.08
14.1	157.8663992	-0.074	-0.09	15.64	174.8605158	-0.0746	-0.09	F	17.16	191.8546325	-0.066	-0.08
14 14	158.090006	-0,082	-0.1	15.66	175.0841226	-0,0788	-0.1	F	17.18	192.0782393	-0.067	-0.08
14 1	158,3136128	-0.089	-0 11	15.68	175.3077294	-0.0824	-0.1	ŀ	17 2	192,3018461	-0.069	-0.00
1/ 1	158 5272104	-0.005	-0.12	15.00	175 5212242	-0.0024	_0.11	ŀ	17.2	192 525/520	-0.060	_0.00
14.1	150.3372190	-0.090	0.12	15.7	175 75 40 42	-0.0634	-0.11	ŀ	17.22	102 7400507	-0.009	-0.05
14.	158./608264	-0.102	-0.13	15./2	1/5./54943	-0.08/8	-0.11	ŀ	17.24	192.7490597	-0.069	-0.05
14.2	158.9844332	-0.107	-0.13	15.74	1/5.9785498	-0.0894	-0.11	Ļ	17.26	192.9726665	-0.069	-0.09
14.24	159.20804	-0.111	-0.14	15.76	176.2021566	-0.0904	-0.11	L	17.28	193.1962733	-0.068	-0.08
14.2	159.4316468	-0.114	-0.14	15.78	176.4257634	-0.0907	-0.11	L	17.3	193.4198801	-0.066	-0.08
14.2	159.6552536	-0.117	-0.15	15.8	176.6493702	-0.0903	-0.11		17.32	193.6434869	-0.065	-0.08
14.	159.8788604	-0.118	-0.15	15.82	176.872977	-0.0893	-0.11	Γ	17.34	193.8670936	-0.062	-0.08
14.3	160.1024672	-0.119	-0.15	15.84	177.0965838	-0.0876	-0.11	F	17.36	194.0907004	-0.059	-0.07
14.3	160.326074	-0.118	-0.15	15.86	177.3201906	-0.0852	-0.11	F	17.38	194.3143072	-0.056	-0.07
14 2	160 5496809	-0 117	-0.15	15 99	177 5/13707/	-0.0822	_0 1	ŀ	17 /	194 537014	-0.052	-0.07
14.5	160.3430808	-0.11	-0.14	15.00	177 7674040	-0.0023	.0.1	ŀ	17.4	10/ 7615200	-0.049	-0.07
14.3	160.0069044	-0.115	-0.14	15.9	177.001011	-0.0787	-0.00	ŀ	17.42	10/ 0051070	-0.048	-0.00
14.4	100.9908944	-0.112	-0.14	15.92	177.391011	-0.0746	-0.09	ŀ	17.44	105 20072 **	-0.044	-0.06
14.4	161.2205012	-0.109	-0.14	15.94	1/8.2146178	-0.07	-0.09	Ļ	17.46	195.208/344	-0.039	-0.05
14.4	161.444108	-0.104	-0.13	15.96	178.4382246	-0.0648	-0.08	L	17.48	195.4323412	-0.035	-0.04
14.4	161.6677148	-0.099	-0.12	15.98	178.6618314	-0.0593	-0.07	L	17.5	195.655948	-0.029	-0.04
14.4	161.8913216	-0.093	-0.12	16	178.8854382	-0.0533	-0.07					
14.	162.1149284	-0.087	-0.11	16.02	179.109045	-0.047	-0.06					
14.5	162.3385352	-0.08	-0.1	16.04	179.3326518	-0.0404	-0.05					
14.54	162.562142	-0.072	-0.09	16.06	179.5562586	-0.0335	-0.04					
			-			-						

BIODATA PENULIS

Fikri Ardhianutama lahir di Kota Bandung, 01 Mei 1998, merupakan putra pertama dari pasangan Basuki Soewarno dan Supri Raharyani. Penulis telah melalui beberapa jenjang pendidikan mulai dari SD-IT At-Taqwim Katapang Kab. Bandung pada tahun 2003-2006 dan SD Muhammaadiyah 02 Bendan Pekalongan pada tahun 2006-2009. Lalu melanjutkan studi di SMP Negeri 33 Semarang dan SMA Negeri 1 Semarang hingga tahun

2015. Setelah menyelesaikan studi di masa sekolah, penulis diterima di Departemen Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember. Selama masa perkuliahan, penulis sangat aktif dalam berorganisasi di Televisi Kampus ITS atau ITS TV. Selain itu penulis juga sempat diamanahi menjadi Ketua ITS TV untuk periode 2018-2019. Pada tahun ketiga perkuliahan, penulis juga sempat melaksanakan program Kerja Praktek di PT Pertamina Hulu Energi Offshore North West Java pada bagian Pipeline Repair and Replacement Project selama dua bulan. Penulis terdaftar juga sebagai anggota Laboratorium Hidrodinamika FTK ITS serta melanjutkan penelitian tugas akhir SPAR di Balai Teknologi Hidrodinamika – BPPT. Penulis menyusun tugas akhir dengan judul "Studi Eksperimen Analisis Heave Damping Pada SPAR Akibat Penambahan *Heave Plate* di *Keel*" yang telah diselesaikan dalam kurun waktu 1 semester sehingga syarat kelulusan untuk mendapatkan gelar sarjana (S-1) telah terpenuhi.

Email: fikriardian15@gmail.com