

TUGAS AKHIR - MO184804

STUDI KONFIGURASI TIPE STEEL CATENARY RISER TERHADAP KEKUATAN RISER DENGAN VARIASI KEDALAMAN LAUT DAN DIAMETER PIPA RISER

ALDI MEGANTARA ARIFIN NRP. 04311540000121

Dosen Pembimbing :

Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. Ir. Murdjito MSc. Eng

DEPARTEMEN TEKNIK KELAUTAN Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya 2019

FINAL PROJECT - MO184804

CONFIGURATION STUDY OF STEEL CATENARY RISER TYPE ON RISER STRENGTH WITH SEA DEPTH VARIATION AND RISER PIPE DIAMETER VARIATION

ALDI MEGANTARA ARIFIN NRP. 04311540000121

Supervisors :

Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. Ir. Murdjito MSc. Eng

DEPARTMENT OF OCEAN ENGINEERING Faculty Of Marine Technology Institut Teknologi Sepuluh Nopember Surabaya 2019

TUGAS AKHIR - MO184804

STUDI KONFIGURASI TIPE STEEL CATENARY RISER TERHADAP KEKUATAN RISER DENGAN VARIASI KEDALAMAN LAUT DAN DIAMETER PIPA RISER

ALDI MEGANTARA ARIFIN NRP. 04311540000121

Dosen Pembimbing :

Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. Ir. Murdjito MSc. Eng

DEPARTEMEN TEKNIK KELAUTAN Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya 2019

FINAL PROJECT - MO184804

CONFIGURATION STUDY OF STEEL CATENARY RISER TYPE ON RISER STRENGTH WITH SEA DEPTH VARIATION AND RISER PIPE DIAMETER VARIATION

ALDI MEGANTARA ARIFIN NRP. 04311540000121

Supervisors :

Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. Ir. Murdjito MSc. Eng

DEPARTMENT OF OCEAN ENGINEERING Faculty Of Marine Technology Institut Teknologi Sepuluh Nopember Surabaya 2019

LEMBAR PENGESAHAN

STUDI KONFIGURASI TIPE STEEL CATENARY RISER TERHADAP KEKUATAN RISER DENGAN VARIASI KEDALAMAN LAUT DAN DIAMETER PIPA RISER

TUGAS AKHIR

Diajukan Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarja Teknik Pada Program S1 Departemen Teknik Kelautan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember

Oleh : Aldi Megantara Arifin NRP 04311540000121

Disetujui oleh :		
Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D	(Pembimb)	ing 1)
	A St. S	
Ir. Murdjito MSc. Eng	perj (Pembimb	ing 2)
Dr. Eng. Rudi Walujo Prastianto, S.T. ,M	T. Renguji 1)
Dr. Eng., Shade Rahmawati, S.T., M.T.	(Penguji 2))
Dr. Eng. Rudi Walujo Prastianto, S.T. ,M Dr. Eng., Shade Rahmawati, S.T., M.T.	.T. (Penguji 1) (Penguji 2)))

SURABAYA JULI 2019

iii

STUDI KONFIGURASI TIPE *STEEL CATENARY* RISER TERHADAP KEKUATAN *RISER* DENGAN VARIASI KEDALAMAN LAUT DAN VARIASI DIAMETER PIPA *RISER*

Nama	: Aldi Megantara Arifin
NRP	: 04311540000121
Departemen	: Teknik Kelautan FTK – ITS
Dosen Pembimbing	: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D.

Ir. Murdjito MSc. Eng

Abstrak

Riser didefinisikan sebagai segmen vertikal (mendekati vertikal) pipa yang menghubungkan fasilitas di atas air dengan jaringan pipa bawah laut. Riser sangat dibutuhkan untuk mentransport gas atau crude oil dari fasilitas subsea ke struktur terapung yang berada di atasnya. Dalam penelitian ini dibahas mengenai analisis kekuatan steel catenary riser pada perbedaan kedalaman dengan variasi konfigurasi free hanging catenary dan lazy wave. Tinjauan khusus ini dilakukan untuk mengidentifikasi kekuatan konfigurasi steel catenary riser dengan beban gelombang pada perairan shallow water waves, intermediate depth waves, dan deep water waves dan dilihat pengaruh variasi diameter pipa riser selanjutnya akan didapatkan effective tension dan bending moment dari setiap riser, sehingga akhirnya akan diketahui kekuatan riser di setiap konfigurasi Kekuatan SCR ditinjau menggunakan metode yang terdapat pada DNV OS F201. Pengecekan kekuatan menggunakan resultan tegangan max von mises stress. Berdasarkan hasil yang diperoleh, tegangan max von mises terjadi pada area segbend dan terjadi pada riser dengan kedalaman laut dangkal dan diameter pipa terkecil.

Kata Kunci — Steel Catenary Riser, Free Hanging Catenary, Lazy Wave, Max Von Mises Stress

STUDI KONFIGURASI TIPE *STEEL CATENARY* RISER TERHADAP KEKUATAN *RISER* DENGAN VARIASI KEDALAMAN LAUT DAN VARIASI DIAMETER PIPA *RISER*

Name	: Aldi Megantara Arifin
REG	: 04311540000121
Departement	: Teknik Kelautan FTK – ITS
Technology, ITS Supervisors	: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D.

Ir. Murdjito MSc. Eng

Abstract

Riser is defined as the vertical segment of pipe that connects facilities above the water level with pipe network below the water level. Riser is essentially needed to transport gas or crude oil from subsea facility to floating structure above. This study hereby will discuss the analysis of strength of steel catenary riser with the variance of free hanging catenary and lazy wave configuration depending on the difference in depth. Riser is being simulated using dynamic analysis software. The objective of ths review is to identify the strength configuration of steel catenary riser using the wave load on the shallow water wave, intermediate water wave, and deep water wave and to observe the effect on the variation of the riser pipe diameter which is resulting on the effective tension and bending moment of each riser which represent the strength of the riser on each configuration. The strength of SCR is reviewed using the method on DNV OSF201. In order to determine the proper strength representation, max von mises stress is used as the resultant tension. Bas on the result, maxvon mises stress occurs in the segbend area and on the riser with shallow water depth and the smallest pipe diameter.

Kata Kunci : Steel Catenary Riser, Lazy Wave, Max Von Mises Stress

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT karena dengan rahmat, karunia, dan hidayahnya penulis dapat menyelesaikan laporan tugas akhir ini dengan baik dan lancar. Sholawat serta salam juga penulis panjatkan kepada junjungan seluruh umat manusia Rasulullah Muhammad SAW.

Tugas akhir ini berjudul "Studi Konfigurasi Tipe Steel Catenary Riser terhadap Kekuatan Riser dengan Variasi Kedalaman Laut dan Diameter Pipa Riser ". Tugas akhir ini disusun guna memenuhi persyaratan dalam menyelesaikan Studi Kesarjanaan (S-1) di Departemen Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember Surabaya. Tugas akhir ini membahas tentang peninjauan kekuatan steel catenary riser menggunakan DNV-OS-F201. Selain itu tugas akhir ini dibuat untuk mengetahui bagaimana pengaruh kedalaman laut dan besar diameter pipa terhadap kekuatan pipa riser tersebut.

Penulis menyadari bahwa dalam pengerjaan tugas akhir ini masih jauh dari kesempurnaan sehingga saya sangat mengharapkan kritik dan saran dari pihak lain. Akhir kata penulis berharap penelitian ini bermanfaat bagi perkembangan teknologi di bidang subsea technology serta bermanfaat bagi pembaca pada umumnya dan penulis pada khususnya.

Surabaya, Juli 2019

Aldi Megantara Arifin

UCAPAN TERIMAKASIH

Pada kesempatan ini penulis ingin mengucapkan terima kasih kepada semua pihak yang telah membantu kelancaran dalam pengerjaan tugas akhir ini hingga selesai. Penulis ingin mengucapkan terima kasih kepada:

1. Mochammad Arifin dan Ayin Suasrini selaku kedua orang tua saya, adik saya Aldira Jasmine, serta seluruh keluarga besar yang selalu mendoakan dan memberikan dukungan selama proses pengerjaan tugas akhir ini. Tugas akhir ini saya persembahkan khusus untuk kalian.

2. Bapak Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. selaku dosen pembimbing 1 dan Bapak Ir. Murdjito MSc. Eng selaku dosen pembimbing 2. Terima kasih atas bimbingan, ilmu serta dukungan kepada saya untuk menyelesaikan tugas akhir ini.

3. Bapak Dr. Ir. Wisnu Wardhana, M.Sc., SE selaku dosen wali saya selama kuliah di Departemen Teknik Kelautan FTK-ITS ini. Terima kasih atas bimbingan dan arahan bapak sehingga saya bisa menjadi mahasiswa yang lebih baik.

4. Seluruh dosen dan karyawan Departemen Teknik Kelautan FTK-ITS yang telah memberikan ilmu, bantuan dan fasilitas kepada saya selama menjalani perkuliahan.

5. Ibu Sholikhah selaku Vice President PT. Pertamina (Persero) pengolahan RU Cilacap, Mas Made, Mas Zein serta rekan-rekan PT Pertamina Shipping yang telah memberikan kesempatan dan pengalaman selama kerja praktek. Terima kasih atas bantuan dan motivasi yang sudah rekan-rekan berikan.

6. Rekan-rekan Keluarga kons, Arek2 skuad, Samyon yang selalu berbagi canda dan tawanya hingga saat ini.

7. Rekan-rekan Tritonous L-33 Teknik Kelautan 2015 yang selalu mendukung dan membantu satu sama lain hingga tugas akhir ini selesai.

Serta semua pihak yang telah membantu namun tidak bisa penulis sebutkan satupersatu. Terima kasih atas bantuan, motivasi, dan doa sehingga penulis mampu menyelesaikan Tugas akhir ini.

DAFTAR ISI

LEMBAR PENGESAHANiii
Abstrak iv
Abstract v
KATA PENGANTAR vi
UCAPAN TERIMAKASIHvii
DAFTAR ISI viii
DAFTAR GAMBAR x
DAFTAR TABELxiii
DAFTAR LAMPIRAN xiv
BAB 1 PENDAHULUAN 1
1.1 Latar Belakang Masalah
1.2 Rumusan Masalah 2
1.3 Tujuan
1.4 Manfaat
1.5 Batasan Masalah
1.6 Sistematika Penulisan
BAB II TINJAUAN PUSTAKA
2.1 Tinjauan Pustaka
2.2 Riser
2.3 Sistem Riser
2.4 Top Tensioned Riser
2.5 Compliant Riser
2.6 Hybrid Riser
2.7 Tantangan Perairan Laut Dalam12
2.8 Steel Catenary Riser
2.9 Konsep Pembebanan 15
2.10 Beban Gelombang
2.10.1 Gelombang Reguler
2.10.2 Gelombang Acak17

2.10.3 Spektrum Gelombang	. 17
2.11 Beban Arus	. 18
2.12 Gaya Tarik Efektif (Effective Tension)	. 18
2.13 Momen Lentur	. 19
2.14 Kode Desain	20
2.15 Persamaan Cantenary	20
2.16 Kedalaman Laut	. 21
Bab III Metodologi Penelitian	. 23
3.1 Diagram Alir Metodologi Penelitian	. 23
BAB IV ANALISIS HASIL DAN PEMBAHASAN	. 27
4.1 Analisis Konfigurasi Statis Steel Catenary Riser	. 27
4.2 Pemodelan Steel Catenary Riser dengan Orcaflex 9.2	. 28
4.3 Pemodelan Lingkungan	. 29
4.4 Langkah Analisis Effective Tension dan Bending Moment	. 30
4.4.1 Effective Tension	31
4.4.2 Bend Moment	. 49
4.5 Analisis Kekuatan	68
BAB V KESIMPULAN DAN SARAN	71
5.1 Kesimpulan	. 71
5.2 Saran	.73
DAFTAR PUSTAKA	. 75

DAFTAR GAMBAR

Gambar 2. 1 Sistem Integritas pada Riser (Agusta, 2014)
Gambar 2. 2 Top Tensioned Rises (DnV,2010)
Gambar 2. 3 Konfigurasi pada Compliant Riser (Jayeoung Lee, 2007) 10
Gambar 2. 4 Struktur lapisan pada flexible riser (Ruswandi,2009) 11
Gambar 2. 5 Hybrid Riser (DnV,2010) 12
Gambar 2. 6 Steel Catenary Riser (Jaeyoung Lee, 2007) 14
Gambar 2. 7 Flexjoint tersambung dengan floater (DnV, 2010) 15
Gambar 2. 8 Ilustrasi Gelombang Acak 17
Gambar 2. 9 Kesetimbangan pipa ketika dikenai fluida (Sparks, 2007) 19
Gambar 2. 10 Model Catenary (Bai, 2014) 20
Gambar 4. 1 Konfigurasi Statis Steel Catenary Riser
Gambar 4. 2 Konfigurasi Statis Steel Catenary Riser
Gambar 4. 3 Pemodelan Steel Catenary Riser Konfigurasi Free Hanging
Catenary
Gambar 4. 4 Pemodelan Steel Catenary Riser Konfigurasi Lazy Wave 29
Gambar 4. 5 Profil Gelombang 30
Gambar 4. 6 Input Profil Gelombang 30
Gambar 4. 7 Grafik Effective Tension sepanjang Riser (SCR 16in Water Depth
90m) 31
Gambar 4. 8 Grafik Effective Tension sepanjang Riser (SCR 20in Water Depth
90m)
Gambar 4. 9 Grafik Effective Tension sepanjang Riser (SCR 24in Water Depth
90m)
Gambar 4. 10 Grafik Effective Tension sepanjang Riser (SCR 16in Water Depth
200m)
Gambar 4. 11 Grafik Effective Tension sepanjang Riser (SCR 20in Water Depth
200m)
Gambar 4. 12 Grafik Effective Tension sepanjang Riser (SCR 24in Water Depth
200m)
Gambar 4. 13 Grafik Effective Tension sepanjang Riser (SCR 16in Water Depth
550m)
Gambar 4. 14 Grafik Effective Tension sepanjang Riser (SCR 20in Water Depth
550m)
Gambar 4. 15 Grafik Effective Tension sepanjang Riser (SCR 24in Water Depth
550m)
Gambar 4. 16 Grafik perbandingan Effective Tension sepanjang Riser Free
hanging catenary dengan Lazy Wave (SCR 16in Water Depth 90m) 40
Gambar 4. 17 Grafik perbandingan Effective Tension sepanjang Riser Free
hanging catenary dengan Lazy Wave (SCR 20in Water Depth 90m) 41
Gambar 4. 18 Grafik perbandingan Effective Tension sepanjang Riser Free
hanging catenary dengan Lazy Wave (SCR 24in Water Depth 90m) 42

Gambar 4. 19 Grafik perbandingan Effective Tension sepanjang Riser Free
hanging catenary dengan Lazy Wave (SCR 16in Water Depth 200m) 43
Gambar 4. 20 Grafik perbandingan Effective Tension sepanjang Riser Free
hanging catenary dengan Lazy Wave (SCR 20in Water Depth 200m) 44
Gambar 4. 21 Grafik perbandingan Effective Tension sepanjang Riser Free
hanging catenary dengan Lazy Wave (SCR 24in Water Depth 200m) 45
Gambar 4. 22 Grafik perbandingan Effective Tension sepanjang Riser Free
hanging catenary dengan Lazy Wave (SCR 16in Water Depth 550m) 46
Gambar 4. 23 Grafik perbandingan Effective Tension sepanjang Riser Free
hanging catenary dengan Lazy Wave (SCR 20in Water Depth 550m) 47
Gambar 4. 24 Grafik perbandingan Effective Tension sepanjang Riser Free
hanging catenary dengan Lazy Wave (SCR 24in Water Depth 550m) 48
Gambar 4. 25 Grafik Bend Moment sepanjang Riser (SCR 16in Water Depth
90m) 49
Gambar 4. 26 Grafik Bend Moment sepanjang Riser (SCR 20in Water Depth
90m) 50
Gambar 4. 27 Grafik Bend Moment sepanjang Riser (SCR 24in Water Depth
90m)
Gambar 4. 28 Grafik Bend Moment sepanjang Riser (SCR 16in Water Depth
200m)
Gambar 4. 29 Grafik Bend Moment sepanjang Riser (SCR 20in Water Depth
200m)
Gambar 4. 30 Grafik Bend Moment sepanjang Riser (SCR 24in Water Depth
200m)
Gambar 4. 31 Grafik Bend Moment sepanjang Riser (SCR 16in Water Depth
550m) 55
Gambar 4. 32 Grafik Bend Moment sepanjang Riser (SCR 20in Water Depth
550m)
Gambar 4. 33 Grafik Bend Moment sepanjang Riser (SCR 24in Water Depth
550m)
Gambar 4. 34 Grafik Bend Moment sepanjang Riser (SCR 16in Water Depth
90m)
Gambar 4. 35 Grafik Bend Moment sepanjang Riser (SCR 20in Water Depth
90m) 59
Gambar 4. 36 Grafik Bend Moment sepanjang Riser (SCR 24in Water Depth
90m)
Gambar 4. 37 Grafik Bend Moment sepanjang Riser (SCR 16in Water Depth
200m)
Gambar 4. 38 Grafik Bend Moment sepanjang Riser (SCR 20in Water Depth
200m)
Gambar 4. 39 Grafik Bend Moment sepanjang Riser (SCR 24in Water Depth
200m)

Gambar 4. 40 Grafik Bend Moment sepanjang Riser (SCR 16in Water Depth	
550m)	. 64
Gambar 4. 41 Grafik Bend Moment sepanjang Riser (SCR 20in Water Depth	
550m)	. 65
Gambar 4. 42 Grafik Bend Moment sepanjang Riser (SCR 24in Water Depth	
550m)	. 66

DAFTAR TABEL

Tabel 3. 1 Data Steel Catenary Riser 25
Tabel 4. 1 Hasil Perhitungan Teori Catenary kedalaman 90 meter 27
Tabel 4. 2 Hasil Perhitungan Teori Catenary kedalaman 200 meter 27
Tabel 4. 3 Hasil Perhitungan Teori Catenary kedalaman 550 meter 28
Tabel 4. 4 Perbandingan hasil analisa pada masing -masing kofigurasi kedalaman
90 meter
Tabel 4. 5 Perbandingan hasil analisa pada masing -masing kofigurasi kedalaman
200 meter
Tabel 4. 6 Perbandingan hasil analisa pada masing -masing kofigurasi kedalaman
550 meter
Tabel 4. 7 Kriteria Kekuatan FHR SCR 69
Tabel 4. 8 Kriteria Kekuatan Lazy Wave SCR 69

DAFTAR LAMPIRAN

Lampiran A Analisa Konfigurasi Statis

Lampiran B Input Orcaflex

Lampiran C Outout Max Von Mises (1 Variasi Kedalaman dengan Konfigurasi Free Hanging Catenary)

Lampiran D Output Grafik Max Von Mises (1 Variasi Kedalaman Dengan Konfigurasi Free Hanging Catenary)

BAB 1 PENDAHULUAN

1.1 Latar Belakang Masalah

Dunia eksplorasi dan eksploitasi migas lepas pantai dengan menggunakan struktur terapung merupakan bidang yang membutuhkan teknologi tinggi dan biaya yang tidak sedikit. Oleh karena itu perlu dilakukan analisa perancangan dengan sangat hati-hati, baik itu perancangan awal sampai pemeliharaan agar struktur terawat dengan baik

Salah satu jenis infrastruktur yang memiliki peran penting dalam industri ini adalah *riser. Riser* sangat dibutuhkan untuk mentransport gas atau crude oil dari fasilitas *subsea* ke *offshore platform* (Agusta, 2012).Konsep riser yang sering digunakan untuk laut dalam adalah *flexible riser*, *Steel Catenary Riser* (SCR) dan *Hybrid Riser Tower* (HRT) (Karunakaran et al, 1996 ; Keprate, 2009)

Flexible riser merupakan riser yang terbuat dari material komposit yang fleksibel sehingga dapat mengakomodir pergerakan dinamis *vessel* dan sudut lekukan kritis (*high curvature*), serta mudah dalam instalasinya.

Hybrid riser merupakan riser dengan menggabungkan *vertical rigid tower* yang berdiri dari *seabed* hingga *wave action zone* dan flexible riser yang terhubung dengan tower menuju offshore platform (Ruswandi, 2009).Namun, hybrid riser masih belum menjawab permasalah laut dalam dikarenakan mahalnya komponen-komponen pendukung pada hybrid riser (*riser buncle, bouyancy can , flex joint, flexible jumper,* dll).

Steel Catenary Riser (SCR) adalah riser yang terbuat dari pipa baja (steel pipe). Penggunaan material baja ini membuat biaya SCR lebih ekonomis dari flexible riser dan hybrid riser dan pipa baja relatif ringan sehingga dapat mengurangi beban angkut *floater* (Howells, 1995).Penggunaan diameter besar diizinkan dalam konsep SCR, yang mana sesuai untuk laut dalam

dan *High Pressure and High Temperature* (HPHT). Namun, beberapa studi menunjukkan bahwa performa dinamis SCR terbatas.

Konfigurasi SCR dapat menjadi lebih kompleks jika *floater* bergerak menjauh dari TDP yang menyebabkan tegangan efektif menjadi tinggi, atau momen lentur menjadi tinggi jika *floater* bergerak mendekati TDP. Permasalahan tersebut dapat diminimalisir dengan membatasi gerak *vessel* atau meningkatkan performa SCR. Tiga konfigurasi SCR yang paling sering digunakan adalah (Buberg, 2014) :

- 1. Free Hanging
- 2. Lazy Wave

Perbedaan jenis kedalaman perairan tempat *riser* beroperasi dan besar diameter pipa *riser* akan mempengaruhi kekuatan dari *riser* itu sendiri. Oleh karena itu diperlukan analisis untuk melihat kekuatan *riser* dengan konfigurasi *free hanging catenary*, dan *lazy wave* pada jenis kedalaman perairan yang berbeda dan diameter pipa yang berbeda. *Riser* tipe *lazy wave* akan ditambahkan *bouyancy elements* dekat dengan TDP. Sedangkan *tipe free hanging catenary* tanpa menggunakan *bouyancy elements* yang berarti menyambung langsung dari buoy menuju pipeline end manifold (PLEM). *Output* dari analisis ini adalah mendapatkan kekuatan dari setiap konfigurasi *steel catenary riser* pada jenis kedalaman operasi laut yang berbeda.

1.2 Rumusan Masalah

Permasalahan yang akan dikaji dalam tugas akhir ini adalah :

- 1. Berapa besar *effective tension* dan momen lentur pada konfigurasi *steel catenary riser* tipe *free hanging* dan *lazy wave* ?
- 2. Bagaimana pengaruh variasi kedalaman laut *shallow water, intermediate water,* dan *deep water* terhadap kekuatan *riser* ?
- 3. Bagaimana pengaruh perbedaan diameter riser terhadap kekuatan riser ?

1.3 Tujuan

Tujuan yang ingin dicapai dalam penelitian ini adalah sebagai berikut :

- 1. Mengetahui besar *effective tension* dan momen lentur pada konfigurasi *steel catenary riser* tipe *free hanging* dan *lazy wave*
- 2. Mengetahui pengaruh variasi kedalaman laut *shallow water, intermediate water,* dan *deep water* terhadap kekuatan *riser*.
- 3. Mengetahui pengaruh besar diameter riser terhadap kekuatan riser

1.4 Manfaat

Manfaat pengerjaan tugas akhir ini adalah mengetahui besar *effective tension* dan momen lentur yang terjadi pada *riser*, sehingga dapat membandingkan kekuatan antara konfigurasi *steel catenary riser* tipe *free hanging* dan *lazy* wave pada variasi kedalaman laut *shallow water, intermediate water,* dan *deep water* dan variasi besar diameter *riser*

1.5 Batasan Masalah

Untuk menghindari pembahasan diluar topik yang akan dikaji, maka dilakukan pembatasan masalah dengan asumsi – asumsi sebagai berikut :

- 1. Beban yang bekerja pada *riser* yang diperhitungkan akibat beban gelombang dan arus.
- Analisis kekuatan riser berdasarkan effective tension, momen lentur dan max von mises stress menggunakan software Orcaflex 9.2 sesuai kriteria DNV-OS-F201.
- 3. Kondisi dasar laut diasumsikan datar.
- 4. Variasi kedalaman laut yang digunakan adalah *shallow water, intermediate water,* dan *deep water* dengan Hs (tinggi gelombang signifikan dan periode gelombang tetap).
- 5. Variasi diameter pipa *riser* yang digunakan adalah 16 in, 20 in dan 24 in.
- 6. Tipe konfigurasi *steel catenary riser* yang dianalisa adalah *free hanging* dan *lazy wave*.
- 7. Kekuatan *riser* tidak dipengaruhi oleh pergerakan struktur terapung.
- Dalam menentukan kedalaman laut menggunakan tinggi gelombang yang sudah ditetapkan berdasarkan data dan tipe gelombang yang digunakan adalah JONSWAP.

1.6 Sistematika Penulisan

Pada Bab Pendahuluan diterangkan berbagai hal yang dapat menyangkut penelitian yang menyangkut penelitian yang dilakukan yakni :

- 1. Hal-hal yang melatarbelakangi dilakukannya penelitian.
- 2. Permasalahan yang ingin diselesaikan dengan mengerjakan penelitian.
- 3. Tujuan yang digunakan untuk menjawab permasalahan yang diangkat.
- 4. Manfaat yang diperoleh dari dilakukannya penelitian.
- 5. Hal-hal yang menjadi batasan dalam pengerjaan penelitian.
- 6. Penjelasan dari sistematika laporan yang digunakan dalam penelitian.

Bab II Tinjauan Pustaka berisi tinjauan pustaka yang dijadikan acuan dalam pengerjaan penelitian ini.

Bab III Metodologi Penelitian menerangkan tentang metode yang dipergunakan dalam mengerjakan penelitian ini.

BAB II TINJAUAN PUSTAKA

2.1 Tinjauan Pustaka

Beberapa tahun terakhir, pemilihan konsep *riser* untuk ekploitasi minyak dan gas di laut dalam telah menjadi perhatian utama dalam industri minyak dan gas (Souza et al,2008).Keprate (2009) dalam penelitiannya, menjelaskan bahwa konsep riser yang sering digunakan dalam laut dalam yaitu :

- 1. Free hanging flexible riser
- 2. Steel Catenary riser
- 3. Hybrid riser tower

Dari ketiga riser tersebut, menurut Howells (1995) dalam penelitiannya, menyatakan bahwa Steel Catenary Riser (SCR) merupakan konsep riser yang tepat untuk digunakan di laut dalam, karena riser tersebut menggunakan material baja sehingga lebih ekonomis dan mengurangi beban angkut *floater* karena relatif lebih ringan.

Salah satu kelemahan SCR adalah rentannya riser terhadap perilaku dinamis dari *floater*. Buberg (2014) dalam penelitiannya menyatakan bahwa gerakan *heave* dan *surge* yang signifikan dapat mengakibatkan momen lentur yang besar pada panjang bentang riser, terutama pada bagian *Touch Down Point* (TDP).Agusta (2012) dalam tugas akhirnya juga menyatakan bahwa jika riser terlalu jauh dari TDP akan menyebabkan gaya tarik efektif yang besar, dan jika riser terlalu dekat dengan TDP akan menyebabkan momen lentur yang tinggi.

Maka dari itu, untuk mengetahui gaya tarik efektif dan momen lentur maksimal harus dilakukan analisis statis pada riser. Beberapa orang telah melakukan penelitian tentang analisis statis pada riser diantaranya, Ruswandi (2009), Agusta (2012 dan 2014), Nurwanto (2012), Permana (2013), Buberg (2014) dan Keprate (2014).

2.2 Riser

Riser merupakan bagian paling penting dalam sebuah kegiatan produksi, pengeboran dan eksport/import minyak dan gas di lepas pantai.Tugas utama riser adalah untuk mentransportasi fluida dari dasar laut sampai ke host platform.

Menurut American Petroleum Institute (API), elemen-elemen yang terdapat dalam sistem riser antara lain sebagai berikut (API, 1998):

- *Riser body* : pipa metal dan pipa fleksibel
- Top interface
- Bottom interface

Gambar 2. 1 Sistem Integritas pada Riser (Agusta, 2014)

Conduit / riser body adalah komponen yang mentransport fluida/gas, konfigurasinya dapat berbeda-berbeda tergantung kedalaman laut, kondisi lingkungan dan fluida/gas yang ditransport.*Top interface* adalah fasilitas yang berada di permukaan, bisa berupa fixed platform atau FPU.*Bottom interface* merupakan fasilitas-fasilitas yang berada pada dasar laut.

2.3 Sistem Riser

Sistem riser memiliki fungsi yang berbeda-beda dalam industri minyak dan gas :

- 1. Drilling riser riser ini digunakan untuk mengebor sumur
- Production riser digunakan untuk mengalirkan minyak/gas dari sumur ke platform

- 3. Workover riser digunakan dalam operasi sumur atau maintenance sumur
- Export riser digunakan untuk mentransport minyak/gas yang sudah di proses ke tanker

Sebuah sistem *riser* berfungsi sebagai penghubung antara struktur statik pada bagian dasar laut melalui *bottom interface* dan struktur yang bergerak melalui *top interface*.

Nyatanya, pada suatu ladang minyak atau gas tidak hanya terdapat satu riser saja, melainkan banyak *riser body* dan *interface*.Hal ini disebabkan karena pada suatu reservoir memungkinkan adanya perbedaan tekanan dan jenis fluida.Kondisi batimetri tiap sumur juga dapat berbeda.Hal ini menyebabkan perbedaan desain suatu *riser* dalam sebuah sistem *riser*.

Perbedaan desain riser dapat disebabkan hal-hal sebagai berikut :

• Kedalaman perairan

Dalamnya perairan sangat mempengaruhi berat riser.Semakin dalam perairan, semakin berat juga fluida yang ditransportasi maka riser akan semakin berat.Hal ini menyebabkan gaya tarik pada riser sehingga akan menambah beban pada vessel.Diameter besar juga dibutuhkan pada perairan yang dalam guna menahan tekanan hidrostatik yang tinggi

• Pergerakan *floater*

Pergerakan *floater* mempengaruhi beban riser dengan merubah departure angle dari riser sehingga merubah panjang bentang riser. Hal ini dapat menambah atau mengurangi berat riser yang terbentang sehingga mempercepatkan kerusakan riser akibat fatigue

• Perubahan komposisi fluida saat operasi

Jenis fluida yang terkandung pada reservoir merupakan salah satu penentu dalam mendesain sebuah sistem riser.Jenis fluida yang ditransportasi oleh sebuah riser dapat berbeda-beda selama operasi dikarenakan kandungan reservoir yang beragam.Hal ini bisa menyebabkan perubahan diameter pipa untuk memastikan fluida mengalir dengan baik.

• Perbedaan tekanan internal

Dalam satu field, dapat terjadi perbedaan tekanan internal pada well yang ada. Ladang gas dan minyak yang membutuhkan tekanan yang tinggi akan membutuhkan tebal pipa yang lebih tinggi. Penambahan tebal pipa ini akan berakibat pada penambahan berat riser dan gaya tarik yang dibebankan pada vessel.

Perilaku dinamis dari *floater* di permukaan merupakan tantangan utama dalam mendesain sistem riser.Maka dari itu sistem riser dapat dikategorikan berdasarkan kemampuan dari riser dalam menangatasi pergerakan vessel (DnV,2001) :

- Top Tensioned Riser (TTRs)
- Compliant riser

Hybrid riser merupakan gabungan dari kedua riser di atas.

2.4 Top Tensioned Riser

Top tensioned riser (TTRs) membutuhkan platform dengan respon gerakan heave yang kecil seperti SPAR atau TLP .TTRs dilengkapi dengan *tensioning system* yang berfungsi untuk menahan gerakan vertikal yang diperbolehkan.Secara umum, TTRs dapat digunakan untuk mengebor, produksi, eksport dan import.

Gambar 2. 2 Top Tensioned Rises (DnV,2010)

TTRs terdiri dari :

- Riser joint
- Blow Out Preventer
- Tensioning System
- Guides
- Keel joint
- Stress joint and tieback connector
- Strakes

Pada laut dalam, TTRs dihadapi oleh masalah yaitu tegangan pada riser akan meningkat, yang mana akan berdampak pada penambahan ukuran *tensioning system* dan *bouyancy can*.Penambahan ukuran ini biasanya membuat konfigurasi TTRs menjadi tidak maksimal dan biaya tidak ekonomis.

2.5 Compliant Riser

Compliant riser merupakan tipe riser laut dalam yang paling banyak digunakan. Riser tipe ini banyak digunakan karena dapat mengakomodir radius kurvatur yang tinggi dan pergerakan dinamis pada *vessel*. Riser ini juga mudah untuk diinstalasi dan dapat digunakan kembali.

Konfigurasi compliant riser adalah sebagai berikut :

• Free Hanging

Free hanging merupakan konfigurasi flexible pipe paling sederhana. Konfigurasi mudah untuk diinstalasi. Namun, konfigurasi ini sangat rentan terhadap pergerakan vessel dan gaya tarik akibat besarnya berat pipa yang terbentang.

• Lazy S dan Steep S

Tipe konfigurasi riser Lazy S dan Steep S dibentuk dengan menambah buoy baik terpasang permanen pada pipa (fixed buoy) ataupun dengan menggunakan rantai(buoyant buoy). Penambahan buoy ini mengurangi permasalahan kurvatur dan gaya tarik pada TDP yang disebabkan oleh pergerakan *vessel*. Gaya tarik pada riser juga dapat berkurang dikarenakan berkurangnya berat pipa yang terbentang.

• Lazy Wave dan Steep Wave

Konfigurasi menambahkan beberapa buoy secara berdekatan dalam panjang tertentu. Kelebihan bentuk wave adalah kemudahan dalam mendistribusikan berat dan bentuk riser yang diinginkan.

• Pliant Wave

Pliant wave merupakan konfigurasi riser yang menambahkan anchor pada sistem wave.Anchor ini dihubungkan untuk mengurangi perubahan gaya pada TDP dengan mengkombinasikan anchor dengan konfigurasi lazy wave.

Gambar 2. 3 Konfigurasi pada Compliant Riser (Jayeoung Lee, 2007)

Untuk pemilihan material, compliant riser dapat menggunakan material :

- Rigid riser
- Flexible riser

Rigid riser merupakan pipa yang terbuat baja.*Material grades* yang biasanya digunakan adalah X60, X65 atau X70.Titanium merupakan solusi alternatif dari pipa baja karena lebih fleksibel dari baja, yield stress yang lebih tinggi, dan lebih ringan.

Flexible riser terbuat dari beberapa baja dan lapisan komposit untuk meningkatkan fleksibilitas.Jenis ini yang paling sering digunakan untuk aplikasi riser di dunia.

Gambar 2. 4 Struktur lapisan pada flexible riser (Ruswandi,2009)

2.6 Hybrid Riser

Hybrid riser merupakan gabungan dari tensioned dan flexible riser.Riser ini terdiri dari pipa baja yang diposisikan vertikal dekat dengan bouyancy can, dan terdapat flexible jumper yang menghubungkan ujung riser dengan vessel.

Gambar 2. 5 Hybrid Riser (DnV,2010)

Keunggulan utama dari hybrid riser adalah kemampuan riser untuk mengakomodir gerakan horizontal yang signifikan.Pipa baja vertikal ditempatkan dibawah zona aktifitas gelombang dan arus sehingga gerakan dinamisnya sangatlah kecil.Riser ini juga bisa digunakan pada jarak yang cukup jauh dengan vessel dan sangat sesuai digunakan untuk laut dalam dan laut sangat dalam pada segala kondisi lingkungan.Namun biaya produksi hybrid riser sangat mahal.

2.7 Tantangan Perairan Laut Dalam

Riser merupakan komponen penting pada suatu *vessel* yang sangat dipengaruhi oleh kedalaman air laut.Tantangan yang berhubungan dengan aplikasi riser pada laut dalam antara lain :

• Meningkatnya berat riser

Hal utama yang berhubungan dengan meningkatnya berat riser adalah meningkatnya gaya tarik ke atas (top-tension force).

- Saat kondisi instalasi pipa di laut dalam, sistem *pipelay* harus dapat mengakomodir top-tension force dengan konsekuensi vessel yang sesuai lebih terbatas
- Saat kondisi operasional, bobot riser yang berat akan menambah beban angkut vessel.Menurut studi, beban angkut vessel meningkat menjadi

10-30% saat kondisi normal dan 50-100% saat kondisi ekstrim (Howells dan Hatton,1997)

- Meningkatkan biaya produksi riser. Pipa fleksibel ,yang mana lebih mahal dari pipa baja, jika ditambah beratnya makan akan berdampak pada biaya yang tidak ekonomis.
- Tekanan hidrostatik yang tinggi

Semakin dalam perairan maka tekanan eksternal hidrostatiknya akan bertambah.Tekanan eksternal yang tinggi dapat menyebabkan kegagalan pada pipa.Menambah ketebalan pipa dapat mengatasi masalah tersebut, tetapi hal ini akan membuat desain menjadi kompleks

• Arus

Semakin dalam perairan maka arus akan semakin kuat.Arus yang kuat dapat menyebabkan vortex-induced vibration pada bagian belakang riser.Penggunaan strakes dapat menambah *drag force* pada riser sehingga fatigue akibat VIV dapat diminimalisir.

• Pergerakan Floater / Floater Offset

Perairan yang dalam membuat beban lingkungan menjadi sebuah tantangan.Pergerakan vessel dapat menyebabkan terbatasnya konfigurasi yang dapat digunakan dan bertambahnya *bending moment* pada *touch down point*.

2.8 Steel Catenary Riser

Steel Catenary Riser (SCR) merupakan riser dengan konfigurasi free hanging yang material pipanya terbuat dari baja. Disebut catenary dikarenakan konfigurasi free hanging pada SCR berbentuk seperti catenary. SCR pertama kali dipasang pada Shell's Auger Tension Leg Platgform pada tahun 1994 dengan kedalaman 872 meter.

SCR dapat dikatakan riser yang ekonomis dari segi instalasi dan konstruksi, dan jika dibandingkan dengan flexible riser. SCR lebih mudah dan murah diproduksi untuk pipa yang lebih panjang atau diameter besar. Dalam hal material, SCR dapat menahan tekanan dan temperatur yang tinggi.

Gambar 2. 6 Steel Catenary Riser (Jaeyoung Lee, 2007)

Permasalahan yang biasanya dihadapi SCR adalah sensivitasnya terhadap pergerakan *vessel*.Pergerakan vessel yang signifikan dapat menyebabkan perubahan kurvatur yang besar pada bagian touch down *point*.

Gaya eksternal dan beban secara konstan mempengaruhi riser, sehingga mengganggu stabilitas riser. Maka dari itu, beberapa komponen telah dikembangkan agar riser dapat menjaga stabilitasnya.

• Flex joint

Flex joint digunakan untuk mengurangi bending moment pada bagian atas SCR (Ruswandi,2009).Komponen ini terdiri dari lapisan-lapisan elastomeric dan metal, yang dapat memungkinkan defleksi angular pada bagian sambungan atas riser. Untuk aplikasi laut dalam, desain flexjoint harus mempertimbangkan pengaruh gaya tarik bagian atas (Bai, 2005).

Gambar 2. 7 Flexjoint tersambung dengan floater (DnV, 2010)

• Stress joint

Stress joint digunakan untuk mempermudah transisi antara bagian pipa yang kaku dengan pipa yang tidak terlalu kaku.Membantu mengurangi local bending stress dan memberikan fleksibilitas pada ujung akhir riser.

Tiga konfigurasi SCR yang paling sering digunakan adalah (Buberg, 2014) :

- 1. Free Hanging
- 2. Lazy Wave

2.9 Konsep Pembebanan

Analisa tegangan merupakan bentuk analisa lokal dari sebuah struktur (Yudhistira,2010). Pembebanan yang bekerja pada analisis ini adalah pembebanan lokal yang diambil dari analisa global suatu struktur secara keseluruhan. Oleh karena itu dibutuhkan pemahaman yang baik pada mengenai pembebanan secara global bangunan lepas pantai. Pada suatu proses perancangan bangunan lepas pantai, untuk menentukan kemampuan kerja suatu struktur akan dipengaruhi oleh beban yang terjadi pada bangunan tersebut. Menurut (Soedjono, 1999) beban-beban yang harus dipertimbangkan dalam perancangan bangunan lepas pantai adalah sebagai berikut:

1. Beban mati (Dead Load)

Beban mati (Dead Load) adalah beban dari komponen-komponan kering serta beban-beban peralatan, perlengkapan dan permesinan yang tidak berubah dari

mode operasi pada suatu struktur, meliputi: berat struktur, berat peralatan dari permesinan yang tidak digunakan untuk pengeboran atau proses pengeboran.

2. Beban hidup (Live Load)

Beban hidup adalah beban yang terjadi pada platform atau bangunan lepas pantai selama dipakai/berfungsi dan tidak berubah dari mode operasi satu ke mode operasi yang lain.Beban akibat kecelakaan (Accidental Load). Beban kecelakaan merupakan beban yang tidak dapat diduga sebelumnya yang terjadi pada suatu bangunan lepas pantai, misalnya tabrakan dengan kapal pemandu operasi, putusnya tali tambat, kebakaran, dan letusan.

3. Beban lingkungan (Environmetal Load)

Beban lingkungan adalah beban yang terjadi karena dipengaruhi oleh lingkungan dimana suatu bangunan lepas pantai dioperasikan atau bekerja. Beban lingkungan yang biasanya digunakan dalam perancangan adalah :

- 1. Wave Drift Force
- 2. Beban arus
- 3. Beban angin

2.10 Beban Gelombang

2.10.1 Gelombang Reguler

Gelombang reguler merupakan gelombang yang memiliki tinggi dan perioda yang teratur. Terdapat 2 (dua) teori yang mendefinisikan gelombang reguler, yaitu teori gelombang linier dan teori gelombang non-linier.

a. Teori Gelombang linier (Airy)

Gelombang linier (*Airy*) dapat didefinisikan sebagai gelombang orde pertama dengan bentuk sinusoidal. Asumsi yang digunakan pada teori gelombang ini adalah bahwa tinggi gelombang jauh lebih kecil dibanding panjang gelombang.

b. Teori Gelombang non-liner (Stokes)

Untuk mendapatkan ketelitian yang leibih baik dalam kecuraman muka gelombang, H/L (H: tinggi gelombang, L: panjang gelombang), Stokes (1847) mengembangkan teori gelombang Airy dengan melanjutkan analisis sampai orde ke-3 dan dapat digunakan di laut transisi maupun laut dalam.

2.10.2 Gelombang Acak

Dalam kondisi nyata di laut, gelombang yang terjadi adalah gelombang acak yang tidak berbentuk sinusoidal konstan seperti pada kondisi ideal yang dinyatakan dalam teori gelombang reguler. Ilustrasi gelombang acak dapat dilihat pada Gambar 2.8

Gambar 2.8 Ilustrasi Gelombang Acak

Gelombang acak memiliki panjang, tinggi dan perioda yang sangat beragam dan tidak tetap sepanjang waktu sehingga tidak dapat dilakukan perhitungan seperti pada perhitungan gelombang linier. Untuk itu untuk gelombang acak terdapat metode penyederhanaan yang dikenal dengan spektrum gelombang acak. Dalam spektrum gelombang diperlihatkan distribusi dari energi gelombang dengan besar frekuensi gelombang yang berbeda-beda.

2.10.3 Spektrum Gelombang

Teori gelombang reguler dapat diaplikasikan pada saat desain metode *single* wave di gunakan. Ini tergantung dari metode yang digunakan pada saat proses pendesainan. Pada gelombang acak, ini di deskripsikan dengan densitas spektrum energi. Spektrum energi gelombang mendeskripsikan energi yang terkandung dari gelombang dan itu diditribusikan keseluruh jangkauan frekuensi pada gelombang acak. Oleh karena itu. Metode gelombang acak mungkin berguna khususnya pada tahap perencanaan bangunan terapung. Pemilihan spektrum energi gelombang didasarkan pada kondisi real laut yang ditinjau. Bila tidak ada maka dapat digunakan model spektrum yang dikeluarkan oleh berbagai institusi dengan mempertimbangkan kesamaan fisik lingkungan.

2.11 Beban Arus

Arus adalah gerakan massa air laut yang berpindah dari satu tempat ke tempat lain. Arus merupakan salah satu komponen beban lingkungan yang diperhitungkan dalam analisis *fatigue* pada *riser*. Arus relatif memiliki pergerakan yang konstan jika dibandingkan dengan gelombang. Arus di permukaan laut terutama disebabkan oleh tiupan angin, sedangkan arus di kedalaman laut disebabkan oleh perbedaan densitas massa air laut. Selain itu, arus di permukaan laut dapat juga disebabkan oleh gerakan pasang surut air laut atau gelombang. Secara umum, persamaan untuk menghitung besar gaya akibat arus dapat dirumuskan sebagai berikut.

$$F_a = \frac{1}{2}\rho C_d A u^2 \tag{2.1}$$

Keterangan:

Fa : Gaya arus per satuan panjang

 ρ : Massa jenis air

Cd : Koefisien *drag*

A : Luas proyeksi penampang struktur

u : Kecepatan partikel air, tegak lurus terhadap struktur

2.12 Gaya Tarik Efektif (*Effective Tension*)

Gaya tarik efektif (*effective tension*), adalah gaya axial dinding pipa yang dipengaruhi oleh tekanan internal dan eksternal.

Dari gambar dapat diperoleh persamaan (2.10) untuk menghitung gaya tarik efektif dari *riser*. Penjelasan seperti pada Gambar 2.10

$$T_{\rm e} = T_{\rm tw} + (-p_{\rm i}A_{\rm i}) - (-p_{\rm e}A_{\rm e})$$
(2.2)

dimana,

 T_{tw} = tension dinding pipa (tension axial)

Pi = tekanan internal fluida

Ai = luas penampang internal

Pe = tekanan eksternal

Ae = luas penampang eksternal

Gambar 2. 9 Kesetimbangan pipa ketika dikenai fluida (Sparks, 2007)

2.13 Momen Lentur

Menurut penilitian Agusta (2012), persamaan momen lentur untuk SCR diturunkan dari persamaan kurvatur untuk sistem non-linear (mempunyai defleksi yang besar). Persamaan tersebut adalah sebagai berikut :

$$\mathcal{K} = \frac{\frac{\mathrm{d}^2 z}{\mathrm{d}x^2}}{\left[1 + \left(\frac{\mathrm{d}z}{\mathrm{d}x}\right)^2\right]^{1.5}}$$
(2.3)

Nilai bending moment didapatkan menggunakan persamaan berikut :

$$M = -\kappa EI = -\frac{m_{s}g}{T_{H} \left[\cosh\left(\frac{m_{s}gx}{T_{H}}\right) \right]^{2}} EI$$
(2.4)

dengan,

Μ	= Bending moment	(kN.m)
Ι	= Momen Inersia	(m ⁴)
$T_{\rm H}$	= Gaya horizontal SCR dan <i>tension</i> TDP	(kN)
E	= Modulus Elastisitas	MPa)
ms	= massa pipa per satuan panjang	(kg/m)

2.14 Kode Desain

Ada dua metode untuk menetapkan kriteria SCR yang diizinkan dalam desain struktural.Metode yang digunakan adalah *Working Stress Design* (WSD) dan *Load and Resistance Factor Design* (LRFD), dimana WSD memiliki *Safety Factor* yang digunakan untuk setiap *limit state* untuk memperhitungkan ketidak pastian yang disebabkan oleh respon dan tahanan dan LRFD memiliki *Safety Factor* parsial yang diterapkan dalam setiap beban dan tahanan. Pada desain sistem riser, penggunaan metode WSD terdapat pada API-RP-2RD , sedangkan LRFD terdapat pada DnV-OS-F20

2.15 Persamaan Cantenary

Pipa baja bersifat kaku, tetapi jika panjangnya (L) terlalu panjang dan kekakuan elastis (EI) sangat kecil, maka pipa baja dapat dikonfigurasikan sebagai catenary.

Dapat dikatan sebagai catenary jika

$$\frac{L}{C} > 5$$
, (2.5)

dimana $C = \left(\frac{EI}{W_s}\right)^{1/3} = panjang karakteristik.$

20
Keterangan:

TDP = Touch Down Point
T_H = Gaya horizontal pada SCR dan gaya tarik pada TDP
W_S = Massa pipa SCR per unit panjang (weight submerged)

S = Panjang bentang bebas SCR

- θ = Sudut atas SCR dari vessel
- x = Jarak TDP dari Floater

Persamaannya catenary yang diturunkan oleh Leibniz dan Bernoulli ditunjukkan pada persamaan di bawah ini. Solusi ini mengasumsikan riser tidak memiliki bending stiffness dan axial stiffness tak terhingga.

$$T_{\rm H} \frac{d^2 z}{dx^2} = Ws \left[1 + \left(\frac{dz}{dx}\right)^2 \right]^{1/2}$$
(2.6)

Persamaan di atas memiliki solusi yang menghubungkan sumbu vertikal dan horizontal. Solusi ini diturunkan oleh Timoshenko, sehingga formula catenary adalah :

$$z = \frac{T_{\rm h}}{w_{\rm s}} \left(\cosh \frac{xw_{\rm s}}{T_{\rm h}} - 1 \right) \tag{2.7}$$

2.16 Kedalaman Laut

Dalam menetukan kedalaman laut yang digunakan pada perhitungan salah satu caranya adalah menggunakan *Diagram of Validity*. Seperti pada Gambar 2.11.

Gambar 2. 11 Diagram of validity

Bab III

Metodologi Penelitian

3.1 Diagram Alir Metodologi Penelitian

Penjelasan mengenai pengerjaan tugas akhir dapat dilihat pada flow chart berikut :

Adapun langkah-langkah dalam penelitian dapat dijelaskan sebagai berikut :

1. Studi literatur dan pengumpulan data

Studi literatur dilakukan untuk menambah wawasan guna menunjang pengerjaan tugas akhir ini, dengan cara mengumpulkan dan membaca buku, *codes*, jurnal, tesis, dan tugas akhir lainnya yang berhubungan dengan *steel catenary riser*. Data-data yang harus dikumpulkan untuk mengerjakan tugas akhir ini antara lain data lingkungan, data fluida, data *riser*.

Riser Data				
Material Grade	X65			
Riser Density	7860	kg/m ³		
Outer Diameter	20	in		
Nominal Thickness	25.4	mm		
Young's Modulus	210000	MPa		
Poisson ratio	0.3			
SMYS	448	MPa		
SMTS	535	MPa		
Hang-off angle	15°			
Riser Length	187	m		
Submerged Weight	1798.16	N/m		
Internal Fluid				
Fluid	Oil			
Oil Density	800	kg/m ³		
Design Pressure	200	bar		
Temperature	100 °			

Tabel 3. 1 Data Steel Catenary Riser

2. Analisis varias kedalaman laut

Analisis kedalaman laut dilakukan untuk menentukan karakteristik gelombang berdasarkan data yang telah didapatkan dengan menggunakan *grafik region of validity*.

3. Analisis konfigurasi statis steel catenary riser

Menentukan konfigurasi statis pada suatu riser harus dilakukan agar dapat diketahui koordinat dan bentuk statis *riser*. Selain itu juga dapat diketahui panjang bentang dan jarak horizontal riser.

4. Pemodelan riser pada Orcaflex

Setelaha dilakukan analisis konfigurasi stasis, maka selanjutnya r*iser* dimodelkan pada Orcaflex. SCR dimodelkan berdasarkan perhitungan konfigurasi statis.

5. Running Orcaflex

Setelah *riser* dimodelkan analisis statis dan dinamis pada Orcaflex dapat dilakukan. Dari simulasi ini didapat *effective tension* dan *bending moment*.

6. Analisis kekuatan riser

Analisis yang dilakukan kekuatan *riser* dengan berdasarkan besar *effective tension, bending moment* dan *max von mises stress* yang didapatkan setelah dilakukan *running* pada Orcaflex dengan variasi kedalaman laut *shallow water, intermediate water, deep water* dan variasi diameter pipa sesuai kriteria DNV-OS-F201.

7. Kesimpulan

Dilakukan analisis dari simulasi-simulasi yang dilakukan, lalu ditarik kesimpulan dari hasil analisis tersebut.

BAB IV

ANALISIS HASIL DAN PEMBAHASAN

4.1 Analisis Konfigurasi Statis Steel Catenary Riser

Perhitungan konfigurasi statis *steel catenary riser* pada tugas akhir ini menggunakan teori *catenary* yang terdapat pada buku *Introduction to Offshore Pipeline and Risers* (Lee, 2007) dan *Subsea Pipeline Design, Analysis, and Installation* (Bai, 2014).

Tujuan dari analisis konfigurasi statis adalah untuk mengetahui panjang bentang *riser* dan juga jarak horizontal dari TDP ke *Hang-off Location*. Deskripsi gambar dan hasil perhitungan konfigurasi statis dapat dilihat pada Gambar 4.3

Gambar 4.1 Konfigurasi Statis Steel Catenary Riser

Tabel 4. 1 Hasil Perhitungan Teori Catenary kedalaman 90 meter

Riser Free Span Length to Touchdown	S	117.29	m
Horizontal Distance from Hang-off Point to	Х	63.72	m
Touchdown			

Tabel 4. 2 Hasil Perhitungan Teori Catenary kedalaman 200 meter

Riser Free Span Length to Touchdown	S	260.65	m
Horizontal Distance from Hang-off Point to	Х	141.61	m
Touchdown			

Riser Free Span Length to Touchdown	S	716.77	m
Horizontal Distance from Hang-off Point to	Х	389.42	m
Touchdown			

Tabel 4. 3 Hasil Perhitungan Teori Catenary kedalaman 550 meter

Konfigurasi SCR dari dasar laut sampai ke *Hang-off Location* dapat ditentukan dengan teori *catenary*, yang mana perhitungan dilakukan dengan mendiskritkan variabel X dengan interval tentu dan dimasukkan pada persamaan *catenary*. Konfigurasi dapat dilihat pada Gambar 4.2

Gambar 4. 2 Konfigurasi Statis Steel Catenary Riser

Teori *catenary* juga hanya menghasilkan panjang bentang minimum SCR, yaitu sepanjang 260.65 m, yang mana berbeda dengan *Orcaflex* 9.2 yang harus mempertimbangkan panjang *flowline* menuju PLET/PLEM.

4.2 Pemodelan Steel Catenary Riser dengan Orcaflex 9.2

1. Pemodelan dengan prangkat lunak Orcaflex 9.2

Pemodelan dengan *software Orcaflex* 9.2 Seperti Gambar 4.3 dan gambar 4.4 dilakukan dengan tujuan untuk memperoleh *effective tension* dan *bending moment* pada *steel catenary riser*. Untuk mengurangi tegangan yang terjadi akibat beban lingkungan dan berat riser dapat digunakan *bouyancy modules* pada titik yang memiliki nilai resultan tegangan terbesar dengan ukuran bouyancy modules menyesuaikan diameter pipa *riser*.

Gambar 4. 3 Pemodelan Steel Catenary Riser Konfigurasi Free Hanging Catenary

Gambar 4. 4 Pemodelan Steel Catenary Riser Konfigurasi Lazy Wave

4.3 Pemodelan Lingkungan

Parameter kondisi lingkungan yang menjadi input pada pemodelan adalah kondisi perairan, kondisi dasar laut, gelombang, arus dan angin. Data lingkungan yang tersedia di-*input* dan selanjutnya *orcaflex* akan memperhitungkan beban lingkungan pada struktur yang dimodelkan.

Elevasi muka air ditentukan berada di Z=0 dan dasar laut berada di Z=-200 terhadapt kordinat global. Dasar laut juga diasumsikan berjenis *flat* atau rata. Gelombang yang dimodelkan merupakan gelombang acak yang dihitung menggunakan spektrum JONSWAP. Pemilihan spektrum JONSWAP didasari pada penelitian yang dilakukan oleh M.s. Liew et al (2015) yang meneliti spektrum

gelombang yang paling cocok digunakan di Perairan Indonesia. Data gelombang yang digunakan dapat dilihat pada Tabel Pemodelan. Input untuk pemodelan gelombang dapat dilihat pada dan profil gelombang yang terbentuk dapat dilihat pada Gambar 4.5 dan Gambar 4.6. Data gelombang yang digunakan memiliki tinggi gelombang signifikan (Hs) sebesar 5,3 m dan periode gelombang (T) sebesar 11,1 m

Gambar 4. 5 Profil Gelombang

Data for Wave Train: Wave1								
Direction	Hs	Tz	Wave	Origin	Wave	Wave Type		Number of wave
(deg)	(m)	(s)	X (m)	Y (m)	Time Origin (s)			directions
90,00	5,30	11,10	0,00	0,00	0,000	JONSWAP	*	1

Gambar 4. 6 Input Profil Gelombang

4.4 Langkah Analisis Effective Tension dan Bending Moment

Pemodelan orcaflex yang dilakukan bertujuan untuk mendapatkan nilai *effective tension* dan *bend moment* pada struktur riser akibat beban yang diberikan pada riser selama masa operasinya. Pemodelan dilakukan dengan waktu simulasi 8000s detik.

4.4.1 Effective Tension

Untuk analisa pengaruh beban lingkungan terhadap *Effective Tension* dari *Steel Catenary Riser* akan dianalisa pada flex joint. Berdasarkan teori nilai *effective tension* paling besar terjadi pada bagian flex joint, karena pada bagian tersebut menopang beban keseluruhan *riser*.

4.4.1.1 Effective Tension Free hanging SCR

Berikut merupakan hasil analisa *Effective tension Steel Catenary Riser* pada masing – masing konfigurasi dan variasi. Simulasi dilakukan dengan Orcaflex 9.2 dengan durasi yang diambil adalah -50s – 8000s *implicit timestep*. Hasil yang di tunjukan terbagi menjadi 3 hasil besar *effective tension* yaitu : *minimum, mean* dan *maximum*.

Gambar 4. 7 Grafik *Effective Tension* sepanjang *Riser* (SCR 16in Water Depth 90m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.7 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 133.23 kN.

Gambar 4. 8 Grafik Effective Tension sepanjang Riser (SCR 20in Water Depth 90m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.8 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 93.92 kN.

Gambar 4. 9 Grafik Effective Tension sepanjang Riser (SCR 24in Water Depth 90m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.9 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 25.59 kN.

Gambar 4. 10 Grafik Effective Tension sepanjang Riser (SCR 16in Water Depth 200m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.10 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 343.71 kN.

Gambar 4. 11 Grafik Effective Tension sepanjang Riser (SCR 20in Water Depth 200m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.11 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 315.44 kN.

Gambar 4. 12 Grafik Effective Tension sepanjang Riser (SCR 24in Water Depth 200m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.12 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 245.27 kN.

Gambar 4. 13 Grafik Effective Tension sepanjang Riser (SCR 16in Water Depth 550m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.13 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 721.14 kN.

Gambar 4. 14 Grafik Effective Tension sepanjang Riser (SCR 20in Water Depth 550m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.14 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 548.01 kN.

Gambar 4. 15 Grafik Effective Tension sepanjang Riser (SCR 24in Water Depth 550m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.15 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 714.26 kN.

4.4.1.2 Effective Tension Lazy Wave SCR

Untuk mengurangi tegangan tarik atau *effective tension* yang terjadi pada bagian *flex joint* pada *riser* yang tersambung pada *floater* digunakan *bouyancy modules* untuk mengurangi beban keselurah *riser* yang ditopang oleh bagian *flex joint* tersebut.

Gambar 4. 16 Grafik perbandingan Effective Tension sepanjang Riser Free hanging catenary dengan Lazy Wave (SCR 16in Water Depth 90m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.16 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 63.40 kN. Terdapat penurunan nilai *effective tension* yang terjadi setelah *riser* ditambahkan *bouyancy modules*.

Gambar 4. 17 Grafik perbandingan Effective Tension sepanjang Riser Free hanging catenary dengan Lazy Wave (SCR 20in Water Depth 90m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.17 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 41.7 kN. Terdapat penurunan nilai *effective tension* yang terjadi setelah *riser* ditambahkan *bouyancy modules*.

Gambar 4. 18 Grafik perbandingan Effective Tension sepanjang Riser Free hanging catenary dengan Lazy Wave (SCR 24in Water Depth 90m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.18 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 4.45 kN. Terdapat penurunan nilai *effective tension* yang terjadi setelah *riser* ditambahkan *bouyancy modules*.

Gambar 4. 19 Grafik perbandingan Effective Tension sepanjang Riser Free hanging catenary dengan Lazy Wave (SCR 16in Water Depth 200m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.19 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 253.02 kN. Terdapat penurunan nilai *effective tension* yang terjadi setelah *riser* ditambahkan *bouyancy modules*.

Gambar 4. 20 Grafik perbandingan Effective Tension sepanjang Riser Free hanging catenary dengan Lazy Wave (SCR 20in Water Depth 200m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.20 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 221.74 kN. Terdapat penurunan nilai *effective tension* yang terjadi setelah *riser* ditambahkan *bouyancy modules*.

Gambar 4. 21 Grafik perbandingan Effective Tension sepanjang Riser Free hanging catenary dengan Lazy Wave (SCR 24in Water Depth 200m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.21 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 150.12 kN. Terdapat penurunan nilai *effective tension* yang terjadi setelah *riser* ditambahkan *bouyancy modules*.

Gambar 4. 22 Grafik perbandingan Effective Tension sepanjang Riser Free hanging catenary dengan Lazy Wave (SCR 16in Water Depth 550m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.22 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 485.04 kN. Terdapat penurunan nilai *effective tension* yang terjadi setelah *riser* ditambahkan *bouyancy modules*.

Gambar 4. 23 Grafik perbandingan Effective Tension sepanjang Riser Free hanging catenary dengan Lazy Wave (SCR 20in Water Depth 550m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.23 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 481.87 kN. Terdapat penurunan nilai *effective tension* yang terjadi setelah *riser* ditambahkan *bouyancy modules*.

Gambar 4. 24 Grafik perbandingan Effective Tension sepanjang Riser Free hanging catenary dengan Lazy Wave (SCR 24in Water Depth 550m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.24 nilai *effective tension* terbesar terjadi pada titik flex joint (Arc length 0 m). Dengan nilai *effective tension* terbesar yaitu 352.54 kN. Terdapat penurunan nilai *effective tension* yang terjadi setelah *riser* ditambahkan *bouyancy modules*.

4.4.2 Bend Moment

Untuk analisa pengaruh beban lingkungan terhadap *Bend Moment* dari *Steel Catenary Riser* akan dianalisa nilai *Bend Moment* pada masing – masing kedalaman dan variasi diameter pipa *riser*.

Berikut merupakan hasil analisa *Steel Catenary Riser* akibat. Simulasi dilakukan dengan Orcaflex 9.2 dengan durasi yang diambil -50s – 8000s *impicit timestep*.

4.4.2.1. Bend Moment pada Free Hanging Catenary Riser

Analisa beban lingkungan terhadap *Bend Moment* pada konfigurasi *riser* tipe *free hanging catenary* sepanjang bentang *riser*.

Gambar 4. 25 Grafik Bend Moment sepanjang Riser (SCR 16in Water Depth 90m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.25 nilai *bending moment* terbesar terjadi pada titik seg bend (Arc length 80-100 m). Dengan nilai *bending moment* terbesar yaitu 5217.8 kN.m.

Gambar 4. 26 Grafik Bend Moment sepanjang Riser (SCR 20in Water Depth 90m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.26 nilai *bending moment* terbesar terjadi pada titik seg bend (Arc length 80-100 m). Dengan nilai *bending moment* terbesar yaitu 3054.15 kN.m.

Gambar 4. 27 Grafik Bend Moment sepanjang Riser (SCR 24in Water Depth 90m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.27 nilai *bending moment* terbesar terjadi pada titik seg bend (Arc length 80-100 m). Dengan nilai *bending moment* terbesar yaitu 1559.45 kN.m.

Gambar 4. 28 Grafik Bend Moment sepanjang Riser (SCR 16in Water Depth 200m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.28 nilai *bending moment* terbesar terjadi pada titik seg bend (Arc length 200-300 m). Dengan nilai *bending moment* terbesar yaitu 2353.2 kN.m.

Gambar 4. 29 Grafik Bend Moment sepanjang Riser (SCR 20in Water Depth 200m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.29 nilai *bending moment* terbesar terjadi pada titik seg bend (Arc length 200-300 m). Dengan nilai *bending moment* terbesar yaitu 1484.37 kN.m.

Gambar 4. 30 Grafik Bend Moment sepanjang Riser (SCR 24in Water Depth 200m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.30 nilai *bending moment* terbesar terjadi pada titik seg bend (Arc length 200-300 m). Dengan nilai *bending moment* terbesar yaitu 797.2 kN.m.

Gambar 4. 31 Grafik Bend Moment sepanjang Riser (SCR 16in Water Depth 550m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.31 nilai *bending moment* terbesar terjadi pada titik seg bend (*Arc length* 633 m). Dengan nilai *bending moment* terbesar yaitu 1435.03 kN.m.

Gambar 4. 32 Grafik Bend Moment sepanjang Riser (SCR 20in Water Depth 550m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.32 nilai *bending moment* terbesar terjadi pada titik seg bend (*Arc length* 633 m). Dengan nilai *bending moment* terbesar yaitu 1001.29 kN.m.

Gambar 4. 33 Grafik Bend Moment sepanjang Riser (SCR 24in Water Depth 550m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.33 nilai *bending moment* terbesar terjadi pada titik seg bend (*Arc length* 621 m). Dengan nilai *bending moment* terbesar yaitu 695.14 kN.m.

4.4.2.2 Bend Moment pada Lazy Wave

Analisa *Bend Moment* pada konfigurasi *riser* tipe *Lazy Wave* dengan masing -masing variasi kedalaman dan diameter pipa.

Gambar 4. 34 Grafik Bend Moment sepanjang Riser (SCR 16in Water Depth 90m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.34 nilai *bending moment* terbesar terjadi pada titik segbend (Arc length 49.84 m). Dengan nilai *bending moment* terbesar yaitu 5020.65 kN.m. Terdapat penurunan nilai *bending moment* yang terjadi setelah *riser* ditambahkan *bouyancy modules* pada titik segbend dimana terletak nilai *bending moment* terbesar pada konfigurasi *free hanging catenary*.

Gambar 4. 35 Grafik Bend Moment sepanjang Riser (SCR 20in Water Depth 90m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.35 nilai *bending moment* terbesar terjadi pada titik segbend (Arc length 49.84 m). Dengan nilai *bending moment* terbesar yaitu 2353.3 kN.m. Terdapat penurunan nilai *bending moment* yang terjadi setelah *riser* ditambahkan *bouyancy modules* pada titik segbend dimana terletak nilai *bending moment* terbesar pada konfigurasi *free hanging catenary*.

Gambar 4. 36 Grafik Bend Moment sepanjang Riser (SCR 24in Water Depth 90m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.36 nilai *bending moment* terbesar terjadi pada titik segbend (Arc length 61.57 m). Dengan nilai *bending moment* terbesar yaitu 1270 kN.m. Terdapat penurunan nilai *bending moment* yang terjadi setelah *riser* ditambahkan *bouyancy modules* pada titik segbend dimana terletak nilai *bending moment* terbesar pada konfigurasi *free hanging catenary*.

Gambar 4. 37 Grafik Bend Moment sepanjang Riser (SCR 16in Water Depth 200m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.37 nilai *bending moment* terbesar terjadi pada titik segbend. Dengan nilai *bending moment* terbesar yaitu 2197.25 kN.m. Terdapat penurunan nilai *bending moment* yang terjadi setelah *riser* ditambahkan *bouyancy modules* pada titik segbend dimana terletak nilai *bending moment* terbesar pada konfigurasi *free hanging catenary*.

Gambar 4. 38 Grafik Bend Moment sepanjang Riser (SCR 20in Water Depth 200m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.38 nilai *bending moment* terbesar terjadi pada titik segbend (Arc length 160.60 m). Dengan nilai *bending moment* terbesar yaitu 1129.81 kN.m. Terdapat penurunan nilai *bending moment* yang terjadi setelah *riser* ditambahkan *bouyancy modules* pada titik segbend dimana terletak nilai *bending moment* terbesar pada konfigurasi *free hanging catenary*.

Gambar 4. 39 Grafik Bend Moment sepanjang Riser (SCR 24in Water Depth 200m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.39 nilai *bending moment* terbesar terjadi pada titik segbend (Arc length 160.60 m). Dengan nilai *bending moment* terbesar yaitu 557.54 kN.m. Terdapat penurunan nilai *bending moment* yang terjadi setelah *riser* ditambahkan *bouyancy modules* pada titik segbend dimana terletak nilai *bending moment* terbesar pada konfigurasi *free hanging catenary*.

Gambar 4. 40 Grafik Bend Moment sepanjang Riser (SCR 16in Water Depth 550m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.40 nilai *bending moment* terbesar terjadi pada titik segbend (*Arc length* 651 m). Dengan nilai *bending moment* terbesar yaitu 1216.86 kN.m. Terdapat penurunan nilai *bending moment* yang terjadi setelah *riser* ditambahkan *bouyancy modules* pada titik segbend dimana terletak nilai *bending moment* terbesar pada konfigurasi *free hanging catenary*.

Gambar 4. 41 Grafik Bend Moment sepanjang Riser (SCR 20in Water Depth 550m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.41 nilai *bending moment* terbesar terjadi pada titik segbend (*Arc length* 657 m). Dengan nilai *bending moment* terbesar yaitu 908.73 kN.m. Terdapat penurunan nilai *bending moment* yang terjadi setelah *riser* ditambahkan *bouyancy modules* pada titik segbend dimana terletak nilai *bending moment* terbesar pada konfigurasi *free hanging catenary*.

Gambar 4. 42 Grafik Bend Moment sepanjang Riser (SCR 24in Water Depth 550m)

Dari hasil simulasi beban lingkungan pada *software* Orcaflex 9.2 terlihat pada Gambar 4.42 nilai *bending moment* terbesar terjadi pada titik segbend (*Arc length* 675 m). Dengan nilai *bending moment* terbesar yaitu 663.35 kN.m. Terdapat penurunan nilai *bending moment* yang terjadi setelah *riser* ditambahkan *bouyancy modules* pada titik segbend dimana terletak nilai *bending moment* terbesar pada konfigurasi *free hanging catenary*.

Tabel 4. 4 Perbandingan hasil analisa pada masing -masing kofigurasi kedalaman90 meter.

Free				
hanging vs				
Lazy Wave				
90 meter				
	Effective Tension	Effective tension Lazy	Bend Moment	Bend moment Lazy
Diameter	FHR	Wave	FHR	Wave
16	133.23 kN	63.40 kN	5217.8 kN.m	5020.65 kN.m
20	93.92 kN	47.7 kN	3054.15 kN.m	2352.3 kN.m
24	25.6 kN	4.45 kN	1559.45 kN.m	1270 kN.m

Tabel 4. 5 Perbandingan hasil analisa pada masing -masing kofigurasi kedalaman200 meter.

Free				
hanging vs				
Lazy Wave				
200 meter				
		Effective tension Lazy	Bend Moment	Bend moment Lazy
Diameter	Effective Tension FHR	Wave	FHR	Wave
16 in	343.71 kN	253.02 kN	2353.2 kN.m	2197.25 kN.m
20 in	315.44 kN	221.74 kN	1484.93 kN.m	1129.81 kN.m
24 in	245.27 kN	150.12 kN	797.2 kN.m	557.54 kN.m

Tabel 4. 6 Perbandingan hasil analisa pada masing -masing kofigurasi kedalaman550 meter.

Free				
hanging vs				
Lazy Wave				
550 meter				
		Effective tension Lazy	Bend Moment	Bend moment Lazy
Diameter	Effective Tension FHR	Wave	FHR	Wave
16	721.14 kN	485.04 kN	1435.03 kN.m	1216.86 kN.m
20	714.26 kN	481.87 kN	1001.29 kN.m	908.73 kN.m
24	548.01 kN	352.54 kN	695.14 kN.m	663.35 kN.m

Berdasarkan hasil diperoleh dapat dilihat pada Tabel 4.4, Tabel 4.5 dan Tabel 4.6 dengan masing – masing kedalaman (90m, 200m, 550m) bahwa memberikan *bouyancy modules* pada titik dimana nilai tegangan yang paling besar dapat menurunkan nilai gaya yang terjadi pada titik tersebut. Penurunan nilai masing – masing *effective tension* dan *bending moment* setiap konfigurasi dan variasi menunjukan bahwa bentuk konfigurasi *lazy wave* lebih unggul dibanding *free hanging catenary* untuk menahan beban yang terjadi.

Dapat dilihat pada tabel bahwa perbedaan diameter pada pipa juga memberikan pengaruh terhadap beban yang diteriman oleh *riser* tersebut. Dan dapat dilihat juga pada tabel apabila kedalaman laut semakin dalam maka semakin besar nilai *effective tension*, berbanding terbalik dengan *bend moment* yang semakin menurun. Akan tetapi nilai masing – masing *effective tension* dan *bend moment* yang terjadi mengalami penurunan ketika pada pipa *riser* tersebut ditambahkan *bouyancy modules*.

Sehingga dapat disimpulkan bahwa pemberian *bouyancy modules* pada *steel catenary riser* membantu untuk mengurangi gaya yang diteriman oleh *steel catenary riser*.

4.5 Analisis Kekuatan

Analisis kekuatan dilakukan untuk mengetahui respon dan perilaku dinamis masing – masing konfigurasi *steel catenary riser* terhadap beban fungsional dan lingkungan yang terjadi. Simulasi *time domain* dilakukan dengan periode ulang gelombang dan arus 100 tahunan pada kedalaman 90m, 200 m dan 550m.

Pengecekan tegangan harus dilakukan dalam menganalisis kekuatan SCR untuk mengetahui apakah kekuatan SCR sudah memenuhi kriteria apa belum. Analisa Kekuatan SCR pada tugas akhir ini mengacu pada tugas akhir sebelumnya dengan yaitu analisa kekuatan *steel catenary riser* (Cesarian, 2016). Pengecekan menggunakan metode LRFD berdasarkan kriteria ULS pada DNV-OS-F201 (*Dynamic Riser*).

Tegangan yang diambil dari hasil pemodelan adalah berupa von mises stress merupakan resultan dari semua tegangan yang terjadi pada riser (Hibatullah, 2018). Untuk memenuhi syarat kekuatan *riser* maka von mises stress harus kurang dari 90% SMYS atau 405 Mpa.

Max Von						
Mises						
FHR						
			Kedalaman		Kedalaman	
Diameter	Kedalaman 90m	Check	200m	check	550m	check
16in	800.72 mpa	fail	362.6 mpa	ok	261.7 mpa	ok
20in	691.23 mpa	fail	338.78 mpa	ok	234.8 mpa	ok
24in	575.7 mpa	fail	296.7 mpa	ok	228.6 mpa	ok

Tabel 4.7 Kriteria Kekuatan FHR SCR

Tabel 4	8 Kriteria	Kekuatan	Lazy W	ave SCR
---------	------------	----------	--------	---------

Max Von						
Mises						
stress						
Lazy						
Wave						
			Kedalaman		kedalaman	
Diameter	Kedalaman 90m	Check	200m	check	550m	check
16in	764.5 mpa	fail	336.5 mpa	ok	247.44 mpa	ok
20in	533.82 mpa	fail	257.6 mpa	ok	210.97 mpa	ok
24in	466.6 mpa	fail	208.05 mpa	ok	191.89 mpa	ok

Berdasarkan hasil pengecekan kekuatan *riser* dengan gaya lingkungan dapat dilihat pada Tabel 4.7 dan Tabel 4.8 bahwa *riser* pada kedalaman 200 meter dan 550 meter cukup kuat untuk menahan beban-beban yang diberikan yang ditunjukan dengan terpenuhinya syarat kekuatan *riser*. Tetapi untuk *riser* pada kedalaman 90 meter tidak memenuhi syarat kekuatan yang sesuai dengan DNV-OS-F201 dikarenakan nilai *bending stress* yang begitu besar dan SCR memang dirancang untuk beroperasi pada kedalaman laut dalam pada kasus ini laut dangkal memiliki kedalaman kurang dari 100m. Dan untuk pengaruh dari masing – masing variasi memberikan dampak terhadap ketahanan *riser*. Semakin besar diameter *riser* akan semakin besar nilai tegangan pada *riser* tersebut. *Bouyancy modules* untuk variasi konfigurasi *lazy wave* memberikan dampak mengurangi nilai dari *max von mises stress* pada pipa *riser*. Akan tetapi pada kedalaman 90 m tetap tidak memenuhi syarat kekuatan maksimum tegangan yang terjadi pada *riser*. Simulasi ini membuktikan bahwa *steel catenary riser* tidak mampu beroperasi pada laut dangkal atau *shallow water*. Terbukti juga bahwa *steel catenary riser* pertama yang dipasang pada tahun 1994 dilaut dengan kedalaman 872 meter (Buberg, 2014) dan *steel catenary risers* (SCRs) adalah solusi yang lebih disukai untuk *wet-tree production* pada air dalam, injeksi air/gas dan ekspor minyak/gas (Bai et al., 2004).

Berdasarkan resultan tegangan yang terjadi dapat dilihat pada tabel bahwa semakin dangkal kedalaman air laut semakin besar nilai *max von mises stress* pada *riser* tersebut. Semakin besar diameter pipa semakin kecil nilai *max von mises stress* pipa tersebut.

Dapat disimpulkan bahwa untuk kedalaman air laut dangkal atau *shalow water* (90 meter), kedalaman air laut tengah atau *intermediate water* dan kedalaman laut dalam pada konfigurasi *free hanging catenary* dan *Lazy Wave* diameter pipa yang paling kuat adalah 24in.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari analisis yang telah dilakukan, dapat diambil kesimpulan yang menjawab rumusan masalah di atas. Berikut adalah kesimpulan yang dapat diambil dari pengerjaan tugas akhir ini :

- a) Gaya tarik efektif (*effective tension*), adalah gaya axial dinding pipa yang dipengaruhi oleh tekanan internal dan eksternal. *Bending moment* adalah tekukan yang terjadi karena suatu batang atau struktur elemen menerima momen atau gaya luar yang tegak lurus (bisa juga kombinasi momen dan gaya luar). Konfigurasi dari bentuk *riser* memberikan dampak terhadap besar nilai *effective tension* dan *bending moment*. Terdapat perbedaan besar kedua gaya tersebut pada masing masing konfigurasi. Pada kedalaman air laut yang sama dan diameter pipa yang sama, konfigurasi *lazy wave* memiliki besar nilai *effective tension* dan *bending moment* yang lebih kecil dibandingkan konfigurasi *free hanging catenary*. Pada konfigurasi *lazy wave* diameter pipa 16in dengan kedalaman 200 meter yaitu masing masing sebesar 253.02 kN dan 2197.25 kN.m. Dan untuk konfigurasi *free hanging catenary* sebesar 343.71 kN dan 2353.2 kN.m. Dapat disimpulkan bahwa penambahan *boyancy modules* pada konfigurasi *lazy wave* membantu untuk mengurangi besar nilai gaya dan tegangan pada pipa tersebut.
- b) Diketahui bahwa effective tension terbesar terjadi pada bagian top riser atau hang-off location (Flex Joint) pada setiap variasi. Untuk Bending moment terbesar terjadi pada area dekat touchdown point atau bagian segbend. Variasi diameter pipa berpengaruh pada besar nilai effective tension dan bending moment dan tegangan von mises pada pipa tersebut. Terbukti pada studi ini dengan kedalaman dan konfigurasi yang sama menghasilkan besar gaya yang berbeda dengan diameter pipa yang berbeda. Pada konfigurasi free hanging catenary dengan kedalaman laut 90 meter atau shallow water menghasilkan effective tension sebesar 133.23 kN dengan diameter pipa 16in, 93.92 kN 20in, 25.6 24in dan bending moment sebesar 5217.8 kN.m dengan diameter pipa 16in,

3054.15 kN.m 20in dan 1559.45 kN.m 24in. Dapat disimpulkan bahwa semakin besar diameter pipa makan semakin kecil nilai *effective tension* dan nilai *bending moment* pipa tersebut.

- c) Berdasarkan hasil studi ini perbedaan kedalaman air laut juga memiliki pengaruh terhadap besar *effective tension, bending moment,* dan *max von mises stress* pada pipa. Dalam penentuan kedalaman air laut menggunakan diagram validitas. Dengan perbedaan kedalaman laut juga mempengaruhi panjang bentang total *riser* dari bagian *top riser* hinggan *touchdown point* pada *seabed*. Untuk menentukan total panjang bentang *riser* tersebut pada studi ini menggunakan teori *catenary*. Panjang bentang *riser* yang didapatkan sebesar 117.29 meter pada kedalaman 90 meter, 260.65 meter 200 meter dan 716.77 meter untuk kedalaman 550 meter. Hasil pada studi ini menunjukan bahwa semakin dalam kedalaman air laut semakin kecil nilai *effective tension, bending moment*, dan tegangan *max von mises* yang terjadi pada *riser*.
- d) Untuk bisa beroperasi riser harus memenuhi syarat kekuatan riser mengacu pada DNV-OS-F201 "Dynamic Riser". Pada kasus studi ini syarat ketentuan kekuatab harus memenuhi 90 % SMYS sebesar 405 Mpa. Berdasarkan hasil perhitungan pada studi ini steel catenary riser tidak dapat beroperasi pada kedalaman air laut dangkal atau shallow water pada studi ini 90 meter dengan beban lingkungan yang sama termasuk tinggi gelombang signifikan (Hs), periode gelombang (T) dan beban arus (Fa) yang sama pada kedalaman intermediate water (200m) dan deep water (550m). Sedangkan untuk kedalaman air laut tengah dan dalam kekuatan riser memenuhi syarat untuk setiap variasi konfigurasi riser dan diameter pipa riser. Dan dapat disimpulkan bahwa penambahan bouyancy modules pada konfigurasi lazy wave berguna untuk mengurangi beban dan tegangan yang terjadi pada pipa riser, sehingga konfigurasi lazy wave lebih unggul dibandingkan dengan konfigurasi free hanging catenary.

5.2 Saran

Saran yang diberikan untuk penelitian lebih lanjut adalah

- 1. Perlu dilakukan analisis dengan penambahan beban akibat gerakan *floating structure*.
- 2. Perlu dilakukan analisis parameter *Vortex Induced Vibration* dan menghitung pengaruh VIV di sepanjang riser
- 3. Perlu dilakukan analisis sensitivitas dengan merubah parameter lain (misal : sensitivitas kekuatan *riser* terhadap perubahan *offset* dengan kondisi *near*, *mean*, dan *far*.
- 4. Perlu dilakukan analisis umur fatigue pada masing masing variasi *riser*.

(Halaman ini sengaja dikosongkan)

DAFTAR PUSTAKA

Agusta, Arifian. 2012. "Analisis Ketebalan dan Konfigurasi Steel Catenary Riser di Laut Dalam". Bandung : Fakultas Teknik Sipil dan Lingkungan

Agusta, Arifian. 2014. "Structural Design of Steel Catenary Riser with the Environmental Contour Line Method for Operation in Indonesian Water". Trondheim : Norwegian University of Science and Technology.

API Recommended Practice 2rd Edition (1998): Design of Risers for Floating Production Systems (FPSs) and Tension-Leg Platforms (TLPs).USA : American Petroleum Institute

Bai, Y. dan Bai, Q. 2014. Subsea Pipeline Design, Analysis, and Installation. Houston: Elsevier.

Buberg, Thomas. 2014. "Design and Analysis of Steel Catenary Riser Systems for Deep Waters". Trondheim : Norwegian University of Science and Technology.

Cesarian, R. 2016. "Analisis Kekuatan dan Sensitivitas Steel Catenary Riser Akibat Pergerakan Semi-Submmesible". Surabaya : Fakultas Teknologi Kelautan.

Det Norske Veritas (DNV), "Offshore Standard DNV-OS-F201:Dynamic Risers", Hovik, 2010.

Gilang, Muhammad. 2012. "Analisis Riser Interference Konfigurasi Steel Catenary Riser pada Laut Dalam".Bandung : Fakultas Teknik Sipil dan Lingkungan

Hibatullah,M.2018. "Analisis Kelelahan Struktur Steel Catenary Riser Akibat Vortex Induced Vibration dan Pergerakan Semi-Submersible". Surabaya : Fakultas Teknologi Kelautan.

Howells, Hugh. 1995. "Advances in Steel Catenary Riser Design". Aberdeen : 2H Offshore Engineering Limited.

Keprate, Arvind. 2014." Appraisal of Riser Concept for FPSO in Deepwater". Stavanger : University of Stavanger.

Lee, Jaeyoung. 2007. "Introduction to Offshore Pipeline and Risers". Houston: Technip USA.

LAMPIRAN A

ANALISA KONFIGURASI STATIS

Riser Data

Water Depth	Z	550	m
Outside Diameter	D	406.4	mm
Wall Thickness	t	25.4	mm
Weight Submerged	Ws	927.34	N/m
Elasticity	E	207000	mpa
Hang-off Point	θ	15	degree

Тор Т	ension		
T = T _H +	⊦W _s Y=T	sinα + W	$_{s}Y = \frac{W_{s}Y}{1-\sin\alpha}$
т	=	688141	N
	=	688.141	kN
Bottom	Tension		
T _H = Ts	inα		
Th	=	178104	N
	=	178.104	kN
Catenary	y Constant		
$a = \frac{T_H}{W_s}$			

a = **192.059**

Plot Konfigurasi				
z	х			
0.00065084	0.5			
0.00260337	1			
0.0058576	1.5			
0.01041356	2			
0.01627127	2.5			
0.02343078	3			
0.03189212	3.5			
0.04165537	4			
0.05272059	4.5			
0.06508784	5			
0.07875722	5.5			
0.09372882	6			
0.11000274	6.5			
0.12757909	7			
0.14645798	7.5			
0.16663956	8			
0.18812394	8.5			
0.21091129	9			
0.23500175	9.5			

Riser Free Span Length to Touchdown

$$S = Y \sqrt{1 + 2 \frac{a}{Y}}$$

$$S = 716.7739551 \text{ m}$$
Horizontal Distance to Touchdown
$$X = a^* \sinh^{-1} \left(\frac{S}{a}\right)$$

$$X = 389.4168017 \text{ m}$$

0.26039548	10
0.28709267	10.5
0.31509348	11
0.34439812	11.5
0.37500677	12
0.40691965	12.5
0.44013697	13
0.47465896	13.5
0.51048584	14
0.54761788	14.5
0.5860553	15
0.62579839	15.5
0.6668474	16
0.70920261	16.5
0.75286431	17
0.7978328	17.5
0.84410838	18
0.89169137	18.5
0.94058208	19
0.99078086	19.5
1.04228803	20
1.09510395	20.5
1.14922898	21
1.20466348	21.5
1.26140782	22
1.3194624	22.5
1.37882761	23
1.43950385	23.5
1.50149153	24
1.56479106	24.5
1.62940289	25
1.69532745	25.5
1.76256518	26
1.83111653	26.5
1.90098199	27
1.97216201	27.5
2.04465708	28
2.11846769	28.5
2.19359435	29
2.27003756	29.5
2.34779783	30
2.4268757	30.5
2.50727171	31

2.58898639	31.5
2.6720203	32
2.75637401	32.5
2.84204808	33
2.9290431	33.5
3.01735965	34
3.10699834	34.5
3.19795977	35
3.29024456	35.5
3.38385333	36
3.47878672	36.5
3.57504537	37
3.67262994	37.5
3.77154108	38
3.87177946	38.5
3.97334577	39
4.0762407	39.5
4.18046494	40
4.28601919	40.5
4.39290418	41
4.50112062	41.5
4.61066925	42
4.72155082	42.5
4.83376607	43
4.94731577	43.5
5.06220068	44
5.17842158	44.5
5.29597926	45
5.41487453	45.5
5.53510817	46
5.65668102	46.5
5.77959388	47
5.90384761	47.5
6.02944303	48
6.15638099	48.5
6.28466237	49
6.41428803	49.5
6.54525884	50
6.6775757	50.5
6.8112395	51
6.94625114	51.5

7.08261155	52
7.22032165	52.5
7.35938236	53
7.49979464	53.5
7.64155943	54
7.7846777	54.5
7.92915041	55
8.07497855	55.5
8.22216309	56
8.37070505	56.5
8.52060543	57
8.67186523	57.5
8.8244855	58
8.97846726	58.5
9.13381155	59
9.29051943	59.5
9.44859196	60
9.60803022	60.5
9.76883528	61
9.93100823	61.5
10.0945502	62
10.2594622	62.5
10.4257455	63
10.5934011	63.5
10.7624302	64
10.9328339	64.5
11.1046134	65
11.2777698	65.5
11.4523044	66
11.6282182	66.5
11.8055126	67
11.9841886	67.5
12.1642476	68
12.3456907	68.5
12.5285191	69
12.7127342	69.5
12.898337	70
13.085329	70.5
13.2737114	71
13.4634854	71.5
13.6546523	72

13.8472135	72.5
14.0411702	73
14.2365237	73.5
14.4332755	74
14.6314267	74.5
14.8309788	75
15.0319331	75.5
15.2342909	76
15.4380537	76.5
15.6432228	77
15.8497996	77.5
16.0577855	78
16.2671819	78.5
16.4779902	79
16.690212	79.5
16.9038485	80
17.1189012	80.5
17.3353717	81
17.5532614	81.5
17.7725717	82
17.9933041	82.5
18.2154602	83
18.4390414	83.5
18.6640493	84
18.8904854	84.5
19.1183511	85
19.3476482	85.5
19.578378	86
19.8105422	86.5
20.0441424	87
20.2791801	87.5
20.5156569	88
20.7535745	88.5
20.9929344	89
21.2337382	89.5
21.4759877	90
21.7196844	90.5
21.96483	91
22.2114261	91.5
22.4594745	92
22.7089767	92.5

22.9599346	93
23.2123497	93.5
23.4662239	94
23.7215588	94.5
23.9783561	95
24.2366177	95.5
24.4963452	96
24.7575404	96.5
25.0202051	97
25.284341	97.5
25.54995	98
25.8170338	98.5
26.0855943	99
26.3556333	99.5
26.6271526	100
26.900154	100.5
27.1746394	101
27.4506107	101.5
27.7280698	102
28.0070184	102.5
28.2874585	103
28.5693921	103.5
28.852821	104
29.137747	104.5
29.4241723	105
29.7120987	105.5
30.0015281	106
30.2924625	106.5
30.584904	107
30.8788544	107.5
31.1743158	108
31.4712901	108.5
31.7697794	109
32.0697858	109.5
32.3713111	110
32.6743576	110.5
32.9789272	111
33.285022	111.5
33.592644	112
33.9017954	112.5
34.2124783	113

34.5246947	113.5
34.8384468	114
35.1537368	114.5
35.4705666	115
35.7889385	115.5
36.1088547	116
36.4303173	116.5
36.7533285	117
37.0778905	117.5
37.4040054	118
37.7316755	118.5
38.0609031	119
38.3916903	119.5
38.7240394	120
39.0579526	120.5
39.3934322	121
39.7304805	121.5
40.0690997	122
40.4092922	122.5
40.7510603	123
41.0944062	123.5
41.4393323	124
41.785841	124.5
42.1339346	125
42.4836154	125.5
42.8348858	126
43.1877482	126.5
43.542205	127
43.8982586	127.5
44.2559115	128
44.6151659	128.5
44.9760244	129
45.3384894	129.5
45.7025634	130
46.0682488	130.5
46.4355482	131
46.8044639	131.5
47.1749985	132
47.5471546	132.5
47.9209346	133
48.296341	133.5

48.6733765	134
49.0520435	134.5
49.4323447	135
49.8142826	135.5
50.1978598	136
50.5830788	136.5
50.9699424	137
51.3584532	137.5
51.7486137	138
51.7486137 52.1404266	138 138.5
51.7486137 52.1404266 52.5338946	138 138.5 139
51.7486137 52.1404266 52.5338946 52.9290203	138 138.5 139 139.5
51.7486137 52.1404266 52.5338946 52.9290203 53.3258064	138 138.5 139 139.5 140
51.7486137 52.1404266 52.5338946 52.9290203 53.3258064 53.7242556	138 138.5 139 139.5 140 140.5
51.7486137 52.1404266 52.5338946 52.9290203 53.3258064 53.7242556 54.1243706	138 138.5 139 139.5 140 140.5 141

LAMPIRAN B INPUT ORCAFLEX OrcaFlex 9.2a: riser 16 90 8000 lazy wave.sim (modified 20:21 on 20/06/2019 by OrcaFlex 9.2a)

_____ General Data _____

Comments:

Units: System	Length	Mass	Force	Time	Temperature	q
(m/s^2)	2				-	-
SI	m	te	kN	S	°C	
9,80665						

Statics

Statics Method Whole System statics

Buoy degrees of freedom included in Static Analysis:

Individually Specified

Starting Velocity: Speed (m/s) Direction (deg) 0,00 0,00

Statics Convergence Parameters:

Max		Min	Max
Iterations	Tolerance	Damping	Damping
400	1,0E-6	1,000	10,000

Dynamics

	2		
Stages:			Logging:
Stage	Duration	Simulation Time	
Target Sample	Actual Sample	3	
Number	(s)	at stage end (s)	Precision
Interval (s)	Interval (s)		
0	50,000	0,000	Single
0,1000	0,1000		
1	16,000	16,000	
2	8000,000	8016,000	

Integration & Time Steps Integration Method Implicit Use variable time step: No

Parameters:

Time	Maximum number	
step (s)	of iterations	Tolerance
0,1000	100	25E-6

_____ Environment Data _____

Sea

Surface Z (m):

0,000

```
Kinematic Viscosity (m^2/s):
 3.5% Salinity
Temperature (°C):
 10,000
Reynolds Number Calculation: Flow Direction
Sea Density
Horizontal Density Variation
```

Horizontal Water Density Factor:

Vertical Density Variation

Vertical	Density	Variation:	Water	Density:
Constant				Density (te/m^3)
				1,025

Seabed

~

Shape:

shape:			Seabed Origin (r	m)	
Direction	Slope			,	
Туре	_	Х	Y	Z	Depth
(deg)	(deg)				
Flat		0,00	0,00	-90,00	90,00
0,00	0,000				

```
Stiffness & Damping:
    Stiffness (kN/m/m^2) Damping
Normal Shear(% Critical)
100.000
        100,000
                                       0,000
                                ~
```

```
Current
```

Multiple sets of current data can be defined: No

Ramp during build-up: No Horizontal Current Variation

Horizontal Variation Factor: ~

Vertical Current Variation

Current Method: Power Law

Current Data:

Current Speeds (m/s) Direction Surface Seabed (deg)

Exponent

1,000 0,800 180,000 7,000 Wind Include wind loads on: Vertical Wind Variation Vessels: Yes Vertical Variation Factor: Lines: Yes 6D Buoy Wings: Yes Air Density (te/m^3): Air Kinematic Viscosity (m^2/s): 0,0013 15E-6 15E-6 Wind Type: Constant Wind Data: SpeedDirection(m/s)(deg)0.0000.000 (deg) 0,000 0,000 Waves Simulation Time Origin (s): 0,000 Kinematic Stretching Method: Vertical Stretching User specified seeds: No Data for Wave Train: Wavel Wave Data: Direction Hs Tz Wave Type (deg) (m) (s) Wave Origin Number of wave X (m) Y (m) Wave Wave Type Time Origin directions (s) 90,00 5,30 11,10 0,00 0,00 0,000 JONSWAP 1 Automatic Spectral Parameters: Components: s1 s2 fm g a Τр (Hz)
 Seed
 Number

 0,0700
 0,0900

 12345
 100
 (s) 0,9389 0,0024 0,0637 15,6869 _____ Variable Data ___ Data for 3.5% Salinity 55 Number of rows: Temperature (°C) Kinematic Viscosity (m^2/s)

0 000	1 828F-6
0 556	1 7055-6
1 111	1,795E-0
1,111	1,763E-6
1,667	1,731E-6
2,222	1,701E-6
2,778	1,671E-6
3,333	1,643E-6
3.889	1.615E-6
A AAA	1 5888-6
5 000	1 5617 6
5,000	1,3011-0
5,556	1,536E-6
6,111	1,511E-6
6,667	1,487E-6
7,222	1,463E-6
7,778	1,440E-6
8,333	1,418E-6
8.889	1,396E-6
0,000	1 3755-6
10 000	1 2545 (
10,000	1,354E-6
10,556	1,334E-6
11,111	1,314E-6
11,667	1,295E-6
12,222	1,276E-6
12,778	1,257E-6
13,333	1.240E-6
13 889	1 222E=6
14 444	1 205 - 6
14,444	1,203E-6
15,000	1,188E-6
15,556	1,172E-6
16,111	1,156E-6
16,667	1,140E-6
17,222	1,125E-6
17,778	1,110E-6
18,333	1.096E-6
18 889	1 081E-6
10,000	1 0675 6
19,444	1,007E-0
20,000	1,054E-6
20,556	1,040E-6
21,111	1,027E-6
21,667	1,014E-6
22,222	1,002E-6
22,778	989E-9
23.333	977E-9
23 889	9658-9
23,005	905E 9
24,444	954E-9
25,000	943E-9
25,556	931E-9
26,111	920E-9
26,667	910E-9
27,222	899E-9
27,778	889F-9
28.333	879E-9
28 889	
20,009	0095-9
∠۶,444	859E-9
30,000	849E-9

Data for Freshwater

55

Number	of	rows:
		Temperature (°C)
		0,000
		0,556
		1,111
		1,667
		2,222
		2,778
		3,333
		3,889
		4,444
		5,000
		5,556
		6,111
		6,667

Kinematic	Viscosity	(m^2/s)
	1	,787E-6
	1	,753E-6
	1	,721E-6
	1	,689E-6
	1	,658E-6
	1	,628E-6
	1	,599E-6
	1	,571E-6
	1	,544E-6
	1	,517E-6
	1	,491E-6
	1	,466E-6
	1	,441E-6

	7,222	1,417E-6
	7,778	1,394E-6
	8 333	1 371E-6
	8 889	1 349E-6
	9 111	1 327E-6
	10 000	1 306E-6
	10,000	1,300E-0
	11 111	1,200E-0
	11,111	1,200E-0
	11,667	1,2468-6
	12,222	1,22/E-6
	12,778	1,209E-6
	13,333	1,191E-6
	13,889	1,1/3E-6
	14,444	1,156E-6
	15,000	1,139E-6
	15,556	1,123E-6
	16,111	1,106E-6
	16,667	1,091E-6
	17,222	1,075E-6
	17,778	1,060E-6
	18,333	1,046E-6
	18,889	1,032E-6
	19,444	1,017E-6
	20,000	1,004E-6
	20,556	990E-9
	21,111	977E-9
	21,667	964E-9
	22,222	952E-9
	22,778	940E-9
	23,333	928E-9
	23,889	916E-9
	24,444	904E-9
	25,000	893E-9
	25,556	882E-9
	26,111	871E-9
	26,667	860E-9
	27.222	850E-9
	27,778	840E-9
	28,333	830E-9
	28,889	820E-9
	29,444	810E-9
	30,000	801E-9
	30,000	0011 9
Solid Friction Co	efficients	
Line Types		
View Mode All		
Category		
~ -		

Name 1 diameter 16 in

Category Homogeneous Pipe

Geometry & Mass

Diameters			CG Offset	Bulk	
Material	Mass pe	er			
				Outer	
Inner	х	У	Modulus	Density	Unit
Length					
	Name			(m)	
(m)	(m)	(m)	(kPa)	(te/m^3)	(te/m)
	1 diameter :	16 in		0,406	
0,356	0,000	0,000	Infinity	7,850	
0,239

Limits

Maximum		Minimum	L	
				Compression
Tension	E	Bend Radii	(m)	
	Name			is limited
(kN) x			V	
1	diameter 1	l6 in	1	No
~ ~			~	

Structure

Bending		Axial		Young's	Torsional
Stiffness Stiffness	(kN.m^2)	2	Stiffness		Poisson
	Name			(kPa) x	
У		(kN)		Ratio	(kN.m^2)
~	1 diameter 1	6 in 6,445E6		212,00E6 117, 0,293	471E3 90,851E3

Drag, Lift & Added Mass

Lift		Drag / Lift	Diameters	Added	Drag Co Mass Coeff	pefficients Lcients	3
Axial Axial	Coefficient	Ν	ormal	Axial	Normal	L	
	Name		х		У		
Z		(m)	(m)	х	У	Ζ
	1 diameter 16	in	1,200		~		
0,0080 0,000	0,000		~	~	1,000	~	

Contact

		Contact	Line
Clashing		Diameter	Stiffness
Damping			
	Name	(m)	(kN/m)
kN/(m/s)	1 diameter 16 in	~	0,000
0,000			.,

Stress

Allowable					Stress	3
ALIOWADIE					Diameters	(m)
Stress	Name	cress Loading	g Factors		Outer	Inner
(kPa)	Tensile 1 diamet	Bending ter 16 in	Shear	Torsional	~	~

~	1,000	1,000	1,000	1,00	00		
٤٦	riction						
						Seabed Fric Coefficien	tion ts
	Nar 1 dia	ne ameter 16 in				Normal 0,500	Axial ~
St	tructural Damp	oing					
	Name	2			Rayle dampi: coeff	igh ng icients	
	1 diar	neter 16 in			(no d	amping)	
	Line						
Name	:						
Inclu	ude Torsion:	Тор Е	nd:				
No	EI SCI	End A					
Conne	ection:						
Relat Relea	Connect to tive Position ase at	o (m)	Height a	bove	End Orien	tation (deg	Object)
End y Stag	d Object z	seabed (m)	Azi	muth De	eclination	Gamma	x Start of
30,00	Fixed 0,000)		0,00	165,	00 0	0,500 ,00
В -100, ~	Anchored ,00 0,00	00	-0,203	0,00	0 0	,00	0,000 0,00
Conn	oction Stiffn						
Stati	ics:	ctation	Stiffnes	s (kN.m/de	eg)	ashad	Torr Agimuth
As La	aid	Statics			incidae 5	eabeu	Day Azımucıi
End in St Tens:	d x bending tatics Step 1 ion (kN)	J L	γb	Step 2	Frict	'l'wıstın ion	g (deg)
A yes	18,75 Catenary		~ Full S	tatics	yes		~ 0,00 set
0,000 B	0,00		~				~
St	tructure						
		2					
2	Sections:	Ζ		Total ler	gth = 177,29	Om	
Expar	Lir nsion	ie	Tar	get Segmer	it Number	Se	ction Clash
Cumu: Lengt	lative Values No. Typ th (m) Se	e egments	Chec	:k	Length (m)	Lengt Segment	h (m) Factor s
6,000	1 dia 0 20	ameter 16 in	no	11	7,290	- 11 20	7,290 ~

	2 diameter 16 in				60,000 ~
1,000	60	no	177,290	80	

Pre-bend

Sect	ions:			
	Line			Section
Pre-bent	Curvature (rad/m)	Cumulati	ve Values	
	No. Type			Length (m)
х	y Length	(m) Segm	ents	
	1 diameter 16 ir	1		117,290
0,00000	0,00000	117,290	20	
	2 diameter 16 ir	L		60,000
0,00000	0,00000	177,290	80	

Attachments

0

Attachments:

Contents

Contents:			
Density	Reference	Pressure at Reference	Flow Rate
(te/m^3)	Z level (m)	Z level (kPa)	(te/s)
0,000	~	0,00	0,00

Catenary Convergence

Param	leters:							
	Ma	ax					Min	Shooting
BackTrack	1	Mag. o	f	Mag. c	of			
	Iteration	ns	Delta	Tol	erance	Dam	ping	Factor
Factor	Std. E:	rror	Std.	Change				
	10	00	-5,0E-9		50E-9	1,	,000	1,500
2,000	0,2	200		0,600				

Full Statics Convergence

Convergence Control Method: Line Search

Parameters:

Max			Min	Мах
Iterations	Delta	Tolerance	Damping	Damping
400		1,00E-6	1,000	10,000

Drag & Wake

Drag Formulation:

Standard

Wake Interference:

Section Line Clash Reacts Wake number Type

Section Cumulative Values Length (m)

Check Segments	to wake Generated	Length (m)	
no 20	1 diameter 16 in no None	117,290	117,290
no 80	2 diameter 16 in no None	177,290	60,000

VIV

Statics VIV: None Dynamics VIV: None

Results

Log Results: Yes

Range graphs:

Arc length axis: Horizontal Arc length axis inverted: No

Value axis inverted: No

LAMPIRAN C OUTPUT MAX VON MISES (1 VARIASI KEDALAMAN DENGAN KONFIGURASI FREE HANGING CATENARY) OrcaFlex 9.2a: riser 24 200 8000.sim (modified 0:06 on 23/03/2019 by OrcaFlex 9.2a)

Column A: Arc Length (m) Other columns: riser scr Max von Mises Stress (kPa) Period: t = -50,000 to 8016,000s

Arc Length (m)	Minimum	Maximum	Mean	Std. Dev.	Allowable Stress
0	195450.1977	213470.8493	202436.071	2340.799769	~
3.030232558	176129.388	184667.5751	179956.7144	1080.03748	~
9.090697674	127149.164	157118.4325	142769.0447	3282.396329	~
15.15116279	92210.18205	141663.1361	118178.9306	5480.529237	~
21.21162791	71671.16508	131014.4395	102659.3591	6880.674168	~
27.27209302	61340.9292	124363.99	93523.67756	7584.782483	~
33.33255814	57779.80133	119829.8975	88721.36623	7751.689462	~
39.39302326	58192.33775	116764.0475	86756.62971	7565.750953	~
45.45348837	60705.26984	114861.4182	86617.15723	7186.628911	~
51.51395349	63920.12624	113945.3594	87665.08474	6725.559768	~
57.5744186	67852.9247	113859.5679	89518.03687	6250.024564	~
63.63488372	72219.4317	114539.8265	91953.12555	5797.160261	~
69.69534884	76860.41027	115911.2977	94842.34049	5385.017094	~
75.75581395	81686.86861	117842.2746	98113.14869	5019.784284	~
81.81627907	86669.73864	120328.6854	101725.5605	4700.135703	~
87.87674419	91138.3106	123303.8232	105658.9604	4420.023144	~
93.9372093	95772.59983	126634.436	109904.4732	4170.722145	~
99.99767442	100732.9647	130309.7288	114460.4053	3942.478466	~
106.0581395	106028.9476	134300.3193	119329.3841	3725.843769	~
112.1186047	111734.5736	138595.8302	124516.4336	3512.707239	~
118.1790698	117834.5843	143142.2139	130027.5555	3297.056515	~
124.2395349	124321.4427	147964.5276	135868.5756	3075.553	~
130.3	131231.8761	153100.0659	142044.1143	2848.052508	~
136.3604651	138548.59	158570.2182	148556.5967	2618.214779	~
142.4209302	146221.693	164556.8199	155405.2514	2394.314884	~
148.4813953	154264.1604	171323.6043	162585.0675	2190.186437	~
154.5418605	162487.1415	178528.6393	170085.6957	2025.640846	~
160.6023256	170712.4737	186050.8301	177890.2838	1924.522391	~
166.6627907	179041.3145	193846.2457	185974.2518	1908.009457	~
172.7232558	187350.3802	201898.097	194304.0148	1984.62273	~
178.7837209	195565.6231	210375.2695	202835.668	2145.214223	~
184.844186	203197.3835	219744.278	211513.6544	2368.072413	~
190.9046512	210749.3544	229168.4316	220269.4372	2627.90172	~
196.9651163	218366.1633	238760.3292	229020.1994	2901.411488	~
203.0255814	226012.1805	248337.0787	237667.5893	3168.874122	~
209.0860465	233595.1533	257548.0527	246096.525	3413.828033	~
215.1465116	240997.102	266233.4179	254174.0538	3622.405233	~
221.2069767	248092.0217	274214.9923	261748.2462	3782.793023	~
227.2674419	254732.4594	281298.6719	268647.0732	3884.896006	~
233.327907	260741.8739	287271.5564	274677.1781	3920.14166	~
239.3883721	265919.8269	291901.3382	279622.4121	3881.359446	~
245.4488372	269814.1214	295015.2375	283241.9409	3762.680424	~
251.5093023	272358.456	296733.3624	285267.6719	3559.429593	~
257.5697674	273360.4269	296204.9004	285400.6815	3268.01954	~
261.1	273358.3212	295063.8964	284770.7403	3069.280757	~

262.1	273166.5342	294474.687	284365.081	3003.7841
263.1	272917.5938	293808.0953	283891.3246	2935.783281
264.1	272608.5111	293060.4337	283347.7053	2865.277021
265.1	272238.3055	292232.218	282732.424	2792.258354
266.1	271803.7107	291318.3659	282043.6398	2716.731644
267.1	271304.1278	290317.7623	281279.4725	2638.704264
268.1	270740.5447	289229.0322	280438.002	2558.184941
269.1	270105.5182	288049.6648	279517.265	2475.182673
270.1	269401.4245	286778.1509	278515.2524	2389.711362
271.1	268625.5132	285411.2106	277429.9118	2301.804822
272.1	267774.4846	283947.4164	276259.142	2211.493645
273.1	266848.1073	282385.0911	275000.794	2118.819479
274.1	265841.076	280720.8282	273652.67	2023.846224
275.1	264754.1279	278953.2969	272212.5131	1926.651853
276.1	263582.7179	277080.5647	270678.0212	1827.346412
277.1	262327.0181	275100.6692	269046.8336	1726.072575
278.1	260984.0785	273007.3969	267316.5263	1623.024343
279.1	259551.4541	270801.88	265484.6243	1518.467552
280.1	258026.7082	268480.9142	263548.5884	1412.766385
281.1	256406.6343	266039.334	261505.8143	1306.436251
282.1	254688.6652	263478.1922	259353.6333	1200.203823
283.1	252872.0633	260793.1918	257089.3129	1095.11843
284.1	250951.7465	258047.4357	254710.0513	992,7257318
285.1	248802.8634	255369.0279	252212.9741	895.3174711
286.1	246515.5773	252562.6243	249595.1402	806.2810641
287 1	244110 9978	249631 6075	246853 5326	730 5185833
288.1	241290 4378	246565 5722	243985 0615	674 597926
289.1	238219 8449	243488 0512	240986 5658	645 968632
290.1	235015.2616	240417.5296	237854.8069	650.6046607
291.1	231665 0638	237289 3147	234586 4743	690 1527991
292.1	228177 1194	234094 8396	231178 1841	761 3803705
293.1	224321 6136	230757 4356	227626 4818	858 4682676
294.1	220215 3606	227274 2383	223927 8467	975 6051733
295.1	215901 6041	223694 1319	220078 6927	1108 19164
296.1	211372 9098	220245 9211	216075.3786	1252 949321
297.1	206652 9262	216659 2189	211914 2139	1407 644515
298.1	200002.0202	212934 6058	207591 472	1570 770744
200.1	196687 9241	209066 9601	203103 4054	1741 310095
300.1	191436 1673	205000.0001	198446 2638	1918 570814
301.1	185998 9632	200880 2028	193616 3223	2102 078594
302.1	180372 8803	196551 0698	188609 9154	2201 504001
303.1	174553 9979	192061 6315	183423 4819	2486 617037
304.1	168539 1579	187405 5978	178053 623	2687 239863
305.1	162323 7141	182582 2059	172497 1829	2893 233086
306.1	155005 6676	177586 6634	166751 3508	2093.20000
307.1	1/0283 2307	172/16 /25/	160813 8013	3320 773204
307.1	142455 5567	167071 7765	154682 8826	3541 06555
300.1	135/102 0272	1615/12 /65	148257 8752	3767 7/7201
310.1	128187 0215	1558/6 5/86	141820 2/72	3007 685251
211 1	120107.9210	140067 2501	135120 6561	A221 11517
312.1	113135 1057	143012607	128233 6639	4467 017505
312.1	1052/2 //20	137687 620	120200.0000	4702 Q1/65
515.1	100042.4429	101001.008	121100.1122	4700.01400

314.1	97459.45146	131301.2921	113921.6728	4938.422922
315.1	89670.72483	124764.2427	106546.3705	5155.46857
316.1	82184.01675	118093.1859	99107.78788	5306.709037
317.1	75193.09987	111312.902	91759.49353	5338.995789
318.1	68885.97166	104459.0002	84707.76433	5236.60096
319.1	63432.62262	97621.53267	78154.1075	5008.42843
320.1	58953.06559	90969.75699	72262.45305	4668.569657
321.1	55507.6824	84689.5034	67157.63861	4234.402024
322.1	53090.31593	78933.47682	62922.94605	3728.505975
323.1	51622.21979	73819.13093	59591.13127	3179.930579
324.1	50961.92227	69425.0664	57138.83904	2622.817336
325.1	50779.69132	65787.48904	55488.80135	2092.060589
326.1	50893.95418	62898.39367	54521.54192	1617.685796
327.1	50835.31	60707.93607	54094.34832	1220.621519
328.1	51106.74478	59137.54344	54065.30941	911.5391324
329.1	51586.71929	58090.92017	54307.55992	692.0982197
330.1	52088.83678	57462.23228	54713.53448	555.0855183
331.1	52612.99504	57169.3317	55197.29754	482.8112073
332.1	53133.47925	57102.69813	55694.16691	450.5686761
333.1	53641.59133	57159.67197	56158.22257	436.5960242
334.1	54102.35314	57364.99026	56559.02076	427.9033906
335.1	54494.06577	57618.97131	56878.28105	418.8489921
336.1	54805.07922	57789.20997	57106.91655	407.7920819
337.1	55030.66215	57864.21261	57242.54092	394.768865
338.1	55171.11245	57855.70384	57287.46055	380.3176628
339.1	55230.16528	57771.75842	57247.1007	364.9856679
340.1	55213.72985	57631.40115	57128.79909	349.171591
341.1	55128.94295	57430.88279	56940.90063	333.115692
342.1	54983.46224	57169.90835	56692.09082	316.9431281
343.1	54784.94762	56857.06848	56390.92425	300.7193498
344.1	54540.7492	56501.39502	56045.49797	284.4898106
345.1	54257.65086	56110.40439	55663.23971	268.3027633
346.1	53941.77116	55688.37415	55250.79376	252.2246402
347.1	53598.48128	55241.27834	54813.96779	236.3395901
348.1	53232.43138	54774.50396	54357.72805	220.742636
349.1	52847.5264	54292.14297	53886.2475	205.5441402
350.1	52447.00533	53797.83763	53402.96346	190.8623299
351.1	52033.54704	53294.59584	52910.667	176.8062646
352.1	51609.26998	52784.83275	52411.61385	163.4655711
353.1	51175.90262	52270.43485	51907.64651	150.9254708
354.1	50731.44263	51753.60382	51400.2459	139.2805652
355.1	50276.66708	51235.44691	50890.54084	128.611303
356.1	49816.71391	50716.39761	50379.40202	118.9704458
357.1	49352.24537	50197.22721	49867.5356	110.3871146
358.1	48883.76609	49678.54537	49355.50746	102.8615089
359.1	48411.79417	49160.88764	48843.83415	96.36911363
360.1	47936.89333	48644.77924	48333.04593	90.86222569
361.1	47449.41251	48130.80571	47823.74858	86.26982633
362.1	46959.77992	47619.71669	47316.72735	82.50387708
363.1	46471.44309	47112.7221	46813.06473	79.46588044
364.1	45986.03549	46611.22905	46314.26346	77.05162898
365.1	45505.78411	46117.11444	45822.39639	75.15637086
	-			

366.1	45033.69024	45633.13282	45340.29434	73.68016905	~
367.1	44573.74424	45163.00843	44871.76478	72.53148077	~
368.1	44131.16625	44711.69308	44421.84146	71.62893604	~
369.1	43712.67671	44285.64051	43997.05772	70.90179771	~
370.1	43326.77499	43893.0693	43605.72787	70.28947058	~
371.1	42984.00666	43544.25037	43258.21317	69.74062002	~
372.1	42697.16743	43251.71349	42967.13348	69.21216269	~
373.1	42481.40444	43030.33521	42747.46696	68.66823925	~
374.1	42354.12873	42897.27221	42616.46532	68.07940484	~
375.1	42334.65577	42871.6051	42593.30022	67.4220955	~
376.1	42443.49973	42973.65307	42698.36133	66.67894026	~
377.1	42701.24848	43224.00517	42952.14206	65.83928762	~
378.1	43127.01986	43641.55893	43373.69392	64.89858025	~
379.1	43736.54482	44242.02341	43978.71544	63.85790704	~
380.1	44540.02798	45035.6416	44777.41196	62.72424362	~
381.1	45539.9719	46025.02748	45772.32206	61.51071909	~
382.1	46729.18276	47203.53874	46956.32319	60.23675348	~
383.1	48089.12602	48552.72828	48310.98194	58.92822503	~
384.1	49588.7005	50041.50909	49805.32651	57.61751608	~
385.1	51183.41494	51625.71428	51395.01879	56.34330019	~
386.1	52814.86773	53247.30974	53021.83072	55.15004321	~
387.1	54410.40857	54834.03279	54613.30034	54.08726448	~
388.1	55882.86423	56299.12775	56082.45405	53.2084089	~
389.1	57130.25962	57541.04296	57327.52329	52.56924401	~
390.1	58035.52564	58443.12383	58231.64287	52.22589505	~
391.1	58466.22494	58873.33404	58662.56955	52.23236672	~
392.1	58274.35442	58684.06124	58472.51354	52.63727012	~
393.1	57296.58123	57712.21899	57498.2494	53.47923946	~
394.1	55354.88304	55779.90891	55561.80236	54.780082	~
395.1	52258.43853	52696.2417	52472.31844	56.53297998	~
396.1	47808.28188	48261.7824	48030.59856	58.67803202	~
397.1	41809.11545	42279.87112	42040.66651	61.03785096	~
398.1	34104.96439	34590.91541	34344.55373	63.09273638	~
399.1	24723.06325	25206.72237	24961.81613	62.85129461	~
400.1	17181.5133	17470.2666	17322.75181	37.51109057	~
400.6	15214.545	15315.02398	15261.69008	13.01464204	~

OrcaFlex 9.2a: riser 20 200 1.dat (modified 21:04 on 14/02/2019 by OrcaFlex 9.2a)

Column A: Arc Length (m) Other columns: riser scr Max von Mises Stress (kPa) Period: t = -50,000 to 8016,000s

Arc Length (m)	Minimum	Maximum	Mean	Std. Dev.	Allowable Stress
0	137248.483	148692.0953	141586.5734	1509.372807	~
3.030232558	128021.8111	135507.148	131680.0725	970.7070485	~
9.090697674	97034.40069	133272.3448	115752.0929	4073.991742	~
15.15116279	75421.6005	133824.3682	105594.6855	6713.600483	~
21.21162791	63235.19408	134595.0068	99905.98001	8545.199549	~
27.27209302	58332.68801	135941.5828	97540.57124	9610.364927	~
33.33255814	58531.40516	137179.5395	97539.99622	10050.1639	~
39.39302326	61838.93681	138347.4995	99164.78766	10042.7843	~
45.45348837	66913.06996	139600.6683	101892.7049	9750.058329	~
51.51395349	72839.946	141156.6252	105381.5746	9295.617567	~
57.5744186	79124.89273	143099.5142	109419.8065	8765.481272	~
63.63488372	85822.3857	145469.9225	113882.6228	8216.207448	~
69.69534884	92779.81848	148364.2117	118699.9326	7682.983567	~
75.75581395	99929.59651	151758.003	123834.8927	7185.661377	~
81.81627907	107245.7106	155639.787	129270.2695	6732.972138	~
87.87674419	114643.7255	160015.5818	134999.9407	6325.628627	~
93.9372093	121576.1712	164749.7336	141023.6093	5958.878721	~
99.99767442	128447.4273	169806.5948	147343.4649	5624.788357	~
106.0581395	135657.9747	175201.888	153962.0058	5314.297998	~
112.1186047	143241.4303	180849.2683	160880.5383	5018.984155	~
118.1790698	151193.4795	186750.636	168098.0621	4732.457348	~
124.2395349	159541.3971	192940.5063	175610.3714	4451.395991	~
130.3	168285.6731	199422.9612	183409.2694	4176.272104	~
136.3604651	177281.5105	206164.3784	191481.8399	3911.824791	~
142.4209302	186528.9393	213483.8437	199809.7478	3667.249902	~
148.4813953	195597.9065	221655.6533	208368.5565	3455.87575	~
154.5418605	204888.3589	230061.2697	217127.0615	3293.827186	~
160.6023256	214328.2759	238597.9781	226046.6474	3197.098041	~
166.6627907	223760.6659	247214.6036	235080.6816	3177.120488	~
172.7232558	232903.8522	255875.6364	244173.9568	3236.467884	~
178.7837209	241642.0848	264938.2427	253262.2025	3367.261399	~
184.844186	249535.7207	274586.6251	262271.6792	3553.28567	~
190.9046512	257238.417	283984.0798	271118.8719	3774.102272	~
196.9651163	264735.1545	293081.4018	279710.2953	4008.732225	~
203.0255814	272036.6865	301999.5428	287942.4174	4237.81989	~
209.0860465	279035.3628	310404.0722	295701.7023	4444.491299	~

215.1465116	285620.2556	318005.1628	302864.7661	4614.494038
221.2069767	291673.9734	324648.4617	309298.6248	4736.057682
227.2674419	297093.4785	330186.0683	314861.0069	4799.692872
233.327907	301761.8861	334463.976	319400.6854	4798.005506
239.3883721	305530.2311	337317.5326	322757.7704	4725.543884
245.4488372	308063.0067	338938.6231	324763.8897	4578.670653
251.5093023	309072.7586	338767.3494	325242.1682	4355.458224
257.5697674	308734.81	336831.4091	324006.9024	4055.624599
261.1	308038.9547	335050.8245	322666.7734	3857.515879
262.1	307685.036	334322.4405	322096.1197	3793.699999
263.1	307283.3371	333529.9114	321469.3417	3727.892677
264.1	306836.0852	332670.5579	320785.4974	3660.10137
265.1	306342.4241	331742.9762	320043.6401	3590.351532
266.1	305795.3771	330749.1299	319242.7986	3518.669578
267.1	305196.9833	329683.9501	318382.0047	3445.072727
268.1	304547.5415	328549.9533	317460.2789	3369.589075
269.1	303846.1835	327344.8467	316476.6244	3292.253134
270.1	303088.8993	326066.6666	315430.0373	3213.093364
271.1	302280.5518	324715.9371	314319.5072	3132.142402
272.1	301414.1551	323291.0198	313144.0035	3049.450838
273.1	300488.8473	321790.724	311902.4899	2965.058433
274.1	299504.8204	320213.4019	310593.9166	2879.01569
275.1	298461.0351	318560.7555	309217.2178	2791.382431
276.1	297356.5455	316829.5718	307771.3177	2702.226809
277.1	296191.7773	315018.7559	306255.1264	2611.623737
278.1	294960.9078	313127.82	304667.5405	2519.65933
279.1	293663.7138	311155.4579	303007.4358	2426.439821
280.1	292302.9709	309099.4079	301273.6816	2332.083729
281.1	290873.4129	306960.409	299465.1261	2236.731751
282.1	289373.4439	304736.68	297580.601	2140.556247
283.1	287803.4923	302426.3113	295618.9234	2043.760169
284.1	286159.4592	300028.2477	293578.8907	1946.591027
285.1	284442.5662	297607.7716	291459.2822	1849.355748
286.1	282646.9532	295229.5143	289258.8603	1752.426092
287.1	280727.2099	292768.4019	286976.3651	1656.271202
288.1	278654.3075	290215.147	284610.5181	1561.476618
289.1	276504.1523	287568.8499	282160.0197	1468.785747
290.1	274278.2632	284827.763	279623.5476	1379.135552
291.1	271738.8678	281997.1936	276999.7575	1293.712151
292.1	269059.4852	279070.6725	274287.2844	1214.006077
293.1	266297.7474	276044.9339	271484.7373	1141.85746
294.1	263438.0886	272919.3833	268590.6977	1079.473873
295.1	260490.4242	269695.3728	265603.729	1029.366424
296.1	257456.0598	266387.7343	262522.3638	994.1617022
297.1	254333.5037	263244.0827	259345.1077	976.267034
298.1	251105.5187	260004.1531	256070.4415	977.4409874
299.1	247785.5825	256660.0545	252696.8161	998.4168541
300.1	244372.5814	253225.3925	249222.6558	1038.780742
301.1	240864.6277	249796.4986	245646.3554	1097.146655
302.1	237243.295	246275.6134	241966.2767	1171.545643
303.1	233412.4262	242689.5515	238180.7569	1259.826161
304.1	229230.6001	239022.9525	234288.0999	1359.932851

305.1	224874.2272	235425.8383	230286.5796	1470.062987
306.1	220399.8215	231736.3292	226174.4421	1588.718901
307.1	215807.8104	227952.9452	221949.8998	1714.679771
308.1	211058.6667	224072.1661	217611.1382	1846.978191
309.1	206137.695	220092.7776	213156.314	1984.854987
310.1	201093.1533	216012.4651	208583.558	2127.708855
311.1	195920.835	211832.5493	203890.9758	2275.069618
312.1	190621.8769	207545.2186	199076.6486	2426.569454
313.1	185194.1749	203143.3333	194138.6413	2581.919982
314.1	179635.4598	198625.6992	189075.0051	2740.893705
315.1	173941.0523	193990.1529	183883.7824	2903.314313
316.1	168110.7732	189235.5416	178563.0167	3069.04265
317.1	162143.4596	184357.2004	173110.7638	3237.971465
318.1	156037.2253	179357.1638	167525.1045	3410.017624
319.1	149789.6775	174229.4581	161804.1628	3585.11401
320.1	143398.8691	168975.6924	155946.1327	3763.208927
321.1	136863.0381	163592.4599	149949.3088	3944.253847
322.1	130180.1367	158076.7379	143812.1309	4128.200793
323.1	123348.4202	152430.0903	137533.2446	4314.993756
324.1	116368.418	146649.9118	131111.5818	4504.555412
325.1	109165.7255	140734.9786	124546.4787	4696.769543
326.1	101764.8081	134685.1038	117837.8379	4891.452647
327.1	94261.40048	128499.9139	110986.4592	5088.040487
328.1	86760.85191	122180.9901	103996.6363	5280.936593
329.1	79376.84484	115759.4811	96889.86366	5446.385614
330.1	72209.93789	109248.5948	89726.81562	5547.301232
331.1	65350.00833	102615.0021	82605.10882	5562.620645
332.1	58879.90597	95866.98174	75633.13399	5494.289716
333.1	52877.86005	89057.07343	68914.38228	5351.492715
334.1	47414.08045	82293.30428	62540.43658	5142.799047
335.1	42550.88827	75691.13972	56590.79534	4875.273551
336.1	38341.33488	69349.33524	51133.5351	4554.742129
337.1	34824.83686	63351.22913	46225.51725	4186.435604
338.1	32019.8116	57768.57417	41911.49197	3776.125255
339.1	29914.55647	52656.00439	38221.52506	3331.756793
340.1	28636.04714	48055.86315	35168.32885	2861.994746
341.1	27706.0874	43997.20785	32748.56024	2370.797373
342.1	27168.69837	40493.85207	30947.75938	1864.51536
343.1	26680.12878	37546.79912	29712.23261	1388.338903
344.1	26322.65215	35132.72632	28929.61082	1001.600928
345.1	26193.06191	33216.00798	28474.82388	722.4705585
346.1	26213.85881	31744.88846	28242.08724	535.0496696
347.1	26267.6823	30652.0801	28152.55416	419.6555811
348.1	26348.50371	29868.55694	28146.85927	357.165462
349.1	26450.06216	29414.35415	28181.04185	327.7369552
350.1	26543.16956	29097.79154	28223.8512	314.1134166
351.1	26632.15107	28873.1057	28254.5469	305.6014677
352.1	26700.09303	28830.13912	28260.74405	297.3743124
353.1	26739.86004	28765.93669	28236.43911	287.9559923
354.1	26749.89696	28682.44838	28180.31071	277.308329
355.1	26731.41069	28573.99545	28094.33759	265.8387001
356.1	26687.9719	28439.43276	27982.7184	253.9807063

357.1 26624.6264 28290.44007 27851.0614 242.063441 358.1 26642.04015 27965.83002 230.3014629						
358.1 26547.30364 28130.41555 27705.80046 23.3014629 359.1 26462.40915 27965.83602 27553.80688 218.8256046 360.1 26376.61385 27602.84297 27402.18084 207.7191709	357.1	26624.62564	28290.44007	27851.0614	242.063441	~
359.1 26462.40915 27965.83062 27553.80688 218.8256046 - 360.1 26376.61385 27602.84297 27402.18084 207.7191709 - 361.1 26286.80783 27648.24123 27258.1997 197.0476557 - 363.1 26184.45906 27398.20018 27023.76991 177.3218656 - 364.1 26186.13197 27319.26828 26950.05343 168.4749564 - 365.1 26190.86035 27283.6914 26918.08834 160.4704683 - 366.1 26263.79196 27304.90079 26939.14299 153.4361442 - 367.1 26390.8533 2737.377.1727 2702.6.2131 47.47505466 - 369.1 26902.07623 27484.85169 36.27625 - - 370.1 2730.91079 28358.70497 134.3731717 - 371.1 27829.51409 28769.40679 28358.70497 134.3731717 - 371.1 2780.5112 3034.28542 2984.7573 149.3420234 - 375.1 32052.56803 31313.02525 32632.1	358.1	26547.30364	28130.41555	27705.80046	230.3014629	~
360.1 26376.61385 27602.84297 27402.18084 207.7191709	359.1	26462.40915	27965.83602	27553.80688	218.8256046	~
361.1 26290.80783 27648.24123 27129.40005 186.8839501 ~ 362.1 26184.45906 27398.20018 27023.76991 177.3218656 ~ 363.1 26184.45906 27398.20018 27023.76991 177.3218656 ~ 364.1 26168.13197 27319.26828 26950.05343 168.4749564 ~ 365.1 2663.79196 27304.90079 26933.14291 153.4361442 ~ 366.1 2663.79196 27573.46172 27194.2032 142.6558063 ~ 369.1 26902.07623 27648.97544 27494.0056 138.993606 ~ 370.1 27306.97202 28241.86477 27841.65169 136.2746635 ~ 371.1 27829.51409 28769.40679 23358.70497 134.3731717 ~ 372.1 28057.65956 29449.74603 29030.21144 132.9311596 ~ 373.1 29359.6112 30394.28542 29894.75735 149.3420234 ~ 374.1 3056.38757 31649.97585 31145.72453 152.991283 ~ 376.1 3360.1429 <	360.1	26376.61385	27802.84297	27402.18084	207.7191709	~
362.1 26230.18741 27510.2198 27129.40005 186.8339501	361.1	26296.80783	27648.24123	27258.1997	197.0476557	~
363.1 26184.45906 27398.20018 27023.76991 177.3218656 364.1 26168.13197 27319.26628 26950.05343 168.4749564 365.1 26190.86035 27283.6914 26918.0834 160.4704683 366.1 26263.79196 27304.90079 26939.14299 153.4361442 367.1 26399.85833 27397.15725 27026.21319 147.4772034 ~ 368.1 26613.92069 27573.46172 27144.20932 142.6558063 ~ 370.1 27306.97202 28241.86477 27841.65169 136.2746635 ~ 371.1 27829.51409 28769.40679 28358.70497 134.3731717 ~ 372.1 28057.56956 29449.74603 29030.21174 132.9311596 ~ 373.1 2939.6112 3034.28542 29894.7573 149.3420234 ~ 376.1 32062.58603 313.30255 32632.18376 149.3420234 ~ 375.1 32062.56874 3674.36178 36309.1586 139.4937612 ~ 377.1 35786.85342 36794.36178 36309.1586 139.4937612<	362.1	26230.18741	27510.2198	27129.40005	186.8839501	~
364.1 26168.13197 27319.26288 26950.05343 168.4749564	363.1	26184.45906	27398.20018	27023.76991	177.3218656	~
365.1 26190.86035 27283.6914 26918.08834 160.4704683	364.1	26168.13197	27319.26828	26950.05343	168.4749564	~
366.1 26263.79196 27304.90079 26939.14299 153.4361442 367.1 2639.85833 27397.15725 27026.21319 147.4772034 368.1 26613.92069 27573.46172 27194.20932 142.6558063 369.1 266920.27623 27848.97544 27459.04655 138.9593606 370.1 27306.97202 28241.86477 27841.65169 136.2746635 371.1 27829.51409 28769.40679 28358.70497 134.3731717 372.1 28507.56056 29449.74603 29030.21174 132.9311596 373.1 29359.6112 30394.28542 28984.77535 149.3343044 374.1 30556.38757 31649.97585 31145.72453 152.991283 375.1 32062.58603 3313.02525 32632.18376 149.3420234 376.1 33807.17015 34849.83804 34354.28803 144.8509046 377.3 377.1 35766.85342 36744.3178 36309.15896 133.4325078 379.1 377.1 35766.85342 36744.3178 36309.15896 133.4325078 38456.71683 378.1 49730.	365.1	26190.86035	27283.6914	26918.08834	160.4704683	~
367.1 26399.85833 27397.15725 27026.21319 147.4772034 ~ 368.1 26613.92069 27573.46172 27194.20322 142.6558063 ~ 370.1 27306.97202 28241.86477 27459.90465 138.9593606 ~ 371.1 27829.51409 28769.40679 28358.70497 134.3731717 ~ 373.1 29359.6112 30394.28542 29894.75735 149.3343044 ~ 373.1 29359.6112 30394.28542 29894.75735 149.3420234 ~ 374.1 30566.38757 31649.97585 31145.72453 152.991283 ~ 375.1 32062.58603 3313.02525 32632.18376 149.3420234 ~ 377.1 35768.68542 36794.36178 36309.15896 139.4937612 ~ 377.1 3768.68542 36794.36178 36309.15896 139.4937612 ~ 378.1 40401.56126 41318.32491 40869.47347 126.5808042 ~ 380.1 42992.85527 43857.2098 45143.83094 111.9312659 ~ 381.1 54476.37212	366.1	26263.79196	27304.90079	26939.14299	153.4361442	~
368.1 26613.92069 27573.46172 27194.20932 142.6558063 ~ 369.1 28920.27623 27848.97544 27459.90465 138.9593066 ~ 370.1 2780.697202 28241.86477 27841.65169 136.2746635 ~ 371.1 27829.51409 28769.40679 28358.70497 134.3731717 ~ 372.1 28507.56956 29449.74603 29030.21174 132.9311596 ~ 373.1 29359.6112 30394.28542 29894.75735 149.3420234 ~ 376.1 33007.17015 34849.83804 34354.28803 144.8509046 ~ 376.1 3307.17015 34849.71878 36309.15896 139.4937612 ~ 377.1 35786.85342 36794.36178 3630.15896 139.4937612 ~ 378.1 37991.01584 38956.04297 38486.71683 133.352578 ~ 380.1 42992.85527 43857.2098 43432.41152 119.3716705 ~ 381.1 45730.8572 46543.75523 46142.83894 111.9312659 ~ 382.1 51476.37212	367.1	26399.85833	27397.15725	27026.21319	147.4772034	~
369.1 26920.27623 27848.97544 27459.90465 138.9593606	368.1	26613.92069	27573.46172	27194.20932	142.6558063	~
370.1 27306.97202 28241.86477 27841.65169 136.2746635 371.1 27829.51409 28769.40679 28358.70497 134.3731717 372.1 28507.56956 29449.74603 29030.21174 132.9311596 373.1 29359.6112 30394.28542 29894.75735 149.3343044 374.1 30556.38757 31649.97585 31145.72453 152.991283 375.1 32062.58603 33133.02525 32632.18376 149.3420234 376.1 33607.17015 34849.83804 34354.28803 144.8509046 377.1 35786.85342 36794.36178 36309.15896 139.4937612 378.1 37991.01584 38956.04297 3486.71683 133.3525078 379.1 40401.56126 41318.32491 40869.47347 126.5808042 - 380.1 42992.85527 43857.20988 43432.41152 119.3716705 - 381.1 45750.6891 49337.13082 49896.016097 104.4602429 - 383.1 51476.37212 5218.30206 51835.54447 97.14220814 - 384.1 54376.	369.1	26920.27623	27848.97544	27459.90465	138.9593606	~
371.1 27829.51409 28769.40679 28358.70497 134.3731717 ~ 372.1 28507.56956 29449.74603 29030.21174 132.9311596 ~ 373.1 29359.6112 30394.28542 29894.75735 149.333044 ~ 374.1 30556.38757 31649.97585 31145.72453 152.991283 ~ 375.1 32062.58603 33133.02525 32632.18376 149.3420234 ~ 376.1 33807.17015 34849.83804 34354.28803 144.8509046 ~ 377.1 35766.85342 36794.36178 36309.15896 139.4937612 ~ 378.1 37991.01584 38956.04297 38486.71683 133.3525078 ~ 380.1 42928.85527 43857.20988 43432.41152 119.3716705 ~ 381.1 45730.8572 46543.75523 46142.83894 111.9312659 ~ 382.1 48575.06891 49337.13082 48960.16097 104.4602429 ~ 383.1 51476.874645 55040.30176 54711.47555 90.13832763 ~ 385.1 57209.17769	370.1	27306.97202	28241.86477	27841.65169	136.2746635	~
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	371.1	27829.51409	28769.40679	28358.70497	134.3731717	~
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	372.1	28507.56956	29449.74603	29030.21174	132.9311596	~
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	373.1	29359.6112	30394.28542	29894.75735	149.3343044	~
375.1 32062.58603 33133.02525 32632.18376 149.3420234 ~ 376.1 33807.17015 34849.83804 34354.28803 144.8509046 ~ 377.1 35786.85342 36794.36178 36309.15896 139.4937612 ~ 378.1 37991.01584 38956.04297 38486.71683 133.3525078 ~ 379.1 40401.56126 41318.32491 40869.47347 126.5808042 ~ 380.1 42992.85527 43857.20988 43432.41152 119.3716705 ~ 381.1 45730.8572 46543.75523 46142.83894 111.9312659 ~ 382.1 48575.06891 49337.13082 48960.16097 104.4602429 ~ 383.1 51476.37212 52188.30206 51835.54447 97.14220814 ~ 384.1 54376.84645 55040.30176 54711.47555 90.13832763 ~ 385.1 57209.17769 57826.91318 57521.23025 83.58586003 ~ 386.1 59896.95422 60473.47228 60188.28735 77.59890961 ~ 387.1 62253.04812 <td>374.1</td> <td>30556.38757</td> <td>31649.97585</td> <td>31145.72453</td> <td>152.991283</td> <td>~</td>	374.1	30556.38757	31649.97585	31145.72453	152.991283	~
376.1 33807.17015 34849.83804 34354.28803 144.8509046 ~ 377.1 35786.85342 36794.36178 36309.15896 139.4937612 ~ 378.1 37991.01584 3896.04297 38486.71683 133.3525078 ~ 379.1 40401.56126 41318.32491 40869.47347 126.5808042 ~ 380.1 42992.85527 43857.20988 43432.41152 119.3716705 ~ 381.1 45730.8572 46543.75523 46142.83894 111.9312659 ~ 382.1 48575.06891 49337.13082 48960.16097 104.4602429 ~ 383.1 51476.37212 52188.30206 51835.54447 97.14220814 ~ 384.1 54376.84645 55040.30176 54711.47555 90.13832763 ~ 385.1 57209.17769 57826.91318 57521.23025 83.58586003 ~ 386.1 59896.95422 60473.47228 60188.28735 77.59890961 ~ 387.1 62350.04812 62891.91302 62625.71809 72.27009893 ~ 388.1 64479.37202	375.1	32062.58603	33133.02525	32632.18376	149.3420234	~
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	376.1	33807.17015	34849.83804	34354.28803	144.8509046	~
$\begin{array}{llllllllllllllllllllllllllllllllllll$	377.1	35786.85342	36794.36178	36309.15896	139.4937612	~
379.1 40401.56126 41318.32491 40869.47347 126.5808042 ~ 380.1 42992.85527 43857.20988 43432.41152 119.3716705 ~ 381.1 45730.8572 46543.75523 46142.83894 111.9312659 ~ 382.1 48575.06891 49337.13082 48960.16097 104.4602429 ~ 383.1 51476.37212 52188.30206 51835.54447 97.14220814 ~ 384.1 54376.84645 55040.30176 54711.47555 90.13832763 ~ 385.1 57209.17769 57826.91318 57521.23025 83.58586003 ~ 386.1 59896.95422 60473.47228 60188.28735 77.5989061 ~ 387.1 62353.04812 62891.91302 62625.71809 72.27009893 ~ 388.1 64479.37202 64984.43044 64735.59171 67.67217695 ~ 389.1 66166.33927 66641.73245 66408.44088 63.8588939 ~ 390.1 6722.23443 68171.69099 67945.17242 58.70458393 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 393.1 65905.0094 66347.575 66119.10898 56.83346795 ~ 393.1 59421.24475 59874.29645 59636.14294 <	378.1	37991.01584	38956.04297	38486.71683	133.3525078	~
380.1 42992.85527 43857.20988 43432.41152 119.3716705 ~ 381.1 45730.8572 46543.75523 46142.83894 111.9312659 ~ 382.1 48575.06891 49337.13082 48960.16097 104.4602429 ~ 383.1 51476.37212 52188.30206 51835.54447 97.14220814 ~ 384.1 54376.84645 55040.30176 54711.47555 90.13832763 ~ 385.1 57209.17769 57826.91318 57521.23025 83.58586003 ~ 386.1 59896.95422 60473.47228 60188.28735 77.59890961 ~ 387.1 62353.04812 62891.91302 62625.71809 72.27009893 ~ 388.1 64479.37202 64984.43044 64735.59171 67.67217695 ~ 389.1 66166.33927 66641.73245 66408.44088 63.8588939 ~ 390.1 67291.93743 67751.24455 67522.8402 60.86486661 ~ 391.1 67722.23443 68171.69099 67945.17242 58.70458393 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 394.1 63332.90624 63777.97134 63546.01219 57.8226125 ~ 395.1 59421.24475 59874.29645 59636.14294 57.8226125 ~ 395.1 53993.2723 54460.88325 54215.68693 59.22183473 ~ 395.1 33062.36416 38552.41525 38296.56	379.1	40401.56126	41318.32491	40869.47347	126.5808042	~
381.1 45730.8572 46543.75523 46142.83894 111.9312659 ~ 382.1 48575.06891 49337.13082 48960.16097 104.4602429 ~ 383.1 51476.37212 52188.30206 51835.54447 97.14220814 ~ 384.1 54376.84645 55040.30176 54711.47555 90.13832763 ~ 385.1 57209.17769 57826.91318 57521.23025 83.58586003 ~ 386.1 59896.95422 60473.47228 60188.28735 77.59890961 ~ 387.1 62353.04812 62891.91302 62625.71809 72.27009893 ~ 388.1 64479.37202 64984.43044 64735.59171 67.67217695 ~ 389.1 66166.33927 66641.73245 66408.44088 63.8588939 ~ 390.1 67291.93743 67751.24455 67522.8402 60.86486661 ~ 391.1 67722.23443 68171.6909 67945.17242 58.70458393 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 393.1 59421.24475	380.1	42992.85527	43857.20988	43432.41152	119.3716705	~
382.1 48575.06891 49337.13082 48960.16097 104.4602429 ~ 383.1 51476.37212 52188.30206 51835.54447 97.14220814 ~ 384.1 54376.84645 55040.30176 54711.47555 90.13832763 ~ 385.1 57209.17769 57826.91318 57521.23025 83.58586003 ~ 386.1 59896.95422 60473.47228 60188.28735 77.59890961 ~ 387.1 62353.04812 62891.91302 62625.71809 72.27009893 ~ 388.1 64479.37202 64984.43044 64735.59171 67.67217695 ~ 389.1 66166.33927 66641.73245 66408.44088 63.8588939 ~ 390.1 67291.93743 67751.24455 67522.8402 60.86486661 ~ 391.1 67722.23443 68171.69099 67945.17242 58.70458393 ~ 392.1 67312.34529 67756.38883 67529.69554 57.37095324 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 394.1 6332.90624 63777.97134 63546.01219 57.03493089 ~ 397.1 46899.80692 47381.64833 47129.59185 60.7522603 ~ 398.1 38062.36416 38552.41525 38296.56772 61.71834784 ~ 399.1 28034.62465 28460.66581 28238.30993 53.70920056 ~ 400.1 20321.55149 20567.73295 $20438.$	381.1	45730.8572	46543.75523	46142.83894	111.9312659	~
383.1 51476.37212 52188.30206 51835.54447 97.14220814 ~ 384.1 54376.84645 55040.30176 54711.47555 90.13832763 ~ 385.1 57209.17769 57826.91318 57521.23025 83.58586003 ~ 386.1 59896.95422 60473.47228 60188.28735 77.59890961 ~ 387.1 62353.04812 62891.91302 62625.71809 72.27009893 ~ 388.1 64479.37202 64984.43044 64735.59171 67.67217695 ~ 389.1 66166.33927 66641.73245 66408.44088 63.8588939 ~ 390.1 67291.93743 67751.24455 67522.8402 60.86486661 ~ 391.1 67722.23443 68171.69099 67945.17242 58.70458393 ~ 392.1 67312.34529 67756.38883 67529.69554 57.37095324 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 393.1 59421.24475 59874.29645 59636.14294 57.8826125 ~ 396.1 53993.2723	382.1	48575.06891	49337.13082	48960.16097	104.4602429	~
384.1 54376.84645 55040.30176 54711.47555 90.13832763 ~ 385.1 57209.17769 57826.91318 57521.23025 83.58586003 ~ 386.1 59896.95422 60473.47228 60188.28735 77.59890961 ~ 387.1 62353.04812 62891.91302 62625.71809 72.27009893 ~ 388.1 64479.37202 64984.43044 64735.59171 67.67217695 ~ 389.1 66166.33927 66641.73245 66408.44088 63.8588939 ~ 390.1 6722.23443 68171.69099 67945.17242 58.70458393 ~ 392.1 67312.34529 67756.38883 67529.69554 57.37095324 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 394.1 6332.90624 63777.97134 63546.01219 57.03493089 ~ 395.1 59421.24475 59874.29645 59636.14294 57.8826125 ~ 395.1 59421.24475 59874.29645 59636.14294 57.8826125 ~ 396.1 53993.2723	383.1	51476.37212	52188.30206	51835.54447	97.14220814	~
385.1 57209.17769 57826.91318 57521.23025 83.58586003 ~ 386.1 59896.95422 60473.47228 60188.28735 77.59890961 ~ 387.1 62353.04812 62891.91302 62625.71809 72.27009893 ~ 388.1 64479.37202 64984.43044 64735.59171 67.67217695 ~ 389.1 66166.33927 66641.73245 66408.44088 63.8588939 ~ 390.1 67721.23433 68171.69099 67945.17242 58.70458393 ~ 391.1 67722.23443 68171.69099 67945.17242 58.70458393 ~ 392.1 67312.34529 67756.38883 67529.69554 57.37095324 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 393.1 65905.00094 66347.575 59616.14294 57.8826125 ~ 394.1 6332.90624 63777.97134 63546.01219 57.8826125 ~ 395.1 59421.24475 59874.29645 59636.14294 57.8826125 ~ 395.1 53993.2723 <	384.1	54376.84645	55040.30176	54711.47555	90.13832763	~
386.1 59896.95422 60473.47228 60188.28735 77.59890961 ~ 387.1 62353.04812 62891.91302 62625.71809 72.27009893 ~ 388.1 64479.37202 64984.43044 64735.59171 67.67217695 ~ 389.1 66166.33927 66641.73245 66408.44088 63.8588939 ~ 390.1 67291.93743 67751.24455 67522.8402 60.86486661 ~ 391.1 67722.23443 68171.69099 67945.17242 58.70458393 ~ 392.1 67312.34529 67756.38883 67529.69554 57.37095324 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 393.1 59421.24475 59874.29645 59636.14294 57.8826125 ~ 396.1 53993.2723 54460.88325 54215.68693 59.22183473 ~ 397.1 46899.80692 47381.64833 47129.59185 60.7522603 ~ 398.1 38062.36416	385.1	57209.17769	57826.91318	57521.23025	83.58586003	~
387.1 62353.04812 62891.91302 62625.71809 72.27009893 ~ 388.1 64479.37202 64984.43044 64735.59171 67.67217695 ~ 389.1 66166.33927 66641.73245 66408.44088 63.8588939 ~ 390.1 67291.93743 67751.24455 67522.8402 60.86486661 ~ 391.1 67722.23443 68171.69099 67945.17242 58.70458393 ~ 392.1 67312.34529 67756.38883 67529.69554 57.37095324 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 393.1 59421.24475 59874.29645 59636.14294 57.8826125 ~ 396.1 53933.2723 54460.88325 54215.68693 59.22183473 ~ 397.1 46899.80692 47381.64833 47129.59185 60.7522603 ~ 398.1 38062.36416 38552.41525 38296.56772 61.71834784 ~ 399.1 28034.62465	386.1	59896.95422	60473.47228	60188.28735	77.59890961	~
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	387.1	62353.04812	62891.91302	62625.71809	72.27009893	~
389.1 66166.33927 66641.73245 66408.44088 63.8588939 ~ 390.1 67291.93743 67751.24455 67522.8402 60.86486661 ~ 391.1 67722.23443 68171.69099 67945.17242 58.70458393 ~ 392.1 67312.34529 67756.38883 67529.69554 57.37095324 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 394.1 63332.90624 63777.97134 63546.01219 57.03493089 ~ 395.1 59421.24475 59874.29645 59636.14294 57.8826125 ~ 396.1 53993.2723 54460.88325 54215.68693 59.22183473 ~ 397.1 46899.80692 47381.64833 47129.59185 60.7522603 ~ 398.1 38062.36416 38552.41525 38296.56772 61.71834784 ~ 399.1 28034.62465 28460.66581 28238.30993 53.70920056 ~ 400.1 20321.55149 20567.73295 20438.56623 30.96137067 ~ 400.6 18670.06943	388.1	64479.37202	64984.43044	64735.59171	67.67217695	~
390.1 67291.93743 67751.24455 67522.8402 60.86486661 ~ 391.1 67722.23443 68171.69099 67945.17242 58.70458393 ~ 392.1 67312.34529 67756.38883 67529.69554 57.37095324 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 394.1 63332.90624 63777.97134 63546.01219 57.03493089 ~ 395.1 59421.24475 59874.29645 59636.14294 57.8826125 ~ 396.1 53993.2723 54460.88325 54215.68693 59.22183473 ~ 397.1 46899.80692 47381.64833 47129.59185 60.7522603 ~ 398.1 38062.36416 38552.41525 38296.56772 61.71834784 ~ 399.1 28034.62465 28460.66581 28238.30993 53.70920056 ~ 400.1 20321.55149 20567.73295 20438.56623 30.96137067 ~ 400.6 18670.06943 18720.27386 18691.99659 6.262247714 ~	389.1	66166.33927	66641.73245	66408.44088	63.8588939	~
391.1 67722.23443 68171.69099 67945.17242 58.70458393 ~ 392.1 67312.34529 67756.38883 67529.69554 57.37095324 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 394.1 6332.90624 63777.97134 63546.01219 57.03493089 ~ 395.1 59421.24475 59874.29645 59636.14294 57.8826125 ~ 396.1 53993.2723 54460.88325 54215.68693 59.22183473 ~ 397.1 46899.80692 47381.64833 47129.59185 60.7522603 ~ 398.1 38062.36416 38552.41525 38296.56772 61.71834784 ~ 399.1 28034.62465 28460.66581 28238.30993 53.70920056 ~ 400.1 20321.55149 20567.73295 20438.56623 30.96137067 ~ 400.6 18670.06943 18720.27386 18691.99659 6.262247714 ~	390.1	67291.93743	67751.24455	67522.8402	60.86486661	~
392.1 67312.34529 67756.38883 67529.69554 57.37095324 ~ 393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 394.1 63332.90624 63777.97134 63546.01219 57.03493089 ~ 395.1 59421.24475 59874.29645 59636.14294 57.8826125 ~ 396.1 53993.2723 54460.88325 54215.68693 59.22183473 ~ 397.1 46899.80692 47381.64833 47129.59185 60.7522603 ~ 398.1 38062.36416 38552.41525 38296.56772 61.71834784 ~ 399.1 28034.62465 28460.66581 28238.30993 53.70920056 ~ 400.1 20321.55149 20567.73295 20438.56623 30.96137067 ~ 400.6 18670.06943 18720.27386 18691.99659 6.262247714 ~	391.1	67722.23443	68171.69099	67945.17242	58.70458393	~
393.1 65905.00094 66347.575 66119.10898 56.83346795 ~ 394.1 63332.90624 63777.97134 63546.01219 57.03493089 ~ 395.1 59421.24475 59874.29645 59636.14294 57.8826125 ~ 396.1 53993.2723 54460.88325 54215.68693 59.22183473 ~ 397.1 46899.80692 47381.64833 47129.59185 60.7522603 ~ 398.1 38062.36416 38552.41525 38296.56772 61.71834784 ~ 399.1 28034.62465 28460.66581 28238.30993 53.70920056 ~ 400.1 20321.55149 20567.73295 20438.56623 30.96137067 ~ 400.6 18670.06943 18720.27386 18691.99659 6.262247714 ~	392.1	67312.34529	67756.38883	67529.69554	57.37095324	~
394.1 63332.90624 63777.97134 63546.01219 57.03493089 ~ 395.1 59421.24475 59874.29645 59636.14294 57.8826125 ~ 396.1 53993.2723 54460.88325 54215.68693 59.22183473 ~ 397.1 46899.80692 47381.64833 47129.59185 60.7522603 ~ 398.1 38062.36416 38552.41525 38296.56772 61.71834784 ~ 399.1 28034.62465 28460.66581 28238.30993 53.70920056 ~ 400.1 20321.55149 20567.73295 20438.56623 30.96137067 ~ 400.6 18670.06943 18720.27386 18691.99659 6.262247714 ~	393.1	65905.00094	66347.575	66119.10898	56.83346795	~
395.1 59421.24475 59874.29645 59636.14294 57.8826125 ~ 396.1 53993.2723 54460.88325 54215.68693 59.22183473 ~ 397.1 46899.80692 47381.64833 47129.59185 60.7522603 ~ 398.1 38062.36416 38552.41525 38296.56772 61.71834784 ~ 399.1 28034.62465 28460.66581 28238.30993 53.70920056 ~ 400.1 20321.55149 20567.73295 20438.56623 30.96137067 ~ 400.6 18670.06943 18720.27386 18691.99659 6.262247714 ~	394.1	63332.90624	63777.97134	63546.01219	57.03493089	~
396.1 53993.2723 54460.88325 54215.68693 59.22183473 ~ 397.1 46899.80692 47381.64833 47129.59185 60.7522603 ~ 398.1 38062.36416 38552.41525 38296.56772 61.71834784 ~ 399.1 28034.62465 28460.66581 28238.30993 53.70920056 ~ 400.1 20321.55149 20567.73295 20438.56623 30.96137067 ~ 400.6 18670.06943 18720.27386 18691.99659 6.262247714 ~	395.1	59421.24475	59874.29645	59636.14294	57.8826125	~
397.1 46899.80692 47381.64833 47129.59185 60.7522603 ~ 398.1 38062.36416 38552.41525 38296.56772 61.71834784 ~ 399.1 28034.62465 28460.66581 28238.30993 53.70920056 ~ 400.1 20321.55149 20567.73295 20438.56623 30.96137067 ~ 400.6 18670.06943 18720.27386 18691.99659 6.262247714 ~	396.1	53993.2723	54460.88325	54215.68693	59.22183473	~
398.1 38062.36416 38552.41525 38296.56772 61.71834784 ~ 399.1 28034.62465 28460.66581 28238.30993 53.70920056 ~ 400.1 20321.55149 20567.73295 20438.56623 30.96137067 ~ 400.6 18670.06943 18720.27386 18691.99659 6.262247714 ~	397.1	46899.80692	47381.64833	47129.59185	60.7522603	~
399.1 28034.62465 28460.66581 28238.30993 53.70920056 ~ 400.1 20321.55149 20567.73295 20438.56623 30.96137067 ~ 400.6 18670.06943 18720.27386 18691.99659 6.262247714 ~	398.1	38062.36416	38552.41525	38296.56772	61.71834784	~
400.120321.5514920567.7329520438.5662330.96137067~400.618670.0694318720.2738618691.996596.262247714~	399.1	28034.62465	28460.66581	28238.30993	53.70920056	~
400.6 18670.06943 18720.27386 18691.99659 6.262247714 ~	400.1	20321.55149	20567.73295	20438.56623	30.96137067	~
	400.6	18670.06943	18720.27386	18691.99659	6.262247714	 ~

OrcaFlex 9.2a: riser 16 200 8000.sim (modified 0:05 on 23/03/2019 by OrcaFlex 9.2a)

Column A: Arc Length (m) Other columns: riser scr Max von Mises Stress (kPa) Period: t = -50,000 to 8016,000s

Arc Length (m)	Minimum	Maximum	Mean	Std. Dev.	Allowable Stress
0	110679.4973	119026.9462	113882.2993	1111.534182	~
3.030232558	103770.8498	113264.9964	108384.3409	1165.115432	~
9.090697674	79155.58639	121264.9609	100595.5908	4775.140671	~
15.15116279	63023.72818	130300.5143	97070.16979	7902.907611	~
21.21162791	55302.21577	137990.5604	96957.17861	10201.88102	~
27.27209302	54435.95887	145607.4192	99403.31322	11647.69649	~
33.33255814	58263.67639	152152.118	103650.147	12364.8657	~
39.39302326	64929.23711	157812.1237	109100.421	12533.42789	~
45.45348837	73177.49551	162873.544	115330.3888	12323.01444	~
51.51395349	82026.46589	167581.7269	122061.5813	11868.84915	~
57.5744186	91401.83143	172137.9296	129120.7066	11271.2516	~
63.63488372	101164.6897	176805.4882	136404.5209	10602.41517	~
69.69534884	111158.0034	181681.8902	143854.1538	9913.396844	~
75.75581395	121274.3109	186842.7922	151437.8286	9239.45823	~
81.81627907	131144.1247	192337.1512	159139.6667	8603.799888	~
87.87674419	140888.8757	198178.9442	166952.5348	8020.194593	~
93.9372093	150514.0679	204325.3135	174873.483	7495.013324	~
99.99767442	160015.6646	210728.1654	182900.8185	7029.011493	~
106.0581395	169235.2669	217313.6542	191032.2035	6619.070792	~
112.1186047	178393.7825	224054.7667	199263.3971	6259.914998	~
118.1790698	187553.1491	230901.229	207587.4036	5945.700216	~
124.2395349	196738.1489	237859.9582	215993.8815	5671.318487	~
130.3	205981.476	245059.3462	224468.722	5433.263258	~
136.3604651	215216.4019	252645.3658	232993.7421	5229.976143	~
142.4209302	223948.8072	260205.0745	241546.4624	5061.657321	~
148.4813953	232472.02	268113.6647	250099.9485	4929.601171	~
154.5418605	241011.3514	276034.5055	258622.71	4835.199619	~
160.6023256	249587.0336	284006.129	267078.6506	4778.835741	~
166.6627907	258153.2654	291972.2789	275427.0709	4758.948886	~

172.7232558	266633.9979	299823.2572	283622.7221	4771.527477
178.7837209	274846.1789	307464.6318	291615.913	4810.155426
184.844186	282326.5285	315254.7016	299352.6686	4866.552774
190.9046512	289119.964	323087.165	306774.9411	4931.409378
196.9651163	295533.2787	330397.0957	313820.8696	4995.27472
203.0255814	301593.2708	337131.3602	320425.0848	5049.326849
209.0860465	307272.0997	343491.5633	326519.0521	5085.933265
215.1465116	312559.6663	349089.2273	332031.4466	5098.989246
221.2069767	317371.7184	353832.0636	336888.5479	5084.064022
227.2674419	321650.9249	357617.905	341014.6441	5038.39096
233.327907	325308.6435	360376.503	344332.4313	4960.739295
239.3883721	328232.8106	362056.3342	346763.3922	4851.201586
245.4488372	330312.7419	362580.4443	348228.136	4710.922701
251.5093023	331446.6415	362194.3661	348646.6821	4541.7981
257.5697674	331525.1868	361362.147	347938.6667	4346.170667
261.1	331168.8622	360419.0777	347127.6198	4229.879279
262.1	330963.6395	360008.6769	346779.0694	4193.174577
263.1	330676.4367	359561.3044	346395.9927	4155.863218
264.1	330353.1429	359070.5235	345978.0325	4117.949139
265.1	329994.2237	358537.4789	345524.8217	4079.447272
266.1	329605.2095	357961.0542	345035.9936	4040.366258
267.1	329186.1855	357345.3828	344511.1821	4000.724247
268.1	328732.6195	356689.056	343950.0257	3960.524595
269.1	328245.9203	355987,1108	343352,1565	3919.779091
270.1	327732.818	355243.8622	342717.2097	3878.493735
271.1	327182.7014	354454.865	342044.8179	3836.687936
272.1	326596.6509	353626,1304	341334.6073	3794.370373
273.1	325981.654	352752.2002	340586.2223	3751.538421
274.1	325332.3798	351834.937	339799.2908	3708.221102
275.1	324644.9083	350870.9213	338973.4353	3664.420992
276.1	323925.9136	349864.35	338108.2962	3620.139905
277.1	323171.1016	348814.2754	337203.4989	3575.402534
278.1	322377.111	347718.0867	336258.6682	3530,219664
279.1	321551.4811	346573.8398	335273.4383	3484.59069
280.1	320690.9249	345387.9514	334247.4346	3438.532698
281.1	319788.6799	344157,9292	333180.2757	3392.065548
282.1	318851.8623	342879,4902	332071.5931	3345,196542
283.1	317882.026	341559.3532	330921.007	3297.937836
284.1	316872.2737	340193.1845	329728.1392	3250.307773
285.1	315820.7802	338785.6563	328492.6113	3202.321988
286.1	314732.9716	337335.1735	327214.0399	3153.992117
287.1	313607.0718	335839.8016	325892.0424	3105.341617
288.1	312437.5009	334300.9016	324526.2335	3056.391575
289.1	311231.5728	332716.1612	323116.2293	3007.157051
290.1	309981.4202	331084.8388	321661.6381	2957.668556
291.1	308690.2577	329409.1104	320162.0692	2907.947939
292.1	307355.8942	327682.2238	318617.1338	2858.018873
293.1	305978.0489	325911.8981	317026.4342	2807.919182
294.1	304554.6197	324090.2517	315389.568	2757.681927
295.1	303094.1387	322225.3527	313706.1423	2707.340159
296.1	301493.3749	320308.1927	311975.7514	2656.936944
297.1	299848.0941	318348.4827	310197.9898	2606.518754

298.1	298148.7161	316340.0144	308372.4477	2556.134337
299.1	296411.3984	314373.8262	306498.7138	2505.83941
300.1	294623.5968	312372.813	304576.3748	2455.695091
301.1	292791.7501	310315.7234	302605.009	2405.76923
302.1	290918.3885	308201.9861	300584.1976	2356.137163
303.1	288989.2446	306033.1662	298513.5153	2306.880243
304.1	287018.127	303810.3852	296392.5292	2258.08899
305.1	284944.324	301530.3631	294220.8084	2209.868634
306.1	282759.7044	299191.3566	291997.9164	2162.327759
307.1	280524.8108	296792.6906	289723.4101	2115.583005
308.1	278236.902	294335.1836	287396.8427	2069.774871
309.1	275905.3073	291819.4039	285017.7653	2025.048741
310.1	273522.5515	289245.1613	282585.7236	1981.562111
311.1	271086.2645	286609.7855	280100.2552	1939.49124
312.1	268606.3501	283913.4318	277560.8954	1899.02183
313.1	266079.7512	281154.8577	274967.1775	1860.358124
314.1	263494.98	278333.4582	272318.6238	1823.714464
315.1	260865.0868	275573.9567	269614.753	1789.318856
316.1	258189.8203	272804.5519	266855.0842	1757.413682
317.1	255464.3916	269971.226	264039.1222	1728.247158
318.1	252682.4265	267073.9099	261166.3708	1702.072143
319.1	249853.4435	264112.3516	258236.3304	1679.147421
320.1	246977.9187	261086.1327	255248.4925	1659.727382
321.1	244054.193	257996.6144	252202.3442	1644.05298
322.1	241074.2733	254842.9831	249097.3664	1632.358529
323.1	238040.9348	251622.7501	245933.0352	1624.851189
324.1	234957.5629	248399.2588	242708.8221	1621.71037
325.1	231824.9115	245140.1958	239424.1923	1623.086641
326.1	228641.8353	241820.3745	236078.6062	1629.087378
327.1	225407.1603	238450.1441	232671.5199	1639.781874
328.1	222109.5161	235115.3925	229202.3842	1655.195954
329.1	218759.3649	231721.5772	225670.6468	1675.309295
330.1	215356.3259	228263.1292	222075.752	1700.067282
331.1	211899.5038	224741.6487	218417.1421	1729.372862
332.1	208150.5117	221157.0518	214694.2539	1763.094176
333.1	204258.801	217511.7163	210906.5258	1801.077417
334.1	200306.4287	213801.873	207053.3988	1843.141526
335.1	196292.7319	210031.4732	203134.3105	1889.089385
336.1	192215.5212	206195.7789	199148.7033	1938.710721
337.1	188070.6406	202295.6286	195096.0263	1991.787659
338.1	183863.0062	198333.2019	190975.7346	2048.0993
339.1	179591.0982	194307.302	186787.2937	2107.416636
340.1	175178.0485	190218.3001	182530.1844	2169.514413
341.1	170625.5724	186066.0631	178203.9045	2234.167899
342.1	166004.8639	181847.9734	173807.9749	2301.14739
343.1	161316.1178	177564.0385	169341.9469	2370.227314
344.1	156559.4307	173215.7231	164805.4091	2441.175654
345.1	151734.2649	168801.326	160197.9961	2513.758481
346.1	146840.3185	164321.7694	155519.4021	2587.733125
347.1	141878.5582	159777.3649	150769.3925	2662.841876
348.1	136720.0762	155164.2385	145947.8246	2738.814558
349.1	131465.7383	150481.4706	141054.6697	2815.35179
	-			

350.1	126144.3551	145725.3799	136090.0409	2892.123554	
351.1	120757.0623	140959.0478	131054.2313	2968.7557	
352.1	115305.9422	136143.5483	125947.761	3044.814852	
353.1	109793.7765	131254.9357	120771.4417	3119.789118	
354.1	104224.1474	126294.3972	115526.4554	3193.06271	
355.1	98600.53071	121263.1682	110214.4661	3263.881486	
356.1	92930.49772	116157.8545	104837.7692	3331.30307	
357.1	87230.81448	110982.4487	99399.49686	3394.1247	
358.1	81539.49747	105733.233	93903.97691	3450.569722	
359.1	75903.35139	100410.1652	88357.52165	3497.339244	
360.1	70363.53045	95021.42851	82770.09893	3528.026894	
361.1	64957.88235	89563.48009	77157.72834	3532.436137	
362.1	59722.33702	84039.60931	71544.46762	3498.476488	
363.1	54692.4207	78461.17795	65962.56195	3415.583612	
364.1	49907.48118	72829.54346	60451.18943	3276.656684	
365.1	45411.1439	67156.62219	55056.09579	3077.633447	
366.1	41267.37442	61459.29944	49831.26051	2815.826286	
367.1	37553.98073	55755.39076	44844.25243	2487.943607	
368.1	34552.47914	50082.37809	40185.58852	2088.824116	
369.1	32420.10035	44486.43842	36048.51378	1539.339743	
370.1	30624.83602	39057.96933	32921.7358	906.626664	
371.1	28999.44343	34196.65444	30683.45335	484.3389594	
372.1	27612.01985	31714.01049	29388.5107	542.2094977	
373.1	26523.57589	32357.42832	29162.73554	958.4955356	
374.1	25723.66981	33802.73599	30015.05359	1328.052655	
375.1	25592.1405	35929.50033	31819.76193	1561.400693	
376.1	26973.33674	39078.77535	34410.70465	1717.000933	
377.1	29573.23982	42606.1378	37837.89895	1901.26814	
378.1	33008.65383	46364.40154	41860.11368	1865.108933	
379.1	37227.97211	50265.63723	46131.06817	1737.883678	
380.1	42180.6973	54235.48349	50507.10431	1592.737262	
381.1	47210.19684	58207.0059	54893.02711	1443.027272	
382.1	52188.00927	62116.04015	59207.40295	1295.629152	
383.1	57011.72274	65897.70536	63374.70084	1154.578005	
384.1	61591.0751	69484.25062	67320.29806	1022.195521	
385.1	65839.89103	72845.35542	70967.05039	899.7377656	
386.1	69671.04053	75866.93292	74232.85938	787.7738059	
387.1	72993.15905	78442.51378	77028.90048	686.4138302	
388.1	75708.59512	80474.82721	79258.32693	595.4506153	
389.1	77711.3273	81857.34923	80815.35183	514.4507933	
390.1	78888.04603	82475.33169	81584.67732	442.8162308	
391.1	/9115.62149	82201.76637	81441.29476	379.8288927	
392.1	78262.0074	80916.20594	80250.75347	324.6873025	
393.1	/618/.08659	78458.36202	//8/0.12/32	276.5400277	
394.1	/2/44./9695	74675.39194	/4150.19257	234.5185604	
395.1	6//8/./4/62	69414.81959	68940.03656	197.7691482	
396.1	61177.22931	62533.94916	62097.31269	165.4/26/12	
397.1	52809.94345	53916.57309	53513.91498	136.80/1322	
398.1	42683.17048	43560.21337	43192.98355	110.6432216	
399.1	31874.15588	32447.1464	32165.51089	74.11506755	
400.1	23690.10121	23941.12139	23804.45143	32.11/8/485	
400.6	22263.75936	22290.04995	22275.86496	3.085/3/449	

LAMPIRAN D OUTPUT GRAFIK MAX VON MISES (1 VARIASI KEDALAMAN DENGAN KONFIGURASI FREE HANGING CATENARY)

