

SKRIPSI - ME 184834

ANALISIS KEKUATAN LENGAN *PLATFORM* PADA PEMBANGKIT LISTRIK TENAGA ARUS LAUT (PLTAL TIPE CYLINDRICAL *PLATFORM*)

Ady Muhibbuddiin NRP: 04211745000031

Dosen Pembimbing : Irfan Syarif Arief, ST., MT Achmad Baidowi, ST., MT

DEPARTEMEN TEKNIK SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019

SKRIPSI - ME 184834

ANALISIS KEKUATAN LENGAN *PLATFORM* PADA PEMBANGKIT LISTRIK TENAGA ARUS LAUT (PLTAL TIPE CYLINDRICAL *PLATFORM*)

AdyMuhibbuddiin NRP: 04211745000031

Dosen Pembimbing : Irfan Syarif Arief, ST., MT Achmad Baidowi, ST., MT

DEPARTEMEN TEKNIK SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019

FINAL PROJECT - ME 184834

STRENGTH ANALYSIS OF THE *PLATFORM* ARM ON THE SEA CURRENT POWER PLANT (PLTAL TYPE CYLINDRICAL *PLATFORM*)

Ady Muhibbuddiin NRP: 04211745000031

Supervisor : Irfan Syarif Arief, ST., MT Achmad Baidowi, ST., MT

DEPARTMENT OF MARINE ENGINEERING FACULTY OF MARIINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019

LEMBAR PENGESAHAN

ANALISIS KEKUATAN LENGAN *PLATFORM* PADA PEMBANGKIT LISTRIK TENAGA ARUS LAUT (PLTAL TIPE CYLINDRICAL *PLATFORM*)

TUGAS AKHIR

Diajukan Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik

pada

Bidang Studi Marine Manufacturing and Design (MMD) Departemen Teknik Sistem Perkapalan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember

Oleh :

Ady Muhibbuddiin NRP. 04211745000031

Disetujui oleh Dosen Pembimbing Tugas Akhir :

1. Irfan Syarif Arief, S.T., M.T. NIP. 196912251997021001

2. Achmad Baidowi, S.T., M.T. NIP.

SURABAYA

Juli 2019

LEMBAR PENGESAHAN

ANALISIS KEKUATAN LENGAN *PLATFORM* PADA PEMBANGKIT LISTRIK TENAGA ARUS LAUT (PLTAL TIPE CYLINDRICAL *PLATFORM*)

TUGAS AKHIR

Diajukan Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada

Bidang Studi Marine Manufacturing and Design (MMD) Departemen Teknik Sistem Perkapalan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember

Oleh :

Ady Muhibbuddiin NRP. 04211745000031

Disetujui Oleh

Kepala Departemen Teknik Sistem Perkapalan

Dr. Eng. M. Badrus Zaman

KNOLOG

OGISER

PERKAPALAN

EKNOL

SURABAYA Juli 2019

NIP. 1997 0802 2008 01 1007

ANALISIS KEKUATAN LENGAN *PLATFORM* PADA PEMBANGKIT LISTRIK TENAGA ARUS LAUT (PLTAL TIPE CYLINDRICAL *PLATFORM*)

Nama NRP Departemen Dosen Pembimbing : Ady Muhibbuddiin
: 04211745000031
: Teknik Sistem Perkapalan
: Irfan Syarif Arief, ST., MT Achmad Baidowi, ST., MT

ABSTRAK

Abstrak – Laut diindonesia merupakan salah satu tempat yang strategis didalam pemanfaatan energi terbarukan seperti pembangkit listrik tenaga arus laut (PLTAL), dimana arus laut yang dimiliki rata-rata sebesar 1-2 m/s. Perencanaan suatu struktur platform berjenis cylindrical meliputi bagian platform, lengan platform dan turbin dengan mempertimbangkan beban-beban yang terjadi pada struktur. Kekuatan dari suatu struktur perlu diketahui agar perencanaan sesuai dengan standart yang telah ditentukan. Pada tugas akhir penulis membahas mengenai kekuatan lengan platform yang berada distruktur platform pada PLTAL. Gaya-gaya dari beban lingkungan menjadi salah satu faktor yang digunakan untuk mengetahui kekuatan dari lengan platform tersebut. Analisis kekuatan lengan platfrom mengunakan finite element analysis sebagai analisa kekuatan yang terjadi pada lengan platform dengan dilakukan 4 variasi kecepatan yakni sebesar 2 m/s, 3 m/s, 4 m/s, 5 m/s. Dari hasil penelitian menunjukan bahwa besar tegangan von misses (σ) pada lengan platform pada kecepatan 2 m/s sebesar 4,3980 x 10⁵ pascal, pada kecepatan 3 m/s sebesar 5,2726 x 10⁵ pascal, pada kecepatan 4 m/s sebesar 6,2941 x 10^5 pascal, pada kecepatan 5 m/s sebesar 7,6349 x 10^5 pascal. Mengacu pada ABS "Floating Production Instalation" Part 5A Chapter 1 Section 4 tingkat keamanan dari material semua komponen dapat kategorikan aman karna memiliki nilai $\sigma \leq 2,06318 \times 10^7$ pascal yang dimana lebih kecil 70 % dari kekuatan material yakni jenis material AISI 1202.

Kata Kunci - Kekuatan, Finite element analysis, Lengan Platform.

STRENGTH ANALYSIS OF THE *PLATFORM* ARM ON THE SEA CURRENT POWER PLANT (PLTAL TYPE CYLINDRICAL *PLATFORM*)

Name Reg. Number Department Supervisor Ady Muhibbuddiin
04211745000031
Department of Marine Engineering
Irfan Syarif Arief, ST., MT Achmad Baidowi, ST., MT

ABSTRACT

Abstract - Indonesian sea is one of the strategic places in the use of renewable energy such as sea current power plants (PLTAL), where the sea current owned are on average 1-2 m/s. Planning a cylindrical platform structure includes platform parts, platform arms and turbines taking into account the loads that occur in the structure. The strength of a structure needs to be known so that planning in accordance with the standards that have been determined. In the final assignment the author discusses the strength of the platform arm located on the platform structure of PLTAL. Forces of environmental loads are one of the factors used to determine the strength of the platform's arms. Arm strength analysis using the finite element analysis as a strength analysis that occurs on the platform arm with 4 variations of speed, which is 2 m/s, 3 m s, 4 m/s 5 m/s. From the results of the study show that the von misses voltage (σ) on the platform arm at a speed of 2 m/s is 4,3980 x 10⁵ pascal, at a speed of 3 m/s at 5,2726 x 10⁵ pascal, at speed 4 m/s at 6,2941 x 10⁵ pascal, at a speed of 5 m/s at 7,6349 x 10⁵ pascal. Referring to the ABS "Floating Production Instalation" Part 5A Chapter 1 Section 4 the level of safety of the material of all components can be categorized as safe because it has a value of $\sigma \leq$ 2,06318 x 10^7 pascals which is 70% smaller than the strength of the material namely the material type AISI 1202.

Keyword : Strength, Finite element analysis, Platform Arm

KATA PENGANTAR

Assalamualaikum Wr. Wb.

Puji syukur saya ucapkan kehadirat Allah SWT yang telah melimpahan rahmat dan hidayah-Nya sehingga saya mampu menyelesaikan Tugas Akhir ini dengan baik. Shalawat serta salam tidak lupa saya ucapkan ke junjungan Nabi besar Muhammad Rasulullah SAW.

Penyusunan skripsi ini bertujuan untuk memenuhi salah satu persyaratan memperoleh gelar Sarjana Teknik (S.T.) di Departemen Teknik Sistem Perkapalan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember.

Maka dalam kesempatan ini penulis mengucapkan terima kasih kepada :

- Kepada Tuhan yang maha Esa yang selalu memberikan kemudahan untuk saya.
- Bpk. Ridhwan dan Ibu Silo Marti Utami, sebagai Orang tua saya yang selalu mendukung dan menjadi penyemangat hidup yang selalu berdoa untuk saya.
- Sd. Afiz Jauhar Shodri dan Husnul Ridlo Hidayatullah sebagai saudara serta segenap keluarga yang selalu mensupport dan mengajarkan pengalamannya hingga menjadi saya yang sekarang
- Bpk. DR. Eng. M. Badrus Zaman, ST.,MT. Selaku Ketua Departemen Teknik Sistem Perkapalan
- Bpk. Indra Ranu Kusuma, S.T., M.Sc. Selaku Dosen wali.
- Bpk. Irfan Syarif Arief, ST., MT selaku Dosen Pembimbing I yang selalu mendukung saya dalam mengerjakan Tugas Akhir.
- Bpk. Achmad Baidowi, ST., MT selaku Dosen Pembimbing II yang selalu bersabar meluangkan waktu membimbing dan memdukung saya selama mengerjakan Tugas Akhir
- Staff dan member Lab *Marine Manufacture and Design*, Teknik Sistem Perkapalan 2018/2019.
- Sdr. Windari Sukma Ningrum, A.Md selaku teman dekat yang selalu mendoakan dan mendukung saya selama pengerjaan Tugas Akhir.
- Teman-teman angkatan Lintas Jalur 2017 serta seluruh orang yang mendukung terselesaikannya tugas akhir ini.

Semoga dengan selesainya Tugas Akhir ini dapat menambah wawasan serta ilmu yang bermanfaat bagi para pembaca sekalian.

Akhir kata terima kasih. Wassalamualaikum Wr. Wb.

> Surabaya, Juli 2019 Penyusun.

ABSTRA	ιΚ	v	
ABSTRACTvii		vii	
KATA P	ix		
DAFTAF	R ISI	. xi	
DAFTAF	R TABEL	tiii	
DAFTAF	R GAMBAR	.xv	
BAB I PH	ENDAHULUAN	1	
1.1.	Latar Belakang	1	
1.2.	Rumusan Masalah	2	
1.3.	Tujuan Penelitian	2	
1.4.	Manfaat Penelitian	2	
1.5.	Batasan Masalah	2	
BAB II T	INJAUAN PUSTAKA	5	
2.1.	Pembangkit Listrik Tenaga Arus Laut	5	
2.2.	Teori Bangunan Apung (Floating Structure)	6	
2.3.	Turbin Arus Laut	7	
2.4.	Konsep Pembebanan	. 8	
2.5.	Hukum Archimedes	13	
2.6.	Teori Gelombang	15	
2.7.	Tegangan	16	
2.8.	Teori Gerak Benda Terapung Karena Beban Lingkungan	17	
2.9.	Response Amplitude Operator (RAO)	18	
2.10.	Finite Element Analysis	19	
2.11.	Kriteria Penerimaan	20	
BAB III	METODOLOGI PENELITIAN	.21	
3.1.	Identifikasi Masalah	22	
3.2.	Sumber Data Penelitian	22	
3.3.	Pengumpulan Data	22	
3.4.	Desain Platform	23	
3.5.	Data Lingkungan	24	
3.6.	Pembuatan Model Simulasi	26	
3.7.	Running Simulation	26	
3.8.	Jadwal Kegiatan	26	
BAB IV	ANALISA HASIL DAN PEMBAHASAN	.27	
4.1	Pemodelan Struktur Platform	27	
4.2	Perhitungan Beban	29	
4.3	Pembebanan yang diterima pada Lengan Platform	37	
4.4	Analisis Kekuatan Model	38	
BAB V F	PENUTUP	.51	
DAFTAF	R PUSTAKA	.53	

DAFTAR ISI

DAFTAR TABEL

Tabel 3.1 Data struktur lambung PLTAL tipe cyilindrical	23
Tabel 4.2 Dimensi Utama Blade dan Turbin	23
Tabel 3.3 Load scenario kondisi collinier	25
Tabel 3.4 Load scenario kondisi non-collinier	25
Tabel 3.5 Jadwal Kegiatan Penelitian	26
Tabel 4.1 Data Struktur Ukuran Utama PLTAL	27
Tabel 4.2 Data referensi hydrofoil	28
Tabel 4.3 Menentukan luas permukaan blade	29
Tabel 4.4 Nilai gaya angkat sumbu x dan y dengan variasi kecepatan arus	31
Tabel 4.5 Nilai gaya drag sumbu x dan y dengan variasi kecepatan arus	34
Tabel 4.6 Hasil Mass Properties pada lengan platform dan turbin	37
Tabel 4.7 Data Material	39
Tabel 4.8 Data Input nilai gaya angkat	40
Tabel 4.9 Data Input nilai gaya drag	41
Tabel 4.10 Hasil nilai tegangan pada lengan platform	42
Tabel 4.11 Hasil nilai rengangan pada lengan platform	43
Tabel 4.12 Hasil nilai von-Mises Stress pada lengan platform	45
Tabel 4.13 Hasil nilai rengangan pada lengan platform	45
Tabel 4.14 Hasil nilai von-Mises Stress pada lengan platform	47
Tabel 4.15 Hasil nilai rengangan pada lengan platform	48
Tabel 4.16 Hasil nilai von-Mises Stress pada lengan platform	49
Tabel 4.17 Hasil nilai rengangan pada lengan platform	50

DAFTAR GAMBAR

Gambar 2.1 Lokasi selat Toyapakeh	. 5
Gambar 2.2 Struktur terpancang	. 6
Gambar 2.3 Struktur terapung	.7
Gambar 2.4 Jenis-jenis turbin horizontal axial	.7
Gambar 2.5 Jenis-jenis turbin vertical axis	. 8
Gambar 2.6 Parameter gelombang	10
Gambar 2.7 Nilai drag force coefficient	12
Gambar 2.8 Benda Tengelam	14
Gambar 2.9 Benda melayang	14
Gambar 2.10 Benda terapung	15
Gambar 2.11 Status tegangan yang paling umum yang bekerja pada sebuah elemen	16
Gambar 2.12 Sixth degrees of freedom gerak kapal	18
Gambar 2.13 Bentuk Umum Grafik Respon Gerakan Bangunan Apung	19
Gambar 3.1 Flow Chart	21
Gambar 3.2 Model Referensi cylindrical platform	23
Gambar 3.3 Diagram Windrose Kecepatan Angin Selat Toyapakeh	24
Gambar 3.4 Current Rose Di Lokasi PLTAL	25
Gambar 4.1 Desain Cylindrical Platform	27
Gambar 4.2 Grafik nilai c/R dan r/R	28
Gambar 4.3 Grafik gaya angkat dengan variasi kecepatan arus laut	32
Gambar 4.4 Grafik gaya drag dengan variasi kecepatan arus laut	35
Gambar 4.5 Model Lengan Platform dan Turbin pada Ansys Modeller	
(tampak samping)	36
Gambar 4.6 Model Lengan Platform dan Turbin pada Ansys Modeller	2.5
(tampak belakang)	36
Gambar 4.7 Gaya pembebanan mekanis lengan platfrom tampak	37
Gambar 4.8 Gaya pembebanan mekanis lengan platfrom tampak	38
Gambar 4.9 Pemodelan	39
Gambar 4.10 Meshing model	40
Gambar 4.11 Mekanisme beban yang diterima oleh lengan platform	41
Gambar 4. 12 Tegangan yang dialami oleh Lengan Platform pada kecepatan 2 m/s	42
Gambar 4.13 Rengangan yang dialami oleh Lengan Platform pada kecepatan 2 m/s 4	43
Gambar 4.14 Standart Tegangan Von Mises ABS "floating production	4.4
Combox 4, 15 Teconomy dialogui alab Lancon Distance and beconotes 2 m/s	44
Gambar 4. 15 Tegangan yang dialami oleh Lengan Platform pada kecepatan 5 m/s	44
Gambar 4.10 Kengangan yang dialami oleh Lengan Platform pada kecepatan 3 m/s4	43 16
Gambar 4.17 Tegangan yang dialami oleh Lengan Platform pada kecepatan 4 m/s 4	40
Gambar 4.10 Kengangan yang dialami oleh Lengan Platform pada kecepatan 4 m/s	4/ 10
Gambar 4.19 Tegangan yang dialami oleh Lengan Platform pada kecepatan 5 m/s	4ð
Gambar 4.20 Kengangan yang dialami oleh Lengan Platform pada kecepatan 5 m/s	49

BAB I PENDAHULUAN

1.1. Latar Belakang

Indonesia merupakan suatu negara maritim terbesar di dunia. Dengan potensi 2/3 wilayah yang merupakan lautan. Dengan potensi yang dimiliki indonesia, maka setor laut yang dimanfaatkan untuk menghasilkan energi terbarukan dan energi tak terbarukan. Energi terbarukan merupakan energi yang memanfaatkan sumber enrgi berupa angin, tenaga surya, dan pasang surut air laut. Sedangkan energi tak terbarukan merupakan energi yang memanfaatkan sumber daya yang berasal dari fosil yang ada didalam perut bumi.

Sekitar 80% dari konsumsi energi saat ini disediakan oleh bahan bakar fosil dan pengembangan energi terbarukan di Indonesia diatur dalam Keputusan Presiden yang menyatakan energi terbarukan harus meningkat menjadi 17% dari total energi primer nasional di tahun 2025, dengan 5% nya berasal dari tenaga air [1]. Mempelajari potensi energi laut dapat menjadi solusi untuk membangun jenis pembangkit listrik baru di Indonesia.

Terlihat pada periode 2016 kebutuhan energi di Indonesia kurang lebih sekitar 1 milyar BOE, dan akan terus meningkat setiap tahun [2]. Pemanfaatan kondisi lingkungan laut seperti arus laut, gelombang dan angin bisa menjadi sumber energi paling potensial untuk pembangkit litrik di Indonesia.

Merujuk pada penelitian *European Marine Energy Centre Ltd (EMEC)*, mengenai *tidal renewable energy* yang diluncurkan pada 2013, sedang mengembangkan energi arus laut dengan potensi 2MW. Kondisi lingkungan di negara eropa khususnya Skotlandia dan Inggris Raya yang memiliki arus laut dengan kecepatan antara 3-5 m/s dinilai cukup potensial untuk dipasang turbin bawah laut [3]. Sedangkan untuk suhu di daerah tersebut relatif kecil dan dinilai kurang baik untuk pengaruh terhadap material. Apabila dibandingkan di Indonesia yang memiliki kecepatan arus antara 3-5 m/s dan suhu bawah laut berkisar 25 derajat celcius dinilai lebih aman dan tidak merusak pada material. Hal ini diakibatkan nilai temperatur di bawah permukaan air laut yang relatif tinggi memiliki nilai densitas rendah. Perairan indonesia di selat Toyapakeh Nusa Penida, Bali merupakan salah satu Alternatif yang bisa dimanfaatkan pembangunan seperti pembangkit listrik tenaga arus laut (PLTAL).

Dalam tugas akhir ini, analisis kekuatan lengan platform akan dilakukan pada konstruksi PLTAL pada arus laut dengan kondisi lingkungan yang digunakan saat PLTAL beroperasi, sehingga kekuatan struktur lengan platform akan diketahui.

1.2. Rumusan Masalah

Dari Penjelasan latar belakang diatas, maka dapat diambil beberapa rumusan masalah sebagai berikut :

- a. Bagaimana cara mendesain lengan *platform* pada PLTAL *tidal energy converter system* (*TECS*) tipe *Cylindrical* ?
- b. Bagaimana kekuatan lengan *platform* pada PLTAL *tidal energy converter system (TECS)* tipe *Cylindrical* ?

1.3. Tujuan Penelitian

Ditinjau dari permasalahan diatas maka tujuan dari penelitian yang ingin tercapai Antara lain:

- a. Untuk mengetahui cara mendesain lengan *platfom* pada PLTAL *tidal energy converter system* (*TECS*) tipe *Cylindrical*.
- b. Untuk mengetahui kekuatan lengan *platform* pada PLTAL *tidal energy converter system (TECS)* tipe *Cylindrical.*

1.4. Manfaat Penelitian

Ditinjau dari latar belakang dan tujuan penelitian, maka manfaat dari penelitian ini yaitu sebagai berikut:

- Sebagai pembelajaran bagi penulis dalam mendesain *platform* PLTAL *tidal energy converter system (TECS)* tipe *Cylindrical.*
- Sebagai pembelajaran bagi penulis dalam menganalisis kekuatan lengan *platform* PLTAL *tidal energy converter system (TECS)* tipe *Cylindrical*..
- Sebagai bahan pertimbangan dalam merencanakan suatu struktur lengan *platform* pada PLTAL *tidal energy converter system (TECS)* tipe *Cylindrical..*
- Sebagai bahan rekomendasi pada perencanaan kontruksi *platform* pada PLTAL.
- Sebagai bahan referensi untuk penelitian lebih lanjut terkait perencanaan *platform* pada PLTAL.

1.5. Batasan Masalah

Adapun batasan dalam penelitian ini adalah sebagai berikut:

- Tugas akhir ini difokuskan pada pemodelan dan analisa kekuatan lengan *platform tidal energy converter system (TECS)* Cylindrical *platform*.
- Metode penyelesaian & snalisa dilakukan menggunakan Finite Element Analysis
- Pedoman untuk desain merujuk pada *European Marine Energy Centre Ltd* (*EMEC*).
- Standart yang digunakan untuk analisa kekuatan merujuk pada aturan class American Bureau of Shipping

- Menggunakan kondisi lingkungan di selat Toyapakeh Nusa Penida Bali dengan mengambil data berupa gelombang, arus, dan angin laut.
- Arus laut yang digunakan yakni pada nilai 2 m/s, 3 m/s, 4 m/s, dan 5 m/s.
- Tidak membahas tentang sistem platform dan sistem penunjang lainnya.

BAB II TINJAUAN PUSTAKA

2.1. Pembangkit Listrik Tenaga Arus Laut

Pembangkit Listrik Tenaga Arus Laut (PLTAL) memanfaatkan energi arus laut sebagai sumber energi, arus laut yang merupakan energi kinetik dimanfaatkan untuk menggerakkan sudu turbin. Pengembangan teknologi konversi energi arus laut pada dasarnya mengadopsi prinsip kerja konversi energi angin yang telah berkembang. Arus laut didefinisikan sebagai aliran massa air laut dari suatu tempat ke tempat lain. Potensi sumber yang ada pada arus laut tidak semuanya bisa dikonversikan menjadi energi listrik, terdapat banyak jenis arus laut ditinjau dari letak, penyebab, dan suhu.

Jika ditinjau dari letaknya, arus laut dibedakan menjadi 3, yaitu :

1. Arus Permukaan

Arus laut jenis ini terletak di permukaan laut, dengan kedalaman < 20 m.

- Arus Sedang Arus sedang berada pada kedalaman air laut 20-40 m.
- Arus Dalam Sementara arus ini terletak di kedalamn >40 m.

Secara garis besar di Indonesia sendiri potensi energi laut yang melimpah dan dapat diaplikasikan hampir di semua wilayah pesisir pantai. Hal ini akibat dari posisi Indonesia di lajur khatulistiwa dan berada pada titik temu 3 samudera yang akan membawa cukup angin dan arus laut kedalam satu titik temu. Area yang mendukung untuk memproduksi energi *tidal* yakni pada renta kecepatan arus laut 1,5-3 m/s (baik kondisi pasang-surut dan tidak terpengaruh terhadap cuaca tahunan) memiliki tinggi gelombang tidak lebih dari 8 meter dan periode gelombang tidak melebihi 2 kali Panjang platform [3]. Pada tugas akhir berikut penulis menggunakan area lingkungan di selat Toyopakeh, Nusa Penida-Bali untuk dijadikan sebagai input environtment karena memenuhi kriteria diatas.

Gambar 2.1 Lokasi selat Toyapakeh [4]

2.2. Teori Bangunan Apung (Floating Structure)

Bangunan Terapung adalah sebuah struktur di kondisi terapung, dengan atau tanpa akomodasi yang dibangun di atasnya, yang tidak digunakan sebagai sarana transportasi tetapi memenuhi kebutuhan yang biasanya dikaitkan dengan struktur atau perbaikan lainnya terhadap segala aktifitas sebenarnya. Yang perlu diperhatikan yakni operasi terjadi diperairan dalam maupun dangkal untuk periode tertentu, sehingga bangunan harus mampu bertahan dalam kondisi cuaca baik maupun cuaca buruk yang mungkin terjadi selama beroperasi.

Pada kegiatan offshore terdapat beberapa jenis struktur yang sering digunakan sebagai konstruksi platform, diantaranya :

1. Struktur Terpancang (Fixed Offshore Platform)

Suatu anjungan lepas pantai dikategorikan sebagai anjungan terpancang apabila dalam operasinya penegar utama menjadi tumpuan dalam menahan gayagaya lingkungan tanpa mengalami *displacement* dan deformasi yang berarti. Penggunaan anjungan tipe ini hanya ekonomis untuk pengoperasian pada perairan dengan kedalaman 1000-1600 ft. Pada konstruksi terpancang, beban vertikal, horizontal dan moment dapat ditransformasikan oleh konstruksi kaki melalui pondasi ke dasar laut. Ukuran pondasi menentukan distribusi beban ke dasar laut dan ukuran struktur secara keseluruhan.

Gambar 2.2 Struktur terpancang [5]

2. Struktur Terapung (Floating Offshore Platform)

Gerakan struktur diatas air relatif lebih besar (kecuali Jack-up) dibanding Fixed Plat. Kaki-kaki Floating Offshore Platform (FOP) tidak terpancang permanen di dasar laut tapi dapat naik-turun.

Gambar 2.3 Struktur terapung [5]

2.3. Turbin Arus Laut

Turbin arus laut adalah teknologi yang dapat digunakan untuk mengekstrak potensi dari arus laut. Turbin horizontal aksis dan turbin vertikal aksis adalah dua jenis turbin arus laut yang digunakan untuk konversi energi arus laut.Turbin horizontal aksis memiliki sumbu rotasi yang sejajar dengan aliran fluida.Turbin vertikal aksis memiliki sumbu rotasi yang tegak lurus terhadap arah aliran fluida. Berikut merupakan jenis-jenis turbin vertical axis.Gambar 2.4 dan 2.5 merupakan contoh turbin horizontal dan verikal aksis [6].

Turbin arus laut merupakan bagian dari hydrokinetic turbine, dimana hydrokinetic turbine dibagi menjadi 2 bagian berdasarkan arah rotasi turbin terhadap arah aliran fluida yang melewati turbin.Turbin Horisontal Axis (atau sering disebut axial flow) memiliki sumbu rotasi yang sejajar dengan aliran fluida.Berikut merupakan jenis-jenis turbin horizontal axis [6].

Gambar 2.4 Jenis-jenis turbin horizontal axial [7]

Gambar 2.5 Jenis-jenis turbin vertical axis [7]

2.4. Konsep Pembebanan

Kemampuan kerja suatu perancangan struktur lepas pantai atau Offshore structure dipengaruhi oleh beban yang bekerja pada struktur tersebut. Jadi, akurasi beban yang diterjadi pada struktur sangat berpengaruh pada kemampuan kerja dan kekuatan dari struktur yang dirancang.

Berikut beban secara umum yang dipakai dalam perencanaan offshore structure :

2.3.1. Beban Mati

Beban mati merupakan beban yang diperoleh dari komponenkomponen , peralatan, serta permesinan yang tidak berubah di struktur tersebut, meliputi ; berat struktur dan berat peralatan.

2.3.2. Beban Hidup

Beban hidup merupakan beban yang diperoleh dari suatu peralatan seperti permesianan yang bekerja atau beroperasi.

Contoh beban yang termasuk dalam beban hidup ini adalah beban yang diakibatkan oleh pengoprasian mesin atau peralatan yang lainnya pada suatu struktur yang berhubungan dengan oprasi struktur tersebut.

2.3.3. Beban Lingkungan

Beban lingkungan merupakan beban yang diperoleh dari pengaruh lingkungan lokasi struktur beroperasi. Beban lingkungan ketika berada dilaut meliputi beban angin, gelombang, dan arus [8].

2.3.3.1. Beban Angin

Beban Angin merupakan beban dinamis, dalam perancangan banunan lepas pantai, angin merupakan sebuah beban yang dapat mempengaruhi respon struktur, maka perlu dilakukan perhitungan. Beban angin dihitung berdasarkan besarnya kecepatan ekstrim dengan periode ulang 100 tahunan. Semakin lama periode ulang yang digunakan maka resiko kegagalan semakin besar.

Semakain lama waktu yang digunakan untuk pengulangan, maka resiko kegagalan semakin besar. Gaya pada permukaan datar diasumsikan sebagai gaya normal pada permukaan dan gaya pada tanki silinder vertical, pipa, dan silinder lain diasumsian searah dengan arah angin, sedangkan yang tidak vertical dapat dihitung dengan menggunakan formula yang diambil dari perhitungan arah angin berhubungan dengan objek. Hal tersebut berlaku untuk semua sudut dari pendekatan beban angin pada struktur [9].

Sedangkan formula untuk gaya angin time series dapat dibangkitkan dari spektrum gelombang menurut API RP 2 T adalah memakai rumus sebagai berikut :

$$F_{WD}(t) = \frac{1}{2} \rho_a C_S A x_a |V_C - \dot{x}| (V_C - \dot{x})$$
(2.1)

Dimana:

 $\begin{array}{ll} F_{WD} &= gaya \ angin \ (N) \\ C_S &= koefisien \ bentuk \\ Pa &= massa \ jenis \ udara \ (kg/m3) \\ x &= kecepatan \ dari \ platform \ (m/s) \\ xa &= aerodinamic \ amittance \end{array}$

A = luas area vertikal yang terkena angin (m2)

 V_C = kecepatan partikel air (m/s)

Sedangkan kecepatan angin dirumuskan sebagai berikut :

$$V_W = V_{10} \left(\frac{y}{10}\right)^{n}$$
(2.2)

Dimana :

Vw = kecepatan angin, knots (m/s)

 V_{10} = kecepatan angin pada ketinggian 10 m, knots (m/s)

- y = ketinggian dimana kecepatan angin dihitung, (m)
- x = faktor eksponen

Bila informasi yang akurat tidak tersedia, maka harga eksponensial x sebesar 71 dapat diambil sebagai pendekatan. Harga ini cukup sesuai untuk ketinggian sampai dengan sekitar 200 m. Untuk semua sudut dari pendekatan beban angin pada struktur, gaya pada permukaan datar diasumsikan sebagai gaya normal pada permukaan dan gaya pada tanki silinder vertikal, pipa, dan silinder lain diasumsikan searah dengan arah angin, sedangkan yang tidak vertikal dapat dihitungmenggunakan formula yang diambil dari perhitungan arah angin berhubungan dengan gerak objek.

2.3.3.2. Beban Gelombang

Beban gelombang merupakan beban lingkungan yang memberikan efek terbesar terhadap bangunan lepas pantai. Gelombang terjadi akibat gangguan pada fluida. Gangguan tersebut dapat berupa gangguan pada permukaan air sepeiti hembusan angin, atau dapat juga berupa gangguan pada dasar laut seperti pergerakan tanah atau gempa bumi [9].

Bentuk ideal gelombang beramplitudo kecil di perairan dalam adalah sinusoidal. Karakteristik gelombang dua dimensi yang merambat dalam arah x dapat dilihat pada Garnbar 6 dibawah ini.

Gambar 2.6 Parameter gelombang [7]

Dimana:

A = amplitudo gelombang

C = kecepatan gelombang

d = kedalaman permukaan air rata-rata daii dasar tanah

H = tinggi gelombang dari lembah ke puncak

L = panjang gelombang

x = perpindahan arah horizontal dari puncak gelombang

 $\eta(x,t) =$ elevasi muka air pada ttik x saat t

MWL = Mean Water Level

Parameter-parameter terpenting dalam menggambarkan gelombang adalah :

1 Panjang gelombang L, yaitu jarak hotizontal antara dua puncak gelombang atau dua lembah gelombang yang saling berurutan.

- 2 Tinggi gelombang H, yaitu jarak vertikal antara puncak gelombang dan lembah gelombang.
- 3 Perioda gelombang T, yaitu waktu yang ditempuh untuk mencapai satu lintasan gelombang.
- 4 Kedalaman perairan h dimana gelombang tetsebut dirambatkan.

Terdapat beberapa teori yang dapat digunakan untuk perhitungan gaya gelombang. Salah satunya adalah teori difraksi. Jika suatu struktur mempunyai ukuran yang relatif besar, yakni memiliki ukuran yang kurang lebih sama dengan panjang gelombang, maka keberadaan struktur ini akan mempengaruhi timbulnya perubahan arah pada medan gelombang disekitarnya. Dalam hal ini difraksi gelombang dari permukaan struktur harus diperhitungkan dalam evaluasi gaya gelombang.

Untuk gaya gelombang *time series* dapat di bangkitkan dari spectrum gelombang sebagai *First Order* dan *Second Order*. *First Order* adalah gelombang dengan periode kecil yang daerah pembangkitnya di daerah itu sendiri dan berpengaruh dominan pada gerakan bangunan apung. Berikut adalah persamaan gaya gelombang first order.

Dimana :

$F_{WV}^{(1)}(t)$	= Gaya gelombang <i>First Order</i> fungsi waktu
$F_{WV}^{(1)}(\omega)$	= Gayaexciting gelombang First Order per unit Amplitudo
	gelombang
ε	= Sudut fase komponen gelombang First Order

 α_i = Amplitudo komponen gelombang *First Order*

Second Order adalah gelombang dengan periode tinggi yang daerah pembangkitnya tidak di daerah tersebut (jauh dari lokasi gelombang terjadi). Berikut adalah persamaan gaya gelombang Second Order.

$$F_{WV}^{(2)}(t) = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j D_{ij} \cos\left[(\omega_i - \omega_j)t + (\varepsilon_i - \varepsilon_j)\right]$$

$$D_{ij} = Drift force \text{ per unit amplitudo gelombang} \qquad (2.4)$$

2.3.3.3. Beban Arus

Arus akibat pasang surut memiliki kecepatan yang semakin berkurang seiring dengan bertambahnya kedalaman sesuai fungsi *non-linear*. Sedangkan arus yang disebabkan oleh angin memiliki karakter yang sama, tetapi dalam fungsi *linear* [10].

Gaya-gaya pada arus yang melewati struktur platform adalah :

a) Gaya drag

$$F_{d} = \frac{1}{2} x C_{d} x \rho x V c^{2} x A....(2.5)$$

Dimana :

Fd	= gaya drag (N)
C_d	= drag coefficient
ρ	= massa jenis air (kg/m ³)
А	= luas yang ditinjau (m ²)
Vc	= kecepatan arus (m/s ²)

Berikut ini merupakan nilai drag coefficient untuk beberapa benda

Gambar 2.7 Nilai drag force coefficient [7]

b) Gaya angkat (Lift)

Gaya angkat adalah gaya hidrodinamik dalam arah vertikal, gaya ini terjadi apabila terdapat konsentrasi kecepatan arus laut terhadap struktur dengan arah vertikal.

$$F_{\rm L} = \frac{1}{2} x C_L x \rho x V c^2 x A....(2.6)$$

Dimana :

 F_L = gaya angkat (N)

C_L	= koefisien gaya angkat
ρ	= massa jenis air (kg/m ³)
Vc	= kecepatan arus (m/s ²)
А	= luas yang ditinjau (m ²)

2.5. Hukum Archimedes

Dasar pemikiran Archimedes: "Jika dalam sebuah tempat ada air dan air dalam keadaan tenang, maka di seluruh bagian air tekanannya sama. Kalau ada daerah yang tekanannya berbeda, maka air dari tempat yang tekanannya tinggi mengalir ke arah yang tekanannya rendah. Jika benda dimasukkan ke dalam air dan setelah airnya tenang kembali benda terapung, keadaan itu menunjukkan bahwa tekanannya menjadi sama di mana-mana, termasuk di tempat benda tersebut berada. Ini berarti tekanan yang diduduki benda itu seharusnya sama dengan tekanan di bagian air yang lain atau air yang seharusnya ada di situlah yang sama dengan air yang terdesak oleh benda".Dalam penyusunan percobaannya Archimedes menggunakan pengetahuan tentang timbangan. Akhirnya dapat ditentukanbahwa teorinya sesuai dengan hasil percobaan, yaitu: "Benda yang terapung atau terendam dalam air kehilangan berat sesuai dengan berat air yang terdesak".

Jika suatu benda berada dalam fluida maka ada volume zat cair yang dipindahkan sebesar volume bagian benda yang berada dalam zat cair. Jika volume fluida yang dipindahkan besarnya V dan kerapatan fluida (massa per satuan volume) adalah ρ 1 maka besarnya massa fluida yang dipindahkan adalah:

$m = \rho.V$	7)
Dan besarnya berat fluida yang dipindahkan adalah	
$wf = m.g = \rho.V.g$	8)
Menurut prinsip Archimedes, besarnya gaya tekan keatas adalah :	
$Fa = wf = \rho.V.g.$	9)
Dengan Fa adalah gaya tekan keatas atau gaya apung (buoyancy force). Jik	ka

benda mempunyai kerapatan massa pb dan fluida mempunyai kerapatan pf maka perbandingan berat benda dengan gaya tekan keatasnya

Jika $\rho b > \rho f$, maka $w > Fa \rightarrow benda tenggelam$ Jika $\rho b = \rho f$, maka $w = Fa \rightarrow benda melayang didalam fluida$ Jika $\rho b < \rho f$, maka $w < Fa \rightarrow benda mengapung (Anonim, 2009).$

Benda Dalam Hukum Archimedes, bila benda dicelupkan ke dalam zat cair, maka ada 3 kemungkinan yang terjadi yaitu tenggelam, melayang, dan terapung.

1. Benda Tenggelam

Benda disebut tenggelam dalam zat cair apabila posisi benda selalu terletak pada dasar tempat zat cair berada.

Gambar 2.8 Benda Tengelam [11]

Pada benda tenggelam terdapat tiga gaya yaitu : W = gaya berat benda Fa = gaya archimedes N = gaya normal bidangDalam keadaan seimbang maka W = N + Fa sehingga : W > Fa $m \cdot g > \rho_{ZC} \cdot Vb \cdot g$ $\rho b \cdot Vb \cdot g > \rho_{ZC} \cdot Vb \cdot g$ $\rho b = massa jenis benda$ $\rho ZC = massa jenis zat cair$

2. Benda Melayang

Benda melayang dalam zat cair apabila posisi benda di bawah permukaan zat cair dan di atas dasar tempat zat cair berada.

Gambar 2.9 Benda melayang [11]

Pada benda melayang terdapat dua gaya yaitu: Fa dan W. Dalam keadaan seimbang maka :

$$\label{eq:posterior} \begin{split} W &= Fa\\ \rho b \;.\; Vb \;.\; g &= \rho_{ZC} \;.\; Vb \;.\; g\\ \rho b &= \rho_{ZC} \end{split}$$

3. Benda Terapung

Benda terapung dalam zat cair apabila posisi benda sebagian muncul dipermukaan zat cair dan sebagian terbenam dalam zat cair.

Gambar 2.10 Benda terapung [11]

Pada benda terapung terdapat dua gaya yaitu :Fa dan W. Dalam keadaan seimbang maka :

$$\label{eq:product} \begin{split} W &= Fa \\ \rho b \;.\; Vb \;.\; g &= \rho ZC \;.\; V2 \;.\; g \\ \rho b \;.\; Vb &= \rho ZC \;.\; V2 \\ karena \; Vb &> V2 \; maka : \rho b < \rho_{ZC} \end{split}$$

2.6. Teori Gelombang

2.4.1. Gelombang Regular (Air wave linear)

Merupakan asumsi kondisi gelombang di laut yakni rata dan tidak memiliki batasan pada permukaannya hingga nilainya tak berhingga. Kondisi ini paling sering diaplikasikan untuk menghitung beban gelombang (wave load) yang terjadi pada struktur [12]. Periode yang diberikan gelombang diasumsikan sebagai variable konstan yang tidak berubah-ubah.

2.4.2. Gelombang Acak

Merupakan gerakan bangunan apung dalam reaksi eksitasi gelombang sinusoida, dengan karakteristik tinggi atau amplitude dan frekwensi tertentu (dapat berubah sewaktu-waktu). Pada beberapa metode analisa dikondisikan amplitude gelombang bernilai konstan, namun harga frekwensinya di variasikan dengan internal kenaikan tertentu. Gelombang acak merupakan superposisi akibat bentuk benda dan komponen-komponen pembentuknya yang membentuk gelombang sinusoida dalam jumlah tak terhingga, hal ini karena tiap komponen atau tiap bentuk benda mempunyai tingkat energi tertentu yang di kontribusikan, hasilnya akan diformalisakn dalam bentuk spectrum energi gelombang [13].

Perbedaan analisa gelombang regular dan acak adalah, pada gelombang reguLer dapat diketahui interaksi hidrodinamik pada saat pertambahan massa, potential damping, dan respon gaya eksternal. Sedangkan untuk gelombang acak dapat dilakukan dengan mentransformasikan sprektrum gelombang menjadi sprektrum respon.

2.7. Tegangan

Tegangan yang secara numerik dinyatakan dalam satuan N/m2 luar biasa kecilnya bila dibandingkan dengan yang biasanya kita nyatakan dalam sistem satuan lnggris. ini disebabkan oleh karena gaya dalam satuan newton adalah kecil terhadap satu pon gaya sedang satu meter bujur sangkar adalah luas yang amat besar dibandingkan dengan satu inci kuadrat. Oleh karena itu lebih dapat diterima bila menuliskan tegangan dalam satuan N/mm2, yaitu notasi yang mula-mula tidak direkomendasikan. Tetapi, karena ini setara betul dengan megapascal (MPa) maka notasi yang terakhir memperoleh pengakuan yang luas [14].

Gambar 2.11 Status tegangan yang paling umum yang bekerja pada sebuah elemen [7]

Tanda huruf yang pertama dari τ menunjukkan tegangan geser pada bidang yang tegak. lurus pada sumbu tertentu, sedang tanda huruf yang kedua menentukan arah tegangan geser.

Kubus kecil takberhingga seperti yang terlihat dalam Gambar 8, dapat digunakan sebagai dasar untuk perumusan eksak dari persoalan mekanika bahan. Metoda untuk mempelajari sebuah kubus seperti itu (yang menyangkut penulisan suatu persamaan dalam keseimbangannya dan memastikan bahwa kubus tersebut setelah mengalami deformasi akibat gaya-gaya yang bekerja terhadapnya, akan sama secara geometris dengan kubus-kubus kecil tak berhingga yang ada di sampingnya) berada di luar jangkauan bahasan buku ini. Ini merupakan bidang teori elastisitas (elasticity) matematis. Prosedur-prosedur yang digunakan dalam buku ini tidak dibawa kepada keadaan umum yang dinyatakan oleh Gambar 8. Metode-metode yang dipergunakan di sini akan sederhana sekali [14].

Tegangan menunjukan kekuatan gaya yang menyebabkan perubahan bentuk benda. Maka tegangan dapat didefinisikan sebagai gaya/beban total (F) pada suatu penampang dibagi dengan luas penampang yang dikenainya. Tegangan biasanya dinyatakan dengan σ .

Berikut merupakan formula dari tegangan :

$$\sigma = \frac{F}{A}$$
(2.7)

Dimana :

 $\sigma = \text{Tegangan}\left(\frac{N}{A^2}\right)$ F = Gaya (N) A = Luas Penampang (m²)

2.8. Teori Gerak Benda Terapung Karena Beban Lingkungan

Pada dasarnya benda yang mengapung mempunyai 6 mode gerakan bebas yang terbagi menjadi dua kelompok, yaitu 3 mode gerakan translasional dan 3 mode gerakan rotasional [15]. Berikut adalah keenam mode gerakan tersebut:

- 1. Mode gerak translasional
 - *Surge*, gerakan transversal arah sumbu x
 - Sway, gerakan transversal arah sumbu y
 - *Heave*, gerakan tramsversal arah sumbu z
- 2. Mode gerak rotasional
 - *Roll*, gerakan rotasional arah sumbu x
 - *Pitch*, gerakan rotasional arah sumbu y
 - Yaw, gerakan rotasional arah sumbu z

Definisi gerakan kapal dalam enam derajat kebebasan dapat dijelaskan dengan gambar 9. Dengan memakai konversi sumbu tangan kanan tiga gerakan translasi pada arah sumbu x,y dan z, adalah masing-masing surge (ζ_1), sway (ζ_2) dan heave (ζ_3), sedangkan untuk gerakan rotasi terhadap Z ketiga sumbu adalah roll (ζ_4), pitch (ζ_5) dan yaw (ζ_6) [15].

Gambar 2.12 Sixth degrees of freedom gerak kapal [16]

2.9. Response Amplitude Operator (RAO)

Response Amplitude Method (RAO) adalah analisis respon dinamis terpadu yang dilakukan untuk mempelajari seberapa jauh efek redaman *aerodinamis* dan *hidrodinamis*, dan struktur dinamis pada lingkungan ekstrim/ pertimbangan adanya gelombang yang diinduksi dan angin yang ditimbulkan [17]. Nilai respon dapat dibaca dari amplitude struktur dan amplitude gelombang. Respon gerakan translasi (*surge – sway – heave*) merupakan perbandingan antara amplitude gerakan dibanding amplitude gelombang incidental. Sedangkan respon gerakan rotasi (*roll – pitch – yaw*) merupakan perbandingan antara amplitude gerakan rotasi kemiringan gelombang radian) dengan kemiringan gelombang ($kw=\omega 2/g$).

Persamaan RAO untuk gerakan translasi dapat dicari menggunakan rumus :

RAO (
$$\omega$$
) = $\frac{Xp(\omega)}{\eta(\omega)}$ (2.10)

Dimana :

 $\begin{array}{ll} Xp\left(\omega\right) & = amplitudo \ struktur\left(m\right) \\ \Pi(\omega) & = amplitudo \ gelombang\left(m\right) \end{array}$

Respons gerakan RAO untuk gerakan translasi (surge, sway, heave) merupakan perbandingan langsung antara amplitudo gerakan dibanding dengan amplitudo gelombang insiden (keduanya dalam satuan panjang). Persamaan RAO untuk gerakan translasi di atas. Sedangkan untuk respons gerakan RAO untuk gerakan rotasi (roll,pitch, yaw) merupakan perbandingan antara amplitudo gerakan rotasi (dalam radian) dengan kemiringan gelombang, yakni yang merupakan perkalian antara gelombang (kw= $\omega 2/g$) dengan amplitudo gelombang insiden [18].

Gambar 2.13 Bentuk Umum Grafik Respon Gerakan Bangunan Apung [3]

- Nilai radius of gyration

Panjang atau jarak antara titik putar suatu benda dengan titik transfer energi berasal. Dalam sistem dengan momen inersia hubungan keduanya yakni :

 $K^2 = I / m.....(2.11)$

Keterangan : K = Radius of gyrasion I = Momen inersia M = massa benda

2.10. Finite Element Analysis

Konsep dasar finite element analisis adalah membagi suatu struktur menjadi bagian-bagian yang lebih kecil yang jumlahnya berhingga, kemudian melakukan analisis gabungan terhadap elemen – elemen kecil tersebut. Tujuan dari finite element analisis adalah untuk memperoleh nilai pendekatan numerik sehingga dapat diselesaikan dengan bantuan komputer, maka Finite Element Analisis (FEA) dikatakan bersifat computer oriented.

Saat ini pengunaan Finite Element Analisis untuk menghitung dan mensimulasikan model dengan bantuan komputer mengalami perkembangan yang sangat pesat. Hal ini dikarenakan perkembangan hardware komputer yang sangat pesat pula sehingga mendukung proses perhitungan dengan metode numerik. Program FEA yang berkembang pesat serta banyak digunakan untuk melakukan analisis struktur.

Terdapat tiga prosesor yang paling sering digunakan :

1. Preprocessor

Berisi perintah – perintah yang di butuhkan untuk membangun model yakni :Mendefinisikan tipe dan pilihan elemen, Mendefinisikan

konstanta real elemen, Mendefinisikan sifat material, Membuat model geometri, Mendefinisikan meshing kontrol, Mesh Model yang dibuat

2. Prosesor

Memiliki perintah yang memungkinkan untuk menerapkan kondisi batas dan pembebanan. Misalnya pada masalah struktural, dapat ditentukan kondisi batas perpindahan dan kekuatan, atau untuk masalah perpindahan panas, dapat ditentukan batas suhu permukaan atau konvektif. Setelah semua informasi yang dibuat tersedia untuk prosesor solusi , pemecahan solusi dapat di lakukan. Dalam solusi terkait dengan analisis yang dilakukan sekarang, maka yang ditampilkan adalah solusi untuk deformasi, Equivalent von-misses stress, dan safety faktor.

3. Postprocessor

Berisi perintah-perintah yang memungkinkan untuk mengurut dan menampilkan hasil analisis yaitu: membaca data hasil dari prosesor, membaca hasil elemen data, plot hasil, menampilkan daftar hasil.

2.11. Kriteria Penerimaan

Pada aturan standart class American Bureau of Shipping "Building and Classing Floating Production Installation" Part 5A Chapter 1 Section 4 tentang aturan standart kekuatan tegangan (Von-Mises Stress) sebagai berikut.

Kondisi DOC (Design Operating Condition) untuk berat kosong dan beban maksimum, dengan minimal 1 tahun perbaikan (1 Juli 2009)

For one -stiffener spacing element size FE analysis :

 $f_e < 0.7 f_y$ for plate membrane stresses at element centroid

 $f_{Iv} < 0.6 f_v$ for bar and beam element

 $f_{xy} < 0,4 f_y$

BAB III METODOLOGI PENELITIAN

Gambar 3.1 Flow Chart

3.1. Identifikasi Masalah

Tahapan awal dalam pengerjaan tugas akhir ini adalah dengan mengidentifikasi permasalahan yang ada. Kemudian timbul perumusan masalah yang nantinya akan diselesaikan selama pengerjaan tugas akhir ini. Selain itu, juga terdapat batasan masalah. Hal ini dimaksudkan agar topik bahasan lebih mendetail dan tidak terlalu meluas serta memudahkan penulis dalam melakukan analisa masalah. Pada proses ini dilakukan identifikasi dan perumusan masalah tentang seberapa kuat struktur lengan *platform* saat terkena pengaruh beban lingkungan. Setelah itu, dirumuskan permasalahan yang perlu diselesaikan terkait dengan penulisan tugas akhir ini. Identifikasi sesuai dengan kekuatan sistem struktur lengan platform dengan panduan pembangunan berdasarkan *Guideline of European Marine Energy Center (EMEC)* dan standart kekuatan merujuk pada aturan class American Bureau of Shipping "Floating Production Instalation 2014"..

3.2. Sumber Data Penelitian

Untuk proses penyusunan penelitian ini, diperlukan data sebagai penunjang dalam penelitian dan penulisan tugas akhir. Data-data dari objek penelitian terbagi menjadi beberapa sumber antara lain :

1. Studi Literatur

Pada tahapan studi literatur penulis merujuk pada aturan *Offshore Floating Structure Building* yakni *Guideline of European Marine Energy Center (EMEC) 2009,* dan juga aturan klasifikasi *ABS "Floating Production Instalation 2014".* Selain ketiga aturan baku tersebut, penulis mempertimbangkan penelitian sebelumnya yang merujuk baik melalui jurnal, penelitian lapangan, simulasi dan analisa virtual melalui software. Bahasan yang akan dibahas pada studi literatur ini meliputi pembahasan tentang :

- 1. Pembangkit Listrik Tenaga Arus Laut
- 2. Arus Air Laut
- 3. Kekuatan Lengan Platform

Pembahasan tersebut guna untuk menunjang landasan dasar dari tugas akhir. Dimulai dari pembahasan umum sampai dengan pembahasan secara khusus sesuai dengan tema yang diangkat, yaitu tentang analisis kekuatan lengan *Platform* PLT Arus Laut *Tipe Cylindrical*.

3.3. Pengumpulan Data

Dalam langkah ini difokuskan untuk mengumpulkan data yang dibutuhkan yaitu data-data struktur lambung *platform*, dan juga hal lain pada bab ini adalah menjelaskan data lingkungan yang meliputi data gelombang, arus dan angin. Serta menentukan arah pembebanan lingkungan untuk digunakan sebagai input dalam analisis kekuatan lengan *platform* pada PLTAL.

3.4. Desain Platform

Desain *platform* mempunya karakter bergerak mengikuti gerakan gelombang dan arus, serta mobilitas dan kemampuannya mengantisipasi gerakan akibat gelombang dan arus laut. Pada desain lambung berikut menggunakan klasifikasi *DNV GL* dengan dimensi lambung yang mendekati model TECS milik *European Marine Energy Center (EMEC)* [3].

Tabel 3.1 Data struktur lambung PLTAL tipe cyilindrical [3]

No	Ukuran Utama	Dimensi
1	LOA	33,06 m
2	Diameter Maksimal	2,325 m
3	Draught	1,1625 m
4	Operational Draught	>25 m

Gambar 3.2 Model Referensi cylindrical platform [3]

➢ Turbin dan Blade

Ukuran turbin dan blade pada kasus ini menggunakan pendekata dimensi yang sama pada spesifikasi produk milik "Nova Innovation tipe Nova M100-D".

	Nova Innovation Product Tidal Energy Type : Nova M100-D					
No	Name	Unit				
1	Rated Capacity	100 Kw				
2	Design Life	20 years				

Tabel 4.2 Dimensi Utama Blade dan Turbin

3	Rotor Diameter	8 m
4	Rotor Speed	10 to 27 rpm
5	Mounting	Gravity seabed base or Floating base
6	Starting tidal speed	0,5 m/s
7	Tidal speed for rated power	2 m/s

3.5. Data Lingkungan

Kondisi lingkungan tempat beroperasi *platform* sangat mempengaruhi kinerja struktur, maka data lingkungan mempunyai peranan yang sangat penting. Data lingkungan berikut menggunakan data aktual di lapangan seperti yang terdapat pada kondisi sebenarnya. Data kecepatan angin pada posisi koordinat pengambilan data terletak di perairan Nusa Penida di selat Toyapakeh, yaitu 8°63'79.70"LS dan 115°49'91.47" BT untuk sebelah utara Pulau Nusa Penida, serta 8°72'84.30"LS dan 115°42'83.54" BT untuk sebelah selatan Pulau Nusa Penida [3].

Berdasarkan olahan data angin tersebut, maka didapatkan kesimpulan sebagai berikut :

- a. Arah angin paling dominan adalah arah barat laut dengan frekuensi kejadian 40%.
- b. Kecepatan angin dengan rentang 17-21 knot memiliki frekuensi kejadian 4%, 11-17 knot memiliki frekuensi kejadian 6%, dan 4-7 knot memiliki frekuensi kejadian 5%.

Gambar 3.3 Diagram Windrose Kecepatan Angin Selat Toyapakeh [3]

Data Lokasi pengambilan arus pada titik 1 berada di $08^{\circ} 40' 29.6"$ LS dan 115° 30' 53.6" BT pada kedalaman ± 25,5 meter yaitu posisi MWL (Mean Water Level). Sedangkan untuk titik 2 berada pada $08^{\circ} 40' 25.2"$ LS dan 115° 29' 16.2" BT pada Kedalaman ± 33,5 meter yaitu posisi MWL (Mean Water Level). Berdasarkan pengukuran kecepatan data arus, didapatkan hasil sebagai berikut :

Gambar 3.4 Current Rose Di Lokasi PLTAL [7]

- Kecepatan arus maksimal adalah 2.4 m/s pada kedalaman 5.5 meter di titik lokasi.
- Kecepatan arus rata-rata memiliki rentang 0.2-0.7 m/s.

Arah pembebanan yang di gunakan merupakan arah pembebanan menghasilkan efek signifikan. Untuk kondisinya meliputi Kondisi Collinier dan Non collinier.

Tabel 3.3 Load scenario kondisi collinier [3]

Beban Lingkungan	Arah Heading							
Wave	0°	45°	90°	135°	180°			
Wind	0°	45°	90°	135°	180°			
Current	0°	45°	90°	135°	180°			

Tabel 3.4 Load scenario kondisi non-collinier [3]

Beban Lingkungan			Arah H	leading		
Wave	180°	180°	180°	180°	180°	180°
Wind	45°	90°	135°	180°	180°	180°
Current	180°	180°	180°	45°	90°	135°

3.6. Pembuatan Model Simulasi

Pembuatan pemodelan untuk desain menggunakan aplikasi SolidWork, Maxsurf Modeller [3]. Desain Pemodelan merujuk pada aturan Guideline of European Marine Energy Center (EMEC), GNV-GL, dan Guidance Rules of ABS

Data Existing

Beberapa data yang diperlukan untuk pengerjaan tugas akhir ini didapat dari penelitian yang sudah ada yaitu : Data dimensi *platform*, Data nilai Gaya drag, Gaya angkat komponen dan data-data lingkungan.

3.7. Running Simulation

Simulasi berjalan akan dilakukan dengan memberikan beban beton sinker serta variasi beban lingkungan laut sesuai data yang diperoleh terhadap lengan *platfom.* Kemudian memasukkan data material dan sifat untuk melakukan meshing dan dilakukan analisa tegangan, kekuatan pada struktur lengan *platform.* Tugas akhir ini untuk melakukan simulasi dengan menggunakan finite element analysis.

Analisa kekuatan pada floating platform

Analisa selanjutnya yaitu menentukan maksimum kekuatan platfom yang terjadi pada PLTAL sebagai akibat dari parameter respon struktur pada lengan *platform*. Pada tahap hasil dari nilai kekuatan lengan *platform* dengan berbagai variasi yang sudah disimulasikan, selanjutnya akan dikomparasikan dan dianalisa sesuai dengan aturan Klass ABS.

3.8. Jadwal Kegiatan

Dalam penelitian ini, dibutuhkan rencana waktu atau penjadwalan untuk proses penelitian. Jadwal tersebut direncanakan seperti pada tabel dibawah ini.

		Bulan											
No	No Kegiatan		1		2			3					
		1	2	3	4	1	2	3	4	1	2	3	4
1.	Pengumpulan data												
2.	Pengolahan data												
3.	Pemodelan												
4.	Analisa model												
5.	Simulasi dan kesimpulan												

Tabel 3.5 Jadwal Kegiatan Penelitian

BAB IV ANALISA HASIL DAN PEMBAHASAN

4.1 Pemodelan Struktur Platform

Pada pemodelan awal struktur yang dilakukan didalam tugas akhir ini adalah menggunakan software Maxsurf yang diperoleh dari data gambar autocad sesuai koordinat yang dibutuhkan. Koordinat ini sebagai input untuk digunakan pada pemodelan dengan Solidwork.

4.2.1. Data Ukuran Utama Platform PLTAL

Tabel 4.1 Data Struktur Ukurar	n Utama PLTAL
Ukuran Utama	Unit
Panjang Platform (LOA)	33,665 m
Diameter Maksimal (B)	2,325 m
Draught	1,1625 m
Diameter Blade	8 m

4.2.2. Data Gambar Referensi Cylindrical Platform

Gambar 4.1 Desain Cylindrical Platform

Pada permbuatan model awal dilakukan dengan menggunakan software Autocad dengan membuat koordinat yang selanjutnya dilakukan pada software Maxsurf. Titik koordinat tersebut meliputi penampang melintang maupun membujur.

Pemodelan platfrom mengarah pada bagian lambung yang berbentuk Cylindrical dan lengan platform sedangkan pada turbin menggunakan referensi dari jurnal dengan jenis turbin yang sama. Tebal Pelat

Pada pembuatan model dalam kasus ini menggunakan tebal pelat 10 mm, untuk tiap sisi pelat platform

➢ Frame Spacing

Menurut Rules DNVGL-ST-0164 bahwa kapal dengan ukuran panjang <60 m, memiliki panjang antar frame minimum adalah 0,78 m.

Untuk kasus pemodelan ini menggunakan jarak antar frame adalah 0,620m.

Blade turbin

Turbin merupakan salah satu parameter yang digunakan untuk menganalisa kekuatan dari lengan platform. Pada tugas akhir ini blade yang digunakan pada kasus ini menggunakan pendekatan referensi jurnal dengan jenis hydrofoil HF1020 [19]. Berikut tabel referensi blade yang dipakai pada tugas akhir ini :

Tab	el 4.2 Data refe	rensi h	ydrofo	il
Hydrofoil	Coefisien of lift	L/D	r/R	Angle of attack
HF1020	1,8	125	0,6	8

Pada tabel 4.2 menunjukkan perencanaan hydrofoil yang dipakai sebagai bahan untuk dilakukan analisa turbin pada tugas akhir ini. Pertimbangan dalam menentukan hydrofoil dilhat dari r/R, nilai koefisien lift serta L/D yang besar dibanding nilai drag. Nilai lift yang besar menyebabkan blade berputar. Berbeda dengan nilai drag yang besar akan menyebabkan blade tersebut tidak berputar maksimal, sehingga akan berpengaruh pada power yang dihasilkan.

Gambar 4.2 Grafik nilai c/R dan r/R

HATCT (Horizontal Axis Tidal Current Turbine) memiiki distribusi chord untuk dipelajari. Terlihat pada gambar 4.2 kurva mewakili distribusi chord: CD1 adalah distribusi chord yang digunakan untuk model Contra Rotating Marine Current Turbine [20], CD2 adalah distribusi akor yang digunakan untuk rotor HATCT 20 m [21], CD3 menunjukkan distribusi chord yang digunakan untuk turbin 35 kW Gen4 dan Verdant-power, CD4 adalah distribusi chord untuk NACA 44XX berbasis hydrofoil 5 m diameter rotor dan CD5 adalah distribusi chord yang digunakan adalah CD2.

4.2 Perhitungan Beban

4.1.1. Perhitungan Beban Arus

a) Gaya Lift (F_L)

Gaya angkat atau lift adalah gaya hidrodinamik dalam arah vertikal, gaya ini terjadi apabila terdapat konsentrasi kecepatan arus laut terhadap struktur dengan arah vertikal. Turbin mengalami gaya angkat karena mendapatkan kecepatan dari arus laut.

Berikut dilakukan perhitungan untuk mencari nilai dari gaya angkat dari turbin dengan melakukan beberapa variasi kecepatan arus laut sesuai dengan lokasi perencanaan.

Variasi kecepatan arus 2 m/s, 3 m/s, 4 m/s, 5 m/s dengan perhitungan sebagai berikut :

$$\mathbf{F}_{L} = \frac{1}{2} \ x \ C_{L} \ x \ \rho \ x \ V c^{2} \ x \ A....(2.11)$$

Dimana :

 $\begin{array}{ll} F_L & = gaya \mbox{ angkat } (N) \\ C_L & = \mbox{ koefisien } gaya \mbox{ angkat } \\ & = 1,9 \\ \mbox{$\pmb{\rho}$} & = \mbox{ massa jenis air } (\mbox{kg/m}^3) \\ & = 1,025 \mbox{ kg/m}^3 \\ V_c & = \mbox{ kecepatan } \mbox{arus } (\mbox{m/s}^2) \\ & = 2 \mbox{ m/s, } 3 \mbox{ m/s, } 4 \mbox{ m/s, } 5 \mbox{ m/s} \\ A & = \mbox{ Luas Permukaan } (\mbox{m}^2) \end{array}$

The filter of the filter of the filter of the

r/R	c/R	c/R + 0,02	r	с	S	c.s
0,2	0,1049	0,1049	4	0,4196	1	0,4196
0.25	0,1002	0,1002	4	0,4008	4	1,6032
0,3	0,0955	0,0955	4	0,382	1	0,382
0,35	0,091	0,091	4	0,364	4	1,456
0,4	0,0862	0,0862	4	0,3448	1	0,3448

0,45	0,0817	0,0817	4	0,3268	4	1,3072
0,5	0,0772	0,0772	4	0,3088	1	0,3088
0,55	0,0723	0,0723	4	0,2892	4	1,1568
0,6	0,0675	0,0675	4	0,27	1	0,27
0,65	0,063	0,063	4	0,252	4	1,008
0,7	0,0581	0,0581	4	0,2324	1	0,2324
0,75	0,0536	0,0536	4	0,2144	4	0,8576
0,8	0,0489	0,0489	4	0,1956	1	0,1956
0,85	0,0442	0,0442	4	0,1768	4	0,7072
0,9	0,0393	0,0393	4	0,1572	1	0,1572
0,95	0,0347	0,0347	4	0,1388	4	0,5552
1	0,0306	0,0306	4	0,1224	1	0,1224
					∑c.s	11,084

S =
$$1/3 x h x \sum c/R.s$$

= $1/3 x 0,20 x 11,084$
= $0,7389 m^2$
Jadi,

A = $\pi r^2 x S$ = 3,14 x (4²) x 0,7389 = 37,12401 m²

Gaya angkat (lift) pada Turbin

a. Kecepatan 2 m/s

$$F_{\rm L} = \frac{1}{2} x C_L x \rho x V c^2 x A$$

Jadi,

$$F_{L} = \frac{1}{2} x C_{L} x \rho x V c^{2}$$

$$F_{L} = \frac{1}{2} x 1,9 x 1,025 x (2^{2}) x 37,12401$$

$$F_{L} = 144,5980 N$$

b. Kecepatan 3 m/s

$$\mathbf{F}_{\mathrm{L}} = \frac{1}{2} \ x \ C_L \ x \ \rho \ x \ V c^2 \mathbf{x} \ \mathbf{A}$$

Jadi,

$$F_{L} = \frac{1}{2} x C_{L} x \rho x V c^{2}$$

$$F_{L} = \frac{1}{2} x 1,9 x 1,025 x (3^{2}) x 37,12401$$

$$F_{L} = 325,3455 \text{ N}$$

c. Kecepatan 4 m/s

$$F_{\rm L} = \frac{1}{2} x C_L x \rho x V c^2 x A$$

Jadi,

$$F_{L} = \frac{1}{2} x C_{L} x \rho x V c^{2}$$

$$F_{L} = \frac{1}{2} x 1.9 x 1.025 x (4^{2}) x 37.12401$$

$$F_{L} = 573.3921 \text{ N}$$

d. Kecepatan 5 m/s

$$F_{\rm L} = \frac{1}{2} x C_L x \rho x V c^2 x A$$

Jadi,

$$F_{L} = \frac{1}{2} x C_{L} x \rho x V c^{2}$$

$$F_{L} = \frac{1}{2} x 1,9 x 1,025 x (5^{2}) x 37,12401$$

$$F_{L} = 903,7376 N$$

Nilai F_L diketahui, maka selanjutnya merubah gaya angkat ke arah sumbu x dan y.

a. Kecepatan 2 m/s
Sumbu x ;

$$F_{Lx} = F_L \cos \propto$$

 $F_{Lx} = 144,5980 \cos 82^\circ$
 $F_{Lx} = 40,2483 \text{ N}$
Sumbu y ;
 $F_{Ly} = F_L \cos \propto$
 $F_{Ly} = 144,5980 \sin 8^\circ$
 $F_{Ly} = 40,2483 \text{ N}$

Jadi, total perhitungan nilai gaya angkat untuk setiap sumbu x dan y, pada kecepatan arus 2 m/s didapat nilai gaya angkat sumbu x sebesar 40,2483 N dan sumbu y sebesar 40,2483 N. sedangkan untuk variasi kecepatan lainnya ditampilkan pada tabel berikut ini :

No	Variasi Kecepatan Arus	F_L (Newton)		
(m/s)		sumbu x	sumbu y	
1	2	40,2483	40,2483	
2	3	90,5587	90,5587	
3	4	160,9932	160,9932	

Tabel 4.4 Nilai gaya angkat sumbu x dan y dengan variasi kecepatan arus

4 5	251,5519	251,5519
-----	----------	----------

Pada tabel 4.4 nilai gaya angkat disetiap kecepatan pada sumbu x dan y yang sudah dikalikan dengan jumlah blade yakni 2 buah. Nilai tersebut sebagai nilai input untuk analisa simulasi kekuatan pada lengan platfom.

Gambar 4.3 Grafik gaya angkat dengan variasi kecepatan arus laut

Pada gambar 4.3 menunjukkan besaran nilai gaya angkat yang terjadi pada turbin disetiap kecepatan megalami kenaikan. Jadi, semakin besar gaya tersebut, beban yang dialami lengan akan semakin besar pula.

b) Gaya Drag (F_d)

Sebelum melakukan perhitungan, terlebih dahulu harus mengetahui bagian-bagian yang terkena gaya drag force. Pada sistem mekanisme struktur platform, bagian yang menghasilkan gaya drag yakni turbin

Berikut dilakukan perhitungan untuk mencari nilai dari drag force dengan melakukan beberapa variasi kecepatan arus laut sesuai dengan lokasi perencanaan.

Variasi kecepatan arus 2 m/s, 3 m/s, 4 m/s, 5 m/s dengan perhitungan sebagai berikut :

$$\mathbf{F}_{d} = \frac{1}{2} \mathbf{x} \, C_{d} \, \mathbf{x} \, \boldsymbol{\rho} \, \mathbf{x} \, V c^{2} \, \mathbf{x} \, A.....(2.12)$$

Dimana :

 $\boldsymbol{\rho}$ = Massa Jenis air laut

 $= 1,025 \text{ Kg/m}^3$ $V_C = \text{Kecepatan arus laut}$ = 2 m/s, 3 m/s, 4 m/s, 5 m/s A = Luas penampang $= 37,12401 \text{ m}^2$

Mencari nilai C_D;

F_L pada kondisi kecepatan 2 m/s sebesar 144,5980 N

$$\begin{array}{ll} F_L/F_D & = 125 \\ F_D & = 1,1568 \end{array}$$

Jadi,

$$C_D = \frac{F_D}{0.5 \, x \, \rho \, x \, V^2 x \, A}$$

$$C_d = 0,015$$

a. Kecepatan 3 m/s 1

$$F_{d} = \frac{1}{2} \times C_{d} \times \rho \times Vc^{2} \times A$$

Jadi,

$$F_{d} = \frac{1}{2} x V_{c} x \rho x V c^{2} x A$$

$$F_{d} = \frac{1}{2} x 1,025 x (3^{2}) x 0,015 x 37,12401$$

$$F_{d} = 2,6028 N$$

b. Kecepatan 4 m/s

$$F_{\rm d} = \frac{1}{2} \ge C_d \ge \rho \ge Vc^2 \ge A$$

Jadi,

$$F_{d} = \frac{1}{2} x V_{c} x \rho x V c^{2} x A$$

$$F_{d} = \frac{1}{2} x 1,025 x (4^{2}) x 0,13 x 37,12401$$

$$F_{d} = 9,2543 \text{ N}$$

c. Kecepatan 5 m/s

$$F_{d} = \frac{1}{2} \times C_{d} \times \rho \times Vc^{2} \times A$$

Jadi,

$$F_{d} = \frac{1}{2} x V_{c} x \rho x V c^{2} x A$$

$$F_{d} = \frac{1}{2} x 1,025 x (5^{2}) x 0,13 x 0,0249$$

$$F_{d} = 14,4598 N$$

Nilai $F_{\rm d}$ diketahui, maka selanjutnya merubah gaya drag ke arah sumbu x dan y

a. Kecepatan 2 m/s Sumbu x ; $F_{dx} = F_d \cos \propto$ $F_{dx} = 1,1568 \cos 8^\circ$ $F_{dx} = 2,2911 \text{ N}$ Sumbu y ; $F_{dy} = -F_d \cos \propto$ $F_{dy} = -1,1568 \sin 82^\circ$ $F_{dy} = -2,2911 \text{ N}$

Jadi, total perhitungan nilai gaya drag untuk setiap sumbu x dan y, pada kecepatan arus 2 m/s didapat nilai gaya angkat sumbu x sebesar 2,2911 N dan sumbu y sebesar -2,2911 N. sedangkan untuk variasi kecepatan lainnya ditampilkan pada tabel berikut ini :

No	Variasi Kecepatan Arus	F _d (Newton)	
INO.	(m/s)	sumbu x	sumbu y
1	2	2,2911	-2,2911
2	3	5,1549	-5,1549
3	4	18,3284	-18,3284
4	5	28,6382	-28,6382

Tabel 4.5 Nilai gaya drag sumbu x dan y dengan variasi kecepatan arus

Pada tabel 4.5 nilai gaya drag disetiap kecepatan pada sumbu x dan y yang sudah dikalikan dengan jumlah blade yakni 2 buah. Nilai tersebut sebagai nilai input untuk analisa simulasi kekuatan pada lengan platfom.

Gambar 4.4 Grafik gaya drag dengan variasi kecepatan arus laut

Pada gambar 4.4 menunjukkan besaran nilai gaya drag yang terjadi pada turbin disetiap kecepatan megalami kenaikan, arah gaya drag cenderung arahnya sejajar dengan sudut serang blade.

c) Gaya Apung (F_A)

Hukum Archimedes berbunyi, "Sebuah benda yang dicelupkan sebagian atau seluruhnya ke dalam fluida akan mendapat gaya ke atas sebesar berat fluida yang dipindahkan oleh benda tersebut"

Berikut dilakukan perhitungan gaya apung terhadap lengan platform dan turbin untuk mencari seberapa besar gaya angkat atau apung benda tersebut keatas, sehingga akan digunakan sebagai parameter untuk dilakukan analisa kekuatan lengan platform.

$$F_{A} = \rho X g \times V_{\dots} (2.13)$$

Dimana :

$\mathbf{F}_{\mathbf{A}}$: Gaya apung
ρ	: Massa Jenis air laut

- : 1,025 Kg/m³
- g : Percepatan gravitasi
- : 10 m/s²
- V : Volume benda
 - : 19,869 m³

Jadi, $F_A = \rho x g x V$ = 1,025 x 10 x 19,869= 203,6573 N

4.2.3. Analisa pemodelan

Pada Pemodelan ini menggunakan dimensi utama yang sejak awal direncanakan, Tebal pelat pada stranger serta frame dengan mengacu pada DNVGL-ST-0164. Hasil dari pemodelan untuk mengetahui nilai-nilai yang akan digunakan menghitung kekuatan dari lengan platform.

Berikut merupakan hasil pemodelan pada lengan Platform Pembangkit Listrik Tenaga Arus Laut (PLTAL) :

Gambar 4.5 Model Lengan Platform dan Turbin (tampak samping)

Gambar 4.6 Model Lengan Platform dan Turbin (tampak belakang)

Pada gambar 4.11 menjelaskan hasil dari lengan platform dan turbin pada pemodelan menghasilkan beberapa data seperti massa, volume dan juga luas permukaan dari model.

Berikut ini nilai-nilai yang didapat dari hasil pemodelan pada lengan platform dan turbin :

Tabel 4.6 Hasil Mass Prop	erties pada lengan platform dan turbin
Massa / Berat komponen	29790,86 Kg
Volume	19,869 m ³
Surface area	106,068 m ²
Centre of Massa	x = 29,9012 m
	y = -5,3109 m
	z = 4,3317 m
Moment of inersia	$Ixx = 6655,4637 \text{ kg/m}^2$
	$Iyy = 22803,0132 \text{ kg/m}^2$
	$Izz = 27319,562 \text{ kg/m}^2$

4.3 Pembebanan yang diterima pada Lengan Platform

Pembebanan yang diterima oleh lengan platform sangat menentukan hasil kekuatan yang terjadi pada konstruksi lengan. Mulai dari pembebanan berupa gaya yang terjadi pada turbin serta gaya bouyancy pada lengan dan turbin. Pada gambar 4.11 menjelaskan skema pembebanan yang terjadi pada lengan platform dengan pandangan sumbu x dan sumbu z.

Gambar 4.7 Gaya pembebanan mekanis lengan platfrom tampak sumbu z (tampak samping)

Gambar 4.8 Gaya pembebanan mekanis lengan platfrom tampak sumbu x (tampak belakang)

4.4 Analisis Kekuatan Model

Pada tugas akhir ini, setelah pemodelan struktur cylindrical platform yang telah didapat dari pemodelan sebelumnya dengan menggunakan maxsurft dan solidwork. Setelah itu, dilakukan analisa kekuatan komponen dengan menganalisa dari simulasi.

Pengerjakan analisa struktur ini dalam metode elemen hingga digunakan program Static Structural. Secara umum langkah-langkah yang dilakukan dalam menggunakan software Problem Specifications, Define Materials, Problem Descriptions, Build Geometry, Generate Mesh, Attribute Mesh to model, Boundary condition, Obtains Solutions, Review Result.

Berikut ini merupakan langkah dan hasil analisis yang dilakukan dengan memasukan data input meliputi beban gaya drag, gaya angkat, serta gaya apung yang dihasilkan oleh lengan platform dan turbin.

4.4.1. Analisis Model Lengan Platform

4.4.1.1. Material yang digunakan

AISI 1020 adalah hardenability yang rendah dan baja karbon berkekuatan rendah dengan kekerasan Brinell 119 - 235 dan kekuatan tarik 410-790 MPa. Ini memiliki kemampuan mesin yang tinggi, kekuatan tinggi, daktilitas tinggi dan kemampuan las yang baik. Ini biasanya digunakan dalam kondisi berbalik dan dipoles atau ditarik dingin. Karena kandungan karbonnya yang rendah, ia tahan terhadap pengerasan induksi atau pengerasan api. kekuatan ketebalan. AISI / SAE 1020 grade adalah paduan serbaguna dengan ketahanan korosi atmosferik yang baik

dan kekuatan yang wajar. Berikut ini data material yang digunakan lengan platform seperti terihat pada tabel 4.7.

Tabel 4.7 Data Material				
Jenis Material	Density (kg/m^3)	Posion Ratio	Tensile strength, yield	Modulus of elasticity
	(Kg/III)	Ratio	(MPa)	(GPa)
AISI 1020 Steel	7850	0,29	294,74	200

Tabel 4.7 Data Material

4.4.1.2. Geometri model

Pemodelan dalam software ANSYS akan mendapatkan model seperti berikut :

Gambar 4.9 Model lengan platform

4.4.1.3. Meshing model

Proses pembuatan dimulai dari pembuatan model geometris, setelah itu dilakukan Proses meshing model merupakan kesatuan proses dalam simulasi metode elemen hingga. Meshing memberikan pengaruh yang signifikan pada keakurasian, konvergensi dan kecepatan suatu solusi metode elemen hingga. Didapat hasil meshing model dengan jumlah node 22494, elemen 4690 dan ukuran messing sebesar 100 mm.

Gambar 4.10 Meshing model

4.4.1.4. Static structural

Setelah dilakukan meshing model, langkah selanjutnya adalah menggunakan model tersebut dengan memberikan pembebanan gaya-gaya yang terjadi pada lengan platform, mulai gaya lift, gaya drag dan gaya apung. Selain itu dilakukan dengan beberpa variasi kecepatan bertujuan untuk lebih menjamin validitas hasil model dengan melakukan beberapa variasi kecepatan.

Pada pemodelan ini dimasukkan beberapa data beban untuk dilakukan simulasi pada langkah selanjutnya. Berikut ini tabel data input untuk simulasi Ansys :

No	Variasi Kecepatan Arus	F _L (Ne	ewton)
NO. (m/s)	sumbu x	sumbu y	
1	2	40,2483	40,2483
2	3	90,5587	90,5587
3	4	160,9932	160,9932
4	5	251,5519	251,5519

Tabel 7.0 Data mput mai gaya angka	Tabel 4.8	Data I	nput nilai	gaya	angkat
------------------------------------	-----------	--------	------------	------	--------

No	Variasi Kecepatan Arus	F _d (Newton)	
INO.	0. (m/s)	sumbu x	sumbu y
1	2	2,2911	-2,2911
2	3	5,1549	-5,1549
3	4	18,3284	-18,3284
4	5	28,6382	-28,6382

Tabel 4.9 Data Input nilai gaya drag

Selain data gaya-gaya yang ditunjukkan pada tabel 4.10 dan 4.11. Diinput gaya apung yang didapat oleh lengan platform dan turbin. Nilai gaya apung yang terjadi sebesar 203,6573 N

Gambar 4.11 Mekanisme beban yang diterima oleh lengan platform

Pada gambar 4.11 menunjukkan arah dan lokasi pembebanan yang digunakan sebagai parameter untuk menganalisa kekuatan dari lengan platform. Arah pembebanan mulai dari gaya angkat, gaya drag serta gaya apung.

4.4.1.5. Solution (output data)

Dari hasil post processing finite element analysis pada Static Structural didapatkan data tegangan, dan rengangan pada lengan platform, sehingga letak titik kritis pada lengan platform dapat terlihat. Hasil post processing akan diketahui apakah masih dalam batas aman untuk sebuah desain suatu system. Output berupa hasil tegangan von misses yang digunakan untuk menghitung kriteria kegagalan dari kekuatan material pada suatu sistem struktur. Selain itu rengangan dan total deformasi juga akan terlihat pada hasil simulasi model terse.

Berikut hasil analisa yang didapat dari simulasi dengan 4 variasi kecepatan arus laut yakni sebesar 2 m/s, 3 m/s, 4 m/s, 5 m/s serta pembebanan gaya-gaya yang didapat oleh lengan platform..

a. Pada kecepatan arus laut 2 m/s

Besar nilai gaya lift turbin pada kecepatan 2 m/s yakni sebesar sebesar x = 40,2483 N, y = 40,2483 N, gaya drag sebesar x = 2,2911 N. y = -2,2911 N dan gaya bouyancy sebesar 203,6573 N

Berikut ini merupakan hasil simulasi menggunakan finite element analysis :

Gambar 4. 12 Tegangan yang dialami oleh Lengan Platform pada kecepatan 2 m/s

	ruber mit rubin mitar tegangan pada tengan pianorm			
Parameter	Nilai	Satuan		
Maximum	4,3980 x 10 ⁵	Pa		
Average	1,2941 x 10 ⁵	Pa		
Minimum	1,2097 x 10 ²	Pa		

Tabel 4.10 Hasil nilai tegangan pada lengan platform

Pada gambar 4.12 menunjukkan hasil gambar simulasi tegangan yang terjadi pada lengan platfrom terletak pada area ujung bagian atas lengan, dimana lokasi tersebut menjadi titik area tengangan makimum struktur akibat gaya-gaya yang bekerja pada lengan seperti gaya lift dari turbin, gaya drag dari turbin serta gaya apung struktur lengan dan turbin, sehingga menyebabkan perubahan struktur dari bahan lengan itu sendiri. Pada tengangan normal, terlihat pada gambar diatas dengan warna biru muda merupakan area yang sering mendapatkan gaya secara normal. Nilai yang didapat dari hasil uji simulasi kekuatan lengan platform bisa dilihat pada tabel 4.10.

Gambar 4.13 Rengangan yang dialami oleh Lengan Platform pada kecepatan $2\ {\rm m/s}$

Parameter	Nilai	Satuan
Maximum	2,2000 x 10 ⁻⁶	m/m
Average	6,5769 x 10 ⁻⁷	m/m
Minimum	1,7975 x 10 ⁻¹³	m/m

Tabel 4.11 Hasil nilai rengangan pada lengan platform

Pada gambar 4.13 menunjukkan gambar hasil rengangan struktur yang terjadi pada lengan platfrom, terlihat pada titik area lengan warna merah akibat rengangan maksimal yang terjadi pada lengan.

Dari hasil simulasi pemodelan lengan platform, dengan material AISI 4130 menghasilkan nilai tegangan maksimum sebesar 4,3980 x 10^5 Pa ,serta nilai rengangan maksimum sebesar 2,2000 x 10^{-6} m/m.

Pada tengangan maksimum divalidasi dengan aturan class yang berlaku. Class ABS "Floating Production Instalation 2014" Part 5A Chapter 1 Section 4 mensyaratkan untuk Tegangan maksimum Von Mises harus lebih kecil 0,7 dari yield strength material [22]. Material yang digunakan yakni AISI 1020 dengan yield strength sebesar 2,9474 x 10^8 Pa.

Jadi,
$$f_e < 0.7 f_{\gamma}$$

4,3980 x 10⁵ < 0.7 (2,9474 x 10⁸)
4,3980 x 10⁵ < 2,06318 x 10⁷ (Memenuhi)

Gambar 4.14 Standart Tegangan Von Mises ABS "floating production instalation 2014" [22]

b. Pada kecepatan arus laut 3 m/s

Besar nilai gaya lift turbin pada kecepatan 3 m/s yakni sebesar sebesar x = 90,5587 N, y = 90,5587 N, gaya drag sebesar x = 5,1549 N. y = -5,1549 N dan gaya bouyancy sebesar 203,6573 N

Berikut ini merupakan hasil simulasi menggunakan finite element analysis :

Gambar 4. 15 Tegangan yang dialami oleh Lengan Platform pada kecepatan 3 m/s

Parameter	Nilai	Satuan
Maximum	5,2726 x 10 ⁵	Pa
Average	1,3319 x 10 ⁵	Pa
Minimum	1,3477 x 10 ²	Pa

Tabel 4.12 Hasil nilai von-Mises Stress pada lengan platform

Pada gambar 4.15 menunjukkan hasil gambar simulasi tegangan yang terjadi pada lengan platfrom terletak pada area ujung bagian atas lengan, dimana lokasi tersebut menjadi titik area tengangan makimum struktur akibat gaya-gaya yang bekerja pada lengan seperti gaya lift dari turbin, gaya drag dari turbin serta gaya apung struktur lengan dan turbin, sehingga menyebabkan perubahan struktur dari bahan lengan itu sendiri. Pada tengangan normal, terlihat pada gamabr diatas dengan warna biru muda merupakan area yang sering mendapatkan gaya secara normal. Nilai yang didapat dari hasil uji simulasi kekuatan lengan platform bisa dilihat pada tabel 4.12.

Gambar 4.16 Rengangan yang dialami oleh Lengan Platform pada kecepatan 3 m/s

Taber 4.15 Hash intal lengangan pada lengan platform			
Parameter	Nilai	Satuan	
Maximum	2,6374 x 10 ⁻⁶	m/m	
Average	6,7651 x 10 ⁻⁷	m/m	
Minimum	1,8899 x 10 ⁻¹³	m/m	

Tabel 4.13 Hasil nilai rengangan pada	lengan	platform
---------------------------------------	--------	----------

Pada gambar 4.16 mennjukkan gambar hasil rengangan struktur yang terjadi pada lengan platfrom, terlihat pada titik area lengan warna merah akibat tengangan maksimal yang terjadi pada lengan. Nilai yang didapat dari hasil uji

simulasi kekuatan lengan platform tidak terlalu besar terlihat pada tabel 4.13 dengan nilai-nilai hasil simulasi yang didapat.

Dari hasil simulasi pemodelan lengan *platform*, dengan material AISI 4130 menghasilkan nilai tegangan maksimum sebesar 5,2726 x 10^5 Pa , serta nilai rengangan maksimum sebesar 2,6374 x 10^{-6} m/m,

Pada tengangan maksimum divalidasi dengan aturan class yang berlaku. Class ABS "Floating Production Instalation 2014" Part 5A Chapter 1 Section 4 mensyaratkan untuk Tegangan maksimum Von Mises harus lebih kecil 0,7 dari yield strength material [22]. Material yang digunakan yakni AISI 1020 dengan yield strength sebesar 2,9474 x 10^8 Pa.

Jadi, $f_e < 0.7 f_{\gamma}$ 5,2726 x 10⁵ < 0.7 (2,9474 x 10⁸) 5,2726 x 10⁵ < 2,06318 x 10⁷ (Memenuhi)

c. Pada kecepatan arus laut 4 m/s

Besar nilai gaya lift turbin pada kecepatan 5 m/s yakni sebesar sebesar x = 160,9932 N, y = 160,9932 N, gaya drag sebesar x = 18,3284 N. y = -18,3284 N dan gaya bouyancy sebesar 203,6573 N

Berikut ini merupakan hasil simulasi menggunakan finite element analysis :

Gambar 4.17 Tegangan yang dialami oleh Lengan Platform pada kecepatan 4 m/s

Pada gambar 4.17 menunjukkan hasil gambar simulasi tegangan yang terjadi pada lengan platfrom terletak pada area ujung bagian atas lengan, dimana lokasi tersebut menjadi titik area tengangan makimum struktur akibat gaya-gaya yang bekerja pada lengan seperti gaya lift dari turbin, gaya drag dari turbin serta gaya apung struktur lengan dan turbin, sehingga menyebabkan perubahan struktur dari bahan lengan itu sendiri. Pada tengangan normal, terlihat pada gamabr diatas dengan warna biru muda merupakan area yang sering mendapatkan gaya secara normal. Nilai yang didapat dari hasil uji simulasi kekuatan lengan platform bisa dilihat pada tabel 4.14.

Parameter	Nilai	Satuan
Maximum	6,2941 x 10 ⁵	Pa
Average	1,3772 x 10 ⁵	Pa
Minimum	8,7258 x 10 ³	Pa

Tabel 4.14 Hasil nilai von-Mises Stress pada lengan platform

Gambar 4.18 Rengangan yang dialami oleh Lengan Platform pada kecepatan 4 m/s

Pada gambar 4.18 mennjukkan gambar hasil rengangan struktur yang terjadi pada lengan platfrom, terlihat pada titik area lengan warna merah akibat tengangan maksimal yang terjadi pada lengan. Nilai yang didapat dari hasil uji simulasi kekuatan lengan platform tidak terlalu besar terlihat pada tabel 4.15 dengan nilai-nilai hasil simulasi yang didapat.

	Bangan paga ion	San pranorni
Parameter	Nilai	Satuan
Maximum	3,1546 x 10 ⁻⁶	m/m
Average	7,0982 x 10 ⁻⁷	m/m
Minimum	1,3039 x 10 ⁻¹³	m/m

Tabel 4.15 Hasil nilai rengangan pada lengan platform

Dari hasil simulasi pemodelan lengan *platform*, dengan material AISI 4130 menghasilkan nilai tegangan maksimum sebesar 6,2941 x 10^5 Pa , serta nilai rengangan maksimum sebesar 3,1546 x 10^{-6} m/m.

Pada tengangan maksimum divalidasi dengan aturan class yang berlaku. Class ABS "Floating Production Instalation 2014" Part 5A Chapter 1 Section 4 mensyaratkan untuk Tegangan maksimum Von Mises harus lebih kecil 0,7 dari yield strength [22]. Material yang digunakan yakni AISI 1020 dengan yield strength sebesar 2,9474 x 10⁸ Pa.

Jadi,
$$f_e < 0.7 f_{\gamma}$$

6,2941 x 10⁵ < 0,7 (2,9474 x 10⁸)
6,2941 x 10⁵ < 2,06318 x 10⁷ (Memenuhi)

d. Pada kecepatan arus laut 5 m/s

Besar nilai gaya lift turbin pada kecepatan 5 m/s yakni sebesar sebesar x = 251,5519 N, y = 251,5519 N, gaya drag sebesar x = 28,6382 N. y = -28,6382 N dan gaya bouyancy sebesar 203,6573 N

Berikut ini merupakan hasil simulasi menggunakan finite element analysis :

Gambar 4.19 Tegangan yang dialami oleh Lengan Platform pada kecepatan 5 m/s

Pada gambar 4.19 menunjukkan hasil gambar simulasi tegangan yang terjadi pada lengan platfrom terletak pada area ujung bagian atas lengan, dimana lokasi tersebut menjadi titik area tengangan makimum struktur akibat gaya-gaya yang bekerja pada lengan seperti gaya lift dari turbin, gaya drag dari turbin serta gaya apung struktur lengan dan turbin, sehingga menyebabkan perubahan struktur dari bahan lengan itu sendiri. Pada tengangan normal, terlihat pada gamabr diatas dengan warna biru muda merupakan area yang sering mendapatkan gaya secara normal. Nilai yang didapat dari hasil uji simulasi kekuatan lengan platform bisa dilihat pada tabel 4.16.

Parameter	Nilai	Satuan
Maximum	7,6349 x 10 ⁵	Ра
Average	2,6028 x 10 ⁵	Ра
Minimum	1,3266 x 10 ²	Ра

Tabel 4.16 Hasil nilai von-Mises Stress pada lengan platform

Gambar 4.20 Rengangan yang dialami oleh Lengan Platform pada kecepatan 5 m/s

Pada gambar 4.20 mennjukkan gambar hasil rengangan struktur yang terjadi pada lengan platfrom, terlihat pada titik area lengan warna merah akibat tengangan maksimal yang terjadi pada lengan. Nilai yang didapat dari hasil uji simulasi kekuatan lengan platform tidak terlalu besar terlihat pada tabel 4.17 dengan nilai-nilai hasil simulasi yang didapat.

Parameter	Nilai	Satuan
Maximum	3,8175 x 10 ⁻⁶	m/m
Average	1,3214 x 10 ⁻⁶	m/m
Minimum	2,2949 x 10 ⁻¹³	m/m

Tabel 4.17 Hasil nilai rengangan pada lengan platform

Dari hasil simulasi pemodelan lengan *platform*, dengan material AISI 4130 menghasilkan nilai tegangan maksimum sebesar 7,6349 x 10^5 Pa, serta nilai rengangan maksimum sebesar 3,8175 x 10^{-6} m/m.

Pada tengangan maksimum divalidasi dengan aturan class yang berlaku. Class ABS "Floating Production Instalation 2014" Part 5A Chapter 1 Section 4 mensyaratkan untuk Tegangan maksimum Von Mises harus lebih kecil 0,7 dari yield strength material [22]. Material yang digunakan yakni AISI 1020 dengan yield strength sebesar 2,9474 x 10^8 Pa.

Jadi, $f_e < 0.7 f_{\gamma}$ 7,6349 x 10⁵ < 0.7 (2,9474 x 10⁸) 7,6349 x 10⁵ < 2,06318 x 10⁷ (Memenuhi)
BAB V PENUTUP

5.1 Kesimpulan

Berdasarkan hasil hasil dan pembahasan telah dilakukan pada bab IV mengenai kekuatan pada cylindrical platform khususnya bagian lengan platform, maka didapatkan beberapa kesimpulan pada tugas akhir ini, bahwa :

- Tegangan maksimum yang terjadi pada lengan platform ketika kecepatan arus laut 2 m/s sebesar 4,3980 x 10⁵ Pascal, kecepatan arus laut 3 m/s sebesar 5,2726 x 10⁵ Pascal, kecepatan arus laut 4 m/s sebesar 6,2941 x 10⁵ Pascal kecepatan arus laut 5 m/s sebesar 7,6349 x 10⁵ Pascal, Tegangan dari semua variasi kecepatan dianggap aman karena tegangan yang terjadi kurang dari presentase tegangan izin dari material struktur yaitu σactual ≤ 2,06318 x 10⁷ sesuai standart ABS "Floating Production Instalation 2014" " Part 5A Chapter 1 Section 4.
- 2. Rengangan maksimum yang terjadi pada lengan platform pada kecepatan arus 2 m/s sebesar 2,2000 x 10⁻⁶ m/m, kecepatan 3 m/s sebesar 2,6374 x 10⁻⁶ m/m, kecepatan 4 m/s sebesar 3,1546 x 10⁻⁶ m/m, dan kecepatan 5 m/s sebesar 3,8175 x 10⁻⁶ m/m.
- 3. Hasil simulasi yang dilakukan untuk analisis kekuatan lengan platform sesuai standartyang berlaku, untuk kekuatan lengan platform pada platform PLTAL tipe Cylindrical Platform aman untuk digunakan.

5.2 Saran

Saran yang dibutuhkan dalam penelitian ini adalah:

- 1. Perlu adanya penelitian lebih lanjut dalam menentukan desain kontruksi PLTAL tipe Cylindrical platform agar dapat mengetahui kualitas dan kuantitas yang baik sesuai standart yang berlaku untuk di produksi.
- 2. Perlu dilakukan penenelitian lebih lanjut mengenai pembangkit tenaga arus laut khususnya pada tipe Cylindrical platform.

"Halaman ini sengaja dikosongkan

\

DAFTAR PUSTAKA

- [1] A. D. Rifki, "Design Simulation of Axial Turbine for Ocean Thermal Energy Conversion (OTEC)," *IJMEIR*, 2018.
- [2] K. E. d. S. D. M. E. Indonesia, Handbook Energy dan Energy Statistics ESDM, Jakarta: Pusdatin ESDM, 2016.
- [3] A. Munib, "Analisa Numerik Respon Gerak Pada Lambung Cylindrical Platform PLTAL Laut Dalam," Surabaya, 2019.
- [4] D. A. W. Dewi, "Tentang nusa penida," jumat 09 2018. [Online]. Available: http://alamkubaliku.blogspot.com/2014/08/tentang-nusa-penida-ada-beberapapulau.html. [Accessed 04 2019].
- [5] A. Rinaldy, "Jenis-jenis bangunan lepas pantai," 02 2012. [Online]. Available: http://rinaldyaulia.blogspot.com/2011/01/jenis-jenis-bangunan-lepas-pantai.html. [Accessed 04 2019].
- [6] LPPM-ITS, "Turbin," Teknik Sistem Perkapalan, 2016.
- [7] Z. Usail, "Studi Kekuatan Mekanisme Penahan Lengan Turbin Pada Floating Platform PLTAL," jurusan Teknik Sistem Perkapalan, ITS, Surabaya, 2017.
- [8] F. Herwanzah, "Tugas Akhir Analisa Tegangan Dinamis Flexible Riser Akibat Gerak Semi-Submersible pada Kondisi Operasi," Program Studi Teknik Kelautan ITS, 2015.
- [9] M. H. W. Sufyan, "Tugas Akhir Analisa Tegangan Dinamis Flexible Riser Akibat Motion FPSO Saat Kondisi Fully Loaded dan Ballast dengan Variasi Pankang," Fakultas Teknologi Kelautan ITS, 2017.
- [10] H. Anindyasarathi, "Analisis Pengaruh Peninggian Platform Akibat Subsidence dengan Pendekatan Statis Berbasis Resiko," *digilib*, 2013.
- [11] D. Anggriawan, "Simulasi Water Scooter dengan Bahan Fiber Glass menggunakan autodesk simulation CFD dan Autodesk Inventor," Jurusan Teknik Mesin, UMM, Malang, 2017.
- [12] F. F. Ainin, "Studi Pengaruh Penambahan Clump Bouy pada System Mooring Platform PLTAL Laut Dalam," *IJMEIR*, 2018.
- [13] P. L. Chandra, "Studi Kekuatan Struktur Lambung Pembangkit Listrik Tenaga Arus Laut PLTAL Arus Laut Platform Patamaran)," *IJMEIR*, 2018.
- [14] S. L. Estu and DKK, "Jurnal Analisa Finansial Pengembangan Energi Laut Di indonesia," *Balai Besar Penelitian Sosial Ekonomi Kelautan dan Perikanan*, 2013.
- [15] N. S. Mahar, "Tugas Akhir Analisa Tegangan Pada Yoke Arm External Turret Moring System Floating Production Storage And Affloading (FPSO)," Fakultas Teknologi Kelautan ITS, 2017.
- [16] d. A. S. T Putranto, "ANALISA NUMERIK GERAKAN DAN KEKUATAN KAPAL AKIBAT BEBAN SLAMMING PADA KAPAL PERANG TIPE CORVETTE," *Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan*, vol. 12 no.13, pp. 158-154, 2015.

- [17] M. Karimirad, "Wave- And Wind-Induced Dynamic Response Of A Spar Type Offshore Wind Turbine," QUB, Belfast, 2011.
- [18] E. B. Djatmiko, Perilaku dan Operabilitas Bangunan Laut di Atas Gelombang Aca, Surabaya: ITS Press, 2012.
- [19] M. R. A. Jai N. Goundar, "Design of Horizontal axis tidal current turbine," *Applied Energy*, vol. 111, pp. 161-174, 2013.
- [20] C. G. G. A. J. C. O.-S. Clarke JA, A contra rotating marine current turbine on a flexible mooring, Brest, Frances: Development of a scaled prototype, In : 2nd International conference on ocean energy, 2008.
- [21] D. M, "XFoil: an analysis and design system for low Reynolds number," Conference on low Reynolds number airfoil aerodynamics. University of Notre Dame, 1989.
- [22] ABS, Floating Production Instalation, New York, 2010.
- [23] A. B. A. M. J. C. W.M.J. Batten, "The Prediction of the hydrodynamic performance of marine current turbine," *Renewable Energy*, vol. 33, pp. 1085-1096, 2008.
- [24] C. G. G. A. J. C. O.-S. S. Clarke JA, "A A contra-rotating marine current turbine on a flexible mooring : Development of a scaled prototype," 2nd International conference on ocean energy, Brest, France, 2008.

LAMPIRAN

PROJECT REPORT

First Saved	Wednesday, July 16, 2019	
Last Saved	Wednesday, July 16, 2019	
Product Version	19.0 Release	
Save Project Before Solution	No	
Save Project After Solution	No	

TABLE 2Model (E4) > Geometry

Object Name	Geometry			
State	Fully Defined			
	Definition			
Source	F:\@KULIAH\S I - SISTEM PERKAPALAN - ITS\SEMESTER 4\TUGAS AKHIR\P3\BISMILLAH\u00000000_files\dp0\Geom-3\DM\Geom-3.scdoc			
Туре	SpaceClaim			
Length Unit	Meters			
Element Control	Program Controlled			
Display Style	Body Color			
	Bounding Box			
Length X	1.5215 m			
Length Y	5.6562 m			
Length Z	4.8625 m			
	Properties			
Volume	Volume 0.19161 m ³			
Mass	1504.1 kg			
Scale Factor Value 1.				
	Statistics			
Bodies	1			
Active Bodies	1			
Nodes	13340			
Elements	6623			
Mesh Metric	None			
	Basic Geometry Options			
Solid Bodies	Yes			
Surface Bodies	Yes			
Line Bodies	Yes			
Parameters	Independent			
Parameter Key				
Attributes	Yes			
Attribute Key				
Named Selections	Yes			
Named Selection Key				
Material Properties	Yes			
Advanced Geometry Options				
Use Associativity	Yes			

Coordinate Systems	Yes
Coordinate System	
Key	
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	Yes
Compare Parts On	No
Update	
Analysis Type	3-D
Mixed Import Resolution	None
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

Model (E4) > Geometry > Parts				
Object Name Geom-3\Solid1				
State	Meshed			
Graphic	Graphics Properties			
Visible Yes				
Transparency	1			
Def	inition			
Suppressed	No			
Stiffness Behavior Flexible				
Coordinate System	Default Coordinate System			
Reference Temperature	By Environment			
Behavior	None			
Material				
Assignment	Structural Steel			
Nonlinear Effects	Yes			
Thermal Strain Effects	Yes			
Bounding Box				
Length X	1.5215 m			
Length Y	5.6562 m			
Length Z	4.8625 m			
Pro	Properties			
Volume	0.19161 m ³			
Mass	1504.1 kg			
Centroid X	30.791 m			
Centroid Y	-3.5568 m			
Centroid Z	2.8752 m			
Moment of Inertia Ip1	6622.1 kg⋅m²			
Moment of Inertia Ip2	361.84 kg⋅m²			
Moment of Inertia Ip3	6881.2 kg⋅m²			
Statistics				

TABLE 3Model (E4) > Geometry > Parts

Nodes	13340		
Elements	6623		
Mesh Metric	None		
CAD Attributes			
PartTolerance:	0.00000001		
Color:175.143.143			

Coordinate Systems

TABLE 4					
Model (E4) > Coordinate Systems > Coordinate System					
	Object Name	ne Global Coordinate System			
	State	Fully Defined			
Definition					
	Туре	Cartesian			
	Coordinate System ID	0.			
	Origin				
	Origin X	0. m			
	Origin Y	0. m			
	Origin Z	0. m			
	Directional Vectors				
	X Axis Data	[1.0.0.]			
	Y Axis Data	[0.1.0.]			

Mesh

T.	ABL	E	5
(I	$(\mathbf{E}\mathbf{A})$		ЪÆ.

[0.0.1.]

Z Axis Data

Model (E4) > Mesh				
Object Name	Mesh			
State	Solved			
Display				
Display Style	Body Color			
Defaults				
Physics Preference	Mechanical			
Relevance	0			
Element Order	Program Controlled			
Sizing				
Size Function	Adaptive			
Relevance Center	Coarse			
Element Size	0.20 m			
Mesh Defeaturing	Yes			
Defeature Size	Default			
Transition	Fast			
Initial Size Seed	Assembly			
Span Angle Center	Coarse			
Bounding Box Diagonal	7.61260 m			
Average Surface Area	5.98860 m ²			

1.63980 m				
Quality				
Yes, Errors				
Standard Mechanical				
Default (0.050000)				
Medium				
None				
None				
Smooth Transition				
0.272				
5				
1.2				
Pre				
No				
Program Controlled				
No				
Default (4)				
Dimensionally Reduced				
Program Controlled				
Yes				
Please Define				
No				
Statistics				
13340				
6623				

Static Structural (E5)

TABLE 6			
Model (E4) > Analysis			
Object Name Static Structural			
State	Solved		
Definition			
Physics Type	Structural		
Analysis Type	Static Structural		
Solver Target	Mechanical APDL		
Options			
Environment Temperature	22. °C		
Generate Input Only	No		

TABLE 8
Model (E4) > Static Structural (E5) > Loads

Model (E4) > Static Structural (E5) > Loads				
Object Name	Fixed Support	Gaya Bouyancy	Gaya Lift	Gaya Drag
State	Fully Defined			
Scope				
Scoping Method		Geome	try Selection	

Geometry	1 Face						
	Definition						
Туре	Fixed Support	Fixed Support Force					
Suppressed			No				
Define By		Vector Components					
Magnitude		203.66 N (ramped)					
Direction		Defined					
Coordinate System		Global Coordinate System					
X Component			49.248 N (ramped)	2.2911 N (ramped)			
Y Component			40.248 N (ramped)	-2.2911 N (ramped)			
Z Component	0. N (ramped)						

FIGURE 1 Model (E4) > Static Structural (E5) > Gaya Bouyancy

FIGURE 2 Model (E4) > Static Structural (E5) > Gaya Lift

FIGURE 3 Model (E4) > Static Structural (E5) > Gaya Drag

Solution (E6)

Model (E4) > Static Structural (E5) > Solution				
	Object Name	Solution (E6)		
	State	Solved		
	Adaptive Mesh Ref	inement		
	Max Refinement Loops	5.		
	Refinement Depth	2.		
	Information			
	Status	Done		
	MAPDL Elapsed Time	15 m 52 s		
	MAPDL Memory Used	5.5332 GB		
	MAPDL Result File Size	472.94 MB		
	Post Processi	ng		
	Beam Section Results	No		
	On Demand Stress/Strain	No		

TABLE 9 Μ

TABLE 10 Model (E4) > Static Structural (E5) > Solution (E6) > Solution Information

Object Name	Solution Information	
State	Solved	
Solution Inform	nation	
Solution Output	Solver Output	
Newton-Raphson Residuals	0	
Identify Element Violations	0	
Update Interval	2.5 s	
Display Points	All	
FE Connection V	isibility	
A (* (X 7**1*1*)		
Activate Visibility	Yes	
Display	Yes All FE Connectors	
Draw Connections Attached To	Yes All FE Connectors All Nodes	
Draw Connections Attached To Line Color	Yes All FE Connectors All Nodes Connection Type	
Draw Connections Attached To Line Color Visible on Results	Yes All FE Connectors All Nodes Connection Type No	
Display Draw Connections Attached To Line Color Visible on Results Line Thickness	Yes All FE Connectors All Nodes Connection Type No Single	

TABLE 11

Model (E4) > Static Structural (E5) > Solution (E6) > Results

Object Name	Equivalent Stress	Equivalent Elastic Strain	
State	Solved		
Scope			
Scoping Method	od Geometry Selection		
Geometry	All Bodies		
Definition			
Туре	Equivalent (von-Mises) Stress	Equivalent Elastic Strain	
By	Time		
Display Time	Last		

Calculate Time History	Yes				
Identifier					
Suppressed	No				
	Integration Point Results				
Display Option	Average	ed			
Average Across Bodies	No				
Results					
Minimum	1.2097e-002 Pa	1.7975e-013 m/m			
Maximum	4.398e+005 Pa	2.2e-006 m/m			
Average	1.2941e+005 Pa 6.5769e-007 m/r				
Minimum Occurs On	Geom-3\Solid1				
Maximum Occurs On	Ccurs On Geom-3\Solid1				
	Information				
Time	1. s				
Load Step	1				
Substep	1				
Iteration Number	1				

 TABLE 12

 Model (E4) > Static Structural (E5) > Solution (E6) > Equivalent Stress

 Time [s]
 Minimum [Pa]
 Maximum [Pa]
 Average [Pa]

 1.
 1.2097e-002
 4.398e+005
 1.2941e+005

 TABLE 13

 Model (E4) > Static Structural (E5) > Solution (E6) > Equivalent Stress > Convergences

	(
Object Name	Convergence		
State	Solved		
Definition			
Туре	Maximum		
Allowable Change	4. %		
Results			
Last Change	-2.7271 %		
Converged	Yes		

FIGURE 5

Model (E4) > Static Structural (E5) > Solution (E6) > Equivalent Stress > Convergence

	Equivalent Stress (Pa)	Change (%)	Nodes	Elements
1	2.3788e+005		13340	6623
2	2.8792e+005	19.034	94454	49935
3	4.0336e+005	33.398	152791	86387
4	4.3348e+005	7.1998	242905	143639
5	4.5196e+005	4.1733	466041	291425
6	4.398e+005	-2.7271	943731	620510

Model (E4) > Static Structural (E5) > Solution (E6) > Equivalent Stress > Convergence

 TABLE 14

 Model (E4) > Static Structural (E5) > Solution (E6) > Equivalent Elastic Strain

 Time [s]
 Minimum [m/m]
 Maximum [m/m]
 Average [m/m]

 1.
 1.7975e-013
 2.2e-006
 6.5769e-007

 TABLE 15

 Model (E4) > Static Structural (E5) > Solution (E6) > Equivalent Elastic Strain > Convergences

Object Name	Convergence		
State	Solved		
Definition			
Туре	Maximum		
Allowable Change	4. %		
Results			
Last Change	-3.0931 %		
Converged	Yes		

FIGURE 8

Model (E4) > Static Structural (E5) > Solution (E6) > Equivalent Elastic Strain > Convergence

	Equivalent Elastic Strain (m/m)	Change (%)	Nodes	Elements
1	1.1909e-006		13340	6623
2	1.4452e-006	19.295	94454	49935
3	2.0206e-006	33.203	152791	86387
4	2.1716e-006	7.2074	242905	143639
5	2.2691e-006	4.392	466041	291425
6	2.2e-006	-3.0931	943731	620510

Model (E4) > Static Structural (E5) > Solution (E6) > Equivalent Elastic Strain > Convergence

FIGURE 9

Model (E4) > Static Structural (E5) > Solution (E6) > Equivalent Elastic Strain > Figure

Material Data Structural Steel

TABLE 16Structural Steel > Constants

Density	7850 kg m^-3
Isotropic Secant Coefficient of Thermal Expansion	1.2e-005 C^-1
Specific Heat Constant Pressure	434 J kg^-1 C^-1
Isotropic Thermal Conductivity	60.5 W m^-1 C^-1
Isotropic Resistivity	1.7e-007 ohm m

TABLE 17Structural Steel > ColorRedGreenBlue132139179

 TABLE 18

 Structural Steel > Compressive Ultimate Strength

 Compressive Ultimate Strength Pa

 0
 0

 TABLE 19

 Structural Steel > Tensile Yield Strength

 Tensile Yield Strength Pa

 2.9472e+008

TABLE 20 Structural Steel > Tensile Ultimate Strength Tensile Ultimate Strength Pa

3.9474e+008

TABLE 21

Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

Zero-Thermal-Strain Reference Temperature C

22

TABLE 22 Structural Steel > Alternating Stress Mean Stress

Cycles	Mean Stress Pa
10	0
20	0
50	0
100	0
200	0
2000	0
10000	0
20000	0
1.e+005	0
2.e+005	0
1.e+006	0
	Cycles 10 20 50 100 2000 10000 20000 1.e+005 2.e+005 1.e+006

TABLE 23 Structural Steel > Strain-Life Parameters

Strength	Strength	Ductility	Ductility	Cyclic Strength	Cyclic Strain
Coefficient Pa	Exponent	Coefficient	Exponent	Coefficient Pa	Hardening Exponent
9.2e+008	-0.106	0.213	-0.47	1.e+009	0.2

TABLE 24						
Structural Steel > Isotropic Elasticity						
Temperature C	Young's Modulus Pa	Poisson's Ratio	Bulk Modulus Pa	Shear Modulus Pa		
	2.e+011	0.3	1.6667e+011	7.6923e+010		

TABLE 25 Structural Steel > Isotropic Relative Permeability Relative Permeability

10000

PROJECT REPORT

First Saved	Wednesday, July 16, 2019
Last Saved	Wednesday, July 16, 2019
Product Version	19.0 Release
Save Project Before Solution	No
Save Project After Solution	No

TABLE 2Model (D4) > Geometry

Object Name	Object Name Geometry			
State Fully Defined				
Definition				
Source	F:\@KULIAH\S I - SISTEM PERKAPALAN - ITS\SEMESTER 4\TUGAS AKHIR\P3\BISMILLAH\u0000000_files\dp0\Geom-2\DM\Geom-2.scdoc			
Type SpaceClaim				
Length Unit	Meters			
Element Control	Program Controlled			
Display Style	Body Color			
	Bounding Box			
Length X	1.5215 m			
Length Y	5.6562 m			
Length Z	4.8625 m			
	Properties			
Volume	0.19161 m ³			
Mass	1504.1 kg			
Scale Factor Value 1.				
Statistics				
Bodies 1				
Active Bodies	1			
Nodes 13340				
Elements 6623				
Mesh Metric None				
	Basic Geometry Options			
Solid Bodies	Yes			
Surface Bodies	Yes			
Line Bodies	Yes			
Parameters	Independent			
Parameter Key				
Attributes	Yes			
Attribute Key				
Named Selections	Yes			
Named Selection Key				
Material Properties	Yes			
	Advanced Geometry Options			
Use Associativity	Yes			
Coordinate Systems	Yes			

Coordinate System Key	
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	Yes
Compare Parts On Update	No
Analysis Type	3-D
Mixed Import Resolution	None
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

Model (D4) > Geometry > Parts					
Object Name	Geom-2\Solid1				
State	Meshed				
Graphic	s Properties				
Visible	Yes				
Transparency	1				
Def	inition				
Suppressed	No				
Stiffness Behavior	Flexible				
Coordinate System	Default Coordinate System				
Reference Temperature	By Environment				
Behavior	None				
Ma	aterial				
Assignment	Structural Steel				
Nonlinear Effects	Yes				
Thermal Strain Effects	Yes				
Bounding Box					
Length X	1.5215 m				
Length Y	5.6562 m				
Length Z	4.8625 m				
Pro	perties				
Volume	0.19161 m ³				
Mass	1504.1 kg				
Centroid X	30.791 m				
Centroid Y	-3.5568 m				
Centroid Z	2.8752 m				
Moment of Inertia Ip1	6622.1 kg⋅m²				
Moment of Inertia Ip2	361.84 kg⋅m²				
Moment of Inertia Ip3	6881.2 kg·m²				
Statistics					
Nodes	13340				

TABLE 3Model (D4) > Geometry > Parts

Elements	6623			
Mesh Metric	None			
CAD Attributes				
PartTolerance:	0.00000001			
Color:175.143.143				

Coordinate Systems

TABLE 4					
Model (D4) > Coordinate Systems > Coordinate System					
	Object Name Global Coordinate System				
	State	Fully Defined			
	Det	finition			
	Туре	Cartesian			
	Coordinate System ID	0.			
	Origin				
	Origin X	0. m			
	Origin Y	0. m			
	Origin Z	0. m			
	Directional Vectors				
	X Axis Data	[1.0.0.]			
	Y Axis Data	[0.1.0.]			
	Z Axis Data	[0.0.1.]			

Mesh

TABLE 5 Model (D4) > Mesh

Model (D4) > Mesh				
Object Name	Mesh			
State	Solved			
Display				
Display Style	Body Color			
Defaults				
Physics Preference	Mechanical			
Relevance	0			
Element Order	Program Controlled			
Sizing				
Size Function	Adaptive			
Relevance Center	Coarse			
Element Size	0.20 m			
Mesh Defeaturing	Yes			
Defeature Size	Default			
Transition	Fast			
Initial Size Seed	Assembly			
Span Angle Center	Coarse			
Bounding Box Diagonal	7.61260 m			
Average Surface Area	5.98860 m ²			
Minimum Edge Length	1.63980 m			

Quality				
Check Mesh Quality	Yes, Errors			
Error Limits	Standard Mechanical			
Target Quality	Default (0.050000)			
Smoothing	Medium			
Mesh Metric	None			
Inflation				
Use Automatic Inflation	None			
Inflation Option	Smooth Transition			
Transition Ratio	0.272			
Maximum Layers	5			
Growth Rate	1.2			
Inflation Algorithm	Pre			
View Advanced Options	No			
Advanced				
Number of CPUs for Parallel Part Meshing	Program Controlled			
Straight Sided Elements	No			
Number of Retries	Default (4)			
Rigid Body Behavior	Dimensionally Reduced			
Triangle Surface Mesher	Program Controlled			
Topology Checking	Yes			
Pinch Tolerance	Please Define			
Generate Pinch on Refresh	No			
Statistics				
Nodes	13340			
Elements	6623			

Static Structural (D5)

TABLE 6Model (D4) > Analysis				
Object Name	Static Structural (D5)			
State	Solved			
Definition				
Physics Type Structura				
Analysis Type	Static Structural			
Solver Target	Mechanical APDL			
Options				
Environment Temperature 22. °C				
Generate Input Only	No			

TABLE 8Model (D4) > Static Structural (D5) > Loads

Object Name	Fixed Support	Gaya Bouyancy	Gaya Lift	Gaya Drag	
State	Fully Defined				
Scope					
Scoping Method Geometry Selection					
Geometry	y 1 Face				

Definition						
Туре	Fixed Support	Force				
Suppressed	No					
Define By		Vector		Components		
Magnitude		203.66 N (ramped)				
Direction		Defined				
Coordinate System			Global Coordinate System			
X Component			90.559 N (ramped)	5.1549 N (ramped)		
Y Component			90.559 N (ramped)	-5.1549 N (ramped)		
Z Component	0. N (ramped)					

FIGURE 1 Model (D4) > Static Structural (D5) > Gaya Bouyancy

FIGURE 2 Model (D4) > Static Structural (D5) > Gaya Lift

FIGURE 3 Model (D4) > Static Structural (D5) > Gaya Drag

Solution (D6)

Мо	TABLE 9 Model $(D4) > Static Structurel (D5) > Solution $					
WIO	Object Name Solution (D6)					
	State	Solved				
	Adaptive Mesh Ref	inement				
	Max Refinement Loops	5.				
	Refinement Depth	2.				
	Information	ı				
	Status	Done				
	MAPDL Elapsed Time	27 m 37 s				
	MAPDL Memory Used	6.8486 GB				
	MAPDL Result File Size	582.13 MB				
	Post Processi	ng				
	Beam Section Results	No				
	On Demand Stress/Strain	No				

TABLE 10

Model (D4) > Static Structural (D5) > Solution (D6) > Solution Information

Object Name	Solution Information
State	Solved
Solution Inform	nation
Solution Output	Solver Output
Newton-Raphson Residuals	0
Identify Element Violations	0
Update Interval	2.5 s
Display Points	All
FE Connection V	isibility
Activate Visibility	Yes
Disalas	
Display	All FE Connectors
Display Draw Connections Attached To	All FE Connectors All Nodes
Draw Connections Attached To Line Color	All FE Connectors All Nodes Connection Type
Draw Connections Attached To Line Color Visible on Results	All FE Connectors All Nodes Connection Type No
Draw Connections Attached To Line Color Visible on Results Line Thickness	All FE Connectors All Nodes Connection Type No Single

TABLE 11

Model (D4) > Static Structural (D5) > Solution (D6) > Results

Object Name	Equivalent Stress	Equivalent Elastic Strain			
State	Solved				
	Scope				
Scoping Method Geometry Selection					
Geometry	All Bodies				
Definition					
Туре	Equivalent (von-Mises) Stress	Equivalent Elastic Strain			
By	Time				
Display Time Last					

Calculate Time History	Yes		
Identifier			
Suppressed	No		
	Integration Point Results		
Display Option	Average	ed	
Average Across Bodies	No		
	Results		
Minimum	m 1.3477e-002 Pa 1.8899e-013		
Maximum	5.2726e+005 Pa	2.6374e-006 m/m	
Average	1.3319e+005 Pa	6.7651e-007 m/m	
Minimum Occurs On	Geom-2\Solid1		
Maximum Occurs On	Geom-2\S	olid1	
	Information		
Time	Time 1. s		
Load Step	1		
Substep	1		
Iteration Number	eration Number 1		

 TABLE 12

 Model (D4) > Static Structural (D5) > Solution (D6) > Equivalent Stress

 Time [s]
 Minimum [Pa]
 Maximum [Pa]
 Average [Pa]

 1.
 1.3477e-002
 5.2726e+005
 1.3319e+005

 TABLE 13

 Model (D4) > Static Structural (D5) > Solution (D6) > Equivalent Stress > Convergences

	· · ·
Object Name	Convergence
State	Solved
Definiti	on
Туре	Maximum
Allowable Change	2. %
Result	ts
Last Change	0.30005 %
Converged	Yes

FIGURE 5

 $Model \ (D4) > Static \ Structural \ (D5) > Solution \ (D6) > Equivalent \ Stress > Convergence$

	Equivalent Stress (Pa)	Change (%)	Nodes	Elements
1	3.0961e+005		13340	6623
2	3.4122e+005	9.7157	85004	44670
3	4.1322e+005	19.086	177682	102578
4	5.1185e+005	21.323	353697	214531
5	5.3602e+005	4.6139	422686	263943
6	5.2568e+005	-1.9477	897707	587343
7	5.2726e+005	0.30005	1164412	763840

Model (D4) > Static Structural (D5) > Solution (D6) > Equivalent Stress > Convergence

 TABLE 14

 Model (D4) > Static Structural (D5) > Solution (D6) > Equivalent Elastic Strain

 Time [s]
 Minimum [m/m]
 Maximum [m/m]
 Average [m/m]

 1.
 1.8899e-013
 2.6374e-006
 6.7651e-007

TABLE 15

Model (D4) > Static Structural (D5) > Solution (D6) > Equivalent Elastic Strain > Convergences

Object Name	Convergence		
State	Solved		
Definition			
Туре	Maximum		
Allowable Change	2. %		
Results			
Last Change	0.30006 %		
Converged	Yes		
FIGURE 8			

Model (D4) > Static Structural (D5) > Solution (D6) > Equivalent Elastic Strain > Convergence

	Equivalent Elastic Strain (m/m)	Change (%)	Nodes	Elements
1	1.5517e-006		13340	6623
2	1.724e-006	10.521	85004	44670
3	2.0716e-006	18.315	177682	102578
4	2.5655e-006	21.302	353697	214531
5	2.6906e-006	4.7614	422686	263943
6	2.6295e-006	-2.2959	897707	587343
7	2.6374e-006	0.30006	1164412	763840

Model (D4) > Static Structural (D5) > Solution (D6) > Equivalent Elastic Strain > Convergence

D. 3 and Figure The main The main

Material Data Structural Steel

TABLE 16Structural Steel > Constants

Density	7850 kg m^-3
Isotropic Secant Coefficient of Thermal Expansion	1.2e-005 C^-1
Specific Heat Constant Pressure	434 J kg^-1 C^-1
Isotropic Thermal Conductivity	60.5 W m^-1 C^-1
Isotropic Resistivity	1.7e-007 ohm m

TABLE 17Structural Steel > ColorRedGreenBlue132139179

 TABLE 18

 Structural Steel > Compressive Ultimate Strength

 Compressive Ultimate Strength Pa

 0
 0

TABLE 19Structural Steel > Tensile Yield StrengthTensile Yield Strength Pa2.9472e+008

TABLE 20 Structural Steel > Tensile Ultimate Strength Tensile Ultimate Strength Pa

3.9474e+008

TABLE 21

Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

Zero-Thermal-Strain Reference Temperature C

22

TABLE 22	
Structural Steel > Alternating Stress Mean S	tress

Alternating Stress Pa	ernating Stress Pa Cycles	
3.999e+009	10	0
2.827e+009	20	0
1.896e+009	50	0
1.413e+009	100	0
1.069e+009	200	0
4.41e+008	2000	0
2.62e+008	10000	0
2.14e+008	20000	0
1.38e+008	1.e+005	0
1.14e+008	2.e+005	0
8.62e+007	1.e+006	0

TABLE 23 Structural Steel > Strain-Life Parameters

	Strength	Strength	Ductility	Ductility	Cyclic Strength	Cyclic Strain
	Coefficient Pa	Exponent	Coefficient	Exponent	Coefficient Pa	Hardening Exponent
ľ	9.2e+008	-0.106	0.213	-0.47	1.e+009	0.2

TABLE 24					
Structural Steel > Isotropic Elasticity					
Temperature C	Young's Modulus Pa	Poisson's Ratio	Bulk Modulus Pa	Shear Modulus Pa	
	2.e+011	0.3	1.6667e+011	7.6923e+010	

 TABLE 25

 Structural Steel > Isotropic Relative Permeability

 Relative Permeability

 10000
 10000

PROJECT REPORT

First Saved	Wednesday, July 16, 2019
Last Saved	Wednesday, July 16, 2019
Product Version	19.0 Release
Save Project Before Solution	No
Save Project After Solution	No

TABLE 2Model (C4) > Geometry

Object Name	Geometry			
State	Fully Defined			
Definition				
Source	F:\@KULIAH\S I - SISTEM PERKAPALAN - ITS\SEMESTER 4\TUGAS AKHIR\P3\BISMILLAH\uooooooo_files\dp0\Geom-1\DM\Geom-1.scdoc			
Туре	SpaceClaim			
Length Unit	Meters			
Element Control	Program Controlled			
Display Style	Body Color			
	Bounding Box			
Length X	1.5215 m			
Length Y	5.6562 m			
Length Z	4.8625 m			
	Properties			
Volume	0.19161 m ³			
Mass	1504.1 kg			
Scale Factor Value	1.			
	Statistics			
Bodies	1			
Active Bodies	1			
Nodes	13340			
Elements	6623			
Mesh Metric	None			
	Basic Geometry Options			
Solid Bodies	Yes			
Surface Bodies	Yes			
Line Bodies	Yes			
Parameters	Independent			
Parameter Key				
Attributes	Yes			
Attribute Key				
Named Selections	Yes			
Named Selection				
Key				
Material Properties	Yes			
Advanced Geometry Options				
Use Associativity	Yes			
Coordinate Systems	Yes			

Coordinate System Key	
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	Yes
Compare Parts On Update	No
Analysis Type	3-D
Mixed Import Resolution	None
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

Model (C4) > Geometry > Parts					
Object Name	Geom-1\Solid1				
State	Meshed				
Graphics Properties					
Visible	Yes				
Transparency	1				
Def	inition				
Suppressed	No				
Stiffness Behavior	Flexible				
Coordinate System	Default Coordinate System				
Reference Temperature	By Environment				
Behavior	None				
Ma	aterial				
Assignment	Structural Steel				
Nonlinear Effects	Yes				
Thermal Strain Effects	Yes				
Boun	ding Box				
Length X	1.5215 m				
Length Y	5.6562 m				
Length Z	4.8625 m				
Pro	perties				
Volume	0.19161 m ³				
Mass	1504.1 kg				
Centroid X	30.791 m				
Centroid Y	-3.5568 m				
Centroid Z	2.8752 m				
Moment of Inertia Ip1	6622.1 kg⋅m²				
Moment of Inertia Ip2	361.84 kg⋅m²				
Moment of Inertia Ip3	6881.2 kg·m²				
Statistics					
Nodes	13340				

TABLE 3 Model (C4) > Geometry > Parts

Elements	6623			
Mesh Metric	None			
CAD Attributes				
PartTolerance:	0.00000001			
Color:175.143.143				

Coordinate Systems

TABLE 4						
Мо	del (C4) > Coordinate	Systems > Coordinate Syst	tem			
	Object Name	Global Coordinate System				
	State	Fully Defined				
	Det	finition				
	Туре	Cartesian				
	Coordinate System ID	0.				
	Origin					
	Origin X	0. m				
	Origin Y	0. m				
	Origin Z	0. m				
	Directional Vectors					
	X Axis Data	[1.0.0.]				
	Y Axis Data	[0.1.0.]				
	Z Axis Data	[0.0.1.]				

Mesh

TABLE 5 del(C4) > Mc

Model (C4) > Mesh				
Object Name	Mesh			
State	Solved			
Display				
Display Style	Body Color			
Defaults				
Physics Preference	Mechanical			
Relevance	0			
Element Order	Program Controlled			
Sizing				
Size Function	Adaptive			
Relevance Center	Coarse			
Element Size	0.20 m			
Mesh Defeaturing	Yes			
Defeature Size	Default			
Transition	Fast			
Initial Size Seed	Assembly			
Span Angle Center	Coarse			
Bounding Box Diagonal	7.61260 m			
Average Surface Area	5.98860 m ²			
Minimum Edge Length	1.63980 m			

Quality				
Check Mesh Quality	Yes, Errors			
Error Limits	Standard Mechanical			
Target Quality	Default (0.050000)			
Smoothing	Medium			
Mesh Metric	None			
Inflation				
Use Automatic Inflation	None			
Inflation Option	Smooth Transition			
Transition Ratio	0.272			
Maximum Layers	5			
Growth Rate	1.2			
Inflation Algorithm	Pre			
View Advanced Options	No			
Advanced				
Number of CPUs for Parallel Part Meshing	Program Controlled			
Straight Sided Elements	No			
Number of Retries	Default (4)			
Rigid Body Behavior	Dimensionally Reduced			
Triangle Surface Mesher	Program Controlled			
Topology Checking	Yes			
Pinch Tolerance	Please Define			
Generate Pinch on Refresh	No			
Statistics				
Nodes	13340			
Elements	6623			

Static Structural (C5)

TABLE 6Model (C4) > Analysis				
Object Name	Static Structural (C5)			
State	Solved			
Definition				
Physics Type	Structural			
Analysis Type	Static Structural			
Solver Target	Mechanical APDL			
Options				
Environment Temperature	22. °C			
Generate Input Only	No			

 TABLE 8

 Model (C4) > Static Structural (C5) > Loads

Object Name	Fixed Support	Gaya Bouyancy	Gaya Lift	Gaya Drag
State	Fully Defined			
Scope				
Scoping Method	Scoping Method Geometry Selection			
Geometry	1 Face			

Definition					
Туре	Fixed Support	Force			
Suppressed		No			
Define By		Vector Components			
Magnitude		203.66 N (ramped)			
Direction		Defined			
Coordinate System			Global Coord	linate System	
X Component			160.99 N (ramped)	18.328 N (ramped)	
Y Component			160.99 N (ramped)	-18.328 N (ramped)	
Z Component			0. N (r	amped)	

FIGURE 1 Model (C4) > Static Structural (C5) > Gaya Bouyancy

FIGURE 2 Model (C4) > Static Structural (C5) > Gaya Lift

FIGURE 3 Model (C4) > Static Structural (C5) > Gaya Drag

Solution (C6)

IADLE /					
Model (C4) > Static Structural (C5) > Solution					
	Object Name	Solution (C6)			
	State	Solved			
	Adaptive Mesh Ref	inement			
	Max Refinement Loops	5.			
	Refinement Depth	2.			
	Information				
	Status	Done			
	MAPDL Elapsed Time	7 m 46 s			
	MAPDL Memory Used	1.6553 GB			
	MAPDL Result File Size	171.06 MB			
	Post Processi	ng			
	Beam Section Results	No			
	On Demand Stress/Strain	No			

TABLE 9 Μ on

TABLE 10 Model (C4) > Static Structural (C5) > Solution (C6) > Solution Information

Object Name	Solution Information	
State	Solved	
Solution Inform	nation	
Solution Output	Solver Output	
Newton-Raphson Residuals	0	
Identify Element Violations	0	
Update Interval	2.5 s	
Display Points	All	
	•	
FE Connection V	isibility	
Activate Visibility	Yes	
Activate Visibility Display	Yes All FE Connectors	
Activate Visibility Display Draw Connections Attached To	Yes All FE Connectors All Nodes	
Activate Visibility Display Draw Connections Attached To Line Color	Yes All FE Connectors All Nodes Connection Type	
FE Connection V Activate Visibility Display Draw Connections Attached To Line Color Visible on Results	Yes All FE Connectors All Nodes Connection Type No	
FE Connection V Activate Visibility Display Draw Connections Attached To Line Color Visible on Results Line Thickness	Yes All FE Connectors All Nodes Connection Type No Single	

TABLE 11

Model (C4) > Static Structural (C5) > Solution (C6) > Results

Object Name	Equivalent Stress	Equivalent Elastic Strain			
State	Solved				
	Scope				
Scoping Method	Geometry Selection				
Geometry	All Bodies				
	Definition				
Туре	Type Equivalent (von-Mises) Stress Equivalent Elastic				
By	Time				
Display Time	Last				

Calculate Time History	Yes		
Identifier			
Suppressed	Suppressed No		
	Integration Point Results		
Display Option	Average	ed	
Average Across Bodies	No		
	Results		
Minimum	8.7258e-003 Pa	1.3039e-013 m/m	
Maximum	6.2941e+005 Pa	3.1546e-006 m/m	
Average	1.3772e+005 Pa	7.0982e-007 m/m	
Minimum Occurs On	Geom-1\Solid1		
Maximum Occurs On	Geom-1\S	olid1	
	Information		
Time	1. s		
Load Step	1		
Substep	1		
Iteration Number	1		

 TABLE 12

 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress

 Time [s]
 Minimum [Pa]
 Maximum [Pa]
 Average [Pa]

 1.
 8.7258e-003
 6.2941e+005
 1.3772e+005

 TABLE 13

 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress > Convergences

	()		
Object Name	Convergence		
State	Solved		
Definiti	on		
Туре	Maximum		
Allowable Change	2. %		
Result	s		
Last Change	0.29874 %		
Converged	Yes		

FIGURE 5 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress > Convergence

Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress > Convergence Equivalent Stress (Pa) Change (%) Nodes Elements

1	4.1104e+005		13340	6623
2	4.2607e+005	3.5907	87952	46236
3	5.3134e+005	21.99	237143	139777
4	6.2753e+005	16.602	449637	278686
5	6.2941e+005	0.29874	380782	209033

FIGURE 6

Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress > Figure

 TABLE 14

 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Elastic Strain

 Time [s]
 Minimum [m/m]
 Maximum [m/m]
 Average [m/m]

 1.
 1.3039e-013
 3.1546e-006
 7.0982e-007

TABLE 15

Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Elastic Strain > Convergences

	· ·			
Object Name	Convergence			
State	Solved			
Definiti	on			
Туре	Maximum			
Allowable Change	2. %			
Results				
Last Change	0.23084 %			
Converged	Yes			

FIGURE 8

Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Elastic Strain > Convergence

	Equivalent Elastic Strain (m/m)	Change (%)	Nodes	Elements
1	2.0566e-006		13340	6623
2	2.133e-006	3.6456	87952	46236
3	2.6597e-006	21.982	237143	139777
4	3.1473e-006	16.792	449637	278686
5	3.1546e-006	0.23084	380782	209033

Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Elastic Strain > Convergence

FIGURE 9 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Elastic Strain > Figure

Material Data Structural Steel

TABLE 16Structural Steel > Constants

Density	7850 kg m^-3
Isotropic Secant Coefficient of Thermal Expansion	1.2e-005 C^-1
Specific Heat Constant Pressure	434 J kg^-1 C^-1
Isotropic Thermal Conductivity	60.5 W m^-1 C^-1
Isotropic Resistivity	1.7e-007 ohm m

TABLE 17Structural Steel > ColorRedGreenBlue132139179

 TABLE 18

 Structural Steel > Compressive Ultimate Strength

 Compressive Ultimate Strength Pa

 0
 0

 TABLE 19

 Structural Steel > Tensile Yield Strength

 Tensile Yield Strength Pa

 2.9472e+008

TABLE 20 Structural Steel > Tensile Ultimate Strength Tensile Ultimate Strength Pa

3.9474e+008

TABLE 21

Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

Zero-Thermal-Strain Reference Temperature C

22

TABLE 22 Structural Steel > Alternating Stress Mean Stress

Alternating Stress Pa	Cycles	Mean Stress Pa
3.999e+009	10	0
2.827e+009	20	0
1.896e+009	50	0
1.413e+009	100	0
1.069e+009	200	0
4.41e+008	2000	0
2.62e+008	10000	0
2.14e+008	20000	0
1.38e+008	1.e+005	0
1.14e+008	2.e+005	0
8.62e+007	1.e+006	0

TABLE 23 Structural Steel > Strain-Life Parameters

	Strength	Strength	Ductility	Ductility	Cyclic Strength	Cyclic Strain
	Coefficient Pa	Exponent	Coefficient	Exponent	Coefficient Pa	Hardening Exponent
ľ	9.2e+008	-0.106	0.213	-0.47	1.e+009	0.2

TABLE 24							
Structural Steel > Isotropic Elasticity							
Temperature C Young's Modulus Pa Poisson's Ratio Bulk Modulus Pa Shear Modulus							
	2.e+011	0.3	1.6667e+011	7.6923e+010			
		TABLE 25					
	Structural Steel > Isotropic Relative Permeability						
Relative Permeability							
10000							

"Halaman ini sengaja dikosongkan"

PROJECT REPORT

First Saved	Wednesday, July 16, 2019
Last Saved	Wednesday, July 16, 2019
Product Version	19.0 Release
Save Project Before Solution	No
Save Project After Solution	No

TABLE 2Model (B4) > Geometry

Object Name	Geometry	
State	Fully Defined	
Definition		
Source	F:\@KULIAH\S I - SISTEM PERKAPALAN - ITS\SEMESTER 4\TUGAS AKHIR\P3\BISMILLAH\u00000000_files\dp0\Geom\DM\Geom.scdoc	
Туре	SpaceClaim	
Length Unit	Meters	
Element Control	Program Controlled	
Display Style	Body Color	
Bounding Box		
Length X	1.5215 m	
Length Y	5.6562 m	
Length Z	4.8625 m	
Properties		
Volume	0.19161 m ³	
Mass	1504.1 kg	
Scale Factor	1	
Value	1.	
Statistics		
Bodies	1	
Active Bodies	1	
Nodes	13340	
Elements	6623	
Mesh Metric	None	
Basic Geometry Options		
Solid Bodies	Yes	
Surface Bodies	Yes	
Line Bodies	Yes	
Parameters	Independent	
Parameter Key		
Attributes	Yes	
Attribute Key		
Named Selections	Yes	
Named Selection		
Key		
Material Properties	Yes	
Advanced Geometry Ontions		
Use Associativity	Yes	
---	------	
Coordinate Systems	Yes	
Coordinate System Key		
Reader Mode Saves Updated File	No	
Use Instances	Yes	
Smart CAD Update	Yes	
Compare Parts On Update	No	
Analysis Type	3-D	
Mixed Import Resolution	None	
Decompose Disjoint Geometry	Yes	
Enclosure and Symmetry Processing	Yes	

TABLE 3Model (B4) > Geometry > Parts

Would (D4) > Ocometry > 1 at ts			
Object Name	Geom\Solid1		
State	Meshed		
Graphics Properties			
Visible	Yes		
Transparency	1		
Def	inition		
Suppressed	No		
Stiffness Behavior	Flexible		
Coordinate System	Default Coordinate System		
Reference Temperature	By Environment		
Behavior	None		
Material			
Assignment	Structural Steel		
Nonlinear Effects	Yes		
Thermal Strain Effects	Yes		
Bounding Box			
Length X	1.5215 m		
Length Y	5.6562 m		
Length Z	4.8625 m		
Properties			
Volume	0.19161 m ³		
Mass	1504.1 kg		
Centroid X	30.791 m		
Centroid Y	-3.5568 m		
Centroid Z	2.8752 m		

Moment of Inertia Ip1	6622.1 kg·m ²			
Moment of Inertia Ip2	361.84 kg⋅m²			
Moment of Inertia Ip3	6881.2 kg·m²			
Statistics				
Nodes	13340			
Elements	6623			
Mesh Metric	None			
CAD Attributes				
PartTolerance:	0.00000001			
Color:175.143.143				

Coordinate Systems

TABLE 4

Model (B4) > Coordinate Systems > Coordinate System

Object Name	Global Coordinate System	
State	Fully Defined	
Definition		
Туре	Cartesian	
Coordinate System ID	0.	
Origin		
Origin X	0. m	
Origin Y	0. m	
Origin Z	0. m	
Directional Vectors		
X Axis Data	[1.0.0.]	
Y Axis Data	[0.1.0.]	
Z Axis Data	[0.0.1.]	

Mesh

TABLE 5 4-1 (R4) > Maak

Model (B4) > Mesh	l			
Object Name	Mesh			
State	Solved			
Display				
Display Style	Body Color			
Defaults	Defaults			
Physics Preference	Mechanical			
Relevance	0			
Element Order	Program Controlled			
Element Order Sizing	Program Controlled			
Element Order Sizing Size Function	Program Controlled Adaptive			
Element Order Sizing Size Function Relevance Center	Program Controlled Adaptive Coarse			
Element Order Sizing Size Function Relevance Center Element Size	Program Controlled Adaptive Coarse 0.20 m			
Element Order Sizing Size Function Relevance Center Element Size Mesh Defeaturing	Program Controlled Adaptive Coarse 0.20 m Yes			
Element Order Sizing Size Function Relevance Center Element Size Mesh Defeaturing Defeature Size	Program Controlled Adaptive Coarse 0.20 m Yes Default			

Assembly			
Coarse			
7.61260 m			
5.98860 m ²			
1.63980 m			
Yes, Errors			
Standard Mechanical			
Default (0.050000)			
Medium			
None			
None			
Smooth Transition			
0.272			
5			
1.2			
Pre			
No			
Advanced			
Program Controlled			
No			
Default (4)			
Dimensionally Reduced			
Program Controlled			
Yes			
Please Define			
No			
Statistics			
13340			
6623			

Static Structural (B5)

TABLE 6Model (B4) > Analysis			
Object Name Static Structural (I			
State	Solved		
Definition			
Physics Type	Structural		
Analysis Type	Static Structural		
Solver Target	Mechanical APDL		
Options			
Environment Temperature	22. °C		
Generate Input Only	No		

Object Name	Fixed Support	Gaya Bouyancy	Gaya Lift	Gaya Drag
State		Full	y Defined	
		Scope		
Scoping Method		Geometry Selection		
Geometry			1 Face	
Definition				
Туре	Fixed Support Force			
Suppressed	No			
Define By	Vector Components		onents	
Magnitude		203.66 N (ramped)		
Direction		Defined		
Coordinate System			Global Coord	dinate System
X Component			251.55 N (ramped)	28.638 N (ramped)
Y Component			251.55 N (ramped)	-28.638 N (ramped)
Z Component			0. N (r	amped)

TABLE 8Model (B4) > Static Structural (B5) > Loads

FIGURE 1 Model (B4) > Static Structural (B5) > Gaya Bouyancy

FIGURE 2 Model (B4) > Static Structural (B5) > Gaya Lift

Solution (B6)

TABLE 9 Model (B4) > Static Structural (B5) > Solution Object Name Solution (B6) State Solved **Adaptive Mesh Refinement** Max Refinement Loops 5. **Refinement Depth** 2. Information Status Done MAPDL Elapsed Time 12 m 15 s MAPDL Memory Used 2.1963 GB MAPDL Result File Size 228.44 MB **Post Processing** Beam Section Results No

 TABLE 10

 Model (B4) > Static Structural (B5) > Solution (B6) > Solution Information

No

On Demand Stress/Strain

Object Name	Solution Information
State	Solved
Solution Inform	nation
Solution Output	Solver Output
Newton-Raphson Residuals	0
Identify Element Violations	0
Update Interval	2.5 s
Display Points	All
FE Connection V	isibility
Activate Visibility	Yes
Display	All FE Connectors
Draw Connections Attached To	All Nodes
Line Color	Connection Type
Visible on Results	No
Line Thickness	Single
Display Type	Lines

Object Name	Equivalent Stress	Equivalent Elastic Strain		
State	State Solve			
Scone				
Scoping Method	Geometry Se	election		
Geometry	All Bod	ies		
Definition				
Туре	Equivalent (von-Mises) Stress	Equivalent Elastic Strain		
By	Time			
Display Time	Last			
Calculate Time History	Yes			
Identifier				
Suppressed	No			
Integration Point Results				
Display Option	Averag	ed		
Average Across Bodies	No			
	Results			
Minimum	1.3266e-002 Pa	2.2949e-013 m/m		
Maximum	7.6349e+005 Pa	3.8175e-006 m/m		
Average	2.6028e+005 Pa	1.3214e-006 m/m		
Minimum Occurs On Geom\Solid1		lid1		
Maximum Occurs On	Geom\So	lid1		
Information				
Time	1. s			
Load Step	Load Step 1			
Substep 1				
Iteration Number	1			

 TABLE 11

 Model (B4) > Static Structural (B5) > Solution (B6) > Results

TABLE 12

Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress Time [s] Minimum [Pa] Maximum [Pa] Average [Pa]

1. 1.3266e-002 7.6349e+005 2.6028e+0	I mic [5]	winning [1 a]	Maximum [1 a]	Twenage [1 a]
	1.	1.3266e-002	7.6349e+005	2.6028e+005

TABLE 13

Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress > Convergences

Object Name	Convergence	
State	Solved	
Definition		
Туре	Maximum	
Allowable Change	2. %	
Results		
Last Change	-0.93332 %	
Converged	Yes	

FIGURE 5 Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress > Convergence

Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress > Convergence

	Equivalent Stress (Pa)	Change (%)	Nodes	Elements
1	5.4991e+005		13340	6623
2	5.7289e+005	4.0935	77048	39964
3	6.4955e+005	12.543	162266	93868
4	7.44e+005	13.556	437759	276399
5	7.7065e+005	3.5184	280498	149984
6	7.6349e+005	-0.93332	486795	286854

FIGURE 6 Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress > Figure

 TABLE 14

 Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Elastic Strain

 Time [s]
 Minimum [m/m]
 Maximum [m/m]
 Average [m/m]

Tune [5]		Trannann [m/ m]	I I for age [in m]
1.	2.2949e-013	3.8175e-006	1.3214e-006

 TABLE 15

 Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Elastic Strain > Convergences

 Object Name
 Convergences

Object Name	Convergence	
State	Solved	
Definiti	on	
Туре	Maximum	
Allowable Change	2. %	
Result	S	
Last Change	-1.1692 %	
Converged	Yes	

FIGURE 8 Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Elastic Strain > Convergence

Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Elastic Strain > Convergence

	Equivalent Elastic Strain (m/m)	Change (%)	Nodes	Elements
1	2.7514e-006		13340	6623
2	2.8656e-006	4.0674	77048	39964
3	3.2604e-006	12.89	162266	93868
4	3.7259e-006	13.325	437759	276399
5	3.8624e-006	3.5975	280498	149984
6	3.8175e-006	-1.1692	486795	286854

Material Data Structural Steel

TABLE 16

Structural Steel > Constants					
Density	7850 kg m^-3				
Isotropic Secant Coefficient of Thermal Expansion	1.2e-005 C^-1				
Specific Heat Constant Pressure	434 J kg^-1 C^-1				
Isotropic Thermal Conductivity	60.5 W m^-1 C^-1				
Isotropic Resistivity	1.7e-007 ohm m				

TABLE 17Structural Steel > ColorRedGreenBlue

132	139	179
-----	-----	-----

 TABLE 18

 Structural Steel > Compressive Ultimate Strength

 O

 TABLE 19

 Structural Steel > Tensile Yield Strength

 Tensile Yield Strength Pa

 2.9472e+008

 TABLE 20

 Structural Steel > Tensile Ultimate Strength

 Tensile Ultimate Strength Pa

 3.9474e+008

TABLE 21

Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

Zero-Thermal-Strain Reference Temperature C

TABLE 22						
ructural Steel > Alter	rnating S	tress Mean Stre				
Alternating Stress Pa	Cycles	Mean Stress Pa				
3.999e+009	10	0				
2.827e+009	20	0				
1.896e+009	50	0				
1.413e+009	100	0				
1.069e+009	200	0				
4.41e+008	2000	0				
2.62e+008	10000	0				
2.14e+008	20000	0				
1.38e+008	1.e+005	0				
1.14e+008	2.e+005	0				
8.62e+007	1.e+006	0				
	TA) ructural Steel > Alter Alternating Stress Pa 3.999e+009 2.827e+009 1.896e+009 1.413e+009 1.069e+009 4.41e+008 2.62e+008 2.14e+008 1.38e+008 1.14e+008 8.62e+007	TABLE 22 TABLE 22 TABLE 22 Tructural Steel > Alternating Stress Pa Alternating Stress Pa Cycles 3.999e+009 10 2.827e+009 20 1.896e+009 50 1.413e+009 100 1.069e+009 200 4.41e+008 2000 2.62e+008 10000 2.14e+008 20000 1.38e+008 1.e+005 1.14e+008 2.e+005 8.62e+007 1.e+006				

TABLE 23

Structural Steel > Strain-Life Parameters

	Strength	Strength	Ductility	Ductility	Cyclic Strength	Cyclic Strain
	Coefficient Pa	Exponent	Coefficient	Exponent	Coefficient Pa	Hardening Exponent
ſ	9.2e+008	-0.106	0.213	-0.47	1.e+009	0.2

TABLE 24						
Structural Steel > Isotropic Elasticity						
Temperature C	Young's Modulus Pa	Poisson's Ratio	Bulk Modulus Pa	Shear Modulus Pa		
	2.e+011	0.3	1.6667e+011	7.6923e+010		

 TABLE 25

 Structural Steel > Isotropic Relative Permeability

 Relative Permeability

10000

"Halaman ini sengaja dikosongkan"

BIODATA PENULIS

Penulis, Ady Muhibbuddiin. lahir di Bojonegoro, jawa timur pada tanggal 17 Juli 1996. Merupakan anak kedua dari tiga bersaudara. Penulis, memulai pendidikan formal yaitu di MI Muhammadiyah 10 Klepek (2002-2008), kemudian melanjutkan jenjang sekolah menengah pertama di MTs Negeri 1 Bojonegoro (2008-2011) dan melanjutkan ieniang Sekolah Menengah Atas di SMA Negeri 3 Bojonegoro (2011-2014). Penulis melanjutkan studi ke jenjang perkuliahan di Progam Studi di Universitas Diponegoro Semarang (2014-2017), yang terdaftar sebagai mahasiswa Diploma III Teknik Perkapalan Kapal dengan NRP. 21090114060031. Setelah lulus

dari Diploma III penulis memilih untuk melanjutkan kuliah di tahap Strata 1 di Institut Teknologi Sepuluh Nopember Surabaya dengan Jurusan Teknik Sistem Perkapalan yang terdaftar sebagai mahasiswa Lintas Jalur Angkatan 2017 Semester Ganjil dengan NRP. 04211745000031 sampai dengan saat ini.

Ady Muhibbuddiin adymuhibbuddiin@gmail.com

"Halaman ini sengaja dikosongkan"