

TUGAS AKHIR - M0 184804

ANALISIS PENGARUH SUBSEA BUOY TERHADAP TEGANGAN TALI TAMBAT PADA SISTEM TAMBAT SPREAD MOORING

Madea Eka Silfiani NRP. 043 1154 0000 008

Dosen Pembimbing

Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. Ir. Murdjito, M.Sc., Eng.

DEPARTEMEN TEKNIK KELAUTAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019

FINAL PROJECT - M0 184804

ANALYSIS ON THE EFFECT OF SUBSEA BUOY TO THE TENSION OF SPREAD MOORING SYSTEM

Madea Eka Silfiani NRP. 043 1154 0000 008

Supervisors

Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. Ir. Murdjito, M.Sc., Eng.

OCEAN ENGINEERING DEPARTMENT FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019

LEMBAR PENGESAHAN ANALISIS PENGARUH *SUBSEA BUOY* TERHADAP TEGANGAN TALI TAMBAT PADA SISTEM TAMBAT *SPREAD MOORING*

TUGAS AKHIR

Diajukan untuk memenuhi salah satu syarat memperoleh gelar sarjana teknik pada program studi S-1 Departemen Teknik Kelautan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya

Oleh:

Madea Eka Silfiani NRP. 04311540000008

Disetujui oleh:	
A C	
1. Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D.	ing 1)
Le Murdiite MSa Ena	ing 2)
2. IF. Murdjito, M.Sc. Eng.	ing 2)
3. Dr. Wisnu Wardhana, S.E., M.Sc.	i 1)
4. Dr. Eng. Rudi Walujo Prastianto, S.T., M.T	i 2)
5. Ir. Mas Murtedio, M. Eng. (Pengui	i 3)
······································	- /

SURABAYA, JULI 2019

ANALISIS PENGARUH *SUBSEA BUOY* TERHADAP TEGANGAN TALI TAMBAT PADA SISTEM TAMBAT *SPREAD MOORING*

Nama	: Madea Eka Silfiani
NRP	: 04311540000008
Departemen	: Teknik Kelautan
Dosen Pembimbing	: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D.
	Ir. Murdjito, M.Sc., Eng

ABSTRAK

Permasalahan yang mungkin terjadi pada bangunan terapung dengan sistem tambat adalah *clashing* antara *mooring line* dengan peralatan bawah laut, contohnya adalah pipa.Penambahan subsea buoy pada mooring line dapat mengangkat mooring line sehingga dapat menghindari clashing. Selain menghindari clashing penambahan subsea buoy dapat mempengaruhi tegangan pada mooring line. Sehingga pada tugas akhir ini akan melakukan analisis pengaruh penambahan subsea buoy terhadap tegangan tali tambat spread mooring dengan variasi satu subsea buoy dengan empat posisi peletakan subsea buoy pada jarak 605 m, 577.5 m, 550 m, 522.5 m dari anchor dan dua subsea buoy pada jarak 605 m dan 467.5 m dari anchor. Analisis dilakukan pada kondisi FSO stand alone dan offloading dengan arah pembebanan 0°, 45°, 90°, 135°, 180°. Dari hasil yang didapatkan setelah penambahan subsea buoy memberikan pengaruh tegangan yang lebih kecil pada mooring line. Hasil dari variasi peletakan subsea buoy, posisi optimum untuk mendapatkan nilai tegangan terkecil adalah ketika variasi dua subsea buoy dengan jarak 605 m dan 467.5 m dari anchor. Dari hasil analisis tersebut juga tidak terjadi clashing antara mooring line dengan pipa.

Kata Kunci : FSO, spread mooring, subsea buoy, tension.

ANALYSIS ON THE EFFECT OF SUBSEA BUOY TO THE TENSION OF SPREAD MOORING SYSTEM

Name	: Madea Eka Silfiani
NRP	: 04311540000008
Departmen	: Teknik Kelautan
Supervisors	: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D.
	Ir. Murdjito, M.Sc., Eng

ъ т

ABSTRACT

The problem that might occur in floating structures with mooring systems is clashing between mooring lines with subsea equipment, for example pipelines. Addition of subsea buoys on the mooring line can lift the mooring line so that it can avoid clashing. The addition of the subsea buoy can affect tension on the mooring line. So in this final project will analyze the effect of subsea buoy to the tension of mooring line with a variation position of subsea buoy. Variations on the position of one subsea buoy is arranged at the distance of 605 m, 577.5 m, 550 m, 522.5 m from anchor and two subsea buoys at the distance 605 m and 467.5 m from the anchor. The analysis was carried out on stand alone and offloading conditions with wave directions 0°, 45°, 90°, 135°, 180°. The results after the addition of subsea buoys it has a smaller tension on the mooring line. The result of the variation of subsea buoys with a distance of 605 m and 467.5 m from the anchor. From the results of the analysis there is also no clashing between the mooring line and pipeline.

Keywords : FSO, spread mooring, subsea buoy, tension.

KATA PENGANTAR

Alhamdulillah puji syukur kehadirat Allah SWT yang telah memberikan segala rahmat, taufik, dan hidayah-Nya sehingga penulis dapat menyelesaikan tugas akhir ini dengan baik dan lancar. Serta tidak lupa shalawat dan salam penulis haturkan kepada junjungan kita semua Rasulullah Muhammad SAW.

Tugas akhir ini berjudul "Analisis Pengaruh *Subsea Buoy* Terhadap Tegangan Tali Tambat Pada Sistem Tambat *Spread Mooring*". Tujuan penulisan tugas akhir ini adalah untuk memenuhi persyaratan dalam menyelesaikan Program Studi Kesarjanaan (S-1) di Departemen Teknik Kelautan, Fakultas Teknologi Kelautan (FTK), Institut Teknologi Sepuluh Nopember Surabaya (ITS). Tugas akhir ini membahas mengenai pengaruh penambahan *subsea buoy* terhadap tegangan tali tambat pada sistem tambat *spread mooring* dengan varisi posisi peletakan.

Sebagai penulis saya menyadari bahwa masih banyak kekurangan dalam pengerjaan dan penyusunan tugas akhir ini. Oleh karena itu, kritik dan saran sangat diperlukan untuk kesempurnaan tugas akhir ini. Penulis berharap penelitian tugas akhir ini akan bermanfaat untuk pembaca pada umumnya dan penulis pada khususnya.

Surabaya, 2019

Madea Eka Silfiani

UCAPAN TERIMA KASIH

Pada kesempatan ini saya ingin mengucapkan terima kasih kepada semua pihak yang telah membantu dalam kelancaran penyusunan dan penyelesaian tugas akhir ini. Saya ingin mengucapkan terima kasih kepada :

- Orang tua saya, Bapak Supriono dan Ibu Yayuk Rahayu, serta adik Cika yang selalu memberikan doa dan dukungannya. Tugas akhir ini saya persembahkan untuk keluarga saya, khususnya kedua orang tua saya.
- Bapak Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. selaku dosen pembimbing I serta dosen wali dan Bapak Ir. Murdjito, M.Sc., Eng. Selaku dosen pembimbing II saya. Terima kasih atas bimbingan, ilmu, serta dukungan kepada saya untuk menyelesaikan tugas akhir ini tepat pada waktunya.
- 3. Seluruh dosen dan karyawan Departemen Teknik Kelautan ITS yang telah memberikan ilmu dan fasilitas kepada penulis selama perkuliahan.
- Teman-teman bimbingan dari Bapak Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. Dan Bapak Ir. Murdjito, M.Sc., Eng., terutama Inneke dan Kunthi yang selalu memberi dukungan, masukan dan bertukar pikiran dalam penyelesaian tugas akhir ini.
- 5. Teman-teman saya Sectio, Fitri, Yoga, Afiska, Endah, Eno, dan Himas yang selalu memberikan semangat dalam perkuliahan ini.
- Seluruh teman-teman angkatan 2015 Departemen Teknik Kelautan "Tritonous" L33 – P55 yang memberikan dukungan satu sama lain untuk menyelesaikan perkuliahan.

Serta seluruh pihak yang telah membantu namun tidak dapat disebutkan satupersatu. Terima kasih atas segalanya sehingga saya mampu sejauh ini menyelesaikan Tugas Akhir dan menyelesaikan pendidikan saya. Semoga Allah SWT melimpahkan rahmat-Nya untuk membalas jasa dan kebaikan yang terucap diatas dan kepada kita semua. Amin.

DAFTAR ISI

HALAMAN JUDUL	i
LEMBAR PENGESAHAN	iii
ABSTRAK	iv
KATA PENGANTAR	vi
UCAPAN TERIMA KASIH	vii
DAFTAR ISI	viii
DAFTAR GAMBAR	xiii
DAFTAR TABEL	xvii
DAFTAR LAMPIRAN	xx

BAB I PENDAHULUAN11.1Latar Belakang11.2Rumusan Masalah21.3Tujuan21.4Manfaat31.5Batasan Masalah31.6Sistematika Penulisan3

ł	BAB II TIN	NJAUAN PUSTAKA & DASAR TEORI	5
	2.1	Tinjauan Pustaka	5
	2.2	Dasar Teori	6
	2.2.1	Floating Storage and Offloading (FSO)	6
	2.2.2	Sistem Tambat	6
	2.2.2	.1 Spread Mooring	7

3.1	Metode Penelitian	21
3.2	Prosedur Penelitian	23
3.3	Pengumpulan Data	24
3.3.1	Data Struktur	24
3.3.2	Data Lingkungan	26

BAB IV ANALISIS DAN PEMBAHASAN	
4.1 Pemodelan Struktur	
4.1.1 Pemodelan FSO Belida	
4.1.2 Pemodelan Shuttle Tanker	
4.2 Validasi Model	

4.3 Analisis Respon Gerak FSO Kondisi Terapung Bebas	32
4.3.1 Analisis RAO Gerakan Surge	32
4.3.2 Analisis RAO Gerakan Sway	33
4.3.3 Analisis RAO Gerakan Heave	34
4.3.4 Analisis RAO Gerakan <i>Roll</i>	35
4.3.5 Analisis RAO Gerakan Pitch	36
4.3.6 Analisis RAO Gerakan Yaw	37
4.4 Analisis Respon Gerak FSO Kondisi Tertambat	39
4.4.1 Analisis RAO Gerakan Surge	39
4.4.2 Analisis RAO Gerakan Sway	40
4.4.3 Analisis RAO Gerakan Heave	41
4.4.4 Analisis RAO Gerakan <i>Roll</i>	42
4.4.5 Analisis RAO Gerakan Pitch	43
4.4.6 Analisis RAO Gerakan Yaw	44
4.5 Analisis Respon Gerak Shuttle Tanker Kondisi Terapung Bebas	46
4.5.1 Analisis RAO Gerakan Surge	46
4.5.2 Analisis RAO Gerakan Sway	46
4.5.3 Analisis RAO Gerakan <i>Heave</i>	47
4.5.4 Analisis RAO Gerakan <i>Roll</i>	48
4.5.5 Analisis RAO Gerakan Pitch	48
4.5.6 Analisis RAO Gerakan Yaw	49
4.6 Pemodelan Mooring System	50
4.7 Analisis Tegangan <i>Mooring Line</i>	51
4.7.1 Analisis Tegangan pada FSO Belida Kondisi Stand Alone	54
4.7.1.1 Arah Pembebanan 0°	55
4.7.1.2 Arah Pembebanan 45°	56

4.7.1.3 Arah Pembebanan 90°	. 58
4.7.1.4 Arah Pembebanan 135°	. 59
4.7.1.5 Arah Pembebanan 180°	. 61
4.7.2 Analisis Tegangan pada FSO Belida Kondisi Offloading	. 62
4.7.2.1 Arah Pembebanan 0°	. 62
4.7.2.2 Arah Pembebanan 45°	. 64
4.7.2.3 Arah Pembebanan 90°	. 66
4.7.2.4 Arah Pembebanan 135°	. 67
4.7.2.5 Arah Pembebanan 180°	. 69
4.8 Analisis Offset Pada FSO Belida	. 73
4.8.1 Analisis Offset pada FSO Belida Kondisi Stand Alone	. 73
4.8.1.1 Arah Pembebanan 0°	. 73
4.8.1.2 Arah Pembebanan 45°	. 74
4.8.1.3 Arah Pembebanan 90°	. 76
4.8.1.4 Arah Pembebanan 135°	. 77
4.8.1.5 Arah Pembebanan 180°	. 78
4.8.2 Analisis Offset pada FSO Belida Kondisi Offloading	. 80
4.8.2.1 Arah Pembebanan 0°	. 80
4.8.2.2 Arah Pembebanan 45°	. 81
4.8.2.3 Arah Pembebanan 90°	. 82
4.8.2.4 Arah Pembebanan 135°	. 84
4.8.2.5 Arah Pembebanan 180°	. 85
4.9 Analisis Clearance Antara Mooring Line dengan Pipa	. 88
4.9.1 Clearance Antara Mooring Line dengan Pipa Kondisi Stand Alone	. 88
4.9.2 Clearance Antara Mooring Line dengan Pipa Kondisi Offloading	. 89

BAB V PENUTUP	91
5.1 Kesimpulan	91
5.2 Saran	92

DAFTAR PUSTAKA	93
LAMPIRAN	

DAFTAR GAMBAR

Gambar 1.1. FSO Belida1
Gambar 2.2. Sistem tambat <i>spread mooring</i> 7
Gambar 2.3. Subsea Buoy
Gambar 2.4. Enam derajat kebebasan bangunan apung11
Gambar 2.5. Mooring Line
Gambar 3.1 Diagram alir pengerjaan tugas akhir22
Gambar 4.1. Pemodelan FSO Belida menggunakan software Maxsurf Modeler 28
Gambar 4.2 Pemodelan FSO Belida tampak isometris dengan <i>software</i> MOSES
Gambar 4.3 Pemodelan FSO Belida tampak samping dengan <i>software</i> MOSES28
Gambar 4.4 Pemodelan FSO Belida tampak atas dengan <i>software</i> MOSES28
Gambar 4.5 Pemodelan FSO Belida tampak depan dengan <i>software</i> MOSES29
Gambar 4.6. Pemodelan <i>shuttle tanker</i> menggunakan <i>software</i> Maxsurf Modeler
Gambar 4.7 Pemodelan <i>shuttle tanker</i> tampak isometris dengan <i>software</i> MOSES
Gambar 4.8 Pemodelan <i>shuttle tanker</i> tampak samping dengan <i>software</i> MOSES
Gambar 4.9 Pemodelan shuttle tanker tampak atas dengan software MOSES30
Gambar 4.10 Pemodelan <i>shuttle tanker</i> tampak depan dengan <i>software</i> MOSES
Gambar 4.11 Grafik RAO Surge FSO Belida Kondisi Full Load32
Gambar 4.12 Grafik RAO Surge FSO Belida Kondisi Ballast
Gambar 4.13 Grafik RAO Sway FSO Belida Kondisi Full Load
Gambar 4.14 Grafik RAO Sway FSO Belida Kondisi Ballast

Gambar 4.15 Grafik RAO Heave FSO Belida Kondisi Full Load	34
Gambar 4.16 Grafik RAO Heave FSO Belida Kondisi Ballast	35
Gambar 4.17 Grafik RAO Roll FSO Belida Kondisi Full Load	36
Gambar 4.18 Grafik RAO Roll FSO Belida Kondisi Ballast	36
Gambar 4.19 Grafik RAO Pitch FSO Belida Kondisi Full Load	37
Gambar 4.20 Grafik RAO Pitch FSO Belida Kondisi Ballast	37
Gambar 4.21 Grafik RAO Yaw FSO Belida Kondisi Full Load	
Gambar 4.22 Grafik RAO Yaw FSO Belida Kondisi Ballast	
Gambar 4.23 Grafik RAO Surge FSO Belida Kondisi Full Load	39
Gambar 4.24 Grafik RAO Surge FSO Belida Kondisi Ballast	40
Gambar 4.25 Grafik RAO Sway FSO Belida Kondisi Full Load	40
Gambar 4.26 Grafik RAO Sway FSO Belida Kondisi Ballast	41
Gambar 4.27 Grafik RAO Heave FSO Belida Kondisi Full Load	41
Gambar 4.28 Grafik RAO Heave FSO Belida Kondisi Ballast	42
Gambar 4.29 Grafik RAO Roll FSO Belida Kondisi Full Load	42
Gambar 4.30 Grafik RAO Roll FSO Belida Kondisi Ballast	43
Gambar 4.31 Grafik RAO Pitch FSO Belida Kondisi Full Load	43
Gambar 4.32 Grafik RAO Pitch FSO Belida Kondisi Ballast	44
Gambar 4.33 Grafik RAO Yaw FSO Belida Kondisi Full Load	44
Gambar 4.34 Grafik RAO Yaw FSO Belida Kondisi Ballast	45
Gambar 4.35 Grafik RAO Surge Shuttle Tanker Kondisi Full Load	46
Gambar 4.36 Grafik RAO Sway Shuttle Tanker Kondisi Full Load	47
Gambar 4.37 Grafik RAO Heave Shuttle Tanker Kondisi Full Load	47
Gambar 4.38 Grafik RAO Roll Shuttle Tanker Kondisi Full Load	48
Gambar 4.39 Grafik RAO Pitch Shuttle Tanker Kondisi Full Load	49
Gambar 4.40 Grafik RAO Yaw Shuttle Tanker Kondisi Full Load	49

Gambar 4.41 Tampak Atas Konfigurasi Spread Mooring Kondisi Stand Alone .50
Gambar 4.42 Tampak Atas Konfigurasi Spread Mooring Kondisi Offloading51
Gambar 4.43 Tampak samping pemodelan subsea buay kondisi stand alone52
Gambar 4.44 Tampak atas pemodelan subsea buay kondisi stand alone
Gambar 4.45 Tampak samping pemodelan subsea buay kondisi offloading53
Gambar 4.46 Tampak atas pemodelan subsea buay kondisi offloading53
Gambar 4.47 Mooring line dengan satu subsea buoy
Gambar 4.48 Mooring line dengan dua subsea buoy
Gambar 4.49 Diagram batang <i>tension</i> maksimum arah pembebanan 0°56
Gambar 4.50 Diagram batang <i>tension</i> maksimum arah pembebanan 45°57
Gambar 4.51 Diagram batang <i>tension</i> maksimum arah pembebanan 90°59
Gambar 4.52 Diagram batang <i>tension</i> maksimum arah pembebanan 135°60
Gambar 4.53 Diagram batang <i>tension</i> maksimum arah pembebanan 180°62
Gambar 4.54 Diagram batang <i>tension</i> maksimum arah pembebanan 0°64
Gambar 4.55 Diagram batang <i>tension</i> maksimum arah pembebanan 45°65
Gambar 4.56 Diagram batang <i>tension</i> maksimum arah pembebanan 90°67
Gambar 4.57 Diagram batang <i>tension</i> maksimum arah pembebanan 135°68
Gambar 4.58 Diagram batang <i>tension</i> maksimum arah pembebanan 180°70
Gambar 4.59 Besar <i>tension</i> sebelum dan setelah penambahan <i>subsea buoy</i> kondisi <i>stand alone</i>
Gambar 4.60 Besar <i>tension</i> sebelum dan setelah penambahan <i>subsea buoy</i> kondisi <i>offloading</i>
Gambar 4.61 Grafik <i>offset</i> maksimum ke arah x74
Gambar 4.62 Grafik <i>offset</i> maksimum ke arah y74
Gambar 4.63 Grafik <i>offset</i> maksimum ke arah x75
Gambar 4.64 Grafik <i>offset</i> maksimum ke arah y75

Gambar 4.65 Grafik <i>offset</i> maksimum ke arah x	76
Gambar 4.66 Grafik <i>offset</i> maksimum ke arah y	77
Gambar 4.67 Grafik <i>offset</i> maksimum ke arah x	78
Gambar 4.68 Grafik <i>offset</i> maksimum ke arah y	78
Gambar 4.69 Grafik <i>offset</i> maksimum ke arah x	79
Gambar 4.70 Grafik <i>offset</i> maksimum ke arah y	79
Gambar 4.71 Grafik <i>offset</i> maksimum ke arah x	80
Gambar 4.72 Grafik <i>offset</i> maksimum ke arah y	81
Gambar 4.73 Grafik <i>offset</i> maksimum ke arah x	82
Gambar 4.74 Grafik <i>offset</i> maksimum ke arah y	82
Gambar 4.75 Grafik <i>offset</i> maksimum ke arah x	83
Gambar 4.76 Grafik <i>offset</i> maksimum ke arah y	83
Gambar 4.77 Grafik <i>offset</i> maksimum ke arah x	84
Gambar 4.78 Grafik <i>offset</i> maksimum ke arah y	85
Gambar 4.79 Grafik <i>offset</i> maksimum ke arah x	86
Gambar 4.80 Grafik <i>offset</i> maksimum ke arah y	86

DAFTAR TABEL

Tabel 3.1 Data Utama FSO Belida	. 24
Tabel 3.2 Data Utama Shuttle Tanker	. 24
Tabel 3.3 Mooring System Data	. 25
Tabel 3.4 FSO Mooring Hawser Data	. 25
Tabel 3.5 Data Ukuran Subsea Buoy	. 25
Tabel 3.6 Data Lingkungan Perairan Natuna	. 26
Tabel 4.1 Data Ukuran Utama FSO Belida	. 27
Tabel 4.2 Data Ukuran Utama Shuttle Tanker	. 29
Tabel 4.3 Validasi FSO Belida	. 31
Tabel 4.4 Validasi Shuttle Tanker	. 31
Tabel 4.5 RAO Maksimum FSO Tertambat & Free Floating (Stand Alone)	. 45
Tabel 4.6 RAO Maksimum FSO Tertambat & Free Floating (Offloading)	. 45
Tabel 4.7 Variasi Posisi Subsea Buoy	. 52
Tabel 4.8 Tension pada line 3, 4, 5, 6 arah pembebanan 0°	. 55
Tabel 4.9 Tension pada line 1, 2, 7, 8 arah pembebanan 0°	. 55
Tabel 4.10 Tension pada line 3, 4, 5, 6 arah pembebanan 45°	. 56
Tabel 4.11 Tension pada line 1, 2, 7, 8 arah pembebanan 45°	. 57
Tabel 4.12 Tension pada line 3, 4, 5, 6 arah pembebanan 90°	. 58
Tabel 4.13 Tension pada line 1, 2, 7, 8 arah pembebanan 90°	. 58
Tabel 4.14 Tension pada line 3, 4, 5, 6 arah pembebanan 135°	. 59
Tabel 4.15 Tension pada line 1, 2, 7, 8 arah pembebanan 135°	. 60
Tabel 4.16 Tension pada line 3, 4, 5, 6 arah pembebanan 180°	. 61
Tabel 4.17 Tension pada line 1, 2, 7, 8 arah pembebanan 180°	. 61
Tabel 4.18 Tension pada line 3, 4, 5, 6 arah pembebanan 0°	. 63

Tabel 4.19 Tension pada line 1, 2, 7, 8 arah pembebanan 0°
Tabel 4.20 Tension pada line 3, 4, 5, 6 arah pembebanan 45°
Tabel 4.21 Tension pada line 1, 2, 7, 8 arah pembebanan 45°65
Tabel 4.22 Tension pada line 3, 4, 5, 6 arah pembebanan 90°
Tabel 4.23 Tension pada line 1, 2, 7, 8 arah pembebanan 90°
Tabel 4.24 Tension pada line 3, 4, 5, 6 arah pembebanan 135° 67
Tabel 4.25 Tension pada line 1, 2, 7, 8 arah pembebanan 135° 68
Tabel 4.26 Tension pada line 3, 4, 5, 6 arah pembebanan 180° 69
Tabel 4.27 Tension pada line 1, 2, 7, 8 arah pembebanan 180° 69
Tabel 4.28 Besar tension sebelum & setelah penambahan subsea buoy kondisi
stand alone
Tabel 4.29 Besar tension sebelum dan setelah penambahan subsea buoy kondisi
offloading
Tabel 4.30 Offset maksimum arah pembebanan 0°
Tabel 4.31 Offset maksimum arah pembebanan 45°75
Tabel 4.32 Offset maksimum arah pembebanan 90°
Tabel 4.33 Offset maksimum arah pembebanan 135° 77
Tabel 4.34 Offset maksimum arah pembebanan 180°79
Tabel 4.35 Offset maksimum arah pembebanan 0°
Tabel 4.36 Offset maksimum arah pembebanan 45°
Tabel 4.37 Offset maksimum arah pembebanan 90°
Tabel 4.38 Offset maksimum arah pembebanan 135° 84
Tabel 4.39 Offset maksimum arah pembebanan 180° 85
Tabel 4.40 Besar offset sebelum dan setelah penambahan subsea buoy kondisi
stand alone
Tabel 4.41 Besar offset sebelum dan setelah penambahan subsea buoy kondisi
offloading

Tabel 4.42 Clearance antara mooring line dengan pipa	. 88
Tabel 4.43 Clearance antara mooring line dengan pipa	. 89

DAFTAR LAMPIRAN

LAMPIRAN A (Hasil *output* RAO MOSES FSO Kondisi *Full Load*) LAMPIRAN B (Hasil *output* RAO MOSES FSO Kondisi *Ballast*) LAMPIRAN C (Hasil *output* RAO MOSES *Shuttle Tanker* Kondisi *Full Load*) LAMPIRAN D (*Output Tension* dari *Orcaflex*)

BAB I

PENDAHULUAN

1.1 Latar Belakang

Natuna merupakan daerah yang berada di ujung utara dari selat Karimata. Daerah ini merupakan salah satu yang memiliki cadangan minyak dan gas bumi terbesar di dunia. Daerah ini banyak terdapat bangunan lepas pantai untuk eksplorasi minyak dan gas bumi, baik itu bangunan terpancang maupun terapung. Saat ini terus dilakukan pengembangan teknologi perancangan struktur bangunan lepas pantai untuk mengeksplorasi minyak dan gas bumi di daerah Natuna. Salah satunya adalah pembangunan *Floating Storage and Offloading* (FSO).

Floating Storage Offloading (FSO) merupakan bangunan apung yang berbentuk kapal yang berfungsi menyimpan hidrokarbon dan mentransfer ke kapalkapal pengangkut atau tongkang. Dalam operasinya struktur FSO mengalami pergerakan di perairan yang disebabkan oleh beban lingkungan, seperti gelombang, angin, dan arus. Sehingga diperlukan sistem tambat pada struktur FSO. Tujuan dari sistem tambat ini adalah untuk membatasi gerakan dan menjaga FSO agar tetap berada pada posisinya. Gambar FSO ditunjukkan pada gambar 1.1.

Gambar 1.1. FSO Belida

Salah satu jenis sistem tambat yang biasanya digunakan adalah *spread mooring*. Sistem tambat yang terdiri dari beberapa *mooring line* yang menyebar dan ditambat ke dasar laut dengan menggunakan jangkar. Sistem ini tidak memungkinkan kapal untuk bergerak atau berputar guna mencapai posisi dimana efek-efek lingkungan semisal angin, arus, dan gelombang relatif kecil. Namun hal ini menyebabkan beban lingkungan terhadap kapal menjadi lebih besar.

Dalam pembangunan sistem tambat banyak sekali faktor yang harus diperhatikan, salah satunya adalah jarak antar *mooring line* dengan *mooring line* atau dengan peralatan bawah laut lainnya. *Clashing* antara *mooring line* dengan pipa merupakan salah satu permasalahan yang dapat ditemui. Penambahan *subsea buoy* pada *mooring line* dapat menghindari *clashing* antara *mooring line* dengan pipa, karena *subsea buoy* dapat mengangkat *mooring line* dengan pipa, penambahan *subsea buoy* dapat mengangkat *mooring line* dengan pipa penambahan *subsea buoy* dapat mengangan pada *mooring line*. Sehingga pada tugas akhir ini saya akan melakukan analisis pengaruh penambahan *subsea buoy* dengan empat variasi posisi peletakan dan dua *subsea buoy*. Sehingga dapat diketahui pengaruh tegangan pada *spread mooring* karena penambahan *subsea buoy*.

1.2 Rumusan Masalah

Rumusan masalah yang akan dibahas dalam tugas akhir ini adalah:

- 1. Bagaimana tegangan *mooring line* pada sistem tambat *spread mooring* tanpa penambahan *subsea buoy*?
- 2. Bagaimana pengaruh penambahan *subsea buoy* terhadap tegangan *mooring line* pada sistem tambat *spread mooring*?

1.3 Tujuan

Tujuan dari tugas akhir ini adalah:

- 1. Mengetahui tegangan *mooring line* pada sistem tambat *spread mooring* tanpa penambahan *subsea buoy*.
- 2. Mengetahui pengaruh penambahan *subsea buoy* terhadap tegangan *mooring line* pada sistem tambat *spread mooring*.

1.4 Manfaat

Dari penelitian ini kita dapat mengetahui pengaruh penambahan *subsea buoy* terhadap tegangan *mooring line* pada sistem tambat *spread mooring*. Sehingga akan didapatkan alternatif desain *mooring line* dengan *subsea buoy* yang tepat.

1.5 Batasan Masalah

Dalam tugas akhir ini batasan masalah dan asumsi yang digunakan adalah sebagai berikut:

- 1. Sistem tambat yang digunakan adalah spread mooring.
- 2. FSO dianalisis dalam keadaan full load dan ballast.
- 3. Data lingkungan menggunakan data di perairan Natuna.
- 4. Kondisi pembebanan lingkungan collinear.
- 5. Variasi peletakan satu *subsea buoy* pada jarak 605 m, 577.5 m, 550 m, 522.5 m dari *anchor*.
- 6. Variasi dua subsea buoy pada jarak 605 m dan 467.5 m dari anchor.
- 7. Ukuran subsea buoy yang digunakan tetap.
- 8. Analisis dinamis menggunakan metode time domain.
- 9. Kondisi seabed dianggap datar dan jangkar dianggap mampu menahan beban.

1.6 Sistematika Penulisan

Sistematika penulisan tugas akhir ini adalah sebagai berikut:

1. Bab I Pendahuluan

Bab ini menjelaskan tentang latar belakang tugas akhir yang akan dilakukan, perumusan masalah, tujuan yang hendak dicapai dalam tugas akhir , manfaat yang diperoleh dan batasan masalah yang membatasi ruang lingkup penelitian guna membatasi analisis yang akan dilakukan dalam tugas akhir ini.

2. Bab II Tinjauan Pustaka dan Dasar Teori

Dalam penulisan tugas akhir ini, penulis berpedoman pada penelitian, jurnal lokal maupun internasional, *rules* atau *code* dan juga buku yang memiliki kaitan terhadap bahasan tugas akhir.

3. Bab III Metodologi Penelitian

Pada bab ini menjelaskan tentang metode pengerjaan dalam tugas akhir yang akan dilakukan beserta prosedur yang digunakan.

4. Bab IV Analisis dan Pembahasan

Pada bab ini akan dilakukan analisis mengenai hasil pemodelan struktur FSO, *shuttle tanker* beserta sistem tambat dan simulasi untuk variasi posisi peletakan *subsea buoy*. Analisis tersebut bertujuan untuk menjawab permasalahan yang telah dirumuskan.

5. Bab V Penutup

Pada bab ini menjelaskan tentang kesimpulan dari hasil dan pembahasan mengenai pengaruh dari variasi penambahan *subsea buoy* terhadap *tension* yang timbul serta memberikan saran-saran untuk penelitian ataupun tugas akhir selanjutnya.

BAB II

TINJAUAN PUSTAKA & DASAR TEORI

2.1 Tinjauan Pustaka

Pengeboran minyak di laut dalam menjadi semakin umum dan penggunaan sistem *Floating (Production) Storage and Offloading* FSO/FPSO menyediakan teknologi matang untuk produksi, penyimpanan, dan ekspor produk hidrokarbon dari area-area ini (Howell dkk., 2006). *Floating Storage and Offloading* (FSO) merupakan bangunan apung yang berbentuk kapal yang berfungsi menyimpan hidrokarbon. FSO dapat berasal dari konversi kapal tanker atau bangunan baru. Dalam tahap pengoperasiannya, FPSO/FSO akan mendapatkan pembebanan dari kondisi lingkungannya yang berupa beban gelombang, arus dan angin (Sahlan dkk., 2012). Sehingga diperlukan sistem tambat untuk menjaga FSO agar tetap pada posisinya. Sistem tambat merupakan bagian penting dari struktur terapung, sistem tambat telah menjadi topik penelitian yang menantang, terutama ketika struktur apung mulai dilakukan di perairan yang lebih dalam (Ji C.Y. dkk., 2011).

Semakin dengan berjalannya waktu, banyak dilakukan studi dan juga penelitian untuk menganalisis variasi pada desain sistem tambat, seperti analisis *subsea buoy* pada sistem tambat. Contohnya analisis numerik pada sistem *hybrid mooring* dengan *clump weights* dan *buoys* oleh Yuan Z.M. dkk. (2014) yang menganalisis jenis *mooring line* baru, *hybrid mooring system with clump weight and buoys* (HMSWB). Dalam penelitian ini Yuan Z.M hanya menganalisis pengaruh *buoys* pada (HMSWB) karena sebelumnya pengaruh dari *clump weight* sudah dibahas oleh Ji C.Y. dkk. (2011). Penelitian ini mendapatkan kesimpulan bahwa *buoys* yang terpasang dapat mengurangi tegangan pada *mooring line*.

Sundaravadivelu (1991) telah melakukan penelitian bahwa kenaikan *net* bouyancy submerged buoy dapat mengurangi besarnya excursi buoy. Buoy yang digunakan dalam penelitian tersebut adalah single point subsurface mooring yang digunakan untuk pengumpulan data di laut. Fitria, Favi Ainin (2018) melakukan penelitian penambahan clump buoy pada sistem tambat yang bertujuan melihat pengaruh penambahan clump buoy terhadap tension mooring line dan menghindari potensi clashing antar mooring line. Hasil dari penelitian tersebut menyebutkan

bahwa penambahan *clump buoy* pada *mooring line* dapat mengurangi *tension* dan juga tidak terjadi *clashing* antar *mooring line*. Mavrakos (1997) melakukan analisis pengaruh penambahan *submerged buoy* di laut dalam. Dalam penelitian ini dilakukan variasi jumlah, ukuran, dan posisi peletakan pada *submerged buoy*. Analisis berikutnya adalah pengaruh penambahan *submerged buoy* terhadap tegangan dan *dry length* pada sistem tambat *single point mooring* (Suseprasetyo, 2013). Pada analisis ini mendapatkan hasil besarnya displasemen *submerged buoy* sebanding dengan besarnya *dry length* dan semakin jauh posisi peletakan *submerged buoy* dari *fairlead*, *tension* yang muncul akan semakin kecil.

Pada tugas akhir ini akan menganalisis pengaruh penambahan subsea buoy terhadap tegangan tali tambat pada spread mooring untuk menghindari clashing antara mooring line dengan pipa dengan variasi satu subsea buoy dengan empat posisi peletakan dan dua subsea buoy. FSO akan ditambat dengan sistem tambat jenis spread mooring dan akan ditambahkan dengan subsea buoy.

2.2 Dasar Teori

2.2.1 Floating Storage and Offloading (FSO)

Floating Storage and Offloading (FSO) merupakan bangunan apung yang berbentuk kapal yang berfungsi menyimpan hidrokarbon yang nantinya akan ditransfer ke sebuah kapal tanker. FSO dapat berasal dari konversi kapal tanker atau bangunan baru. Berbeda dengan kapal tanker yang berlayar, FSO ditambat ke dasar laut dengan menggunakan *mooring system*, tujuannya agar FSO tetap berada pada posisinya. Dalam tahap pengoperasiannya, FPSO/FSO akan mendapatkan pembebanan dari kondisi lingkungannya yang berupa beban gelombang, arus dan angin (Sahlan dkk., 2012).

2.2.2 Sistem Tambat

Sistem tambat memiliki fungsi membatasi gerakan kapal akibat dari beban gelombang agar tetap berada pada posisinya. Dalam API RP 2SK (2005), sistem tambat dapat dibagi menjadi :

1. *Spread mooring*, adalah sistem tambat yang terdiri dari beberapa *mooring line* yang menyebar dan ditambat ke dasar laut dengan menggunakan jangkar. Pada sistem ini *mooring line* umumnya terletak pada posisi *bow* dan *stern* kapal.

Spread mooring tidak memungkinkan kapal untuk bergerak memutar (*weathervaning*).

- 2. *Single Point Mooring* (SPM), terdiri dari *buoy body* dan komponen mooring line yang menghubungkan *buoy* ke dasar laut. Sistem ini memungkinkan kapal untuk bergerak memutar (*weathervaning*).
- 3. *Dynamic Positioning*, adalah sistem tambat yang menggunakan sistem penggerak otomatis untuk mempertahankan posisi kapal.

2.2.2.1 Spread Mooring

Sistem ini tidak memungkinkan kapal untuk bergerak atau berputar guna mencapai posisi dimana efek-efek lingkungan semisal angin, arus, dan gelombang relative kecil. Namun hal ini menyebabkam beban lingkungan terhadap kapal menjadi lebih besar, dan akan mengakibatkan bertambahnya jumlah mooring line atau line tension. Pada sistem ini mooring line umumnya terletak pada posisi *bow* dan *stern* kapal. *Spread mooring* dapat digunakan pada setiap tipe kapal, namun tetap memperhatikan fasilitas produksi diatas kapal. Gambar 2.2 menunjukan sistem tambat dengan jenis *spread mooring*.

Gambar 2.2. Sistem tambat *spread mooring* (sumber: API RP 2SK)

2.2.2.2 Subsea Buoy

Menurut API RP 2SK (2005) manfaat dari *subsea buoy* adalah mengurangi berat *mooring line* terutama di laut dalam, mengurangi *offset* kapal dengan ukuran *line & pretension* yang diberikan, menambah jarak vertikal antara *mooring line* dengan peralatan dibawahnya. Sedangkan kerugiannya adalah dapat meningkatkan kompleksitas instalasi dan potensi menambah beban pada *mooring line* karena respons dinamis pelampung di laut lepas. *Subsea buoy* yang digunakan pada sistem tambat permanen dapat dibuat dari besi atau kombinasi dari material sintetis. Material dari besi terbukti lebih murah dibandingkan material sintetis.

Gambar 2.3. Subsea Buoy (Sumber: API RP 2SK)

Subsea buoy dapat ditempatkan di satu garis dengan *mooring line* atau dipasang secara terpisah dengan *mooring line* melalui *tri-plate* seperti pada gambar 2.3.

2.2.3 Beban Lingkungan

Dalam mendesain struktur bangunan laut, kita harus memperhatikan beban lingkungan dimana struktur tersebut berada. Beban lingkungan tersebut diantaranya beban gelombang, beban angin, dan beban arus.

2.2.3.1 Beban Gelombang

Gelombang merupakan sumber yang paling utama dari beban lingkungan yang dialami oleh bangunan lepas pantai. Gaya gelombang *time series* dapat dibangkitkan dari spektrum gelombang sebagai *first order* dan *second order*. *First order* adalah gelombang dengan periode kecil yang daerah pembangkitannya di daerah itu sendiri dan berpengaruh dominan pada gerakan bangunan apung. Persamaan gaya gelombang *first order* dituliskan dengan persamaan

Keterangan:

$$F_{WV}^{(1)}(t)$$
 : gaya gelombang *first order* tergantung waktu (N)

 $F_{WV}^{(1)}$: gaya *exciting* gelombang *first order per unit* amplitudo gelombang (N)

 ε_i : sudut fase komponen gelombang *first order* (deg)

 a_i : amplitudo komponen gelombang *first order* (m)

 $S(\omega)$: fungsi spektrum gelombang

Second order wave force adalah gelombang dengan periode tinggi yang daerah pembangkitannya tidak didaerah itu (jauh dari lokasi gelombang terjadi) dan berpengaruh dominan pada kekuatan sistem tambat. Persamaan untuk menghitung gaya gelombang *second order* ditulis pada persamaan :

$$F_{WV}^{(2)}(t) = \sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j D_{ij} \cos\left[\left(\omega_i - \omega_j\right)t + \left(\varepsilon_i - \varepsilon_j\right)\right] \dots (2.2)$$

Keterangan:

 D_{ij} : *drift force per unit* amplitudo gelombang (N/m)

2.2.3.2 Beban Angin

Dalam sebuah perancangan, perhitungan beban angin dapat dihitung menggunakan persamaan berdasarkan OCIMF mooring equipment guidelines (1997):

Longitudinal wind force

$$F_{xw} = C_{xw} \left(\frac{\rho_w}{7600}\right) V_w^2 A_T \quad(2.3)$$

Lateral wind force

Keterangan :

 F_{xw} : gaya angin longitudinal (kN)

 F_{vw} : gaya angin lateral (kN)

 C_{xw} : koefisien gaya angin longitudinal non dimensional

 C_{vw} : koefisien gaya angin transfersal non dimensional

 ρ_w : densiti udara = 1.223 (Kg/m^3) pada 200°C

- V_w : kecepatan angin pada ketinggian 10 m (knot)
- A_T : luas penampang transfersal diatas air (m^2)
- A_L : luas penampang longitudinal diatas air (m^2)

2.2.3.3 Beban Arus

Beban arus merupakan salah satu beban lingkungan yang memberikan gaya terhadap *offshore structure*. Fungsi linier berdasarkan *OCIMF mooring equipment guidelines* (1997) dituliskan:

Longitudinal current force

$$F_{xc} = C_{xc} \left(\frac{\rho_c}{7600}\right) V_c^2 T L_{BP}$$
(2.5)

Lateral current force

$$F_{yc} = C_{yc} \left(\frac{\rho_c}{7600}\right) V_c^2 T L_{BP}$$
 (2.6)

Keterangan :

 F_{xc} : gaya arus longitudinal (kN)

 F_{yc} : gaya arus lateral (kN)

- C_{xc} : koefisien gaya arus longitudinal non dimensional
- C_{vc} : koefisien gaya arus transfersal non dimensional

 ρ_c : densiti air laut = (Kg/m^3) pada 200°C

 V_c : kecepatan arus pada ketinggian 10 m (knot)

- T : Draft kapal (m)
- L_{BP} : length between perpendicular (m)

2.2.4 Teori Gerak Bangunan Laut

Menurut Bhattacharyya (1978) sebuah kapal yang bergerak di permukaan laut pada umumnya adalah pergerakan osilasi, yang ditunjukkan dengan enam mode gerakan, yaitu tiga gerakan *linier* dan tiga gerakan *rotasional*. Keenam mode gerakan tersebut ditunjukkan pada gambar 2.4.

Gambar 2.4. Enam derajat kebebasan bangunan apung (sumber: www.Helmidadang.wordpress.com)

- a. Mode gerak translasional
 - 1. Surge, gerakan translasional pada sumbu-x
 - 2.Sway, gerakan translasional pada sumbu-y
 - 3. Heave, gerakan translasional pada sumbu-z
- b. Mode gerak rotasional
 - 1.Surge, gerakan rotasional pada sumbu-x
 - 2.Sway, gerakan rotasional pada sumbu-y
 - 3. Heave, gerakan rotasional pada sumbu-z

Dengan asumsi gerakan-gerakan osilasi yang ditunjukkan dalam gambar diatas adalah linier dan harmonik, maka menurut Djatmiko (2012) enam persamaan diferensial gerakan kopelnya dapat dituliskan sebagai berikut :

$$\sum_{n=1}^{6} [(M_{jk} + A_{jk})\zeta k + B_{jk}\zeta_k + C_{jk}\zeta_K] = F_j e^{iwt}, j = 1,6 \dots (2.7)$$

Keterangan:

- Mjk : matriks massa dan momen inersia massa bangunan laut
- Ajk : matriks koefisien-koefisien massa tambah hidrodinamik
- Bjk : matriks koefisien-koefisien redaman hidrodinamik
- C_{jk} : matriks koefisien-koefisien kekakuan atau gaya dan momen hidrostatik

- F_j : matriks gaya eksitasi (F_1 , F_2 , F_3) dan momen eksitasi (F_4 , F_5 , F_6) dalam fungsi kompleks (dinyatakan oleh e^{iwt})
- F1: gaya eksitasi yang menyebabkan gerakan surge
- F2: gaya eksitasi yang menyebabkan gerakan sway
- F3: gaya eksitasi yang menyebabkan gerakan heave
- F4: momen eksitasi yang menyebabkan gerakan roll
- F5: momen eksitasi yang menyebabkan gerakan pitch
- F6: momen eksitasi yang menyebabkan gerakan yaw
- ζ_k : elevasi gerakan pada mode ke k
- ζ_k : elevasi kecepatan gerakan pada mode ke k
- ζ_k : elevasi percepatan gerakan pada mode ke k

Persamaan tersebut jelas menunjukkan hubungan antara gaya aksi dan gaya reaksi. Gaya aksi direpresentasikan oleh suku pada ruas kanan, yang merupakan eksitasi gelombang terhadap bangunan apung. Gaya reaksi ditunjukkan oleh sukusuku di sebelah kiri persamaan, yaitu terdiri dari gaya inersia, gaya redaman dan gaya pengembali, yang masing-masing berkorelasi dengan percepatan gerak dan simpangan atau displasemen gerakan.

2.2.5 Response Amplitude Operator (RAO)

Response Amplitude Operator (RAO) adalah fungsi respon gerakan dinamis suatu struktur yang disebabkan oleh gelombang dengan rentang frekuensi atau periode tertentu. RAO disebut juga *transfer function* karena merupakan alat atau operator untuk mentransfer beban luar yaitu gelombang dalam bentuk respon pada suatu struktur. Berikut ini adalah bentuk umum dari persamaan RAO menurut Chakrabarti (1987):

Keterangan :

 $X_p(\omega)$: amplitudo struktur (m)

 $\eta(\omega)$: amplitudo gelombang (m)

Menurut Djatmiko (2012), respons gerakan RAO untuk gerakan translasi. Surge, sway, heave (k = 1,2,3 atau x,y,z), adalah merupakan perbandingan langsung antara

amplitudo gerakannya dibanding dengan amplitudo gelombang insiden (keduanya dalam satuan panjang):

$$RAO = \frac{\zeta_{k0}}{\zeta_0} (\text{m/m}) \dots (2.9)$$

Sedangkan respons non-dimensional atau RAO untuk gerakan rotasi. Roll, pitch dan yaw (k = 3,4,5 atau θ , ϕ , ψ), adalah merupakan perbandingan antara amplitudo gerakan rotasi (dalam radian) dengan kemiringan gelombang, yakni yang merupakan perkalian antara angka gelombang, k_w = ω^2/g , dengan amplitude gelombang insiden:

$$RAO = \frac{\zeta_{k_0}}{k_w \zeta_0} = \frac{\zeta_{k_0}}{(\omega^2/g)\zeta_0}$$
 (rad/rad)(2.10)

2.2.6 Spektrum Gelombang

Spektrum energi gelombang mendeskripsikan energi yang terkandung dari gelombang acak. Penentuan spektrum energi gelombang untuk mendapatkan respons spektrum suatu struktur mengacu pada kondisi laut yang sebenarnya. Bila tidak ada, maka dapat diasumsikan berbagai model spektrum yang diresmikan oleh berbagai institusi terpercaya dengan mempertimbangkan kemiripan fisik lingkungan.

Dalam penelitian ini akan menggunakan formulasi spektra JONSWAP. Formulasi ini memasukkan parameter-parameter yang akan mengakomodasi karakteristik gelombang perairan tertutup atau kepulauan, sehingga banyak dipakai dalam perancangan dan analisis bangunan lepas pantai yang dioperasikan di Indonesia. Berikut ini adalah persamaan spektra JONSWAP,

$$S_{\zeta}(\omega) = \alpha g 2\omega - 5 \exp\left\{-125\left(\frac{\omega}{\omega_0}\right)^{-4}\right\} \gamma^{exp\left\{\frac{(\omega-\omega_0)^2}{2\tau\omega_0^2}\right\}} \dots (2.11)$$

Keterangan :

 $\alpha : 0.076(X_0)^{-0.22}$

X0: gX/Uw^2

X : Panjang fetch

Uw : Kecepatan angin

- α : 0.0081 jika X tidak diketahui
- γ : Parameter ketinggian
- τ : Parameter bentuk
- τ : 0.07 untuk $\omega \leq \omega_0$
- τ : 0.09 untuk $\omega > \omega_0$

$$\omega_0: 2\pi(\frac{g}{U_w})(X_0)^{-0.33}$$

Untuk wilayah perairan Indonesia yang tidak sekeras laut utara, digunakan nilai parameter ketinggian antara 2.0 sampai 2.5 agar tidak menimbulkan overdesain (Djatmiko, 2012).

2.2.7 Respons Spektra

Gelombang acak merupakan superposisi dari komponen-komponen pembentuknya yang berupa gelombang sinusoidal dalam jumlah tidak terhingga. Tiap-tiap komponen gelombang mempunyai tingkat energi tertentu yang dikontribusikan, yang kemudian secara keseluruhan diakumulasikan dalam bentuk spektrum energi gelombang (Djatmiko, 2012)..

Dalam analisis respon bangunan apung pada gelombang reguler dapat diketahui pengaruh interaksi hidrodinamik pada massa tambah, *potential damping* dan gaya eksternal. Analisis tersebut menghasilkan respon struktur pada gelombang reguler. Respon struktur pada gelombang acak dapat dilakukan dengan mentransformasikan spektrum gelombang menjadi spektrum respon. Hal ini dapat dilakukan dengan mengalikan harga pangkat kuadrat dari *Response Amplitude Operator* (RAO) dengan spektrum energi gelombang, yang secara persamaan matematis dapat ditulis sebagai berikut:

 $S_{\zeta r}(\omega) = RAO^2 x S_{\zeta}(\omega) \qquad (2.12)$

Dimana :

 $S_{\zeta r}(\omega)$: spektrum respon (m^2/sec) $S_{\zeta}(\omega)$: spektrum gelombang (m^2/sec) RAO : respons amplitude operator (m/m) ω : frekuensi gelombang (rad/sec)

2.2.8 Analisis Dinamis

Analisis dinamis memperhitungkan respon dinamis dari tali tambat. Efek variasi waktu akibat massa tali tambat, redaman, dan percepatan relatif fluida disertakan. Dalam pendekatan ini, gerakan *fairlead* variasi waktu dihitung dari gerakan *surge, sway, heave, pitch, roll* dan *yaw* dari bangunan apung. Berdasarkan DNV OS E301 (2004), metode analisis simulasi domain pada bangunan lepas pantai dibagi menjadi dua, yaitu:

1. Frequency Domain Analysis

Frequency domain analysis adalah simulasi kejadian pada saat tertentu dengan interval frekuensi yang telah ditentukan sebelumnya. Metode ini bisa digunakan untuk memperkirakan respon gelombang acak, seperti gerakan dan percepatan *platform*, gaya tendon, dan sudut. Keuntungan metode ini adalah tidak membutuhkan banyak waktu untuk perhitungan, *input* dan *output* juga lebih sering digunakan oleh perancang. Kekurangannya adalah untuk setiap persamaan *non-linear* harus diubah menjadi *linear*.

2. Time domain analysis

Time domain analysis adalah penyelesaian gerakan dinamis berdasarkan fungsi waktu. Pendekatan yang dilakukan dalam metode ini akan menggunakan prosedur integrasi waktu dan menghasilkan *time history response* berdasarkan fungsi waktu *x*(*t*). Metode analisis *time domain* umumnya seperti program komputer dapat digunakan untuk menganalisis semua situasi tali tambat dibawah pengaruh dinamika frekuensi gelombang. Namun, metode ini dalam membutuhkan proses lebih kompleks dan waktu yang lama. Hal ini membutuhkan simulasi *time history. Time history* memberikan hasil *tension* maksimum, beban jangkar, dan lainlain. Keuntungan metode ini dibandingkan *frequency domain* adalah semua tipe *non-linear* (matrik sistem dan beban-beban eksternal) dapat dimodelkan dengan lebih tepat.

2.2.9 Mooring Line

Dalam API RP 2SK (2005), *mooring line* untuk menambat kapal dapat dibuat dari *chain*, *wire rope*, *synthetic rope*, atau kombinasinya. Tipe mooring line yang digunakan dibagi menjadi 3 :

- Semua mooring line terbuat dari wire rope, karena wire rope lebih ringan dari chain, wire rope memiliki restoring force yang lebih di perairan laut dalam dan memerlukan tegangan awal (pretension) yang rendah dari pada rantai. Bagaimanapun juga, untuk menghindari terangkatnya anchor dari dasar laut maka diperlukan wire rope yang sangat panjang. Menggunakan wire rope memiliki kerugian yaitu abrasi yang disebabkan antara wire rope yang bergesekan dengan dasar laut.
- 2. Semua *mooring line* terbuat dari *chain*, rantai telah menunjukkan keunggulannya pada *offshore operations*. Rantai juga memiliki daya tahan yang lebih terhadap abrasi dasar laut dan mampu menahan *anchor* sangat signifikan. Akan tetapi, karena *chain* memiliki berat yang besar maka rantai tidak terlalu digunakan pada kondisi operasi perairan laut dalam.
- 3. Kombinasi antara *chain* dan *wire rope*. Dengan pemilihan Panjang yang tepat dari gabungan antara *wire rope* dan *chain*, maka akan diperoleh system *mooring* yang menguntungkan, yaitu *pretension* yang rendah, *restoring force* yang tinggi dan *holding anchor* yang lebih besar dan daya tahan terhadap abrasi dasar laut yang bagus.

2.2.9.1 Penentuan Mooring Line

Dalam mendesain *mooring line* agar bangunan apung dapat berada pada posisi sesuai tujuan penambatannya, kita harus menentukan ukuran panjang serta *pretension* yang sesuai.

Gambar 2.5. Mooring Line

Berikut ini adalah persamaan untuk menentukan panjang *mooring line* (Faltinsen, 1990) :

Keterangan,

 l_{min} : panjang minimum tali tambat (*chain line*) (m)

h : jarak vertikal dari *fairlead* ke *seabed* = hm + hc(m)

hm : kedalaman air (m)

hc : tinggi fairlead di atas permukaan air (m)

w : berat tali tambat di dalam air per satuan Panjang (N/m)

T : tension maksimum dari tali tambat (pre-tension) pada fairlead (kN)

Jarak minimum *mooring line* diperhitungkan agar rantai jangkar beratnya tidak terlalu mengalami tegangan yang besar sehingga tegangan yang dihasilkan masih aman dalam beroperasi. Perhitungan jarak minimum *mooring line* dapat dicari dengan persamaan (Faltinsen, 1990):

Keterangan:

- x : jarak minimum *mooring line* (m)
- 1 : panjang keseluruhan *mooring line* (m)
- h : jarak titik tumpu ke *seabed* (m)
- а : Тн/w

2.2.9.2 Tegangan Pada Mooring Line

Gerakan pada *vessel* dan beban lingkungan menyebabkan adanya tarikan pada *mooring line*. Tarikan (*tension*) yang terjadi pada *mooring line* dapat dibedakan menjadi 2, yaitu:

1. Mean tension.

Tension pada mooring line yang berkaitan dengan mean offset pada vessel.

2. Maximum tension.

Mean tension yang mendapat pengaruh dari kombinasi frekuensi gelombang dan *low frequency tension*.

Menurut API RP 2SK (2005), *maximum tension* dapat ditentukan dengan prosedur seperti persamaan berikut:

1. $T_{lfmax} > T_{wfmax}$, maka:

T	Tman +	Т	fmar +T.		()) 1	5	1
I max —	I mean	I	imax I I wisig	•••••••••••••••••••••••••••••••••••••••	(4	·• 1	. J	')

2. $T_{wfmax} > T_{lfmax}$, maka:

Keterangan,

Tlfmax : maximum low-frequency tension
Twfmax : maximum wave frequency tension
Tmax : maximum tension
Tmean : mean tension
Tlfsig : significant low-frequency tension
Twfsig : significant wave frequency tension

Menurut Faltinsen (1990), tegangan maksimum pada *mooring line* dapat ditentukan dengan persamaan berikut,

 $T_{max} = T_H + wh$ (2.17)

Keterangan,

Tmax : tegangan maksimum tali tambat (kN)

TH : horizontal *pre-tension* (kN)

w : berat *chain* di air (N/m)

h : kedalaman laut (m)

Tegangan pada tali tambat harus sesuai dengan kriteria *safety factor* yang terdapat dalam *rule. Safety factor* yang direkomendasikan oleh API RP 2SK (2005) untuk kondisi *intact condition* (ULS) adalah 1,67 sedangkan untuk kondisi *damage* (ALS) adalah 1,25. Dengan persamaan *safety factor* nya sebagai berikut:

(halaman ini sengaja dikosongkan)

BAB III

METODOLOGI PENELITIAN

3.1 Metode Penelitian

Metode dalam tugas akhir ini dijelaskan dalam diagram alir (*flowchart*) sebagai berikut.

Gambar 3.1 Diagram alir pengerjaan tugas akhir

3.2 Prosedur Penelitian

Langkah-langkah penelitian dalam diagram alir akan dijelaskan sebagai berikut:

1. Studi Literatur

Pengumpulan informasi dan penelitan yang telah dilakukan mengenai sistem *mooring* dengan penambahan *subsea buoy* untuk menunjang tugas akhir. Studi literatur didapatkan dari buku, tugas akhir, dan jurnal.

2. Pengumpulan Data Struktur & Data Lingkungan

Data struktur menggunakan data FSO Belida yang merupakan konversi dari tanker, data *shuttle tanker*, & data lingkungan menggunakan data di Perairan Natuna.

3. Pemodelan Struktur

Pemodelan FSO & *shuttle tanker* menggunakan *software* Maxsurf. Koordinat yang didapatkan dari *software* Maxsurf digunakan untuk *input* data pada *software* MOSES.

4. Validasi Model

Validasi model dilakukan untuk memastikan pemodelan yang dibuat sudah sesuai dengan struktur asli. Validasi dilakukan dengan membandingkan data hidrostatik dari *software* dengan data hidrostatik asli. Validasi model menggunakan acuan dari ABS (2018).

5. Pemodelan Sistem Mooring

Pemodelan sistem *mooring* menggunakan *software* Orcaflex. Data input *software* Orcaflex didapatkan dari *software* MOSES. Sistem tambat yang digunakan adalah jenis spread mooring dengan delapan mooring line dan konfigurasi sudut 45° dan 60°.

6. Analisis Pada Mooring Line

Analisis *mooring line* yang dilakukan pada penelitian ini adalah analisis *tension*, *offset*, dan *clereance* antara *mooring line* dengan pipa. Analisis dilakukan tanpa *subsea buoy* dan dengan penambahan *subsea buoy*.

7. Kesimpulan

Dari analisis yang telah dilakukan dapat menghasilkan *tension, offset,* dan *clearance* tanpa penambahan *subsea buoy* dan dengan penambahan *subsea buoy*. Sehingga bisa disimpulkan bagaimana pengaruh penambahan *subsea buoy* pada *mooring line*.

3.3 Pengumpulan Data

Data yang digunakan untuk tugas akhir ini adalah data struktur FSO Belida, *shuttle tanker, mooring line, hawser, subsea buoy* dan data lingkungan di Perairan Natuna.

3.3.1 Data Struktur

Data struktur terdiri atas data FSO, *shuttle tanker*, *mooring line*, *hawser*, dan *subsea buoy* yang terdapat pada tabel 3.1 sampai tabel 3.5.

Deremotor	Unit	Value			
Farameter	Om	Full load	Ballast		
Length Overall (LOA)	m	244.60	244.60		
Length Between Perpendicular (LPP)	m	233.00	233.00		
Breadth	m	42.20	42.20		
Depth	m	22.20	22.20		
Draft	m	14.9	7.00		
KG (Keel to Gravity)	m	13.71	10.08		
Displacement	Ton	12588.60	58833.87		

Tabel 3.1 Data Utama FSO Belida

Parameter	Unit	Value
Length Overall (LOA)	m	240.50
Length Between Perpendicular (LPP)	m	230.00
Breadth	m	42.00
Depth	m	21.20
Draft	m	14.85
KG (Keel to Gravity)	m	12.48
Displacement	Ton	118643.87

Parameter	Unit	Value
Туре	-	Chain, R4 Studless
Length of chain	m	914
Size	mm	87 mm diameter
MBL	mT	783.35

Tabel 3.3 Mooring System Data

Tabel 3.4 FSO Mooring Hawser Data

Parameter	Unit	Value
Type	-	Rope/Nylon
Size	mm	96 dia
MBL	mT	154.076

Tabel 3.5 Data Ukuran Subsea Buoy

Parameter	Unit	Value
Weight	kg	5600
Tinggi	m	4.6
Diameter	m	2.8

3.3.2 Data Lingkungan

Data lingkungan yang digunakan adalah data lingkungan di perairan Natuna. Data yang digunakan meliputi data tinggi gelombang, periode, kecepatan arus, dan kecepatan angin. Tabel 3.6 menunjukkan data lingkungan di perairan Natuna.

Direction	OMNI	Ν	NE	Е	SE	S	SW	W	NW
Wind Speed (m/s)	18	18	18	11	10	13	13	13	13

Tabel 3.6 Data Lingkungan Perairan Natuna
--

Direction	OMNI	Ν	NE	Е	SE	S	SW	W	NW
Significant Wave									
Height (m)	4.4	4.0	4.4	2.0	1.8	2.0	2.0	2.6	2.9
Spectral Peak Period									
(s)	9.9	9.7	9.9	8.6	8.5	8.6	8.6	9.0	9.1

Diretion	OMNI	N	NE	Е	SE	S	SW	W	NW
Current Speed (m/s)									
Surface	0.89	0.90	0.89	0.90	0.62	0.62	0.76	0.85	0.76
30 Meters Below									
Surface	0.69	0.62	0.69	0.62	0.48	0.48	0.59	0.66	0.59
3 Meters Above									
Bottom	0.50	0.45	0.50	0.45	0.35	0.35	0.43	0.48	0.43

BAB IV

ANALISIS DAN PEMBAHASAN

4.1 Pemodelan Struktur

Pemodelan struktur meliputi pemodelan FSO Belida dan pemodelan *shuttle tanker*. Pemodelan struktur menggunakan *software* Maxsurf Modeler dan *software* MOSES.

4.1.1 Pemodelan FSO Belida

Pemodelan FSO Belida menggunakan *software* Maxsurf Modeler dan *software* MOSES. Model dari *software* Maxsurf Modeler digunakan titik koordinat *marker* sebagai *input* pada *software* MOSES. Pada *software* MOSES akan menghasilkan *output* seperti RAO (*Response Amplitude Operator*), *added mass*, *damping force*, dan *wave drift* sebagai *input* untuk *software* Orcaflex. Analisis dilakukan pada kondisi FSO terapung bebas dengan pembebanan *full load* dan *ballast*. Berikut ini adalah data ukuran utama FSO Belida pada tabel 4.1.

Parameter		Value				
Falameter	UIII	Full load	Ballast			
Length Overall (LOA)	m	244.60	244.60			
Length Between Perpendicular (LPP)	m	233.00	233.00			
Breadth	m	42.20	42.20			
Depth	m	22.20	22.20			
Draft	m	14.90	7.00			
KG (Keel to Gravity)	m	13.71	10.08			
Displacement	Ton	12588.60	58833.87			
Kxx (Radius Gyration of Roll)	m	17.40	13.90			
Kyy (Radius Gyration of Pitch)	m	69.73	67.88			
Kzz (Radius Gyration of Yaw)	m	69.73	67.88			

Tabel 4.1 Data Ukuran Utama FSO Belida

Gambar pemodelan FSO Belida pada *software* Maxsurf Modeler ditunjukkan pada gambar 4.1 dan pemodelan pada *software* MOSES ditunjukkan pada gambar 4.2 sampai gambar 4.5.

Gambar 4.1. Pemodelan FSO Belida menggunakan software Maxsurf Modeler

	5

Gambar 4.2 Pemodelan FSO Belida tampak isometris dengan software MOSES

Gambar 4.3 Pemodelan FSO Belida tampak samping dengan software MOSES

Gambar 4.4 Pemodelan FSO Belida tampak atas dengan software MOSES

Gambar 4.5 Pemodelan FSO Belida tampak depan dengan software MOSES

4.1.2 Pemodelan Shuttle Tanker

Pemodelan *shuttle tanker* menggunakan *software* Maxsurf Modeler dan *software* MOSES. Analisis dilakukan pada kondisi terapung bebas dengan pembebanan *full load*. Berikut ini adalah data ukuran utama *shuttle tanker* pada tabel 4.2.

Parameter	Unit	Value
Length Overall (LOA)	m	240.50
Length Between Perpendicular (LPP)	m	230.00
Breadth	m	42.00
Depth	m	21.20
Draft	m	14.85
KG (Keel to Gravity)	m	12.48
Displacement	Ton	118643.87
Kxx (Radius Gyration of Roll)	m	18.27
Kyy (Radius Gyration of Pitch)	m	67.90
Kzz (Radius Gyration of Yaw)	m	67.90

 Tabel 4.2 Data Ukuran Utama Shuttle Tanker

Gambar pemodelan *shuttle tanker* pada *software* Maxsurf Modeler ditunjukkan pada gambar 4.6 dan pemodelan pada *software* MOSES ditunjukkan pada gambar 4.7 sampai gambar 4.10.

Gambar 4.6. Pemodelan shuttle tanker menggunakan software Maxsurf Modeler

Gambar 4.7 Pemodelan shuttle tanker tampak isometris dengan software MOSES

111	
253 - E	

Gambar 4.8 Pemodelan shuttle tanker tampak samping dengan software MOSES

Gambar 4.9 Pemodelan shuttle tanker tampak atas dengan software MOSES

Gambar 4.10 Pemodelan shuttle tanker tampak depan dengan software MOSES

4.2 Validasi Model

Validasi model dilakukan untuk mendapatkan pemodelan yang akurat sesuai dengan pemodelan asli, yaitu dengan membandingkan data hidrostatik awal dengan data hidrostatik dari hasil pemodelan di *software* Maxsurf Modeler dan *software* MOSES. Validasi model dilakukan berdasarkan kriteria pada rules ABS (*American Bureau of Shipping Validasi*). Validasi model FSO Belida dan *shuttle tanker* akan ditampilkan pada tabel dibawah ini.

Pembebanan	Unit	Data Awal	Maxsurf	Validasi (%)	MOSES	Validasi (%)
Full Load	t	128588.6	128563	0.02	128561	0.02
Ballast	t	58796.11	57595	2.00	57589.1	2.00

Tabel 4.3 Validasi FSO Belida

Tabel 4.4 Validasi Shuttle Tanker

Pembebanan	Unit	Data Awal	Maxsurf	Validasi (%)	MOSES	Validasi (%)
Full Load	t	118644	118629	0.01	118787	0.12

Dari tabel diatas menunjukkan bahwa validasi FSO Belida dengan membandingkan data awal dengan data output Maxsurf Modeler dan MOSES memenuhi kriteria dari ABS (*American Bureau of Shipping Validasi*) yaitu untuk *displacement* kurang dari sama dengan 2 %.

4.3 Analisis Respon Gerak FSO Kondisi Terapung Bebas

RAO (*Response Amplitude Operator*) didapatkan dari hasil pemodelan pada *software* MOSES. Analisis dilakukan pada kondisi FSO terapung bebas dengan lima arah datang pembebanan yaitu, 0°, 45°, 90°, 135°, 180°. Analisis dilakukan pada saat kondisi *full load* dan *ballast*. Respon gerak yang terjadi dibagi menjadi dua, yaitu translasional dan rotasional. Mode gerak translasional yaitu *surge, sway, heave*, dan mode gerak rotasional yaitu *roll, pitch, yaw*. Berikut ini adalah RAO FSO Belida pada kondisi *full load* dan *ballast*.

4.3.1 Analisis RAO Gerakan Surge

RAO *surge* pada kondisi *full load* terbesar terjadi pada saat gelombang datang dari arah 0° dan 180°, pada frekuensi terendah 0.1 rad/s yaitu sebesar 0.968 m/m. pada kondisi *ballast* RAO *surge* terbesar juga terjadi saat gelombang datang dari arah 0° dan 180°, pada frekuensi terendah 0.1 rad/s yaitu sebesar 0.977 m/m. Sedangkan RAO *surge* terkecil terjadi pada saat gelombang datang dari arah 90°. Keadaan ini terjadi pada kondisi *full load* maupun *ballast*. Dari grafik di bawah ini dapat dilihat bahwa semakin besar frekuensi gelombang maka RAO *surge* akan semakin kecil.

Gambar 4.11 Grafik RAO Surge FSO Belida Kondisi Full Load

Gambar 4.12 Grafik RAO Surge FSO Belida Kondisi Ballast

4.3.2 Analisis RAO Gerakan Sway

RAO gerakan *sway* terbesar terjadi pada arah datang gelombang 90° pada frekuensi 0.1 rad/s, yaitu sebesar 0.99 m/m untuk kondisi *full load* dan 0.994 m/m untuk kondisi *ballast*. Sedangkan RAO gerakan *sway* terkecil dari arah datang gelombang 0° dan 180°. Nilai RAO *sway* akan semakin mengecil seiring dengan kenaikan fekuensi gelombang.

Gambar 4.13 Grafik RAO Sway FSO Belida Kondisi Full Load

Gambar 4.14 Grafik RAO Sway FSO Belida Kondisi Ballast

4.3.3 Analisis RAO Gerakan Heave

Pada saat FSO mendapatkan gaya gelombang dengan frekuensi rendah, RAO *heave* pada seluruh arah datang memiliki nilai yang hampir sama yaitu sekitar satu, hal ini terjadi pada saat FSO dalam kondisi *full load* maupun *ballast*. Gerakan *heave* terbesar pada kondisi *full load* yaitu ketika arah datang gelombang 90° pada frekuensi 0.6 rad/s sebesar 1.446 m/m. pada kondisi *ballast* gerakan heave terbesar pada frekuensi 0.6 rad/s sebesar 1.092 m/m dari arah datang gelombang 90°.

Gambar 4.15 Grafik RAO Heave FSO Belida Kondisi Full Load

Gambar 4.16 Grafik RAO Heave FSO Belida Kondisi Ballast

4.3.4 Analisis RAO Gerakan Roll

Dari grafik di bawah ini menunjukkan gerakan *roll* terjadi kenaikan tajam pada frekuensi 0.3 rad/s di kondisi *full load*, sedangkan pada kondisi *ballast* terjadi kenaikan pada frekuensi 0.6 rad/s. Setelah mencapai nilai maksimumnya, grafik RAO mengalami penurunan hingga pada frekuensi tinggi nilainya mendekati nol untuk semua arah datang gelombang.

Kondisi *full load* gerakan *roll* terbesar terjadi dari arah datang gelombang 90° dengan nilai 2.214 deg/m. Gerakan terbesar selanjutnya dari arah 45° dan 135° dengan nilai sekitar 1.6 deg/m. Gerakan *roll* dari arah 0° dan 180° memiliki nilai yang hampir sama yaitu sekitar 0.007 deg/m. Sedangkan pada kondisi *ballast* gerakan *roll* terbesar terjadi dari arah datang gelombang 90° dengan nilai 4.646 deg/m. Gerakan terbesar kedua dari arah 135° dengan nilai 2.306 deg/m. Gerakan terbesar ketiga dari arah 45° dengan nilai 2.202 deg/m. Gerakan selanjutnya dari arah 0° dan 180° memiliki nilai yang hampir sama yaitu sekitar 0.002 deg/m.

Gambar 4.17 Grafik RAO Roll FSO Belida Kondisi Full Load

4.3.5 Analisis RAO Gerakan Pitch

Gerakan RAO pitch FSO Belida pada kondisi *full load* terbesar pada saat arah datang gelombang 45° dengan frekuensi 0.6 rad/s dengan nilai 0.966 deg/m, nilai ini hampir sama pada saat arah datang gelombang 135° yaitu 0.927 deg/m. Pada saat kondisi *ballast* gerakan *pitch* terbesar dari arah yang sama yaitu 45° dan 135° yaitu 0.78 deg/m dan 0.769 deg/m.

Gambar 4.19 Grafik RAO Pitch FSO Belida Kondisi Full Load

4.3.6 Analisis RAO Gerakan Yaw

Pada kondisi *full load* gerakan *yaw* terbesar dari arah 45° dan 135° dengan frekuensi 0.5 rad/s yaitu dengan nilai 0.302 deg/m dan 0.323 deg/m. Selanjutnya gerakan *yaw* terbesar dari arah 90° dengan nilai 0.025 deg/m pada frekuensi 0.3 rad/s. Dari arah datang gelombang 0° dan 180° memiliki nilai gerakan *yaw* terkecil yaitu nol.

Sedangkan pada kondisi *ballast* gerakan *yaw* terbesar dari arah 45° dan 135° dengan frekuensi 0.5 rad/s yaitu dengan nilai 0.321 deg/m dan 0.333 deg/m. Selanjutnya gerakan *yaw* terbesar dari arah 90° dengan nilai 0.039 deg/m pada frekuensi 0.6 rad/s. Dari arah datang gelombang 0° dan 180° memiliki nilai gerakan *yaw* terkecil yaitu nol.

Gambar 4.21 Grafik RAO Yaw FSO Belida Kondisi Full Load

Gambar 4.22 Grafik RAO Yaw FSO Belida Kondisi Ballast

4.4 Analisis Respon Gerak FSO Kondisi Tertambat

Pada keadaan operasi, struktur FSO Belida akan ditambat dengan sistem tambat *spread mooring*. Hal tersebut menyebabkan adanya perbedaan respon struktur terhadap gelombang. Perbedaan tersebut membuat grafik RAO pada kondisi terapung bebas tidak lagi sesuai untuk menggambarkan perilaku gerak struktur, sehingga perlu dilakukan analisis perilaku gerak pada kondisi tertambat. Pada analisis RAO tertambat dilakukan pada FSO *stand alone* dengan kondisi *full load* dan FSO *offloading* tandem dengan *shuttle tanker* dalam kondisi *ballast*, dengan arah pembebanan gelombang 0°, 90°, 180°.

4.4.1 Analisis RAO Gerakan Surge

RAO *surge* pada kondisi *full load* terbesar terjadi pada saat gelombang datang dari arah 0° dan 180°, pada frekuensi terendah yaitu sebesar 0.5.481 m/m dan 5.78 m/m. pada kondisi *ballast* RAO *surge* terbesar terjadi saat gelombang datang dari arah 0°, pada frekuensi terendah sebesar 5.634 m/m, besarnya RAO tersebut akibat resonansi yang terjadi pada frekuensi yang sangat kecil. Dari grafik di bawah ini dapat dilihat bahwa semakin besar frekuensi gelombang maka RAO *surge* akan semakin kecil.

Gambar 4.23 Grafik RAO Surge FSO Belida Kondisi Full Load

Gambar 4.24 Grafik RAO Surge FSO Belida Kondisi Ballast

4.4.2 Analisis RAO Gerakan Sway

RAO *sway* pada kondisi *full load* terbesar terjadi pada saat gelombang datang dari arah 90° pada frekuensi terendah yaitu sebesar 3.66 m/m. Pada kondisi *ballast* RAO *sway* terbesar terjadi saat gelombang datang dari arah 90°, pada frekuensi terendah sebesar 4.102 m/m, besarnya RAO tersebut akibat resonansi yang terjadi pada frekuensi yang sangat kecil. Dari grafik di bawah ini dapat dilihat bahwa semakin besar frekuensi gelombang maka RAO *sway* akan semakin kecil.

Gambar 4.25 Grafik RAO Sway FSO Belida Kondisi Full Load

Gambar 4.26 Grafik RAO Sway FSO Belida Kondisi Ballast

4.4.3 Analisis RAO Gerakan Heave

Pada saat FSO mendapatkan gaya gelombang dengan frekuensi rendah, RAO *heave* pada seluruh arah datang memiliki nilai yang hampir sama yaitu sekitar satu, hal ini terjadi pada saat FSO dalam kondisi *full load* maupun *ballast*. Gerakan *heave* terbesar pada kondisi *full load* yaitu ketika arah datang gelombang 90° 1.063 m/m. pada kondisi *ballast* gerakan heave terbesar 1.088 m/m dari arah datang gelombang 90°.

Gambar 4.27 Grafik RAO Heave FSO Belida Kondisi Full Load

Gambar 4.28 Grafik RAO Heave FSO Belida Kondisi Ballast

4.4.4 Analisis RAO Gerakan Roll

Pada kondisi *full load* gerakan *roll* terbesar terjadi dari arah datang gelombang 90° dengan nilai 1.447 deg/m. Sedangkan pada kondisi *ballast* gerakan *roll* terbesar terjadi dari arah datang gelombang 90° dengan nilai 3.86 deg/m. Untuk arah pembebanan 0° dan 180° memiliki nilai 0.

Gambar 4.29 Grafik RAO Roll FSO Belida Kondisi Full Load

Gambar 4.30 Grafik RAO Roll FSO Belida Kondisi Ballast

4.4.5 Analisis RAO Gerakan Pitch

Gerakan RAO pitch FSO Belida pada kondisi *full load* terbesar pada saat arah datang gelombang 0° dan 180° dengan nilai 0.58 deg/m dan 0.56 deg/m. Pada saat kondisi *ballast* gerakan *pitch* terbesar dari arah yang sama yaitu 0° yaitu 0.584 deg/m.

Gambar 4.31 Grafik RAO Pitch FSO Belida Kondisi Full Load

Gambar 4.32 Grafik RAO Pitch FSO Belida Kondisi Ballast

4.4.6 Analisis RAO Gerakan Yaw

Pada kondisi *full load* gerakan *yaw* terbesar dari arah 90° yaitu dengan nilai 1.644 deg/m. Dari arah datang gelombang 0° dan 180° memiliki nilai gerakan *yaw* terkecil yaitu nol. Sedangkan pada kondisi *ballast* gerakan *yaw* terbesar dari arah 90° yaitu dengan nilai 0.1.407 deg/m. Dari arah datang gelombang 0° dan 180° memiliki nilai gerakan *yaw* terkecil yaitu nol. Besarnya nilai RAO pada frekuensi yang kecil tersebut dikarenakan adanya resonansi.

Gambar 4.33 Grafik RAO Yaw FSO Belida Kondisi Full Load

Gambar 4.34 Grafik RAO Yaw FSO Belida Kondisi Ballast

Untuk mengetahui perbedaan RAO FSO dalam kondisi *free floating* dan tertambat, berikut disediakan dalam tabel 4.5 dan 4.6.

Mode	Unit	Maks. RAO Free Floating			Maks. RAO Tertambat		
gerakan	Unit	0°	90°	180°	0°	90°	180°
Surge	m/m	0.97	0	0.97	5.481	0.202	5.78
Sway	m/m	0	0.99	0	0	3.662	0.002
Heave	m/m	1	1.45	1	0.998	1.0632	0.997
Roll	deg/m	0.01	2.21	0.01	0	1.447	0
Pitch	deg/m	0.79	0.37	0.79	0.585	0.132	0.56
Yaw	deg/m	0	0.03	0	0	1.644	0

Tabel 4.5 RAO Maksimum FSO Tertambat & Free Floating (Stand Alone)

Tabel 4.6 RAO Maksimum FSO Tertambat & Free Floating (Offloading)

Mode	Unit	Maks. RAO Free Floating			Maks. RAO Tertambat		
gerakan	Unit	0°	90°	180°	0°	90°	180°
Surge	m/m	0.98	0	0.98	5.634	0.24	3.484
Sway	m/m	0	0.99	0	0	4.102	0.001
Heave	m/m	1	1.09	1	0.987	1.088	0.987
Roll	deg/m	0	4.65	0	0	3.86	0
Pitch	deg/m	0.73	0.12	0.73	0.584	0.037	0.58
Yaw	deg/m	0	0.04	0	0	1.407	0

4.5 Analisis Respon Gerak Shuttle Tanker Kondisi Terapung Bebas

Analisis respon gerak *shutte tanker* dilakukan pada kondisi *full load* dengan lima arah datang pembebanan yaitu, 0°, 45°, 90°, 135°, 180°. Berikut adalah grafik RAO *shuttle tanker* dapat dilihat pada gambar di bawah ini.

4.5.1 Analisis RAO Gerakan Surge

Pada saat frekuensi rendah RAO gerakan *surge* tertinggi terjadi ketika arah datang gelombang 0° dan 180° dengan nilai 0.965 m/m. Pada fekuensi yang sama, RAO *surge* dari arah 45° dan 135° bernilai 0.683 m/m. Sedangkan dari arah 90° mempunyai nilai terkecil, yaitu nol. Semakin bertambahnya frekuensi gelombang nilai RAO *surge* akan semakin berkurang. Pada semua arah datang gelombang dengan frekuensi 0.6 rad/s sampai 0.9 rad/s terjadi peningkatan karena adanya efek kopel dari gerakan yang lain.

Gambar 4.35 Grafik RAO Surge Shuttle Tanker Kondisi Full Load

4.5.2 Analisis RAO Gerakan Sway

RAO gerakan *sway* terbesar dari arah datang gelombang 90° dengan nilai 0.987 m/m, gerakan terbesar selanjutnya dari arah 45° dan 135° dengan nilai 0.697 m/m. RAO gerakan *sway* terbesar tersebut terjadi ada frekuensi rendah yaitu 0.1 rad/s. Dari arah datang gelombang 0° dan 180° mempunyai nilai terkecil yaitu nol.

Gambar 4.36 Grafik RAO Sway Shuttle Tanker Kondisi Full Load

4.5.3 Analisis RAO Gerakan Heave

Pada saat fekuensi rendah, RAO *heave* pada semua arah datang gelombang memiliki nilai yang hampir sama yaitu sekitar satu. Gerakan *heave* terbesar ketika arah datang gelombang 90° pada frekuensi 0.6 rad/s sebesar 1.446 m/m. Pada frekuensi yang lebih tinggi, grafik RAO *heave* yang telah bergerak turun akan mengalami kenaikan. Kenaikan tersebut dapat disebabkan adanya gerak kopel dengan mode gerak lainnya.

Gambar 4.37 Grafik RAO Heave Shuttle Tanker Kondisi Full Load

4.5.4 Analisis RAO Gerakan Roll

Pada frekuensi 0.4 rad/s terjadi gerakan *roll* terbesar dari arah 90° dengan nilai 2.691 deg/m, dari arah 45° dan 135° dengan nilai yang hampir sama yaitu sekitar 0.2 deg/m. Sedangkan dari arah 0° dan 180° yaitu sebesar 0.006 deg/m. setelah mencapai nilai maksimum gerakan RAO *roll* menurun hampir mendekati nol pada semua arah datang gelombang.

Gambar 4.38 Grafik RAO Roll Shuttle Tanker Kondisi Full Load

4.5.5 Analisis RAO Gerakan Pitch

Gerakan *pitch* terbesar pada saat arah datang gelombang 45° dengan frekuensi 0.5 rad/s dengan nilai 1.011 deg/m, nilai ini hampir sama pada saat arah datang gelombang 135° yaitu 0.976 deg/m. Pada frekuensi 0.5 rad/s dari arah datang gelombang 0° dan 180° memiliki nilai sebesar 0.853 deg/m dan 0.881 deg/m. Sedangkan dari arah 90° dengan frekuensi 0.6 rad/s memiliki nilai sebesar 0.362 deg/m.

Gambar 4.39 Grafik RAO Pitch Shuttle Tanker Kondisi Full Load

4.5.6 Analisis RAO Gerakan Yaw

Gerakan *yaw* terbesar dari arah 45° dan 135° dengan frekuensi 0.5 rad/s yaitu dengan nilai 0.305 deg/m dan 0.324 deg/m. Selanjutnya gerakan *yaw* terbesar dari arah 90° dengan nilai 0.03 deg/m pada frekuensi 0.5 rad/s. Dari arah datang gelombang 0° dan 180° memiliki nilai gerakan *yaw* kecil yaitu nol.

Gambar 4.40 Grafik RAO Yaw Shuttle Tanker Kondisi Full Load

4.6 Pemodelan Mooring System

Pemodelan *mooring system* menggunakan *software* Orcaflex. Data yang diperlukan untuk software Orcaflex adalah data output dari software MOSES, yaitu berupa *displacement* RAOs, *load* RAOs, *stiffness, added mass, damping, hydrodynamic drag, wind drag* dan *wave drift*. Selain itu, *input* untuk data lingkungan juga diberikan seperti kedalaman laut, spektrum gelombang, kecepatan arus, kecepatan angin, dan arah *headingnya*. Selain itu juga dilakukan *input* data FSO, *shuttle tanker*, panjang *mooring line* dan koordinat-koordinat penting seperti letak FSO, *shuttle tanker*, dan *anchor*. Analisis dilakukan dengan kondisi *offloading* antara FSO dan *shuttle tanker* serta kondisi FSO *stand alone*.

Kondisi *stand alone* adalah saat FSO dalam kondisi *full load* dan ditambat dengan delapan *mooring line* dengan konfigurasi sudut *mooring line* 45°-60° menggunakan sistem *spread mooring*. Sedangkan kondisi *offloading* yaitu saat FSO dalam kondisi *ballast* ditambat dengan delapan *mooring line* dengan konfigurasi sudut *mooring line* 45°-60° dengan sistem *spread mooring* dan dibelakang FSO terdapat *shuttle tanker* yang ditambat pada FSO dengan *hawser* yang berjarak 70 m. Di belakang *shuttle tanker* juga terdapat *tug boat* yang bertujuan mengurangi gerakan pada *shuttle tanker*.

Gambar 4.41 Tampak Atas Konfigurasi Spread Mooring Kondisi Stand Alone

Gambar 4.42 Tampak Atas Konfigurasi Spread Mooring Kondisi Offloading4.7 Analisis Tegangan Mooring Line

Analisis tegangan mooring line dilakukan untuk mengetahui tegangan maksimum pada *mooring line*. Analisis tegangan *mooring line* dilakukan dengan tanpa subsea buoy, satu subsea buoy dengan empat variasi posisi peletakan, dan dua subsea buoy. Pada penelitian ini penambahan subsea buoy bertujuan untuk menghindari clashing antara mooring line dengan pipa. Peletakan subsea buoy yaitu pada *line* tiga, *line* empat, *line* lima, dan *line* enam karena pada *line* tersebut terjadi clashing dengan pipa. Pada studi kasus ini clashing pipa dengan mooring line tiga dan enam berjarak 550 m dari anchor. Sehingga variasi posisi subsea buoy 1 diletakkan pada panjang mooring line 55 m sebelum terjadinya clashing (605 m), variasi 2 diletakkan pada panjang *mooring line* 27.5 m sebelum terjadinya *clashing* (577.5 m), variasi 3 tepat pada posisi terjadinya clashing (550 m), variasi 4 diletakkan pada panjang *mooring line* 27.5 m setelah terjadinya *clashing* (522.5 m), dan variasi ke 5 dengan dua subsea buoy yang diletakkan diantara clashing yang terjadi antara pipa dengan mooring line (467.5 m & 605 m). Pemasangan subsea buoy berada pada sambungan antar segment pada mooring line, sehingga jarak variasi dilakukan berdasarkan sambungan antar segment yaitu 27.5 m. Berikut ini adalah tabel 4.7 yang menunjukkan variasi posisi peletakan subsea buoy yang diukur dari *anchor*. Dan terdapat gambar 4.43 sampai 4.46 yang menunjukkan pemodelan *subsea buoy* dalam kondisi *stand alone* dan *offloading*.

Variasi	Jumlah <i>Subsea</i> Buoy	Posisi Peletakan
1	satu	605 m
2	satu	577.5 m
3	satu	550 m
4	satu	522.5 m
5	dua	605 m & 467.5 m

Tabel 4.7 Variasi Posisi Subsea Buoy

Gambar 4.43 Tampak samping pemodelan subsea buay kondisi stand alone

Gambar 4.44 Tampak atas pemodelan subsea buay kondisi stand alone

Gambar 4.45 Tampak samping pemodelan subsea buay kondisi offloading

Gambar 4.46 Tampak atas pemodelan subsea buay kondisi offloading

Selain dapat membuat *mooring line* terangkat, penambahan *subsea buoy* ini dapat mempengaruhi tegangan pada *mooring line*. Untuk gambar *mooring line* dengan satu *subsea buoy* dan *mooring line* dengan dua *subsea buoy* dapat dilihat pada gambar 4.47 dan gambar 4.48.

Gambar 4.47 Mooring line dengan satu subsea buoy

Gambar 4.48 Mooring line dengan dua subsea buoy

Dalam analisis mencari tegangan *mooring line* kriteria yang digunakan adalah kriteria dalam *code* API RP 2SK. Kriteria yang dijelaskan oleh API RP 2SK dijelaskan bahwa *Safety Factor* yang harus dihasilkan harus lebih dari 1.67. Sehingga, tegangan maksimum yang diijinkan berdasarkan API RP 2SK adalah minimum breaking load (MBL) dibagi dengan *Safety Factor*.

4.7.1 Analisis Tegangan pada FSO Belida Kondisi Stand Alone

Analisis tegangan pada *mooring line* menggunakan *software* Orcaflex. Pada kondisi *stand alone* FSO dalam keadaan *full load* dan tertambat dengan delapan *mooring line*. Tegangan pada FSO Belida dari lima arah pembebanan gelombang disajikan dalam tabel di bawah ini dan untuk melihat pengaruh penambahan *subsea buoy* pada *mooring line* dilakukan analisis pada *mooring line* 6 yang juga disajikan dalam diagram batang. Pada tabel dibawah dibedakan menjadi dua tabel yaitu tabel dengan *line* 3, 4, 5, 6 dan tabel dengan *line* 1, 2, 7, 8, karena pada analisis, *line* 1, 2, 7, 8 tidak ada penambahan *subsea buoy*. Jadi analisis penambahan *subsea buoy* hanya dilakukan pada *line* 3, 4,5, 6.

4.7.1.1 Arah Pembebanan 0°

Berdasarkan orientasi FSO Belida, arah pembebanan 0° merupakan arah *following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *tension* pada analisis *mooring line* tanpa *subsea buoy* dan dengan *subsea buoy* dapat dilihat dalam tabel 4.8. dan 4.9.

	Tension (kN)							
Line	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy		
Line 3	917.056	743.531	789.198	841.951	897.370	688.251		
Line 4	904.293	756.178	791.842	837.105	885.284	703.139		
Line 5	904.293	756.177	791.842	837.104	885.285	703.139		
Line 6	917.054	743.532	789.197	841.950	897.371	688.251		

Tabel 4.8 Tension pada line 3, 4, 5, 6 arah pembebanan 0°

Tabel 4.9 Tension pada line 1, 2, 7, 8 arah pembebanan 0°

	Tension (kN)							
Line	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy		
Line 1	1179.37	1062.05	1103.51	1150.06	1199.06	1023.27		
Line 2	1148.85	1070.10	1100.04	1129.66	1162.92	1039.82		
Line 7	1148.85	1070.10	1100.04	1129.66	1162.92	1039.82		
Line 8	1179.37	1062.05	1103.51	1150.06	1199.05	1023.27		

Pada arah pembebanan 0° tegangan maksimum terjadi pada *line* delapan dan *line* satu. Berdasarkan hasil output dalam tabel 4.8 yang berisi nilai *tension* pada *mooring line* 3, 4, 5, & 6 akibat pembebanan arah 0° dapat dilihat perbedaan tegangan *mooring line* yang telah ditambahkan *subsea buoy*. Terdapat gambar diagram batang 4.49 untuk melihat perbandingan tegangan *mooring line* sebelum penambahan *subsea buoy* dan setelah adanya penambahan *subsea buoy* pada *mooring line* 6.

Gambar 4.49 Diagram batang tension maksimum arah pembebanan 0°

Dari diagram batang 4.49 menunjukkan tegangan tertinggi terjadi pada *mooring line* tanpa penambahan *subsea buoy* dan tegangan terendah terjadi pada *mooring line* dengan dua *subsea buoy* yang memiliki jarak 605 m dan 467.5 m dari *anchor*.

4.7.1.2 Arah Pembebanan 45°

Berdasarkan orientasi FSO Belida, arah pembebanan 45° merupakan arah *quartering following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *tension* pada analisis *mooring line* tanpa *subsea buoy* dan dengan *subsea buoy* dapat dilihat dalam tabel 4.10. dan 4.11.

Line	Tension (kN)							
	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy		
Line 3	915.52	728.04	767.92	819.75	870.21	668.35		
Line 4	898.06	742.27	777.00	825.56	870.57	696.23		
Line 5	999.90	856.86	882.51	912.99	950.73	799.36		
Line 6	1020.77	840.52	873.95	916.78	964.36	768.36		

Tabel 4.10 Tension pada line 3, 4, 5, 6 arah pembebanan 45°

Line	Tension (kN)							
	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy		
Line 1	968.49	860.36	889.95	927.28	969.90	831.32		
Line 2	902.15	827.14	846.09	877.08	905.99	813.40		
Line 7	1503.09	1472.36	1493.38	1517.55	1543.41	1260.55		
Line 8	1365.90	1254.33	1299.09	1348.17	1403.50	1156.54		

Tabel 4.11 Tension pada line 1, 2, 7, 8 arah pembebanan 45°

Pada arah pembebanan 45° tegangan maksimum terjadi pada *line* tujuh. Berdasarkan hasil output dalam tabel 4.10 yang berisi nilai *tension* pada *mooring line* 3, 4, 5, & 6 akibat pembebanan arah 45° dapat dilihat perbedaan tegangan *mooring line* yang telah ditambahkan *subsea buoy*. Terdapat gambar diagram batang 4.50 untuk melihat perbandingan tegangan *mooring line* sebelum penambahan *subsea buoy* dan setelah penambahan *subsea buoy* pada *mooring line* 6.

Gambar 4.50 Diagram batang tension maksimum arah pembebanan 45°

Dari diagram batang 4.50 menunjukkan tegangan tertinggi terjadi pada *mooring line* tanpa penambahan *subsea buoy* dan tegangan terendah terjadi pada *mooring line* dengan dua *subsea buoy* yang memiliki jarak 605 m dan 467.5 m dari *anchor*.

4.7.1.3 Arah Pembebanan 90°

Berdasarkan orientasi FSO Belida, arah pembebanan 90° merupakan arah *beam seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *tension* pada analisis *mooring line* tanpa *subsea buoy* dan dengan *subsea buoy* dapat dilihat dalam tabel 4.12. dan 4.13.

Line	Tension (kN)								
	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy			
Line 3	840.20	699.87	737.40	776.85	832.30	625.65			
Line 4	823.05	725.55	755.31	787.07	831.76	656.04			
Line 5	1101.10	1001.38	994.57	998.23	1020.55	882.11			
Line 6	1160.91	988.17	1005.43	1025.33	1059.86	858.31			

Tabel 4.12 Tension pada line 3, 4, 5, 6 arah pembebanan 90°

	Tension (kN)							
Line	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy		
Line 1	764.29	665.90	697.47	735.31	759.62	645.59		
Line 2	726.22	673.43	706.62	738.27	766.09	635.83		
Line 7	1307.38	1372.01	1398.22	1424.62	1454.88	1385.05		
Line 8	1308.80	1128.53	1172.27	1219.55	1273.48	1136.78		

Tabel 4.13 Tension pada line 1, 2, 7, 8 arah pembebanan 90°

Pada arah pembebanan 90° tegangan maksimum terjadi pada *line* tujuh dan delapan. Berdasarkan hasil output dalam tabel 4.12 yang berisi nilai *tension* pada *mooring line* 3, 4, 5, & 6 akibat pembebanan arah 90° dapat dilihat perbedaan tegangan *mooring line* yang telah ditambahkan *subsea buoy*. Terdapat gambar diagram batang 4.51 untuk melihat perbandingan tegangan *mooring line* sebelum penambahan *subsea buoy* dan setelah adanya penambahan *subsea buoy* pada *mooring line* 6.

Gambar 4.51 Diagram batang *tension* maksimum arah pembebanan 90°

Dari diagram batang 4.51 menunjukkan tegangan tertinggi terjadi pada *mooring line* tanpa penambahan *subsea buoy* dan tegangan terendah terjadi pada *mooring line* dengan dua *subsea buoy* yang memiliki jarak 605 m dan 467.5 m dari *anchor*.

4.7.1.4 Arah Pembebanan 135°

Berdasarkan orientasi FSO Belida, arah pembebanan 135° merupakan arah *quartering following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *tension* pada analisis *mooring line* tanpa *subsea buoy* dan dengan *subsea buoy* dapat dilihat dalam tabel 4.14. dan 4.15.

Line	Tension (kN)							
	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy		
Line 3	724.54	615.53	653.35	693.38	733.17	572.75		
Line 4	723.97	638.80	670.61	703.58	746.22	592.18		
Line 5	1092.47	993.93	1006.86	1024.59	1040.53	927.62		
Line 6	1237.16	1094.77	1128.80	1159.55	1166.86	1022.91		

Tabel 4.14 Tension pada line 3, 4, 5, 6 arah pembebanan 135°

Line	Tension (kN)								
	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy			
Line 1	801.03	700.21	738.71	779.97	812.43	639.37			
Line 2	776.85	706.68	741.16	774.86	805.45	661.44			
Line 7	1235.84	1184.09	1219.87	1259.00	1281.54	1194.69			
Line 8	1234.09	1148.16	1218.79	1247.22	1250.67	1109.63			

Tabel 4.15 Tension pada line 1, 2, 7, 8 arah pembebanan 135°

Pada arah pembebanan 135° *maximum tension mooring line* tanpa *subsea buoy* yang terbesar pada line enam yaitu memiliki nilai 1237.16 kN. Berdasarkan hasil output dalam tabel 4.14 yang berisi nilai *tension* pada *mooring line* 3, 4, 5, & 6 akibat pembebanan arah 135° dapat dilihat perbedaan tegangan *mooring line* yang telah ditambahkan *subsea buoy*. Terdapat gambar diagram batang 4.52 untuk melihat perbandingan tegangan *mooring line* sebelum penambahan *subsea buoy* dan setelah adanya penambahan *subsea buoy* pada *mooring line* 6.

Gambar 4.52 Diagram batang tension maksimum arah pembebanan 135°

Dari diagram batang 4.52 menunjukkan tegangan tertinggi terjadi pada *mooring line* tanpa penambahan *subsea buoy* dan tegangan terendah terjadi pada *mooring line* dengan dua *subsea buoy* yang memiliki jarak 605 m dan 467.5 m dari *anchor*.

4.7.1.5 Arah Pembebanan 180°

Berdasarkan orientasi FSO Belida, arah pembebanan 180° merupakan arah *following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *tension* pada analisis *mooring line* tanpa *subsea buoy* dan dengan *subsea buoy* dapat dilihat dalam tabel 4.16. dan 4.17.

Line	Tension (kN)							
	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy		
Line 3	985.07	846.18	883.64	920.10	959.88	779.95		
Line 4	1000.38	887.82	908.04	933.78	963.80	835.46		
Line 5	985.44	876.94	898.93	924.86	956.03	826.85		
Line 6	998.43	859.59	895.78	931.93	971.31	789.49		

Tabel 4.16 Tension pada line 3, 4, 5, 6 arah pembebanan 180°

Tabel 4.17 Tension pada line 1, 2, 7, 8 arah pembebanan 180°

	Tension (kN)							
Line	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy		
Line 1	974.84	940.82	976.13	1018.12	1067.07	918.42		
Line 2	973.81	980.86	1005.55	1036.56	1068.17	969.48		
Line 7	978.11	984.35	1008.99	1040.29	1072.21	972.54		
Line 8	960.37	928.38	962.21	1005.30	1052.52	909.71		

Pada arah pembebanan 180° tegangan terbesar terjadi pada *line* empat. Berdasarkan hasil output dalam tabel 4.16 yang berisi nilai *tension* pada *mooring line* 3, 4, 5, & 6 akibat pembebanan arah 135° dapat dilihat perbedaan tegangan *mooring line* yang telah ditambahkan *subsea buoy*. Terdapat gambar diagram batang 4.53 untuk melihat perbandingan tegangan *mooring line* sebelum penambahan *subsea buoy* dan setelah adanya penambahan *subsea buoy* pada *mooring line* 6.

Gambar 4.53 Diagram batang tension maksimum arah pembebanan 180°

Dari diagram batang 4.53 menunjukkan tegangan tertinggi terjadi pada *mooring line* tanpa penambahan *subsea buoy* dan tegangan terendah terjadi pada *mooring line* dengan dua *subsea buoy* yang memiliki jarak 605 m dan 467.5 m dari *anchor*.

4.7.2 Analisis Tegangan pada FSO Belida Kondisi Offloading

Analisis tegangan pada *mooring line* menggunakan *software* Orcaflex. Pada kondisi *offloading* FSO dalam keadaan *ballast* dan tertambat dengan delapan *mooring line* dengan *shuttle tanker* yang tertambat pada FSO yang berada dibelakang FSO. Tegangan pada FSO Belida dari lima arah pembebanan gelombang disajikan dalam tabel di bawah ini dan untuk melihat pengaruh penambahan *subsea buoy* pada *mooring line* dilakukan analisis pada *mooring line* enam yang juga disajikan dalam diagram batang. Pada tabel dibawah dibedakan menjadi dua tabel yaitu tabel dengan *line* 3, 4, 5, 6 dan tabel dengan *line* 1, 2, 7, 8, karena pada analisis, *line* 1, 2, 7, 8 tidak ada penambahan *subsea buoy*. Jadi analisis penambahan *subsea buoy* hanya dilakukan pada *line* 3, 4,5, 6.

4.7.2.1 Arah Pembebanan 0°

Berdasarkan orientasi FSO Belida, arah pembebanan 0° merupakan arah *following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai

tension pada analisis *mooring line* tanpa *subsea buoy* dan dengan *subsea buoy* dapat dilihat dalam tabel 4.18. dan 4.19.

Line	Tension (kN)								
	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy			
Line 3	868.37	708.95	777.12	828.27	865.14	607.63			
Line 4	859.39	717.14	780.11	823.43	859.40	613.47			
Line 5	859.55	719.99	777.29	820.77	855.92	613.47			
Line 6	868.88	711.56	772.63	824.10	858.82	607.63			

Tabel 4.18 Tension pada line 3, 4, 5, 6 arah pembebanan 0°

Tabel 4.19 Tension pada line 1, 2, 7, 8 arah pembebanan 0°

Line	Tension (kN)							
	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy		
Line 1	1147.79	1125.18	1135.69	1184.09	1210.85	1131.71		
Line 2	1119.07	1133.28	1119.72	1152.82	1184.02	1134.60		
Line 7	1158.35	1090.51	1163.79	1193.89	1145.93	1134.58		
Line 8	1179.46	1092.47	1169.93	1217.55	1180.29	1131.70		

Pada arah pembebanan 0° tegangan maksimum pada *mooring line* tanpa *subsea buoy* terjadi pada *line* delapan yang bernilai 1179.46 kN. Berdasarkan hasil output dalam tabel 4.18 yang berisi nilai *tension* pada *mooring line* 3, 4, 5, & 6 akibat pembebanan arah 0° dapat dilihat perbedaan tegangan *mooring line* yang telah ditambahkan *subsea buoy* dan sebelum panambahan subsea buoy. Terdapat gambar diagram batang 4.54 untuk melihat perbandingan tegangan *mooring line* sebelum penambahan *subsea buoy* dan setelah adanya penambahan *subsea buoy* pada *mooring line* 6.

Gambar 4.54 Diagram batang tension maksimum arah pembebanan 0°

Dari diagram batang 4.54 menunjukkan tegangan tertinggi terjadi pada *mooring line* tanpa penambahan *subsea buoy* dan tegangan terendah terjadi pada *mooring line* dengan dua *subsea buoy* yang memiliki jarak 605 m dan 467.5 m dari *anchor*. Dari diagram batang diatas menunjukkan tegangan tertinggi ke terendah yaitu *mooring line* tanpa *subsea buoy, mooring line* dengan jarak *subsea buoy* 522.5 m, 550 m, 577.5m, 605 m dari *anchor*, dan *mooring line* dengan dua *subsea buoy* yang berjarak 605 m dan 467.5 m dari *anchor*.

4.7.2.2 Arah Pembebanan 45°

Berdasarkan orientasi FSO Belida, arah pembebanan 45° merupakan arah *quartering following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *tension* pada analisis *mooring line* tanpa *subsea buoy* dan dengan *subsea buoy* dapat dilihat dalam tabel 4.20. dan 4.21.

	Tension (kN)											
Line	ine Tanpa Buoy 60		577.5 m	550 m	522.5 m	Double Buoy						
Line 3	928.76	750.24	562.60	868.42	909.71	637.97						
Line 4	950.01	777.36	840.66	886.70	920.70	662.31						
Line 5	993.82	821.40	888.09	934.84	972.17	727.84						
Line 6	958.55	784.62	855.83	908.22	958.27	683.46						

Tabel 4.20 Tension pada line 3, 4, 5, 6 arah pembebanan 45°

		Tension (kN)										
Line	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy						
Line 1	812.17	730.20	765.22	807.76	833.26	732.92						
Line 2	772.53	714.24	736.11	769.67	789.86	723.71						
Line 7	1494.66	1500.63	1511.10	1530.82	1535.46	1435.49						
Line 8	1375.79	1314.02	1346.52	1389.41	1411.75	1253.39						

Tabel 4.21 Tension pada line 1, 2, 7, 8 arah pembebanan 45°

Pada arah pembebanan 45° tegangan maksimum terjadi pada *line* tujuh. Berdasarkan hasil output dalam tabel 4.20 yang berisi nilai *tension* pada *mooring line* 3, 4, 5, & 6 akibat pembebanan arah 45° dapat dilihat perbedaan tegangan *mooring line* yang telah ditambahkan *subsea buoy*. Terdapat gambar diagram batang 4.55 untuk melihat perbandingan tegangan *mooring line* sebelum penambahan *subsea buoy* dan setelah adanya penambahan *subsea buoy* pada *mooring line* 6.

Dari diagram batang 4.55 menunjukkan tegangan tertinggi terjadi pada *mooring line* tanpa penambahan *subsea buoy* dan tegangan terendah terjadi pada *mooring line* dengan dua *subsea buoy* yang memiliki jarak 605 m dan 467.5 m dari *anchor*. Dari diagram batang diatas menunjukkan tegangan tertinggi ke terendah yaitu *mooring line* tanpa *subsea buoy*, *mooring line* dengan jarak *subsea buoy* 522.5

m, 550 m, 577.5m, 605 m dari *anchor*, dan *mooring line* dengan dua *subsea buoy* yang berjarak 605 m dan 467.5 m dari *anchor*.

4.7.2.3 Arah Pembebanan 90°

Berdasarkan orientasi FSO Belida, arah pembebanan 90° merupakan arah *beam seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *tension* pada analisis *mooring line* tanpa *subsea buoy* dan dengan *subsea buoy* dapat dilihat dalam tabel 4.22. dan 4.23.

		Tension (kN)										
Line	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy						
Line 3	964.86	796.28	840.08	872.72	927.50	657.82						
Line 4	1013.91	856.11	885.63	910.19	939.89	707.90						
Line 5	1142.88	986.10	1006.79	1033.56	1044.65	805.86						
Line 6	1073.12	887.28	944.16	990.70	1016.27	757.59						

Tabel 4.22 Tension pada line 3, 4, 5, 6 arah pembebanan 90°

Tabel 4.23 Tension pada line 1, 2, 7, 8 arah pembebanan 90°

		Tension (kN)											
Line	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy							
Line 1	706.35	605.09	633.66	672.75	707.31	628.85							
Line 2	664.04	591.55	617.79	641.16	670.11	624.79							
Line 7	1647.32	1661.70	1667.42	1680.03	1697.28	1431.95							
Line 8	1366.54	1300.06	1326.12	1371.21	1421.44	1187.50							

Pada arah pembebenan 90° tegangan terbesar yaitu pada *line* tujuh. Berdasarkan hasil output dalam tabel 4.22 yang berisi nilai *tension* pada *mooring line* 3, 4, 5, & 6 akibat pembebanan arah 90° dapat dilihat perbedaan tegangan *mooring line* yang telah ditambahkan *subsea buoy*. Terdapat gambar diagram batang 4.56 untuk melihat perbandingan tegangan *mooring line* sebelum penambahan *subsea buoy* dan setelah adanya penambahan *subsea buoy* pada *mooring line* 6.

Gambar 4.56 Diagram batang tension maksimum arah pembebanan 90°

Dari diagram batang 4.56 menunjukkan tegangan tertinggi terjadi pada *mooring line* tanpa penambahan *subsea buoy* dan tegangan terendah terjadi pada *mooring line* dengan dua *subsea buoy* yang memiliki jarak 605 m dan 467.5 m dari *anchor*. Dari diagram batang diatas menunjukkan tegangan tertinggi ke terendah yaitu *mooring line* tanpa *subsea buoy, mooring line* dengan jarak *subsea buoy* 522.5 m, 550 m, 577.5m, 605 m dari *anchor*, dan *mooring line* dengan dua *subsea buoy* yang berjarak 605 m dan 467.5 m dari *anchor*.

4.7.2.4 Arah Pembebanan 135°

Berdasarkan orientasi FSO Belida, arah pembebanan 135° merupakan arah *quartering following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *tension* pada analisis *mooring line* tanpa *subsea buoy* dan dengan *subsea buoy* dapat dilihat dalam tabel 4.24. dan 4.25.

	Tension (kN)											
Line	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy						
Line 3	985.56	795.83	851.09	906.35	953.34	667.78						
Line 4	1047.38	885.48	915.53	956.93	992.78	743.08						
Line 5	1199.81	1050.39	1067.51	1102.26	1135.22	879.89						
Line 6	1105.64	915.01	978.05	1034.88	1082.47	783.90						

Tabel 4.24 Tension pada line 3, 4, 5, 6 arah pembebanan 135°

		Tension (kN)										
Line	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy						
Line 1	655.38	576.10	590.78	613.46	653.64	581.45						
Line 2	624.87	566.91	568.89	595.80	611.53	578.74						
Line 7	1743.05	1757.88	1764.17	1774.10	1785.65	1612.92						
Line 8	1483.06	1406.91	1423.67	1459.74	1501.31	1295.05						

Tabel 4.25 Tension pada line 1, 2, 7, 8 arah pembebanan 135°

Pada tabel 4.24 menunjukkan tegangan tertinggi terjadi pada *line* tujuh, baik pada *mooring line* dengan *subsea buoy* atau tanpa *subsea buoy*. Berdasarkan hasil output dalam tabel 4.24 yang berisi nilai *tension* pada *mooring line* 3, 4, 5, & 6 akibat pembebanan arah 135° dapat dilihat perbedaan tegangan *mooring line* yang telah ditambahkan *subsea buoy*. Terdapat gambar diagram batang 4.57 untuk melihat perbandingan tegangan *mooring line* sebelum penambahan *subsea buoy* dan setelah adanya penambahan *subsea buoy* pada *mooring line* 6.

Dari diagram batang 4.57 menunjukkan tegangan tertinggi terjadi pada *mooring line* tanpa penambahan *subsea buoy* dan tegangan terendah terjadi pada *mooring line* dengan dua *subsea buoy* yang memiliki jarak 605 m dan 467.5 m dari *anchor*. Dari diagram batang diatas menunjukkan tegangan tertinggi ke terendah yaitu *mooring line* tanpa *subsea buoy*, *mooring line* dengan jarak *subsea buoy* 522.5 m, 550 m, 577.5m, 605 m dari *anchor*, dan *mooring line* dengan dua *subsea buoy* yang berjarak 605 m dan 467.5 m dari *anchor*.

4.7.2.5 Arah Pembebanan 180°

Berdasarkan orientasi FSO Belida, arah pembebanan 180° merupakan arah *following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *tension* pada analisis *mooring line* tanpa *subsea buoy* dan dengan *subsea buoy* dapat dilihat dalam tabel 4.26. dan 4.27.

	Tension (kN)											
Line	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy						
Line 3	1005.64	833.69	883.73	935.88	979.49	652.78						
Line 4	1131.97	994.71	995.36	1010.14	1030.02	681.80						
Line 5	1131.93	994.66	995.38	1010.15	1030.03	681.81						
Line 6	1005.63	833.71	883.74	935.89	979.50	652.79						

Tabel 4.26 Tension pada line 3, 4, 5, 6 arah pembebanan 180°

Tabel 4.27 Tension pada line 1, 2, 7, 8 arah pembebanan 180°

		Tension (kN)											
Line	Tanpa Buoy	605 m 577.5 m 55		550 m	522.5 m	Double Buov							
Line 1	1000.94	900.16	935.90	979.32	1011.88	939.30							
Line 2	1035.62	979.77	999.75	1029.42	1054.52	1013.99							
Line 7	1035.66	979.79	999.82	1029.46	1054.57	1014.03							
Line 8	1000.97	900.19	935.94	979.36	1011.92	939.26							

Pada arah pembebanan 180° tegangan maksimum pada *mooring line* tanpa *subsea buoy* terjadi pada *line* empat dan lima. Berdasarkan hasil output dalam tabel 4.26 yang berisi nilai *tension* pada *mooring line* 3, 4, 5, & 6 akibat pembebanan arah 180° dapat dilihat perbedaan tegangan *mooring line* yang telah ditambahkan *subsea buoy*. Terdapat gambar diagram batang 4.58 untuk melihat perbandingan tegangan *mooring line* sebelum penambahan *subsea buoy* dan setelah adanya penambahan *subsea buoy* pada *mooring line* 6.

Dari diagram batang 4.58 menunjukkan tegangan tertinggi terjadi pada *mooring line* tanpa penambahan *subsea buoy* dan tegangan terendah terjadi pada *mooring line* dengan dua *subsea buoy* yang memiliki jarak 605 m dan 467.5 m dari *anchor*. Dari diagram batang diatas menunjukkan tegangan tertinggi ke terendah yaitu *mooring line* tanpa *subsea buoy*, *mooring line* dengan jarak *subsea buoy* 522.5 m, 550 m, 577.5m, 605 m dari *anchor*, dan *mooring line* dengan dua *subsea buoy* yang berjarak 605 m dan 467.5 m dari *anchor*.

Hasil analisis yang telah dilakukan pada bab 4.7.1 kondisi *stand alone* dan bab 4.7.2 kondisi *offloading* untuk lima arah pembebanan pada *mooring line* enam dimana analisis tegangan pada keadaan sebelum penambahan *subsea buoy* dan pada keadaan setelah diberi tambahan *subsea buoy* dapat disimpulkan dalam tabel 4.28 untuk kondisi *stand alone* dan 4.29 untuk kondisi *offloading*.

Arah		Tension (kN)										
Pembebanan	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy						
0°	917.05	743.53	789.20	841.95	897.37	688.25						
45°	1020.77	840.52	873.95	916.78	964.36	768.36						
90°	1160.91	988.17	1005.43	1025.33	1059.86	858.31						
135°	1237.16	1094.77	1128.80	1159.55	1166.86	1022.91						
180°	998.43	859.59	895.78	931.93	971.31	789.49						

Tabel 4.28 Besar tension sebelum & setelah penambahan subsea buoy kondisi

stand alone

Dari tabel 4.28 dapat dibuat sebuah grafik yang menunjukkan hubungan tegangan pada *mooring line* enam sebelum penambahan *subsea buoy* dan setelah penambahan *subsea buoy* dengan variasi posisi pada lima arah pembebanan gelombang dengan kondisi *stand alone*.

Gambar 4.59 Besar *tension* sebelum dan setelah penambahan *subsea buoy* kondisi *stand alone*

Berikut ini adalah tabel 4.29 yang berisi kesimpulan besar tegangan maksimum sebelum dan setelah penambahan *subsea buoy* pada kondisi *offloading*.

. Tabel 4.29 Besar tension sebelum dan setelah penambahan subsea buoy kondisi

offloading											
Arab			Tensia	on (kN)							
Pembebanan	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy					
0°	868.88	711.56	772.63	824.10	858.82	607.63					
45°	958.55	784.62	855.83	908.22	958.27	683.46					
90°	1073.12	887.28	944.16	990.70	1016.27	757.59					
135°	1105.64	915.01	978.05	1034.88	1082.47	783.90					
180°	1005.63	833.71	883.74	935.89	979.50	652.79					

180° 1005.63 833.71 883.74 935.89 979.50 652.79

Dari tabel 4.29 dapat dibuat sebuah grafik yang menunjukkan hubungan tegangan pada *mooring line* enam sebelum penambahan *subsea buoy* dan setelah

penambahan *subsea buoy* dengan variasi posisi pada lima arah pembebanan gelombang dengan kondisi *offloading*.

Gambar 4.60 Besar *tension* sebelum dan setelah penambahan *subsea buoy* kondisi *offloading*

Dari tabel dan grafik kesimpulan diatas menunjukkan bahwa penambahan subsea buoy mempengaruhi tegangan pada mooring line. Posisi dari peletakan subsea buoy juga mempengaruhi tegangan yang timbul. Pada kondisi stand alone dan offloading pada lima arah pembebanan gelombang, dengan satu subsea buoy semakin jauh jarak peletakan subsea buoy dari anchor tegangan yang muncul akan semakin kecil, namun jika dibandingkan dengan mooring line dengan dua subsea buoy tegangan yang muncul lebih kecil. Tegangan terbesar terjadi pada mooring line tanpa penambahan subsea buoy. Semakin jauh peletakan subsea buoy dari anchor gaya angkat mooring line semakin besar atau panjang mooring line yang terangkat semakin besar. Tegangan yang terjadi sudah sesuai dengan kriteria yang terdapat pada API RP 2SK, yaitu safety factor kurang dari 1,67.

4.8 Analisis Offset Pada FSO Belida

Analisis *offset* pada FSO Belida dilakukan dengan dua kondisi yaitu *stand alone* dan *offloading*. Kriteria untuk maksimum *offset* sebagaimana terdapat dalam API RP 2P adalah 8% sampai dengan 12% tergantung pada kondisi kedalaman laut. Dalam analisis pada studi kasus ini kriteria maksimum *offset* yaitu 12% x 76.81 m yaitu 9.217 m.

4.8.1 Analisis Offset pada FSO Belida Kondisi Stand Alone

Analisis offset FSO belida menggunakan software Orcaflex. Pada kondisi stand alone FSO tertambat dengan enam mooring line tanpa ada shuttle tanker. Berikut adalah offset maksimum pada FSO Belida dari lima arah pembebanan gelombang disajikan dalam tabel di bawah ini.

4.8.1.1 Arah Pembebanan 0°

Berdasarkan orientasi FSO Belida, arah pembebanan 0° merupakan arah *following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *offset* maksimum pada analisis *mooring line* tanpa *subsea buoy* dan dengan *subsea buoy* dapat dilihat dalam tabel 4.30.

Arab		Maximum Offset (m)											
Pembebanan	Tanpa <i>Buoy</i>		605 m		57	577.5 m		550 m		522.5 m		Double Buoy	
0°	Х	0.80	х	1.67	х	1.05	X	0.50	Х	0.47	X	2.53	
0	у	0.00	у	0.00	у	0.00	у	0.00	у	0.00	у	0.00	

Tabel 4.30 Offset maksimum arah pembebanan 0°

Offset maksimum ke arah x pada arah pembebanan 0° terjadi pada dua *subsea buoy*, yaitu dengan nilai x 2.53 m. Untuk *offset* maksimum ke arah y pada arah pembebanan 0° semuanya memiliki nilai nol. Grafik 4.61 dan 4.62 menunjukkan *offset* maksimum FSO Belida pada arah x dan arah y untuk melihat perbandingan *offset* sebelum penambahan *subsea buoy* dan setelah penambahan *subsea buoy*.

Gambar 4.61 Grafik *offset* maksimum ke arah x

Gambar 4.62 Grafik offset maksimum ke arah y

4.8.1.2 Arah Pembebanan 45°

Berdasarkan orientasi FSO Belida, arah pembebanan 45° merupakan arah *quartering following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *offset* maksimum pada analisis *mooring line* tanpa *subsea* dan dengan *subsea buoy* dapat dilihat dalam tabel 4.31

Arah		Maximum Offset (m)										
Pembebanan	Tanpa <i>Buoy</i>		605 m		577.5 m		550 m		522.5 m		Double Buoy	
459	Х	0.34	х	2.28	Х	1.67	х	1.02	Х	0.57	х	3.54
45	у	2.84	у	3.49	у	3.49	у	3.46	у	3.44	у	3.68

Tabel 4.31 Offset maksimum arah pembebanan 45°

Offset maksimum ke arah x pada pembebanan 45° terjadi pada saat posisi dua *subsea buoy*, yaitu dengan nilai x 3.54 m. Untuk *offset* ke arah y pada arah pembebanan 45° yaitu 3.68 m. Grafik 4.63 dan 4.64 menunjukkan *offset* maksimum ke arah x dan arah y sebelum penambahan *subsea buoy* dan setelah penambahan *subsea buoy*.

Gambar 4.63 Grafik offset maksimum ke arah x

Gambar 4.64 Grafik offset maksimum ke arah y

4.8.1.3 Arah Pembebanan 90°

Berdasarkan orientasi FSO Belida, arah pembebanan 90° merupakan arah *beam seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *offset* maksimum pada analisis *mooring line* tanpa *subsea buoy*, dengan satu *subsea buoy* dan dua *subsea buoy* dapat dilihat dalam tabel 4.32.

Arob					Maximum Offset (m)								
Pembebanan	T I	Tanpa Buoy	Maximum Off 605 m 577.5 m 55 x 4.78 x 3.92 x y 7.75 y 7.28 y	550 m 522.5 m		Double Buoy							
0.0°	X	2.41	х	4.78	Х	3.92	Х	3.14	х	2.34	Х	6.38	
90	у	6.72	у	7.75	у	7.28	у	6.84	у	6.52	у	8.40	

Tabel 4.32 Offset maksimum arah pembebanan 90°

Offset maksimum ke arah x pada arah pembebanan 90° terjadi pada saat kondisi dua *subsea buoy*, yaitu dengan nilai x 6.38 m. Untuk nilai *offset* maksimum ke arah y pada arah pembebanan 90° yaitu 8.40 m. Grafik 4.65 dan 4.66 menunjukkan *offset* maksimum ke arah x dan arah y sebelum penambahan *subsea buoy* dan setelah penambahan *subsea buoy*.

Gambar 4.65 Grafik offset maksimum ke arah x

Gambar 4.66 Grafik offset maksimum ke arah y

4.8.1.4 Arah Pembebanan 135°

Berdasarkan orientasi FSO Belida, arah pembebanan 135° merupakan arah *quartering following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *offset* maksimum pada analisis *mooring line* tanpa *subsea buoy*, dan dengan *subsea buoy* dapat dilihat dalam tabel 4.33.

Arab]	Maximum Offset (m)								
Pembebanan	Tanpa <i>Buoy</i>		605 m		57	7.5 m	4	550 m	52	22.5 m	Double Buoy			
1250	x	0.31	х	2.06	x	1.47	х	0.86	x	0.50	х	3.08		
135	у	1.49	у	1.57	у	1.30	у	1.28	у	1.28	у	2.13		

Tabel 4.33 Offset maksimum arah pembebanan 135°

Offset maksimum ke arah x pada arah pembebanan 135° terjadi pada saat kondisi dua *subsea buoy* dengan jarak 467.5 m dan 605 m dari *anchor*, yaitu dengan nilai x 3.08 m. Untuk nilai *offset* maksimum ke arah y pada arah pembebanan 135° yaitu 2.13 m pada saat kondisi dua *subsea buoy*. Grafik 4.67 dan 4.68 menunjukkan *offset* maksimum ke arah x dan arah y sebelum penambahan *subsea buoy* dan setelah penambahan *subsea buoy*.

Gambar 4.67 Grafik *offset* maksimum ke arah x

Gambar 4.68 Grafik offset maksimum ke arah y

4.8.1.5 Arah Pembebanan 180°

Berdasarkan orientasi FSO Belida, arah pembebanan 180° merupakan arah *following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *offset* maksimum pada analisis *mooring line* tanpa *subsea* dan dengan *subsea buoy* dapat dilihat dalam tabel 4.34.

Arah					1	Maximur	n O	ffset (r	n)			
Pembebanan	T E	Tanpa Buoy	6	05 m	577.5 m 550 m 522.5 m		I	Double Buoy				
1000	х	1.43	х	2.89	х	2.24	х	1.58	х	0.90	х	4.54
180	у	0.06	у	0.08	у	0.08	у	0.08	у	0.08	у	0.08

Tabel 4.34 Offset maksimum arah pembebanan 180°

Offset maksimum ke arah x pada arah pembebanan 180° terjadi pada saat kondisi dua *subsea buoy* dengan jarak 467.5 m dan 605 m dari *anchor*, yaitu dengan nilai x 4.54 m. Untuk nilai *offset* maksimum ke arah y yaitu 0.14 m. Grafik 4.69 dan 4.70 menunjukkan *offset* maksimum ke arah x dan arah y sebelum penambahan *subsea buoy* dan setelah penambahan *subsea buoy*.

Gambar 4.69 Grafik offset maksimum ke arah x

Gambar 4.70 Grafik offset maksimum ke arah y

4.8.2 Analisis Offset pada FSO Belida Kondisi Offloading

Berikut ini adalah *output offset* maksimum kondisi *offloading* tandem antara FSO dan *shuttle tanker* dari lima arah pembebanan gelombang disajikan dalam tabel di bawah ini.

4.8.2.1 Arah Pembebanan 0°

Berdasarkan orientasi FSO Belida, arah pembebanan 0° merupakan arah *following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *offset* maksimum dapat dilihat dalam table 4.35.

Arab				Maximum Offset (m)									
Pembebanan	T E	[°] anpa Buoy	6	05 m	57	77.5 m	5:	50 m	522.5 m x 0.66	22.5 m	j	Double Buoy	
00	х	0.81	х	1.67	х	1.56	х	1.37	х	0.66	х	1.68	
0	у	0.00	у	0.00	у	0.00	у	0.00	у	0.00	у	0.30	

Tabel 4.35 Offset maksimum arah pembebanan 0°

Offset maksimum ke arah x pembebanan 0° terjadi pada saat kondisi dua *subsea buoy*, yaitu dengan nilai 1.68 m. Untuk nilai *offset* maksimum ke arah y yaitu 0.30 m. Grafik 4.71 dan 4.72 menunjukkan *offset* maksimum ke arah x dan arah y sebelum penambahan *subsea buoy* dan setelah penambahan *subsea buoy*.

Gambar 4.71 Grafik offset maksimum ke arah x

Gambar 4.72 Grafik offset maksimum ke arah y

4.8.2.2 Arah Pembebanan 45°

Berdasarkan orientasi FSO Belida, arah pembebanan 45° merupakan arah *quartering following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *offset* maksimum dapat dilihat dalam tabel 4.36.

Arah					l	Maximu	m C)ffset (1	n)			
Pembebanan	T E	Tanpa Buoy	6	05 m	5 m 577.5 m 550 m 522.5 m		Double Buoy					
4 E °	х	1.75	x	3.90	х	3.19	x	2.42	x	1.61	x	5.18
45	у	5.19	У	5.92	у	5.62	у	5.34	у	5.15	у	6.40

Tabel 4.36 Offset maksimum arah pembebanan 45°

Offset maksimum ke arah x pembebanan 45° terjadi pada saat kondisi dua *subsea buoy*, yaitu dengan nilai 5.18 m. Untuk nilai *offset* maksimum ke arah y yaitu 6.4 m. Grafik 4.73 dan 4.74 menunjukkan *offset* maksimum ke arah x dan arah y sebelum penambahan *subsea buoy* dan setelah penambahan *subsea buoy*.

Gambar 4.73 Grafik offset maksimum ke arah x

Gambar 4.74 Grafik offset maksimum ke arah y

4.8.2.3 Arah Pembebanan 90°

Berdasarkan orientasi FSO Belida, arah pembebanan 90° merupakan arah *beam seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *offset* maksimum dapat dilihat dalam tabel 4.37.

Arab					Maximum Offset (m)								
Pembebanan	Tanpa <i>Buoy</i>		605 m		57	7.5 m	5.	50 m	52	22.5 m	Double Buoy		
0.0%	х	2.41	х	4.78	х	3.92	х	3.14	х	2.34	х	6.38	
90	у	6.72	у	7.75	у	7.28	у	6.84	у	6.52	у	8.40	

Tabel 4.37 Offset maksimum arah pembebanan 90°

Offset maksimum ke arah x pembebanan 90° terjadi pada saat kondisi dua *subsea buoy*, yaitu dengan nilai 6.38 m. Untuk nilai *offset* maksimum ke arah y yaitu 8.4 m. Grafik 4.75 dan 4.76 menunjukkan *offset* maksimum ke arah x dan arah y sebelum penambahan *subsea buoy* dan setelah penambahan *subsea buoy*.

Gambar 4.76 Grafik offset maksimum ke arah y

4.8.2.4 Arah Pembebanan 135°

Berdasarkan orientasi FSO Belida, arah pembebanan 135° merupakan arah *quartering following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *offset* maksimum dapat dilihat dalam table 4.38.

Arab					Maximum Offset (m)							
Pembebanan	Г І	Tanpa Buoy	6	05 m	m 577.5 m 550 m 522.5 m			Double Buoy				
100	х	3.10	х	5.94	х	4.90	х	4.02	х	3.19	х	7.87
135	у	7.97	У	8.91	У	8.77	У	8.26	У	7.85	у	9.11

Tabel 4.38 Offset maksimum arah pembebanan 135°

Offset maksimum ke arah x pembebanan 135° terjadi pada saat kondisi dua *subsea buoy*, yaitu dengan nilai 7.87 m. Untuk nilai *offset* maksimum y yaitu 9.11 m. Grafik 4.77 dan 4.78 menunjukkan *offset* maksimum ke arah x dan arah y sebelum penambahan *subsea buoy* dan setelah penambahan *subsea buoy*.

Gambar 4.77 Grafik *offset* maksimum ke arah x

Gambar 4.78 Grafik offset maksimum ke arah y

4.8.2.5 Arah Pembebanan 180°

Berdasarkan orientasi FSO Belida, arah pembebanan 135° merupakan arah *following seas*. Berdasarkan hasil analisa menggunakan *software* Orcaflex, nilai *offset* maksimum dapat dilihat dalam tabel 4.39.

Tabel 4.39 Offset maksimum arah pembebanan 180°

Arah					Ν	Maximum Offset (m)								
Pembebanan	Tanpa <i>Buoy</i>		605 m		577.5 m		5	50 m	52	2.5 m	Double Buoy			
1900	х	1.44	х	3.55	х	2.67	х	1.84	х	1.13	х	4.89		
180	у	0.00	У	0.00	у	0.00	у	0.00	У	0.00	у	0.00		

Offset maksimum ke arah x pembebanan 180° terjadi pada saat posisi dua *subsea buoy* di 467.5 m dan 605 m dari *anchor*, yaitu dengan nilai 4.89 m. Untuk nilai *offset* maksimum y terjadi saat kondisi dua *subsea buoy* yaitu 0.02 m. Grafik 4.79 dan 4.80 menunjukkan *offset* maksimum ke arah x dan arah y sebelum penambahan *subsea buoy* dan setelah penambahan *subsea buoy*.

Gambar 4.79 Grafik offset maksimum ke arah x

Gambar 4.80 Grafik offset maksimum ke arah y

Hasil analisis yang telah dilakukan pada bab 4.8.1 kondisi *stand alone* dan bab 4.8.2 kondisi *offloading* untuk lima arah pembebanan dimana analisis *offset* dilakukan pada keadaan sebelum penambahan *subsea buoy* dan setelah diberi tambahan *subsea buoy* dapat disimpulkan dalam tabel 4.40 untuk kondisi *stand alone* dan 4.41 untuk kondisi *offloading*.

Aroh	Offsat			Maximum	<i>Offset</i> (n	n)	
Pembebanan	x & y	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy
00	Х	0.80	1.67	1.05	0.50	0.47	2.53
0	У	0.00	0.00	0.00	0.00	0.00	0.00
150	Х	0.34	2.28	1.67	1.02	0.57	3.54
43	У	2.84	3.49	3.49	3.46	3.44	3.68
000	Х	0.41	2.34	1.72	1.09	0.46	3.53
90	У	2.69	2.90	2.82	2.70	2.62	3.45
1250	Х	0.31	2.06	1.47	0.86	0.50	3.08
155	У	1.49	1.57	1.30	1.28	1.28	2.13
1900	X	1.43	2.89	2.24	1.58	0.90	4.54
160	У	0.06	0.08	0.08	0.08	0.08	0.08

Tabel 4.40 Besar offset sebelum dan setelah penambahan subsea buoy kondisi

stand alone

Tabel 4.41 Besar offset sebelum dan setelah penambahan subsea buoy kondisi

offloading

Arab	Offset			Maximum	<i>Offset</i> (n	n)	
Pembebanan	x & y	Tanpa <i>Buoy</i>	605 m	577.5 m	550 m	522.5 m	Double Buoy
0°	Х	0.81	1.67	1.56	1.37	0.66	1.66
0	У	0.00	0.00	0.00	0.00	0.00	0.30
450	X	1.75	3.90	3.19	2.42	1.61	5.18
45	У	5.19	5.92	5.62	5.34	5.15	6.40
0.0%	х	2.41	4.78	3.92	3.14	2.34	6.38
90	У	6.72	7.75	7.28	6.84	6.52	8.40
1250	Х	3.10	5.94	4.90	4.02	3.19	7.87
155	У	7.97	8.91	8.77	8.26	7.85	9.11
1800	X	1.44	3.55	2.67	1.84	1.13	4.89
160	у	0.00	0.00	0.00	0.00	0.00	0.00

Dari tabel 4. 40 dan 4.41 menunjukkan hubungan antara *offset* yang terjadi pada FSO Belida dengan posisi peletakan *subsea buoy*. Pada kondisi dengan satu *subsea buoy* semakin jauh peletakan *subsea buoy* dari *anchor*, *offset* yang muncul akan semakin besar yaitu pada jarak 605 m dari *anchor*. Namun jika dibandingkan dengan kondisi dua *subsea buoy*, *offset* yang muncul lebih besar. *Offset* terkecil pada kondisi dengan satu *subsea buoy* pada jarak 522.5 m dari *anchor*. Keadaan ini terjadi baik dalam kondisi *stand alone* maupun *offloading* pada lima arah pembebanan gelombang. Nilai *offset* yang terjadi juga sudah sesuai dengan kriteria dari API RP 2P yaitu minimum *offset* kurang dari 9.217 m.

4.9 Analisis Clearance Antara Mooring Line dengan Pipa

Analisis *clearance mooring line* dengan pipa dilakukan dengan dua kondisi yaitu kondisi *stand alone* dan kondisi *offloading. Mooring line* yang terjadi *clashing* dengan pipa yaitu pada *mooring line* tiga, empat, lima dan enam. Sehingga analisis dan penambahan *subsea buoy* hanya dilakukan pada *mooring line* tersebut. Menurut DNV OS E301 kriteria minimum vertikal *clearance* antara *mooring line* dengan semua peralatan bawah laut sebaiknya 10 m pada kondisi ULS.

4.9.1 Clearance Antara Mooring Line dengan Pipa Kondisi Stand Alone

Pada kondisi *stand alone* FSO tertambat dengan enam *mooring line* tanpa ada *shuttle tanker*. Tabel 4.42 menunjukkan *clearance* antara *mooring line* dengan pipa dengan variasi peletakan *subsea buoy*.

Line	Tanpa	Pos	sisi Satu <i>Bu</i>	oy dari A	nchor	Double
Line	Виоу	605 m	577.5 m	550 m	522.5 m	Виоу
Line 3	0.00	6.51	10.10	12.45	4.77	25.73
Line 4	0.19	17.42	14.41	10.84	3.20	29.90
Line 5	0.19	17.42	14.41	10.84	3.20	29.90
Line6	0.00	6.51	10.10	12.45	4.77	25.73

Tabel 4.42 Clearance antara mooring line dengan pipa

Dari tabel 4.42 menunjukkan bahwa tidak terjadi *clashing* antara *mooring line* dengan pipa setelah penambahan *subsea buoy*, namun *clearance* yang sesuai dengan kriteria dari DNV OS E301 yaitu pada variasi satu *subsea buoy* dengan jarak 577.5 m dari *anchor*, satu *subsea buoy* dengan jarak 577.5 m dari *anchor*, dan pada kondisi dua *subsea buoy*. *Clearance* terbesar terjadi pada kondisi dua *subsea buoy* yaitu pada *line* 3 dan 6 bernilai 25.73 m dan pada *line* 4 dan 5 bernilai 29.9 m.
4.9.2 Clearance Antara Mooring Line dengan Pipa Kondisi Offloading

Pada kondisi offloading FSO tertambat dengan enam mooring line dan hawser yang menghubungkan FSO dengan shuttle tanker. Tabel 4.43 menunjukkan clearance antara mooring line dengan pipa dengan variasi peletakan subsea buoy.

Lina	Tanpa	Pos	nchor	Double		
Line	Виоу	605 m	577.5 m	550 m	522.5 m	Виоу
Line 3	0.00	6.13	10.04	10.58	5.22	24.88
Line 4	0.19	15.92	12.74	10.11	4.39	27.55
Line 5	0.19	15.92	12.74	10.11	4.39	27.55
Line6	0.00	6.13	10.04	10.58	5.22	24.88

Tabel 4.43 Clearance antara mooring line dengan pipa

Dari tabel 4.43 menunjukkan bahwa tidak terjadi *clashing* antara *mooring line* dengan pipa setelah penambahan *subsea buoy*, namun *clearance* yang sesuai dengan kriteria dari DNV OS E301 yaitu pada variasi satu *subsea buoy* dengan jarak 577.5 m dari *anchor*, satu *subsea buoy* dengan jarak 577.5 m dari *anchor*, dan pada kondisi dua *subsea buoy*. *Clearance* terbesar terjadi pada kondisi dua *subsea buoy* yaitu pada *line* 3 dan 6 bernilai 24.88 m dan pada *line* 4 dan 5 bernilai 27.55 m.

(halaman ini sengaja dikosongkan)

BAB V PENUTUP

5.1 Kesimpulan

Dari analisis yang telah dilakukan dapat diambil kesimpulan yang ada. Berikut ini adalah kesimpulan yang dapat diambil :

- Dari penelitian yang telah dilakukan, *mooring lin*e tanpa penambahan *subsea buoy* pada saat kondisi *stand alone* dan pada semua arah pembebanan memiliki nilai tegangan maksimum yang paling besar. Tegangan terbesar dari arah pembebanan 45° pada *line* tujuh dengan nilai 1503.09 kN. Begitupun dengan kondisi *offloading*, *mooring line* tanpa penambahan *subsea buoy* pada semua arah pembebanan juga memiliki nilai tegangan maksimum yang paling besar. Pada arah pembebanan 135° pada *line* tujuh memiliki tegangan terbesar dengan nilai 1743.05 kN. Untuk semua tegangan sudah memenuhi kriteria dari API RP 2SK yaitu *safety factor* kurang dari 1,67.
- 2. Dari penelitian diketahui bahwa penambahan subsea buoy mengurangi tegangan pada mooring line. Pada mooring line dengan satu subsea buoy semakin jauh peletakan subsea buoy dari anchor, tegangan yang muncul akan semakin kecil. Pada mooring line dengan dua subsea buoy dengan jarak 605 m dan 467.5 m memiliki nilai tegangan maksimum yang paling rendah. Kondisi ini terjadi pada semua arah pembebanan pada saat stand alone maupun offloading.
- 3. Dari penelitian diketahui bahwa penambahan *subsea buoy* dapat mempengaruhi *offset* pada FSO. Pada kondisi *stand alone* dan *offloading*, *offset* tertinggi yaitu pada *mooring line* dengan dua *subsea buoy* dan *mooring line* dengan satu *subsea buoy* dengan jarak 605 m dari *anchor*. Nilai dari semua *offset* yang terjadi sudah sesuai dengan kriteria API RP 2P.
- 4. Dari penelitian diketahui bahwa penambahan *subsea buoy* dapat menghindari *clashing* antara *mooring line* dengan pipa. Namun untuk *clearance* antara *mooring line* dengan pipa yang sesuai dengan kriteria dari DNV OS E301 yaitu pada variasi satu *subsea buoy* dengan jarak 577.5 m dari *anchor*, satu *subsea buoy* dengan jarak 550 m dari *anchor*, dan pada kondisi dua *subsea buoy*. *Clearance* terbesar terjadi pada *mooring line* dengan dua *subsea buoy*.

5.2 Saran

Topik penelitian tugas akhir dapat dikembangkan lagi untuk penelitian berikutnya. Berikut beberapa saran yang dapat dipertimbangkan untuk dianalisis dalam penelitian berikutnya :

- 1. Melakukan analisis dengan memvariasikan displacement subsea buoy.
- 2. Melakukan analisis dengan memvariasikan bentuk subsea buoy.
- 3. Melakukan analisis dengan memvariasikan jenis mooring line.

DAFTAR PUSTAKA

- ABS. 2018. Rules for Building and Classing Mobile Offshore Drilling Units. USA. American Bureau of Shipping.
- API RP 2SK 3th edition. 2005. *Recommended Practice for Design and Analysis of Station keeping Systems for Floating Structures*. Washington DC.
- Bhattacharyya. R., 1978. *Dynamics of Marine Vehicles*. New York: John Wiley & Sons Inc.
- Chakrabarti, S. K., 1987. *Hydrodinamics of Offshore Structure*. Boston, USA: Computational Mechanics Publication Southampton.
- Djatmiko, E.B., 2012. Perilaku dan Operabilitas Bangunan Laut Di Atas Gelombang Acak. Surabaya: ITS Press.
- DNV OS E301. 2004. Position Mooring. Det Norske Veritas. Norway.
- Faltinsen, O.M., 1990. Sea Loads on Ships and Offshore Structures. Cambridge, UK: Cambridge University Press.
- Fitria, Favi Ainin. 2018. Studi Pengaruh Penambahan Clump Buoy Pada System Mooring Platform PLTAL Laut Dalam, Tugas Akhir. Surabaya : Institut Teknologi Sepuluh Nopember.
- Howell dkk., 2006. Spread Moored or Turet Moored FPSO's for Deepwater Field Developments. Offshore West Africa.
- Ji, C.Y., Yuan, Z.M., Chen, M.L., 2011. "Study on a new mooring system integrating catenary with taut mooring". *China Ocean Eng.* 25 (3), 427– 440.
- Mavrakos, S.A., 1997. "Dynamic Behavior of Deep Water Mooring Lines With Submerged Buoys". *Elsevier*, 64, pp.819-35.
- OCIMF. 1997. Mooring Equipment Guidilines. London: WITHERBY & CO. LTD.
- Sahlan, Arifin, Wibowo, 2012. *Kajian Numerik Respon Gerakan Kapal FPSO/FSO Saat Ditambat (Moored FPSO/FSO)*. UPT Balai Pengkajian dan Penelitian Hidrodinamika-BPPT.
- Suseprasetyo, N., 2013. Analisis Pengaruh Variasi Displasemen Dan Posisi Submerged Buoy Terhadap Kinerja Sistem Tambat Single Point Mooring

FPSO "BROTOJOYO", Tugas Akhir. Surabaya: Jurusan Teknik Kelautan ITS.

- Sundaravadivelu, R., and Varaprasad K. S. S. R. CH., 1991. "Design of Single Point Sub-surface Deep Sea Moorings". Ocean Engineering, Vol. 18, pp.397-404.
- Yuan, Z.M, Incecik A., Ji, C.Y., 2014. Numerical Study on a Hybrid Mooring System with Clump Weights and Buoys.

LAMPIRAN A Hasil *Output* RAO MOSES FSO Kondisi *Full Load*

***	*****	***	****	****	*****	*****	******	**
*				*** MO3	SES	***		*
*							April 10, 2019	*
*	BASIC MODE	LLI	NG FSO BELIDA				·····	*
*								*
*	Draft	=	14.9 Meters	Trim Angle	=	0.00 Deg.	GMT = 4.9 Meters	×
*	Roll Gy. Radius	=	16.5 Meters	Pitch Gy. Rad	ius =	69.7 Meters	Yaw Gy. Radius = 69.7 Meters	*
*	Heading	=	0.00 Deg.	Forward Speed	=	0.00 Knots	Linearization Based on 1/ 20	*
*	5		3				,	×
***	*****	***	*****	*****	*****	******	******	**

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

Of Point On Body FSOBELID At X = 116.3 Y = -0.0 Z = 12.4

ENCOUN	TER	Surge /	_	sway /	_	Heave /	_	R011 /		Pitch /	_	Yaw /	_
		, Wave	Ampl.	, Wave	Ampl.	, Wave	Ampl.	, Wave	Ampl.	, Wave	Ampl.	, Wave	Ampl.
-(Rad/Sec)-	-(Sec)-	/ Ampl.	Phase	Amp1.	Phase	/	Phase	Ampl.	Phase	Ampl.	Phase	Amp1.	Phase
0.1000	62.83	0.968	97	0.000	0	1.000	7	0.000	0	0.059	-85	0.000	0
0.2000	31.42	0.919	117	0.000	0	0.976	27	0.001	53	0.237	-62	0.000	0
0.3000	20.94	0.777	152	0.000	0	0.862	58	0.001	110	0.515	-27	0.000	0
0.4000	15.71	0.503	-159	0.000	0	0.566	98	0.009	0	0.785	18	0.000	0
0.5000	12.57	0.151	-98	0.000	0	0.143	76	0.001	68	0.757	70	0.000	0
0.6000	10.47	0.092	158	0.000	0	0.350	24	0.000	0	0.098	-142	0.000	0
0.7000	8.98	0.085	-114	0.000	0	0.086	172	0.000	0	0.228	-18	0.000	0
0.8000	7.85	0.028	176	0.000	0	0.064	-25	0.000	0	0.058	169	0.000	0
0.9000	6.98	0.016	-89	0.000	0	0.016	-137	0.000	0	0.038	27	0.000	0
1.0000	6.28	0.018	-121	0.000	0	0.009	94	0.000	0	0.015	-44	0.000	0
1.1000	5.71	0.011	-139	0.000	0	0.006	55	0.000	0	0.006	-116	0.000	0
1.2000	5.24	0.005	-147	0.000	0	0.003	35	0.000	0	0.004	-154	0.000	0
1.3001	4.83	0.003	-151	0.000	0	0.002	37	0.000	0	0.002	-151	0.000	0
1.4000	4.49	0.002	-145	0.000	0	0.001	58	0.000	0	0.001	-125	0.000	0
1.4999	4.19	0.002	-129	0.000	0	0.001	106	0.000	0	0.001	-41	0.000	0
1.6000	3.93	0.001	-107	0.000	0	0.000	0	0.000	0	0.001	47	0.000	0
1.7000	3.70	0.001	-86	0.000	0	0.000	0	0.000	0	0.001	121	0.000	0
1.7998	3.49	0.000	0	0.000	0	0.001	93	0.000	0	0.000	0	0.000	0
1.9000	3.31	0.000	0	0.000	0	0.000	0	0.000	0	0.001	93	0.000	0
1.9997	3.14	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
2.1000	2.99	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
2.2000	2.86	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
2.2998	2.73	0.000	0	0.000	0	0.000	0	0.000	0	0.001	-97	0.000	0

	*****	*****	******	******	*******	**
- 5	k		*** MOSES	***		*
- 9	k				April 10, 2019	*
- 5	BASIC MODE	ELLING FSO BELIDA			· · · · · · · · · · · · · · · · · · ·	÷
- 1	k					÷
\$	* Draft	= 14.9 Meters	Trim Angle	= 0.00 Deg.	GMT = 4.9 Meters	*
- 9	Roll Gy. Radius	= 16.5 Meters	Pitch Gy. Radius	= 69.7 Meters	Yaw Gy. Radius = 69.7 Meters	*
- 5	* Heading	= 45.00 Deg.	Forward Speed	= 0.00 Knots	Linearization Based on 1/ 20	*
\$	* _	2			,	*
- 9	******	*******	******	******	*************	××

10 an

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

Of Point On Body FSOBELID At X = 116.3 Y = -0.0 Z = 12.4

ENCOUN	TER	Surge /	4mm]	Sway /	4mm]	Heave /	4mm]	Roll /	4mm]	Pitch /	4mm]	Yaw /	4mm]
Enequency	Period	wave /	Amp I.	wave	Amp I.	wave /	Amp I.	wave	Amp I.	wave	Amp I.	wave /	Amp I.
-(Rad/Sec)-	-(Sec)-	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase
-(Rad/Sec)- 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 1.1000 1.2000 1.3001 1.4000 1.4999 1.6000 1.7000 1.7000	- (Sec)- 62.83 31.42 20.94 15.71 12.57 10.47 8.98 7.85 6.98 6.28 5.71 5.24 4.83 4.49 4.19 3.93 3.70	Amp1. 0.685 0.660 0.595 0.472 0.287 0.088 0.049 0.067 0.008 0.022 0.003 0.003 0.005 0.001 0.001 0.001 0.001 0.001	Phase 95 109 134 168 -148 -148 -148 -149 -74 -136 -112 -146 -132 -80 -98 -109 -110	Ampl. 0.700 0.671 0.603 0.437 0.254 0.065 0.044 0.03 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.001 0.001	Phase 95 109 133 162 -151 -110 165 -128 155 -103 158 -6 -117 -178 151 99 62 47	Ampl. 1.001 0.991 0.940 0.803 0.497 0.262 0.219 0.068 0.035 0.020 0.010 0.007 0.005 0.003 0.002 0.003 0.002 0.002 0.002 0.001 0.001	Phase 5 19 42 71 93 -30 -19 94 -85 81 -46 174 82 1 -56 -99 -118 -124	Ampl. 0.043 0.199 0.667 2.192 0.347 0.159 0.074 0.041 0.044 0.009 0.015 0.007 0.003 0.003 0.003 0.003 0.002 0.002	Phase 95 112 138 70 80 -136 -29 79 -88 70 -66 146 72 -30 -110 -148 -169 -165	Ampl. 0.042 0.169 0.382 0.667 0.962 0.686 0.148 0.118 0.058 0.026 0.019 0.011 0.006 0.005 0.004 0.003 0.002 0.002	Phase -89 -70 -45 -12 22 42 151 -58 83 -71 124 19 -94 176 117 81 65 62	Ampl. 0.025 0.096 0.197 0.261 0.301 0.204 0.053 0.040 0.027 0.014 0.008 0.009 0.005 0.002 0.002 0.002 0.002 0.002 0.002	Phase -174 -160 -138 -102 -61 -11 -11 -11 -36 52 -38 107 -71 -72 -71 -172 90 61 43
1.9000	3.31	0.000	0	0.001	67 107	0.001	-124 -106 -74	0.002	-144	0.001	79 122	0.001	62 97
1.9997 2.1000 2.2000	3.14 2.99 2.86	0.000 0.000 0.000	0	0.001 0.001 0.001	107 -172 -139	0.001 0.000 0.000	-74 0	0.001 0.001 0.001	-102 -35 51	0.001 0.001 0.001	122 171 -118	0.001 0.000 0.001	97 0 -100
2.2998	2.73	0.000	ŏ	0.000	10	0.000	ŏ	0.001	138	0.001	-11	0.001	-31

***	*****	***************************************	******
*		*** MOSES ***	*
*		April 10, 2019) *
*	BASIC MODE	NG FSO BELIDA	*
*			*
*	Draft	14.9 Meters Trim Angle = 0.00 Deg. GMT = 4.9 M	leters *
*	Roll Gy. Radius	16.5 Meters Pitch Gy. Radius = 69.7 Meters Yaw Gy. Radius = 69.7 M	leters *
*	Heading	90.00 Deg. Forward Speed = 0.00 Knots Linearization Based on 1/	20 *
*	5		*
***	*****	***************************************	******

-

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

Of Point On Body FSOBELID At X = 116.3 Y = -0.0 Z = 12.4

ENCOUN	TER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
		Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/	/
-(Rad/Sec)-	-(Sec)-	Amp I.	Phase	Amp I.	Phase	Amp I.	Phase	Amp I.	Phase	Amp I.	Phase	Amp I.	Phase
0 1000	62 82	0 000	0	0 001	00	1 002	0	0.061	80	0.004	178	0.000	0
0.1000	21 42	0.000	ĕ	0.991	30	1.002	ĕ	0.001	80	0.004	171	0.000	97
0.2000	20.04	0.000	×	0.902	90	1.005	ĕ	1 012	96	0.003	1/1	0.001	0/
0.3000	15 71	0.000	× ×	0.910	90	1.025	× ×	2 145	10	0.001	02	0.008	25
0.4000	12.71	0.000	41	0.784	80	1.092	Š,	3.145	-19	0.019	-9	0.043	-30
0.5000	12.37	0.001	-41	0.703	94	1.311	-8	1.026	-82	0.108	-41	0.025	-100
0.6000	10.47	0.002	-129	0.598		1.448	-44	0.494	-80	0.3/4	-129	0.021	-113
0.7000	8.98	0.001	145	0.488	103	0.733	-/8	0.275	-/3	0.244	145	0.020	-124
0.8000	7.85	0.001	116	0.383	112	0.318	-83	0.156	-64	0.111	116	0.017	-133
0.9000	6.98	0.000	0	0.293	124	0.153	-73	0.089	-53	0.058	113	0.015	-136
1.0000	6.28	0.000	0	0.220	139	0.083	-58	0.051	-39	0.036	119	0.012	-135
1.1000	5.71	0.000	0	0.163	159	0.046	-38	0.031	-26	0.023	132	0.010	-129
1.2000	5.24	0.000	0	0.119	-179	0.028	-15	0.017	-14	0.014	148	0.008	-118
1.3001	4.83	0.000	0	0.090	-151	0.017	7	0.017	5	0.009	171	0.007	-106
1.4000	4.49	0.000	0	0.067	-121	0.010	30	0.013	24	0.006	-163	0.005	-88
1.4999	4.19	0.000	0	0.049	-88	0.009	76	0.011	46	0.004	-137	0.004	-73
1.6000	3.93	0.000	0	0.038	-53	0.004	91	0.009	77	0.003	-106	0.002	-36
1.7000	3.70	0.000	0	0.026	-26	0.003	128	0.006	114	0.002	-78	0.001	19
1,7998	3.49	0.000	Ō	0.023	28	0.002	157	0.006	156	0.001	-44	0.001	64
1,9000	3, 31	0.000	ō	0.017	71	0.003	91	0.005	-158	0.001	-20	0.002	91
1,9997	3.14	0,000	ŏ	0,013	117	0.001	-127	0.004	-109	0.001	77	0.001	124
2,1000	2.99	0.000	ŏ	0.011	-151	0.001	-77	0.005	-84	0.001	112	0.001	-140
2 2000	2.86	0.000	ŏ	0.000	-136	0.001	-46	0.003	-14	0.001	148	0.001	-136
2 2008	2 73	0.000	ŏ	0.007	-86	0.001	0	0.002	38	0.001	171	0.001	100
	2.75	0.000	0	0.007	-00	0.000	V	0.002	50	0.001	1/1	0.000	0

***	******	******	****	*****	*********	**
*			*** MOSES	***		*
*					April 10, 2019	*
*	BASIC MODE	LLING FSO BELIDA			· · · · · · · · · · · · · · · · · · ·	*
*						*
*	Draft	= 14.9 Meters	Trim Angle	= 0.00 Deg.	GMT = 4.9 Meters	*
*	Roll Gy. Radius	= 16.5 Meters	Pitch Gy. Radius	= 69.7 Meters	Yaw Gy. Radius = 69.7 Meters	*
*	Heading	= 135.00 Deg.	Forward Speed	= 0.00 Knots	Linearization Based on 1/ 20	*
*	2	2				*
***	******	***********	******	******	******	**

-

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

Of Point On Body FSOBELID At X = 116.3 Y = -0.0 Z = 12.4

ENCOU	NTER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
		, Wave	Ampl.	Wave	Ampl.	, Wave	Ampl.	, Wave	Ampl.	, Wave	Ampl.	, Wave	Ampl.
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/	/
-(Rau/Sec)-	(Sec)-	Amp 1.	Pliase	Amp 1.	Pliase	Amp 1.	Pliase	Amp 1.	PHASe	Amp 1.	Pliase	Amp 1.	Pliase
0.1000	62.83	0.685	-94	0.700	85	1.001	-4	0.043	84	0.042	90	0.025	-4
0.2000	31.42	0.660	-108	0.671	71	0.991	-18	0.199	67	0.169	70	0.096	-18
0.3000	20.94	0.595	-133	0.602	47	0.942	-43	0.664	34	0.381	42	0.199	-41
0.4000	15.71	0.472	-166	0.420	12	0.822	-78	2.179	-121	0.659	0	0.311	-80
0.5000	12.57	0.288	149	0.258	-26	0.652	-122	0.332	114	0.925	-61	0.322	-119
0.6000	10.47	0.090	99	0.058	-78	0.314	144	0.074	-41	0.692	-160	0.251	-169
0.7000	8.98	0.047	-149	0.065	46	0.164	-164	0.129	-169	0.127	75	0.096	136
0.8000	7.85	0.067	141	0.067	-15	0.067	87	0.102	87	0.084	-150	0.041	-138
0.9000	6.98	0.009	76	0.014	-12	0.017	-144	0.042	-53	0.033	94	0.056	165
1.0000	6.28	0.022	145	0.027	-9	0.013	100	0.040	128	0.012	-132	0.014	178
1.1000	5.71	0.003	135	0.011	-9	0.002	171	0.015	-11	0.006	77	0.022	159
1.2000	5.24	0.008	113	0.011	-26	0.001	69	0.012	86	0.003	143	0.011	180
1.3001	4.83	0.005	147	0.007	-10	0.001	74	0.001	44	0.001	-152	0.007	154
1.4000	4.49	0.001	132	0.004	-15	0.001	118	0.003	15	0.001	-38	0.007	159
1.4999	4.19	0.001	81	0.004	-32	0.000	0	0.002	33	0.001	60	0.005	164
1.6000	3.93	0.001	99	0.003	-25	0.000	0	0.002	44	0.001	109	0.003	167
1.7000	3.70	0.001	110	0.002	-23	0.000	0	0.001	56	0.001	113	0.002	154
1.7998	3.49	0.001	112	0.001	-21	0.000	0	0.001	69	0.000	0	0.001	158
1.9000	3.31	0.000	0	0.001	-13	0.000	0	0.001	60	0.000	0	0.001	156
1.9997	3.14	0.000	0	0.001	-6	0.000	0	0.001	55	0.000	0	0.001	159
2.1000	2.99	0.000	0	0.001	5	0.000	0	0.000	0	0.000	0	0.000	0
2.2000	2.86	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
2.2998	2.73	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0

***	*****	*******	******	******	****	**
*			*** MOSES	***		*
*					April 10, 2019	*
*	BASIC MODE	LLING FSO BELIDA			· • • • • • • • • • • • • • • • • • • •	*
*						*
*	Draft	= 14.9 Meters	Trim Angle	= 0.00 Deg.	GMT = 4.9 Meters	*
*	Roll Gy. Radius	= 16.5 Meters	Pitch Gy. Radius	= 69.7 Meters	Yaw Gy. Radius = 69.7 Meters	*
*	Heading	= 180.00 Deg.	Forward Speed	= 0.00 Knots	Linearization Based on 1/ 20	*
*	3	3				*
***	******	************	*****	********	******	**

Results are in Body System

Of Point On Body FSOBELID At X = 116.3 Y = -0.0 Z = 12.4

ENCOUN	TER	Surge /	_	sway /	_	Heave /	_	Roll /	_	Pitch /	_	Yaw /	_
	Dended	, Wave	Ampl.	, Wave	Ampl.	/ Wave	Ampl.	, Wave	Ampl.	, Wave	Ampl.	/ Wave	Ampl.
- (Pad/Sec)-	- (Sec)-	/	Dhace	/	phace	/	Dhace	/	phace	/	phase	/	phace
-(Rau/Sec)-	-(360)-	Amp 1.	Flidse	Amp 1.	Fliase	Amp 1.	Fliase	Amp 1.	Flidse	Amp 1.	Flidse	Amp	Fliase
0.1000	62.83	0.968	-96	0.000	0	1.000	-6	0.000	0	0.059	86	0.000	0
0.2000	31.42	0.919	-116	0.000	0	0.976	-27	0.001	-53	0.237	61	0.000	0
0.3000	20.94	0.777	-151	0.000	0	0.865	-62	0.001	-114	0.513	22	0.000	0
0.4000	15.71	0.503	161	0.000	0	0.594	-110	0.009	-3	0.782	-35	0.000	0
0.5000	12.57	0.151	101	0.000	0	0.216	-152	0.001	-111	0.785	-119	0.000	0
0.6000	10.47	0.091	-158	0.000	0	0.308	-144	0.000	0	0.201	101	0.000	0
0.7000	8.98	0.085	117	0.000	0	0.147	49	0.000	0	0.201	177	0.000	0
0.8000	7.85	0.028	-174	0.000	0	0.066	143	0.000	0	0.053	-19	0.000	0
0.9000	6.98	0.016	91	0.000	0	0.017	-65	0.000	0	0.039	88	0.000	0
1.0000	6.28	0.018	123	0.000	0	0.010	22	0.000	0	0.010	-170	0.000	0
1.1000	5.71	0.011	141	0.000	0	0.004	73	0.000	0	0.007	-85	0.000	0
1.2000	5.24	0.005	148	0.000	0	0.001	125	0.000	0	0.004	-56	0.000	0
1.3001	4.83	0.003	152	0.000	0	0.000	0	0.000	0	0.002	-53	0.000	0
1.4000	4.49	0.002	146	0.000	0	0.000	0	0.000	0	0.001	-84	0.000	0
1.4999	4.19	0.002	130	0.000	0	0.000	0	0.000	0	0.001	-116	0.000	0
1.6000	3.93	0.001	108	0.000	0	0.001	-50	0.000	0	0.000	0	0.000	0
1.7000	3.70	0.001	87	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
1.7998	3.49	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
1.9000	3.31	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
1.9997	3.14	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
2.1000	2.99	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
2.2000	2.86	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
2.2998	2.73	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0

LAMPIRAN B

Hasil Output RAO MOSES FSO

Kondisi Ballast

***	******	***	*****	******	***	*****	*****	*****	******	***
*				*** MOSES		***				*
*							Mav 6	. 2019	9	*
*	BASIC MODE	LLI	NG FSO BELIDA					,		*
*										*
*	Draft	=	7.0 Meters	Trim Anale	=	0.00 Deg.	GMT	= 12.	7 Meter	's *
*	Roll Gy. Radius	=	67.9 Meters	Pitch Gy. Radius	=	67.9 Meters	Yaw Gy. Radius	= 0,	0 Meter	's *
*	Heading	=	0.00 Deg.	Forward Speed	=	0.00 Knots	Linearization Bas	ed on	1/ 20	*
*	5		5							*
***	*********	***	*****	*******	***	*****	*****	*****	******	***

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

Of Point On Body FSOBELID At X = 112.3 Y = 0.0 Z = 10.1

ENCOUN	TER	Surge /		Sway /		Heave /		R011 /		Pitch /		Yaw /	
	Dondod	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.
-(Rad/Sec)-	-(Sec)-	/	Phase	Ampl.	Phase	Amp1.	Phase	Ampl.	Phase	Ampl.	Phase	/	Phase
0.1000	62.83	0.878	96	0.243	-84	0.999	6	0.023	-85	0.053	-83	0.028	4
0.2000	31.42	0.847	115	0.230	-69	0.976	24	0.102	111	0.209	-63	0.104	22
0.3000	20.94	0.745	147	0.209	-45	0.878	54	0.043	134	0.447	-32	0.205	48
0.4000	15.71	0.529	-169	0.165	-10	0.636	94	0.028	168	0.668	10	0.291	86
0.5000	12.57	0.228	-121	0.100	34	0.260	136	0.017	-146	0.668	61	0.312	136
0.6000	10.47	0.059	-155	0.031	87	0.105	66	0.006	-91	0.303	111	0.234	-162
0.7000	8.98	0.073	-126	0.015	-13	0.077	86	0.001	169	0.137	45	0.078	-92
0.8000	7.85	0.041	-146	0.018	62	0.067	21	0.003	-119	0.023	-147	0.051	-176
0.9000	6.98	0.025	-81	0.004	-50	0.036	-135	0.002	-2	0.090	32	0.051	-76
1.0000	6.28	0.025	-122	0.010		0.027	49	0.001	-168	0.048	-110	0.030	1/9
1.1000	5./1	0.012	-113	0.005	-4/	0.012	-/9	0.001	0	0.019	112	0.032	-28
1.2000	5.24	0.009	-10/	0.005	129	0.002	155	0.001	-140	0.005	-56	0.031	-126
1.3001	4.83	0.005	-114	0.004	34	0.007	-8	0.000	0	0.001	130	0.016	104
1.4000	4.49	0.003	-94	0.004	-41	0.002	-81	0.000	0	0.004	96	0.030	2
1.4999	4.19	0.004	-/5	0.001	-1/5	0.001	103	0.000	0	0.001	51	0.018	-6/
1.6000	3.93	0.003	-08	0.001	110	0.001	132	0.000	0	0.001	-0/	0.015	-112
1.7000	3.70	0.002	- 50	0.001	100	0.001	103	0.000	0	0.001	-109	0.011	-144
1.7998	3.49	0.001	-48	0.001	103	0.001	133	0.000	0	0.001	-119	0.009	-104
1.9000	3.31	0.002	-38	0.001	110	0.001	-32	0.000	0	0.001	102	0.010	-100
1.999/	3.14	0.001	-1/	0.000	0	0.000	0	0.000	0	0.000	0	0.008	-145
2.1000	2.99	0.001	-8	0.000	0	0.000	0	0.000	0	0.000	0	0.006	-90
2.2000	2.80	0.000	0	0.000	8	0.000	161	0.000	Š	0.000	21	0.005	-40
2.2998	2.73	0.000		0.000	0	0.001	-101	0.000	0	0.001	21	0.002	19

***	*****	***	*****	*****	***	******	*****	****	*******	*****	k 🛠
*				*** MOSES		***					*
*							Mav	6.	2019		×
*	BASIC MODE	LLI	NG FSO BELIDA					- /			×
*											×
*	Draft	=	7.0 Meters	Trim Anale	=	0.00 Deg.	GMT	=	12.7 Me	eters	×
*	Roll Gv. Radius	=	67.9 Meters	Pitch Gv. Radius	=	67.9 Meters	Yaw Gy. Radius	=	0.0 M	eters	×
*	Heading	=	45.00 Deg.	Forward Speed	=	0.00 Knots	Linearization B	ased	l on 1/ 7	20	×
*	5		3								*
***	*****	***	******	*****	***	*****	*****	****	*******	*****	k 🛠

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

Of Point On Body FSOBELID At X = 112.3 Y = 0.0 Z = 10.1

ENCOUN	TER	Surge /	-	Sway /	-	Heave /	-	Roll /	-	Pitch /	-	Yaw /	-
		Wave	Amp I.	, Wave	Amp I.	Wave	Amp I.	, Wave	Amp I.	, Wave	Amp I.	, Wave	Ampl.
-(Rad/Sec)-	-(Sec)-	/ Ampl.	Phase	/	Phase	/	Phase	/	Phase	/	Phase	Amp1.	Phase
(, ,	~ /												
0.1000	62.83	0.790	94	0.460	94	0.999	4	0.043	92	0.047	-85	0.052	-176
0.2000	31.42	0.765	108	0.436	104	0.980	17	0.192	-71	0.189	-71	0.197	-162
0.3000	20.94	0.684	130	0.396	122	0.899	37	0.081	-57	0.407	-49	0.389	-143
0.4000	15.71	0.514	159	0.312	148	0.699	64	0.053	-32	0.628	-20	0.552	-114
0.5000	12.57	0.274	-168	0.190	-178	0.373	92	0.031	1	0.695	13	0.592	-76
0.6000	10.47	0.079	-160	0.058	-139	0.068	73	0.012	41	0.481	43	0.443	-29
0.7000	8.98	0.047	144	0.028	102	0.115	-20	0.001	-75	0.137	58	0.148	23
0.8000	7.85	0.062	136	0.033	159	0.076	-6	0.006	-23	0.096	-132	0.096	-80
0.9000	6.98	0.024	180	0.007	23	0.052	143	0.003	70	0.107	-46	0.096	-2
1.0000	6.28	0.02/	99	0.019	126	0.035	-/6	0.003	-119	0.058	120	0.056	-131
1.1000	5.71	0.010	9/	0.009	-24	0.01/	10/	0.002	21	0.029	-65	0.061	-6
1.2000	5.24	0.011	/0	0.010	121	0.007	-/0	0.001	-149	0.012	113	0.060	-134
1.3001	4.83	0.007	23	0.008	2	0.008	12/	0.001	47	0.005	-1/	0.031	60
1.4000	4.49	0.003	20	0.007	-119	0.003	4	0.000	140	0.006	-103	0.05/	-/2
1.4999	4.19	0.004	42	0.002	10	0.002	-113	0.001	149	0.003	95	0.034	1//
1.0000	3.93	0.004	-43	0.003	-19	0.002	103	0.000	0	0.002	126	0.029	91
1.7000	3.70	0.003	-/0	0.002	-89	0.001	67	0.000	8	0.002	-120	0.021	10
1.7998	3.49	0.002	-110	0.001	-141	0.001	156	0.000	8	0.001	-109	0.01/	-49
1.9000	5.5L 2.14	0.002	-10/	0.001	1/0	0.001	-130	0.000	8	0.001	30	0.018	120
2 1000	2.00	0.001	1 21	0.001	145	0.000	8	0.000	Ň	0.000	Ň	0.013	125
2.1000	2.99	0.001	106	0.000	ŏ	0.000	ŏ	0.000	ŏ	0.000	ŏ	0.012	-142
2 2998	2.00	0.001	0	0.000	-116	0.000	ŏ	0.000	ŏ	0.000	ŏ	0.003	-140
E. E330	L • / J	0.000	· · · · ·	0.001	+++++++++++++	0.000	· · · · ·	0.000	· · · · ·	0.000	· · · ·	0.004	TTO

***	*****	*****	*****	******	×
*			*** MOSES ***	¥	*
*			May 6, 2019	×	
*	BASIC MODE	LLING FSO BELIDA		4	×
*				Y	×
*	Draft	= 7.0 Meters	Trim Angle = 0.00	Deg. GMT = 12.7 Meters	×
*	Roll Gy. Radius	= 67.9 Meters	Pitch Gy. Radius = 67.9 M	Meters Yaw Gy. Radius = 0.0 Meters *	×
*	Heading	= 90.00 Deg.	Forward Speed = 0.00	Knots Linearization Based on 1/20	×
*	2	2		k	×
***	*****	******	*****	***************************************	÷.

_

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

Of Point On Body FSOBELID At X = 112.3 Y = 0.0 Z = 10.1

ENCOUN	TER	Surge / Wave	Ampl	Sway / Wave	Ampl	Heave / Wave	Ampl	Roll / Wave	Ampl	Pitch /	Ampl	Yaw / Wave	∆mn]
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/	/
-(Rad/Sec)-	-(Sec)-	´ Ampl.	Phasé	´ Αmpl.	Phasé	´ Ampl.	Phase	´ Αmpl.	Phasé	´ Ampl.	Phasé	´ Ampl.	Phasé
0.1000	62.83	0.239	93	0.894	89	0.999	0	0.083	87	0.014	-86	0.028	-178
0.2000	31.42	0.233	102	0.847	88	0.984	0	0.365	-79	0.057	-77	0.106	-159
0.3000	20.94	0.216	116	0.769	85	0.923	-2	0.154	-94	0.127	-62	0.213	-147
0.4000	15.71	0.178	137	0.623	78	0.786	-8	0.098	-100	0.212	-43	0.304	-125
0.5000	12.57	0.117	163	0.465	61	0.631	-30	0.061	-114	0.277	-20	0.326	-95
0.6000	10.47	0.044	-165	0.402	36	0.673	-68	0.042	-140	0.237	3	0.234	-59
0.7000	8.98	0.014	57	0.373	20	0.767	-103	0.035	-157	0.071	93	0.062	-18
0.8000	7.85	0.030	97	0.293	4	0.503	-147	0.024	-165	0.114	147	0.064	-137
0.9000	6.98	0.008	133	0.246	-16	0.317	166	0.015	168	0.048	-13	0.042	-78
1.0000	6.28	0.010	24	0.191	-31	0.176	148	0.012	157	0.052	19	0.048	161
1.1000	5.71	0.003	30	0.152	-54	0.097	116	0.006	142	0.020	-78	0.029	-126
1.2000	5.24	0.005	-23	0.114	-67	0.060	105	0.005	119	0.017	-42	0.054	131
1.3001	4.83	0.003	-91	0.091	-89	0.035	79	0.002	96	0.014	-111	0.011	103
1.4000	4.49	0.001	-98	0.063	-109	0.021	64	0.002	58	0.003	-124	0.059	126
1.4999	4.19	0.001	-137	0.053	-123	0.015	46	0.001	22	0.005	-123	0.047	48
1.6000	3.93	0.001	144	0.042	-142	0.010	22	0.001	-62	0.004	-168	0.033	4
1.7000	3.70	0.001	76	0.032	-161	0.006	1	0.001	-125	0.002	162	0.028	-10
1.7998	3.49	0.001	16	0.026	-179	0.004	-15	0.001	-146	0.001	165	0.032	-42
1.9000	3.31	0.001	-49	0.021	160	0.002	-30	0.001	-168	0.002	-178	0.036	-68
1.9997	3.14	0.000	0	0.018	137	0.003	-55	0.001	164	0.000	0	0.031	-116
2.1000	2.99	0.000	0	0.014	145	0.002	-94	0.001	-3	0.001	69	0.023	-153
2.2000	2.86	0.000	0	0.011	92	0.001	-117	0.000	0	0.001	52	0.017	160
2,2998	2.73	0.000	0	0.009	68	0.001	-54	0.000	0	0.001	159	0.009	117

****	******	******	******	*******
*		*** MOSES ***		*
*			May 6, 2019 *	
* BASIC MO	DELLING FSO BELIDA		*	
*				*
* Draft	= 7.0 Meters	Trim Angle = 0.0	00 Deg. GMT	= 12.7 Meters *
* Roll Gy. Radius	= 67.9 Meters	Pitch Gy. Radius = 67.9	9 Meters Yaw Gy. Radi	us = 0.0 Meters *
* Heading	= 135.00 Deg.	Forward Speed $= 0.00$	0 Knots Linearizatio	on Based on 1/20 *
*		· · · · · · · · · · · · · · · · · · ·		*
*****	******	*******	*******	**********

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

of Point On Body FSOBELID At X = 112.3 Y = 0.0 Z = 10.1

ENCOUN	TER	Surge /	-	Sway /	-	Heave /	-	R011 /	-	Pitch /	-	Yaw /	-
		, Wave	Amp I.	, Wave	Amp I.	, Wave	Amp I.	, Wave	Amp I.	, Wave	Amp I.	Wave	Amp I.
Frequency	Period	/1	/	/1	/	/1	/	/1	/	/1	/	/1	/
-(Rad/Sec)-	-(sec)-	Amp I.	Phase	Amp I.	Phase	Amp I.	Phase	Amp I.	Phase	Amp I.	Phase	Amp I.	Phase
0.1000	62.83	0.452	-95	0.803	86	0,999	-3	0.074	83	0.027	84	0.052	-4
0.2000	31.42	0.441	-113	0.756	74	0.980	-17	0.331	-98	0.108	65	0.200	-26
0.3000	20.94	0.409	-144	0.666	54	0.898	-39	0.135	-124	0.239	33	0.393	-53
0.4000	15.71	0.338	173	0.481	30	0.698	-67	0.079	-151	0.395	-11	0.560	-91
0.5000	12.57	0.222	118	0.246	16	0.389	-91	0.033	-175	0.508	-70	0.609	-139
0.6000	10.47	0.082	52	0.180	41	0.284	-74	0.013	-130	0.468	-144	0.472	165
0.7000	8.98	0.027	148	0.208	27	0.375	-106	0.021	-143	0.211	136	0.192	111
0.8000	7.85	0.056	62	0.148	10	0.206	-148	0.009	-176	0.116	138	0.096	149
0.9000	6.98	0.015	-28	0.115	3	0.138	-162	0.010	-138	0.095	63	0.099	106
1.0000	6.28	0.019	19	0.092	-2	0.075	176	0.006	164	0.038	32	0.079	94
1.1000	5.71	0.005	- 54	0.065	-17	0.044	164	0.004	-157	0.020	-2	0.037	42
1.2000	5.24	0.009	-71	0.055	-20	0.030	153	0.002	156	0.016	-29	0.053	33
1.3001	4.83	0.005	-83	0.040	-24	0.018	150	0.001	153	0.004	-71	0.018	9
1.4000	4.49	0.002	-161	0.027	-31	0.011	133	0.001	82	0.003	-73	0.023	-112
1.4999	4.19	0.003	146	0.027	-38	0.007	123	0.001	120	0.003	-88	0.030	-113
1.6000	3.93	0.002	126	0.023	-46	0.005	112	0.000	0	0.002	-102	0.027	-160
1.7000	3.70	0.002	88	0.020	-57	0.003	106	0.000	0	0.001	-103	0.027	147
1.7998	3.49	0.001	37	0.016	-69	0.002	90	0.000	0	0.001	-120	0.028	100
1.9000	3.31	0.001	-13	0.012	-80	0.001	26	0.000	0	0.001	145	0.031	65
1.9997	3.14	0.001	-/3	0.009	-92	0.002	98	0.000	0	0.000	0	0.028	21
2.1000	2.99	0.001	-145	0.00/	-6/	0.001	62	0.000	0	0.001	-134	0.021	- 34
2.2000	2.86	0.000	0	0.005	-98	0.001	46	0.000	0	0.000	0	0.017	-69
2.2998	2.73	0.000	0	0.005	-102	0.000	0	0.000	0	0.001	4	0.008	-108

k		***	MOSES	***		*
r -					May 6, 2019	*
BASIC MOD	ELLING FSO BELIDA				2	*
k						*
^e Draft	= 7.0 Meters	Trim Angle	=	0.00 Deg.	GMT = 12.7 Mete	rs *
Roll Gy. Radius	= 67.9 Meters	Pitch Gy.	Radius =	67.9 Meters	Yaw Gy. Radius = 0.0 Mete	rs *
' Heading	= 180.00 Dea.	Forward Sp	eed =	0.00 Knots	Linearization Based on 1/ 20	*
					,,,,	*

-

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

Of Point On Body FSOBELID At X = 112.3 Y = 0.0 Z = 10.1

ENCOUNTER Frequency Period	Surge / Wave Ampl.	Sway / Wave Ampl.	Heave / Wave Ampl. //	Roll / Wave Ampl.	Pitch / Wave Ampl.	Yaw / Wave Ampl.
-(Rad/Sec)(Sec)-	Ampl. Phase	Ámpl. Phase	´ Ampl. Phase	Ámpl. Phase	´ Ampl. Phasé	´ Ampl. Phasé
0.1000 62.83 0.2000 31.42 0.3000 20.94 0.4000 15.71 0.5000 12.57 0.6000 10.47 0.7000 8.98 0.8000 7.85 0.9000 6.98 1.0000 6.28 1.1000 5.71 1.2000 5.24 1.3001 4.83 1.4000 4.49 1.4999 4.19 1.6000 3.93 1.7000 3.70 1.7998 3.49	0.878 -95 0.847 -114 0.745 -146 0.529 170 0.229 122 0.059 156 0.074 128 0.042 147 0.025 84 0.025 123 0.012 114 0.009 108 0.003 95 0.004 76 0.003 70 0.002 51 0.001 49 0.002 35	0.243 85 0.230 71 0.208 46 0.163 13 0.097 -28 0.027 -71 0.017 27 0.019 -14 0.012 -22 0.006 -35 0.008 -19 0.003 -35 0.004 -44 0.005 -16 0.002 -32 0.001 -51 0.001 -68 0.001 -78	0.999 -5 0.976 -24 0.878 -54 0.642 -96 0.298 -135 0.179 -125 0.154 -172 0.095 170 0.033 97 0.014 119 0.007 101 0.005 93 0.003 24 0.001 129 0.000 0 0.000 0 0.000 1129 0.001 -142 0.001 167 0.001 13	0.023 85 0.102 -106 0.043 -132 0.028 -166 0.016 149 0.006 89 0.001 -99 0.002 17 0.001 -159 0.001 38 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0	0.053 84 0.209 64 0.444 31 0.659 -15 0.657 -74 0.342 -130 0.235 -145 0.077 154 0.073 151 0.019 140 0.010 140 0.006 137 0.006 137 0.006 16 0.001 15 0.000 0 0.001 173 0.000 0 0.000 0 0.000 0	0.028 -3 0.104 -20 0.205 -42 0.292 -72 0.317 -110 0.247 -153 0.103 166 0.048 -140 0.053 -163 0.043 -154 0.024 178 0.034 -162 0.016 -157 0.013 162 0.016 178 0.012 174 0.010 166 0.008 160
1.9997 3.14 2.1000 2.99 2.2000 2.86 2.2998 2.73	0.001 18 0.001 9 0.000 0	0.001 -70 0.001 -57 0.000 0	0.000 0 0.000 0 0.000 0 0.001 -177	0.000 0 0.000 0 0.000 0	0.000 0 0.000 0 0.000 0	0.007 145 0.005 99 0.005 113 0.003 115

LAMPIRAN C

Hasil Output RAO MOSES Shuttle Tanker

Kondisi Full Load

*****	*****	*****	*****	*********	**
×		*** MOSES	***		*
×				April 24, 2019	*
* SHUTTLE T	ANKER 100.000 DWT				*
*					*
* Draft	= 14.9 Meters	Trim Angle	= 0.00 Deg.	GMT = 4.5 Meters	*
* Roll Gy. Radius	= 16.5 Meters	Pitch Gy. Radius	= 67.9 Meters	Yaw Gy. Radius = 67.9 Meters	*
* Heading	= 0.00 Deg.	Forward Speed	= 0.00 Knots	Linearization Based on 1/ 20	×
*	5				*
*****	******	*****	*****	************	**

-

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

of Point On Body HULL At X = 117.2 Y = 0.0 Z = 12.5

ENCOUN	TER	Surge /	_	sway /	-	Heave /	_	Roll /	_	Pitch /	-	Yaw /	_
	n and a d	, Wave	Amp1.	, Wave	Amp1.	, Wave	Amp1.	, Wave	Amp1.	, Wave	Amp1.	Wave	Amp1.
- (Pad/Sec)-	-(Sec)-	/	Phase	//	Dhace	/	Phase	/	Dhace	//	Dhace	/	Phase
-(Rad/ Sec)-	-(360)-	Amp 1.	Filase	Amp 1.	Flidde	Amp 1.	Filase	Amp 1.	Flidde	Amp 1.	Flidde	Amp 1.	Flidde
0.1000	62.83	0.965	97	0.000	0	0.999	7	0.001	13	0.059	-82	0.000	0
0.2000	31.42	0.918	118	0.000	0	0.977	27	0.001	52	0.237	-60	0.000	0
0.3000	20.94	0.788	152	0.000	0	0.875	59	0.002	108	0.520	-26	0.000	0
0.4000	15.71	0.534	-158	0.000	0	0.605	99	0.006	-2	0.814	19	0.000	0
0.5000	12.57	0.199	-94	0.000	0	0.176	101	0.001	72	0.853	72	0.000	0
0.6000	10.47	0.057	149	0.000	0	0.372	34	0.000	0	0.119	152	0.000	0
0.7000	8.98	0.089	-113	0.000	0	0.085	143	0.000	0	0.254	-19	0.000	0
0.8000	7.85	0.011	143	0.000	0	0.073	-25	0.000	0	0.067	139	0.000	0
0.9000	6.98	0.022	-85	0.000	0	0.015	175	0.000	0	0.048	20	0.000	0
1.0000	6.28	0.015	-126	0.000	0	0.003	11	0.000	0	0.005	22	0.000	0
1.1000	5.71	0.005	-145	0.000	0	0.006	14	0.000	0	0.005	130	0.000	0
1.2000	5.24	0.001	-136	0.000	0	0.003	10	0.000	0	0.005	150	0.000	0
1.3001	4.83	0.001	-95	0.000	0	0.001	14	0.000	0	0.003	149	0.000	0
1.4000	4.49	0.001	-95	0.000	0	0.001	42	0.000	0	0.002	175	0.000	0
1.4999	4.19	0.001	-119	0.000	0	0.001	82	0.000	0	0.001	-149	0.000	0
1.6000	3.93	0.001	-110	0.000	0	0.001	147	0.000	0	0.000	0	0.000	0
1.7000	3.70	0.001	-89	0.000	0	0.000	0	0.000	0	0.001	107	0.000	0
1.7998	3.49	0.000	0	0.000	0	0.000	0	0.000	0	0.001	168	0.000	0
1.9000	3.31	0.000	0	0.000	0	0.001	156	0.000	0	0.001	-35	0.000	0
1.999/	3.14	0.000	0	0.000	0	0.000	0	0.000	0	0.001	1//	0.000	0
2.1000	2.99	0.000	0	0.000	0	0.000	0	0.000	0	0.000	_0	0.000	0
2.2000	2.86	0.000	0	0.000	0	0.000	0	0.000	0	0.001	-/3	0.000	0
2.2998	2.73	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0

***	*****	******	è
*		*** MOSES ***	è
*		April 24, 2019	Ł
*	SHUTTLE TA	R 100.000 DWT	Ł
*		s	Ł
*	Draft	14.9 Meters Trim Angle = 0.00 Deg. GMT = 4.5 Meters	Ł
*	Roll Gy. Radius	16.5 Meters Pitch Gy. Radius = 67.9 Meters Yaw Gy. Radius = 67.9 Meters	Ł
*	Heading	45.00 Deg. Forward Speed = 0.00 Knots Linearization Based on 1/20	Ł
*	2	- · · · · ·	Ł
***	******	***************************************	k.

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

Of Point On Body HULL At $X = 117.2 \ Y = 0.0 \ Z = 12.5$

ENCOUN	TER	Surge /	4	Sway /	4	Heave /	4	Roll /	4	Pitch /	4	Yaw /	4
	Dandad	, wave	Amp I.	, wave	Amp I.	, wave	Amp I.	, wave	Amp I.	, wave	Amp I.	, wave	Amp I.
Frequency	Period	/1	/	/1	/	/1	/	/1	/	/1	/	/1	/
-(Rad/Sec)-	-(sec)-	Amp I.	Phase	Amp I.	Phase	Amp I.	Phase	Amp I.	Phase	Amp I.	Phase	Amp I.	Phase
0.1000	62.83	0.683	95	0.697	95	1.000	5	0.043	95	0.041	-84	0.024	-172
0,2000	31.42	0.658	110	0,669	109	0,990	19	0.205	113	0.168	-69	0.093	-160
0, 3000	20, 94	0.598	134	0,606	133	0.946	42	0.760	139	0.384	-44	0.194	-139
0.4000	15.71	0.483	168	0.438	164	0.822	72	1.944	51	0.681	-11	0.263	-101
0, 5000	12.57	0.311	-146	0.267	-150	0, 541	96	0.387	75	1.011	23	0,305	-63
0,6000	10.47	0,120	-89	0.080	-99	0.207	-13	0.112	-152	0.811	43	0,215	-13
0,7000	8,98	0.025	134	0.030	150	0.240	-17	0.166	-23	0.174	134	0.064	46
0.8000	7.85	0.063	-140	0.033	-133	0.083	82	0.123	76	0.121	-63	0.032	-50
0.9000	6.98	0.019	-51	0.006	104	0.035	-95	0.032	-129	0.072	74	0.027	42
1.0000	6.28	0.018	-154	0.011	-121	0.013	37	0.048	71	0.014	-109	0.013	-62
1.1000	5.71	0.005	-63	0.008	131	0.014	-79	0.017	-137	0.018	75	0.008	84
1.2000	5.24	0.008	-115	0.004	-50	0.008	140	0.015	133	0.011	-10	0.010	-10
1.3001	4.83	0.002	-145	0.003	-120	0.005	49	0.003	69	0.006	-138	0.003	-113
1.4000	4.49	0.001	-61	0.003	164	0.002	-29	0.003	-95	0.006	136	0.002	118
1.4999	4.19	0.002	-88	0.001	153	0.002	-124	0.004	-162	0.004	77	0.004	52
1.6000	3.93	0.001	-101	0.001	62	0.001	-155	0.004	161	0.003	36	0.003	2
1.7000	3.70	0.001	-110	0.000	0	0.001	-174	0.002	153	0.002	3	0.002	-10
1.7998	3.49	0.000	0	0.000	0	0.001	171	0.002	146	0.001	-18	0.002	-20
1.9000	3.31	0.000	0	0.000	0	0.001	172	0.001	161	0.001	-8	0.002	-5
1.9997	3.14	0.000	0	0.000	0	0.000	0	0.001	178	0.001	19	0.001	10
2.1000	2.99	0.000	0	0.000	0	0.001	-107	0.001	-140	0.001	76	0.001	49
2.2000	2.86	0.000	0	0.001	141	0.000	0	0.001	-67	0.001	152	0.000	0
2.2998	2.73	0.000	0	0.001	-102	0.000	0	0.000	0	0.001	-116	0.000	0

*****	******	******	*****	******	******	**
*			*** MOSES	***		*
*					April 24, 2019	*
*	SHUTTLE TA	ANKER 100.000 DWT			· • • • • • • • • • • • • • • • • • • •	×
*						*
* Dra	ft	= 14.9 Meters	Trim Angle	= 0.00 Deg.	GMT = 4.5 Meters	*
* R0	l Gy. Radius	= 16.5 Meters	Pitch Gy. Radius	= 67.9 Meters	Yaw Gy. Radius = 67.9 Meters	*
* Неа	ding	= 90.00 Deg.	Forward Speed	= 0.00 Knots	Linearization Based on 1/ 20	*
*	-	2				*
*****	*******	******	*****	*******	************	××

-

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

Of Point On Body HULL At $X = 117.2 \ Y = 0.0 \ Z = 12.5$

ENCOUN	TER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
		Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Amp].	Wave	Ampl.	Wave	Ampl.
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/	/
-(Rad/Sec)-	-(Sec)-	Ampl.	Phase	Ampl.	Phase	´ Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase
0.1000	62.83	0.000	0	0.987	90	1.000	0	0.061	89	0.000	0	0.001	-89
0.2000	31.42	0.000	0	0.959	90	1.003	0	0.292	89	0.001	2	0.000	0
0.3000	20.94	0.000	0	0.916	90	1.021	0	1.112	80	0.005	-3	0.009	71
0.4000	15.71	0.000	0	0.776	89	1.084	0	2.691	-37	0.023	-13	0.046	-55
0.5000	12.57	0.001	-40	0.701	93	1.279	-7	0.888	-82	0.107	-40	0.030	-103
0.6000	10.47	0.002	-122	0.597	97	1.446	-39	0.452	-79	0.362	-122	0.028	-116
0.7000	8.98	0.001	150	0.487	102	0.795	-75	0.259	-72	0.256	150	0.028	-128
0.8000	7.85	0.001	119	0.383	111	0.346	-82	0.150	-63	0.117	119	0.026	-136
0.9000	6.98	0.000	0	0.293	122	0.160	-74	0.086	-51	0.060	112	0.023	-138
1.0000	6.28	0.000	0	0.219	137	0.097	-61	0.050	-37	0.040	110	0.021	-135
1.1000	5.71	0.000	0	0.161	154	0.049	-46	0.027	-24	0.033	146	0.017	-128
1.2000	5.24	0.000	0	0.112	170	0.032	-17	0.005	-3	0.015	142	0.014	-115
1.3001	4.83	0.000	0	0.085	-151	0.019	1	0.018	10	0.009	165	0.013	-111
1.4000	4.49	0.000	0	0.063	-125	0.010	16	0.014	21	0.006	-172	0.009	-84
1.4999	4.19	0.000	0	0.046	-92	0.015	134	0.011	37	0.004	-68	0.006	-80
1.6000	3.93	0.000	0	0.034	-63	0.006	102	0.008	58	0.003	-107	0.004	-23
1.7000	3.70	0.000	0	0.010	-52	0.004	129	0.003	104	0.001	-93	0.002	49
1.7998	3.49	0.000	0	0.020	37	0.002	149	0.006	131	0.001	-63	0.003	42
1.9000	3.31	0.000	0	0.015	68	0.002	43	0.005	174	0.000	0	0.002	91
1.9997	3.14	0.000	0	0.010	102	0.002	-62	0.004	-138	0.001	92	0.002	118
2.1000	2.99	0.000	0	0.006	-97	0.001	-52	0.005	-85	0.001	101	0.001	-127
2.2000	2.86	0.000	0	0.008	-122	0.001	-89	0.003	-61	0.001	143	0.001	-174
2,2998	2.73	0.000	0	0.005	-95	0.001	150	0.002	5	0.001	-130	0.001	-139

```
*** MOSES ***
÷.
                                                                April 24, 2019
14
                                  _____
                                                                              *
*
       SHUTTLE TANKER 100.000 DWT
*
  Draft= 14.9 MetersTrim Angle= 0.00 Deg.GMT= 4.5 Meters *Roll Gy. Radius= 16.5 MetersPitch Gy. Radius= 67.9 MetersYaw Gy. Radius= 67.9 Meters *Heading= 180.00 Deg.Forward Speed= 0.00 KnotsLinearization Based on 1/20 *
*
×
*
.....
```

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

Of Point On Body HULL At X = 117.2 Y = 0.0 Z = 12.5

OUN	TER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
ency	Period	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.
Sec)-	-(Sec)-	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase
1000	62.83	0.965	-96	0.000	0	0.999	-6	0.001	-12	0.059	83	0.000	0
2000	31.42	0.918	-117	0.000	0	0.978	-27	0.001	-52	0.236	60	0.000	0
3000	20.94	0.788	-151	0.000	0	0.879	-62	0.002	-112	0.516	22	0.000	0
4000	15.71	0.534	159	0.000	0	0.634	-110	0.006	-4	0.812	-35	0.000	0
5000	12.57	0.199	96	0.000	0	0.285	-159	0.001	-105	0.881	-120	0.000	0
6000	10.47	0.056	-149	0.000	0	0.245	-149	0.000	0	0.316	107	0.000	0
7000	8.98	0.090	115	0.000	0	0.201	59	0.000	0	0.183	177	0.000	0
8000	7.85	0.011	-141	0.000	0	0.053	149	0.000	0	0.082	2	0.000	0
9000	6.98	0.022	87	0.000	0	0.031	-41	0.000	0	0.039	94	0.000	0
0000	6.28	0.015	127	0.000	0	0.008	33	0.000	0	0.018	-94	0.000	0
1000	5.71	0.005	145	0.000	0	0.002	84	0.000	0	0.010	-32	0.000	0
2000	5.24	0.001	136	0.000	0	0.001	-138	0.000	0	0.004	-49	0.000	0
3001	4.83	0.001	95	0.000	0	0.001	-146	0.000	0	0.002	-57	0.000	0
4000	4.49	0.001	95	0.000	0	0.000	0	0.000	0	0.001	-82	0.000	0
4999	4.19	0.001	121	0.000	0	0.001	150	0.000	0	0.002	-96	0.000	0
6000	3.93	0.001	112	0.000	0	0.000	0	0.000	0	0.001	-145	0.000	0
7000	3.70	0.001	90	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
7998	3.49	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
9000	3.31	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
9997	3.14	0.000	0	0.000	0	0.000	0	0.000	0	0.001	119	0.000	0
1000	2.99	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
2000	2.86	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
2998	2.73	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
2998 [2.73	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
	OUN Sec)- 1000 2000 2000 2000 5000 5000 5000 5000 5000 5000 9000 1000 2000 2000 3001 4000 4099 5000 7000 7000 200 2000 2	OUNTER PCY Period Sec)(Sec) - 1000 62.83 2000 31.42 3000 20.94 4000 15.71 5000 10.47 7000 8.98 8000 7.85 9000 6.98 0000 6.28 1000 5.71 2000 5.71 2000 5.24 3001 4.83 4000 4.49 4999 4.19 6000 3.93 7000 3.70 7998 3.49 9000 3.31 9997 3.14 1000 2.99 2000 2.86 2998 2.73 2998 2.73	O U N T E R Surge / ency Period / Sec)(Sec) - Ampl. 1000 62.83 0.965 2000 31.42 0.918 3000 20.94 0.788 4000 15.71 0.534 5000 12.57 0.199 6000 10.47 0.056 7000 8.98 0.022 0000 6.28 0.011 9000 6.28 0.015 1000 5.71 0.056 1000 5.71 0.001 9000 6.28 0.022 0000 6.28 0.015 1000 5.71 0.001 9000 3.24 0.001 4000 4.49 0.001 4000 3.93 0.001 7000 3.70 0.001 7000 3.70 0.001 9997 3.14 0.000 9997 3.14 0.000 2000 2.86 0.000 2988 2.73 0.000	O U N T E R Surge / ency Period // Sec)(Sec) - Ampl. Phase 1000 62.83 0.965 -96 2000 31.42 0.918 -117 3000 20.94 0.788 -151 4000 15.71 0.534 159 5000 12.57 0.199 96 6000 10.47 0.056 -149 7000 8.98 0.090 115 8000 7.85 0.011 -141 9000 6.28 0.015 127 1000 5.71 0.005 145 2000 5.24 0.001 136 3001 4.83 0.001 95 4000 4.49 0.001 121 6000 3.93 0.001 122 7000 3.70 0.000 0 9997 3.14 0.000 0 9000 2.86 0.000 0 </td <td>O U N T E R Surge / Sway / ency Period /// wave Ampl. Wave Sec)(Sec) - Ampl. Phase Ampl. 1000 62.83 0.965 -96 0.000 2000 31.42 0.918 -117 0.000 3000 20.94 0.788 -151 0.000 4000 15.71 0.534 159 0.000 5000 12.57 0.199 96 0.000 6000 10.47 0.056 -149 0.000 7000 8.98 0.090 115 0.000 8000 7.85 0.011 -141 0.000 9000 6.28 0.015 127 0.000 0000 5.24 0.001 136 0.000 0000 3.70 0.001 95 0.000 4000 4.49 0.001 90 0.000 900 3.70 0.001 90 0.000 9997</td> <td>O U N T E R surge / sway / ency Period / wave Ampl. wave Ampl. sec)(sec) - Ampl. Phase Ampl. Phase 1000 62.83 0.965 -96 0.000 0 2000 31.42 0.918 -117 0.000 0 3000 20.94 0.788 -151 0.000 0 4000 15.71 0.534 159 0.000 0 5000 12.57 0.199 96 0.000 0 6000 10.47 0.056 -149 0.000 0 7000 8.98 0.090 115 0.000 0 9000 6.98 0.022 87 0.000 0 0000 5.24 0.011 141 0.000 0 0000 5.24 0.001 95 0.000 0 1000 3.70 0.001 90 0.000 0 112</td> <td>O U N T E R Surge / Sway / Heave / ency Period /// Wave Ampl. Wave Ampl. Wave Sec)- -(Sec)- Ampl. Phase Ampl. Phase Ampl. 1000 62.83 0.965 -96 0.000 0 0.999 2000 31.42 0.918 -117 0.000 0 0.879 3000 20.94 0.788 -151 0.000 0 0.879 4000 15.71 0.534 159 0.000 0 0.245 5000 12.57 0.199 96 0.000 0 0.245 7000 8.98 0.090 115 0.000 0 0.031 9000 6.98 0.022 87 0.000 0 0.031 9000 5.24 0.001 136 0.000 0.001 4000 4.49 0.001 95 0.000 0.000 9000 3.31</td> <td>O U N T E R Surge / Sway / Heave / ency Period /////</td> <td>O U N T E R Surge / Sway / Heave / ROIT / </td> <td>O U N T E R Surge / Sway / Heave / ROIT / ency Period /// Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. 5ec) - -(Sec) - Ampl. Phase Ampl. Ampl.<td>OUNTER Surge / Sway / Wave Ampl. Heave / Wave Ampl. Roll / Wave Ampl. Pitch / Wave Ampl. ency Period /// Ampl. Phase Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Ampl. Phase Ampl. Ampl. Phase Outd.<td>O U N T E R Surge / Sway / Heave / Roll / Pitch / Pitch / ency Period /// Ampl. Wave Ampl. Phase Ampl. Ampl. Phase Ampl. Phase Ampl. Phase Ampl.</td><td>O U N T E R </td></td></td>	O U N T E R Surge / Sway / ency Period /// wave Ampl. Wave Sec)(Sec) - Ampl. Phase Ampl. 1000 62.83 0.965 -96 0.000 2000 31.42 0.918 -117 0.000 3000 20.94 0.788 -151 0.000 4000 15.71 0.534 159 0.000 5000 12.57 0.199 96 0.000 6000 10.47 0.056 -149 0.000 7000 8.98 0.090 115 0.000 8000 7.85 0.011 -141 0.000 9000 6.28 0.015 127 0.000 0000 5.24 0.001 136 0.000 0000 3.70 0.001 95 0.000 4000 4.49 0.001 90 0.000 900 3.70 0.001 90 0.000 9997	O U N T E R surge / sway / ency Period / wave Ampl. wave Ampl. sec)(sec) - Ampl. Phase Ampl. Phase 1000 62.83 0.965 -96 0.000 0 2000 31.42 0.918 -117 0.000 0 3000 20.94 0.788 -151 0.000 0 4000 15.71 0.534 159 0.000 0 5000 12.57 0.199 96 0.000 0 6000 10.47 0.056 -149 0.000 0 7000 8.98 0.090 115 0.000 0 9000 6.98 0.022 87 0.000 0 0000 5.24 0.011 141 0.000 0 0000 5.24 0.001 95 0.000 0 1000 3.70 0.001 90 0.000 0 112	O U N T E R Surge / Sway / Heave / ency Period /// Wave Ampl. Wave Ampl. Wave Sec)- -(Sec)- Ampl. Phase Ampl. Phase Ampl. 1000 62.83 0.965 -96 0.000 0 0.999 2000 31.42 0.918 -117 0.000 0 0.879 3000 20.94 0.788 -151 0.000 0 0.879 4000 15.71 0.534 159 0.000 0 0.245 5000 12.57 0.199 96 0.000 0 0.245 7000 8.98 0.090 115 0.000 0 0.031 9000 6.98 0.022 87 0.000 0 0.031 9000 5.24 0.001 136 0.000 0.001 4000 4.49 0.001 95 0.000 0.000 9000 3.31	O U N T E R Surge / Sway / Heave / ency Period /////	O U N T E R Surge / Sway / Heave / ROIT /	O U N T E R Surge / Sway / Heave / ROIT / ency Period /// Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. 5ec) - -(Sec) - Ampl. Phase Ampl. Ampl. <td>OUNTER Surge / Sway / Wave Ampl. Heave / Wave Ampl. Roll / Wave Ampl. Pitch / Wave Ampl. ency Period /// Ampl. Phase Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Ampl. Phase Ampl. Ampl. Phase Outd.<td>O U N T E R Surge / Sway / Heave / Roll / Pitch / Pitch / ency Period /// Ampl. Wave Ampl. Phase Ampl. Ampl. Phase Ampl. Phase Ampl. Phase Ampl.</td><td>O U N T E R </td></td>	OUNTER Surge / Sway / Wave Ampl. Heave / Wave Ampl. Roll / Wave Ampl. Pitch / Wave Ampl. ency Period /// Ampl. Phase Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Ampl. Phase Ampl. Ampl. Phase Outd. <td>O U N T E R Surge / Sway / Heave / Roll / Pitch / Pitch / ency Period /// Ampl. Wave Ampl. Phase Ampl. Ampl. Phase Ampl. Phase Ampl. Phase Ampl.</td> <td>O U N T E R </td>	O U N T E R Surge / Sway / Heave / Roll / Pitch / Pitch / ency Period /// Ampl. Wave Ampl. Phase Ampl. Ampl. Phase Ampl. Phase Ampl. Phase Ampl.	O U N T E R

LAMPIRAN D

Hasil Output Tension dari Orcaflex

Maksimum *Tension Stand Alone* Maksimum *tension* tanpa *subsea buoy*

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1179.37	7681.75	6.51
Line 2	1148.85	7681.75	6.69
Line 3	917.06	7681.75	8.38
Line 4	904.29	7681.75	8.49
Line 5	904.29	7681.75	8.49
Line 6	917.05	7681.75	8.38
Line 7	1148.85	7681.75	6.69
Line 8	1179.37	7681.75	6.51

Arah Pembebanan 0°

Arah Pembebanan 45°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	968.49	7681.75	7.93
Line 2	902.15	7681.75	8.51
Line 3	915.52	7681.75	8.39
Line 4	898.06	7681.75	8.55
Line 5	999.90	7681.75	7.68
Line 6	1020.77	7681.75	7.53
Line 7	1503.09	7681.75	5.11
Line 8	1365.90	7681.75	5.62

Arah Pembebanan 90°

Arah Pembebanan 135°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	764.29	7681.75	10.05
Line 2	726.22	7681.75	10.58
Line 3	840.20	7681.75	9.14
Line 4	823.05	7681.75	9.33
Line 5	1101.10	7681.75	6.98
Line 6	1160.91	7681.75	6.62
Line 7	1307.38	7681.75	5.88
Line 8	1308.80	7681.75	5.87

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	801.03	7681.75	9.59
Line 2	776.85	7681.75	9.89
Line 3	724.54	7681.75	10.60
Line 4	723.97	7681.75	10.61
Line 5	1092.47	7681.75	7.03
Line 6	1237.16	7681.75	6.21
Line 7	1235.84	7681.75	6.22
Line 8	1234.09	7681.75	6.22

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	889.84	7681.75	8.63
Line 2	888.81	7681.75	8.64
Line 3	900.07	7681.75	8.53
Line 4	915.38	7681.75	8.39
Line 5	900.44	7681.75	8.53
Line 6	913.43	7681.75	8.41
Line 7	893.11	7681.75	8.60
Line 8	875.37	7681.75	8.78

Maksimum tension dengan posisi subsea buoy 605 m dari anchor

Arah Pembebanan 0°

Arah Pembebanan 45°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1062.05	7681.75	7.23
Line 2	1070.10	7681.75	7.18
Line 3	743.53	7681.75	10.33
Line 4	756.18	7681.75	10.16
Line 5	756.18	7681.75	10.16
Line 6	743.53	7681.75	10.33
Line 7	1070.10	7681.75	7.18
Line 8	1062.05	7681.75	7.23

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	860.36	7681.75	8.93
Line 2	827.14	7681.75	9.29
Line 3	728.04	7681.75	10.55
Line 4	742.27	7681.75	10.35
Line 5	856.86	7681.75	8.96
Line 6	840.52	7681.75	9.14
Line 7	1472.36	7681.75	5.22
Line 8	1254.33	7681.75	6.12

Arah Pembebanan 90°

Arah Pembebanan 135°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	665.90	7681.75	11.54
Line 2	673.43	7681.75	11.41
Line 3	699.87	7681.75	10.98
Line 4	725.55	7681.75	10.59
Line 5	1001.38	7681.75	7.67
Line 6	988.17	7681.75	7.77
Line 7	1372.01	7681.75	5.60
Line 8	1128.53	7681.75	6.81

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	700.21	7681.75	10.97
Line 2	706.68	7681.75	10.87
Line 3	615.53	7681.75	12.48
Line 4	638.80	7681.75	12.03
Line 5	993.93	7681.75	7.73
Line 6	1094.77	7681.75	7.02
Line 7	1184.09	7681.75	6.49
Line 8	1148.16	7681.75	6.69

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	940.82	7681.75	8.16
Line 2	980.86	7681.75	7.83
Line 3	846.18	7681.75	9.08
Line 4	887.82	7681.75	8.65
Line 5	876.94	7681.75	8.76
Line 6	859.59	7681.75	8.94
Line 7	984.35	7681.75	7.80
Line 8	928.38	7681.75	8.27

Maksimum tension dengan posisi subsea buoy 577.5 m dari anchor

Arah Pembebanan 0°

Arah Pembebanan 45°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1103.51	7681.75	6.96
Line 2	1100.04	7681.75	6.98
Line 3	789.20	7681.75	9.73
Line 4	791.84	7681.75	9.70
Line 5	791.84	7681.75	9.70
Line 6	789.20	7681.75	9.73
Line 7	1100.04	7681.75	6.98
Line 8	1103.51	7681.75	6.96

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	889.95	7681.75	8.63
Line 2	846.09	7681.75	9.08
Line 3	767.92	7681.75	10.00
Line 4	777.00	7681.75	9.89
Line 5	882.51	7681.75	8.70
Line 6	873.95	7681.75	8.79
Line 7	1493.38	7681.75	5.14
Line 8	1299.09	7681.75	5.91

Arah Pembebanan 90°

Arah Pembebanan 135°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	697.47	7681.75	11.01
Line 2	706.62	7681.75	10.87
Line 3	737.40	7681.75	10.42
Line 4	755.31	7681.75	10.17
Line 5	994.57	7681.75	7.72
Line 6	1005.43	7681.75	7.64
Line 7	1398.22	7681.75	5.49
Line 8	1172.27	7681.75	6.55

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	738.71	7681.75	10.40
Line 2	741.16	7681.75	10.36
Line 3	653.35	7681.75	11.76
Line 4	670.61	7681.75	11.45
Line 5	1006.86	7681.75	7.63
Line 6	1128.80	7681.75	6.81
Line 7	1219.87	7681.75	6.30
Line 8	1218.79	7681.75	6.30

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	976.13	7681.75	7.87
Line 2	1005.55	7681.75	7.64
Line 3	883.64	7681.75	8.69
Line 4	908.04	7681.75	8.46
Line 5	898.93	7681.75	8.55
Line 6	895.78	7681.75	8.58
Line 7	1008.99	7681.75	7.61
Line 8	962.21	7681.75	7.98

Maksimum tension dengan posisi subsea buoy 550 m dari anchor

Arah Pembebanan 0°

Arah Pembebanan 45°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1150.06	7681.75	6.68
Line 2	1129.66	7681.75	6.80
Line 3	841.95	7681.75	9.12
Line 4	837.10	7681.75	9.18
Line 5	837.10	7681.75	9.18
Line 6	841.95	7681.75	9.12
Line 7	1129.66	7681.75	6.80
Line 8	1150.06	7681.75	6.68

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	927.28	7681.75	8.28
Line 2	877.08	7681.75	8.76
Line 3	819.75	7681.75	9.37
Line 4	825.56	7681.75	9.30
Line 5	912.99	7681.75	8.41
Line 6	916.78	7681.75	8.38
Line 7	1517.55	7681.75	5.06
Line 8	1348.17	7681.75	5.70

Arah Pembebanan 90°

Arah Pembebanan 135°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	735.31	7681.75	10.45
Line 2	738.27	7681.75	10.41
Line 3	776.85	7681.75	9.89
Line 4	787.07	7681.75	9.76
Line 5	998.23	7681.75	7.70
Line 6	1025.33	7681.75	7.49
Line 7	1424.62	7681.75	5.39
Line 8	1219.55	7681.75	6.30

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	779.97	7681.75	9.85
Line 2	774.86	7681.75	9.91
Line 3	693.38	7681.75	11.08
Line 4	703.58	7681.75	10.92
Line 5	1024.59	7681.75	7.50
Line 6	1159.55	7681.75	6.62
Line 7	1259.00	7681.75	6.10
Line 8	1247.22	7681.75	6.16

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1018.12	7681.75	7.55
Line 2	1036.56	7681.75	7.41
Line 3	920.10	7681.75	8.35
Line 4	933.78	7681.75	8.23
Line 5	924.86	7681.75	8.31
Line 6	931.93	7681.75	8.24
Line 7	1040.29	7681.75	7.38
Line 8	1005.30	7681.75	7.64

Maksimum tension dengan posisi subsea buoy 522.5 m dari anchor

Arah Pembebanan 0°

Arah Pembebanan 45°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1199.06	7681.75	6.41
Line 2	1162.92	7681.75	6.61
Line 3	897.37	7681.75	8.56
Line 4	885.28	7681.75	8.68
Line 5	885.28	7681.75	8.68
Line 6	897.37	7681.75	8.56
Line 7	1162.92	7681.75	6.61
Line 8	1199.05	7681.75	6.41

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	969.90	7681.75	7.92
Line 2	905.99	7681.75	8.48
Line 3	870.21	7681.75	8.83
Line 4	870.57	7681.75	8.82
Line 5	950.73	7681.75	8.08
Line 6	964.36	7681.75	7.97
Line 7	1543.41	7681.75	4.98
Line 8	1403.50	7681.75	5.47

Arah Pembebanan 90°

Arah Pembebanan 135°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	759.62	7681.75	10.11
Line 2	766.09	7681.75	10.03
Line 3	832.30	7681.75	9.23
Line 4	831.76	7681.75	9.24
Line 5	1020.55	7681.75	7.53
Line 6	1059.86	7681.75	7.25
Line 7	1454.88	7681.75	5.28
Line 8	1273.48	7681.75	6.03

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	812.43	7681.75	9.46
Line 2	805.45	7681.75	9.54
Line 3	733.17	7681.75	10.48
Line 4	746.22	7681.75	10.29
Line 5	1040.53	7681.75	7.38
Line 6	1166.86	7681.75	6.58
Line 7	1281.54	7681.75	5.99
Line 8	1250.67	7681.75	6.14

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1067.07	7681.75	7.20
Line 2	1068.17	7681.75	7.19
Line 3	959.88	7681.75	8.00
Line 4	963.80	7681.75	7.97
Line 5	956.03	7681.75	8.04
Line 6	971.31	7681.75	7.91
Line 7	1072.21	7681.75	7.16
Line 8	1052.52	7681.75	7.30

Maksimum tension dengan dua subsea buoy

Arah Pembebanan 0°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1023.27	7681.75	7.51
Line 2	1039.82	7681.75	7.39
Line 3	688.25	7681.75	11.16
Line 4	703.14	7681.75	10.92
Line 5	703.14	7681.75	10.92
Line 6	688.25	7681.75	11.16
Line 7	1039.82	7681.75	7.39
Line 8	1023.27	7681.75	7.51

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	831.32	7681.75	9.24
Line 2	813.40	7681.75	9.44
Line 3	668.35	7681.75	11.49
Line 4	696.23	7681.75	11.03
Line 5	799.36	7681.75	9.61
Line 6	768.36	7681.75	10.00
Line 7	1260.55	7681.75	6.09
Line 8	1156.54	7681.75	6.64

Arah Pembebanan 90°

Arah Pembebanan 135°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	645.59	7681.75	11.90
Line 2	635.83	7681.75	12.08
Line 3	625.65	7681.75	12.28
Line 4	656.04	7681.75	11.71
Line 5	882.11	7681.75	8.71
Line 6	858.31	7681.75	8.95
Line 7	1385.05	7681.75	5.55
Line 8	1136.78	7681.75	6.76

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	639.37	7681.75	12.01
Line 2	661.44	7681.75	11.61
Line 3	572.75	7681.75	13.41
Line 4	592.18	7681.75	12.97
Line 5	927.62	7681.75	8.28
Line 6	1022.91	7681.75	7.51
Line 7	1194.69	7681.75	6.43
Line 8	1109.63	7681.75	6.92

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	918.42	7681.75	8.36
Line 2	969.48	7681.75	7.92
Line 3	779.95	7681.75	9.85
Line 4	835.46	7681.75	9.19
Line 5	826.85	7681.75	9.29
Line 6	789.49	7681.75	9.73
Line 7	972.54	7681.75	7.90
Line 8	909.71	7681.75	8.44

Maksimum Tension Offloading

Maksimum tension tanpa subsea buoy

Arah Pembebanan 0°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1210.85	7681.75	6.34
Line 2	1184.02	7681.75	6.49
Line 3	868.37	7681.75	8.85
Line 4	859.39	7681.75	8.94
Line 5	859.55	7681.75	8.94
Line 6	868.88	7681.75	8.84
Line 7	1145.93	7681.75	6.70
Line 8	1180.29	7681.75	6.51

Arah Pembebanan 4:	5°
--------------------	----

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	812.17	7681.75	9.46
Line 2	772.53	7681.75	9.94
Line 3	928.76	7681.75	8.27
Line 4	950.01	7681.75	8.09
Line 5	993.82	7681.75	7.73
Line 6	958.55	7681.75	8.01
Line 7	1494.66	7681.75	5.14
Line 8	1375.79	7681.75	5.58

Arah Pembebanan 90°

Arah Pembebanan 135°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	706.35	7681.75	10.88
Line 2	664.04	7681.75	11.57
Line 3	964.86	7681.75	7.96
Line 4	1013.91	7681.75	7.58
Line 5	1142.88	7681.75	6.72
Line 6	1073.12	7681.75	7.16
Line 7	1647.32	7681.75	4.66
Line 8	1366.54	7681.75	5.62

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	655.38	7681.75	11.72
Line 2	624.87	7681.75	12.29
Line 3	985.56	7681.75	7.79
Line 4	1047.38	7681.75	7.33
Line 5	1199.81	7681.75	6.40
Line 6	1105.64	7681.75	6.95
Line 7	1743.05	7681.75	4.41
Line 8	1483.06	7681.75	5.18

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1000.94	7681.75	7.67
Line 2	1035.62	7681.75	7.42
Line 3	1005.64	7681.75	7.64
Line 4	1131.97	7681.75	6.79
Line 5	1131.93	7681.75	6.79
Line 6	1005.63	7681.75	7.64
Line 7	1035.66	7681.75	7.42
Line 8	1000.97	7681.75	7.67

Maksimum tension dengan posisi subsea buoy 605 m dari anchor

Arah Pembebanan 0°

Arah Pembebanan 45°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1125.18	7681.75	6.83
Line 2	1133.28	7681.75	6.78
Line 3	708.95	7681.75	10.84
Line 4	717.14	7681.75	10.71
Line 5	719.99	7681.75	10.67
Line 6	711.56	7681.75	10.80
Line 7	1090.51	7681.75	7.04
Line 8	1092.47	7681.75	7.03

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	730.20	7681.75	10.52
Line 2	714.24	7681.75	10.76
Line 3	750.24	7681.75	10.24
Line 4	777.36	7681.75	9.88
Line 5	821.40	7681.75	9.35
Line 6	784.62	7681.75	9.79
Line 7	1500.63	7681.75	5.12
Line 8	1314.02	7681.75	5.85

Arah Pembebanan 90°

Arah Pembebanan 135°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	605.09	7681.75	12.70
Line 2	591.55	7681.75	12.99
Line 3	796.28	7681.75	9.65
Line 4	856.11	7681.75	8.97
Line 5	986.10	7681.75	7.79
Line 6	887.28	7681.75	8.66
Line 7	1661.70	7681.75	4.62
Line 8	1300.06	7681.75	5.91

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	576.10	7681.75	13.33
Line 2	566.91	7681.75	13.55
Line 3	795.83	7681.75	9.65
Line 4	885.48	7681.75	8.68
Line 5	1050.39	7681.75	7.31
Line 6	915.01	7681.75	8.40
Line 7	1757.88	7681.75	4.37
Line 8	1406.91	7681.75	5.46

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	900.16	7681.75	8.53
Line 2	979.77	7681.75	7.84
Line 3	833.69	7681.75	9.21
Line 4	994.71	7681.75	7.72
Line 5	994.66	7681.75	7.72
Line 6	833.71	7681.75	9.21
Line 7	979.79	7681.75	7.84
Line 8	900.19	7681.75	8.53

Maksimum tension dengan posisi subsea buoy 577.5 m dari anchor

Arah Pembebanan 0°

Arah Pembebanan 45°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1135.69	7681.75	6.76
Line 2	1119.72	7681.75	6.86
Line 3	777.12	7681.75	9.88
Line 4	780.11	7681.75	9.85
Line 5	777.29	7681.75	9.88
Line 6	772.63	7681.75	9.94
Line 7	1163.79	7681.75	6.60
Line 8	1169.93	7681.75	6.57

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	765.22	7681.75	10.04
Line 2	736.11	7681.75	10.44
Line 3	562.60	7681.75	13.65
Line 4	840.66	7681.75	9.14
Line 5	888.09	7681.75	8.65
Line 6	855.83	7681.75	8.98
Line 7	1511.10	7681.75	5.08
Line 8	1346.52	7681.75	5.70

Arah Pembebanan 90°

Arah Pembebanan 135°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	633.66	7681.75	12.12
Line 2	617.79	7681.75	12.43
Line 3	840.08	7681.75	9.14
Line 4	885.63	7681.75	8.67
Line 5	1006.79	7681.75	7.63
Line 6	944.16	7681.75	8.14
Line 7	1667.42	7681.75	4.61
Line 8	1326.12	7681.75	5.79

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	590.78	7681.75	13.00
Line 2	568.89	7681.75	13.50
Line 3	851.09	7681.75	9.03
Line 4	915.53	7681.75	8.39
Line 5	1067.51	7681.75	7.20
Line 6	978.05	7681.75	7.85
Line 7	1764.17	7681.75	4.35
Line 8	1423.67	7681.75	5.40

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	935.90	7681.75	8.21
Line 2	999.75	7681.75	7.68
Line 3	883.73	7681.75	8.69
Line 4	995.36	7681.75	7.72
Line 5	995.38	7681.75	7.72
Line 6	883.74	7681.75	8.69
Line 7	999.82	7681.75	7.68
Line 8	935.94	7681.75	8.21

Maksimum tension dengan posisi subsea buoy 550 m dari anchor

Arah Pembebanan 0°

Arah Pembebanan 45°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1184.09	7681.75	6.49
Line 2	1152.82	7681.75	6.66
Line 3	828.27	7681.75	9.27
Line 4	823.43	7681.75	9.33
Line 5	820.77	7681.75	9.36
Line 6	824.10	7681.75	9.32
Line 7	1193.89	7681.75	6.43
Line 8	1217.55	7681.75	6.31

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	807.76	7681.75	9.51
Line 2	769.67	7681.75	9.98
Line 3	868.42	7681.75	8.85
Line 4	886.70	7681.75	8.66
Line 5	934.84	7681.75	8.22
Line 6	908.22	7681.75	8.46
Line 7	1530.82	7681.75	5.02
Line 8	1389.41	7681.75	5.53

Arah Pembebanan 90°

Arah Pembebanan 135°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	672.75	7681.75	11.42
Line 2	641.16	7681.75	11.98
Line 3	872.72	7681.75	8.80
Line 4	910.19	7681.75	8.44
Line 5	1033.56	7681.75	7.43
Line 6	990.70	7681.75	7.75
Line 7	1680.03	7681.75	4.57
Line 8	1371.21	7681.75	5.60

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	613.46	7681.75	12.52
Line 2	595.80	7681.75	12.89
Line 3	906.35	7681.75	8.48
Line 4	956.93	7681.75	8.03
Line 5	1102.26	7681.75	6.97
Line 6	1034.88	7681.75	7.42
Line 7	1774.10	7681.75	4.33
Line 8	1459.74	7681.75	5.26

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	979.32	7681.75	7.84
Line 2	1029.42	7681.75	7.46
Line 3	935.88	7681.75	8.21
Line 4	1010.14	7681.75	7.60
Line 5	1010.15	7681.75	7.60
Line 6	935.89	7681.75	8.21
Line 7	1029.46	7681.75	7.46
Line 8	979.36	7681.75	7.84

Maksimum tension dengan posisi subsea buoy 522.5 m dari anchor

Arah Pembebanan 0°

Arah Pembebanan 45°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1147.79	7681.75	6.69
Line 2	1119.07	7681.75	6.86
Line 3	865.14	7681.75	8.88
Line 4	859.40	7681.75	8.94
Line 5	855.92	7681.75	8.97
Line 6	858.82	7681.75	8.94
Line 7	1158.35	7681.75	6.63
Line 8	1179.46	7681.75	6.51

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	833.26	7681.75	9.22
Line 2	789.86	7681.75	9.73
Line 3	909.71	7681.75	8.44
Line 4	920.70	7681.75	8.34
Line 5	972.17	7681.75	7.90
Line 6	958.27	7681.75	8.02
Line 7	1535.46	7681.75	5.00
Line 8	1411.75	7681.75	5.44

Arah Pembebanan 90°

Arah Pembebanan 135°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	707.31	7681.75	10.86
Line 2	670.11	7681.75	11.46
Line 3	927.50	7681.75	8.28
Line 4	939.89	7681.75	8.17
Line 5	1044.65	7681.75	7.35
Line 6	1016.27	7681.75	7.56
Line 7	1697.28	7681.75	4.53
Line 8	1421.44	7681.75	5.40

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	653.64	7681.75	11.75
Line 2	611.53	7681.75	12.56
Line 3	953.34	7681.75	8.06
Line 4	992.78	7681.75	7.74
Line 5	1135.22	7681.75	6.77
Line 6	1082.47	7681.75	7.10
Line 7	1785.65	7681.75	4.30
Line 8	1501.31	7681.75	5.12

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1011.88	7681.75	7.59
Line 2	1054.52	7681.75	7.28
Line 3	979.49	7681.75	7.84
Line 4	1030.02	7681.75	7.46
Line 5	1030.03	7681.75	7.46
Line 6	979.50	7681.75	7.84
Line 7	1054.57	7681.75	7.28
Line 8	1011.92	7681.75	7.59

Maksimum tension dua subsea buoy

Arah Pembebanan 0°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	1131.71	7681.75	6.79
Line 2	1134.60	7681.75	6.77
Line 3	607.63	7681.75	12.64
Line 4	613.47	7681.75	12.52
Line 5	613.47	7681.75	12.52
Line 6	607.63	7681.75	12.64
Line 7	1134.58	7681.75	6.77
Line 8	1131.70	7681.75	6.79

Arah Pembebanan 45°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	732.92	7681.75	10.48
Line 2	723.71	7681.75	10.61
Line 3	637.97	7681.75	12.04
Line 4	662.31	7681.75	11.60
Line 5	727.84	7681.75	10.55
Line 6	683.46	7681.75	11.24
Line 7	1435.49	7681.75	5.35
Line 8	1253.39	7681.75	6.13

Arah Pembebanan 90°

Arah Pembebanan 135°

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	628.85	7681.75	12.22
Line 2	624.79	7681.75	12.30
Line 3	657.82	7681.75	11.68
Line 4	707.90	7681.75	10.85
Line 5	805.86	7681.75	9.53
Line 6	757.59	7681.75	10.14
Line 7	1431.95	7681.75	5.36
Line 8	1187.50	7681.75	6.47

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	581.45	7681.75	13.21
Line 2	578.74	7681.75	13.27
Line 3	667.78	7681.75	11.50
Line 4	743.08	7681.75	10.34
Line 5	879.89	7681.75	8.73
Line 6	783.90	7681.75	9.80
Line 7	1612.92	7681.75	4.76
Line 8	1295.05	7681.75	5.93

Line	Max. Tension (kN)	MBL (kN)	SF
Line 1	939.30	7681.75	8.18
Line 2	1013.99	7681.75	7.58
Line 3	652.78	7681.75	11.77
Line 4	681.80	7681.75	11.27
Line 5	681.81	7681.75	11.27
Line 6	652.79	7681.75	11.77
Line 7	1014.03	7681.75	7.58
Line 8	939.26	7681.75	8.18
BIODATA PENULIS

BIODATA PENULIS

Madea Eka Silfiani dilahirkan di Kota Nganjuk, Jawa Timur pada tanggal 29 Maret 1997, merupakan anak pertama dari dua bersaudara. Penulis menempuh Pendidikan formal di SD Negeri Ngliman 1 Nganjuk pada tahun 2003-2009, kemudian melanjutkan Pendidikan di SMP Negeri 2 Wungu Madiun pada tahun 2009-2012 dan SMA Negeri 1 Nganjuk pada tahun 2012-2015. Setelah menyelesaikan Pendidikan SMA, penulis diterima

di Departemen Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember (ITS) Surabaya. Selama masa perkuliahan penulis aktif mengikuti kegiatan seperti Himpunan Mahasiswa Teknik Kelautan bidang Sosmas. Penulis juga pernah menjadi panitia dalam berbagai kegiatan mahasiswa diantaranya menjadi Koordinator kesekretariatan OCEANO pada tahun 2018 dan menjadi panitia dalam International Seminar on Ocean and Coastal Engineering (ISOCEEN) 2018. Pada tahun 2018 penulis berkesempatan untuk kerja praktek di PT. PAL INDONESIA (PERSERO) Surabaya selama 2 bulan. Selama menempuh pendidikan S-1 selama 4 tahun, penulis tertarik dalam bidang hidrodinamika dan perancangan struktur lepas pantai sehingga dalam tugas akhir ini mengambil topik yang berhubungan dengan sistem tambat bangunan apung.

Kontak Penulis

Email	: madeaasilfianii@	gmail.com
		-

Telepon : +6282244789316