

**BACHELOR THESIS – ME 184841** 

EFFECT OF PREHEATER OF THE B20 FUEL ON PERFORMANCE, COMBUSTION, AND EMISSION OF DIESEL ENGINE BASED ON SIMULATION

FAIRUZ FAJRI UTOMO

NRP 04211541000020

SUPERVISORS

Prof. Semin, S.T., M.T., Ph.D, C.Eng.

Beny Cahyono, S.T., M.T., Ph.D

DOUBLE DEGREE PROGRAM OF MARINE ENGINEERING DEPARTMENT FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019





BACHELOR THESIS - ME 184841

EFFECT OF PREHEATER OF THE B20 FUEL ON PERFORMANCE, COMBUSTION, AND EMISSION OF DIESEL ENGINE BASED ON SIMULATION

FAIRUZ FAJRI UTOMO NRP 04211541000020 SUPERVISOR 1 Prof. Semin, S.T., M.T., Ph.D, C.Eng. NIP 1971 0110 1997 02 1001 SUPERVISOR 2 Beny Cahyono, S.T., M.T., Ph.D NIP 1979 0319 2008 01 1008

DOUBLE DEGREE PROGRAM OF MARINE ENGINEERING DEPARTMENT FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019



SKRIPSI - ME 184841

# EFEK PEMANASAN BAHAN BAKAR B20 TERHADAP PERFORMA, PEMBAKARAN, DAN EMISI DIESEL ENGINE BERBASIS SIMULASI

Fairuz Fajri Utomo NRP 04211541000020 DOSEN PEMBIMBING 1 Prof. Semin, S.T., M.T., Ph.D, C.Eng. NIP 1971 0110 1997 02 1001 DOSEN PEMBIMBIMNG 2 Beny Cahyono, S.T., M.T., Ph.D

NIP 1979 0319 2008 01 1008

DEPARTEMEN TEKNIK SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019 "This page intentionally left blank"

## EFFECT OF PREHEATER OF THE B20 FUEL ON PERFORMANCE, COMBUSTION, AND EMISSION OF DIESEL ENGINE BASED ON SIMULATION

## BACHELOR THESIS

Submitted to Comply One of The Requirements to Obtain a Bachelor of Engineering Degree in Double Degree of Marine Engineering (DDME) Program Department of Marine Engineering – Faculty of Marine Technology

> Institut Teknologi Sepuluh Nopember Departement of Maritime Studies

Hochschule Wismar, University of Applied Sciences

Submitted by:

## FAIRUZ FAJRI UTOMO

NRP 04211541000020

Approved by Bachelor Thesis Supervisors:

 Prof. Semin, S.T., M.T., Ph.D., C.Eng NIP 1971 0110 1997 02 1001

2. Beny Cahyono, S.T., M.T., Ph.D NIP 1979 0319 2008 01 1008

Roul

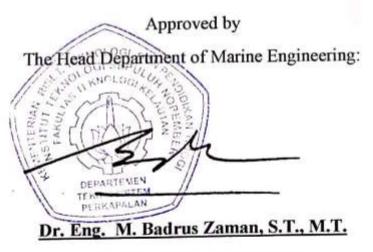
"This page intentionally left blank"

## APROVAL FORM

## EFFECT OF PREHEATER OF THE B20 FUEL ON PERFORMANCE, COMBUSTION, AND EMISSION OF DIESEL ENGINE BASED ON SIMULATION

## BACHELOR THESIS

Submitted to Comply One of The Requirements to Obtain a Bachelor of Engineering Degree in Double Degree of Marine Engineering (DDME) Program Department of Marine Engineering – Faculty of Marine Technology


> Institut Teknologi Sepuluh Nopember Departement of Maritime Studies

Hochschule Wismar, University of Applied Sciences

Submitted by:

## FAIRUZ FAJRI UTOMO

## NRP 04211541000020



NIP. 1977 0802 2008 02 1007

## APPROVAL FORM

## EFFECT OF PREHEATER IF THE B20 FUEL ON PERFORMANCE COMBUSTION, AND EMISSION OF DIESEL ENGINE BASED ON SIMULATION

## BACHELOR THESIS

Submitted as one of Requirements to obtain Bachelor Degree in Engineering

on Marine Power Plant (MPP) Bachelor Program in Marine Engineering Department Faculty of Marine Technology Institut Teknologi Sepuluh Nopember

Prepared by:

## FAIRUZ FAJRI UTOMO

NRP. 04211541000020

Approved by

Representative of Hochschule Wismar in Indonesia

h num

Dr.-Ing. Wolfgang Busse

"This page intentionally left blank"

## DECLARATION OF HONOUR

I hereby who signed below declare that:

This thesis has been written and developed independently without any plagiarism act. All contens and ideas drawn directly from internal and external sources are indicated such as cited sources, literatures, and other professional sources.

| Name              | : Fairuz Fajri Utomo                                                                                                      |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| Student ID Number | : 04211541000020                                                                                                          |  |  |
| Thesis Title      | : Effect of Preheater of the B20 Fuel on<br>Performance, Combustion, and Emission of Diesel<br>Engine Based On Simulation |  |  |
| Departement       | : Double Degree of Marine Engineering                                                                                     |  |  |

Surabaya, July 2019

Fairuz Fajri Utomo

"This page intentionally left blank"

### EFFECT OF PREHEATER OF THE B20 FUEL ON PERFORMANCE, COMBUSTION , AND EMISSION OF DIESEL ENGINE BASED ON SIMULATION

| Name              | : Fairuz Fajri Utomo                    |  |
|-------------------|-----------------------------------------|--|
| Student ID Number | : 04211541000020                        |  |
| Department        | : Double Degree of Marine Engineering   |  |
| Supervisor        | : Prof. Semin, S.T., M.T., Ph.D, C.Eng. |  |
|                   | Beny Cahyono, S.T., M.T., Ph.D          |  |

#### ABSTRACT

Diesel engine are still major option for main powertrain of a ship nowadays., Indonesian Government starts a new regulation that state all diesel oil have mandatory to blend 20% of palm oil on the diesel oil (B20). The purpose of this agenda is to accumulate funds by the usage of Palm Oil . B20 Biodiesel have some disadvantages compared to pure diesel oil. One of the solution to reduce the disadvantages of B20 Biodiesel is by increase temperature of fuel. In this thesis, simulation method is used by using GT Power Software. The Fuel temperature measured are 30° C,40°C,50°C ,60°C ,70°C. The simulation is done on several load condition which are 25%, 50%, 75%, and 100% and 3 different engine speed of 1800, 2000, and 2200 rpm.. The variables analysed is Performance, Combustion, and Emission. Performance consist of Power, Torque, BMEP, and BSFC. Combustion includes Maximum Temperature and Pressure. Emission includes NOx and Hydrocarbon concentration. Results are showing that increase in fuel temperature leads to better performance. Brake power, torque, and BMEP is increasing and BSFC is decreasing. Combustion pressure and temperature increases as fuel temperature increases. On emission side, increase in fuel temperature leads to higher emission.

Keywords: B20, Biodiesel, Diesel Engine, Preheater, Simulation

#### PREFACE

Alhamdulillah thanks to Allah SWT the God almighty who give the intelligent, strength, and favor so author able to finish this bachelor thesis. This bachelor thesis defines about "Effect Of Preheater Of The B20 Fuel On Performance, Combustion, And Emission Of Diesel Engine Based On Simulation" On this occasion the author would to express his immeasurable appreciation and deepest gratitude for those who have helped in completing this bachelor thesis:

- 1. Author's Family. Author's mother Endah Dwilestari, Author's father Moh Adi Soedarso, Twins brother, Fachrizal Tsany Fajr and Author's brother, Fikri Ibrahim Fils'adi who always mentally, financially support, and the prayers were given to the author.
- 2. Prof. Semin, S.T., M.T., Ph.D, C.Eng. as first supervisor lecturer author and MPP Laboratory who has guided the author in completing the thesis research and provide motivation to continue to learn and develop themselves.
- 3. Beny Cahyono, S.T., M.T., Ph.D as a second supervisor as well as Head of MPP Laboratory who has guided the author in completing the research of Final Project
- 4. Dr I Made Ariana as Academic Supervisor author during course at Marine Engineering Department FTK-ITS
- 5. Barokah, S.T., M.Pd as thesis partner who helped a lot on this project.
- 6. Dr. Eng. M. Badrus Zaman, S.T., M.T. as Head Marine Engineering Department FTK-ITS, Surabaya.
- 7. Faris Misbahul Muhammad, Rachmadiansyah, and Hafid Rafi Noviantoro as author's partner on this thesis project
- 8. Rifqi Assidiqi and Muhammad Irsyad Saihilmi as author's friend on Marine Engineering Department
- 9. Those whose unable to be mentioned

The author also aware in the writing of this thesis is far from perfection and there are still mistaken in this bachelor thesis because there are still many limitations of the author. On writing of this thesis expected to expand knowledge for readers and can be developed for further research.

Surabaya, July 2019

Author

## TABLE OF CONTENTS

| APPROVAL FORM                             |
|-------------------------------------------|
| APPROVAL FORM                             |
| ABSTRACT xii                              |
| PREFACE                                   |
| TABLE OF CONTENTS                         |
| FIGURE LIST xvi                           |
| TABLE LISTxvii                            |
| GRAPH LIST                                |
| CHAPTER I INTRODUCTION                    |
| 1.1 Background1                           |
| 1.2 Problem Statement2                    |
| 1.3 Problem Limitation2                   |
| 1.4 Objective of the Thesis               |
| 1.5 Purpose of the Thesis                 |
| CHAPTER II LITERATURE STUDY               |
| 2.1 Biodiesel4                            |
| 2.2 Heat Exchanger7                       |
| 2.3 Engine Performance9                   |
| 2.4 Engine Combustion9                    |
| 2.5 Engine Emission                       |
| 2.6 Effect on Fuel Temperature Increase13 |
| 2.7 GT Power Engine Simulation Software16 |
| CHAPTER III RESEARCH METHOFDOLOGY         |
| 3.1 Research Methodology19                |
| 3.2 Methodology Flowchart                 |
| CHAPTER IV RESULT AND DISCUSSION          |
| 4.1 Engine Modelling31                    |
| 4.2 Simulation Result32                   |
| 4.2.1 Performance                         |

| 4.2.2 Combustion                    |    |
|-------------------------------------|----|
| 4.2.3 Emission                      |    |
| CHAPTER V CONCLUSION AND SUGGESTION |    |
| 5.1 Conclusion                      | 51 |
| 5.2 Suggestion                      | 51 |
| REFERENCES                          |    |
| ATTACHMENT                          |    |

## FIGURE LIST

| Figure 2.1 Biodiesel Production Process                                              | 3  |
|--------------------------------------------------------------------------------------|----|
| Figure 2.2 Photographic view on injector nozzle DF (Diesel Fuel) PB (Palm Biodiesel) | 5  |
| Figure 2.3 NOx emission comparison                                                   | 5  |
| Figure 2.4 Double Pipe Heat Exchanger                                                | 6  |
| Figure 2.5 Tube Heat Exchanger                                                       | 7  |
| Figure 2.6 Engine Brake Power graph                                                  | 8  |
| Figure 2.7 Combustion Temperature Comparison Diesel and CNG                          | 10 |
| Figure 2.8 Biodiesel Emission                                                        | 12 |
| Figure 2.9 CO Emission on Biodiesel Blend                                            | 13 |
| Figure 2.10 Brake Power effect on Temperature Increase                               | 13 |
| Figure 2.11 Brake Torque effect on Temperature Increase                              | 14 |
| Figure 2.12 NOx Emission                                                             | 15 |
| Figure 2.13 Hydrocarbon Emission                                                     | 15 |
| Figure 2.14 CO Emission                                                              | 16 |
| Figure 2.15 Example of GT Power Engine Model, Courtesy of Gamma Technologies         | 16 |
| Figure 3.1 Document Creating Wizard                                                  | 18 |
| Figure 3.2 Display of Template Library                                               | 19 |
| Figure 3.3 Intake Environment Template                                               | 19 |
| Figure 3.4 PipeRound Input                                                           | 20 |
| Figure 3.5 FlowSplitTRight Input                                                     | 20 |
| Figure 3.6 Intake Valve Input                                                        | 21 |
| Figure 3.7 Engine Cylinder Input                                                     | 21 |
| Figure 3.8 Injector Input                                                            | 22 |
| Figure 3.9 "EmgineAnalysis" Display                                                  | 22 |
| Figure 3.10 Cylinder Geometry Input                                                  | 23 |

| Figure 3.11 Detailed Engine Parts          | 23 |
|--------------------------------------------|----|
| Figure 3.12 PistonGuided Inputs            | 24 |
| Figure 3.13 ConnectingRod Inputs           | 24 |
| Figure 3.14 Exhaust Pipe Input             | 25 |
| Figure 3.15 Exhaust Branch Input           | 25 |
| Figure 3.16 Exhaust Valve Input            | 25 |
| Figure 3.17 Environment Input for Exhaust  | 26 |
| Figure 3.18 Torque Object Input            | 26 |
| Figure 3.19 Case Setup                     | 27 |
| Figure 3.20 GT Post Result Screen          | 28 |
| Figure 4.1 Engine model of Mitsubishi 4D30 | 31 |

## TABLE LIST

| Table 2.1 Pertamina Biodiesel Properties | 4  |
|------------------------------------------|----|
| Table 2.2 Fuel Properties Comparison     | 4  |
| Table 2.3 NOx Emission results           | 11 |
| Table 3.1 Engine Specification           |    |
| Table 4.1 Geometry Input                 |    |

## **GRAPH LIST**

| Graph 4.1 Brake Power at 100% Load            | 32 |
|-----------------------------------------------|----|
| Graph 4.2 Brake Power at 75% Load             | 33 |
| Graph 4.3 Brake Power at 50% Load             | 33 |
| Graph 4.4 Brake Power 25% Load                | 34 |
| Graph 4.5 Brake Torque on 100% Load           | 34 |
| Graph 4.6 Brake Torque on 75% load condition  | 35 |
| Graph 4.7 Brake Torque on 50% load condition  | 35 |
| Graph 4.8 Brake Torque on 25% load condition  | 36 |
| Graph 4.9 BMEP on 100% load                   | 36 |
| Graph 4.10 BMEP on 75% load                   | 37 |
| Graph 4.11 BMEP on 50% load                   | 37 |
| Graph 4.12 BMEP on 25% load                   | 38 |
| Graph 4.13 BSFC on 100% load                  | 38 |
| Graph 4.14 BSFC on 75% Load                   | 39 |
| Graph 4.15 BSFC on 50% Load                   | 39 |
| Graph 4.16 BSFC on 25% Load                   | 40 |
| Graph 4.17 Combustion Pressure                | 40 |
| Graph 4.18 Combustion Pressure on 75% load    | 41 |
| Graph 4.19 Combustion Pressure on 50% load    | 41 |
| Graph 4.20 Combustion Pressure on 25% load    | 41 |
| Graph 4.21 Combustion Temperature             | 42 |
| Graph 4.22 Combustion Temperature on 75% load | 42 |
| Graph 4.23 Combustion Temperature on 50% load | 43 |
| Graph 4.24 Combustion Temperature on 25% load | 43 |
|                                               |    |

| Graph 4.25 NOx concentration on 100% load    | 44 |
|----------------------------------------------|----|
| Graph 4.26 NOx concentration on 75% load     | 44 |
| Graph 4.27 NOx concentration on 50% load     | 45 |
| Graph 4.28 NOx concentration on 25% load     | 45 |
| Graph 4.29 Hydrocarbon Emission on 100% load | 46 |
| Graph 4.30 Hydrocarbon Emission on 75% load  | 46 |
| Graph 4.31 Hydrocarbon Emission on 50% load  | 47 |
| Graph 4.32 Hydrocarbon Emission on 25% load  | 47 |
| Graph 4.33 CO Emission on 100% load          | 48 |
| Graph 4.34 CO Emission on 75% load           | 48 |
| Graph 4.35 CO Emission on 50% load           | 49 |
| Graph 4.36 CO Emission on 25% load           | 49 |
|                                              |    |

"This page intentionally left blank"

#### CHAPTER I INTRODUCTION

#### 1.1 Background

Starting from September 2018, it's a mandatory to every oil manufacture company to blend biodiesel in amount of 20% to diesel fuels (B20). The regulation was based on Peraturan Presiden No 66 on 2018 about second revision on Peraturan Presiden No 61 on 2015 about accumulation and usage of funds from Palm Oil resources. The first regulation published were Peraturan Menteri ESDM Nomor 41 Tahun 2018 about provision and utilization of vegetable based Biodiesel fuels in order to funding by the Palm Oil Plantation Fund Management Agency.[1]

Biodiesel has some advantages other fuels, the first is reduction of emission. According to the "Clean Alternative Fuels: Biodiesel," produced by the United States Environmental Protection Agency (EPA), here's how biodiesel impacts emissions compared to unblended diesel fuel . Reductions in carbon monoxide emissions of 10% (B-20) and 50% (B-50), particulate emissions of 15% (B-20) and 70% (B-100), total hydrocarbon emissions of 10% (B-20) and 40% (B-100), sulfate emissions of 20% (B-20) and 100% (B-100), and increase in nitrogen oxide emissions of 2% (B-20) and 9% (B-100). However there are some issues like might damage the injector of the engine, and might contain water that can cause corrosion. [2]

Biodiesel blends are have bigger value of viscosity than normal diesel fuels so that it may damage injector and cause clogging on filter parts. In order to decrease its viscosity, it needs a heat exchanger to make it less viscous. Increase in inlet temperature could improve the brake thermal efficiency, Brake thermal efficiency increases at high engine load. The brake thermal efficiency improvement with the increase of biodiesel inlet temperature can be interpreted as a result of breaking and weakening of the fuel chains, so that it leads to the improved combustion [3]

#### 1.2 Problem Statement

From Background above the problem of the implementation of this thesis are

- 1 What is the best temperature of the fuel that give the best effect on performance?
- 2 What is the best temperature of the fuel that give the best effect on combustion?

- 3 What is the best temperature of the fuel that give the best effect on emission?
- 1.3 Problem Limitation

To focusing the analysis the problem will be given boundary as follows

- 1. Simulation main engine Mitsubishi 4D30 with Engine Simulation Software,
- 2. B20 Biodiesel is used as the fuel
- 3. Varying the temperature of the fuel by the heat from heat exchanger. The temperature used will be 30,40,50,60, °Celsius
- 4. Effect on performance, combustion, and emission will be analyzed by the simulation
- 1.4 Objective of the thesis
- To find the best of preheater of B20 fuel on Performance,
- To find the best of preheater of B20 fuel on Combustion,
- To find the best of preheater of B20 fuel on Emission

#### 1.5 Purpose of the Thesis

Purpose of the thesis is that the simulation can provide good result and the equipment can be implemented to reduce the disadvantages of B20 blends biodiesel.

## CHAPTER II LITERATURE STUDY

#### 2.1 Biodiesel

Biodiesel is an alternative transport fuel to fossil diesel. It is renewable and can be derived from several feedstocks, such as vegetable oils (like rapeseed and palm oil and recycled waste cooking oil, amongst others. The production of biodiesel predominately utilises transesterification to produce a monoglyceride biodiesel (and ~10% glycerol product of total biodiesel yield) from plant oil precursors, with more recent movements adding a catalytic hydroprocessing stage.

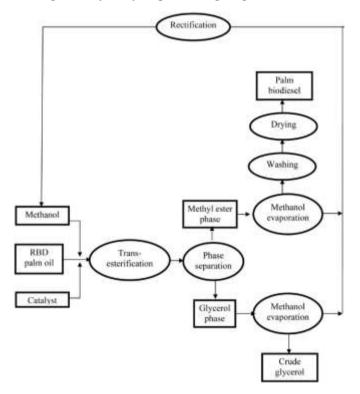



Figure 2.1 Biodiesel Production Process [3]

The Biodiesel on Indonesia is mostly manufactured by PT Pertamina (Persero). The specification of the fuel are shown in table 2.1.

| No | Charateristics                              | Unit          | Limitation |            | Test Method     |       |
|----|---------------------------------------------|---------------|------------|------------|-----------------|-------|
|    |                                             |               | Min        | Max        | ASTM            | Other |
| 1  | Setana Number or Cetane                     |               | 48         | -          | D 613           |       |
|    | Index                                       |               | 45         | -          | D 4737          |       |
| 2  | Specific Gravity @ 15 oC                    | kg / m3       | 815        | 860        | D 1298 / D 4052 |       |
| 3  | Viscosity @ 40 oC                           | mm2 /<br>sec  | 2,0        | 4,5        | D 445           |       |
| 4  | Sulfur content                              | % m / m       | -          | 0,35       | D 2622 / D5453/ |       |
|    |                                             |               | -          | 0,3        | D 4294 / D7039  |       |
|    |                                             |               | -          | 0,25       |                 |       |
|    |                                             |               | -          | 0,05       |                 |       |
|    |                                             |               | -          | 0,01       |                 |       |
| 5  | Distillation 90% vol.<br>evaporation        | oC            | -          | 370        | D 86            |       |
| 6  | Flash point                                 | oC            | 52         | -          | D 93            |       |
| 7  | Pour Point                                  | oC            | -          | 18         | D 97            |       |
| 8  | Carbon Residue                              | % m / m       | -          | 0,1        | D 4630 / D 189  |       |
| 9  | Water content                               | mg / kg       | -          | 500        | D 6304          |       |
| 10 | Biological Growth *)                        | -             | -          | -          | -               |       |
| 11 | FAME * content)                             | %v/v          | -          | -          | -               |       |
| 12 | Methanol content *)                         | %v/v          | Not Det    | tected     | D 4815          |       |
| 13 | Corrosion of Copper Blades                  | merit         | -          | Class<br>1 | D 130           |       |
| 14 | Ash content                                 | %v/v          | -          | 0,01       | D 482           |       |
| 15 | Sediment content                            | % m / m       | -          | 0,01       | D 473           |       |
| 16 | Strong Acid Numbers                         | mgKOH /<br>gr | -          | 0          | D 664           |       |
| 17 | Total Acid Numbers                          | mgKOH /<br>gr | -          | 0,6        | D 664           |       |
| 18 | Particulate                                 | mg / I        | -          | -          | D 2276          |       |
| 19 | Visual appearance                           | -             | Clear and  | d Bright   |                 |       |
| 20 | Color                                       | No. ASTM      |            | 3,0        | D 1500          |       |
| 21 | Lubricity (HFRR wears his scar.<br>@ 60 oC) | micron        |            | 460        | D 6079          |       |

## Table 2.1 Pertamina Biodiesel Properties

The advantages of biodiesel are that it is renewable and although energy density of biodiesel at 39 MJ/kg is marginally lower than the 42.8 MJ/kg of fossil diesel, its GHG emissions are lower: 3kg CO2/litre biodiesel versus 3.16 kg CO2/litre fossil diesel. Including factors such as feedstock carbon sequestration during growth and land use change, two influential factors for biofuel production, is becoming increasingly important, as they directly contribute to the overall carbon impact of the biodiesel. [4]

Table 2.2 Fuel Properties Comparison [4]

| Parameters                           | Method     | DF     | PB20   |
|--------------------------------------|------------|--------|--------|
| Kinematic viscosity @ 40 °C (cSt)    | ASTM D7042 | 3.317  | 3.617  |
| Heating value (MJ/kg)                | ASTM 5468  | 45.548 | 43.828 |
| Density @ 40 °C (kg/m <sup>3</sup> ) | ASTM D7042 | 822    | 833    |
| Cetane number (CN)                   | ASTM D6890 | 51     | 53.1   |
| Flash point ( °C)                    | ASTM D93   | 78     | 89     |

Although environmental benefits can be assumed, there are some drawbacks on performance by the usage of biodiesel. Main problem is the forming more deposit than pure diesel fuel . Deposit will occur mostly on the surface of the injector's liner and also the nozzle of the injector.



Figure 2.2 Photographic view on injector nozzle DF (Diesel Fuel) PB (Palm Biodiesel) [4]

Another problems on biodiesel were the increase of  $NO_x \cdot A$  possible reason for the increase in NOx emissions may be the increased oxygen level in the blend, which increases local temperatures due to excess hydrocarbon oxidation, and thus it increases the maximum temperature during combustion and thereby increases NOx formation. Therefore, the principal factor leading to the formation of NOx emissions is a high combustion temperature . [4]

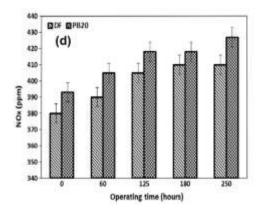



Figure 2.3 NOx emission comparison [4]

#### 2.2 Heat Exchanger

Heat Exchanger is an equipment that provide the transfer of thermal energy between two or more fluids at different temperatures Heat exchanger widely used in heating, refrigeration, air conditioning, power stations, chemical plants, etc.

Heat exchangers are classified according to flow arrangement and geometry of heat exchanger. The simplest heat exchanger is one for which the hot and cold fluids move in the same or opposite directions. This heat exchanger consists of two concentric pipes of different diameters.

- parallel-flow arrangement. In the parallel-flow arrangement, the hot and cold fluids enter at the same end, flow in the same direction, and leave at the same end.
- counter-flow arrangement. In the counter-flow arrangement, the fluids enter at opposite ends, flow in opposite directions, and leave at opposite ends.

The heat transfer surface in heat exchangers can be arranged in several forms. Heat exchangers are therefore also classified as:

> - Double pipe heat exchangers. Double pipe heat exchangers are cheap for both design and maintenance, making them a good choice for small industries. In these exchangers one fluid flows inside the tube and the other fluid flows on the outside. Although they are simple and cheap, their low efficiency coupled with the high space occupied in large scales, has led modern industries to use more efficient heat exchangers like shell and tube.'

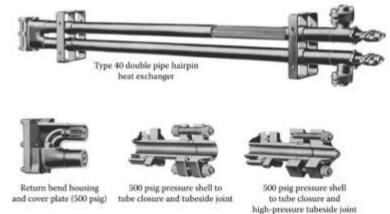



Figure 2.4 Double Pipe Heat Exchanger

- Shell and tube heat exchangers. Shell and tube heat exchangers in their various construction modifications are probably the most widespread and

commonly used basic heat exchanger configuration in industry. Shelland-tube heat exchangers are further classified according to the number of shell and tube passes involved. Shell and tube heat exchangers are typically used for high-pressure applications (with pressures greater than 30 bar and temperatures greater than 260 °C). This is because the shell and tube heat exchangers can withstand high pressures due to their shape. In this type of heat exchanger, a number of small bore pipes are fitted between two tube plates and primary fluid flows through these tubes. The tube bundle is placed inside a shell and the secondary fluid flows through the shell and over the surface of the tubes. In nuclear engineering, this design of heat exchangers is widely used as in case of steam generator, which are used to convert feed water into steam from heat produced in a nuclear reactor core. To increase the amount of heat transferred and the power generated, the heat exchange surface must be maximized. This is obtained by using tubes.

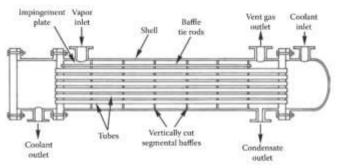



Figure 2.5 Tube Heat Exchanger

- Plate heat exchangers. A plate heat exchanger is a type of heat exchanger that uses metal plates to transfer heat between two fluids. This arrangement is popular with heat exchangers using air or gas as well as lower velocity fluid flow. Example of this type of The classic example of a heat exchanger is found in an internal combustion engine in which an engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. When compared to shell and tube exchangers, the stacked-plate arrangement typically has lower volume and cost. Another difference between the two is that plate exchangers typically serve low to medium pressure fluids, compared to medium and high pressures of shell and tube. [5]

2.3 Engine Performance

2.3.1 Power

Power is the rate of doing work or transferring heat, amount of energy per unit time. The value of engine power measured as described on equation 1 is called brake power Pb. This power is the usable power delivered by the engine to the loadin this case, a "brake." [6]

$$P = 2\pi NT \tag{1}$$

Where N is crank speed and T is Torque

The typical brake power curve is shown on figure 2.6. The data is obtained from software simulation Brake power is usually measured by attaching a power absorption device to the driveshaft of the engine. Such a device sets up measurable forces counteracting the forces delivered by the engine, and the determined value of these measured forces is indicative of the forces being delivered. [7]

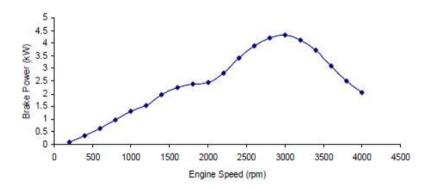



Figure 2.6 Engine Brake Power graph [7]

The brake power of engine lowest on minimum engine speed (rpm) at 200 rpm and after that if the engine speed is increase the brake power is increase too until on engine speed 3000 rpm. The maximum brake power of the engine model is on engine speed at 3000 rpm and after the engine speed is up of 3000 rpm the\brake power is decrease and go to down. [7]

#### 2.3.2 Torque

Torque is an equivalent of rotational of linear force. Engine torque is normally measured with a dynamometer.' The engine is clamped on a test bed and the shaft is connected to the dynamometer rotor. Torque is a measure of an engine's ability to do work.[6]

#### 2.3.3 Specific Fuel Oil Consumption (SFOC)

Fuel consumption is measured as a flow rate-mass flow per unit time m,. A more useful parameter is the specific fuel consumption (sfoc is fuel flow rate per unit power output. It measures how efficiently an engine is using the fuel supplied to produce work: [6]

$$sfoc = \frac{mass flow rate}{P}$$
(2)

#### 2.3.4 Brake Mean Effective Pressure (BMEP)

Mean effective pressure is a valuable measure of an engine capacity to do work independent to engine displacement, it can refer to average pressure acting on piston during its different portion of an engine cycle. BMEP measure is obtained by dividing the work per cycle by the cylinder volume displaced per cycle.

Work per cycle = 
$$\frac{Pn_R}{N}$$
 (3)

where n, is the number of crank revolutions for each power stroke per cylinder (2 for four-stroke cycles; 1 for two-stroke cycles), then

$$mep = \frac{Pn_R}{V_d N}$$
(4)

The maximum brake mean effective pressure of good engine designs is well established, and is essentially constant over a wide range of engine sizes. Thus, the actual bmep that a particular engine develops can be compared with this norm, and the effectiveness with which the engine designer has used the engine's displaced volume can be assessed. Also, for design calculations, the engine displacement required to provide a given torque or power, at a specified speed, can be estimated by assuming appropriate values for bmep for that particular application.

Typical values for bmep are as follows. For naturally aspirated spark ignition engines, maximum values are in the range 850 to 1050 kPa (-125 to 150 lb/in2) at the engine speed where maximum torque is obtained (about 3000 rev/min). At the maximum rated power, bmep values are 10 to 15 percent lower. For turbocharged automotive spark-ignition engines the maximum bmep is in the 1250 to 1700 kPa (180 to 250 lb/in2) range. At the maximum rated power, bmep is in the 900 to 1400 kPa (130 to 200 lb/in2) range. For naturally aspirated four-stroke diesels, the maximum bmep is in the 700 to 900 kPa (100 to 130) [6]

#### 2.4 Engine Combustion

#### 2.4.1 Cylinder Temperature

The maximum combustion temperature in the engine cylinder results are shown in figure 2.7. The experiment uses single cylinder diesel engine and compared with the same engine that has been modified to CNG fuel. It is shown that increasing engine speed of the diesel, will increase the maximum combustion temperature in the engine cylinder.[8]

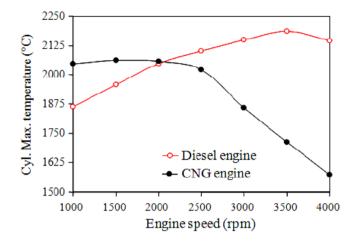



Figure 2.7 Combustion temperature comparison Diesel and CNG [8]

2.5 Engine Emission

2.5.1 NO<sub>x</sub>

Nitrogen is released during fuel combustion it combines with oxygen atoms to create nitric oxide (NO). This further combines with oxygen to create nitrogen dioxide (NO2). Nitric oxide is not considered to be hazardous to health at typical ambient concentrations, but nitrogen dioxide can be. Nitrogen dioxide and nitric oxide are referred to together as oxides of nitrogen (NO<sub>x</sub>).

Nitrogen dioxide is an irritant gas, which at high concentrations causes inflammation of the airways.  $NO_x$  gases react to form smog and acid rain as well as being central to the formation of fine particles (PM) and ground level ozone, both of which are associated with adverse health effects.

 $NO_x$  is produced from the reaction of nitrogen and oxygen gases in the air during combustion, especially at high temperatures. In areas of high motor vehicle traffic, such as in large cities, the amount of nitrogen oxides emitted into the atmosphere as air pollution can be significant. NOx gases are for med whenever combustion occurs in the presence of nitrogen [9]

On table 2.2, the ship's speed is varied to see the effect of the speed difference on duration of sailing, fuel consumption and  $NO_x$  emissions from the ships. Speed variation is based on the area of cruise ships, the speed of the port area 1, the speed of the sea area and the speed of the port area [10]

| Speed<br>Variation<br>(kn) | Duratiion<br>(h) | Total<br>Fuel<br>Cons<br>(Ton) | Nox<br>(kg) |
|----------------------------|------------------|--------------------------------|-------------|
| 4-15-4                     | 31.3             | 32.1                           | 1830        |
| 4-15.5-4                   | 30.6             | 33.9                           | 1931        |
| 4-16-4                     | 29.6             | 357                            | 2036        |
| 4-16.5-4                   | 29.2             | 37.6                           | 2144        |
| 4-17-4                     | 28.6             | 39.6                           | 2256        |
| 5-15-5                     | 29.5             | 32.2                           | 1834        |
| 5-15.5-5                   | 28.8             | 33.9                           | 1935        |
| 5-16-5                     | 28.1             | 35.8                           | 2039        |
| 5-16.5-5                   | 27.5             | 37.7                           | 2147        |
| 5-17-5                     | 26.9             | 39.6                           | 2259        |

Table 2.3 NO<sub>x</sub> Emission results [10]

Exhaust emissions are a function of fuel consumption, if the vessel speed increases , the fuel consumption is also increasing, so is the emissions produced.[10]

#### 2.5.2 SO<sub>x</sub>

The sulphur oxides or  $SO_x$  is produced by the presence of sulphur compound in the marine fuels used in marine engines on board vessel. Better the grade, lower will be the sulphur content as it is removed by refining of the fuel The smoke containing sulphur oxides emitted by the combustion of marine fuel will further oxidise and in presence of catalyst like NO<sub>2</sub>, will form sulphuric acid which is a major cause of acid rain.

The emission of SOx contributes in formation of secondary inorganic aerosol gases, fine particles which are harmful to humans. Maritime industry consumes mostly low grade of fuel oil i.e. heavy oil and diesel oil with high sulphur content as compared to any other transportation medium. But due to MARPOL Annex VI stringent norms, marine engines are now using better grade of marine fuel like marine gas oil. [10] Biodiesel produces lower amount of  $SO_X$ , the greater the blend percentages, the lower it produces.[11]

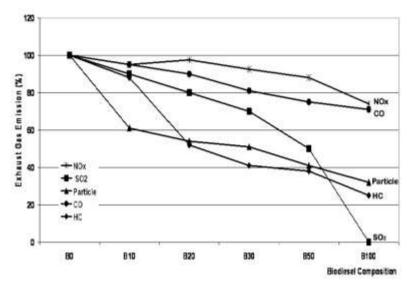



Figure 2.8 Biodiesel Emission [11]

#### 2.5.3 CO Emission

Carbon Monoxide (CO) forms primarily when carbon fuels are not burned completely. Mobile sources account for the majority of CO emissions. These sources include both on-road vehicles (e.g., cars, trucks, motorcycles) and nonroad vehicles and engines (e.g., farm equipment, construction equipment, aircraft, marine vessels). Consequently, high concentrations of CO generally occur in areas with heavy traffic congestion. In cities, as much as 95 percent of all CO emissions may come from motor vehicle exhaust (U.S. EPA, 2008). Other sources of CO emissions include industrial processes, non-transportation fuel combustion, and natural sources, such as forest wildfires.[12]

Carbon monoxide has a poisonous effect caused by reversible displacement of oxygen from haemoglobin in human lungs to form carboxyl-haemoglobin. From this, it became clear and well established that hypoxia was caused by poor tissue in the body and not by the deficiency of oxygen transportation. To support this statement, states that carbon monoxide has 2010 times greater affinity for haemoglobin than oxygen .A little concentration of carbon monoxide in an environment can cause toxic levels of carboxylhaemoglobin. This occurs after carbon monoxide has selectively bound to haemoglobin the oxygen haemoglobin dissociation curve of the remaining oxyhaemoglobin shifts to the left, which reduces the release of oxygen [13]

The exhaust emissions of carbon monoxide from biodiesel are on average 48 percent lower than carbon monoxide emissions from diesel. On figure 2.9 is shown the CO emission on biodiesel blend percentage. CO emission is lower on higher blend percentage biodiesels [14]

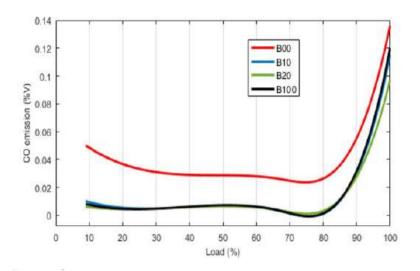
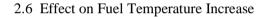




Figure 2.9 CO Emission on Biodiesel Blend [14]



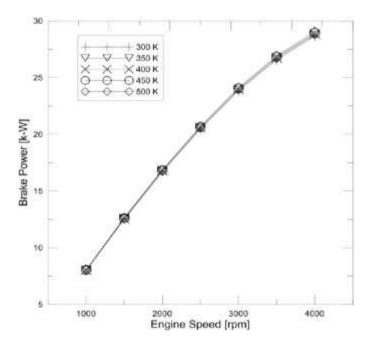



Figure 2.10 Brake Power effect on Temperature Increase [15]

Increase on fuel temperature causes increase on several performance parameters. Brake Power increases as the temperature of fuel increases. Figure 2.10 indicates engine brake power output at full load condition. Higher fuel temperatures increases injection\ pressure Higher injection pressure results in lower ignition delay, which results in the increase of brake power. [15] Brake Torque increases due to fuel temperature . The fuel density decreases as Fuel Temperature is increased . Higher injection pressure is needed to gain an equal fuel mass in order to produce the same required brake torque. [15]

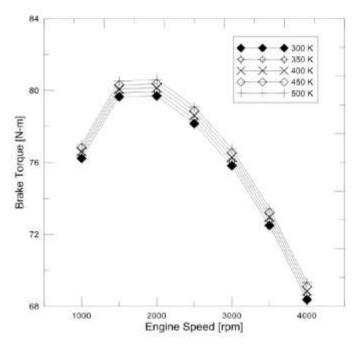



Figure 2.11 Brake Torque effect on Temperature Increase [12]

Increase of fuel temperature makes a changed value of emission. Figure 2.11 shows trends of variation of NOx emissions for the results taken on the conduct of load tes ON Sunflower Seed Biodiesel. The important concern of Diesel engine is higher NOx and it is also noted from this figure that the NOx emission for Diesel operation is found to be 2048 ppm. When Sunflower BioDiesel is used it is 1843 ppm showing beneficial trend that is reduction of NOx to 1848 ppm.[16]

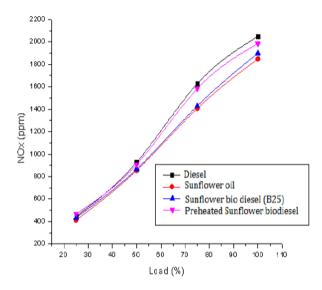



Figure 2.12 NOx emission [16]

Figure 2.12 illustrates the how the unburned Hydrocarbon s are affected for these fuels at varied load conditions". "It is noted that 197 ppm of Unburnt HC is found in the exhaust gas with Diesel fuel. It is increased to 207 ppm when BioDiesel is used indicating incomplete combustion. [16]

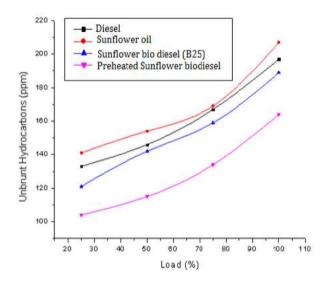



Figure 2.13 Hydrocarbon emission [16]

Graph presents the information about CO emissions for these fuels which are drawn from the measurements by conducting performance tests on the test engine". "The CO emission for when Diesel is used is noted to be 29% by volume which is

increased by 3% more when Sunflower BioDiesel is used. For the blend it is reduced to 25% and with preheating of Sunflower BioDiesel a considerable decrease that is to 21% which means an 8% decrease is noticed and is very much appreciable.[16]

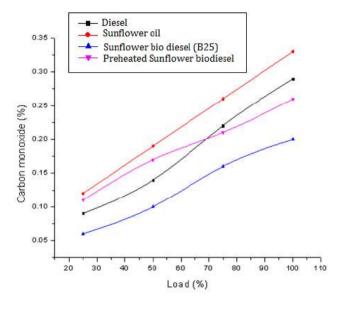



Figure 2.14 CO emission[16]

## 2.7 GT Power Engine Simulation Software

GT-POWER is an engine simulation software, used by major engine manufacturer for the design and development of their engines. It is applicable to all sizes and types of engines, and its installed base includes a highly diverse group of car, truck, motorcycle, motor sport, marine, locomotive, power generation, mining and construction, agricultural, and lawn and garden equipment manufacturers [17]

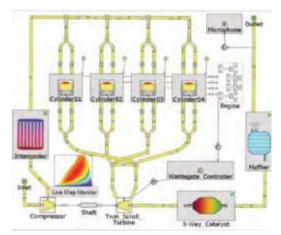



Figure 2.15 Example of GT Power Engine Model, Courtesy of Gamma Technologies [17]

GT-POWER provides feature required to allow the engineer to analyze a number of engine configurations and performance characteristics, including:

- Torque and power curves, airflow, vol. efficiency, fuel consumption, emissions
- Steady state or full transient analysis, under any driving scenario
- Turbocharged, supercharged, turbocompound, e-boost, pneumatic assist
- SI, DI, HCCI and multi-mode combustion, multi-fuel, and multipulse injection
- Infinitely variable valve timing and lift (VVT and VVL)
- Acoustic analysis of intake and exhaust systems
- Manifold and cylinder component thermal analysis, with included FE solver
- Controls system modeling, via built-in controls library or Simulink coupling [17]

"This page intentionally left blank"

# CHAPTER III RESEARCH METHODOLOGY

### 3.1 Research Methodology

# 3.1.1 Problem Statement

Identification of the problem on the research is to find the best temperature of preheater on B20 that delivers best performance, combustion , and emission.

3.1.2 Literature Review

Study from journals, books, and internet about the to related subject

# 3.1.3 System Modeling and Set Up

Creating model of engine on GT-Power software. Steps on making the engine model are as follows

1. Choosing document template

Creating engine model starts with "document creation wizard". Because the object made in this case is engine, so 'Engine Performance and Acoustics' is chosen.

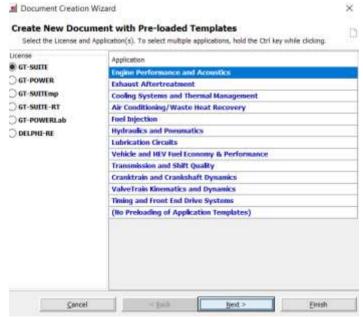



Figure 3.1 Document Creation Wizard

2. Template input

Engine components on GT Power are located on "Template Library". The Template Library stores every components of the software from engine to drivetrain .

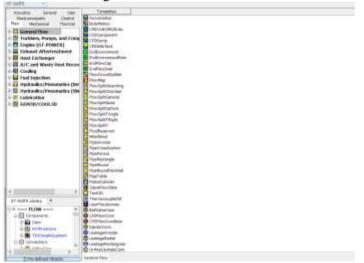



Figure 3.2 Display of Template Library

First step on creating the engine model is by creating the Environment template. The environment template is used for engine intake. Insert the parameters value such as pressure , temperature , and air composition with value of ambient environment as Figure 3.3

| (B) | Object Cannert     |         |               | Add Long Comm |
|-----|--------------------|---------|---------------|---------------|
|     | New Part Constant: |         |               |               |
|     |                    | T Photo |               |               |
|     | Atribute           | Unit.   | Otject Value  |               |
|     | Pressure (Abacide) | See La. | [AMBENT-PRES] |               |
|     | Temperature        | See Ch. | (AMRENT-TRAM) |               |
|     | Corporter          | 1000    | 87            |               |
|     |                    |         |               |               |
|     |                    |         |               |               |
|     |                    |         |               |               |
|     |                    |         |               |               |
|     |                    |         |               |               |
|     |                    |         |               |               |
|     |                    |         |               |               |
|     |                    |         |               |               |
|     |                    |         |               |               |

Figure 3.3 Intake environment template

Create the intake pipe . Because the engine is 4 cylinder , it uses "PipeRound" for straight part of the intake pipe and for the branch part

uses "FlowSplitTRight" Input on these items are such as pipe diameter and pressure. Figure 3.4 and 3.5 shows the input on the model.

| Diject Family<br>Difect Family<br>Differenti<br>Differenti | Help Part Lawrends                                         |                   |         |                | Add Long Comment. |
|------------------------------------------------------------|------------------------------------------------------------|-------------------|---------|----------------|-------------------|
| Diffee 83                                                  | of Barri of Thernal of Pressar Drop                        |                   | _       |                |                   |
| The second second                                          | Abrexis                                                    | Unt               | 4       | Object Volum   |                   |
|                                                            | Basic Generatry and Sel                                    | rial Conditions   |         |                |                   |
|                                                            | Districted at Intel Cruz                                   | rere              | 24      | *_<br>*_<br>*_ |                   |
|                                                            | Distriction of Outlint Engl                                | 1945              | 56      | 341-           |                   |
|                                                            | Langth                                                     | 100               | 14      | ×              |                   |
|                                                            | Descretization Length                                      | 100               | 14      | 30 -           |                   |
|                                                            | Sythet State Reme                                          |                   |         | Stringer       |                   |
|                                                            | Bertace Rei                                                |                   |         |                |                   |
|                                                            | Roughness from Material                                    | -                 | Gut     |                |                   |
|                                                            | OCtored Programm                                           |                   |         | 1              |                   |
|                                                            | Additional Geometry                                        | y Options         |         |                |                   |
|                                                            | Padus of Sord                                              | 1916              | 140     | 1915m          |                   |
|                                                            | Angle of Bend                                              | deg               | 14      | Refer          |                   |
|                                                            | Fige Bester Charge or 30 Acceleration Object               | 19/2              | 1       | - Win          |                   |
|                                                            | Nember of Mentodi Poes                                     |                   |         | part 2-5 AS    |                   |
|                                                            | Attributer with part avertains or actuated signal overview | coll have the bas | Agreent | die            |                   |

Figure 3.4 PipeRound input

| 10-refer to | Help Fast General                           | Inge []Pers         |               |                    |                 |
|-------------|---------------------------------------------|---------------------|---------------|--------------------|-----------------|
| Initian-04  | Atrèses                                     | Seve                | Tayotteka     | intrac-sti coernde | > Length al     |
|             | Not to                                      | metry and bella     | Conditions    |                    | 1               |
|             | Dienetur                                    | rat                 | 30            |                    |                 |
|             | langh.                                      | PRE                 | 37            | (G)                | (1) (2) (200000 |
|             | Earface Area                                | rest1               | 195           | - F                | 0               |
|             | 2-dat line have                             |                     | State St.     | 1                  | L_Q_L           |
|             |                                             | terface likits      |               |                    |                 |
|             | D bradh                                     |                     |               |                    | 1 1             |
|             | <ul> <li>Kaughment Doci Moternel</li> </ul> |                     | medit_posts - |                    |                 |
|             | O had begines                               | and a second second | Super         | -                  |                 |
|             |                                             | (Accel Generativy ) | aut (<1.0     |                    |                 |
|             | Ramber of Identical Plenophts               |                     | 30 (141/0     | l bal              |                 |
|             |                                             |                     |               |                    |                 |

Figure 3.5 FlowSplitTRIght input

Create the Intake Valve by using "ValveCamConn" and name it to "INT\_Valve-01" Parameters inserted on the model are such as diameter and timing angle. Figure 3.6 shows the parameter value inserted on the item.

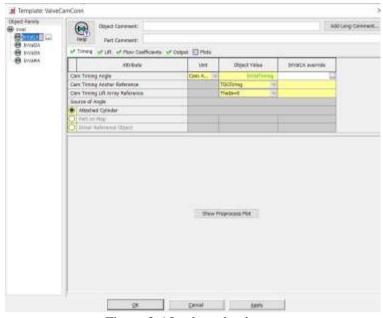



Figure 3.6 Intake valve inputs

Cylinders part also need to be created. Cylinder part is created by using "EngCylinder" object.

| Panely .                   | Object Convent:                                                     |            |                  | Additing Com                                                                                                    |  |  |
|----------------------------|---------------------------------------------------------------------|------------|------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Cylinder VI 2 La           | Hert Comments                                                       |            |                  |                                                                                                                 |  |  |
| Cylinder-82<br>Cylinder-83 | when windowski [] Pata                                              |            |                  |                                                                                                                 |  |  |
| Cylinder-IH                | Attractor                                                           | set        | Object Value     | Cylinder-01 overnde                                                                                             |  |  |
|                            | Initial State Olivert                                               |            | 207,82           | 10                                                                                                              |  |  |
|                            | . Well Temperature defined by Reference Otypett                     |            | CORP. TEMP       | 1                                                                                                               |  |  |
|                            | Weil Torganature defined by FS Structure part (TagDyEL)             |            | the strending it |                                                                                                                 |  |  |
|                            | Heat Transfer Olgect                                                |            | COMPLEMACYN.     | L.                                                                                                              |  |  |
|                            | Play 000kg                                                          |            |                  | the second se |  |  |
|                            | Contraction Object                                                  |            | Cardust, mbr     |                                                                                                                 |  |  |
|                            | Managed Cylinder Pressure Analysis Digett                           |            | 127              | 100                                                                                                             |  |  |
|                            | Cylinder Pressare Analysis Made                                     |            | loff -           |                                                                                                                 |  |  |
|                            |                                                                     |            |                  |                                                                                                                 |  |  |
|                            |                                                                     |            |                  |                                                                                                                 |  |  |
|                            | Attributes with port overvides an actuated signal evervides will be | e this boo | iground calor    |                                                                                                                 |  |  |

Figure 3.7 Engine Cylinder input

Injector of the diesel engine is created by using the object of "InjProfileCon". Inputs for this object is such as injector diameter, number of holes, and injected fluid settings such as type of the fuel and fluid temperature. The fluid temperature is varied from emperature  $30^{\circ}$ C,  $35^{\circ}$ C,  $40^{\circ}$ C,  $45^{\circ}$ C,  $50^{\circ}$ C,  $55^{\circ}$ C,  $60^{\circ}$ C, and  $65^{\circ}$ C.

| Pervity<br>kt_01 | Object Cananeet                   |                 |                        |                 | Add Long Correl |
|------------------|-----------------------------------|-----------------|------------------------|-----------------|-----------------|
| Divert_41-2      | Headys Part Cartament             |                 |                        |                 |                 |
| Direct, 31-3     | where where wheel wheels          | Profile Setting | a of Profile III Plats |                 |                 |
| Direct_01-4      | Atzówie                           | Une             | Olgard Veloa           | Dest_001.evende |                 |
|                  | Translad Mesa                     | 340 CB.         | [reword]               | (a)             |                 |
|                  | Ar-to-Fuel Rate Livit Heltedology | 1000            | Tata/Completion        | 141             |                 |
|                  | Ar-ti-Puel Kalle Lin #            |                 | 16.5                   |                 |                 |
|                  |                                   |                 |                        |                 |                 |
|                  |                                   |                 |                        |                 |                 |

Figure 3.8 Injector input

Engine parameter such as engine type and geometry of the engine parts can be created by using "EngineAnalysis" object.

| of Cylinder Germatry of RLT I | Roma<br>Unit |            | ANY Long Comments. |
|-------------------------------|--------------|------------|--------------------|
| Attitude                      | Unit         |            |                    |
| votice Object or PMEP         | 1.122        | 00(#2100.# |                    |
|                               |              | Protor La  |                    |
|                               |              |            |                    |
|                               |              | or Dent    | 25 janut Suly      |

Figure 3.9 "EngineAnalysis" display

Inside EngineAnalysis on Cylinder Geometry part it can be inserted with the value according to the engine.




Figure 3.10 Cylinder Geometry input

Detailed engine part components created from object "PistonGuided"", "ConnectingRod", CrankPin, 'CrankWeb", "Journal", and "Flywheel".

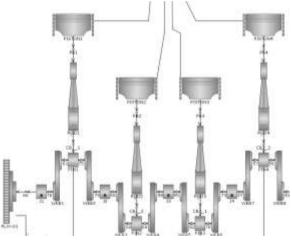



Figure 3.11 Detailed Engine Parts

"PistonGuided" part contains parameters like piston mass, bore, and stroke. The value of the parameters must be same with the one on engine analysis part.

| 1970-00<br>1970-0 | Pet Connett                             | W6          |                |               |
|-------------------|-----------------------------------------|-------------|----------------|---------------|
| 1070104           | Atribute                                | 3848        | Vitigent Value | FS71AL Werrie |
|                   | Bore                                    | 1978        | 304            | 12            |
|                   | Populo Per Office                       | CHER IN THE |                | 6             |
|                   | Foton mass (or Articulated Crown Mass)  | 4 4         | 1800           | 1/2<br>8-01   |
|                   | Fieter/Fit Heat (Arcicalated Fuller OH) | 12          | 69             | 高             |
|                   | Sket Plaza (Advantskyl Patter Dely)     | 9           | 90 -           |               |
|                   | musicarly (30-530) (accretity 19(ent    | 110         | 101            | and a         |
|                   |                                         |             |                |               |

Figure 3.12 PistonGuided inputs

Connecting Rod object contains parameters such as connecting rod mass and length.

| Object Parkity    | Dearf Comment                               |                  |            |               | AMING DOM:         |
|-------------------|---------------------------------------------|------------------|------------|---------------|--------------------|
| Si union          | Mill Der Dermant                            |                  |            |               | COMPANY CONTRACTOR |
| 2000              | MiD Pertigrament                            |                  |            |               |                    |
| # #301<br># \$001 | of these particular                         |                  |            |               |                    |
| 8 4001<br>8 8304  | 13/6-60                                     | - 444            | There when | ROOM eventure |                    |
|                   | Connecting Rod Langth                       | 200 30           | 280        |               |                    |
|                   | Discontinue Ward Winess                     |                  | 1890       |               |                    |
|                   | Construction for formation                  | Read and and and |            |               |                    |
|                   | Carvering Kai berte                         | - 1" sta         | 7.138-4    |               |                    |
|                   | Here Center A Coonditients in Local Prierie |                  | - 0        |               |                    |
|                   | Mass-Denker Y-Contribute in Local Proces    | 2461             | - 40       |               |                    |
|                   | Have elly Generally (bed DD-G40)            |                  | - teri     |               |                    |
|                   |                                             |                  |            |               |                    |
|                   |                                             |                  |            |               |                    |

Figure 3.13 ConnectingRod inputs

For exhaust part, the model uses "PipeRound" for the straight pipe part and "FlowSplitTRight" for branch part. The input are shown on Figure 3.14 and 3.15.



Figure 3.14 Exhaust Pipe input

| Hanning Constanting of Constanting o | Net Semant                            |                                               | Add Lang Transmit. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------|--------------------|
| Children Sold Tagen 1.<br>Children Sold Tagen 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | when others othersel                  | u Eren                                        |                    |
| DeUterlatinger i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000                                  | of the state of the state of the state of the | 1 ing. 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Real Com                              | stry and birth Conditions                     |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bewer                                 | -                                             | the second         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Leigh                                 |                                               | 0 0-               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Suffect that they have                |                                               | 0                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                    | Real and Philips                              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AND CONTRACTOR                        |                                               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Magnesi kat Maana</li> </ul> | interim.                                      |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aver                                  | of summing in these                           |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Income of Section Proceeding          | at 112                                        |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                               |                    |
| All and a local division of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                               |                    |

Figure 3.15 Exhaust branch input

Exhaust valve part uses the "ValveCamConn" part and name it to EXH\_valve. Input of the object is shown on Figure 3.16

| Carring<br>HCLAPECOR  | en la come                                                            |                 |               | (Children)          | en e |
|-----------------------|-----------------------------------------------------------------------|-----------------|---------------|---------------------|------------------------------------------|
| 1000 yope-it          | of Terry of LR of Par California is                                   | P Stand C Parts |               |                     |                                          |
| Distrikeri<br>Mitoria | RSIDIA                                                                | 164             | Office: halle | EOL/Men L Interfals |                                          |
| prijumes :            | Care Transport                                                        | 0.00            | 345           |                     |                                          |
| NT_VAN-1              | Care Training Andrea Rafamarase<br>Care Training UPI Array Rafamarase |                 | Toolving -    |                     |                                          |
|                       | Searce of Angle                                                       |                 |               | -                   |                                          |
|                       | · Alternal Symptom                                                    |                 |               |                     |                                          |
|                       | C Hut to Map                                                          | 1               |               |                     |                                          |
|                       | C Inter-Informer Dated                                                |                 |               | -                   |                                          |
|                       |                                                                       |                 |               |                     |                                          |
|                       |                                                                       | and a second    | ng turu tu    |                     |                                          |

Figure 3.16 Exhaust valve input

Environment part of the exhaust part is using the object of "EndEnvironment" part with the difference from intake part on the gas changed to "BurntGas".

| Help Fait Lawrent    |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
|----------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | ] Para                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
| Astines              | 146                                                                                  | Object Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                        |
| Presserv (Abseliate) | See Ca.                                                                              | AMOUNT - PREST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        |
| Tertipetician        | See Ca.                                                                              | [RMEEDIT-TEMP]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        |
| Composition          |                                                                                      | dunamaria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                        |
|                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
|                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
|                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
|                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
|                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
|                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
|                      | of Mari, of Optime, of Attack and Humidity (2)<br>Attribute<br>(Pressure (Attestica) | of Man of Optime of Attractor and Humanity []] Press<br>Man of Optime of Attractor and Humanity []<br>Pressure (Attractor)<br>Temperature in the Optime Optio Optime Optio Optime Optime Optime Optio Optio Optime Optime | of Mon. of Oppose of Addade sub-Humahly [] Pass<br>Mon. of Oppost Website<br>Pressure (Addates)<br>Temperature<br>See Ca. > (Addates) - (Section 4000) |

Figure 3.17 Environment input for exhaust

For engine load, object "Torque" is used and the value is varied to the load variable that inserted on the case settings.

| Report Convents        | Add Long Car |
|------------------------|--------------|
| ar Mark 12 Perts       |              |
| Strike unt Start Wee   |              |
| Torpe See Ca. 14 (7-4) |              |
|                        |              |
|                        |              |
|                        |              |
|                        |              |
|                        |              |
|                        |              |
|                        |              |
|                        |              |
|                        |              |
|                        |              |
|                        |              |

Figure 3.18 Torque object input

Table 3.1 Engine Specification [18]

|                         | Value                                   |                   |  |  |  |  |  |  |
|-------------------------|-----------------------------------------|-------------------|--|--|--|--|--|--|
| Displacement            | 3298 cc, Inline 4 , Naturally Aspirated | Direct Injection, |  |  |  |  |  |  |
| Bore x stroke           | 100 x 105 mm                            |                   |  |  |  |  |  |  |
| Power                   | 90–95 PS (66–70 kW)                     |                   |  |  |  |  |  |  |
| Max Torque              | 22 kgfm                                 |                   |  |  |  |  |  |  |
| Fuel Injection Pressure | 120 Kg/cm2                              |                   |  |  |  |  |  |  |

The simulation is done by variables of Load and Fuel Temperature . The Variables are:

- Load Variables
  - Load 25%
  - o Load 50%
  - Load 75%
  - o Load 100%
- Temperature Variables
  - Temperature 30°C
  - Temperature 40°C
  - Temperature 50°C
  - Temperature 60°C
  - Temperature 70°C

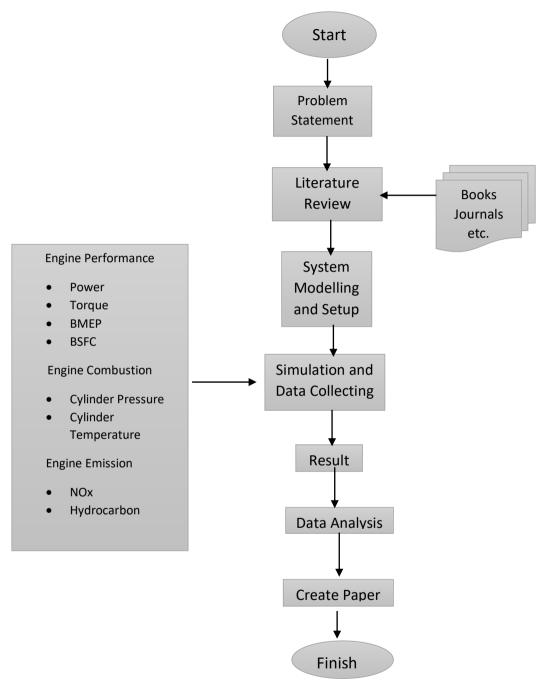
The variables is inputted on the software with the case setup. Rpm o usoide is 1700, 1900, and 1900. The fuel temperature is from the injector object at the Fluid Temperature part and the Load is from Torque object.

| Anto The bod A  |        |                                           |             |              |              | ×                                     |                | et traine ch | ai<br>Targa   |            |
|-----------------|--------|-------------------------------------------|-------------|--------------|--------------|---------------------------------------|----------------|--------------|---------------|------------|
| Bitter III at 1 | -      |                                           |             |              |              | -                                     |                |              |               |            |
| tantaki         | 1.000  | BRAD SERVICE                              | Calo 88     | Call R       | 1209 71      | Care Rt.                              | 2308 92        | Epise 94     | Calor #5      | Calle Re   |
| Case lindet     |        | Clark Son to Ture Case (m                 | 9           | 6            | 61           | 8                                     | 8              | E            | 2             | 12         |
| (maxi)alai      | -      | Images loss for the Lagrante              | 8.7M - 8800 | 10108 - 1008 | 10100-11200  | 1000-1000                             | 10/00 - 10/04  | STRL + KING  | B/M - 10000   | 80M - 1909 |
| BUTTON .        | B      | NUME AND DESCRIPTIONS                     |             | 1.1          |              |                                       |                | 1.1.1        | in the second | 1.14       |
| kQ4             | 0.5    | tendeter the start                        | - 62        |              |              | ·                                     |                | 1. 1984      |               |            |
| revenue         | No. 19 | 1.000 B B B B B B B B B B B B B B B B B B |             | 110          | - 6 <b>9</b> | · · · · · · · · · · · · · · · · · · · | <u>.</u>       |              | ME            | 1.1.1      |
| frahes)         | 1      | Threffic-imple                            | - 23        |              | 1.52         |                                       |                | 1.14         |               | 1.00       |
| AVERICIC        | -      |                                           |             |              | - 114        |                                       | -              |              | -             |            |
| IVERDIER.       | hpm/7  |                                           | 1.1111      | 1.1          | 10.0         | 1.11.44                               | 11.02          | 100.000      | 1000          | 1          |
| NIMMENT .       | 14 1   |                                           | 1 2         |              | 1000         |                                       |                |              |               |            |
| 6741            | 88.15  | Rogen Speed                               | 1000        | 1800         | 1700         | 1007.00                               | 1000           | 1795         | 100           | 100        |
| SIDAACS         | 14 1   | Internal Mean                             | (10.11 L    | 1111-        | 115          | 100.22                                |                |              | 100           |            |
| No.             | 5-5 1  | A No patrice                              | 1000        | 1.41.52      | 104.0        | · · · · Like                          | - 114 <b>-</b> | THE ALL      | 2             |            |
| Flat term       | 10 10  |                                           |             |              |              |                                       |                |              |               |            |

Figure 3.19 Case Setup

- Result Variables
  - Engine Performance
    - Power
    - Torque
    - BMEP
    - BSFC
  - Combustion Data

•


- Cylinder Pressure,
  - Cylinder Temperature
- $\circ$  Emission
  - NOx,
  - Hydrocarbons
  - CO

The result variable is shown on GT-Post within the engine analysis object for Performance and Emission part and at the cylinder for combustion part.

|       | Atribule Value                                  | Lant.           |    | Cool of L | FPM = 1,650<br>Celef 2 | CHER 2 Jack  | Case # 4   | (0791 = 1808<br>Couper 5 | CRIMP II.  | Count 7    | Cale 4     | Court 9     | Chief 18  | CHART IN CONTRACT OF CONTRACT. | Í. |
|-------|-------------------------------------------------|-----------------|----|-----------|------------------------|--------------|------------|--------------------------|------------|------------|------------|-------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| + 32  | BIPC - India Satoffs Public Consumptions Eva-   | get (in         | -  | 141.014   | [146.30002             | 248.63348    | 135.00244  | 103.39875                | 112-30616  | 407.00041  | 485.33043  | 101.124()-1 | M-1.5518  | 973.2992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. |
| • E   | 1975 - Instanted Specifi Yvel Litrauranten, Sve | alwin-          |    | CO HINK   | 10.0940                | 2016.3-496.6 | 111.06.001 | 311.200.12               | and index  | 212.664(1  | 10.2004    | 294.546     | 111.0646  | 211,20067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E  |
| - 112 | Diange                                          | 1010000         | 1  |           |                        |              |            |                          |            |            |            |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E  |
| 11.2  | Target-Power                                    | 100 million and |    |           |                        |              |            |                          |            |            |            |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ð  |
| - 出   | Brake Targue                                    | See.            | 4  | 01.04018  | 200.0020               | 244.01239    | 202.6146   | 20 Lotta                 | 289.306.70 | 106.22588  | DAINS .    | 131.96194   | NU.R SHIT | 87,1794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ĥ  |
| - 81  | Induster Turgue                                 | the of          | 34 | 18.19120  | 120.49747              | 296.00179    | 100.00000  | 103.00140                | 34.8036    | 114.47388  | 208.35977  | 103.00012   | 110.472   | 208.2094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| - 20  | Proton Filmpie                                  | 21m             | -  | 0.598312  | 39.810556              | 48.002394    | 31 25034   | 94-78.111                | 40.00129   | 39.559340  | 34.79(3)   | 45.000386   | 55 53X341 | 38.760307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| - 22  | icel mituse                                     | 81.44           |    | 10.000    | 100.4000               | 26.0214      | 220.87083  | 104.25472                | 24.8911    | 218.07386  | 203.00108  | 109-04813   | 101,6792  | Jun Just                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| - 22  | Balle Faces (#)                                 | 141             | -  | H MADE    | ab. +42574             | 71.18822     | 48. AD003  | ALCORDITY                | 11.77948   | 22.1.10048 | 14 8 38623 | 10.100272   | 34-438437 | 18 18 1394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| + 33  | B-64s Front                                     | 202             |    | 0.18,936  | 11.10146               | 53.000942    | 39.3462    | 18:07:84                 | 39-00390   | 24.249410  | 10.303687  | 10.2+4955   | G.2000    | (2.66) # 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ١. |

Figure 3.20 GT Post result screen

# 3.2 Methodology Flowchart



# CHAPTER IV RESULT AND DISCUSSION

In this chapter contains result and discussion about performance and emission test from preheating the B20 biodiesel . The fuel used is Pertamina Solar Diesel Fuel. Performance test in this chapter includes Power. Torque, SFOC (Specific Fuel Oil Consumption), and BMEP (Brake Mean Effective Pressure). Emission test includes NOx, SOx, and other particular emission.

#### 4.1 Engine Model

The aim of the test is to compare performance and emission of the diesel engine on different temperature of B20 biodiesel The engine used for the simulation is Mitsubishi 4D30 diesel engine The simulation uses one dimensional engine model

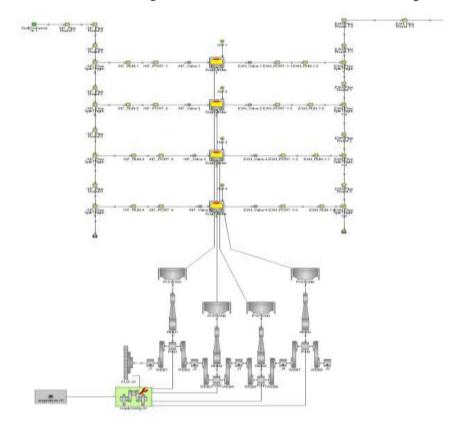
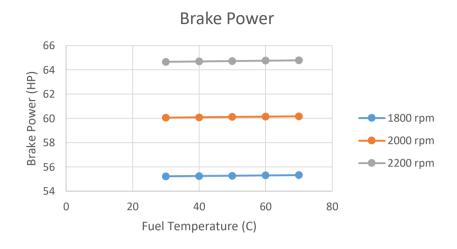


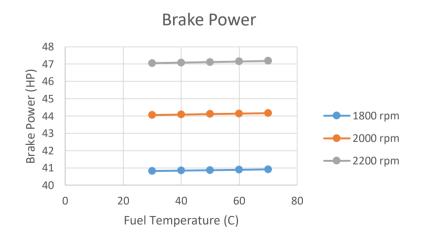

Figure 4.1 Engine model of Mitsubishi 4D30

Engine cylinder input consist of various items such as cylinder geometry, and cylinder mass.

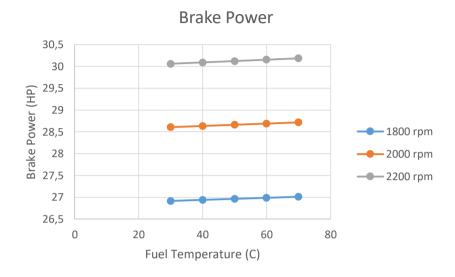

| Description              | Value  |
|--------------------------|--------|
| Bore                     | 100 mm |
| Stroke                   | 105 mm |
| Number of Cylinders      | 4      |
| Connecting Rod<br>Length | 200 mm |
| Connecting Rod Mass      | 1850 g |
| Piston Mass              | 1000 g |

#### 4.2 Simulation Result

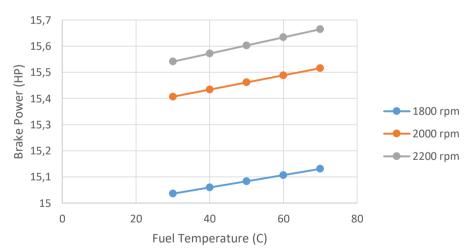
The engine is simulated using 20% biodiesel blend at 1800 rpm, 2000 rpm, and 2200 rpm . The simulation is analysed on several fuel temperature which are 30°C, 40°C,50°C, 60°C, and 70°C. Various load condition is used on the simulation, 25%, 50%, 75% and 100%.. The result variables of the simulation are performance, combustion, and emission. Performance includes Brake Power, Brake Torque, Brake Mean Effective Pressure, and Brake Specific Fuel Consumption. Combustion consists of Maximum Temperature and Maximum Pressure of combustion. Emission variable includes NOx concentration and Hydrocarbon concentration.


## 4.2.1 Performance

### 4.2.1.1 Brake Power

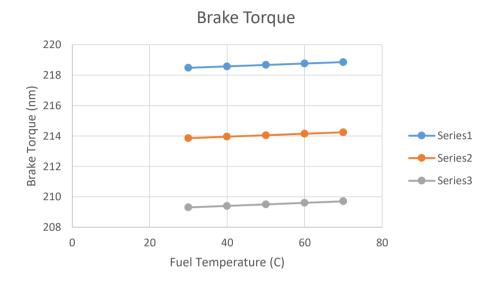



Graph 4.1 Brake Power at 100% Load


Brake power increases due to increase of fuel temperature. Graph 4.1 shows power to fuel temperature on full load condition. From Graph 4.1, it can be seen that increase of fuel temperature leads to increase on brake power , however on power the value were not much significant . On every temperature increase, the brake power only increases around 0.01 HP. For example from 30°C to 70°C with 2200 rpm, brake power only increase from 68.66 HP to 64.78 HP or 0.17%. The trend remains same at different engine speed and load condition Figure 4.2 to 4.4 shows results on different load condition.



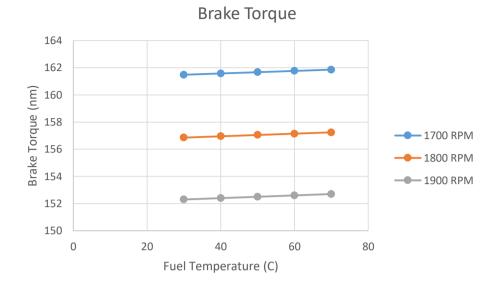
Graph 4.2 Brake Power at 75% Load

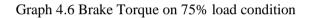


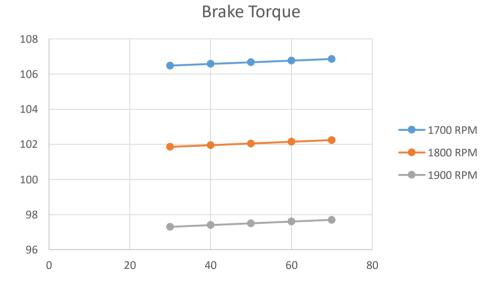

Graph 4.3 Brake Power at 50% Load



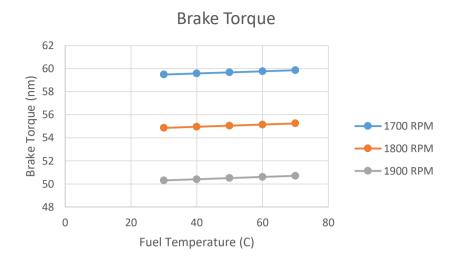
**Brake Power** 


Graph 4.4 Brake Power 25% Load



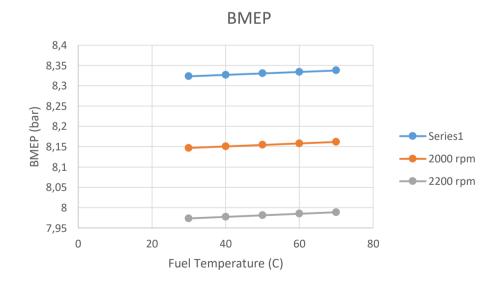


### 4.2.1.2 Brake Torque

Graph 4.5 Brake Torque on 100% Load


Increase in fuel temperature leads in increase of the value of brake torque. graph 4.5 shows brake torque on 100% load condition. From graph 4.5 it indicates increase in brake torque value on temperature increase. The value increase were quite significant. From the lowest temperature which is 30°C to highest temperature variable that is 70°C AT 1800 rpm the torque increases from 218.47 nm to 218.8 nm. It shows similar trend on different engine speed and load conditions. Figure 4.6 to 4.8 shows brake torque on different load conditions.

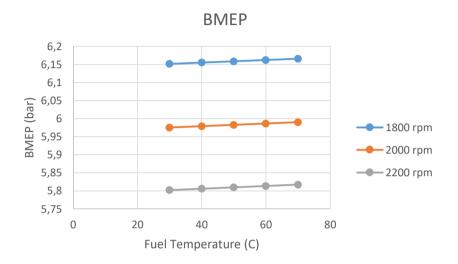




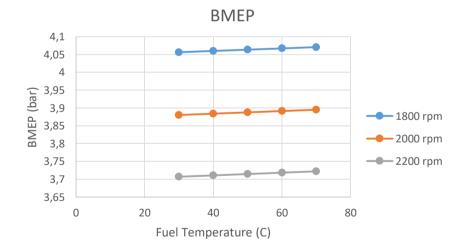



Graph 4.7 Brake Torque on 50% load condition

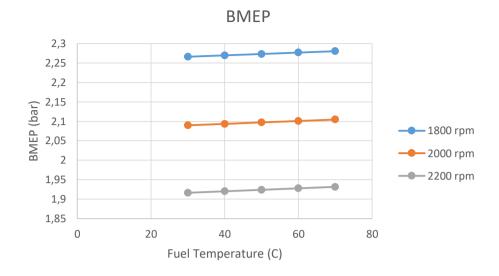



Graph 4.8 Brake Torque on 25% load condition

# 4.2.1.3 Brake Mean Effective Pressure

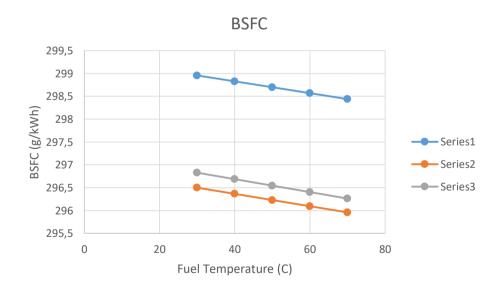



Graph 4.9 BMEP on 100% load


BMEP increases as the inlet temperature of fuel increases. Graph 4.9 shows that BMEP increases as temperature increases on full load condition .From fuel temperature 30°C to 70°C, the BMEP increases quite significant by 0.02 bar or 2 kPa. Lowest BMEP value at 1800 rpm full load is 8.32 bar obtained on 30°C fuel temperature and highest fuel value of BMEP at 8.34 bar obtained on 70°C Graph 4.10 to 4.12 shows BMEP on different temperature condition.



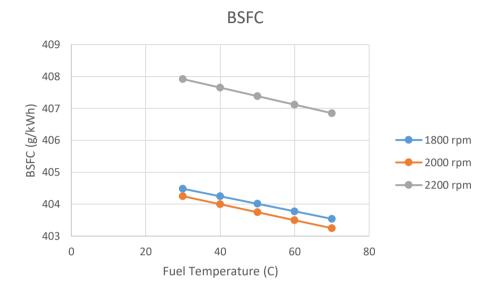
Graph 4.10 BMEP on 75% load



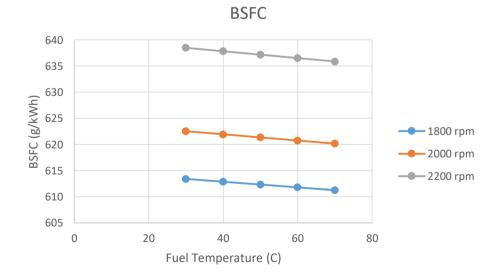

Graph 4.11 BMEP on 50% load



Graph 4.12 BMEP on 25% load


# 4.2.1.4 Brake Specific Fuel Consumption




Graph 4.13 BSFC on 100% load

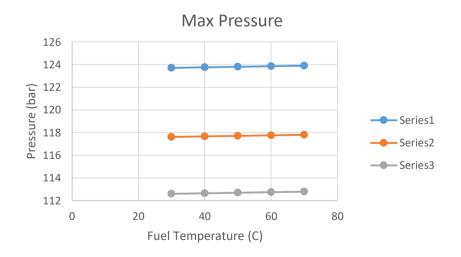
Brake Specific Fuel Consumption , shown on graph 4.13 decreases as inlet temperature increases on full load condition . Highest value of BSFC at 1800 rpm full

load is 298.95 g/kWh obtained on 30°C while the lowest value is 298.44 g/kWh is obtained on 70°C. Higher value of BSFC is caused by lower energy content of the fuel. Increase on temperature leads to higher energy content of fuel [19] Lowest possible of BSFC is often desired. Graph 4.14 to 4.16 shows the BSFC on different load condition.



Graph 4.14 BSFC on 75% Load

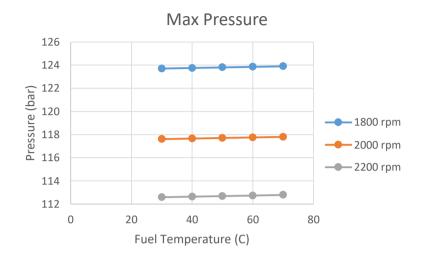



**BSFC** 1260 1240 1220 3SFC (g/kWh) 1200 1180 🗕 1800 rpm 1160 - 2000 rpm 1140 1120 • 2200 rpm 1100 1080 0 20 40 60 80 Fuel Temperature (C)

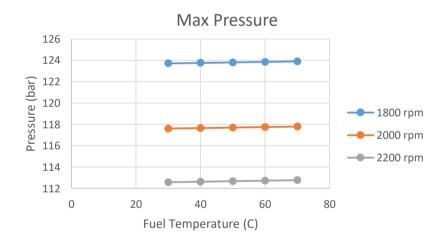
Graph 4.15 BSFC on 50% Load



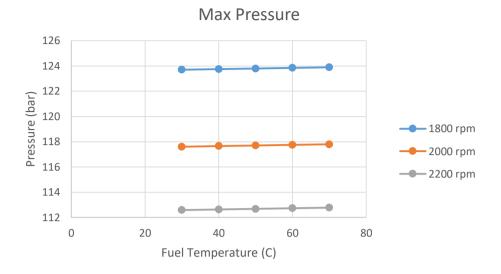
#### 4.2.2 Combustion


## 4.2.2.1 Maximum Pressure



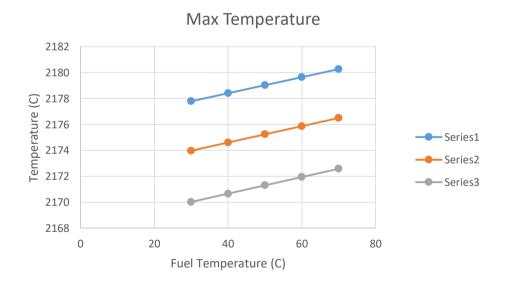

Graph 4.17 Combustion Pressure

Combustion Pressure as shown in graph 4.17 is increasing due to fuel temperature increase. Lowest value of combustion pressure at 1800 rpm full load is


123.70 bar which obtained at lowest temperature variable at 30°C. Highest value of combustion pressure is 123.89 bar obtained at 70°C. Graph 4.18 to 4.20 shows similar trend on different load conditions.



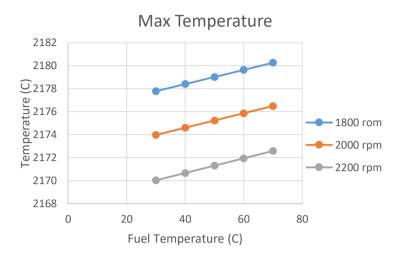
Graph 4.18 Combustion pressure on 75% Load



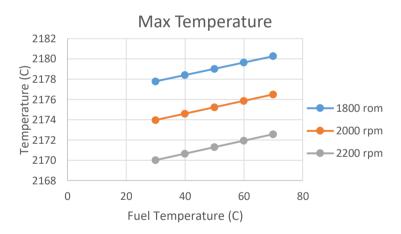

Graph 4.19 Combustion pressure on 50% Load



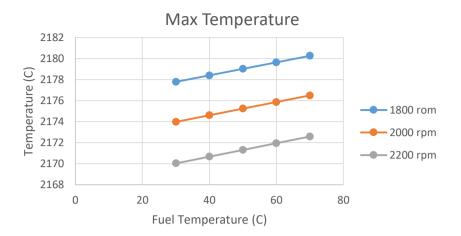
Graph 4.20 Combustion pressure on 25% load


4.2.2.2 Combustion Temperature

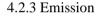



Graph 4.21 Combustion temperature

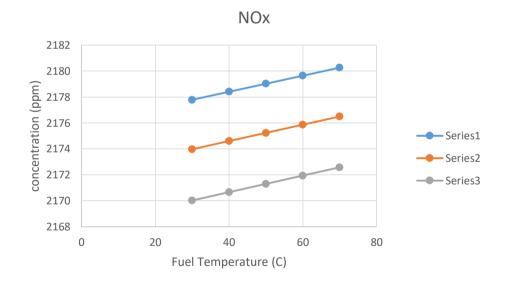
Graph 4.21 shows increase of combustion temperature due to increase of fuel temperature . Lowest temperature at 1800 rpm full looad valued 2177.78  $^{\circ}$ C is obtained on fuel temperature of 30 $^{\circ}$ C. Highest combustion temperature values at


2180.26  $^{\rm o}{\rm C}$  on 70°C fuel temperature. Similar trend is shown on different load condition.




Graph 4.22 Combustion temperature on 75% load

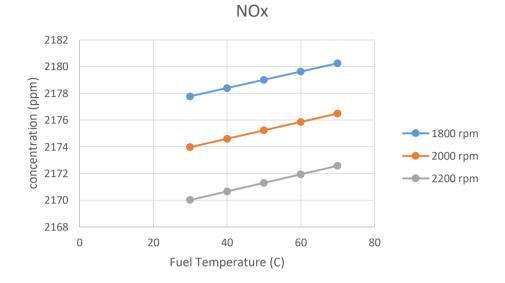


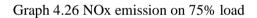

Graph 4.23 Combustion temperature on 50% load

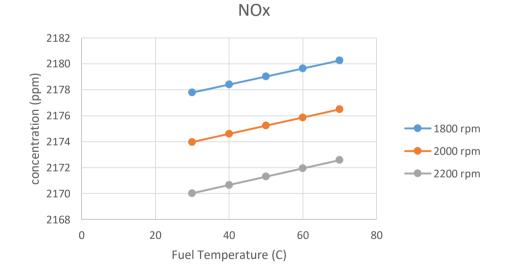


Graph 4.24 Combustion temperature on 25% load

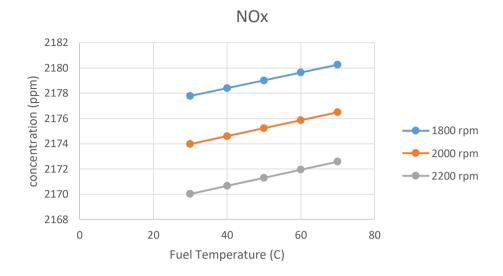




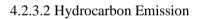



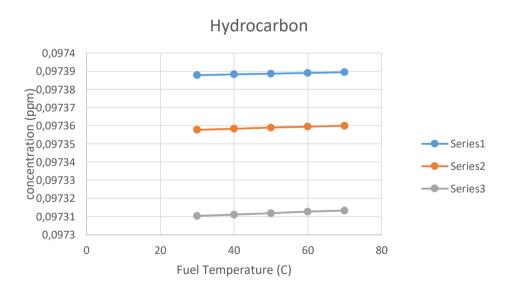


Graph 4.25 NOx concentration on 100% load

Graph 4.26 describes that increase on fuel temperature leads to higher concentration of NOx emission NOx concentration increases due to formation of NO is depending on higher combustion temperature and more presence of oxygen [19] Lowest NOx concentration, obtained at 30°C is 4198.12 ppm. Highest value of NOx


concentration is 4211.13 ppm obtained at 70°C. Similar trend is found on different load condition.

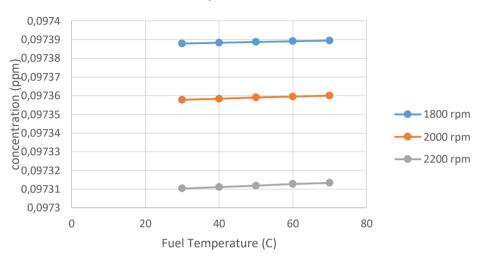




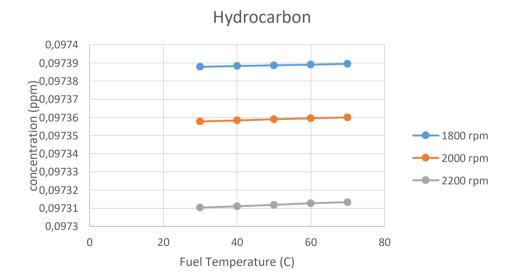

Graph 4.27 NOx emission on 50% load



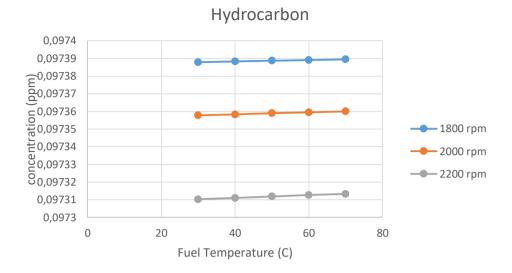

Graph 4.28 NOx emission on 25% load





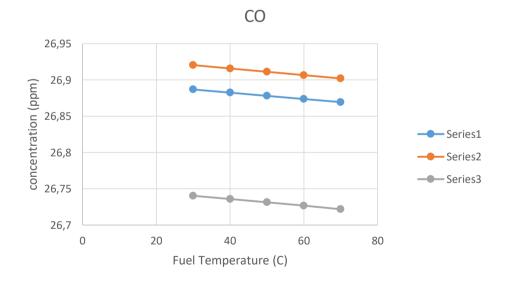

Graph 4.29 Hydrocarbon Emission

Hydrocarbon emission concentration. increases as fuel temperature increases. Graph 4.20 showing Hydrocarbon concentration in emission due to increase of fuel temperature. Increase of the value were not very significant.



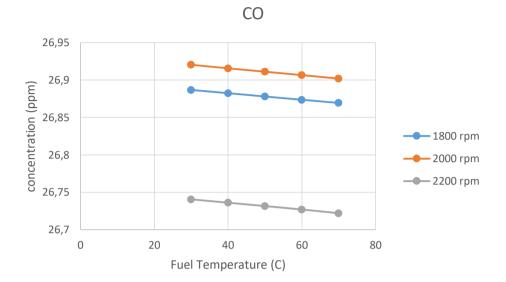

Hydrocarbon

Graph 4.30 Hydrocarbon Emission on 75% load

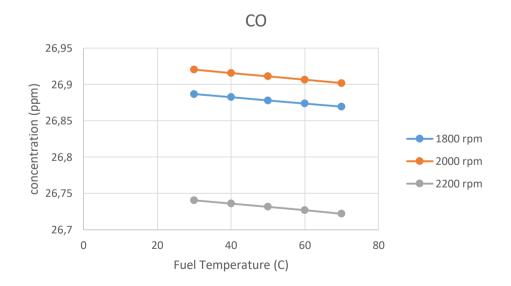



Graph 4.31 Hydrocarbon Emission on 50% load

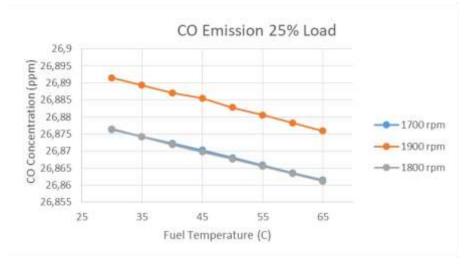



Graph 4.32 Hydrocarbon Emission on 25% load

4.2.3.3 CO Emission




Graph 4.33 CO Emission on 100% load


Based on Graph 4.33 CO Emission are decreasing as the fuel temperature increases. Average deficit of CO concentration is 0.057%. The trend remains same on different load condition.



Graph 4.34 CO Emission on 75% load



Graph 4.35 CO Emission on 75% load



Graph 4.36 CO Emission on 25% load

"This page intentionally left blank"

### CHAPTER V CONCLUSION AND SUGGESTION

#### 5.1 Conclusion

This chapter concludes the result of the simulation and analysis of the Mitsubishi 4D30 Engine to find the effect of fuel temperature increase by addition of preheater. The conclusions are as follows:

- The Brake Power increases as the fuel temperature increases, although the increase were not much significant. The power increase between the lowest and the highest temperature variable is 0.0853 HP on a full load condition
- Brake Torque increases as the fuel temperature increases. Value increases from 30°C fuel temperature to 65°C by 0,335 nm
- Brake Mean Effective Pressure increases as fuel temperature increases. The value increases from lowest temperature variable to highest by 0.012 bar
- Brake Specific Fuel Consumption decreases as fuel temperature is increased. The value decreases by 0.276 g/kWh from fuel temperature at 30°C to 65°C.
- The best fuel temperature for Performance side based on this simulation is 65°C due to highest value of Power, Torque, and BMEP and lowest value of BSFC.
- NOx emission increases by around0.44% as Fuel Temperature Increases.
- Hydrocarbon emission increases Fuel Temperature Increases although the value is not significant.
- CO Emission decreases by 0.06%
- Those were the drawbacks on increasing the fuel temperature. Lowest fuel temperature variable on this simulation (30°C) were the best for Emission part.

#### 5.2 Suggestion

The research is on the limitation of simulation only. A better calibration with experimental method is needed for improving accuracy of the result.

#### REFERENCES

- Kementrian ESDM. (2018) Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 41 Tahun 2018 Tentang Penyediaan dan Pemanfaatan Bahan Bakar Nabati. Kementrian ESDM Republik Indonesia
- [2] Archer, Sophie A. Murphy, Richard J. Steinberger-Wilkens (2018). Methodological analysis of palm oil biodiesel life cycle studies. University of Birmingham
- [3] Bin-Mahfouz ,Abdullah ; Mahmoud, Khaled; Mourad, Mohamed . (2018) Influence of Biodiesel Inlet Temperature on the Performance of a Small DI Diesel Engine. AASCIT
- [4] Duifey, Annie .(2006),Biofuels Production, Trade and Sustainable Development: Emerging Issues. IIED Liaquat, AM. Masjuki, HH. Kalam, MA. Fazal, MA. Khan, Abdul Faheem. Farman,M (2013) Impact of palm biodiesel blend on injector deposit formation. University of Malaya
- [5] Sadik Kakaç; Hongtan Liu (2002). Heat Exchangers: Selection, Rating and Thermal Design (2nd ed.). CRC Press
- [6] Heywood, John B.(1988) Internal Combustion Engine Fundamentals. New York : Tata McGraw-Hil.
- [7] Semin . Bakar, RA. Ismaiil, AR. (2008). Investigation of Diesel Engine Performance Based on Simulation. University Malaysia Pahang
- [8] Semin. Ismail, AR .Bakar, RA (2009) Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine. Institut Teknologi Sepuluh Nopember
- [9] Mollenhauer, Klaus; Tschöke, Helmut (2010). Handbook of Diesel Engines. Springer.
- [10] Gusti, Ayudhia P. Semin. The Effect of Vessel Speed on Fuel Consumption and Exhaust. Gas Emissions Institut Teknologi Sepuluh Nopember

- [11] Wirawan, Soni S; Tambunan Armansyah H; Djamin , Martin ; Nabetani , Hiroshi .(2008). The Effect of Palm Biodiesel Fuel on the Performance and Emission of the Automotive Diesel Engine. Institut Pertanian Bogor
- [12] Report on Environment Carbon Monoxide Emission. United States Environmental Protection Agency
- [13] Biodiesel Emission. National Biodiesel Board
- [14] Niaki, Seyed Reza Amini. Mahdavi, Sajad. Mouallema, Joseph (2017) Experimental and Simulation Investigation of Effectof Biodiesel-Diesel Blend on Performance, Combustion, and Emission Characteristics of a Diesel Engine. Department of Mechanical Engineering, Ayatollah Amoli Azad University, Amol, Iran
- [15] Rahim, R., Mamat, R., Yusuf Toib, Mohd., Adam Abdullah, Abdul., (2012) Influence of Fuel Temperature on a Diesel Engine Performance Operating with Biodiesel Blended. Journal of Mechanical Engineering and Sciences (JMES)
- [16] Sureddy, Kunar Kumar. Govind, N. (2018) Preheating of Biodiesel for the Improvement of the Performance Characteristics of Di Engine . 1Research Scholar, Department of Mechanical Engineering, University College of Engineering and Technology, Acharya Nagarjuna University, Guntur, A.P, India
- [17] GT Power Promotional Book. Gamma Technologies
- [18] Colt Diesel Workshop Manual Engine and Chassis, Mitsubishi Motors
- [19] Mamat, R., Abdullah, N. R. Xu.,H., Wyszynsky, M.L., & Tsolakis, A. (2009a). Effect on Air Intake Pressure Drop on Performance and Emission of Diesel Engine Operating with Biodiesel and Ultra Low Sulphur Diesel (ULSD). Proceeding of International Conferences on Renewable Energies and Power Quality. pp. 1-8

### ATTACHMENT

Simulation Result

Performance

Beake Power (BHP)

Load 100%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 55,2271  | 60,06379 | 64,66371 |
| 40   | 55,25085 | 60,09101 | 64,69457 |
| 50   | 55,27444 | 60,11836 | 64,7255  |
| 60   | 55,29812 | 60,14568 | 64,75652 |
| 70   | 55,32193 | 60,17285 | 64,78751 |

### Load 75%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 40,81884 | 44,05454 | 47,05359 |
| 40   | 40,84259 | 44,08182 | 47,08443 |
| 50   | 40,86619 | 44,10918 | 47,11542 |
| 60   | 40,88983 | 44,13646 | 47,14643 |
| 70   | 40,91367 | 44,16366 | 47,17738 |

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 26,91612 | 28,60708 | 30,06135 |
| 40   | 26,93987 | 28,63436 | 30,09224 |
| 50   | 26,96348 | 28,66171 | 30,12321 |
| 60   | 26,98712 | 28,68902 | 30,1542  |
| 70   | 27,01096 | 28,71624 | 30,18515 |

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 15,03562 | 15,40652 | 15,54078 |
| 40   | 15,05938 | 15,4338  | 15,5716  |
| 50   | 15,08296 | 15,46115 | 15,60259 |
| 60   | 15,10664 | 15,48847 | 15,6336  |
| 70   | 15,13045 | 15,51562 | 15,66458 |

# Brake Torque (Nm)

Load 100%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 218,4818 | 213,8545 | 209,302  |
| 40   | 218,5758 | 213,9513 | 209,4019 |
| 50   | 218,6691 | 214,0487 | 209,502  |
| 60   | 218,7628 | 214,146  | 209,6025 |
| 70   | 218,857  | 214,2427 | 209,7027 |

Load 75%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 161,4818 | 156,8542 | 152,302  |
| 40   | 161,5758 | 156,9513 | 152,4018 |
| 50   | 161,6691 | 157,0488 | 152,5021 |
| 60   | 161,7627 | 157,1459 | 152,6025 |
| 70   | 161,857  | 157,2427 | 152,7027 |

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 106,4818 | 101,8542 | 97,30191 |
| 40   | 106,5758 | 101,9513 | 97,40188 |
| 50   | 106,6692 | 102,0487 | 97,50211 |
| 60   | 106,7627 | 102,146  | 97,60243 |
| 70   | 106,857  | 102,2429 | 97,70262 |

Load 25%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 59,48183 | 54,85422 | 50,30204 |
| 40   | 59,57584 | 54,95135 | 50,40181 |
| 50   | 59,66913 | 55,04872 | 50,50213 |
| 60   | 59,76278 | 55,14599 | 50,6025  |
| 70   | 59,85697 | 55,24266 | 50,70274 |

BMEP (bar)

Load 100%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 8,323117 | 8,146836 | 7,973411 |
| 40   | 8,326695 | 8,150527 | 7,977216 |
| 50   | 8,33025  | 8,154237 | 7,981031 |
| 60   | 8,333819 | 8,157943 | 7,984855 |
| 70   | 8,337408 | 8,161628 | 7,988676 |

Load 75%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 6,151689 | 5,975399 | 5,80198  |
| 40   | 6,155269 | 5,979099 | 5,805784 |
| 50   | 6,158824 | 5,982811 | 5,809605 |
| 60   | 6,162388 | 5,986511 | 5,813428 |
| 70   | 6,165981 | 5,990199 | 5,817245 |

### Load 50%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 4,056451 | 3,880161 | 3,70674  |
| 40   | 4,06003  | 3,883861 | 3,710548 |
| 50   | 4,063588 | 3,88757  | 3,714366 |
| 60   | 4,067151 | 3,891275 | 3,718188 |
| 70   | 4,070744 | 3,894967 | 3,722005 |

Load 25%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 2,265975 | 2,089685 | 1,916268 |
| 40   | 2,269556 | 2,093385 | 1,920069 |
| 50   | 2,273109 | 2,097094 | 1,923891 |
| 60   | 2,276677 | 2,1008   | 1,927714 |
| 70   | 2,280266 | 2,104482 | 1,931533 |

BSFC (g/kWh)

Load 100%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 298,9557 | 296,5001 | 296,8281 |
| 40   | 298,826  | 296,3652 | 296,6866 |
| 50   | 298,6974 | 296,2298 | 296,5452 |
| 60   | 298,5684 | 296,0947 | 296,4038 |
| 70   | 298,438  | 295,9601 | 296,2624 |

Load 75%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 404,4813 | 404,2471 | 407,918  |
| 40   | 404,2445 | 403,9961 | 407,6509 |
| 50   | 404,0096 | 403,7447 | 407,3834 |
| 60   | 403,7745 | 403,4944 | 407,1163 |
| 70   | 403,5366 | 403,2447 | 406,8497 |

Load 50%

|      | RPM      |          |                   |
|------|----------|----------|-------------------|
| Temp | 1800     | 2000     | 2200              |
| 30   | 613,4039 | 622,5355 | 638,4943          |
| 40   | 612,861  | 621,941  | 637 <i>,</i> 8392 |
| 50   | 612,3218 | 621,3464 | 637,1845          |
| 60   | 611,7833 | 620,7537 | 636,5308          |
| 70   | 611,2394 | 620,1633 | 635,879           |

Load 25%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 1098,09  | 1155,934 | 1235,074 |
| 40   | 1096,353 | 1153,888 | 1232,629 |
| 50   | 1094,634 | 1151,845 | 1230,183 |
| 60   | 1092,915 | 1149,812 | 1227,745 |
| 70   | 1091,188 | 1147,796 | 1225,319 |

Combustion

Maximum Pressure (bar)

Load 100%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 123,7056 | 117,6071 | 112,5856 |
| 40   | 123,7538 | 117,6553 | 112,6341 |

| 50 | 123,802  | 117,7034 | 112,6826 |
|----|----------|----------|----------|
| 60 | 123,8501 | 117,7515 | 112,7311 |
| 70 | 123,8984 | 117,7993 | 112,7796 |

Load 75%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 123,7056 | 117,6071 | 112,5856 |
| 40   | 123,7538 | 117,6553 | 112,6341 |
| 50   | 123,802  | 117,7034 | 112,6826 |
| 60   | 123,8501 | 117,7515 | 112,7311 |
| 70   | 123,8984 | 117,7993 | 112,7796 |

Load 50%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 123,7056 | 117,6071 | 112,5856 |
| 40   | 123,7538 | 117,6553 | 112,6341 |
| 50   | 123,802  | 117,7034 | 112,6826 |
| 60   | 123,8501 | 117,7515 | 112,7311 |
| 70   | 123,8984 | 117,7993 | 112,7796 |

Load 25%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 123,7056 | 117,6071 | 112,5856 |
| 40   | 123,7538 | 117,6553 | 112,6341 |
| 50   | 123,802  | 117,7034 | 112,6826 |
| 60   | 123,8501 | 117,7515 | 112,7311 |
| 70   | 123,8984 | 117,7993 | 112,7796 |

# Maximum Temperature (K)

Load 100%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 2450,784 | 2446,972 | 2443,022 |
| 40   | 2451,403 | 2447,602 | 2443,66  |
| 50   | 2452,021 | 2448,233 | 2444,299 |
| 60   | 2452,64  | 2448,864 | 2444,94  |
| 70   | 2453,261 | 2449,493 | 2445,578 |

Load 75%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 2450,784 | 2446,972 | 2443,022 |
| 40   | 2451,403 | 2447,602 | 2443,66  |
| 50   | 2452,021 | 2448,233 | 2444,299 |
| 60   | 2452,64  | 2448,864 | 2444,94  |
| 70   | 2453,261 | 2449,493 | 2445,578 |

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 2450,784 | 2446,972 | 2443,022 |
| 40   | 2451,403 | 2447,602 | 2443,66  |
| 50   | 2452,021 | 2448,233 | 2444,299 |
| 60   | 2452,64  | 2448,864 | 2444,94  |
| 70   | 2453,261 | 2449,494 | 2445,578 |

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 2450,784 | 2446,972 | 2443,022 |
| 40   | 2451,403 | 2447,602 | 2443,66  |
| 50   | 2452,021 | 2448,233 | 2444,299 |
| 60   | 2452,64  | 2448,864 | 2444,94  |
| 70   | 2453,261 | 2449,494 | 2445,578 |

# Emission

NOx Concentration (ppm)

Load 100%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 4198,127 | 4236,869 | 4262,087 |
| 40   | 4202,724 | 4242,196 | 4268,09  |
| 50   | 4207,303 | 4247,51  | 4274,057 |
| 60   | 4211,864 | 4252,779 | 4280,028 |
| 70   | 4216,398 | 4258,044 | 4285,957 |

Load 75%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 4198,127 | 4236,869 | 4262,085 |
| 40   | 4202,727 | 4242,199 | 4268,09  |
| 50   | 4207,306 | 4247,506 | 4274,06  |
| 60   | 4211,859 | 4252,776 | 4280,028 |
| 70   | 4216,398 | 4258,044 | 4285,953 |

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 4198,122 | 4236,869 | 4262,081 |
| 40   | 4202,726 | 4242,199 | 4268,086 |
| 50   | 4207,309 | 4247,51  | 4274,061 |

| 60 | 4211,861 | 4252,78  | 4280,028 |
|----|----------|----------|----------|
| 70 | 4216,398 | 4258,043 | 4285,95  |

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 4198,122 | 4236,869 | 4262,091 |
| 40   | 4202,729 | 4242,199 | 4268,086 |
| 50   | 4207,306 | 4247,51  | 4274,064 |
| 60   | 4211,863 | 4252,779 | 4280,032 |
| 70   | 4216,396 | 4258,042 | 4285,957 |

# Hydrocarbon Concentration (ppm)

Load 100%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 0,097388 | 0,097358 | 0,09731  |
| 40   | 0,097388 | 0,097358 | 0,097311 |
| 50   | 0,097389 | 0,097359 | 0,097312 |
| 60   | 0,097389 | 0,097359 | 0,097313 |
| 70   | 0,097389 | 0,09736  | 0,097313 |

Load 75%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 0,097388 | 0,097358 | 0,09731  |
| 40   | 0,097388 | 0,097358 | 0,097311 |
| 50   | 0,097389 | 0,097359 | 0,097312 |
| 60   | 0,097389 | 0,09736  | 0,097313 |
| 70   | 0,097389 | 0,09736  | 0,097313 |

|      | RPM      |          |         |
|------|----------|----------|---------|
| Temp | 1800     | 2000     | 2200    |
| 30   | 0,097388 | 0,097358 | 0,09731 |

| 40 | 0,097388 | 0,097358 | 0,097311 |
|----|----------|----------|----------|
| 50 | 0,097389 | 0,097359 | 0,097312 |
| 60 | 0,097389 | 0,09736  | 0,097313 |
| 70 | 0,097389 | 0,09736  | 0,097313 |

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1700     | 1800     | 1900     |
| Temp | 1800     | 2000     | 2200     |
| 30   | 0,097388 | 0,097358 | 0,09731  |
| 40   | 0,097388 | 0,097358 | 0,097311 |
| 50   | 0,097389 | 0,097359 | 0,097312 |
| 60   | 0,097389 | 0,097359 | 0,097313 |
| 70   | 0,097389 | 0,09736  | 0,097313 |

CO Concentration (ppm)

Load 100%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 26,88677 | 26,92043 | 26,74045 |
| 40   | 26,88246 | 26,91569 | 26,73598 |
| 50   | 26,87799 | 26,91117 | 26,73146 |
| 60   | 26,87366 | 26,90657 | 26,72688 |
| 70   | 26,86943 | 26,90196 | 26,7219  |

Load 75%

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 26,88676 | 26,92044 | 26,74045 |
| 40   | 26,88247 | 26,91569 | 26,73596 |
| 50   | 26,87799 | 26,91117 | 26,73145 |
| 60   | 26,87367 | 26,90659 | 26,72688 |
| 70   | 26,86942 | 26,90196 | 26,7219  |

| Load 5 | 50% |
|--------|-----|
|--------|-----|

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 26,88675 | 26,92044 | 26,74045 |
| 40   | 26,88247 | 26,91569 | 26,73597 |
| 50   | 26,87799 | 26,91117 | 26,73145 |
| 60   | 26,87366 | 26,90658 | 26,72688 |
| 70   | 26,86941 | 26,9019  | 26,7219  |

|      | RPM      |          |          |
|------|----------|----------|----------|
| Temp | 1800     | 2000     | 2200     |
| 30   | 26,88675 | 26,92044 | 26,74045 |
| 40   | 26,88247 | 26,91569 | 26,73597 |
| 50   | 26,87799 | 26,91117 | 26,73145 |
| 60   | 26,87366 | 26,90657 | 26,72688 |
| 70   | 26,86941 | 26,90197 | 26,72189 |

#### ABOUT THE AUTHOR



The author was born as on 29<sup>th</sup> July 1997 at Surabaya, East Java. Named Fairuz Fajri Utomo, the author is the first child of 3 brothers from Mohamad Adi Soedarso and Endah Dwilestari. The author completes elementary education at SDN Sompok Semarang on 2009. The author took his junior high school at SMPN 21 Semarang and graduated on 2012. The author took his High School education on SMAN 4 Semarang. On 2015, the author starts his bachelor degree study at Double Degree Marine Engineering Department of Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia and Hoschule Wismar, Rostock Germany. Student number of

the author is 04211541000020. The author takes Marine Power Plant (MPP) as his field of study on his bachelor thesis . On 2017, the author took excursion program to Hoschule Wismar, Rostock , Germany. On 2018 , the author took On the Job Training at PT Janata Marina Indah, Semarang, Jawa Tengah. Late 2018, the author took his 2<sup>nd</sup> On the Job Training at PT Pertamina (persero) Shipping on the New Ship Project Coordinator division and learn many things there.

Fairuz Fajri Utomo fairuzfajri999@gmail.com