

TUGAS AKHIR - VM 180629

ANALISA KINERJA MILITARY TURBOFAN ENGINE F100-PW-220 PADA PESAWAT TEMPUR F-16 A/B

BAKDAM KHOIRUL HAMZA NRP 10211600000092

Dosen Pembimbing Ir. Arino Anzip, M.Eng.Sc NIP 19610714 198803 1 003

PROGRAM STUDI DIPLOMA III DEPARTEMEN TEKNIK MESIN INDUSTRI Fakultas Vokasi Institut Teknologi Sepuluh Nopember Surabaya 2019

TUGAS AKHIR - VM 180629

ANALISA KINERJA MILITARY TURBOFAN ENGINE F100-PW-220 PADA PESAWAT TEMPUR F-16 A/B

BAKDAM KHOIRUL HAMZA NRP 10211600000092

Dosen Pembimbing Ir. Arino Anzip, M.Eng.Sc NIP 19610714 198803 1 003

PROGRAM STUDI DIPLOMA III DEPARTEMEN TEKNIK MESIN INDUSTRI Fakultas Vokasi Institut Teknologi Sepuluh Nopember Surabaya 2019

FINAL PROJECT - VM 180629

PERFORMANCE ANALYSIS OF MILITARY TURBOFAN ENGINE F100-PW-220 ON FIGHTING FALCON F-16 A/B

BAKDAM KHOIRUL HAMZA NRP 10211600000092

COUNSELLOR LECTURER Ir. Arino Anzip, M.Eng.Sc NIP 19610714 198803 1 003

DIPLOME III PROGRAM INDUSTRIAL MECHANICAL ENGINEERING DEPARTMENT Vocational Faculty Sepuluh Nopember Institute Of Technology Surabaya 2019

PERNYATAAN TIDAK MELAKUKAN PLAGIASI

Saya yang bertanda tangan di bawah ini :

Nama	Bakdam khoirul Hamza
NRP	: 10211600000092
Program Studi	: Diploma III Teknik Mesin
Departemen	: Teknik Mesin Industri
Fakultas	: Vokasi

Menyatakan dengan sesungguhnya bahwa Tugas Akhir (TA) yang saya tulis ini benar-benar tulisan saya, dan bukan merupakan hasil plagiasi. Apabila di kemudian hari terbukti atau dapat dibuktikan TA ini hasil plagiasi, maka saya bersedia menerima sanksi atas perbuatan tersebut sesuai dengan ketentuan yang berlaku di Departemen Teknik Mesin Industri, Fakultas Vokasi, ITS.

> Surabaya, 5 Juli 2019 Yang membuat pernyataan,

(BAKDAM KHOIRUL H.) NRP. 10211600000092

LEMBAR PENGESAHAN

ANALISA KINERJA MILITARY TURBOFAN ENGINE F100-PW-220 PADA PESAWAT TEMPUR F-16 A/B

TUGAS AKHIR

Diajukan Guna Memenuhi Salah Satu Syarat Untuk Memperoleh Gelar Ahli Madya Teknik Mesin Industri Pada Bidang Studi Konversi Energi Program Studi Diploma III Departemen Teknik Mesin Industri Fakultas Vokasi Institut Teknologi Sepuluh Nopember Surabaya

Oleh :

Bakdam Khoirul Hamza NRP. 10211600000092

Surabaya, Juli 2019

vii

Scanned with CamScanner

ANALISA KINERJA MILITARY TURBOFAN ENGINE F100-PW-220 PADA PESAWAT TEMPUR F-16 A/B

Nama Mahasiswa	: Bakdam Khoirul Hmaza
NRP	: 1021160000092
Departemen	: Teknik Mesin Industri FV-ITS
Doseng Pembimbing	: Ir. Arion Anzip, M.eng.Sc

ABSTRAK

Military Turbofan engine merupakan sistem pemebangkit daya yang beroperasi berdasarkan Siklus Brayton. Hasil dari Siklus Brayton ini berupa gaya dorong yang digunakan untuk pesawat terbang. Dalam menghasilkan daya dorong menggunakan hitungan termodinamika dan mekanika fluida yang menggunakan compressible flow, local isentropic stangtion propertis untuk mengetahui tiap state.

Degan mengetahui tiap state kita bisa mengethaui performa dari engin, yang berupa thrust dan spesific feul consumption (SFC). Pada Tugas Akhir ini dilakukan perhitungan performa sebelum dan sesudah perawatan.

Berdasarkan hasil perhitungan diperoleh kenaikan thrust 5854,9248 N dan penurunan SFC sebesar 0,0254 dari kondisi idle sebelum perawatan ke susudah perawatan. Sedangkan pada kondisi mill menghasilkan thrust sebesar 65117,5052 N dan SFC sebesar 0,0013. Dengan kondisi ABMAX menghasilkan thrust sebesar 146681,6418 N dan SFC 0,0006.

Kata kunci : Military Turbofan engine, Thrust, SFC

PERFORMANCE ANALYSIS OF MILITARY TURBOFAN ENGINE F100-PW-220 ON FIHGTING FALCON F-16 A/B

Student Name	: Bakdam Khoirul Hmaza
NRP	: 1021160000092
Departement	: Teknik Mesin Industri FV-ITS
Counselor Lecturer	: Ir. Arion Anzip, M.eng.Sc

ABSTRACT

Military Turbofan engine is a power generating system that operates based on the Brayton Cycle. The result of this Brayton cycle is the thrust used for aircraft. In producing thrust using thermodynamics and fluid mechanics that use compressible flow, local isentropic stagnation properties to determine each state.

By knowing each state we can know the performance of engine, which is in the form of thrust and specific feul consumption (SFC). In this Final Project, the performance of before and after treatment is calculated.

Based on the calculation results obtained an increase in thrust 5854,9248 N and a decrease in SFC of 0.0254 from idle conditions before treatment to the next treatment. Whereas in mill conditions it produces thrust of 65117.5052 N and SFC of 0.0013. With conditions ABMAX produces thrust of 146681,6418 N and SFC 0,0006.

Keyword : Military Turbofan engine, Thrust, SFC

KATA PENGANTAR

Puji syukur saya panjatkan kehadirat Allah SWT atas berkat rahmat dan karunia-Nya sehingga penulis buku ini dapat menyelesaikan seluruh pengerjaan tugas akhir dengan judul: "Analisa Kinerja Military Turbofan Engine F100-PW-220 Pada Pesawat Tempur F-16 A/B"

Penyelesaian Tugas Akhir ini merupakan syarat kelulusan akademis dalam menempuh pendidikan di Departemen Teknik Mesin Industri, Fakultas Vokasi, Institut Teknologi Sepuluh Nopember, Surabaya. Terlaksana dan tersusunnya Tugas Akhir ini tidak terlepas dari dukungan, bantuan dan kerjasama yang baik dari semua pihak yang secara langsung maupun tidak langsung terlibat di dalam Tugas Akhir ini.

Oleh karena itu, pada kesempatan ini saya menyampaikan terima kasih kepada :

- 1. Kedua orang tua saya (bapak dan ibu) yang telah memberikan cinta kasih sayang, doa yang besar buat saya, motivasi, dukungan moril dan materil kepada saya, juga kepada Kakak dan Adik dan memberikan dukungan kepada saya.
- 2. Bapak Ir. Arino Anzip, M.eng.Sc. selaku dosen pembimbing Tugas akhir.
- 3. Bapak Dr. Ir. Heru Mirmanto, H.T. selaku Kepala Departemen Teknik Mesin Industri FV-ITS.
- 4. Bapak Ir. Suhariyanto, M.T. selaku koordinator Tugas Akhir Departemen Teknik Mesin Industri FV-ITS.
- Bapak Ir. Budi Luwar Sanoto, M.T. selaku dosen wali yang telah membimbing dan memberikan motivasi selama menempuh perkuliahan di Departemen Teknik Mesin Industri FV-ITS.

- 6. Bapak Dr. Ir. Bambang Sampurno, M.T. selaku dosen pembimbing Kerja Praktek.
- 7. Bapak Ir. Witantyo, M.eng.Sc. selaku dosen pembimbing ITS Team Sapuangin.
- 8. Tim dosen penguji yang telah bersedia meluangkan waktu, tenaga dan pikiran dalam rangka perbaikan Tugas Akhir ini.
- 9. Bapak/Ibu dosen dan karyawan Departemen Teknik Mesin Industri FV-ITS yang telah membimbing selama perkuliahan.
- 10. Kapten Tek Weny selaku koordinator Tugas Akhir di Skatek 042 Lanud Iswahjudi, Magetan.
- 11. Letda Tek Henry Kriswanto selaku pembimbing di Engine Shop, Skatek 042 Lanud Iswahjudi, Magetan.
- 12. Pelda Bintoro selaku pembimbing lapangan di Engine Shop, Skatek 042 Lanud Iswahjudi, Magetan.
- 13. Febri, Arif, Kintan, Habib, Nanda, dan Fahmi sebagai partner tugas akhir yang bersedia berbagi ilmu.
- 14. Teman-teman ITS Team Sapuangin 2018/2019 sebagai partner team yang bersedia berbagi ilmu.
- 15. Ratu-ratu ku D3MITS 2016 yang selalu membantu saya.
- 16. Angkatan D3MITS 2016 yanga selalu membantu saya dalam perkuliahan.
- 17. Ernando selaku teman selalu mengingatkan saya untuk berkembang.
- 18. Olivia christy yang bersedia menjadi editing laporan.
- 19. Terima kasih Mantan-mantan yang sudah mendukung dalam pengerjaan Tugas Akhir ini.

Akhirnya semoga laporan Tugas Akhir ini dapat bermanfaat untuk sekarang dan masa depan yang akan datang. Saya menyadari bahwa dalam penulisan laporan ini masih banyak terdapat kekurangan, sehingga saran dan kritik yang membangun mampu menyempurnakan penulisan laporan dimasa yang akan datang.

Surabaya, Juli 2019

Penulis

DAFTAR ISI

LEMBA	AR PENGESAHAN vii
ABSTR	AKix
ABSTR	ACT xi
KATA I	PENGANTAR xii
DAFTA	R ISI xvii
DAFTA	R GAMBAR xxi
DAFTA	R TABEL xxv
DAFTA	R SIMBOL xxi
BAB I	PENDAHULUAN
1.1	Latar belakang1
1.2	Rumusan Masalah2
1.3	Batasan Maslah2
1.4	Maskud dan Tujuan3
1.5	Manfaat Pnelitian
1.6	Sistematika Penlitian4
BAB II	DASAR TEORI
2.1	Turbofan Engine7
2.1.1	Turbofan Civil8
2.1.2	Military Turbofan11
2.1.3	Komponen Military Turbofan Engine11
2.14	konfigurasi Turbofan20
2.1.5	Mixing Hot and Cold Streams16
2.1.6	Thrust Augmentation26
2.2	Local Isentropic Stagnation Properties
2.2.1	Local Isentropic Stagnation Properties Untuk Aliran
	Gas Ideal

2.3	Military Turbofan
2.4	Convergent-Dirvergent Nozzle
2.5	Maintenance Organization
2.5.1	Run-to-Failure Management
2.5.2	Preventive Maintenance
2.5.3	predictive Maintenace
2.5.4	Type of Predictive Maintenance 44
2.5.5	Primary of Predictive Maintenance
2.5.6	Predictive Maintence Teknik
BAB III	METODOLOGI PENELITIAN
3.1	Spesifikasi Engine F100-PW-220 (F-16)
3.1.1	Inlet Fan Module
3.1.2	Core Engien Module51
3.1.3	Gearbox Module
3.1.4	Fan Drive Turbine
3.1.5	Augmentor Module
3.2	Skema dari Engine F100-PW-22054
3.3	Metodologi Pengrjaan Tugas Akhir
3.4	Penjelasan Diagram Alir Pengerjaan Tugas AKhir 56
3.4.1	Studi Literatur
3.4.2	Observasi Lapangan
3.4.3	Perumusan Masalah
3.4.4	Pengambilan Data
3.4.5	Perhitungan Performa Turbin Gas

2.4.6	Analisa Performa Sebelum dan Setelah Perawatan 58
3.4.7	Penyusunan Buku Laporan59
3.5	Engine Test Cell
3.6	Prosedur Running Engine F100-PW-22061
3.6.1	Kondisi Idle62
3.6.2	Kondisi MILL (Kondisi Intermediate)63
3.6.3	Kondisi AB MAX (Full Throtle)64
BAB IV	PERHITUNGAN DAN PEMBAHASAN
4.1	Gambar Engine F100-PW-220 Pesawat F-16 A/B .67
4.2	Gambar Skema Engine F100-PW-220 Pesawat F-
	16A/B
4.3	T-s Diagram68
4.4	Data yang digunakan69
4.5	Perhitungan Kondisi Idle Before MRO72
4.6	Perhitungan Kondisi Idle After MRO108
4.7	Perhitungan Kondisi Mill After MRO145
4.8	Perhitungan Kondisi AB MAX After MRO181
4.9	Performa Dari Sebelun dan Sesudah MRO220
BAB IV	PENUTUP
5.1	Kesimpulan223
5.2	Saran
DAFTA	R PUSTAKA225
LAMPIR	AN

DAFTAR GAMBAR

Gambar 2.1 T-s Diagram Bryaton Cycle	7
Gambar 2.2 Turbofan Engine	8
Gambar 2.3 T-s Diagram Military Turbofan with	
Afterburning	11
Gambar 2.4 Subsonic Inlet	12
Gambar 2.5 Subsonic Inlet Flow Patterns	13
Gambar 2.6 Supersonic Inlet	13
Gamb ar 2.7 Fan	14
Gambar 2.8 Multistage Axial Compressor	15
Gambar 2.9 Straight-through Flow Combustor	15
Gambar 2.10 Combustion Chamber Tipe Can	16
Gambar 2.11 Combustion Chamber Tipe Annular	16
Gambar 2.12 Combustion Chamber Tipe Can Annular .	16
Gambar 2.13 Axial Flow Turbine Components	17
Gambar 2.14 Impluse Turbine	17
Gambar 2.15 Reaction Turbine	18
Gambar 2.16 convergent nozzle	19
Gambar 2.17 Convergent-divergent Nozzle	20
Gambar 2.18 Two Sspool	20
Gambar 2.19 Twin Spool	21
Gambar 2.20 Three Spool	21
Gambar 2.21 Two Spool Geared Fan	22
Gambar 2.22 Mixing Hot and Cold Streams	23
xxi	

Gambar 2.23 T-s Diagram Turbojet Dengan Afterburner 27
Gambar 2.24 Momentum Versus Rasio Temperature Afterburner
Gambar 2.25 local Isentropic Stagnasi Properties
Gambar 2.26 Compressible Flow In An Infinitesimal Strean Tube
Gambar 2.27 T-s Diagram Turbofan Dengan Afterburner 36
Gambar 2.28 Nozzle Keadaan Under-expended
Gambar 2.29 Nozzle Keadaan over-expended 42
Gambar 2.30 Type Predictive Maintenance
Gambar 3.1 Engine F100-PW-220 (F-16)
Gambar 3.2 Inlet Fan Module 50
Gambar 3.3 Core Engine Module
Gambar 3.4 Gearbox Module
Gambar 3.5 Fan Drive Turbine
Gambar 3.6 Augmentor Module
Gambar 3.7 Skema dari Engine F100-PW-220 54
Gambar 3.8 Diagram Alir Pengerjaan Tugas Akhir 56
Gambar 3.9 Engine Test Cell 59
Gambar 3.10 Display AM-20 C 60
Gambar 3.11 Contoh data sheet engine
Gambar 3.12 Engine Test Requirement
Gambar 3.13 Engine Kondisi Idle
Gambar 3.14 Data sheet engine kondisi idle
Gambar 3.15 Engine kondisi MILL

Gambar 3.16 Data sheet engine kondisi MILL64
Gambar 3.17 Engine kondisi AB MAX64
Gambar 3.18 Data sheet engine kondisi AB MAX65
Gambar 4.1 Engine F100-PW-22067
Gambar 4.2 Skema Mixed Flow Turbofan Engine With Afterburning
Gambar 4.3 T-s diagram Mixed Flow Turbofan Engine With Afterburning
Gambar 4.4 Grafik Thrust Sebelum dan Sesudah MRO220
Gambar 4.5 Grafik SFC Sebelum dan Sesudah MRO221

DAFTAR TABEL

Tabel 4.1 Data Operasi Sebelum Maintenance 69
Tabel 4.2 Data Operasi Setelah Maintenance
Tabel 4.3 Data Operasi Sebelum Dan sesudah maintenance (satuan SI) 71
Tabel 4.4 Data Kondisi Idle Before MRO72
Tabel 4.5 Data Pressure Tiap State Kondisi Idle Before
MRO73
Tabel 4.6 Data Temperature Tiap State Kondisi Idle Before MRO
Tabel 4.7 Data Nilai Konstata Yang Diketahui Kondisi Idle Before MRO74
Tabel 4.8 Data ISA Tabel Dengan Ketinggian 104 mdpl SI Kondisi Idle Before MRO
Tabel 4.9 Data mi Kondisi Idle Before MRO
Tabel 4.10 DataA6 dan A16 Kondisi Idle Before MRO91
Tabel 4.11 Data Properties State 6 Kondisi Idle Before MRO
Tabel 4.12 Data Properties State 16 Kondisi Idle Before
MRO96
Tabel 4.13 Data Momentum Balance Kondisi Idle Before MRO
Tabel 4.14 Data Properties 6A Kondisi Idle Before MRO 100
Tabel 4.15 Data Properties 7 Kondisi Idle Before MRO100
Tabel 4.16 DataA ₈ Kondisi Idle Before MRO
Tabel 4.17 DataA9 Kondisi Idle Before MRO 102

Tabel 4.18 B Data M State 9 Kondisi Idle Before MRO 103
Tabel 4.19 Data Properties State 9 Kondisi Idle Before
MRO104
Tabel 4.20 Data Pressure Rasio Kondisi Idle Before MRO 104
Tabel 4.21 Data Thrust Kondisi Idle Before MRO
Tabel 4.22 Data SFC Kondisi Idle Before MRO
Tabel 4.23 Data Kondisi Idle After MRO
Tabel 4.24 Data Pressure Tiap State Kondisi Idle After MRO 109
Tabel 4.25 Data Temperature Tiap State Kondisi Idle After MRO 110
Tabel 4.26 Data Nilai Konstata Yang Diketahui Kondisi Idle After MRO
Tabel 4.27 Data ISA Tabel Dengan Ketinggian 104 mdpl SIKondisi Idle After MRO113
Tabel 4.28 Data mi Kondisi Idle After MRO 115
Tabel 4.29 Data A6 dan A16 Kondisi Idle After MRO 127
Tabel 4.30 Data Properties State 6 Kondisi Idle After MBO 130
Tabel 4.31 Data Properties State 16 Kondisi Idle After
MRO133
Tabel 4.32 Data Momentum Balance Kondisi Idle After
MRO135
Tabel 4.33 Data Properties 6A Kondisi Idle After MRO136Tabel 4.34 Data Properties 7 Kondisi Idle After MRO 136
Tabel 4.35 Data A8 Kondisi Idle After MRO 137
Tabel 4.36 Data A9 Kondisi Idle After MRO 138
Tabel 4.37 Data M State 9 Kondisi Idle After MRO

Tabel 4.38 Data Properties State 9 Kondisi Idle After
MRO140
Tabel 4.39 Data Pressure Rasio Kondisi Idle After MRO141
Tabel 4.40 Data Thrust Kondisi Idle After MRO 143
Tabel 4.41 Data SFC Kondisi Idle After MRO144
Tabel 4.42 Data kondisi Mill After MRO145
Tabel 4.43 Data Pressure Tiap State kondisi Mill After
MRO146
Tabel 4.44 Data Temperature Tiap State kondisi Mill After
MRO146
Tabel 4.45 Data Nilai Konstata Yang Diketahui kondisi Mill
After MRO147
Tabel 4.46 Data ISA Tabel Dengan Ketinggian 104 mdpl SI
kondisi Mill After MRO149
Tabel 4.47 Data mi kondisi Mill After MRO151
Tabel 4.48 Data A6 dan A16 kondisi Mill After MRO164
Tabel 4.49 Data Properties State 6 kondisi Mill After
MRO166
Tabel 4.50 Data Properties State 16 kondisi Mill After
MRO169
Tabel 4.51 Data Momentum Balance kondisi Mill After
MRO172
Tabel 4.52 Data Properties 6A kondisi Mill After MRO 172
Tabel 4.53 Data Properties 7 kondisi Mill After MRO173
Tabel 4.54 DataA ₈ kondisi Mill After MRO174
Tabel 4.55 DataA9 kondisi Mill After MRO 175
Tabel 4.56 Data M State 9 kondisi Mill After MRO176

Tabel 4.57	Data Properties State 9 kondisi Mill After
	MRO176
Tabel 4.58	Data Pressure Rasio kondisi Mill After MRO. 177
Tabel 4.59	Data Thrust kondisi Mill After MRO 180
Tabel 4.60	Data SFC kondisi Mill After MRO181
Tabel 4.61	Data Kondisi AB AMX After MRO181
Tabel 4.62	Data Pressure Tiap State Kondisi AB AMX After MRO182
Tabel 4.63	Data Temperature Tiap State Kondisi AB AMX After MRO
Tabel 4.64	Data Nilai Konstata Yang Diketahui Kondisi AB AMX After MRO184
Tabel 4.65	Data ISA Tabel Dengan Ketinggian 104 mdpl SI Kondisi AB AMX After MRO
Tabel 4.66	Data mi Kondisi AB AMX After MRO
Tabel 4.67	Data A6 dan A16 Kondisi AB AMX After
	MRO
Tabel 4.68	Data Properties State 6 Kondisi AB AMX After MRO203
Tabel 4.69	Data Properties State 16 Kondisi AB AMX After MRO206
Tabel 4.70	Data Momentum Balance Kondisi AB AMX After MRO208
Tabel 4.71	Data Properties 6A Kondisi AB MAX After
	MRO
Tabel 4 72	Data Properties 7 Kondisi AB MAX After
1 and 1 - 1 - 1 - 2	
14001 4.72	MRO

Tabel 4.74 Data A9 Kondisi AB MAX After MRO	213
Tabel 4.75 Data M State 9 Kondisi AB MAX After	
MRO	214
Tabel 4.76 Data Properties State 9 Kondisi AB MAX	After
MRO	215
Tabel 4.77 Data Pressure Rasio Kondisi AB MAX Aft	er
MRO	216
Tabel 4.78 Data Thrust Kondisi AB MAX After MRO	218
Tabel 4.79 Data SFC Kondisi AB MAX After MRO 8.	219

DAFTAR SIMBOL

Ρ	= Pressure statis ,bar psi
Pt	= Pressure stasgnasi, bar psi
Т	= Temperature statis, C K
Tt	= Temperature stagnasi, C K
η_f	= Efisiensi fan
η_c	= Efisienasi compressor
η_t	= Efisiensi turbine
η_m	= Efisiensi mechanical
η_j	= Efisiensi jet
η_n	= Efisiensi nozzle
η_b	= Efisiensi burner
$\eta_{ ext{?}}$	= Polytropic efisiensi
ΔP_b	= Pressure drop burner, %
ср	= Spesific heat at constant pressure, KJ/kg K
k	= rasio of spesific heats
R	= gas constant, KJ/kg K
ρ	= dencity, kg/m ³
а	= sonic velocity, m/s
С	= velocity, m/s
М	= Mach number
Α	= Area/luasan, m ²
A*	= Area/luasan dengan M=1, m ²
ṁ	= massflow rate, kg/s
n	= eksponen
W	= work, KJ/kg
f	= feul/air rasio
D	= diameter, inchi m
j	= jet

π	= pressure rasio
r	= ram
d	= diffuser
f	= fan
сH	= Compressor high
t L	= Turbine low
t H	= Turbine high
m	= mixture
n	= nozzle
AB	= afterburning
F	= thrust, N
SFC	= spesific feul consumption
MRO	= maintenance repair overhoul
N2	= putaran high pressure, rpm
N1	= putaran low pressure, rpm

BAB I PENDAHULUAN

1.1 Latar Belakang

Dalam menjaga pertahanan suatu negara harus memiliki Alutsista yang baik dan siap setiap saat yang dibutukan oleh TNI (Tentara Nasional Indonesia) sebagai penjaga terdepan keamanan Negara Indonesia. Salah satu Alutsista adalah pesawat udara, yang memiliki peran dalam pengamanan dan keamanan udara diseluruh wilayah udara Negara Indonesia. Alutsista yang dimiliki oleh kesatuan TNI AU (Tentara Nasional Indonesia Angakatan Udara) yaitu pesawat tempur F-16 AB yang bermarkas di Wing 3 Lanud Iswahjudi, Magetan dan Skuadron Udara 16 Lanud Roesmin Nurjadin, Pekanbaru. Dalam memenuhi kebutuhan kesediaan pesawat tempur maka akan memerlukan ketersedian engine yang laik terbang. Di Skuadron Teknik 042 Lanud Iswahjudi, Magetan sebagai skuadron yang memiliki capability perawatan F-16 AB. Skuadron Teknik 042 memiliki bagian perawatan engine pesawat tempur F-16 AB yang ber-engine F100-PW-220 dan F100-PW-220E. Tugas utama dari divisi engine di Skuadron Teknik 042 Lanud Iswahjudi adalah menyediakan engine laik terbang untuk dua skuadron tersebut.

Engine F100-PW-220 berjenis turbofan mixed flow with after burning yang memiliki thrust maksimum 23.770 lbs (105,7 Kn) dan Mill 14.590 lbs (64,9Kn). Dalam menjaga agar engine memiliki perfoma yang maksimum, engine harus melakukan perawatan schedule maupun unschedule. Perawatan schedule sendiri memiliki hitungan usia pakai dari engine dan usia pakai dari part engine seperti fan, core, fan turbin drive, augmentor, dan gearbox. Sedangkan perawatan unschedule seperti terjadinya indikasi temperatur yang melebihi dari batasnya ditiap state. Dan di Skuadron Teknik 042, memiliki *capability maintenance up to intermediate* yang melakukan perawatan *engine*, penggantian part, namun tidak sampai *overhaul engine*.

Oleh karena itu, melalui tugas akhir ini akan dilakukan analisis perbandingan unjuk kerja *engine* turbin gas yang ada di Skuadron Teknik 042 Lanud Iswahjudi. Dari latar belakang tersebut maka penulis selanjutnya akan melakukan analisis untuk mengetahui performa *engine* turbin gas dengan menghitung tekanan dan temperatur setiap state. Sehingga akan diperoleh performa *engine* dan berapa efisiensi yang dihasilkan sebelum dan setelah dilakukannya *maintenance*.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah disampaikan diatas maka dapat dirumuskan permasalahan sebagai berikut:

- 1. Bagaimana prinsip kerja turbin gas pada aircraft?
- 2. Bagaimana prinsip *maintenance* turbin gas pada *aircraft*?
- 3. Bagaimana prinsip kinerja turbin gas pada aircraft?
- 4. Bagaimana pengaruh *maintenance* turbin gas terhadap kinerja tubin gas pada *aircraft*?

1.3 Batasan Masalah

Batasan masalah yang digunakan dalam penulisan tugas akhir ini antara lain sebagai berikut :

 Data yang didapat dari hasil pengambilan data pada data sheet running dan *running engine* di *test cell* di Skuadron 042, Lanud Iswahjudi pada tanggal 1 April 2016 sebelum *maintenance* sedangkan tanggal 2 April 2016 setelah *maintenance*.

- 2. Perhitungan yang dilakukan menggunakan data dari turbin gas pada *aircraft* pada saat kondisi IDLE, MILL, dan AB MAX.
- 3. Perhitungan yang dilakukan menggunakan siklus bryton untuk *turbonfan mixed flow with after burning*.
- 4. Tidak membahas material yang digunkan untuk membuat tubin gas *aircraft*.
- 5. Tidak membahas tentang perpindahan panas yang terjadi dalam tahap-tahap yang ada di turbin gas *aircraft*.

1.4 Maksud dan Tujuan

Dengan mengacu pada latar belakang dan permasalahan diatas maka tujuan dari penulisan tugas akhir ini yaitu:

- 1. Mengetahui prinsip kerja tubin gas pada aircraft.
- 2. Mengetahui maintenance turbin gas pada aircraft.
- 3. Mengetahui kinerja turbin gas pada aircraft.
- 4. Mengetahui pengaruh *maintenance* turbin gas terhadap kinerja turbin gas pada *aircraft*.

1.5 Manfaat Penelitian

Adapun manfaat yang dapat diperoleh dari penulisan Tugas Akhir ini adalah:

- 1. Menambah pengetahuan dan wawasan mengenai *thurst power* dalam bidang turbin gas pada *aircarft*.
- 2. Sebagai bahan masukan bagi para pembaca khususnya mahasiswa Departemen Teknik Mesin Industri yang membahas masalah dan topik yang sama.
3. Dengan adanya penelitian ini diharapkan dapat digunakan sebagai referensi perhitungan dalam menentukan laik terbang dari segi perawatan *aircraft engine* oleh Skuadron Teknik 042.

1.6 Sistematika Penulisan

Adapun sistematika penulisan tugas akhir ini terdiri dari 5 bab yaitu sebagai berikut :

BAB I PENDAHULUAN

Pada bab ini berisikan tentang latar belakang penulisan, rumusan masalah, batasan masalah, maksud dan tujuan, manfaat penelitian, dan sistematika penulisan.

BAB II DASAR TEORI

Bab ini berisi tentang teori-teori dari berbagai referensi yang kemudian digunakan sebagai dasar untuk melakukan perhitungan dan analisa perhitungan yang digunakan.

BAB III METODOLOGI PENELITIAN

Bab ini terdiri dari tahapan yang digunakan dalam melaksanakan penelitian dan penyusunan tugas akhir ini.

BAB IV PERHITUNGAN DAN PEMBAHASAN

Bab ini terdiri dari tahapan perhitungan performa turbin gas pada *aircraft* di Skuadron Teknik 042 sebelum dan sesudah *maintenance* serta analisa faktor – faktor yang mempengaruhinya.

BAB V PENUTUP

Bab ini berisi kesimpulan dari hasil perhitungan, perbandingan dan pembahasan yang telah dilakukan dan saran untuk *maintenance* turbin gas *aircraft* serta untuk penelitian selanjutnya.

LAMPIRAN

(halaman ini sengaja dikosongkan)

BAB II DASAR TEORI

Dalam perkembangan senjata sebagai alutsista pertahanan negara, terciptanya pesawat terbang tempur untuk memilindungi daerah udara negara. Dalam hal ini TNI mempunyai Angkatan Udara (AU) ditugaskan untuk menjaga wilyah udara. Untuk menjaga kedaulatan udara dibutuhkan pesawat tempur yang mampu terbang cepat.

2.1 TurbonFan Engine

Sebagai power plant untuk membangkitkan thrust besar, maka terciptanya turbonfan engine. Yang dikembangkan dari efisiensi propulsion jet engine. Dengan mengurangi kecepatan jet yang dioperasikan ke aliran subsonic. Berkurangnya kecepatan jet dari turbonfan dapat mengurangi tingkat kebisingan kepada daerah sekitar. Faktor penting dari turbofan ialah hasil putaranjet yang memiliki nilai ekonomis tinggi. Turbofan engine ini menggunakan siklus brayton. Dimana state 1 ke 2 merupakan kerja kompressi di *compressor*, state 2 ke 3 merupakan energi panas yang ditambahkan dengan pressure konstan, state 3 ke 4 merupakan *isentropic expansion* yang merubah energi tekanan menjadi energi kinetik dan juga menghasilkan *thrust* dari *exhaust*.

Gambar 2.1 T-s Diagram Bryaton Cycle (*Elements Of* Gas Turbine Propulsion)

Turbofan sendiri memiliki bagian utama bypas di *compressor, combustion chamber, turbine,* dan *nozzle.* Turbofan bekerja di dua daerah yang berbeda yaitu daerah *Hot* dan daerah *Cold,* dimana daerah *Cold* berasal dari compressi pada fan yang menghasilkan thrust yang besar, sedangkan daerah Hot dimana daerah core (gas generator) terjadinya heat transfer dari reaksi pembakaran di combustion chamber.

Gambar 2.2 Turbofan Engine (Gas Turbine Theory)

2.1.1 TurbonFan Civil

Turbofan banyak dikenalin dengan adanya bypass rasio (B). Yang dimaksud dengan bypass rasio dimana perbandingan aliran udara yang masuk antara *cold stream* dan *hot stream*. Dimana B(Gas Turbine Theory) didapat dari

$$B = m \frac{m_c}{m_h}$$

Sehingga

$$m_c = \frac{mB}{B+1}, m_h = \frac{m}{B+1} \operatorname{dan} m = m_c + m_h$$

Keterangan : m = massflow rate, kg/s $m_c = \text{massflow rate cold, kg/s}$ $m_h = \text{massflow rate hot, kg/s}$ B = bypass rasio

Untuk turbofan engine, di mana kedua aliran di ekspansi ke atmosfer menghasilkan *Thrust* di *nozzle* (*Gas Turbine Theory*), sebagai berikut:

$$F = \left(m_c C_{jc} + m_h C_{jh}\right) - m C_a$$

Keterangan;

F	= Thrust, N
C _{jc}	= Velocity jet cold, m/s
C _{jh}	= Velocity jet hot, m/s
Ca	= Velocity jet ambient, m/s

Dalam design turbofan memiliki perhitungan yang sama dengan turbojet. Hanya memiliki perbedaan sebagai berikut:

- overall pressure rasio dan turbine inlet temperature (*TIT*) ditentukan terlebih dahulu, tetapi perlu juga menentukan bypass rasio (*B*) dan *fan pressure rasio* (*FPR*).
- Dari kondisi inlet dan *FPR*, tekanan dan temperature dari aliran keluar fan dan masuk bypass duct dapat dihitung. Laju aliran massa turun di *bypass duct* dapat ditentukan dari total aliran massa dan *bypass rasio*. *Cold stream* dapat kita hitung sama seperti jet engine, udara sebagai fluida kerja. Perlu juga check aliran di *fan*

nozzle choked atau *unchoked*, jika choked bisa dihitung thrustnya.

• Dalam konfigurasi twin spool turbofan, fan diputar oleh LP turbin. Perhitungan high compressor dan turbin sama seperti turbojet, dan kondisi masuk LP turbin didapatkan. Mengingat kinerja yang dibutuhkan LP rotor (*Gas Turbine Theory*).

$$mc_{pa}\Delta T_{012} = \left(\eta_m m_h c_{pg}\Delta T_{056}\right)$$

Dan karenanya

$$\Delta T_{056} = \frac{m}{m_h} x \frac{c_{pa}}{\eta_m c_{pg}} x \Delta T_{012} = (B+1) x \frac{c_{pa}}{\eta_m c_{pg}} x \Delta T_{012}$$

Keterangan;

 c_{pa} = spesific heat constant pressure atm,KJ/kg K ΔT_{012} = delta temperature stagnasi state 1dan 2, K C η_m = efisiensi mechanical c_{pg} = spesific heat at constant pressure gas,KJ/kg K ΔT_{056} = delta temperature stagnasi state 1dan 2, K C

Jika nilai *B* diantara 0,3 sampai 8 atau lebih, dan itu merupakan effect dari penurunan temperature dan kebutuhan pressure rasio dari LP turbin. Diketahuinya To5, η_t , dan Δ T056, maka pressure rasio LP turbin didapat dan kondisi masuk *hot stream nozzle* didapat. Sehingga perhitungan dari hot stream thrust didapat.

• Jika dua stream bercampur perlu dicari kondisi setelah percampuran dengan enthalpy dan momentum balance.

2.1.2 Military turbofan

Engine military turbofan memiliki siklus yang sama dengan turbofan civil yaitu bryaton cylce. Akan tetapi yang membedakan antara military dan civil adanya reheat ketika stream keluar dari turbin. Reheat ini merupakaan adanya penambahan panas yang dihasilkan dari pembakaran di jet pipe. Pembakaran ini mengahasilkan panas dan pressure. Hasil pembakaran ini langsung dibuang ke atmosfer. Sehingga memiliki Thrust yang lebih besar dengan reheat. Reheat yang sering digunakan dalam military turbofan ialah afterburning.

Gambar 2.3 T-s Diagram Military Turbofan With Afterburning (*Elements Of Gas Turbine Propulsion*)

2.1.3 Komponen military turbofan engine

Dalam turbofan engine memiliki komponen-komponen utama. Yang digunakan untuk mencapai spesific thrust yang besar. Komponen-kompone ini menunjukan performa dari turbofan engine.

2.1.3.1 Inlet

Bagian dari engine yang paling depan, bertujuan untuk kecepatan udara, supaya sesuai mengurangi dengan compressor. Pengurangan kecepatan udara mengakibatkan kenaikan tekanan. Dalam pendesignan dari inlet mempertimbangkan efiseinsi proses compressi, gaya hambat dari luar, dan mass flow udara yang masuk inlet. Inlet memiliki dua jenis, ialah *subconic* dan *supersonic*. Dengan menggunakan kecepatan suara untuk menentukan jenis yang mana, udara cenderung lebih dikompresi, dan Mach number 1. Biasanyadi inlet akan terjadi shock wave. Jika aliran masuk subsonicn akan tidak terjadi shock wave dan efisein, sedangkan aliran supersonic terjadi shock wave. Shock wave dan compressibility udara memperngaruhi dalam desain inlet.

• Subsonic inlet, dapat menggunakan divergen *duct*. Yang memiliki Mach number lebih dari 1, menyebabkan shock wave terjadi di inlet dan compressi tidak efisien. Dirvergen duct beroperasi paling baik terhadap kecepatan, tetapi menurunkan efisien dari compressi dan menaikan gaya hambat luar.

Gambar 2.4 Subsonic Inlet (Elements Of Gas Turbine Propulsion)

Terdapat beberapa kecepatan yang terjadi di divergen duct yaitu low speed, design, high speed. Kecepatan rendah dan tinggi dari *divergen duct subsonic inlet*.

Gambar 2.5 Subsonic Inlet Flow Patterns (*Elements Of* Gas Turbine Propulsion)

Supersonic inlet, ketika shock wave akan terjadi di supersonic flow. Supersonic inlet didesign untuk menaikan efisien dari compresi dengan meminimalkan berat. Jika kecepatan dirubah dari supersonic ke subsonic dengan satu normal shok wave, efisien compresi relative tidak efisien. Jika beberapa shock wave digunakan miring, efisien compresi akan lebih efisien. Ada dua type dari supersonic inlet ialah ramp (two dimensial wedge) dan centerbody (three dimensila spike).

Gambar 2.6 Supersonic Inlet (Elements Of Gas Turbine Propulsion)

2.1.3.2 Fan

Merupakan bagian dari *compresso*r yang memiliki satu sampai tiga stage. Dimana disebut low pressure compressor.

hasil dari fan ini dibagi menjadi dua yaitu aliran *ho*t dan aliran *cold*. Aliran *hot* menuju *core* dan aliran *cold* menuju *bypas*s.

Gambar 2.7 Fan (Introduction Intermediate Level Maintenance F100-PW-220.)

2.1.3.3 Compressor

Fungsi compressor unutk menaikan pressure yang masuk ke *combustion chamber* sehingga power yang dihasilkandari pembakaran lebih efisien. Dengan menaikan pressure udara maka volume berkurang, dengan demikian pemcapuran fuel/ air terjadi dengan volume kecil.

• Axial compressor, aliran udara yang melalui axial compressor searah axial dari compressor. compressor ini terdiri dari rotor dan stator dengan seporos/ concentric dari sumbu putar. Satu rotor dan satu stator dimanakan satu stage. Kerja dari axial compressor dengan mengecilkan dimensi area yang dilalui aliran udara. Dengan mengecilkan dimensi area maka menaikan dencity. Axial compressor satu stage biasanya memiliki rasio pressure 1,1:1 sampai 1,2:1

sedangkan *axial compressor* multistage menghasilkan rasio pressure 12:1.

Gambar 2.8 Multistage Axial Compressor (*Elements* Of Gas Turbine Propulsion)

2.1.3.4 Combustion chamber

Fungsi dari combustion chamber untuk pencampuran dari fuel dan udara selanjutnya dibakar dan menyalurkan ke turbin dengan temperature yang sama. Temperature yang dihasilkan dari pembakaran tidak boleh melebihi dari temparature turbin. Aliran udara yang masuk combustion chamber dibagi dua, yang pertama untuk pembakaran dan yang kedua untuk pendinginan di dinding-dinding combustion chamber. Rasio campuran dari fuel/udara divariasikan dari 30 sampai 60 udara dan 1 *fuel* dari beratnya. Rata-rata engine baru didesign dengan rasio *fuel*/udara 40:1.

Gambar2.9 Straight-through Flow Combustor (*Elements Of Gas Turbine Propulsion*)

Di combustion chamber memiliki beberapa tipe berikut ini tipe tipe dari combustion chamber;

• Can, teridiri dari beberapa casing tabung yang disusun melingkar

Gambar 2.10 Combustion Chamber Tipe Can (Elements Of Gas Turbine Propulsion)

• Annular, terdiri dari tabung besar

Gambar 2.11 Combustion Camber Tipe Annular (Elements Of Gas Turbine Propulsion)

• Can annular, combustion chamber yang gabungan dari can dan annular.

Gambar 2.12 Combustion Chamber Tipe Can Annular (Elements Of Gas Turbine Propulsion)

2.1.3.5 Turbine

Fungsi dari turbine mengubah energi kinetic menjadi gerak berupa putaran potos unutk menggerakan *compressor* dan *accessories* yang berasal dari *combustion chamber*. Hampir tiga per empat energi yang dihasilkan *combustion* unutk memutarkan *compressor*, *axial flow turbine* memiliki *rotor* dan *stator* yang seporos/ *concetric*.

Gambar 2.13 Axial Flow Turbine Components (*Elements Of Gas Turbine Propulsion*)

Ada dua tipe dari ax*ial turbine* yaitu *impluse turbine* dan *reaction turbine*.

• *Impluse turbine*, perubahan dari kecepatan relative rotor dengan kecepatan realtive inlet rotor tetapi tidak merubah pressure antara inlet rotor dan keluar rotor. Stator dari impluse turbine menaikan kecepatan dan mengurai pressure gas hasil pembakaran.

Gambar 2.14 Impluse Turbine (Elements Of Gas Turbine Propulsion)

• *Reaction turbine*, kecepatan realtive rotor naik dan pressure menurun antara rotor blade. Stator mengubah aliran.

Gambar2.15 Reaction Turbine(Elements Of Gas Turbine Propulsion)

Banyak jet engine yang memadukan dua type axial turbine tersebut. Dalam mendesign *turbine* miliki beberapa hal yaitu *rpm shaft, gas flow rate, temperature inlet* dan *outlet,* pressure inlet dan outlet, kecepatan exhaust dan keluaran power yang dibutuhkan.

2.1.3.6 Nozzle

Tujuan dari exhaust menaikan kecepatan sebelum keluar dari *nozzle* yang berasal dari turbine. Untuk menghasilkan kecepataan keluar *nozzle* yang tinggi maka harus menurunkan pressure. *Expasion* proses di atur Rasio pressure yang melewati *nozzle*, dan pressure keluar sama dengan pressure sekitar (atm) maka *thrust* akan maksimum. Ada dua tipe dari *nozzle* yaitu *convergent nozzle* dan *convergent dirvergent nozzle*.

• *Convergent nozzle*, simple *duct nozzle*. Ketika rasio pressure *nozzle* (pressure keluar *turbine* ke pressure keluar *nozzle*) dibawah 2, maka digunakan convergent

nozzle. Dan biasanya digunakan *low thrust engine* untuk pesawat *subsonic*.

Gambar 2.16 Convergent Nozzle (Elements Of Gas Turbine Propulsion)

• Convergent-dirvergent nozzle, terdiri dari convergent duct dan divergent duct, dimana dimensi area terkecil bernama throat. Banyak convergent-divergent digunkan untuk pesawat supersonic, yang kontruskinya rumit. Dengan penggabungan variabel area dan aerodynamika. Hanya throat dan keluar nozzle area yang diatur menggunakan mekanical. Convergentdivergnet nozzle mengunakan rasio pressure yang tinggi, unutk menghasilkan spesific thrust yang tinggi. Jika engine menggunakan afterburner, throat dan keluar nozzle divariasikan sesuai kondisi aliran yang berbeda dan menghasilkan thrust maksimum.

Gambar 2.17 Convergent-divergent Nozzle (Elements Of Gas Turbine Propulsion)

2.1.4 Konfigurasi Turbon Fan

Parameter yang mempengaruhi sangat besar dalam siklus turbofan besar adalah efek mechanical design pada engine dari permasalahan turbojet. Oleh karena ini bypass rasio divariasikan di komponen diameter, rpm, dan konfigurasi *low* dan hig*h bypass rasio engine* benar benar berbeda. Ada empat konfigurasi yang digunakan untuk memperoleh *bypass rasio* dan *overall pressure rasio* yang besar.

2.1.4.1 Two spool

Dari konfigurasi ini memiliki stage LP rotor besar, menyebabkan pressure rasio kecil karena kecepatan dari low blade rendah. Biasanya disebut "*booster stages*".

Gambar 2.18 Two Sspool (Elements Of Gas Turbine Propulsion)

2.1.4.2 Twin spool

Konfigurasi ini lebih *attrative*, tetapi membutuhkan pressure rasio sangat besar dari *HP compressor*, yang menyebabkan ketidakstabilan dari bagian 1,2.

Gambar 2.19 Twin Spool (Elements Of Gas Turbine Propulsion)

2.1.4.3 Three spool

Konfigurasi ini banyak hal yang menarik, dengan pressure rasio yang sederhana ditiap *compressor*. Semua bagian digunakan untuk turbofan yang besar.

Gambar 2.20 Three Spool (Elements Of Gas Turbine Propulsion)

2.1.4.4 Two spool geared fan

Konfigurasi ini memungkinkan untuk engine yang kecil, dan ini dikembangkan berdasarkan pada turboprop. Power minimum yang dibutuhkan untuk turbin fan besar diatas 60MW dan design untuk *gearbox* yang ringan dari engine sangat susah.

Gambar 2.21 Two Spool Geared Fan (Elements Of Gas Turbine Propulsion)

2.1.5 Mixing of Hot and Cold streams

Percampuran dari hot dan cold stream sangat diperlukan untuk turbofan, ketikan meningkatkan thrust maksimum pada saat afterburning, untuk mengurangi kebutuhan pemanasan ulang dalam combustion system. Dalam pengaplikasikan percampuran di transport subsonic menguntungkan, menghasilkan keuntungan kecil tapi signifikan dalam SFC. Dalam perhitungan dengan menggunakan constant area duct, tidak ada losses, dan asumsi adiabatic flow.

Gambar 2.22 Mixing Hot and Cold Streams (Gas Turbine Theory)

Dengan *enthalpy balance*, notasi *m* untuk *properties* dari *mixed stream*, yang bersumber dari buku *Gas Turbine Theory*.

 $m_c c_{pc} \Delta T_{02} + m_h c_{ph} \Delta T_{06} = m c_{pm} \Delta T_{07}$

Dimana m = mc + mh

Dengan persamaan hubungan *propertis mixture* dari didapat, yang bersumber dari buku *Gas Turbine Theory*.

$$c_{pm} = \frac{m_c c_{pc} + m_h c_{ph}}{(m_c + m_h)}$$
$$R_m = \frac{m_c R_c + m_h R_h}{(m_c + m_h)}$$
$$\left(\frac{\gamma}{\gamma - 1}\right)_m = \frac{R_m}{c_{pm}}$$

Dari momentum balance,

$$(m_c C_c + P_2 A_2) + (m_h C_h + P_6 A_6) = m C_7 + P_7 A_7$$

Keterangan;

c_{pc}	= spesific heat constant pressure cold,KJ/kg K
c_{ph}	= spesific heat constant pressure hot,KJ/kg K
c_{pm}	= spesific heat constant pressure mix,KJ/kg K
R_c	= gas konstan cold, KJ/kg K
R_h	= gas konstan hot, KJ/kg K
γ	= specific heat rasio
C_c	= velocity cold, m/s
P_2	= pressure statis state 2, bar psi
A_2	= area state 2, m ²
P_6	= pressure statis state 6, bar psi
A_6	= area state 6, m ²
<i>C</i> ₇	= velocity state 7, m/s
P_7	= pressure statis state 27, bar psi
A_7	= area state 7, m ²

Jika tidak ada putaran angin (aliran turboline) pada area jet downstream section A, pressure static dari luas penampang duct sama ,jadi $P_2 = P_6$ yang bersumber dari buku *Gas Turbine Theory*.

Dari kontinuitas

 $m = \rho_7 C_7 A_7$

Keterangan;

 ρ_7 = dencity state, kg/m³

Pressure setelah percampuran, P_{07} digunakan unutk perhtiungan siklus, karena pressure stagnasi masuk ke *nozzle*. Ketika udah diketahui, perhitungan thrust sama dengan turbojet. Perhitungan P_{07} simple jika Mach numbers di cold dan hot stream diketahui. Mach number di hot strean tetap dari design turbin, dan M_6 bernilai 0,5 keatas. M_6 diketahui P statis dan P dan T stagnasi. Lalu perhitungan dilanjutkan

- Dikethaui M₆,T₀₆, dan P₀₆, dapat dicariP₆ dan C_h, P₆ dan T₆dapat menentukan ρ₆, karena A₆ dari kontinuitas. Didapat (m_hC_h + P₆A₆).
- Dengan $P_2 = P_6$, P_2/P_{02} kita dapat nilai M_2 . Dengan M_2 , P_{02} dan T_{02} diketahui kita bisa mencari C_c dan A_2 , jadi kita ketahui ($m_cC_c + P_2A_2$).
- $A_7 = A_6 + A_2 \operatorname{dan} m = \rho_7 C_7 A_7 = \frac{P_7}{(R_m T_7)} C_7 A_7$
- T_{07} diketahui dari entalphy balance, tetapi P_7 maupun P_{07} tidak dikethaui, kita memberikan nilai M_7 , dan cari T_7 dan C_7 , dari kontuinitas kita didapat P_7 .
- Sekarang kita perlu check nilai dari $mC_7 + P_7A_7$ sama dengan nilai dari momentum balance.
- Lalu iterasi M_7 sampai P_7 di ketahui.
- P_{07} dikethaui dari P_7, M_7 .

Pressure keluaran dari P_{02} lebih besar dari P_{06} losse dari permcampuran sangat minimal. Biasanya p02/p06 bernilai 1,05-1,07. Dalam prakteknya perubahan kecil dari parameter menyebabkan perubahan rasio P_{02}/P_{06} secara signifikan dan meniadakan dari keuntungan pecampuran. Tidak ada dasaran yang kuta untuk menggunakan mixing atau tidak juga diperngaruhi instalasi dan berat engine, sebagai indikasi terjadinya pressure drop.

Turbofan yang diperuntukan untuk pesawat tempur menggunkan exhaust campuran, dan biasanya memiliki low bypass rasio 0,3 sampai 0,5, dan konfigurasi menyerupai dengan jet engine dari pada engine pesawat komersil yang bypass rasio besar. Pesawat tempur membuthkan afterburning saat take off maupun bertempur, dan bypass dan core flow dari engine bercampur sebelum afterburner. Memperhatikan itu keluar fan dan keluar turbin pressure harus mendekati sama, sehingga fan pressure rasio (FPR) dan engine pressure rasio (EPR) hampir sama. Dulu thrust yang dihasilkan berkaitan langsung dengan *egine pressure rasio* (EPR) sedangkan *engine low bypass military* biasanya ditentukan oleh *fan pressure rasio* (FPR). Modern military engine biasanya menggunakan tiga *stage fan* dengan *pressure rasio* 3,5 sampai 4,0.

2.1.6 Thrust Augmentation

Untuk menghasilkan thrust engine yang diatas dari design semula ada beberapa cara alternative. Dengan menaikan turbine inlet temperature, akan menaikan *spesific thrust* dan dari *thrust* didapat ukuran engine. Selain itu dengan menaikan *massflow* masuk ke engine tanpa mengubah silkus parameter. Kedua metode ini sama sama mengebuah design lama dan memungkinkan meningkatkan thrust.

Frekuensi dalam membutuhkan peningkatan thrust seperti *take off, acceleration* dari *subsonic* ke *supersonic*, atau untuk manuver dalam pertempuran udara. Disitulah kondisi yang membutuhkan *thrust augmentation*. Metode Thrust augmentation yang banyak digunkan yaitu metode *liquid injection* dan *afterburning* (*reheat*).

Liquid injection peran utama meningkatkan take off thrust. karena liquid sangat berpengaruh terhadap berat tetapi jika liquid injection digunakan selama take off maka tidak banyak pengaruhanya terhadap berat. Penyemportan air di compressor inlet menyebabakan terjadinya evaporasi air, hasil extrasi ini menurunkan temperature compressor inlet. Efek dari itu akan menaikan thrust turbojet, karen menaikan pressure rasio dan mass flow meningkatkan rpm dari compressor. Dalam prateknya air dicampur methanol, methanol mempunyai nilai *freezing* lebih rendah dari air dan ketika *injection* akan terbakar di *combustion chamber*. Hasilnya *"blockage" compressor* akan memiliki pressure rasio tinggi yang menyebakan peningkatan dari *thrust*.

Afterburning, merupakan pembakaran tambahan dengan menambahkan *fuel* di *jet pipe*. Dari proses ini tidak ada putaran yang meningkat akan tetapi tempuratur yang dihasilkan lebih besar dari inlet tubine. Dari Pembakaran secara *stoichiometric* menghasil maksimum *thrust augmentation* dan *temperature* mungkin diatas 2000 K. Seperti turbojet dengan *afterburner* dibawah ini:

Gambar2.23 T-s Diagram Turbojet Dengan Afterburner(Gas Turbine Theory)

Dari T-s diagram turbojet dengan *afterburner* jelas *fuel flow* yang dibutuhkan meningkat jelas temperature relative naik di *combustion chamber* dan *afterburner*, dan menaikan *spesific fuel comsaptition* (SFC). diasumsikan *ckoked convergen nozzle*, kecepaan jet sesuai dengan kecepatan sonic yang menghasilakan temperature *nozzle* sesuai T_5 atau T_7 tergantung dengan *afterburner* atau tidak. Kecepatan bisa didapat $(\gamma RT_c)^{1/2}$, dengan T_c didapat dari $T_{06}/T_c = (\gamma+1)/2$ atau $T_{04}/T_c = (\gamma+1)/2$. Jika mengikuti perbandingan kecepatan jet $\sqrt{T_0}$ di inlet sampai *nozzle*, dan relative momentum gross turbo jet engine, akan meningkatkan rasio $\sqrt{T_{06}/T_{04}}$.

Sebanding pas untuk engine dengan afterburner diagbungkan dengan variable dari nozzle karena besarnya dencity sebanding dengan kenaikan dari temperature yang besar. Normalnya afterburner di operasikan saat engine memiliki putaran penuh tetapi thrust maksimum belum tercapai sesuai design. Afterburner di design saat putaran yang sama, dan aliran yang melewati nozzle sama akan tetapi mengurangi dencity. Hal ini bisa didapat jika menggunkan variable area, pressure thrust akan meningkat jika diperbesar area nozzle. Pressure losses dipengaruhi oleh friksi dari fluid dan momentum yang dihasilkan dari penambahan panas. Di dalam combustion chamber menghasilakan banyak friksi akan tetapi perubahan momnetum dari afteburner losses jauh lebih penting. Peningkatan temperature bisa dicari dengan temperature keluar dari turbin dan fuel/gas rasio di afterburner. Pressure losses didapat dari temperature rasio di afterburner dan mach number saat masuk afterburner. Jika mach number terlalu tinggi, temperature yang dilepaskan menghasilkan mach number di downstream mencapai 1 dan memiliki batas panas yang dilepas. Fenomena ini disebut thermal choking. Dibawah ini ditampilkan perbandingan antara pressure losses dan perubahan momentum.

Gambar 2.24 Momentum Versus Rasio Temperature Afterburner(Gas Turbine Theory)

2.2 Local isentropic stagnasi properties

Sebagai dasaran menentukan (P,T, ρ ,u,h,s,V) dalam keadaan *compressible*, yang mengalir kita harus tahu perubahannya. Sebagai referensi kondisi titik ke titik. Keadaan stagnasi meruapak keadaan dimana V=0, sehingga bisa diketahui nilai T_0 , P_0 , ρ_0 , u_0 , h_0 , s_0 .Dalam proses isentripis tidak terjadi gesekan, tidak ada panas keluar maupun masuk. Local dikarenakan tiap kondisi memiliki perbedaan properties, sehinggan nilai dititik 1 beda dengan nilai titik 2. Proses ini disebut *local insetropic stagnasi properties*. Jika isentropic $s_{01} = s_1$ dan $s_{02} = s_2$, yang sebenarnya tidak sama. $s_1 = s_2 = s_{01} = s_{02}$ sehingga dianggap sama ketika stagnasi. Jika tidak isentropic diganti dengan local unutk menentukan kondisinya tiap titik. *Isentropic stagnasi* ketika aliran *incompressible flow* seperti hukum bernauli yang bersumber *Introduction To Fluid Mechanic*;

$$\frac{PV}{\rho 2} + g.z = constant$$

Keterangan;

g = gravitasi, m/s^2

z = elevation, m

Dengan keadaan steady state, incompressble flow, tidak ada friksi, dan alirannya laminer. Persamaan diatas akan valid jika tidak ada heat transfer, adiabatic reversible. Sedangkan untuk compressible flow yang bersumber Introduction To Fluid Mechanic;

$$P_0 = P + \frac{1}{2}\rho.V^2$$

Keterangan;

 P_0 = pressure stagnasi, bar psi

Gambar 2.25 local Isentropic Stagnasi Properties (Introduction To Fluid Mechanic.)

2.2.1 Local isentropic stagnation properties unutk aliran gas ideal

Untuk compressible flow kita memperoleh isnetropic stagnasi menggunakan mass convestion (*continuity*) dan momentum balance dengan diffeerensial control volume yang bersumber *Introduction To Fluid Mechanic*;

• Persamaan Continuity

Persamaan yang bersumber *Introduction To Fluid Mechanic*;

$$= 0(1)$$

$$\frac{\partial}{\partial t} \int_{CV} \rho \, d\Psi + \int_{CS} \rho \vec{V} \cdot d\vec{A} = 0$$

Dengan asumsi: steady state, dan aliran sama disetiap section yang bersumber *Introduction To Fluid Mechanic*; Sehingga

$$(-\rho V_x A)(\rho + d\rho)(V_x + dV_x)(A + dA) = 0$$

Atau

$$\rho V_x A = (\rho + d\rho)(V_x + dV_x)(A + dA)$$

• Persamaan momentum

Persamaan yang bersumber *Introduction To Fluid Mechanic*;

$$= 0(3) = 0(1)$$

$$F_{S_x} + \int_{B_x} = \frac{\partial}{\partial t} \int_{CV} V_x \rho dV + \int_{CS} V_x \rho \vec{V} \cdot d\vec{A}$$

Asumsi: $F_{Bx} = 0$, tidakada gesekan

Gambar2.26 Compressible Flow In An Infinitesimal Strean Tube (*Introduction To Fluid Mechanic.*)

Permukaan yang mengasilkan gaya sangat kecil dengan menggunkan control volume yang bersumber *Introduction To Fluid Mechanic*;

$$F_{Sx} = dR_x + PA - (P + dP)(A + dA)$$

Gaya dari dR_x diaplikasikan seperti gambar diatas, dimanapressure rata-rata p + dp/2 dan area yang searah sumbu x dA yang bersumber *Introduction To Fluid Mechanic*;

$$F_{Sx} = \left(P + \frac{dP}{2}\right)dA + PA - (P + dP)(A + dA)$$

Atau

$$F_{s_x} = p \, dA + \frac{dp \, A}{2} + pA - pA - dp A - p \, A - dp \, A$$

Subsitusi hasil dari persamaan momentum, $-dpA = V_x \{-\rho V_x A\} + (V_x + dV_x) \\ \{(\rho + d\rho)(V_x + dV_x)(A + dA)\}$

Disederhanakan

$$-dp.A = (-V_x + V_x + dV_x)(\rho V_x A)$$

Dan

$$dp = -\rho V_x \, dV_x = -\rho . \, d\left(\frac{V_x^2}{2}\right)$$

Atau

$$\frac{dp}{\rho} + d\left(\frac{V_x^2}{2}\right) = 0$$

Sebelum mehubungkan antara awal dan akhir stagnasi, kita harus mengetahui nilai dari pressure p dan density p.

Ketika penurunan kecepatan terjadi proses isentropic. Maka nilai p danpunutk gas ideal sebagai berikut yang bersumber *Introduction To Fluid Mechanic*;

$$\frac{p}{\rho^k} = constant$$

Keterangan;

P = pressure, bar psi

k = spesific heat rasio ρ = dencity, kg/m³

Melalui persama ini kecepatan sama, V_x . Maka bisa diturunkan yang bersumber *Introduction To Fluid Mechanic*;

Dari p/ ρ^k = constant = C

$$p = C\rho^k \ dan \ \rho = \rho^{1/k}C^{-1/k}$$

Sehingga,

$$-d\left(\frac{V^2}{2}\right) = \frac{dp}{\rho} = \rho^{-1/k} C^{1/k} dp$$

Keterangan;

Р	= pressure, bar psi
k	= spesific heat rasio
ρ	= dencity, kg/m ³
V	= velocity, m/s

Kita bisa hubungkan antara awal state dan stagnasi state yang bersumber *Introduction To Fluid Mechanic*;

$$-\int_{V}^{0} d\left(\frac{V^{2}}{2}\right) = C^{1/k} \int_{p}^{p_{0}} p^{-1/k} dp$$

Menjadi,

$$\frac{V^2}{2} = C^{1/k} \frac{k}{k-1} \left[p^{(k-1)/k} \right]_p^{p_0} = C^{1/k} \frac{k}{k-1} \left[p_0^{(k-1)/k} - p^{(k-1)/k} \right]$$
$$\frac{V^2}{2} = C^{1/k} \frac{k}{k-1} p^{(k-1)/k} \left[\left(\frac{p_0}{p} \right)^{(k-1)/k} - 1 \right]$$

Sejak $C^{-1/k} = \rho^{1/k} / \rho$

$$\frac{V^2}{2} = \frac{k}{k-1} \frac{p^{1/k}}{\rho} p^{(k-1)/k} \left[\left(\frac{p_0}{p} \right)^{(k-1)/k} - 1 \right]$$
$$\frac{V^2}{2} = \frac{k}{k-1} \frac{p}{\rho} \left[\left(\frac{p_0}{p} \right)^{(k-1)/k} - 1 \right]$$

Ketika mendapatkan pressure stagnasi, kita bisa menulis ulang yang bersumber *Introduction To Fluid Mechanic*;

$$\left(\frac{p_0}{p}\right)^{(k-1)/k} = 1 + \frac{k-1}{k} \frac{\rho}{p} \frac{V^2}{2}$$

Dan

$$\frac{p_0}{p} = \left[1 + \frac{k-1}{k} \frac{\rho V^2}{2p}\right]^{k/(k-1)}$$

Untuk gas ideal, $p = \rho RT$ dan karenanya

$$\frac{p_0}{p} = \left[1 + \frac{k-1}{2} \frac{V^2}{kRT}\right]^{k/(k-1)}$$

Juga, untuk gas ideal kecepatan suara $c = \sqrt{kRT}$

$$\frac{p_0}{p} = \left[1 + \frac{k - 1}{2} \frac{V^2}{c^2}\right]^{k/(k-1)}$$
$$\frac{p_0}{p} = \left[1 + \frac{k - 1}{2} M^2\right]^{k/(k-1)}$$

Keterangan;

k = spesific heat rasio

R = gas konstan

c = kecepaatan sonic, m/s

M = Mach number

Dari persamaan diatas kita bisa mengtahui local isentropic stagnation pressure jika pressure stastis dan Mach number diketahui.

Kira bisa mendapatkan isentropic stagnasi properties dengan mengunakan yang bersumber *Introduction To Fluid Mechanic*;

$$\frac{p}{\rho^k} = constant$$

Antara kondisi terakhir. Didapat

$$\frac{p_0}{p} = \left(\frac{\rho_0}{\rho}\right)^k$$
 and $\frac{\rho_0}{\rho} = \left(\frac{p_0}{p}\right)^{1/k}$

Untuk gas ideal, maka

$$\frac{T_0}{T} = \frac{p_0}{p} \frac{\rho}{\rho_0} = \frac{p_0}{p} \left(\frac{p_0}{p}\right)^{-1/k} = \left(\frac{p_0}{p}\right)^{(k-1)/k}$$

Dari persamaan diatas kita bisa mencari nilai local isentropic stagnation untuk gas ideal yang bersumber *Introduction To Fluid Mechanic*;

$$\frac{p_0}{p} = \left[1 + \frac{k-1}{2}M^2\right]^{k(k-1)}$$
$$\frac{T_0}{T} = 1 + \frac{k-1}{2}M^2$$
$$\frac{\rho_0}{\rho} = \left[1 + \frac{k-1}{2}M^2\right]^{\frac{1}{k-1}}$$

2.3 Military turbofan

Dalam mencapai thrust yang maksimum dengan *spesific fuel comsaption (SFC)* yang rendah dan tingkat kebisingan yang rendah muncullah turbofan. Maupun sipil dan military membutuhkan hal tersebut. Akan tetapi untuk mencapai thrust maksimum dari design, pesawat terbang military diperlukan reheat. Hal ini yang membedakan dari civil dan military. Dengan dua aliran dari *core* dan *bypaas rasio* dicampur terus dilakukan reheat di *afterburner*, lalu dikontrol oleh variable area *nozzle* untuk menghasilkan trhrust maksimum. T-s digran dari siklus ideal mixed floew turbofan with afterburner,

Gambar 2.27 T-s Diagram Turbofan Dengan Afterburner (*Elements Of Gas Turbine Propulsion*)

Dalam modern pesawat tempur menggunakn engine type ini karena menghasilkan *spesific thrust* yang besara dengan afterburner hidup dan *spesific fuel consumption (SFC)* lebih rendah dari turbojet dengan *afterburner* mati. Dengan satu *inlet* dan *exhasut* dari engine, *thrust* siklus ideal engine yang berasal dari (*Elements Of Gas Turbine Propulsion*).

$$\frac{F}{\dot{m}_0} = \frac{A_0}{g_C} \left(\frac{V_9}{a_0} - M_0 \right)$$

Keterangan;

 $g_c = \text{konstanta}$

Analisa dari engine jenis ini menggunakan total pressure dan total temperature rasio di daerah campuran yang berasal dari (*Elements Of Gas Turbine Propulsion*).

$$\tau_M = \frac{T_{t6A}}{T_{t6}} \quad dan \quad \pi_M = \frac{P_{t6A}}{P_{t6}}$$

Keterangan;

 τ_M = rasio temperature mixture π_M = rasio pressure mixture

Aliran yang melaui bypass station 13 dan 16 bersifat reversible dan adiabatic. Bypass stream masuk daerah campuran station 16 sama dengan nilai properties di station 13, dengan energy balance campuran bisa ditentukan yang berasal dari (*Elements Of Gas Turbine Propulsion*).

$$\dot{m}_0 c_p T_{t6} + \dot{m}_6 c_p T_{t16} = \dot{m}_{6A} c_p T_{t6A}$$

atau

$$T_{t6} + \alpha T_{t13} = (1 + \alpha) T_{t6A}$$

sejak $T_{t6} = T_{t5}$ sehingga

$$\tau_M = \frac{1 + \alpha T_{t13} / T_{t5}}{1 + \alpha}$$

persamaan ini dapat ditulis persamaan engine τ 's dan bypass rasio α

$$\tau_M = \frac{1}{1+\alpha} \Big(1 + \alpha \frac{\tau_r \tau_f}{\tau_\lambda \tau_t} \Big)$$

Keterangan;

$ au_t$	= rasio temperature turbine
$ au_{\lambda}$	= rasio temperature mixture
$ au_r$	= rasio temperature ram
$ au_f$	= rasio temperature fan
α	= fuel/ rasio

Dengan fluida dynamic nilai statis pressure di station 6 dan 16 sama. Biasanya dalam mendesign dari campuran dari dua masukan aliran memiliki mach number hampir sama. Unutk siklus ideal pressur total dari dua aliran sama, atau

$$P_{t6} = P_{t16}$$

Rasio pressure total dari pemcampuran diasumsikan turbofan engine ideal menjadi 1, atau

$$\pi_M = \frac{P_{t6A}}{P_{t6}} = 1$$

Sama pressure total di station 6 dan 16 memrlukan rasio pressure total station 3 dan 13, sama station 3 dan 6. Rasio pressure total pada burner menjadi 1, sehingga

$$\frac{P_{t3}}{P_{t13}} = \frac{P_{t3}/P_{t2}}{P_{t13}/P_{t2}} = \frac{\pi_c}{\pi_f} = \frac{P_{t3}}{P_{t5}} = \frac{P_{t4}}{P_{t5}} = \frac{1}{\pi_t}$$

Dari T-s diagram station 13,16,6,6A, dan 9 mempunyai presure total yang sama. Ketika afterburner menyala, terjadi proses isnetropic antara state t9 dan 9 sebagai aliran yang keluar dari exhaust nozzle. Ketika afterburner mati, aliran yang masuk exhaust nozzle sama keadaan t6A dan keluar 9'.

Ketikan kompresi dan expansi terjadi proses insetropic, maka

$$\frac{1}{\tau_t} = \frac{\tau_c}{\tau_f}$$

Analisa siklus

Power yang dihasilkan dari turbine, fan dan compressor dikembangkan dan mempunyai hhubungan dengan rasio pressur total yang melewati komponen tersebut:

$$\tau_t = 1 - \frac{\tau_r}{\tau_\lambda} [\tau_c - 1 + \alpha (\tau_f - 1)]$$

Untuk mengatahui nilai dari τ_r , τ_λ dan τ_c , nilai τ_f didapat dari persamaan sebelumnya. Dari dua persamaan ini kita bisa mengetahui nilai bypass rasio α dari variable lain dan rasio temperature total dari fan.

$$\frac{\tau_f}{\tau_c} = 1 - \frac{\tau_r}{\tau_\lambda} [\tau_c - 1 + \alpha (\tau_f - 1)]$$

Atau

$$\tau_f = \tau_c - \frac{\tau_r \cdot \tau_c}{\tau_\lambda} [\tau_c - 1 + \alpha (\tau_f - 1)]$$

Kasus 1, rasio fan pressure π_f ditentukan, bypass rasio α bisa dikethaui dari persamaan
$$\alpha = \frac{\tau_{\lambda}(\tau_c - \tau_f)}{\tau_r \tau_c(\tau_f - 1)} - \frac{\tau_c}{\tau_f}$$

kasus 2, bypass α ditentukan, τf didapat

$$\tau_f = \frac{\tau_\lambda/\tau_r - (\tau_c - 1) + \alpha}{\tau_\lambda/(\tau_r \tau_c) + \alpha}$$

Rasio kkecepatan V_9/a_0 didapat,

$$\left(\frac{V_9}{a_0}\right)^2 = \frac{T_9}{T_0}M_9^2$$

Dimana

$$M_9^2 = \frac{2}{\gamma - 1} \big(\tau_r \tau_f - 1 \big)$$

Rasio temprature T_{t9}/T_0 didapat dari penggunaan afterburner atau tidak. Ketika afterburner on maka,

$$\frac{T_9}{T_0} = \frac{T_{t9}/T_0}{\left(\frac{P_{t9}}{P_9}\right)^{(\gamma-1)/\gamma}} = \frac{\tau_{\lambda AB}}{\tau_r \tau_f} \quad After burner \text{ on}$$

Ketika afterburner mati, maka

$$\frac{T_9}{T_0} = \frac{T_{t9}/T_0}{\left(\frac{P_{t9}}{P_9}\right)^{(\gamma-1)/\gamma}} = \frac{\tau_\lambda \tau_t \tau_M}{\tau_r \tau_f} After burner of f$$

Rasio fuel/udara dari pembakaran, Sedangkan rasio fuel/udara di afterburner diperoleh dari energi balance yang berada station 6A dan 7,

$$\dot{m}_{fAB}h_{PR} + \dot{m}_0 c_p T_{t6A} = \dot{m}_0 c_p T_{t7}$$

$$f_{AB} = \frac{\dot{\mathrm{m}}_{fAB}}{\dot{\mathrm{m}}_0} = \frac{c_p T_0}{h_{PR}} (\tau_{\lambda AB} - \tau_\lambda \tau_t \tau_M)$$

Overall fuel/air rasio f_0 adalah fuel flow total dibagi dengan airflow rate total, atau

$$f_0 = \frac{\dot{\mathbf{m}}_f + \dot{\mathbf{m}}_{fAB}}{\dot{\mathbf{m}}_0}$$

Untuk engine, *overall fuel/air* rasio berasal dari dua persamaan *fuel/air rasio burner* dan *afterburner*,

$$f_0 = \frac{f}{1+\alpha} + f_{AB}$$

Spesific fuel consumption (SFC) diperoleh,

$$SFC = \frac{f_0}{F/\dot{m}_0}$$

2.4 Convergent dirvergent nozzle

Salah satu nozzle yang memiliki design yang terdiri dari tiga komponen, yaitu convergent yang subsonic, throat yang memiliki sonic flow dan dirvegent yang memiliki supersonic flow. Flow isentropic yang mengalir di C-D nozzle. Dalam perhitungan pasti memiliki dua tipe expended yaitu underexpended dan over-expended. • Under-expended, keadaan nozzle yang memiliki $P_e > P_a$ Dengan keadaan nozzle under-expended pressure keluar dari nozzle yang lebih besar dari pada pressure ambient. Sehingga perhitungan thrust seperti choking.

Gambar 2.28 Nozzle Keadaan Under-expended (Elements Of Gas Turbine Propulsion)

• Over-expended, keadaan nozzle yang memiliki $P_e < P_a$ Dengan keadaan mozzle over-expended pressure keluar dari nozzle lebih kecil daripada pressure ambient. Sehingga perhitungan thrust seperti unchoking

Gambar 2.29 Nozzle Keadaan over-expended (Elements Of Gas Turbine Propulsion)

2.5 Maintenance organization

Maintenanace merupakan upaya memprtahanakan keadaan dari sebuah alat maupun peralatan yang menunjang kinerja alat tersebut. Dalam perawatan ini memerluka biaya 15 sampai 60 persen dari harga barangnya. Hal ini perlu diperhatikan dan diulas karena semakin baik dari kondisi alat atau peraltan maikn baik hasilnya dan memiliki nilai jual tinggi ketika dijual kembali. Dalam maintenance meiliki tujuan sebagai berikut:

- Ketersediaan optimal
- Kondisi operasi yang optimal
- Pemanfaatan sumber daya perawatan yang maksimal
- Masa pakia yang optimal
- Penggunaan suku cadang yang minimum
- Kemampuan kembali berkerja dengan segera Dalam maintenance organiztion ini meiliki tiga metode;

2.5.1 Run-to-failure management

Perawatan metode ini dengan cara melaksanakan perawatan jika suatu alat maupun perawatan mengalami failure (kerusakan). yang menyebabkan kerusakan tidak terduga, dari metode ini memiliki kelemahan dimana pembelian sparep parts yang tinggi, kerja yang melebihi waktu, waktu perawatan yang lama dan menurunkan kinerja dari peralatan.

2.5.2 Preventive maintenacne

Perawatan yang mengacu pada umur alat maupun peralatan. Diman akan terjadi perawatan yang terjadwal dengan acuan maen-time-to-failure (MTTF). Dari sini kita bisa mengatahui dan mengatur kapan alat dan peralatan diperbaiki dengan fungsi waktu. Outputan Untuk perawatan preventive ialah waktu perbaikan, lubrication, penyesuaia, dan overhoul dari mesin.

2.5.3 Predictive maintenance

Seperti preventive maintenance, predictive maintenance miliki banyak definisi. Predictive maintenance ini memiliki banyak tinjauan/ sumber untuk memantau kondisi dari alat dan peralatan. Yaitu kondisi dari mesi saat berkerja, efisiensi saat berkerja, dan indikator yang memantau kondisi saat berkerja, dan preses penyediaan data yang dibutuhkan untuk memastikan interval keadaan maksimum dan minimum perbaikian supaya menghidari jumlah dan biaya kerusakan tidak terjadwal.

2.5.4 Type preventive maintenance

Gambar 2.30 Type Predictive Maintenance (An Introduction To Predictive Maintenance.)

2.5.4.1 Maintenance improvement

Digunakan untuk mengurangi dan menghilangkan perawatan yang tidak perlu. Hal ini digunakan unutk mengurangi biaya dan waktu perawatan. Yang tidak menghilangkan kebutuhan utman dari peralatan tersebut.

2.5.4.2 Corrective maintenance

Perawatan yang lebih mengarah keadaan emergency, repair, unscheduled. Lebih baik dari maintenance improvement dan preventive, sehingga bisa mengurangi kerusakan dalam keadaan emergency. Yang didapat dari keadaan trobleshooting, diagnosa kesalahan, dan tidak mengganggu perawatan rutin.

2.5.4.3 Preventive maintenance

Perawatan jenis bertujuan untuk mengurangi kesalah mesin yang tidak terjadwal dan kerusakan dari peralatan hasil dari corrective dan aktivitas perawatan. Pewaratan ini memenejemekan peluamasan dan penyetelan suapaya sampai level reliability dan avaibility. Ada keadaan dalam perawatan spreventive sebagai acuan;

- Reactive, perawatan yang memerlukan manusia mauapu peraltan unutk melakukan perawatan. Seperti inspection menggunakan alat-alat intrsumen atau pendeteksi otomatis.
- Condition monitoring, perawatan secara statistik dan probability unutk memantau keadaan. Data yang didapat bisa dianalisa untuk menentukan kerusakan di masa depan.
- Scheduled, preventive maintenance yang sudah terjadwal dengan interval waktu tertentu.

2.5.5 Primaryuse of predictive maintenance

Dalam menggunakan predeictive maintenance kita bisa mendapatkan beberapa keuntungan yaitu

- Manajemen perawatan peralatan
- Optimalisasi peralatan plant
- Ketahanan dari peralatan akan meningkat.

2.5.6 Predictive maintenace teknik

Dalam penggunakan teknologi sangat lah cocok penggunaan predictive maintenance. Karena peralatan yang berkerja secara mekanik banyak digunakan untuk alat dan peralatan. Sebagai berikut ini beberapa monitoring dari predictve maintenance;

2.5.6.1 Vibration monitoring

Digunakan untuk memantau getaran yang tidak normal, hal ini bisa menunjukan kondisi dari peralatan yang tidan concetric, tidak ada pelumasan pada bearing, dan keretakan pada bagian tertentu.

2.5.6.2 Thermography

Teknik predictive maintenance yang bertujuan memantau kondisi mesin, rangka, dan system, tetapi tidak unutk eletrical. Bisa menggunakan sensor temperature.

2.5.6.3 Tribology

Untuk memantau kondisi dari bearing ke rangka dari mesin. Dalam tribology ini didapat kondisi pelumasan pada mesin dan keadaaan part-part dari mesin.

2.5.6.4 Visual inspection

Merupakan hal pertama dalam predictive maintenance yang digunakan. Data yang didapat dari metode ini keadaan real dari mesin.

2.5.6.5 Ultrasonic

Metode predictive yang menggunakan frekuensi yang dipancarkan anatara 1Hz sampai 30000 Hz. Data yang didapta dari metode ini merupakan kondisi rangka atau part yang tidak bisa dilihat kasat mata, yang berupa kerusakan didalam bagian part atau rangka tersebut.

(halaman ini sengaja dikosongkan)

BAB III METODOLOGI PENELITIAN

3.1 Spesifikasi Engine F100-PW-220(F-16)

Gambar 3.1. Engine F100-PW-220 (F-16)

Di Skatek 042 melakukan perawatan *engine* pesawat terbang F-16, yaitu *engine* F100-PW-220. Dari *engine* ini memiliki spesifikasi umum sebagai berikut:

- > Thrust
 - Maximum (with augmented operation) = 23.770 lbs (105,7 KN)
 - Intermediate (without augmented operation) = 14.590 lbs (64,9 KN)
- ➤ Weight = 3.234 lbs (1,466 kg)
- ➤ Length = 191 in (4,85m)
- > Diameter

- Inlet diameter = 34.8 in (0.88 m)
- Maximum diameter = 46,5 in (1,18 m)
- \blacktriangleright Bypass ratio = 0,6 : 1
- \blacktriangleright Overall presure rasio = 25 : 1
- High thrust to weight rasio
 - 23.770 lbs/ 3.234 lbs =7,3 : 1
- Variable area
 - Compressor inlet variable vanes (CIVV)
 - Rear compressor variable vanes (RIVV)
- ➢ Fully ducted engine
- Mixed flow augmentor
 - Mixes core air flow with bypass air flow
- Variable exhaust nozzle

3.1.1 Inlet Fan Module

Inlet fan module merupakan bagian terdepan dari *engine* yang berkerja untuk mengalirkan udara dari ambient masuk ke *engine.Inlet fan module* sendiri memiliki *pressure ratio* sebesar 3,12 : 1.

Gambar 3.2. Inlet Fan Module

3.1.2 Core Engine Module

Merupakan bagian inti dari *engine*, yang mana terdiri dari high pressure compressor, cumbustion chamber, dan high pressure turbine. Dari high pressure compressor memiliki pressure ratio 8,02 : 1. Combustion dimana terjadinya percampuran antara udara dan *fuel*/ bahan bakar dan juga terjadinya permbakaran. High pressure turbine merupakan bagian dari core engine module yang merubah energi kalor menjadi energi kinetik. Dari putaran high pressure turbine sekaligus memutar high pressure compressor.

Gambar 3.3.Core Engine Module

3.1.3 Gearbox module

Merupakan bagian *engine* yang terdiri bagian-bagian yang *support* performa *engine*. Seperti halnya *oil, fuel, ignition,* dan *support* lainnya.

Gambar 3.4. Gearbox Module

3.1.4 Fan Drive Turbine

Fan Drive Turbine atau disebut juga dengan low pressure turbine merupakan bagian engineyang berfungsi mengubah energi kalor menjadi energi kinetik dan berasal dari low pressure turbine. Dan sekaligus memutar inlet fan module.

Gambar 3.5. Fan Drive Turbine

3.1.5 Augmentor Module

Augmentor module ini merupakan duct yang menerima thrust dari daerah cold dan hot section. Lalu terjadi mix flow untuk diteruskan ke nozzle.

Gambar 3.6. Augmentor Module

3.2 Skema dari Engine F100-PW-220

Gambar 3.7.Skema dari Engine F100-PW-220

3.3 Metodologi Pengerjaan Tugas Akhir

Dalam pengerjaan Tugas Akhir ini dilakukan dengan beberapa tahap yang digambarkan dalam diagram alir berikut :

Gambar 3.8. Diagram Alir Pengerjaan Tugas Akhir

3.4 Penjelasan Diagram Alir Pengerjaan Tugas Akhir

Tugas akhir Analisa Performa Gas Turbine Engine Sebelum dan Setelah dilakukannya perawatan pada pesawat F-16 Di Skatek 042, dalam penyelesaiannya memiliki metode dan tahapan sebagai berikut :

3.4.1 Studi Literatur

Pada tahapan studi literatur, penulis mencoba memahami dan mempelajari beberapa referensi yang dapat membantu dalam proses penelitian. Referensi yang digunakan antara lain bersumber dari buku-buku, artikel, internet, serta sumbersumber lain yang berhubungan dengan penelitian yang dilakukan.

Pada pengkajian ini meliputi studi pustaka yang berkaitan dengan turbin gas *engine*yang diperoleh dari TO 2J F100-24-00 IPB *Introduction And General Infromation*, TO 2J F100-41-1 *Engine Pretest And Postest Procedures*, TO 2J F100-41-2 *Engine test*, TO 2J F100-46-1 *Introduction And General Infromation, Elements Of Gas Turbine Propultion* edisi 2 Jack D. Mattingly, *Gas Turbine Theory* By Hih Saravanamuttoo, H. Cohen & Gfc Rogers dan beberapa sumber lain. Selain itu juga dikaji berdasarkan penelitian terdahulu.

Studi Literatur ini dilakukan di Skatek 042 Lanud Iswahjudi Maospati, perpustakaan, serta diskusi dengan mentor dan dosen pembimbing.

3.4.2 Observasi Lapangan

Observasi dan identifikasi lapangan dilakukan untuk mengetahui adanya permasalahan pada keadaan aktual yang kemudian akan dipelajari dan dianalisis sebagai topik tugas akhir. *Gas Turbine Engine* adalah topik yang dianalisa pada tugas akhir ini dan analisa dilakukan pada performa *gas turbine engine* sebelum dan setelah dilakukannya perawatan.

3.4.3 Perumusan Masalah

Setelah mencari berbagai literatur dan observasi di Skatek 042 Lanud Iswahjudi Maospati, langkah selanjutnya adalah merumuskan masalah secara spesifik dengan bahasan dan objek penelitian tugas akhir mengenai gas turbine engine. Tugas akhir ini mengangkat masalah bagaimana performa yang terjadi pada saat sebelum dilakukannya perawatan dan setelah dilakukannya perawatan.

3.4.4 Pengambilan Data

Pada tahap ini, dilakukan pengambilan data dari sheet running engine dan data sheet hasil *running engine* di *engine test cell* model AM-20 C berada Di Skatek 042 Lanud Iswahjudi Maospati. Kemudian, dilakukan konversi data-data sheet *running engine* F100-PW-220 yang telah dikumpulkan ke dalam satuan yang umum.

3.4.5 Perhitungan Performa Turbin Uap

Setelah dilakukan konversi satuan dan didapatkan data sheet pada engine F100-PW-220, maka selanjutnya adalah perhitungan performa *gas turbine engine*dengan menggunakan data sheet tersebut. Perhitungan performa tersebut antara lain temperatur stagnasi setiap state, *pressure* stagnasi tiap state, *spesific thrust*, SFC (*Spesific Fuel Comsuption*) dan efisiensi thermal.

3.4.6 Analisa performa sebelum dan setelah perawatan

Pada tahap ini dilakukan analisa terhadap performa yang terjadi pada saat sebelum dilakukannya perawatan dan setelah dilakukannya perawatan.

3.4.7 Penyusunan Buku Laporan

Pada tahap ini dilakukan penyusunan buku laporan tugas akhir mengenai topik yang telah diangkat.

3.5 Engine test cell

Dalam *maintenance*, di Skatek 042 memiliki peralatan yang digunakan untuk menguji *engine*. Peralatan berupa *engine test cell* yang bermodel AM-20 C, yang digunakan untuk menunjukan performa dari *engine* setalah perawatan. AM-20 C memiliki beberapa data inputan yang berasal dari *engine*, dan diolah sehingga keluaran dari AM-20 C berupa data sheet *engine*.

Gambar 3.9. Engine Test Cell

Dari peralatan AM-20 C didapat data data yang bisa menunjukkan kondisi *engine*setiap titik yang dibutuhkan untuk mengetahui kondisi *engine*.

Gambar 3.10.Display AM-20 C

Perangkat yang berada di *engine control room* dapat menunjukkan data-data yang kita perlukan dalam menganalisa performa *engine*.

Gambar 3.11.Contoh data sheet engine

3.6 Prosedur running engine F100-PW-220

Di Skatek 042 melakukan pengujian performa yang mengacu pada manual prosedur. Dalam perawatan ini memiliki manual yang sebagai dasaran T/O 2J-F100-41-01 *Engine Pretest And Postest Procedures*. Dari perawatan ini memiliki permasalahan *blow out*. sehingga menurun manual melakukan penggantian *Main Fuel Control*. Dalam manual penggantian *Main Fuel Control* harus melakukan *running engine* sesuai pada gambar 3.11 *Engine Test Requirements*.

		>7		100	28	50	60
NORREE PART COMPONINT	ORE BUN-IN*	CCEPTANCE TEST	HICK HICK	RIMMEY UNCTRONAL CHECK	INCIDENTIAL CHECK	CCHL/DRCHL IRICS	HICK HANCHONAL
COMPONENTS							
						-	
			-				
				-			-
- RCYVEIIV							
- METERING VALVE RESOLVER							
- TI2 MINBOR							
			-				
- NO MQ LIIY				-	14		
					-		
					-		
CONTRACT STORE THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL		-	-		-		
CONC.		100	-			•	
			-	-	1000	-	
AUDAINTOR			-		-		
		1.0			*		
		-	-	100	-		
NO//LE ACTUATUR		-	-	-	-	-	
	-		-	-	-	-	
T MONITOR PLA PERIFON WITH FAU DERNO FUNCTIONAL CHECK, DERNO STARL, MONITOR PLA PONTON 9626 AL DOTE CLOPER AND BLE TENENATE START ATTEMPT IN ETHIER VALUE NOT OF LEMIS DEROTTOR PLANE AND ADDRESS CUTOPE PTO A DEGREES DER 14 70 VPDG0125			*15	REQU	URED B	YAFT	95 PORM

Gambar 3.12. Engine Test Requirement

Dalam *Engine test requirement* menunjukan bahwa harus dilakukan *engine test primary* dan *secondary mode*. Dalam *engine test primary mode* memiliki tiga kondisi yang harus dilakukan yaitu:

3.6.1 Kondisi idle

Kondisi *engine* yang mengalami *cycle* sempurna dengan kondisi PLA (*Power Lever Angle*) yang berada di *angle* 14-19 derajat.Dimana kondisi *engine* hanya menyala tanpa menghasilkan *thrust*, dan bisa dikatakan kondisi hidup *engine* tanpa *thrust*.

Gambar 3.13. Engine Kondisi Idle

Dari hasil *running* yang diakukan di Skatek 042 didapat data *sheet*. Data yang didapat berikut ini:

If If it is also // i	Filter Solution Filter Filte	Mane	Ualue	Unit	Hame	Walue	Unit	Nane	Value	Dait
INFL 39:4550 P120 INT 39:4550 RPH F1112 V:0.5:48 DGC WRD SUC WRD SUC WRD SUC WRD SUC	Import 328,850 PSL Million 12 393,72 000 1111 0.05,500 0.05 12 393,72 000 1111 0.05,500 0.05 111 0.05,500 0.05 1116 0.05,700 0.05 111 0.05,700 0.05 0.05 0.05 0.05 1115 0.05,700 0.05 0.05 0.05 0.05 1116 0.05,700 0.05 0.05 0.05 0.05 1116 0.05,700 0.05 0.05 0.05 0.05 1116 0.05,700 0.05 0.05 0.05 0.05 1116 0.05,800 0.05 0.05 0.05 0.05 1116 0.05,800 0.05 0.05 0.05 0.05 1116 0.05,800 0.05 0.05 0.05 0.05 1116 0.05,800 0.05 0.05 0.05 0.05 1116 0.05,800 0	FTITOU	A31_911	DECC		436.779	DECC	P12	14.5156	
Int Auto, SS Int In	HI ANTAS MM ANTAS MM ANTAST MM 20 9798-873 MM MM ANTAST MM ANTAST PF 20 9798-873 MM MM ANTAST MM ANTAST PF 20 9798-873 MM ANTAST MM ANTAST PF 20 1111 ANTAST MM ANTAST MM ANTAST PF 200 Statist No. Select Param HIC ANTAST MC MC ANTAST MC ANTAST MC ANTAST MC MC ANTAST MC MC ANTAST MC MC ANTAST MC MC ANTAST MT ANTAST MC MC ANTAST MC MC	HOPT	39,8359	PSID		450,500	DEGC	WERC	507.568	PPS
102 9538.20 1091 Mail Les 11116 305.405 1000 Mail Les 1117 407.405 1000 FIRIT 505.405 1000 1000 Stop Static Hin Select Parane 1000 1000 1000 Stop Static Hin Select Parane 1000 1000 1000 1000 Stare Jurrer Select Parane 1000<	NO 9539.02 NPH NO 9539.02 NPH ITTIS 305,4400 DGC ITTIS 305,440 DGC	NI	4415.95	RPH	FTITE	478.432	DESC	WAD	461.425	1000
Fills New 20% Not 20% million Freeze Display Fills New 20% Not 20% million Focc Freeze Display Fills Not 20% Not 20% Story Static from Select Freeze Select Freeze Not 20% Not 20% Not 20% Start fransient Felnt Select Freeze Not 20% Not 20% Not 20% Start fransient Felnt Fills Not 20% Not 20% Not 20% Shay Static Flot Data Fills Not 20% Not 20% Not 20%	Aniler Freeze Bisplay FHI C DEC Freeze Bisplay FHI C DEC Freeze Bisplay Fills 40% and 20% Fills 40% and 20% Fills 50% and 20% Fills	N2	9538,33	RPH	FTITA	385,669	DEGC	100000000000000000000000000000000000000		
Nation Freeze Blaglay "Pinn "DEC Ereze Blaglay Stay Static Pinn Statt [Pinnt Stage Static Pinnt Stage Static Pinnt	See Buffer Solvet Parass Size Static Piele Piele Solvet Parass Size Static Piele Size Static Piele Piele Solvet Parass Size Static Piele Size Static Piele Piele Piele Size Static Piele Piele Piele Size Static Piele Piele Piele <				FTITS	408.245	DEGC			
Image Torus Excesse Bissplant HIT/T MAY,456 MGC Starp Static film Saject Parase HIT/T MAY,456 MGC Starp Static film Saject Parase HIT/T MAY,456 MGC Starp Static film Saject Parase HIT/T MGC MGC Stare Buffer Saject Parase HIT/T MGC MGC Start Fransient Ppint MGC MGC MGC	Healton				FTITO	424.864	DEGC	and the second		
Mail Low Freece Display Fill Fill <td>Martie Freeze Display Factor Freeze Display Rep Static Nun Speet Forms Freeze Display Sare Duffer Speet Forms Freeze Display Sare Duffer Select Forms Freeze Display Bay Static Print Freeze Display Units Static Print Freeze Display Units Static Print Freeze Display Trans Freeze Display Freeze Display</td> <td></td> <td></td> <td></td> <td>F1117</td> <td>447.856</td> <td>DEGC</td> <td></td> <td></td> <td></td>	Martie Freeze Display Factor Freeze Display Rep Static Nun Speet Forms Freeze Display Sare Duffer Speet Forms Freeze Display Sare Duffer Select Forms Freeze Display Bay Static Print Freeze Display Units Static Print Freeze Display Units Static Print Freeze Display Trans Freeze Display Freeze Display				F1117	447.856	DEGC			
Part Part <th< td=""><td>PHIN DATE CVENTOR VIDUARD PS2 Na.8030 PS18 CTM Status Select Parama MILE M</td><td>Monitor</td><td></td><td>Company Disation</td><td>TRICE</td><td>30.8837</td><td>DEEC</td><td></td><td></td><td></td></th<>	PHIN DATE CVENTOR VIDUARD PS2 Na.8030 PS18 CTM Status Select Parama MILE M	Monitor		Company Disation	TRICE	30.8837	DEEC			
Stop Static film Select Param Pff 1.401/3 Size Baffer Select Param Pff 5.057.56 Pff Size Baffer Select Jants Pff 5.07.58 Pff Size Baffer Select Jants Pff 5.07.58 Pff Start Srausient Ppint Pfint 5.026 Pff Start Srausient Ppint Start Srausient Pfint Ff	ter tratic non size parter size parter size parter size parter size parter size parter size to parter size to parter pent size to parter pent pent size to parter pent	с рин	COLEC	Ereeze Dispisy	P32	14.2639	PSIR			
Stop Static film Select Param HIC: A 295, 66 HPH Sive furfer Select film HC: A 295, 66 HPH Sive furfer Select film HC: A 295, 66 HPH Sive furfer Select film HC: A 295, 66 HPH Start firms int Ppint HIE: A 206, 118 HC: Start firms int Ppint HIE: A 206, 118 HC: Start firms int Ppint HIE: A 206, 118 HC: Start firms int Ppint HIE: A 206, 118 HC: Start firms int Ppint HIE: A 206, 118 HC: Start firms int Ppint HIE: A 206, 118 HC: Start firms int Ppint HIE: A 206, 118 HC: Start firms int Ppint HIE: A 206, 118 HC: Start firms int Ppint HIE: A 206, 118 HC: Start firms int Ppint HIE: A 206, 118 HC:	Ares Natice Non Solect Params HICE 029.05 Bitt Same parter Select params HICE 029.05 Bitt Same parter Select params HICE 029.05 Bitt Start params Picto art Picto art HICE 029.05 Bitt Start params Picto art Picto art HICE 029.05 Bitt Transition Picto art Picto art HICE 029.05 HICE 029.05 View Statte Picto art Picto art HICE 029.05 HICE 029.05 View Statte View Statte Picto art HICE 029.05 HICE 029.05 View Statte View Statte Picto art HICE 029.05 HICE 029.05		and the second second		EPH	1.03173		1000		
Sove Buffer StateCL pasts CE25 CFS. # FFI StateCL pasts CE25 CFS. # FFI CE25 CFS. # FFI StateCL pasts CE25 CFS. # CFS. # FFI CE25 CFS. # FFI StateCL pasts FE UPPC CES5 CFS. # FFI CE25 CFS. # CE25 <	Size guider Select junits NCC5 695.465 66 Ruer Joanstent Peint 400 32.465 66 Ruer Joanstent Peint 41.755 695.465 66 Ruer Janstent Peint 41.755 605.475 66 Ruer Static Pint out 46.886.43 41.285 66 172 81.5794.56 665.5794.56 610.579 784.57 174 91.7572 91.86 97 9	Stop St	atic Hen	Select Parans	N102	4295.65	RPH			
Since purfer Select puts Ref Ref Start granstent Peint Fills Ref Ref Start granstent Pint Fills Ref Ref Start Symmetries Pint Fills Ref Ref	Save priore Select parts 4000 32.485 866 Ward priore Prior 41,150 401,110 405,110 405 Maye Static Plan tail 10,110 10,000 10 Maye Static Plan tail 10,100 10 10,000 10,100 10,100 10 10,000 10,100 10,100 10 10,000 10,100 10,100 10 10,000 10,100 10 10,000 10,000 10 10,000 10 10	-			M2025	8756.05	RPH			
Bits Print Print Print Print They static Print Print Print Print Print Print Print Print Print	Protect Product City of 25,338 Bid G Start Jonation Product Verse Lines,11 Product Verse Lines,11 Product Shape Static Plan Data 4,338 86,3804 3,44 Price Static Plan Data 1,7394 Bid G 1,7394 Bid G Price Static Plan Data 1,7394 Bid G 1,7394 Bid G Plan Data Plan Data 1,7394 Bid G 1,7394 Bid G Plan Data Plan Data Plan Data 1,7394 Bid G 1,7394 Bid G Plan Data Plan Data Plan Data 1,7394 Bid G	Sauc	Buffer	Selecti linits	RCUU	-32.885	DEG			
Start Iranslent Print VIIC 100 / 1	Start Jranstent Pgint United 100,131 Print Singer Startic Plot data 60,330,830 60				CIUU	-25.338	DEG			
Mart granient Print Al 66,386 % Digw Static Plot Data P 59,366 % 6 P 59,466 PS16	East Picture Fitting off-fitting off-fitt				WENEC	1868.11	PPH			
AJ 46,9836 3 These Static Plot Data Plane 14,2385 DEG TTZ 31,2396 DEG PB 55,9456 PSIa	Object Static Plat Data 4J. 46,886.40 62 Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data Plat Data	Start 1	ransient	Print	FTITLG	431.114	DEGC			
Shew Static Plot Data PLABB 10,2385 Dic PB 57,9456 PSIR PSIR	Bage Static Plot Data Plot Data 'for static file Ulew Static Plot Data 'for static file Ulew Static Plot No.752 'for static file East Plot No.752 'for static file Fait Mon Far Static				LA	86.3836	2			
T12 31.2396 DEGC PB 59.9456 PSIR	112 31,236 0000 P0 59,9466 P516 P0 19,9746 P516 P0 19,9746 P516 P0 19,9752 P516 P0 9 P0 9	Shou		Plot Pata	PLAAB	14.2385	DEG			
PB 59.9456 PSIR	ein traine une static Pe 59,9856 PSIA 590 H94,952 PSIA 500 B B B B B B B B B B B B B B B B B B				112	31.2396	DEGC			
	View Statts Fait Buniter Status			Man charles	PB	59.9456	PSIR			
WITH TAUTO ULW STATE PON 14.9752 PSIN	Ister and the fight Banitar Status			filen statte	POH	14.9752	PSIA			
Sob. e	Manite Menderen Chiefe Exit Bonitar Status				1201.					
Fight Bonitor Status				first frit	Hanitor	Status				
THE PARTY OF THE PARTY OF THE PARTY OF	Participation and Annual Participation						Carlos and	Detaile	nie I	
					Butter:	Last 1416.	.u sec	Perairs		
BUFFFF, Last Held, a set	Burrer, last 1416.8 Sec Decara on				Trans#-	3, Static	In 1			
AND COLOR OF A PARTY PAR	Buffers last this 8 cm Details BH	Carenter		test filt	P6H SUP Honitor Buffer:	14.9752 8 Status Last 1416.	PSIA	Petails	ON	
Buffans 1 hft 1 http://www.	Building 1 and 1 and 1 and 1 and 1				Buffer:	last 1416.	, a sec	Peral15	on	
BUPPER, LASS 1410.0 SPC	Burrer, Last Tells, B SPC				Trans#-	3, Static	1			

Gambar 3.14.Data sheet engine kondisi idle

3.6.2 Kondisi MILL (kondisi intermediate)

Kondisi *engine* yang mampu menghasilkan *thrust* sebesar 69,4 Kn. Kondisi ini biasanya digunakan dalam keadaan pesawat *take off* atau kondisi *cruise*. Berikut gambaran *engine* saat kondisi MILL. Yang memiliki besaran AJ sebesar < 5 persen.

Gambar 3.15. Engine kondisi MILL

Dalam hasil *running* didapat data sebagai berikut berupa data *sheet*.

	PW	A500665	_					
And a supervision of the second s		*******						
RAL MORATION								
HM Monitor Sel	ected (PHM LIAR	Torecen	EX.				C POWER	
This include out	ceres (i i ini ora	ri presen	1			stand Breek	and the second second	
Main Parameters		Baselin	Paranete	r5	user or	Fined Para	necers	
Mane Value	Unit	Name	Value	Unit	Name	Ualue	Unit	
FILTAU 947.158	DESC	FILTS	936.928	DESC	PT2	14.587.0	PSIA	
MOPT 58,8234	P510	FTITZ	944.853	DEGC	WFAC	502.954	PPH	
N1 18825.5	RPH	FTITS	1825.24	DEGC	WERD	461.425	PPH.	
M2 12781.4	RPH	FILTH	988.382	DEGC				
		FTITS	958,484	DECC				
ERFORMANCE DATA RE	CORDED	FTIT6	984.273	DESC				
Hanitur		F1117	952.823	DECC				
R Barn F BALL	Freeze Displan	TAICE	37.887%	DEGC				
PART PART	Direct bringing	P52	12.7998	PSIA				
		EPR	2.72878					
Step Static New	Select Parans	H1CZ	9744.87	RPH				
		N2C25	38471.6	RPH				
Save Builter	Swiper Units	RCVU	2.16269	DEG				
		C100	-11.284	DEG				
Start Irentiant	and and a second	UF PE C	9178.53	PPH				
		FILLE	946.483	DESC				
		6.4	1.74163	2				
sige static	Elst bata	PLAAB	85.8189	DEC				
		112	21,8459	PECC				
	Wine Statio	100	311.213	PSIR				
		POH	29.7824	PSIA				
		1000						
	tait :	Marris C. Str.	No. of Lot of Lo					
		and the second	acards.					
		Butter:	last \$76.7	r sec	. Petails	EN.		
		Iransa-	2. Station	Page 1				

Gambar 3.16. Data sheet engine kondisi MILL

3.6.3 Kondisi AB MAX (Full Throtle)

Merupakan kondisi *engine* yang sering digunakan untuk manuver atau kondisi *engine* untuk melakukan pertempuran diudara. Dari kondisi *engine* AB MAX didapat *thrust max* 105,6 KN.

Gambar 3.17. Engine kondisi AB MAX

Dari hasil running kondis A/B MAX didapat data yang berupa data *sheet*, berikut ini:

			em (Wast 2				
The second	A CONTRACTOR OF A CONTRACTOR	124					
CONTRACTOR OF	ENCINE MONITOR						
	PHM Monitor Sa	elected (PHM LM	ART prese	(true			-
	Hein Paramiters		Bacell	the Paramete		Barry Ba	ting the second
201	Name Walnut	Walt .	(Manuel	Internet	Tanta	T Litter	
	STATES \$37,328	HAR		238.514	MAR	1 PLANE	value dail
	78077 38.8468	4115		929.345	DISC	AN AL	11.1761 / 10
2045	#1 12012.1	ATR.	FILTS	1826.46	PECC	Man	11000.1 000
	W. General	APR.	FILTR	879.726	DIEC		- HARRISON AND AND AND AND AND AND AND AND AND AN
	Statement and		FILTS	978.321	PLGC		
	PER DERIVET DATA D	R CORDED	61116	884,258	DEGC		
-	Maila		1 FILLY	941,783	DECC		
	- Past Ditt	freeze Bisplay	THICK	37,6815	DEGC		
		and the second s	1 100	12.7822	PSIR		
	Josp Matic Nes	Select Farans	HICZ	2174316			
			ADC25	10557.21	RPH.		
	Lane Baller.	Select Baits	RCVU	2,125.88	BCC.		
			0013	-11.229	DEC		
	Start Symptical	Print	MENEC.	9152.83	PPH		
			FTITLE	935.577	DECC		
	Shew Statte		LA	64.1867	2		
		glot Sata	PLASS	129,996	DEC		
			112	31,4332	DEGC		
		giew Static	PAN	319,188	PSIA		
			500	48.8879	PSIB		
		teste 1		18			
			Monitar	Status			
			Bullan .	and down			
				Last 1845.7	SPE	Details m	
			FAD58- 1	. Tration			

Gambar 3.18. Data sheet engine kondisi AB MAX

(halaman ini sengaja dikosongkan)

BAB IV PERHITUNGAN DAN PEMBAHASAN

Pada bab ini akan dijabarkan langkah-langkah perhitungan kinerja military turbofan mixed flow menggunakan :

- Data sheet sebelum dan setelah maintenance 1-2 April tahun 2019di Skatek 042 Lanud Iswahjudi Maospati, Magetan.
- 2. Data dari speksifikasi dari engine F100-PW-220.
- 4.1 Gambar Engine F100-PW-220 pesawat F-16A/B

Di Skatek 042 Lanud Iswahjudi melakukan perawatan engine F100-PW-220 untuk F-16A/B. Dimana konstruksi engine tersebut dibawah ini;

Gambar 4.1 Engine F100-PW-220 (Introduction Intermediate Level Maintenance F100-PW-220.)

4.2 Gambar skema Engine F100-PW-220 pesawat F-16A/B

Engine F100-PW-220 memiliki skema dan penomoran tiap state seperti dibawah ini;

Gambar 4.2 Skema Mixed Flow Turbofan Engine With Afterburning (*Elements Of Gas Turbine Propulsion*) hal 541

4.3 T-s diagram

Dari engine F100-PW-220 memiliki T-s diagram siklus brayton yang ada pemanasan ulang (reheat), pada jet pipe yang constant duct. Sebagai berikut T-s diagram dari engine F100-PW-220;

Gambar 4.3 T-s diagram Mixed Flow Turbofan Engine With Afterburning

4.4 Data yang digunakan

Data yang digunakan merupakan data yang diperoleh dari data sheet running engine dan data sheet Engine Test Cell. Untuk data sebelum maintenance diambil pada tanggal 1 April 2019 sedangkan, data setelahmaintenance diambil pada tanggal 2 April 2019.

	DATA DIKETAHUI	
STATE	IDLE BEFORE MRO	SATUAN
Po	1,0011	bar
P2	14,2639	psi
Pt2	14,2920	psi
Tt2	30,1110	С
FTIT 1	464,1640	С
FTIT 2	476,5590	С
FTIT 3	509,4080	С
FTIT 4	450,7780	С
FTIT 5	473,0690	С
FTIT 6	459,1830	С
FTIT 7	481,6220	С
FTIT AVG	473,5404	
Pt6A	15,0530	psi
N2	9507,5930	rpm
N1	4409,7890	rpm
AJ	86,2320	%
EPR	1,0535	
İmfeul	1162,5920	PPH
ṁ feulAC	456,2600	PPH
ṁ feulAD	492,5410	PPH

 Tabel 4.1 Data Operasi Sebelum Maintenance

	DATA DIKETAHUI								
STATE	IDLE AFTER MRO	MILL AFTER MRO	AB MAX AFTER MRO	SATUA N					
Po	1,0011	1,0011	1,0011	bar					
P2	14,2639	12,7998	12,7822	psi					
Pt2	14,5156	14,5870	14,5761	psi					
Tt2	31,2396	31,0459	31,4332	С					
FTIT 1	436,7790	936,9200	938,5560	С					
FTIT 2	450,5000	944,0530	920,3450	С					
FTIT 3	470,4320	1025,2400	1026,4600	С					
FTIT 4	385,6690	908,3020	879,7260	С					
FTIT 5	408,2450	952,8230	970,3210	С					
FTIT 6	424,0640	904,2730	884,2580	С					
FTIT 7	447,8560	952,8230	941,7030	С					
FTIT									
AVG	431,9350	946,3477	937,3384						
Pt6	14,9756	39,7024	48,0079	psi					
	9538,330	12781,400	12898,200						
N2	0	0	0	rpm					
	4415,950	10025,500	10048,400						
N1	0	0	0	rpm					
AJ	86,3836	1,7416	64,1867	%					
EPR	1,0317	2,7207	2,7432						
	1068,110								
<i>ṁ</i> feul	0	9170,5300	9152,8300	PPH					
			22239,100						
<i>ṁ</i> feulAC	507,5680	502,9540	0	PPH					
<i>ṁ</i> feulA	464 4252	464 4050	13493,600	0011					
D	461,4250	461,4250	0	РРН					

 Tabel 4.2 Data Operasi Setelah Maintenance

	(,			
		DATA D	IKETAHUI		
STAT E	IDLE BEFORE	IDLE AFTER	MILL AFTER	AB MAX AFTER	SATU AN
	IVIRU	IVIRU	IVIRU	IVIRU	
P 0	1,0011	1,0011	1,0011	1,0011	bar
P 2	0,9828	0,9828	0,8819	0,8807	bar
Pt ₂	0,9847	1,0001	1,0050	1,0043	bar
	318,261	319,389	319,195	319,583	
Tt2	0	6	9	2	К
FTIT	752,314	724,929	1225,07	1226,70	
1	0	0	00	60	К
FTIT	764,709	738,650	1232,20	1208,49	
2	0	0	30	50	К
FTIT	797,558	758,582	1313,39	1314,61	
3	0	0	00	00	К
FTIT	738,928	673,819	1196,45	1167,87	
4	0	0	20	60	К
FTIT	761,219	696,395	1240,97	1258 <i>,</i> 47	
5	0	0	30	10	К
FTIT	747,333	712,214	1192,42	1172 <i>,</i> 40	
6	0	0	30	80	К
FTIT	769,772	736,006	1240,97	1229,85	
7	0	0	30	30	К
FTIT	761,690	720,085	1234,49	1225,48	
AVG	4	0	77	84	К
Pt6	1,0372	1,0318	2,7355	3,3077	bar

 Tabel 4.3 Data Operasi Sebelum Dan sesudah maintenance (satuan SI)

	9507,59	9538,33	12781,4	12898,2	
N2	30	00	000	000	rpm
	4409,78	4415,95	10025,5	10048,4	
N1	90	00	000	000	rpm
AJ	86,2320	86,3836	1,7416	64,1867	%
EPR	1,0535	1,0317	2,7207	2,7432	
<i>ṁ</i> feul	0,1465	0,1346	1,1555	1,1532	kg/s
ṁfeul АС	0,0575	0,0640	0,0634	2,8021	kg/s
ṁfeul AD	0,0621	0,0581	0,0581	1,7002	kg/s

4.5 Perhitungan Kondisi Idle Before MRO

Dimana data didapat dari data sheet running engine, bisa menentukan pressure dan temperature tiap state.

 Tabel 4.4
 Data
 Kondisi Idle Before MRO

DATA DIKETAHUI						
STATE	IDLE BEFORE MRO	SATUAN				
Po	1,0011	bar				
P2	0,9828	bar				
Pt ₂	0,9847	bar				
Tt2	318,2610	К				
FTIT 1	752,3140	К				
FTIT 2	764,7090	К				
FTIT 3	797,5580	К				
FTIT 4	738,9280	К				
FTIT 5	761,2190	К				
FTIT 6	747,3330	К				
FTIT 7	769,7720	К				
FTIT AVG	761,6904	К				

Pt6	1,0372	bar
N2	9507,5930	rpm
N1	4409,7890	rpm
AJ	86,2320	%
EPR	1,0535	
ṁfeul	0,1465	kg/s
<i>ṁ</i> feulAC	0,0575	kg/s
İmfeulAD	0,0621	kg/s

Pressure dan temperature tiap state dapat dilihat sebagai berikut;

Tabel 4.5 Data Pressure Tiap State Kondisi Idle Before MRO

KON	<mark>DISI PRESSURE TIAF</mark>	STATE
	IDLE BEFORE	
STATE	MRO	SATUAN
Po	1,0011	bar
Pto	1,0011	bar
Pt ₂	0,9847	bar
P 2	0,9828	bar
Pt13	3,0723	bar
Ptз	24,6400	bar
Pt4	22,6688	bar
Pt4.5	3,2213	bar
Pt5	1,3923	bar
Pt 16	3,0723	bar
Pt6	1,3923	bar
Pt6A	1,0372	bar
Pt7	1,0372	bar
Pt8		bar
Pt9	3,1388	bar

KONE	KONDISI TEMPERATURE TIA					
STATE	IDLE BEFORE MRO	SATUAN				
То	287,4740	К				
Tto	287,4740	К				
Tt2	318,2610	К				
T t 13	462,4527	К				
Ttз	931,0897	К				
Tt4	1152,7015	К				
Tt 4.5	761,6904	К				
Tt5	637,4200	К				
Tt 16	462,4527	К				
Tt6	637,4200	К				
Tt6A	565,7212	К				
Tt7	565,7212	К				
Tt8	565,7212	К				
Tt9	565,7212	К				

 Tabel 4.6 Data Temperature Tiap State Kondisi Idle Before

 MRO

Kondisi tiap state dari temperatur dan pressure stagnasi bisadikethaui dengan menggunakan nilai konstata. Sebagai berikut;

Tabel 4.7 Data Nilai Konstata Yang Diketahui Kondisi IdleBefore MRO

NILAI KETENTUAN		SATUAN
ηf	0,87	%
η <i>c,</i> ηt	0,85	%
Ŋm	0,99	%
η n , η j	0,95	%
η_b	0,98	%

ΔP_b	0,08	%
Kair	1,4	-
kgas	1,333	
R	0,2870	KJ/Kg K
ρair	1,2371	Kg/m^3
CPair	1,005	KJ/Kg K
CP gas	1,148	KJ/Kg K
CP mix	1,0132	KJ/Kg K
R	0,2870	KJ/Kg K
Ca	0	m/s
a	339,905	m/s
Mo	0	
D inlet (")	34,8	inchi
D inlet (m)	0,8839	m
D AB MAX (")	46,5	inchi
D AB MAX (m)	1,1811	m
A inlet	0,6136	m^2
A AB MAX	1,0956	m^2

Dimana konstata didapt dari;

- η_f didapat dari Abdul-Nabe, Rana Adil and Tariq, Mohammad. 2014. *Thermal Analysis Of A Gas Turbine Cycle For A Turbojet Engine*. International Journal Of Advanced Research In Engineering And Technology (IJARET). Allahabad India.
- η_c , dan η_t didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 2 compressor and turbine efisiencies hal 56.
- η_m didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*.
Fifth Edition. India : Dorling Kindersley pada bab 2 mechanical loses hal 66.

- η_j/η_n didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 3 propelling nozzles hal 108
- η_b didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 2 combustion efisiensihal 68.
- ΔP_b didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 2 pressure loses hal 61
- cp_{air}, cp_{gas}, cp_{mix}, k_{air}, k_{gas}, dan R didapat dari buku dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley bab 2 variation of spesific heat hal 66.
- *ρ_{air}*, *a*, didapat dari tabel ISA dengan ketinggian 104 mdpl. Dengan mengunakan interpolasi.
- C_a , M_0 didapat dari *a*, dengan ketinggian 104 mpdl dan keadaan Engine statis.
- *A*_{inlet}, dan *A*_{AB MAX} didapat dari Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220.
- a. Perhitungan State 0

Pengujian yang dilalukan di ketinggian 104 mdpl, berada di Skatek 042. Sehingga kondisi 0 didapat dari ISA tabel.

Tabel 4.8 Data ISA Tabel Dengan Ketinggian 104 mdpl SIKondisi Idle Before MRO

ISA TABEL				
Altitude	Po	То	ρ/ρο	а
0	1,0133	288,1500	1	340,3
104	1,0011	287,4740	0,990203	339,9048
500	0,9546	284,9000	0,9529	338,4

Dengan cara interpolasi didapat pressure, kecepatan suara dan tempurature statis di ketingginan 104mdpl.

$$P_0 = 1,0133 + \frac{(104 - 0)}{(500 - 104)}(0,9546 - 1,0133)$$

 $P_0 = 1,0011$ bar

$$T_0 = 288,15 + \frac{(104 - 0)}{(500 - 104)}(284,9 - 288,15)$$

 $T_0 = 287,474 \text{ K}$

Dengan *local isentropic stagnation properies* equation (12.21b) keadaan engine yang statis maka stagnasi properties didapat, yang $M_0 = 0$. maka Pt_0 ;

$$\frac{Pt_0}{P_0} = \left(1 + \frac{k-1}{2}M^2\right)^{\frac{k}{k-1}}$$

$$Pt_0 = P_0 \times \left(1 + \frac{k-1}{2}M^2\right)^{\frac{k}{k-1}}$$

$$Pt_0 = 1,0011 \times \left(1 + \frac{1,4-1}{2}0^2\right)^{\frac{1,4}{1,4-1}}$$

$$77$$

$$Pt_0 = 1,0011$$

Dengan *local isentropic stagnation properies* equation (12.21b) keadaan engine yang statis maka stagnasi properties didapat, yang $M_0 = 0$. maka Tt_0 ;

$$\frac{Tt_0}{T_0} = \left(1 + \frac{k-1}{2}M^2\right)$$
$$Tt_0 = T_0 \times \left(1 + \frac{k-1}{2}M^2\right)$$
$$Tt_0 = 287,474 \times \left(1 + \frac{1,4-1}{2}0^2\right)$$
$$Tt_0 = 287,474$$

b. Perhitungan State 2

Distate 2 data didapat dari FDR (Flight Data Recorder), yang berupa Tt_2 , Pt_2 , P_2 . Bisa diketahui properties distate 2 yang bersumber dari buku Pritchard, Philip J., 2011. *Introduction To Fluid Mechanic*. Eight Edition. United State America : R.R. Donnelley-JC. Bab 12 *Introdustion to Compressible Flow*.

> $Tt_2 = 318,2610 \text{ K}$ $Pt_2 = 0,9847 \text{ bar}$ $P_2 = 0,9828 \text{ bar}$

Dari Pt₂, P₂ yang sudah diketahui kita bisa mencari m_i,
 Tabel 4.9 Data ṁi Kondisi Idle Before MRO

<i>ṁ</i> i		
STATE	IDLE BEFORE MRO	SATUAN

Pt ₂	0,9847	bar
P2	0,9828	bar
Pt2/P2	1,0020	
M2	0,0530	
Τ2	318,0821	К
a 2	357,4988	m/s
С2	18,9586	m/s
<i>ṁ</i> i	14,3922	kg/s

Dengan Pt_2 , P_2 yang sudah diketahui dari data FDR dan *local isentropic stagnation properies* equation (12.21a) maka nilai M_2 diperoleh;

$$\frac{Pt_2}{P_2} = \left(1 + \frac{k-1}{2}M^2\right)^{\frac{k}{k-1}}$$
$$M_2 = \sqrt{\frac{2}{k-1}\left(\left(\frac{Pt_2}{P_2}\right)^{\frac{k-1}{k}} - 1\right)}$$
$$M_2 = \sqrt{\frac{2}{1,4-1}\left((1,0020)^{\frac{1,4-1}{1,4}} - 1\right)}$$
$$M_2 = 0,0530$$

Lalu dengan diketahui M_2 dapat menentukan dari T_2 dengan *local isentropic stagnation properies* equation (12.21b);

$$\frac{Tt_2}{T_2} = \left(1 + \frac{k-1}{2}M^2\right)$$

$$T_{2} = \frac{Tt_{2}}{\left(1 + \frac{k - 1}{2}M^{2}\right)}$$
$$T_{2} = \frac{318,2610}{\left(1 + \frac{1,4 - 1}{2}0,0530^{2}\right)}$$
$$T_{2} = 318,0821 \text{ K}$$

Dengan diketahui T_2 , bisa menentukan a_2 dengan *Propagation of Sound Waves* equation (12.18);

$$a_2 = \sqrt{kRT_2}$$

 $a_2 = \sqrt{1.4 \times 0.287 \times 318,0821 \times 1000}$
 $a_2 = 357,4988$

Dengan diketehui a_2 dan M_2 maka bisa ditentukan C2dengan Propagation of Sound Waves equation (12.13).

$$M_2 = \frac{C_2}{a_2}$$

$$C_2 = M_2 \times a_2$$

$$C_2 = 0,0530 \times 357,4988$$

$$C_2 = 18,9586 \frac{\text{m}}{\text{s}}$$

Dengan diketahui nilai C2bisa mencari nilai *m*imenggunakan continuty equation compressible flow;

$$\dot{m} = \rho C A$$

$$\dot{m}_i = \rho C_2 A_i$$

 $\dot{m}_i = 1,2371 \times 18,9586 \times 0,6136$

$$\dot{\mathrm{m}}_i = 14,3922 \frac{kg}{\mathrm{s}}$$

c. Perhitungan state 13

Dari buku manual Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220 dan Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley. Fan pressure rasio (FPR) didapat sebesar 3,12. Maka properties distate 13 bisa diketahui sebgaia berikut:

Menggunakan pressure rasio maka Pt_{13} diketahui;

$$\frac{Pt_{13}}{Pt_2} = FPR$$

$$Pt_{13} = Pt_2 \times FPR$$

$$Pt_{13} = 0,9847 \times 3,12$$

$$Pt_{13} = 3,0723 \text{ bar}$$

Dengan polytropic efficiency equation (2.15) didapat Tt_{13} ,

$$\left(\frac{n-1}{n}\right)_{air} = \left(\frac{k-1}{k\eta_{\omega f}}\right)_{air}$$
$$\left(\frac{n-1}{n}\right)_{air} = \frac{1}{\eta_f} \left(\frac{k-1}{k}\right)_{air}$$

$$\begin{pmatrix} \frac{n-1}{n} \\ \frac{n-1}{n} \end{pmatrix}_{air} = \frac{1}{0.87} \left(\frac{1.4-1}{1.4} \right)_{air}$$

$$\begin{pmatrix} \frac{n-1}{n} \\ \frac{n}{n} \end{pmatrix}_{air} = 0.3284$$

$$\frac{Tt_{13}}{Tt_2} = \left(\frac{Pt_{13}}{Pt_2} \right)^{\left(\frac{n-1}{n} \right)_{air}}$$

$$Tt_{13} = Tt_2 \times \left(\frac{Pt_{13}}{Pt_2} \right)^{\left(\frac{n-1}{n} \right)_{air}}$$

$$Tt_{13} = 318,2610 + (3.12)^{0.3284}$$

$$Tt_{13} = 462,4527 \text{ K}$$

d. Perhtiungan state 3

Dari buku manual Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220 dan Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley.Compressor pressure rasio(CPR) didapat sebesar 8,02. Maka properties disatet 3 bisa diketahui sebgaia berikut:

$$\frac{Pt_3}{Pt_{13}} = CPR$$

$$Pt_3 = Pt_{13} \times CPR$$

$$Pt_3 = 3,0723 \times 8,02$$

$$Pt_3 = 24,6400 \text{ bar}$$

Dengan polytropic efficiency equation (2.15) didapat Tt_3 ;

$$\begin{split} & \left(\frac{n-1}{n}\right)_{air} = \left(\frac{k-1}{k\eta_{oc}}\right)_{air} \\ & \left(\frac{n-1}{n}\right)_{air} = \frac{1}{\eta_c} \left(\frac{k-1}{k}\right)_{air} \\ & \left(\frac{n-1}{n}\right)_{air} = \frac{1}{0.85} \left(\frac{1.4-1}{1.4}\right)_{air} \\ & \left(\frac{n-1}{n}\right)_{air} = 0.3361 \\ & \frac{Tt_3}{Tt_{13}} = \left(\frac{Pt_3}{Pt_{13}}\right)^{\left(\frac{n-1}{n}\right)_{air}} \\ & Tt_3 = Tt_{13} \times \left(\frac{Pt_3}{Pt_{13}}\right)^{\left(\frac{n-1}{n}\right)_{air}} \\ & Tt_3 = 462.4527 + (8.02)^{0.3361} \\ & Tt_3 = 931.0897 \text{ K} \end{split}$$

e. Perhitungan state 4

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley dan dari data sheet FDR didpapat $Tt_{4.5}$ / *Fan Turbine Inlet Temperature* (FTIT) sebesar 761,6904 K. Maka properties distate4 bisa diketahui sebagai berikut:

Dengan menggunakan temperature equations of work transfer dengan pressure rasio equation (2.11) didapat $Tt_3 - Tt_{13}$;

$$Tt_{3} - Tt_{13} = \frac{Tt_{13}}{\eta_{c}} \left(\left(\frac{Pt_{3}}{Pt_{13}}\right)^{\frac{k-1}{k}} - 1 \right)$$

$$Tt_{3} - Tt_{13} = \frac{462,4527}{0,85} \left((8,02)^{\frac{1,4-1}{1,4}} - 1 \right)$$
$$Tt_{3} - Tt_{13} = 442,1810 K$$

Sehingga dapat dicari work transfer turbine to drive compressor per unit mass flow; seperti example 2.1 hal 75;

$$W_{tcH} = \frac{cp_{air}(Tt_3 - Tt_{13})}{\eta_m}$$
$$W_{tcH} = \frac{1,005 \times 442,1810}{0,99}$$
$$W_{tcH} = 448,8807\frac{kJ}{kg}$$

Maka *temperature equivalent of compressor turbine work* seperti example 2.2 hal 76,didapat;

$$Tt_4 - Tt_{4.5} = \frac{W_{tcH}}{cp_{gas}}$$
$$Tt_4 - Tt_{4.5} = \frac{448,8807}{1,148}$$
$$Tt_4 - Tt_{4.5} = 391,0111 K$$

Dengan ditetahu
i $Tt_4-Tt_{4.5}$ dan $Tt_{4.5}$ maka bisa didapat
 $Tt_4;$

$$Tt_4 = Tt_{4.5} + (Tt_4 - Tt_{4.5})$$
$$Tt_4 = 761,6904 + 391,0111$$
$$Tt_4 = 1152,7015 \text{ K}$$

Dan nilai pressure Pt_4 dengan pressure loses sebesar 8 persen dari Pt_3 ;

$$Pt_4 = Pt_3 - (Pt_3 \times \Delta P_b)$$

 $Pt_4 = 24,6400 - (24,6400 \times 0,08)$
 $Pt_4 = 22,6688$ bar

f. Perhitungan state 4.5

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley dan dari data sheet FDR didpapat $Tt_{4.5}$ / *Fan Turbine Inlet Temperature* (FTIT) sebesar 761,6904 K. Maka properties distate 4.5 bisa diketahui sebagai berikut:

Dengan polytropic efficiency equation (2.17) didapat $Pt_{4.5}$;

$$\left(\frac{n-1}{n}\right)_{gas} = \left(\frac{\eta_{\omega t}k - 1}{k}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = \eta_t \left(\frac{k-1}{k}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = 0.85 \left(\frac{1.333 - 1}{1.333}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = 0.2123$$
$$\frac{Tt_4}{Tt_{4.5}} = \left(\frac{Pt_4}{Pt_{4.5}}\right)^{\left(\frac{n-1}{n}\right)_{gas}}$$
$$\frac{Pt_4}{Pt_{4.5}} = \left(\frac{Tt_4}{Tt_{4.5}}\right)^{\left(\frac{1}{n-1}\right)_{gas}}$$

$$\frac{Pt_4}{Pt_{4.5}} = \left(\frac{1152,7015}{761,6904}\right)^{\left(\frac{1}{0,2123}\right)_{gas}}$$
$$\frac{Pt_4}{Pt_{4.5}} = 7,0373 \ bar$$

SehinggaPt_{4.5};

$$Pt_{4.5} = \frac{Pt_4}{\frac{Pt_4}{Pt_{4.5}}}$$
$$Pt_{4.5} = \frac{22,6688}{7,0373}$$

 $Pt_{4.5} = 3,2213$ bar

g. Perhitungan state 5

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley dan dari data sheet FDR didpapat $Tt_{4.5}$ / *Fan Turbine Inlet Temperature* (FTIT) sebesar 761,6904 K. Maka properties distate 5 bisa diketahui sebagai berikut:

Dengan menggunakan temperature equations of work transfer dengan pressure rasio equation (2.11) didapat $Tt_{13} - Tt_2$;

$$Tt_{13} - Tt_2 = \frac{Tt_2}{\eta_f} \left(\left(\frac{Pt_{13}}{Pt_2}\right)^{\frac{k-1}{k}} - 1 \right)$$
$$Tt_{13} - Tt_2 = \frac{318,2610}{0,87} \left((3,12)^{\frac{1,4-1}{1,4}} - 1 \right)$$

$$Tt_{13} - Tt_2 = 140,5332 K$$

Sehingga dapat dicari work transfer turbine to drive compressor per unit mass flow; seperti example 2.1 hal 75;

$$W_{tcL} = \frac{cp_{air}(Tt_{13} - Tt_2)}{\eta_m}$$
$$W_{tcL} = \frac{1,005 \times 140,5332}{0,99}$$
$$W_{tcL} = 142,6625\frac{kJ}{kg}$$

Maka *temperature equivalent of compressor turbine work* seperti example 2.2 hal 76,didapat;

$$Tt_{4.5} - Tt_5 = \frac{W_{tcL}}{cp_{gas}}$$
$$Tt_{4.5} - Tt_5 = \frac{142,6625}{1,148}$$
$$Tt_{4.5} - Tt_5 = 124,2705 K$$

Dengan ditetahui $Tt_{4.5} - Tt_5$ dan $Tt_{4.5}$ maka bisa didapat Tt_5 ;

$$Tt_5 = Tt_{4.5} - (Tt_{4.5} - Tt_5)$$
$$Tt_5 = 761,6904 - 124,2705$$
$$Tt_5 = 637,4200 \text{ K}$$

Dengan polytropic efficiency equation (2.17) didapat Pt_5 ;

$$\left(\frac{n-1}{n}\right)_{gas} = \left(\frac{\eta_{\omega t}k - 1}{k}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = \eta_t \left(\frac{k-1}{k}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = 0.85 \left(\frac{1.333 - 1}{1.333}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = 0.2123$$
$$\frac{Tt_{4.5}}{Tt_5} = \left(\frac{Pt_{4.5}}{Pt_5}\right)^{\left(\frac{n-1}{n}\right)_{gas}}$$
$$\frac{Pt_{4.5}}{Pt_5} = \left(\frac{Tt_{4.5}}{Tt_5}\right)^{\left(\frac{1}{n-1}\right)_{gas}}$$
$$\frac{Pt_{4.5}}{Pt_5} = \left(\frac{761.6904}{637.4200}\right)^{\left(\frac{1}{0.2123}\right)_{gas}}$$

$$\frac{Pt_{4.5}}{Pt_5} = 2,3136 \ bar$$

Sehingga Pt_5 ;

$$Pt_{5} = \frac{Pt_{4}}{(\frac{Pt_{4}}{Pt_{4.5}}) \times (\frac{Pt_{4.5}}{Pt_{5}})}$$

$$Pt_5 = \frac{22,6688}{7,0373 \times 2,3136}$$

$$Pt_5 = 1,3923$$
 bar

h. Perhitungan state 6

Dari buku Pritchard, Philip J., 2011. Introduction To Fluid Mechanic. Eight Edition. United State America : R.R. Donnelley-JC. Dengan local isentropic stagnation propeties didapat bahwa Tt_0 = constant. Dari bukuSaravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley.Maka properties distate 6 bisa diketahui sebagai berikut:

Dengan Local Isentropic Stagnation Properties, maka nilai Tt_6 ;

$$Tt_5 = Tt_6 = 637,4200 \text{ K}$$

Sedangkan Pt_6 ;

$$Pt_6 = Pt_5 = 1,3923$$
 bar

i. Perhitungan state 16

Dari buku Pritchard, Philip J., 2011. Introduction To Fluid Mechanic. Eight Edition. United State America : R.R. Donnelley-JC. Dengan local isentropic stagnation propeties didapat bahwa Tt_0 = constant. Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley.Maka properties distate 16 bisa diketahui sebagai berikut:

Dengan Local Isentropic Stagnation Properties, maka nilai Tt_{16} ;

$$Tt_{13} = Tt_{16} = 462,4527 \text{ K}$$

Sedangkan Pt_{16} ;

$$Pt_{16} = Pt_{13} = 3,0723$$
 bar

j. Perhitungan state 6A

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley, dan Pratt & Whitney. *Introduction Intermediate Level Maintenance F100-PW*-220.dan dari data sheet FDR didapat M_6 = 0,5 dan Pt_{6A} = 1,0372 bar. Maka properties distate 6A bisa diketahui sebagai berikut:

Dengan bypasa rasio dari Introduction Intermediate Level Maintenance F100-PW-220. Didapat bypass rasio 0,6:1. Maka m_{cold};

$$\dot{m}_{cold} = 0.6 \times \dot{m}_i$$
$$\dot{m}_{cold} = 0.6 \times 14,3922$$
$$\dot{m}_{cold} = 8,6353 \frac{\text{kg}}{\text{s}}$$

Sedangkan m_{hot};

$$\dot{m}_{hot} = 0.4 \times \dot{m}_i$$
$$\dot{m}_{hot} = 0.4 \times 14,3922$$
$$\dot{m}_{hot} = 5,7569 \frac{\text{kg}}{\text{s}}$$

Feul/ air didapat dari feul/air rasiohal 68;

$$f = \frac{\dot{\mathrm{m}}_{feul}}{\dot{\mathrm{m}}_{hot}}$$

$$f = \frac{0,1465}{5,7569}$$
$$f = 0,0254$$

Temperature 6a didapat dengan *equations* antara *the properties mixture of gases*di *mixing of hot and cold streams hal* 127.

$$cp_{mix} = \frac{\dot{m}_{cold}cp_{air} + \dot{m}_{hot}(1+f)cp_{gas}}{(\dot{m}_c + \dot{m}_h)}$$

$$cp_{mix} =$$

$$\frac{(8,6353 \times 1,005) + (5,7569(1+0,0254) \times 1,148)}{(8,6353 + 5,7569)}$$

$$cp_{mix} = 1,0132 \frac{KJ}{kg}K$$

Temperature 6A didapat dengan *enthalpy balance* di *mixing of hot and cold streams hal* 127.

$$\dot{m}_{cold} cp_{air} Tt_{16} + \dot{m}_{hot} (1+f) cp_{gas} Tt_{6}$$

$$= \dot{m}_{mix} cp_{mix} Tt_{6A}$$

$$Tt_{6A} = \frac{\dot{m}_{cold} cp_{air} Tt_{16} + \dot{m}_{hot} (1+f) cp_{gas} Tt_{6}}{\dot{m}_{mix} cp_{mix}}$$

$$Tt_{6A} =$$

$$(8,6353 \times 1,005 \times 462,4527) +$$

$$(5,7569(1+0,0254)1,148 \times 637,4200)$$

$$14,5387 \times 1,0132$$

$$Tt_{6A} = 565,7212 K$$

A distate 6 dan 16 bidapat dari Introduction Intermediate Level Maintenance F100-PW-220 yaitu dari gambar skema engine F100-PW-220. Berikut ini a dari state 6 dan 16;

Tabel 4.10 DataA6 dan A16 Kondisi Idle Before MRO

A6 dan A16					
		SKALA	1 : 4,1372		
	Dgambar	Dreal	Agambar		А
STATE	(mm)	(mm)	(mm^2)	Areal (mm)	(m^2)
Cone					
Nozzle	72,960	301,853	71561,839	71561,839	0,072
6	176,050	728,362	416662,009	345100,169	0,345
16	224,630	929,349	678339,893	261677,884	0,262

 A_6 dan A_{16} didapat dari perhitungan dibawah ini;

• $A_{GAMBAR}STATE 6$

 $D_{REAL}STATE 6 = D_{GAMBAR}STATE 6 \times SKALA$

 $D_{REAL}STATE 6 = 176,050 \times 4,1372$

 $D_{REAL}STATE 6 = 728,362 \text{ mm}$

$$A_{GAMBAR}STATE \ 6 = \pi \times \frac{D_{REAL}^2STATE \ 6}{4}$$

$$A_{GAMBAR}STATE \ 6 = \pi \times \frac{728,362}{4}$$

 $A_{GAMBAR}STATE 6 = 416662,009 \text{ mm}^2$

• A_{GAMBAR}CONE NOZZLE

 $D_{REAL}CONE NOZZLE = D_{GAMBAR}CONE NOZZLE \times SKALA$

 $D_{REAL}CONE NOZZLE = 72,960 \times 4,1372$

 $D_{REAL}CONE NOZZLE = 301,853 \text{ mm}$

$$A_{GAMBAR}CONE \ NOZZLE = \pi \times \frac{D_{REAL}^2 CONE \ NOZZLE}{4}$$

 $A_{GAMBAR}CONE \ NOZZLE = \pi \times \frac{301,853}{4}$

 $A_{GAMBAR}CONE NOZZLE = 71561,839 \text{ mm}^2$

• $A_{GAMBAR}STATE$ 16 $D_{REAL}STATE$ 16 = $D_{GAMBAR}STATE$ 16 × SKALA $D_{REAL}STATE$ 16 = 224,630 × 4,1372

 $D_{REAL}STATE \ 16 = 929,349 \ mm$

 $A_{GAMBAR}STATE \ 16 = \pi \times \frac{D_{REAL}^2STATE \ 16}{4}$ $A_{GAMBAR}STATE \ 16 = \pi \times \frac{929,349}{4}$

 $A_{GAMBAR}STATE 16 = 678339,893 \text{ mm}^2$

• A₆

 $A_{REAL}STATE \ 6 = A_{GAMBAR}STATE \ 6$ $- A_{GAMBAR}CONE \ NOZZLE$

 $A_{REAL}STATE 6 = 416662,009 - 71561,839$

 $A_{REAL}STATE 6 = 345100,169 \text{ mm}^2$

 $A_6 = 0,345 \text{ m}^2$

• A₁₆

 $A_{REAL}STATE \ 16 = A_{GAMBAR}STATE \ 16 - A_{GAMBAR}STATE \ 6$ $A_{REAL}STATE \ 16 = 678339.893 - 416662.009$

 $A_{REAL}STATE 16 = 261677,884 \text{ mm}^2$

$$A_{16} = 0,262 \text{ m}^2$$

Untuk daerah *mixing properties* didapat dengan cara iterasi meunggunakan *momentum balance*di *mixing of hot and cold streams* hal 127;

Sehingga harus diketahui *propeties state* 6 dan 16 sebelum melakukan iterasi untuk menentukan properties di state 6A;

• Properties state 6

Tabel 4.11 Data Properties State 6 Kondisi IdleBefore MRO

PROPERTIES STATE 6			
STATE 6	IDLE BEFORE MRO	SATUAN	
Мв	0,5		
P 6	1,1826	bar	
Тө	611,9476	К	
A6	0,3451	m^2	
a 6	483,8527	m/s	
С6	241,9263	m/s	
ρ 6	0,0707	KJ/Kg K	

Dengan diketahui Pt_6 data sheet dan M_6 merupakan Mach number turbine design diasumsikan dengan bilai 0,5 sesuai di *mixng of hot and cold streams* hal 128, maka didapat P_6 dengan menggunakan *local isentropic stagnation properties* equiation (12.21a);

$$\frac{Pt_6}{P_6} = \left(1 + \frac{k-1}{2}M_6^2\right)^{\frac{k}{k-1}}$$

Dengan diketahui Tt_6 dari perhitungan enthalpy balance, M_6 merupakan Mach number turbine design diasumsikan dengan bilai 0,5 sesuai di mixng of hot and cold streams hal 128, maka didapat T_6 dengan menggunakan local isentropic stagnation properties equiation (12.21b);

$$\frac{Tt_6}{T_6} = \left(1 + \frac{k-1}{2}M_6^2\right)$$
$$T_6 = \frac{Tt_6}{\left(1 + \frac{k-1}{2}M_6^2\right)}$$
$$T_6 = \frac{637,4200}{\left(1 + \frac{1,333 - 1}{2}0,5_6^2\right)}$$
$$T_6 = 611,9476 \text{ K}$$

Dengan diketahui T_6 , bisa menentukan a_6 dengan *Propagation of Sound Waves* equation (12.18);

$$a_6 = \sqrt{kRT_6}$$

$$a_6 = \sqrt{1,333 \times 0,287 \times 611,9476 \times 1000}$$

95

$$a_6 = 483,8527 \frac{\text{m}}{\text{s}}$$

Dengan diketehui a_6 dan M_6 maka bisa ditentukan C_6 dengan *Propagation of Sound Waves* equation (12.13);

$$M_{6} = \frac{C_{6}}{a_{6}}$$

$$C_{6} = M_{6} \times a_{6}$$

$$C_{6} = 0.5 \times 483.8527$$

$$C_{6} = 241.9263 \frac{m}{s}$$

Dengan diketahui nilai C_6 bisa mencari nilai ρ_6 menggunakan *continuty equation compressible flow*;

$$\begin{split} \dot{\mathbf{m}}_{hot} &= \rho_6 C_6 A_6 \\ \dot{\mathbf{m}}_{hot} (1+f) &= \rho_6 C_6 A_6 \\ \rho_6 &= \frac{\dot{\mathbf{m}}_h (1+f)}{C_6 A_6} \\ \rho_6 &= \frac{5,7569(1+0,0254)}{241,9263\times0,3451} \\ \rho_6 &= 0,0707 \frac{kJ}{kg} K \end{split}$$

Properties state 16
 Tabel 4.12 Data Properties State 16 Kondisi Idle

 Before MRO

STATE 16	IDLE BEFORE MRO	SATUAN
M 16	1,2522	
P16	1,1826	bar
Т16	352,0483	К
A16	0,2617	m^2
a 16	376,1024	m/s
C16	470,9591	m/s
ρ 16	0,0701	KJ/Kg K

Dengan aliran yang di $P_{16}P_{16}$ yang uniform across duct di state 6 dan 16 di *mixing of hot and cold streams* hal 127, maka nilai $P_{16} = P_{16}$, maka didapat M_{16} dengan menggunakan *local isentropic stagnation properties* equiation (12.21b);

$$\frac{Pt_{16}}{P_{16}} = \left(1 + \frac{k-1}{2}M_{16}^2\right)^{\frac{k}{k-1}}$$
$$M_{16} = \sqrt{\frac{2}{k-1}\left(\left(\frac{Pt_{16}}{P_{16}}\right)^{\frac{k-1}{k}} - 1\right)}$$
$$M_{16} = \sqrt{\frac{2}{1,4-1}\left(\left(\frac{3,0723}{1,1826}\right)^{\frac{1,4-1}{1,4}} - 1\right)}$$

 $M_{16} = 1,2522$

Dengan diketahui Tt_{16} dan M_{16} maka didapat T_6 dengan menggunakan *local isentropic stagnation* properties equiation (12.21b);

$$\frac{Tt_{16}}{T_{16}} = \left(1 + \frac{k - 1}{2}M_{16}^2\right)$$
$$T_{16} = \frac{Tt_{16}}{\left(1 + \frac{k - 1}{2}M_{16}^2\right)}$$
$$T_{16} = \frac{462,4527}{\left(1 + \frac{1,4 - 1}{2}1,2522_6^2\right)}$$
$$T_{16} = 352,0483 \text{ K}$$

Dengan diketahui T_{16} , bisa menentukan a_{16} dengan *Propagation of Sound Waves* equation (12.18);

$$a_{16} = \sqrt{kRT_{16}}$$

$$a_{16} = \sqrt{1.4 \times 0.287 \times 352.0483} \times 1000$$

$$a_{16} = 376.1024 \frac{\text{m}}{\text{s}}$$

Dengan diketehui a_{16} dan M_{16} maka bisa ditentukan C_{16} dengan *Propagation of Sound Waves* equation (12.13);

$$M_{16} = \frac{C_{16}}{a_{16}}$$
$$C_{16} = M_{16} \times a_{16}$$
$$C_{16} = 1,2522 \times 376,1024$$
$$C_{16} = 470,9591\frac{\text{m}}{\text{s}}$$

Dengan diketahui nilai C_{16} bisa mencari nilai ρ_{16} menggunakan *continuity equation compressible flow;*

$$\dot{m}_{c} = \rho_{16}C_{16}A_{16}$$

$$\rho_{16} = \frac{\dot{m}_{c}}{C_{16}A_{16}}$$

$$\rho_{16} = \frac{8,6353}{470,9591 \times 0,2617}$$

$$\rho_{16} = 0,0701\frac{kJ}{kg}K$$

Dengan momentum balance di mixing hot and cold streams hal 127, maka didapat:

Tabel 4.13 Data Momentum Balance Kondisi IdleBefore MRO

MOMENTUM BALANC	E
	IDLE BEFOR
STATE	MRO
(ṁh (1+f)C6+P6A6)	1428,5884
(ṁcC16+P16A16)	4067,1948
(ṁhot	
(1+f)C6+P6A6)+(mcoldC16+P16A16)	5495,7832

Dimana momentum balance;

$$(\dot{\mathbf{m}}_{hot} (1+f)C_6 + P_6A_6) + (\dot{\mathbf{m}}_{cold} C_{16} + P_{16}A_{16}) = (\dot{\mathbf{m}}_{mix} C_{6A} + P_{6A}A_{6A})$$

 $\dot{m}_{mix} C_{6A} + P_{6A} A_{6A} =$

$$(5,7569(1+0,0254) \times 241,9263 + 1,1826 \times 0,345)$$

 $+(8,6353 \times 470,9591 + 1,1826 \times 0,2617)$

$$\dot{m}_{mix} C_{6A} + P_{6A} A_{6A} = 5495,7832$$

Dengan iterasi setiap kenaikan 0,1 Mach Number di *mixing hot and cold streams* equaitons 8 hal 128. Didapat properties distate 6A sebagai berikut;

Tabel 4.14 Data Properties 6A Kondisi Idle BeforeMRO

PROPERTIES STATE 6A			
STATE	IDLE BEFORE		
6A	MRO	SATUAN	
М6А	0,8616		
Р 6А	0,6506	bar	
Т6А	503,3903	К	
СбА	377,9617	m/s	
ρ 6Α	0,0352	KJ/Kg K	

k. Perhtiunga state 7

Dari buku Pritchard, Philip J., 2011. *Introduction To Fluid Mechanic*. Eight Edition. United State America : R.R. Donnelley-JC. Dengan *local isentropic stagnation propeties* didapat properties 6A=7= constant. Sebagai berikut;

$$Pt_{6A} = Pt_7 = 1,0372$$
 bar

$$Tt_{6A} = Tt_7 = 565,7212 K$$

Tabel 4.15 Data Properties 7 Kondisi Idle Before MRO

PROPERTIES STATE 7			
STATE	IDLE BEFORE		
7	MRO	SATUAN	
M7	0,8616		

P 7	0,6506	bar
T7	503,3903	К
С7	377,9617	m/s
ρ7	0,0352	KJ/Kg K

1. Perhitungn state 9

Dari Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220 dan Mattingly, Jack D. with a foreword by Hans Von Ohain. 2005. Elements Of Gas Turbine Propulsion. New Delhi : Tata McGraw Hill Publishing. Diketahui presesntase dari A_j properteies dari state 9. Maka properties distate 9 bisa diketahui sebagai berikut:

Dari presentase A_j bisa diketahui luasan didaerah throat. Diameter dari throat dan divergen bersumber dari dirvegen sizing area Introduction Intermediate Level Maintenance F100-PW-220.

• Diameter A₈Presentase 0 sebesar 22,098 inchi dan presentase 100 sebesar 33,7 icnhi. Dikonversi satuan ke meter.

A 8				
AJ	IDLE BEFORE			
THROAT	MRO	SATUAN		
0	0,5613	m		
86,2320	0,8154	m		
100	0,8560	m		
A 8	0,5222	m^2		

Tabel 4.16 DataA₈ Kondisi Idle Before MRO

Diameter dari A8didapat dari interpolasi;

$$D_8 = 0,5613 + \frac{(86,2320 - 0)}{(100 - 0)} (0,8560 - 0,56213)$$
$$D_8 = 0,8154 m$$

Maka luaasan A_8

$$A_8 = \pi \times \frac{D_8^2}{4}$$
$$A_8 = \pi \times \frac{0.8154^2}{4}$$
$$A_8 = 0.5222 m^2$$

• Diameter A₉Presentase 0 sebesar 22,098 inchi dan presentase 100 sebesar 40,1 icnhi. Dikonversi satuan ke meter.

Tabel 4.17 DataA₉ Kondisi Idle Before MRO

A 9			
AJ	IDLE BEFORE		
DIRVERGEN	MRO	SATUAN	
0	0,5613	m	
86,2320	0,9577	m	
100	1,0210	m	
А 9	0,7202	m^2	

Diameter dari D₉didapat dari interpolasi;

$$D_9 = 0,5613 + \frac{(86,2320 - 0)}{(100 - 0)} (1,0210 - 0,56213)$$
$$D_8 = 0,9577 m$$

Maka luaasan A_9 ;

$$A_9 = \pi \times \frac{D_9^2}{4}$$
$$A_9 = \pi \times \frac{0.9577^2}{4}$$
$$A_9 = 0.7202 m^2$$

Dengan menggunakan rasio luasan di Appendix E Compressible Flow Functions dibuku *Elements Of Gas Turbine Propulsion*. Didapat M₉ berikut;

$$\frac{A}{A^*}$$
$$\frac{A_9}{A_8} = 1,3792$$

Dari rasio luasan didapat M_9 dengan interpolasi sebgai berikut;

Tabel 4.18 Data M State 9 Kondisi Idle BeforeMRO

M STATE 9		
A/A*	М	
1,3862	0,4800	
1,3792	0,4834	
1,3653	0,4900	

$$M_9 = 0,4800 + \frac{(1,3792 - 1,3862)}{(1,3653 - 1,3862)}(0,4900 - 0,400)$$

$$M_9 = 0,4834$$

Dengan diketaui M_9 , didapat properties di state 9;

Tabel 4.19 Data Properties State 9 Kondisi Idle BeforeMRO

PROPERTIES STATE 9		SATUAN
Pt9/P9	1,1650	
Pa	1,0011	bar
Р9	2,6942	bar
Pt9	3,1388	bar
Тэ	544,5391	К
a 9	456,4262	m/s
Cj	220,6144	m/s

Dengan *local isentropic stagnation properies* equation (12.21b) menggunakan M_9 , didapat *Pt9/P9*

$$\frac{Pt_9}{P_9} = \left(1 + \frac{k-1}{2}M_9^2\right)^{\frac{k}{k-1}}$$
$$\frac{Pt_9}{P_9} = \left(1 + \frac{1,333-1}{2}0,4834^2\right)^{\frac{1,333}{1,333-1}}$$
$$\frac{Pt_9}{P_9} = 1,1650$$

Dengan diketaui Pt_9/P_9 bisa didapat P_9 menggunakan parametric cycle analysis of real engines euation (7-86b).

Tabel 4.20 Data Pressure Rasio Kondisi Idle BeforeMRO

	IDLE BEFORE	
STATE	MRO	
πr	1	
πd	0,984	
πf	3,120	
πсн	25,022	
πb	0,920	
πtH	0,142	
πtL	0,432	
πm	0,745	
πn	0,97	

Dimana;

$$\frac{Pt_9}{P_9} = \frac{Pa}{P_9} \pi_r \pi_d \pi_f \pi_{cH} \pi_b \pi_{tH} \pi_{tL} \pi_m \pi_n$$
$$P_9 = \frac{Pa\pi_r \pi_d \pi_f \pi_{cH} \pi_b \pi_{tH} \pi_{tL} \pi_m \pi_n}{\frac{Pt_9}{P_9}}$$

$$P_{9} =$$

 $(1,0011 \times 1 \times 0,984 \times 3,120 \times 25,002 \times 0.920 \times 0,142 \times 0,432 \times 0.745 \times 0,97)/(1,1650)$

$$P_9 = 2,6942 \text{ bar}$$

Dengan diketahui P_9 maka bisa didapat Pt_9 menggunakan Dengan *local isentropic stagnation* properies equation (12.21b);

$$\frac{Pt_9}{P_9} = \left(1 + \frac{k-1}{2}M_9^2\right)^{\frac{k}{k-1}}$$

$$Pt_{9} = P_{9} \left(1 + \frac{k-1}{2} M_{9}^{2} \right)^{\frac{k}{k-1}}$$
$$Pt_{9} = 2,6942 \left(1 + \frac{1,333-1}{2} 0,4834^{2} \right)^{\frac{1,333}{1,333-1}}$$
$$Pt_{9} = 3,1388 \text{ bar}$$

Dengan M_9 dapat diperoleh T_9 menggunakan Dengan *local isentropic stagnation properies* equation (12.21b);

$$\frac{Tt_9}{T_9} = \left(1 + \frac{k-1}{2}M_9^2\right)$$
$$T_9 = \frac{Tt_9}{\left(1 + \frac{k-1}{2}M_9^2\right)}$$
$$T_9 = \frac{565,7212}{\left(1 + \frac{1,333 - 1}{2}0,4834^2\right)}$$
$$T_9 = 544,5391 \text{ K}$$

Dengan diketahui T_9 , bisa menentukan a_9 dengan *Propagation of Sound Waves* equation (12.18);

$$a_9 = \sqrt{kRT_9}$$

 $a_9 = \sqrt{1,333 \times 0,287 \times 544,5391} \times 1000$

$$a_9 = 456,4262 \frac{\text{m}}{\text{s}}$$

Dengan diketehui a_9 dan M_9 maka bisa ditentukan C_9 dengan *Propagation of Sound Waves* equation (12.13);

$$M_9 = \frac{C_9}{a_9}$$
$$C_9 = M_9 \times a_9$$
$$C_9 = 0,4834 \times 456,4262$$
$$C_j = C_9 = 220,6144 \frac{\text{m}}{\text{s}}$$

m. Perhitungan Thrust

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley. Yang didapat keadaan nozzle under-expended atau over-expended. Maka Thrustbisa diketahui sebagai berikut:

Tabel 4.21 Data Thrust Kondisi Idle Before MRO

THRUST		
STATE	IDLE BEFORE MRO	SATUAN
ṁтіх	14,5387	kg/s
Ca	0,0000	m/s
Cj	220,6144	m/s
Pa	1,0011	bar
Р9	2,6942	bar
LΑ	0,7202	m^2
F	3208,6652	Ν

Dengan $P_9 > P_a$ maka keadaan nozzle under-expended menurut buku *Elements Of Gas Turbine Propulsion* bab 3 hal 172., sehingga thrust didapat;

$$F = \dot{m}_{mix} (C_j - C_a) + A_j (P_9 - P_a)$$
107

F = 3208,6652 N

n. Perhitungan SFC

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley. Maka SFC bisa diketahui sebagai berikut

Tabel 4.22 Data SFC Kondisi Idle Before MRO

SFC		SATUAN
STATE	IDLE BEFOR MRO	
<i>ṁ</i> feul total	0,1465	kg/s
F	3208,6652	Ν
SFC	0,1643	kg/N.h

Dengan menggunakan SFC di bab 2 hal 71;

$$SFC = \frac{\dot{m}feul total}{F}$$
$$SFC = \frac{0,1465 \times 3600}{3208,6652}$$
$$SFC = 0,1643 \frac{\text{kg}}{\text{N}}.\text{ h}$$

4.6 Perhitungan Kondisi Idle After MRO

Dimana data didapat dari Engine Test Cell bisa menentukan pressure dan temperature tiap state.

Tabel 4.23 Data Kondisi Idle After MRO

DATA DIKETAHUI	
108	

STATE	IDLE AFTER MRO	SATUAN
Po	1,0011	bar
P2	0,9828	bar
Pt ₂	1,0001	bar
Tt ₂	319,3896	К
FTIT 1	724,9290	К
FTIT 2	738,6500	К
FTIT 3	758,5820	К
FTIT 4	673,8190	К
FTIT 5	696,3950	К
FTIT 6	712,2140	К
FTIT 7	736,0060	К
FTIT AVG	720,0850	К
Pt6	1,0318	bar
N2	9538,3300	rpm
N1	4415,9500	rpm
AJ	86,3836	%
EPR	1,0317	
İfeul	0,1346	kg/s
ṁ feulAС	0,0640	kg/s
İmfeulAD	0,0581	kg/s

Pressure dan temperature tiap state dapat dilihat sebagai berikut;

Tabel 4.24 Data Pressure Tiap State Kondisi Idle After MRO

KONDISI PRESSURE TIAP STATE				
IDLE AFTER				
STATE	E MRO SATUAN			
Po	1,0011 bar			
Pto	1,0011	bar		

Pt2	1,0001	bar
P 2	0,9828	bar
Pt13	3,1204	bar
Ptз	25,0255	bar
Pt4	23,0235	bar
Pt 4.5	2,9684	bar
Pt5	1,2121	bar
Pt16	3,1204	bar
Pt6	1,1515	bar
Pt6A	1,0182	bar
Pt7	1,0182	bar
Pt8		bar
Pt9	3,2436	bar

 Tabel 4.25 Data Temperature Tiap State Kondisi Idle After MRO

KONDISI TEMPERATURE TIAP STATE		
STATE	IDLE AFTER MRO	SATUAN
То	287,4740	К
Tto	287,4740	К
Tt2	319,3896	К
T t 13	464,0927	К
Ttз	855,7341	К
Tt4	1112,4827	К
Tt 4.5	720,0850	К
Tt5	595,3739	К
Tt 16	464,0927	К
Tt6	595,3739	К
Tt6A	515,0795	К
Tt7	515,0795	К
Tt8	515,0795	К
Tt9	515,0795	К

Kondisi tiap state dari temperatur dan pressure stagnasi bisa dikethaui dengan menggunakan nilai konstata. Sebagai berikut;

Tabel 4.26 Data Nilai Konstata Yang Diketahui Kondisi Idle

 After MRO

NILAI KETENTUAN		SATUAN
ηf	0,87	%
ηc, ηt	0,85	%
η_m	0,99	%
η n , η j	0,95	%
η ь	0,98	%
ΔP_b	0,08	%
kair	1,4	-
kgas	1,333	
R	0,2870	KJ/Kg K
ρair	1,2371	Kg/m^3
Cp air	1,005	KJ/Kg K
Cp gas	1,148	KJ/Kg K
CP mix	1,0061	KJ/Kg K
Rcold	0,2870	KJ/Kg K
Ca	0	m/s
а	339,9048	m/s
Mo	0	
D inlet (")	34,8	inchi
D inlet (m)	0,8839	m
D AB MAX		
(")	46,5	inchi
D AB MAX		
(m)	1,1811	m
A inlet	0,6136	m^2
A AB MAX	1,0956	m^2
Dimana konstata didapt dari;

- η_f didapat dari Abdul-Nabe, Rana Adil and Tariq, Mohammad. 2014. *Thermal Analysis Of A Gas Turbine Cycle For A Turbojet Engine*. International Journal Of Advanced Research In Engineering And Technology (IJARET). Allahabad India.
- η_c , dan η_t didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 2 compressor and turbine efisiencies hal 56.
- η_m didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 2 mechanical loses hal 66.
- η_j/η_n didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 3 propelling nozzles hal 108
- η_b didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 2 combustion efisiensi hal 68.
- ΔP_b didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 2 pressure loses hal 61
- cp_{air}, cp_{gas}, cp_{mix}, k_{air}, k_{gas}, dan R didapat dari buku dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley bab 2 variation of spesific heat hal 66.

- *ρ_{air}*, *a*, didapat dari tabel ISA dengan ketinggian 104 mdpl. Dengan mengunakan interpolasi.
- C_a , M_0 didapat dari *a*, dengan ketinggian 104 mpdl dan keadaan Engine statis.
- A_{inlet}, dan A_{AB MAX} didapat dari Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220.
- a. Perhitungan State 0

Pengujian yang dilalukan di ketinggian 104 mdpl, berada di Skatek 042. Sehingga kondisi 0 didapat dari ISA tabel.

Tabel 4.27 Data ISA Tabel Dengan Ketinggian 104 mdplSI Kondisi Idle After MRO

ISA TABEL				
Altitude	Po	То	ρ/ρο	а
0	1,0133	288,1500	1	340,3
104	1,0011	287,4740	0,990203	339,9048
500	0,9546	284,9000	0,9529	338,4

Dengan cara interpolasi didapat pressure, kecepatan suara dan tempurature statis di ketingginan 104mdpl.

$$P_0 = 1,0133 + \frac{(104 - 0)}{(500 - 104)}(0,9546 - 1,0133)$$

 $P_0 = 1,0011$ bar

$$T_0 = 288,15 + \frac{(104 - 0)}{(500 - 104)}(284,9 - 288,15)$$

$$T_0 = 287,474 \text{ K}$$

Dengan local isentropic stagnation properies equation (12.21b) keadaan engine yang statis maka stagnasi properties didapat, yang $M_0 = 0$. maka Pt_0 ;

$$\frac{Pt_0}{P_0} = \left(1 + \frac{k-1}{2}M^2\right)^{\frac{k}{k-1}}$$

$$Pt_0 = P_0 \times \left(1 + \frac{k-1}{2}M^2\right)^{\frac{k}{k-1}}$$

$$Pt_0 = 1,0011 \times \left(1 + \frac{1,4-1}{2}0^2\right)^{\frac{1,4}{1,4-1}}$$

$$Pt_0 = 1,0011$$

Dengan local isentropic stagnation properies equation (12.21b) keadaan engine yang statis maka stagnasi properties didapat, yang $M_0 = 0$. maka Tt_0 ;

$$\frac{Tt_0}{T_0} = \left(1 + \frac{k-1}{2}M^2\right)$$
$$Tt_0 = T_0 \times \left(1 + \frac{k-1}{2}M^2\right)$$
$$Tt_0 = 287,474 \times \left(1 + \frac{1,4-1}{2}0^2\right)$$
$$Tt_0 = 287,474$$

b. Perhitungan State 2

Distate 2 data didapat dari FDR (Flight Data Recorder), yang berupa Tt_2 , Pt_2 , P_2 . Bisa diketahui properties distate 2 yang bersumber dari buku Pritchard, Philip J., 2011. Introduction To Fluid Mechanic. Eight Edition. United State America : R.R. Donnelley-JC. Bab 12 Introdustion to Compressible Flow.

> $Tt_2 = 319,3896 \text{ K}$ $Pt_2 = 1,0001 \text{ bar}$ $P_2 = 0,9828 \text{ bar}$

• Dari Pt_2 , P_2 yang sudah diketahui kita bisa mencari \dot{m}_i ,

mί **IDLE AFTER MRO** STATE SATUAN Pt₂ 1,0001 bar **P**2 0,9828 bar Pt2/P2 1,0176 0,1583 М2 317,7974 Τ2 К 357,3387 m/s а2 56,5581 m/s C2 mί 42,9354 kg/s

Tabel 4.28 Data mi Kondisi Idle After MRO

Dengan Pt_2 , P_2 yang sudah diketahui dari data FDR dan *local isentropic stagnation properies* equation (12.21a) maka nilai M_2 diperoleh;

$$\frac{Pt_2}{P_2} = \left(1 + \frac{k-1}{2}M^2\right)^{\frac{k}{k-1}}$$

$$M_{2} = \sqrt{\frac{2}{k-1} \left(\left(\frac{Pt_{2}}{P_{2}}\right)^{\frac{k-1}{k}} - 1 \right)}$$
$$M_{2} = \sqrt{\frac{2}{1,4-1} \left((1,0176)^{\frac{1,4-1}{1,4}} - 1 \right)}$$
$$M_{2} = 0,1583$$

Lalu dengan diketahui M_2 dapat menentukan dari T_2 dengan *local isentropic stagnation properies* equation (12.21b);

$$\frac{Tt_2}{T_2} = \left(1 + \frac{k-1}{2}M^2\right)$$
$$T_2 = \frac{Tt_2}{\left(1 + \frac{k-1}{2}M^2\right)}$$
$$T_2 = \frac{319,3896}{\left(1 + \frac{1,4-1}{2}0,1583^2\right)}$$
$$T_2 = 317,7974 \text{ K}$$

Dengan diketahui T_2 , bisa menentukan a_2 dengan *Propagation of Sound Waves* equation (12.18);

$$a_{2} = \sqrt{kRT_{2}}$$

$$a_{2} = \sqrt{1,4 \times 0,287 \times 317,7974 \times 1000}$$

$$a_{2} = 357,3387$$

Dengan diketehui a_2 dan M_2 maka bisa ditentukan C2dengan Propagation of Sound Waves equation (12.13).

$$M_2 = \frac{C_2}{a_2}$$

$$C_2 = M_2 \times a_2$$

$$C_2 = 0.1583 \times 357.3387$$

$$C_2 = 56.5581 \frac{\text{m}}{\text{s}}$$

Dengan diketahui nilai C2bisa mencari nilai *m*imenggunakan continuty equation compressible flow;

 $\dot{\mathbf{m}} = \rho C A$ $\dot{\mathbf{m}}_i = \rho C_2 A_i$

 $\dot{m}_i = 1,2371 \times 56,5581 \times 0,6136$

$$\dot{\mathbf{m}}_i = 42,9354 \frac{kg}{s}$$

c. Perhitungan state 13

Dari buku manual Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220 dan Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley. Fan pressure rasio (FPR) didapat sebesar 3,12. Maka properties distate 13 bisa diketahui sebgaia berikut:

Menggunakan *pressure rasio* maka Pt_{13} diketahui;

$$\frac{Pt_{13}}{Pt_2} = FPR$$

$$Pt_{13} = Pt_2 \times FPR$$

$$Pt_{13} = 1,0001 \times 3,12$$

$$Pt_{13} = 3,1204 \text{ bar}$$

Dengan polytropic efficiency equation (2.15) didapat Tt_{13} ,

$$\begin{pmatrix} \frac{n-1}{n} \end{pmatrix}_{air} = \begin{pmatrix} \frac{k-1}{k\eta_{\omega f}} \end{pmatrix}_{air}$$

$$\begin{pmatrix} \frac{n-1}{n} \end{pmatrix}_{air} = \frac{1}{\eta_f} \begin{pmatrix} \frac{k-1}{k} \end{pmatrix}_{air}$$

$$\begin{pmatrix} \frac{n-1}{n} \end{pmatrix}_{air} = \frac{1}{0.87} \begin{pmatrix} \frac{1.4-1}{1.4} \end{pmatrix}_{air}$$

$$\begin{pmatrix} \frac{n-1}{n} \end{pmatrix}_{air} = 0.3284$$

$$\frac{Tt_{13}}{Tt_2} = \begin{pmatrix} \frac{Pt_{13}}{Pt_2} \end{pmatrix}^{\begin{pmatrix} \frac{n-1}{n} \end{pmatrix}_{air}}$$

$$Tt_{13} = Tt_2 \times \left(\frac{Pt_{13}}{Pt_2} \right)^{\begin{pmatrix} \frac{n-1}{n} \end{pmatrix}_{air}}$$

$$Tt_{13} = 319.3896 + (3.12)^{0.3284}$$

$$Tt_{13} = 464.0927 \text{ K}$$

d. Perhtiungan state 3

Dari buku manual Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220 dan Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley. Compressor pressure rasio(CPR) didapat sebesar 8,02. Maka properties disatet 3 bisa diketahui sebgaia berikut:

$$\frac{Pt_3}{Pt_{13}} = CPR$$

$$Pt_3 = Pt_{13} \times CPR$$

$$Pt_3 = 3,1204 \times 8,02$$

$$Pt_3 = 25,0255 \text{ bar}$$

Dengan polytropic efficiency equation (2.15) didapat Tt_3 ;

$$\begin{pmatrix} \frac{n-1}{n} \\ \frac{n-1}{n} \end{pmatrix}_{air} = \left(\frac{k-1}{k\eta_{\omega c}} \right)_{air}$$

$$\begin{pmatrix} \frac{n-1}{n} \\ \frac{n-1}{n} \end{pmatrix}_{air} = \frac{1}{\eta_c} \left(\frac{k-1}{k} \right)_{air}$$

$$\begin{pmatrix} \frac{n-1}{n} \\ \frac{n-1}{n} \end{pmatrix}_{air} = \frac{1}{0.85} \left(\frac{1.4-1}{1.4} \right)_{air}$$

$$\begin{pmatrix} \frac{n-1}{n} \\ \frac{n-1}{n} \end{pmatrix}_{air} = 0.2939$$

$$\frac{Tt_3}{Tt_{13}} = \left(\frac{Pt_3}{Pt_{13}} \right)^{\left(\frac{n-1}{n} \right)_{air}}$$

$$Tt_3 = Tt_{13} \times \left(\frac{Pt_3}{Pt_{13}} \right)^{\left(\frac{n-1}{n} \right)_{air}}$$

$$Tt_3 = 464.0927 \times (8.02)^{0.2939}$$

e. Perhitungan state 4

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley dan dari data sheet FDR didpapat $Tt_{4.5}$ / *Fan Turbine Inlet Temperature* (FTIT) sebesar 720,0850 K. Maka properties distate4 bisa diketahui sebagai berikut:

Dengan menggunakan temperature equations of work transfer dengan pressure rasio equation (2.11) didapat $Tt_3 - Tt_{13}$;

$$Tt_{3} - Tt_{13} = \frac{Tt_{13}}{\eta_{c}} \left(\left(\frac{Pt_{3}}{Pt_{13}}\right)^{\frac{k-1}{k}} - 1 \right)$$

$$Tt_3 - Tt_{13} = \frac{464,0927}{0,85} \left((8,02)^{\frac{1,4-1}{1,4}} - 1 \right)$$

$$Tt_3 - Tt_{13} = 443,7491 K$$

Sehingga dapat dicari *work transfer turbine to drive compressor per unit mass flow*; seperti example 2.1 hal 75;

$$W_{tcH} = \frac{cp_{air}(Tt_3 - Tt_{13})}{\eta_m}$$
$$W_{tcH} = \frac{1,005 \times 443,7491}{0,99}$$
$$W_{tcH} = 450,4725\frac{kJ}{kg}$$

Maka *temperature equivalent of compressor turbine work* seperti example 2.2 hal 76,didapat;

$$Tt_4 - Tt_{4.5} = \frac{W_{tcH}}{cp_{gas}}$$
$$Tt_4 - Tt_{4.5} = \frac{450,4725}{1,148}$$
$$Tt_4 - Tt_{4.5} = 392,3977 K$$

Dengan ditetahui $Tt_4 - Tt_{4.5}$ dan $Tt_{4.5}$ maka bisa didapat Tt_4 ;

$$Tt_4 = Tt_{4.5} + (Tt_4 - Tt_{4.5})$$
$$Tt_4 = 720,0850 + 392,3977$$
$$Tt_4 = 1112,4827 \text{ K}$$

Dan nilai pressure Pt_4 dengan pressure loses sebesar 8 persen dari Pt_3 ;

$$Pt_4 = Pt_3 - (Pt_3 \times \Delta P_b)$$

 $Pt_4 = 25,0255 - (25,0255 \times 0,08)$
 $Pt_4 = 23,0235$ bar

f. Perhitungan state 4.5

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley dan dari data sheet FDR didpapat $Tt_{4.5}$ / *Fan Turbine Inlet Temperature* (FTIT) sebesar 720,0850 K. Maka properties distate 4.5 bisa diketahui sebagai berikut: Dengan polytropic efficiency equation (2.17) didapat $Pt_{4.5}$;

$$\left(\frac{n-1}{n}\right)_{gas} = \left(\frac{\eta_{\omega t}k - 1}{k}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = \eta_t \left(\frac{k-1}{k}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = 0.85 \left(\frac{1.333 - 1}{1.333}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = 0.2123$$
$$\frac{Tt_4}{Tt_{4.5}} = \left(\frac{Pt_4}{Pt_{4.5}}\right)^{\left(\frac{n-1}{n}\right)_{gas}}$$
$$\frac{Pt_4}{Pt_{4.5}} = \left(\frac{Tt_4}{Tt_{4.5}}\right)^{\left(\frac{1}{n-1}\frac{n}{n}\right)_{gas}}$$
$$\frac{Pt_4}{Pt_{4.5}} = \left(\frac{1112.4827}{720.0850}\right)^{\left(\frac{1}{0.2123}\right)_{gas}}$$
$$\frac{Pt_4}{Pt_{4.5}} = 7.7562 \ bar$$

Sehingga Pt_{4.5};

$$Pt_{4.5} = \frac{Pt_4}{\frac{Pt_4}{Pt_{4.5}}}$$
$$Pt_{4.5} = \frac{23,0235}{7,7562}$$
$$Pt_{4.5} = 2,9684 \text{ bar}$$

g. Perhitungan state 5

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley dan dari data sheet FDR didpapat $Tt_{4.5}$ / *Fan Turbine Inlet Temperature* (FTIT) sebesar 720,0850 K. Maka properties distate 5 bisa diketahui sebagai berikut:

Dengan menggunakan temperature equations of work transfer dengan pressure rasio equation (2.11) didapat $Tt_{13} - Tt_2$;

$$Tt_{13} - Tt_2 = \frac{Tt_2}{\eta_f} \left(\left(\frac{Pt_{13}}{Pt_2} \right)^{\frac{k-1}{k}} - 1 \right)$$

$$Tt_{13} - Tt_2 = \frac{319,3896}{0,87} \left((3,12)^{\frac{1,4-1}{1,4}} - 1 \right)$$

$$Tt_{13} - Tt_2 = 141,0316 K$$

Sehingga dapat dicari work transfer turbine to drive compressor per unit mass flow; seperti example 2.1 hal 75;

$$W_{tcL} = \frac{cp_{air}(Tt_{13} - Tt_2)}{\eta_m}$$
$$W_{tcL} = \frac{1,005 \times 141,0316}{0,99}$$
$$W_{tcL} = 143,1684\frac{kJ}{kg}$$

Maka *temperature equivalent of compressor turbine work* seperti example 2.2 hal 76,didapat;

$$Tt_{4.5} - Tt_5 = \frac{W_{tcL}}{cp_{gas}}$$
$$Tt_{4.5} - Tt_5 = \frac{143,1684}{1,148}$$
$$Tt_{4.5} - Tt_5 = 124,7111 K$$

Dengan ditetahu
i $Tt_{4.5}-Tt_5$ dan $Tt_{4.5}$ maka bisa didapat
 $Tt_5;$

$$Tt_5 = Tt_{4.5} - (Tt_{4.5} - Tt_5)$$
$$Tt_5 = 720,0850 - 124,7111$$
$$Tt_5 = 595,3739 \text{ K}$$

Dengan polytropic efficiency equation (2.17) didapat Pt_5 ;

$$\left(\frac{n-1}{n}\right)_{gas} = \left(\frac{\eta_{\omega t}k - 1}{k}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = \eta_t \left(\frac{k-1}{k}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = 0.85 \left(\frac{1.333 - 1}{1.333}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = 0.2123$$
$$\frac{Tt_{4.5}}{Tt_5} = \left(\frac{Pt_{4.5}}{Pt_5}\right)^{\left(\frac{n-1}{n}\right)_{gas}}$$
$$\frac{Pt_{4.5}}{Pt_5} = \left(\frac{Tt_{4.5}}{Tt_5}\right)^{\left(\frac{1}{n-1}\right)_{gas}}$$

$$\frac{Pt_{4.5}}{Pt_5} = \left(\frac{761,6904}{595,3739}\right)^{\left(\frac{1}{0,2123}\right)_{gas}}$$
$$\frac{Pt_{4.5}}{Pt_5} = 2,4488 \ bar$$

Sehingga Pt₅;

$$Pt_{5} = \frac{Pt_{4}}{(\frac{Pt_{4}}{Pt_{4.5}}) \times (\frac{Pt_{4.5}}{Pt_{5}})}$$
$$Pt_{5} = \frac{23, -235}{7,7562 \times 2,4488}$$

 $Pt_5 = 1,2121$ bar

h. Perhitungan state 6

Dari buku Pritchard, Philip J., 2011. Introduction To Fluid Mechanic. Eight Edition. United State America : R.R. Donnelley-JC. Dengan local isentropic stagnation propeties didapat bahwa Tt_0 = constant. Dari bukuSaravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley.Maka properties distate 6 bisa diketahui sebagai berikut:

Dengan Local Isentropic Stagnation Properties, maka nilai Tt_6 ;

$$Tt_5 = Tt_6 = 595,3739 \text{ K}$$

Sedangkan Pt₆;

$$Pt_6 = Pt_5 = 1,2121$$
 bar

i. Perhitungan state 16

Dari buku Pritchard, Philip J., 2011. Introduction To Fluid Mechanic. Eight Edition. United State America : R.R. Donnelley-JC. Dengan local isentropic stagnation propeties didapat bahwa Tt_0 = constant. Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley.Maka properties distate 16 bisa diketahui sebagai berikut:

Dengan Local Isentropic Stagnation Properties, maka nilai Tt₁₆;

$$Tt_{13} = Tt_{16} = 464,0927 \text{ K}$$

Sedangkan Pt_{16} ;

$$Pt_{16} = Pt_{13} = 3,1204$$
 bar

j. Perhitungan state 6A

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley, dan Pratt & Whitney. *Introduction Intermediate Level Maintenance F100-PW-*220.dan dari data sheet FDR didapat M_6 = 0,5 dan Pt_{6A} = 1,0182 bar. Maka properties distate 6A bisa diketahui sebagai berikut:

Dengan bypasa rasio dari Introduction Intermediate Level Maintenance F100-PW-220. Didapat bypass rasio 0,6:1. Maka \dot{m}_{cold} ;

$$\dot{\mathrm{m}}_{cold} = 0.6 \times \dot{\mathrm{m}}_i$$

$$\dot{m}_{cold} = 0.6 \times 42,9354$$

$$\dot{m}_{cold} = 25,7612 \frac{\text{kg}}{\text{s}}$$

Sedangkan m_{hot};

$$\dot{m}_{hot} = 0.4 \times \dot{m}_i$$
$$\dot{m}_{hot} = 0.4 \times 42,9354$$
$$\dot{m}_{hot} = 17,1741 \frac{\text{kg}}{\text{s}}$$

Feul/ air didapat dari feul/air rasio hal 68;

$$f = \frac{\dot{m}_{feul}}{\dot{m}_{hot}}$$
$$f = \frac{0,1346}{17,1741}$$
$$f = 0,0078$$

Temperature 6a didapat dengan *equations* antara *the properties mixture of gases*di *mixing of hot and cold streams hal* 127.

$$cp_{mix} = \frac{\dot{m}_{cold}cp_{air} + \dot{m}_{hot}(1+f)cp_{gas}}{(\dot{m}_{cold} + \dot{m}_{hot})}$$

$$cp_{mix} =$$

$$(25,7612 \times 1,005) + (17,1741(1+0,0078) \times 1,148)$$

$$(25,7612 + 17,1741)$$

$$cp_{mix} = 1,0061\frac{KJ}{kg}K$$

Temperature 6a didapat dengan *enthalpy balance* di *mixing of hot and cold streams hal* 127.

$$\begin{split} \dot{\mathbf{m}}_{cold} cp_{air} Tt_{16} + \dot{\mathbf{m}}_{hot} (1+f) cp_{gas} Tt_6 \\ &= \dot{\mathbf{m}}_{mix} cp_{mix} Tt_{6A} \\ Tt_{6A} = \frac{\dot{\mathbf{m}}_c cp_c Tt_{16} + \dot{\mathbf{m}}_h (1+f) cp_h Tt_6}{\dot{\mathbf{m}}_{mix} cp_{mix}} \\ Tt_{6A} = \\ (25,7612 \times 1,005 \times 464,0927) + \\ \underline{(17,1741(1+0,0078)1,148 \times 636,9793)} \\ 43,0699 \times 1,0061 \\ Tt_{6A} = 515,0795 \, K \end{split}$$

A distate 6 dan 16 bidapat dari Introduction Intermediate Level Maintenance F100-PW-220 yaitu dari gambar skema engine F100-PW-220. Berikut ini a dari state 6 dan 16;

Tabel 4.29 Data A6 dan A16 Kondisi Idle After MRO

A6 dan A16					
		SKALA	1 : 4,1372		
	Dgambar	Dreal	Agambar		А
STATE	(mm)	(mm)	(mm^2)	Areal (mm)	(m^2)
Cone					
Nozzle	72,960	301,853	71561,839	71561,839	0,072
6	176,050	728,362	416662,009	345100,169	0,345
16	224,630	929,349	678339,893	261677,884	0,262

 A_6 dan A_{16} didapat dari perhitungan dibawah ini;

• $A_{GAMBAR}STATE 6$

 $D_{REAL}STATE 6 = D_{GAMBAR}STATE 6 \times SKALA$

 $D_{REAL}STATE 6 = 176,050 \times 4,1372$

 $D_{REAL}STATE 6 = 728,362 \text{ mm}$

 $A_{GAMBAR}STATE \ 6 = \pi \times \frac{D_{REAL}^2STATE \ 6}{4}$ $A_{GAMBAR}STATE 6 = \pi \times \frac{728,362}{\Lambda}$ $A_{CAMBAB}STATE 6 = 416662,009 \text{ mm}^2$ • A_{CAMBAR}CONE NOZZLE $D_{REAL}CONE NOZZLE = D_{GAMBAR}CONE NOZZLE \times SKALA$ $D_{REAL}CONE NOZZLE = 72,960 \times 4,1372$ $D_{REAL}CONE NOZZLE = 301.853 \text{ mm}$ $A_{GAMBAR}CONE NOZZLE = \pi \times \frac{D_{REAL}^2 CONE NOZZLE}{4}$ $A_{GAMBAR}CONE \ NOZZLE = \pi \times \frac{301,853}{4}$ $A_{GAMBAB}CONE NOZZLE = 71561,839 \text{ mm}^2$ • $A_{GAMBAR}STATE 16$ $D_{REAL}STATE 16 = D_{GAMBAR}STATE 16 \times SKALA$ $D_{RF4I}STATE 16 = 224,630 \times 4,1372$ $D_{REAL}STATE 16 = 929,349 \text{ mm}$ $A_{GAMBAR}STATE 16 = \pi \times \frac{D_{REAL}^2STATE 16}{\Lambda}$ $A_{GAMBAR}STATE \ 16 = \pi \times \frac{929,349}{4}$ $A_{CAMBAB}STATE 16 = 678339.893 \text{ mm}^2$

• A₆

$$A_{REAL}STATE \ 6 = A_{GAMBAR}STATE \ 6$$
$$- A_{GAMBAR}CONE \ NOZZLE$$
$$A_{REAL}STATE \ 6 = 416662,009 - 71561,839$$
$$A_{REAL}STATE \ 6 = 345100,169 \ mm^2$$
$$A_6 = 0,345 \ m^2$$

• A₁₆

 $A_{REAL}STATE \ 16 = A_{GAMBAR}STATE \ 16 - A_{GAMBAR}STATE \ 6$ $A_{REAL}STATE \ 16 = 678339,893 - 416662,009$

 $A_{REAL}STATE 16 = 261677,884 \text{ mm}^2$

$$A_{16} = 0,262 \text{ m}^2$$

Unt uk daerah *mixing properties* didapat dengan cara iterasi meunggunakan *momentum balance* di *mixing of hot and cold streams* hal 127;

Sehingga harus diketahui *propeties state* 6 dan 16 sebelum melakukan iterasi untuk menentukan properties di state 6A;

 Properties state 6
 Tabel 4.30 Data Properties State 6 Kondisi Idle After MRO

PROPERTIES STATE 6			
STATE	IDLE AFTER		
6	MRO	SATUAN	
M6	0,5		

P 6	0,9781	bar
T6	571,5818	К
A6	0,3451	m^2
a 6	467,6223	m/s
С6	233,8111	m/s
ρ6	0,2145	KJ/Kg K

Dengan diketahui Pt_6 data sheet dan M_6 merupakan Mach number turbine design diasumsikan dengan bilai 0,5 sesuai di *mixng of hot and cold streams* hal 128, maka didapat P_6 dengan menggunakan *local isentropic stagnation properties* equiation (12.21a);

$$\frac{Pt_6}{P_6} = \left(1 + \frac{k - 1}{2}M_6^2\right)^{\frac{k}{k - 1}}$$

$$P_6 = \frac{Pt_6}{\left(1 + \frac{k - 1}{2}M_6^2\right)^{\frac{k}{k - 1}}}$$

$$P_6 = \frac{1,1515}{\left(1 + \frac{1,333 - 1}{2}0,5_6^2\right)^{\frac{1,333}{1,333 - 1}}}$$

$$P_6 = 0,9781 \text{ bar}$$

Dengan diketahui Tt_6 dari perhitungan *enthalpy* balance, M_6 merupakan Mach number turbine design diasumsikan dengan bilai 0,5 sesuai di mixng of hot and cold streams hal 128, maka didapat T_6 dengan menggunakan local isentropic stagnation properties equiation (12.21b);

$$\begin{aligned} \frac{Tt_6}{T_6} &= \left(1 + \frac{k-1}{2}M_6^2\right) \\ T_6 &= \frac{Tt_6}{\left(1 + \frac{k-1}{2}M_6^2\right)} \\ T_6 &= \frac{595,3739}{\left(1 + \frac{1,333 - 1}{2}0,5_6^2\right)} \\ T_6 &= 571,5818 \text{ K} \end{aligned}$$

Dengan diketahui T_6 , bisa menentukan a_6 dengan *Propagation of Sound Waves* equation (12.18);

$$a_6 = \sqrt{kRT_6}$$

 $a_6 = \sqrt{1,333 \times 0,287 \times 571,5818 \times 1000}$
 $a_6 = 467,6223 \frac{\text{m}}{\text{s}}$

Dengan diketehui a_6 dan M_6 maka bisa ditentukan C_6 dengan *Propagation of Sound Waves* equation (12.13);

$$M_6 = \frac{C_6}{a_6}$$
$$C_6 = M_6 \times a_6$$
$$C_6 = 0.5 \times 467,6223$$
$$C_6 = 233,8111\frac{\text{m}}{\text{s}}$$

Dengan diketahui nilai C_6 bisa mencari nilai ρ_6 menggunakan *continuty equation compressible flow*;

$$\dot{m}_{hot} = \rho_6 C_6 A_6$$
$$\dot{m}_{hot} (1+f) = \rho_6 C_6 A_6$$
$$\rho_6 = \frac{\dot{m}_{hot} (1+f)}{C_6 A_6}$$
$$\rho_6 = \frac{17,1741(1+0,0078)}{233,8111 \times 0,3451}$$
$$\rho_6 = 0,2145 \frac{kJ}{kg} K$$

• Properties state 16

Tabel 4.31 Data Properties State 16 Kondisi Idle AfterMRO

PROPERTIES STATE 16				
STATE	IDLE AFTER			
16	MRO	SATUAN		
M 16	1,4018			
P 16	0,9781	bar		
T16	333,1591	К		
A16	0,2617	m^2		
a 16	365,8734	m/s		
C 16	512,8797	m/s		
ρ16	0,1920	KJ/Kg K		

Dengan aliran yang di $P_{16}P_{16}$ yang uniform across duct di state 6 dan 16 di *mixing of hot and cold streams* hal 127, maka nilai $P_{16} = P_{16}$, maka didapat M_{16} dengan menggunakan *local isentropic stagnation properties* equiation (12.21b);

$$\frac{Pt_{16}}{P_{16}} = \left(1 + \frac{k - 1}{2}M_{16}^2\right)^{\frac{k}{k - 1}}$$
$$M_{16} = \sqrt{\frac{2}{k - 1}\left(\left(\frac{Pt_{16}}{P_{16}}\right)^{\frac{k - 1}{k}} - 1\right)}$$
$$M_{16} = \sqrt{\frac{2}{1,4 - 1}\left(\left(\frac{3,1204}{0,9781}\right)^{\frac{1,4 - 1}{1,4}} - 1\right)}$$
$$M_{16} = 1,4018$$

Dengan diketahui Tt_{16} dan M_{16} maka didapat T_6 dengan menggunakan *local isentropic stagnation* properties equiation (12.21b);

$$\begin{aligned} \frac{Tt_{16}}{T_{16}} &= \left(1 + \frac{k - 1}{2}M_{16}^2\right)\\ T_{16} &= \frac{Tt_{16}}{\left(1 + \frac{k - 1}{2}M_{16}^2\right)}\\ T_{16} &= \frac{464,0927}{\left(1 + \frac{1,4 - 1}{2}1,2522_6^2\right)}\\ T_{16} &= 333,1591 \text{ K} \end{aligned}$$

Dengan diketahui T_{16} , bisa menentukan a_{16} dengan *Propagation of Sound Waves* equation (12.18);

$$a_{16} = \sqrt{kRT_{16}}$$

$$a_{16} = \sqrt{1.4 \times 0.287 \times 333.1591} \times 1000$$

$$a_{16} = 365.8734 \frac{\text{m}}{\text{s}}$$

Dengan diketehui a_{16} dan M_{16} maka bisa ditentukan C_{16} dengan *Propagation of Sound Waves* equation (12.13);

$$M_{16} = \frac{C_{16}}{a_{16}}$$
$$C_{16} = M_{16} \times a_{16}$$
$$C_{16} = 1,2969 \times 365,8734$$
$$C_{16} = 512,8797 \frac{\text{m}}{\text{s}}$$

Dengan diketahui nilai C_{16} bisa mencari nilai ρ_{16} menggunakan *continuity equation compressible flow*;

$$\dot{m}_{cold} = \rho_{16}C_{16}A_{16}$$

$$\rho_{16} = \frac{\dot{m}_{cold}}{C_{16}A_{16}}$$

$$\rho_{16} = \frac{25,7612}{512,8797 \times 0,2617}$$

$$\rho_{16} = 0,1920\frac{kJ}{kg}K$$

Dengan *momentum balance di mixing hot and cold streams* hal 127, maka didapat:

Tabel 4.32 Data Momentum Balance Kondisi Idle After MRO

MOMENTUM BALANCE		
	IDLE AFTER	
STATE	MRO	
(ṁhot(1+f)C6+P6A6)	4047,3094	
(ṁcoldC16+P16A16)	13212,6589	
(ṁhot (1+f)C6+P6A6)+(ṁcoldC16+P16A16)	17259,9683	

Dimana momentum balance;

$$(\dot{m}_{hot} (1+f)C_6 + P_6A_6) + (\dot{m}_{cold} C_{16} + P_{16}A_{16}) = (\dot{m}_{mix} C_{6A} + P_{6A}A_{6A})$$

 $\dot{m}_{mix} C_{6A} + P_{6A} A_{6A} =$

 $(17,1741(1 + 0,0078) \times 241,8427 + 0,9781 \times 0,345)$

 $+(25,7612 \times 470,9591 + 0,9781 \times 0,2617)$

$$\dot{m}_{mix} C_{6A} + P_{6A} A_{6A} = 17259,9683$$

Dengan iterasi setiap kenaikan 0,1 Mach Number di *mixing hot and cold streams* equaitons 8 hal 128. Didapat properties distate 6A sebagai berikut;

Tabel 4.33 Data Properties 6A Kondisi Idle AfterMRO

PROPERTIES STATE 6A			
STATE IDLE AFTER			
6A	MRO	SATUAN	
М6А	0,9714		

Р6А	0,5679	bar
Т6А	445,0765	К
С6А	400,7284	m/s
ρ 6Α	0,0983	KJ/Kg K

k. Perhtiunga state 7

Dari buku Pritchard, Philip J., 2011. *Introduction To Fluid Mechanic*. Eight Edition. United State America : R.R. Donnelley-JC. Dengan *local isentropic stagnation propeties* didapat properties 6A=7= constant. Sebagai berikut;

 $Pt_{6A} = Pt_7 = 1,0182$ bar

$$Tt_{6A} = Tt_7 = 515,0795 K$$

PROPERTIES STATE 7			
STATE	IDLE AFTER		
7	MRO	SATUAN	
M 7	0,9714		
P7	0,5679	bar	
T7	445,0765	К	
С7	400,7284	m/s	
ρ7	0,0983	KJ/Kg K	

I. Perhitungn state 9

Dari Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220 dan Mattingly, Jack D. with a foreword by Hans Von Ohain. 2005. Elements Of Gas Turbine Propulsion. New Delhi : Tata McGraw Hill Publishing. Diketahui presesntase dari A_i properteies dari state 9. Maka properties distate 9 bisa diketahui sebagai berikut:

Dari presentase A_j bisa diketahui luasan didaerah throat. Diameter dari throat dan divergen bersumber dari dirvegen sizing area Introduction Intermediate Level Maintenance F100-PW-220.

• Diameter A₈Presentase 0 sebesar 22,098 inchi dan presentase 100 sebesar 33,7 icnhi. Dikonversi satuan ke meter.

Tabel 4.35 Data A₈ Kondisi Idle After MRO

A 8				
AJ	IDLE AFTER			
THROAT	MRO	SATUAN		
0	0,5613	m		
86,3836	0,8159	m		
100	0,8560	m		
A 8	0,5228	m^2		

Diameter dari A8didapat dari interpolasi;

$$D_8 = 0,5613 + \frac{(86,3836 - 0)}{(100 - 0)}(0,8560 - 0,56213)$$

$$D_8 = 0,8159 m$$

Maka luaasan A_8

$$A_8 = \pi \times \frac{D_8^2}{4}$$
$$A_8 = \pi \times \frac{0.8159^2}{4}$$
138

$$A_8 = 0,5228 m^2$$

• Diameter A₉Presentase 0 sebesar 22,098 inchi dan presentase 100 sebesar 40,1 icnhi. Dikonversi satuan ke meter.

Tabel 4.36 Data A₉ Kondisi Idle After MRO

A 9				
AJ	IDLE AFTER			
DIRVERGEN	MRO	SATUAN		
0	0,5613	m		
86,3836	0,9584	m		
100	1,0210	m		
А 9	0,7213	m^2		

Diameter dari D₉didapat dari interpolasi;

$$D_9 = 0,5613 + \frac{(86,3839 - 0)}{(100 - 0)}(1,0210 - 0,56213)$$

$$D_8 = 0,9584 m$$

Maka luaasan A_9 ;

$$A_9 = \pi \times \frac{D_9^2}{4}$$
$$A_9 = \pi \times \frac{0.9584^2}{4}$$
$$A_9 = 0.7213 m^2$$

Dengan menggunakan rasio luasan di Appendix E Compressible Flow Functions dibuku *Elements Of Gas Turbine Propulsion*. Didapat M_9 berikut;

$$\frac{A}{A^*}$$
$$\frac{A_9}{A_8} = 1,3797$$

Dari rasio luasan didapat M_9 dengan interpolasi sebgai berikut;

Tabel 4.37 Data M State 9 Kondisi Idle After MRO

STATE 9		
A/A*	М	
1,3862	0,4800	
1,3797	0,4831	
1,3653	0,4900	

$$M_9 = 0,4800 + \frac{(1,3797 - 1,3862)}{(1,3653 - 1,3862)}(0,4900 - 0,400)$$
$$M_9 = 0,4831$$

Dengan diketaui M_9 , didapat properties di state 9;

Tabel 4.38 Data Properties State 9 Kondisi Idle AfterMRO

PROPERTIES STATE 9		SATUAN
Pt9/P9	1,1649	
Pa	1,0011	bar
Р9	2,7845	bar
Pt9	3,2436	bar
Т9	495,8117	К
a 9	435,5263	m/s

Cj 210,4090 m/s

Dengan *local isentropic stagnation properies* equation (12.21b) menggunakan M_9 , didapat *Pt9/P9*

$$\frac{Pt_9}{P_9} = \left(1 + \frac{k - 1}{2}M_9^2\right)^{\frac{k}{k - 1}}$$
$$\frac{Pt_9}{P_9} = \left(1 + \frac{1,333 - 1}{2}0,4831^2\right)^{\frac{1,333}{1,333 - 1}}$$
$$\frac{Pt_9}{P_9} = 1,1649$$

Dengan diketaui Pt_9/P_9 bisa didapat P_9 menggunakan parametric cycle analysis of real engines euation (7-86b).

Tabel 4.39 D	ata Pressure Ra	usio Kondisi I	Idle After
MRO			

PRESSURE RASIO		
	IDLE AFTER	
STATE	MRO	
πr	1	
π_d	0,999	
πf	3,120	
πcH	25,022	
π_b	0,920	
πtH	0,141	
πtL	0,431	
π m	0,765	
πn	0,97	

Dimana;

$$\frac{Pt_9}{P_9} = \frac{P_a}{P_9} \pi_r \pi_d \pi_f \pi_{cH} \pi_b \pi_{tH} \pi_{tL} \pi_m \pi_n$$
$$P_9 = \frac{P_a \pi_r \pi_d \pi_f \pi_{cH} \pi_b \pi_{tH} \pi_{tL} \pi_m \pi_n}{\frac{Pt_9}{P_9}}$$

 $P_{9} =$

 $(1,0011 \times 1 \times 0,999 \times 3,120 \times 25,022 \times 0.920 \times 0,141 \times 0,431 \times 0.765 \times 0,97)/(1,1649)$

$$P_9 = 2,7845$$
 bar

Dengan diketahui P_9 maka bisa didapat Pt_9 menggunakan Dengan *local isentropic stagnation* properies equation (12.21b);

$$\frac{Pt_9}{P_9} = \left(1 + \frac{k-1}{2}M_9^2\right)^{\frac{k}{k-1}}$$

$$Pt_9 = P_9 \left(1 + \frac{k-1}{2}M_9^2\right)^{\frac{k}{k-1}}$$

$$Pt_9 = 2,7845 \left(1 + \frac{1,333-1}{2}0,4831^2\right)^{\frac{1,333}{1,333-1}}$$

$$Pt_9 = 3,2436 \text{ bar}$$

Dengan M_9 dapat diperoleh T_9 menggunakan Dengan *local isentropic stagnation properies* equation (12.21b);

$$\frac{Tt_9}{T_9} = \left(1 + \frac{k-1}{2}M_9^2\right)$$
$$T_9 = \frac{Tt_9}{\left(1 + \frac{k-1}{2}M_9^2\right)}$$
$$T_9 = \frac{515,0795}{\left(1 + \frac{1,333 - 1}{2}0,4831^2\right)}$$
$$T_9 = 495,8117 \text{ K}$$

Dengan diketahui T_9 , bisa menentukan a_9 dengan *Propagation of Sound Waves* equation (12.18);

$$a_9 = \sqrt{kRT_9}$$

 $a_9 = \sqrt{1,333 \times 0,287 \times 495,8117 \times 1000}$
 $a_9 = 435,5263 \frac{\text{m}}{\text{s}}$

Dengan diketehui a_9 dan M_9 maka bisa ditentukan C_9 dengan *Propagation of Sound Waves* equation (12.13);

$$M_9 = \frac{C_9}{a_9}$$

$$C_9 = M_9 \times a_9$$

$$C_9 = 0,4831 \times 435,5263$$

$$C_j = C_9 = 210,4090 \frac{\text{m}}{\text{s}}$$

m. Perhitungan Thrust

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley. Yang didapat keadaan nozzle under-expended atau over-expended. Maka Thrust bisa diketahui sebagai berikut:

THRUST		
STATE	IDLE AFTER MRO	SATUAN
ṁтіх	43,0699	kg/s
Ca	0,0000	m/s
Сј	210,4090	m/s
Pa	1,0011	bar
P 9	2,7845	bar
L	0,7213	m^2
F	9063,590097	Ν

Tabel 4.40 Data Thrust Kondisi Idle After MRO

Dengan $P_9 > P_a$ maka keadaan nozzle under-expended menurut buku *Elements Of Gas Turbine Propulsion* bab 3 hal 172., sehingga thrust didapat;

$$F = \dot{m}_{mix} (C_j - C_a) + A_j (P_9 - P_a)$$

F = 43,0699(210,4090 - 0) + 0,7213(2,7845 - 1,0011)

$$F = 9063,590097 N$$

n. Perhitungan SFC

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition.

India : Dorling Kindersley. Maka SFC bisa diketahui sebagai berikut:

 Tabel 4.41
 Data SFC Kondisi Idle After MRO

	SFC	SATUAN
STATE	IDLE BEFOR MRO	
ṁfeul total	0,1346	kg/s
F	9063,5901	Ν
SFC	0,0535	kg/N.h

Dengan menggunakan SFC di bab 2 hal 71;

$$SFC = \frac{\dot{m}feul\ total}{F}$$
$$SFC = \frac{0,1346 \times 3600}{9063,5901}$$
$$SFC = 00,0535 \frac{\text{kg}}{\text{N}}.\text{h}$$

4.7 Perhitungan Kondisi Mill After MRO

Dimana data didapat dari Engine Test Cell bisa menentukan pressure dan temperature tiap state.

DATA DIKETAHUI			
STATE	MILL AFTER MRO	SATUAN	
Po	1,0011	bar	
P2	0,8819	bar	
Pt2	1,0050	bar	
Tt ₂	319,1959	К	

FTIT 1	1225,0700	К
FTIT 2	1232,2030	К
FTIT 3	1313,3900	К
FTIT 4	1196,4520	К
FTIT 5	1240,9730	К
FTIT 6	1192,4230	К
FTIT 7	1240,9730	К
FTIT AVG	1234,4977	К
Pt6	2,7355	bar
N2	12781,4000	rpm
N1	10025,5000	rpm
AJ	1,7416	%
EPR	2,7207	
mfeul	1,1555	kg/s
mfeulAC	0,0634	kg/s
<i>ṁ</i> feulAD	0,0581	kg/s

Pressure dan temperature tiap state dapat dilihat sebagai berikut;

 Tabel 4.43 Data Pressure Tiap State kondisi Mill After MRO

KONDISI PRESSURE TIAP STATE		
	MILL AFTER	
STATE	MRO	SATUAN
Po	1,0011	bar
Pto	1,0011	bar
Pt2	1,0050	bar
P 2	0,8819	bar
Pt13	3,1357	bar
Ptз	25,1486	bar
Pt4	23,1367	bar
Pt 4.5	6,3108	bar

Pt5	3,8231	bar
Pt 16	3,1357	bar
Pt6	3,8231	bar
Pt6A	2,7355	bar
Pt7	2,7355	bar
Pt8		bar
Pt9	8,2787	bar

 Tabel 4.44 Data
 Temperature Tiap State kondisi Mill

 After MRO
 Image: Marcolamber of the state

KONDISI TEMPERATURE TIAP STATE		
STATE	MILL AFTER MRO	SATUAN
То	287,4740	К
Tto	287,4740	К
Tt2	319,1959	К
Tt13	463,8112	К
Ttз	933,8248	К
Tt4	1626,6574	К
Tt4.5	1234,4977	К
Tt5	1109,8622	К
Tt 16	463,8112	К
Tt6	1109,8622	К
Tt6A	779,2528	К
Tt7	779,2528	К
Tt8	779,2528	К
Tt9	779,2528	К

Kondisi tiap state dari temperatur dan pressure stagnasi bisa dikethaui dengan menggunakan nilai konstata. Sebagai berikut;
NILAI KETENTUAN		SATUAN
ηf	0,87	%
ηc, ηt	0,85	%
η m	0,99	%
η n , η j	0,95	%
η ь	0,98	%
ΔP_b	0,08	%
k air	1,4	-
kgas	1,333	
R	0,2870	KJ/Kg K
ρair	1,2371	Kg/m^3
Cp air	1,005	KJ/Kg K
CP gas	1,148	KJ/Kg K
Cp mix	1,0129	KJ/Kg K
R	0,2870	KJ/Kg K
Ca	0	m/s
а	339 <i>,</i> 905	m/s
Мо	0	
D inlet (")	34,8	inchi
D inlet (m)	0,8839	m
D AB MAX (")	46,5	inchi
D AB MAX (m)	1,1811	m
A inlet	0,6136	m^2
A AB MAX	1,0956	m^2

Tabel 4.45 Data Nilai Konstata Yang Diketahui kondisi MillAfter MRO

Dimana konstata didapt dari;

 η_f didapat dari Abdul-Nabe, Rana Adil and Tariq, Mohammad. 2014. *Thermal Analysis Of A Gas Turbine Cycle For A Turbojet Engine*. International Journal Of Advanced Research In Engineering And Technology (IJARET). Allahabad India.

- η_c, dan η_t didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 2 compressor and turbine efisiencies hal 56.
- η_m didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 2 mechanical loses hal 66.
- η_j/η_n didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 3 propelling nozzles hal 108
- η_b didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 2 combustion efisiensi hal 68.
- ΔP_b didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 2 pressure loses hal 61
- cp_{air}, cp_{gas}, cp_{mix}, k_{air}, k_{gas}, dan R didapat dari buku dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley bab 2 variation of spesific heat hal 66.
- *ρ_{air}*, *a*, didapat dari tabel ISA dengan ketinggian 104 mdpl. Dengan mengunakan interpolasi.
- C_a , M_0 didapat dari *a*, dengan ketinggian 104 mpdl dan keadaan Engine statis.
- *A_{inlet}*, dan *A_{AB MAX}* didapat dari Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220.

a. Perhitungan State 0

Pengujian yang dilalukan di ketinggian 104 mdpl, berada di Skatek 042. Sehingga kondisi 0 didapat dari ISA tabel.

Tabel 4.46 Data ISA Tabel Dengan Ketinggian 104 mdpl SI kondisi Mill After MRO

ISA TABEL				
Altitude	Po	То	ρ/ρο	а
0	1,0133	288,1500	1	340,3
104	1,0011	287,4740	0,990203	339,9048
500	0,9546	284,9000	0,9529	338,4

Dengan cara interpolasi didapat pressure, kecepatan suara dan tempurature statis di ketingginan 104mdpl.

$$P_0 = 1,0133 + \frac{(104 - 0)}{(500 - 104)}(0,9546 - 1,0133)$$

 $P_0 = 1,0011$ bar

$$T_0 = 288,15 + \frac{(104 - 0)}{(500 - 104)}(284,9 - 288,15)$$

 $T_0 = 287,474 \text{ K}$

Dengan local isentropic stagnation properies equation (12.21b) keadaan engine yang statis maka stagnasi properties didapat, yang $M_0 = 0$. maka Pt_0 ;

$$\frac{Pt_0}{P_0} = \left(1 + \frac{k-1}{2}M^2\right)^{\frac{k}{k-1}}$$
$$Pt_0 = P_0 \times \left(1 + \frac{k-1}{2}M^2\right)^{\frac{k}{k-1}}$$
$$150$$

$$Pt_0 = 1,0011 \times \left(1 + \frac{1,4-1}{2}0^2\right)^{\frac{1,4}{1,4-1}}$$
$$Pt_0 = 1,0011$$

Dengan *local isentropic stagnation properies* equation (12.21b) keadaan engine yang statis maka stagnasi properties didapat, yang $M_0 = 0$. maka Tt_0 ;

$$\frac{Tt_0}{T_0} = \left(1 + \frac{k-1}{2}M^2\right)$$
$$Tt_0 = T_0 \times \left(1 + \frac{k-1}{2}M^2\right)$$
$$Tt_0 = 287,474 \times \left(1 + \frac{1,4-1}{2}0^2\right)$$
$$Tt_0 = 287.474$$

b. Perhitungan State 2

Distate 2 data didapat dari FDR (Flight Data Recorder), yang berupa Tt_2 , Pt_2 , P_2 . Bisa diketahui properties distate 2 yang bersumber dari buku Pritchard, Philip J., 2011. *Introduction To Fluid Mechanic*. Eight Edition. United State America : R.R. Donnelley-JC. Bab 12 *Introdustion to Compressible Flow*.

$$Tt_2 = 319,1959 \text{ K}$$

 $Pt_2 = 1,0050 \text{ bar}$
 $P_2 = 0,8819 \text{ bar}$

• Dari Pt_2 , P_2 yang sudah diketahui kita bisa mencari \dot{m}_i ,

mi		
STATE	MILL AFTER MRO	SATUAN
Pt ₂	1,0050	bar
P2	0,8819	bar
Pt2/P2	1,1396	
М2	0,4362	
T2	307,4959	К
a 2	351,4994	m/s
C2	153,3142	m/s
<i>ṁ</i> i	116,3866	kg/s

Tabel 4.47 Data mikondisi Mill After MRO

Dengan Pt_2 , P_2 yang sudah diketahui dari data FDR dan *local isentropic stagnation properies* equation (12.21a) maka nilai M_2 diperoleh;

$$\frac{Pt_2}{P_2} = \left(1 + \frac{k-1}{2}M^2\right)^{\frac{k}{k-1}}$$
$$M_2 = \sqrt{\frac{2}{k-1}\left(\left(\frac{Pt_2}{P_2}\right)^{\frac{k-1}{k}} - 1\right)}$$
$$M_2 = \sqrt{\frac{2}{1,4-1}\left((1,1396)^{\frac{1,4-1}{1,4}} - 1\right)}$$
$$M_2 = 0,4362$$

Lalu dengan diketahui M_2 dapat menentukan dari T_2 dengan *local isentropic stagnation properies* equation (12.21b);

$$\frac{Tt_2}{T_2} = \left(1 + \frac{k-1}{2}M^2\right)$$
$$T_2 = \frac{Tt_2}{\left(1 + \frac{k-1}{2}M^2\right)}$$
$$T_2 = \frac{319,1959}{\left(1 + \frac{1,4-1}{2}0,4362^2\right)}$$
$$T_2 = 307,4959 \text{ K}$$

Dengan diketahui T_2 , bisa menentukan a_2 dengan *Propagation of Sound Waves* equation (12.18);

$$a_2 = \sqrt{kRT_2}$$

 $a_2 = \sqrt{1,4 \times 0,287 \times 307,4959 \times 1000}$
 $a_2 = 351,4994$

Dengan diketehui a_2 dan M_2 maka bisa ditentukan C2dengan Propagation of Sound Waves equation (12.13).

$$M_2 = \frac{C_2}{a_2}$$

$$C_2 = M_2 \times a_2$$

$$C_2 = 0,4362 \times 351,4994$$

$$C_2 = 153,3142 \frac{\text{m}}{\text{s}}$$

Dengan diketahui nilai C2bisa mencari nilai *m*imenggunakan *continuty equation compressible flow*;

$$\dot{m} = \rho CA$$
$$\dot{m}i = \rho C_2 A_i$$
$$\dot{m}i = 1,2371 \times 153,3142 \times 0,6136$$
$$\dot{m}i = 116,3866 \frac{kg}{s}$$

c. Perhitungan state 13

Dari buku manual Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220 dan Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley. Fan pressure rasio (FPR) didapat sebesar 3,12. Maka properties distate 13 bisa diketahui sebgaia berikut:

Menggunakan pressure rasio makaPt₁₃ diketahui;

$$\frac{Pt_{13}}{Pt_2} = FPR$$

$$Pt_{13} = Pt_2 \times FPR$$

$$Pt_{13} = 1,0050 \times 3,12$$

$$Pt_{13} = 3,1357 \text{ bar}$$

Dengan *polytropic efficiency* equation (2.15) didapat Tt_{13} ,

$$\left(\frac{n-1}{n}\right)_{air} = \left(\frac{k-1}{k\eta_{\omega f}}\right)_{air}$$
$$\left(\frac{n-1}{n}\right)_{air} = \frac{1}{\eta_f} \left(\frac{k-1}{k}\right)_{air}$$
$$\frac{154}{154}$$

$$\left(\frac{n-1}{n}\right)_{air} = \frac{1}{0.87} \left(\frac{1.4-1}{1.4}\right)_{air}$$
$$\left(\frac{n-1}{n}\right)_{air} = 0.3284$$
$$\frac{Tt_{13}}{Tt_2} = \left(\frac{Pt_{13}}{Pt_2}\right)^{\left(\frac{n-1}{n}\right)_{air}}$$
$$Tt_{13} = Tt_2 \times \left(\frac{Pt_{13}}{Pt_2}\right)^{\left(\frac{n-1}{n}\right)_{air}}$$
$$Tt_{13} = 319.1959 + (3.12)^{0.3284}$$

 $Tt_{13} = 463,8112$ K

d. Perhtiungan state 3

Dari buku manual Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220 dan Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley. Compressor pressure rasio(CPR) didapat sebesar 8,02. Maka properties disatet 3 bisa diketahui sebgaia berikut:

$$\frac{Pt_3}{Pt_{13}} = CPR$$

$$Pt_3 = Pt_{13} \times CPR$$

$$Pt_3 = 3,1357 \times 8,02$$

$$Pt_3 = 25,1486 \text{ bar}$$

Dengan polytropic efficiency equation (2.15) didapat Tt_3 ;

$$\binom{n-1}{n}_{air} = \binom{k-1}{k\eta_{\omega c}}_{air}$$

$$\binom{n-1}{n}_{air} = \frac{1}{\eta_c} \binom{k-1}{k}_{air}$$

$$\binom{n-1}{n}_{air} = \frac{1}{0.85} \binom{1.4-1}{1.4}_{air}$$

$$\binom{n-1}{n}_{air} = 0.3361$$

$$\frac{Tt_3}{Tt_{13}} = \binom{Pt_3}{Pt_{13}} \binom{n-1}{n}_{air}$$

$$Tt_3 = Tt_{13} \times \binom{Pt_3}{Pt_{13}} \binom{n-1}{n}_{air}$$

$$Tt_3 = 463.8112 \times (8.02)^{0.3361}$$

$$Tt_3 = 933.8248 K$$

e. Perhitungan state 4

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley dan dari data sheet FDR didpapat $Tt_{4.5}$ / *Fan Turbine Inlet Temperature* (FTIT) sebesar 1234,4977 k. Maka properties distate4 bisa diketahui sebagai berikut:

Dengan menggunakan temperature equations of work transfer dengan pressure rasio equation (2.11) didapat $Tt_3 - Tt_{13}$;

$$Tt_{3} - Tt_{13} = \frac{Tt_{13}}{\eta_{c}} \left(\left(\frac{Pt_{3}}{Pt_{13}}\right)^{\frac{k-1}{k}} - 1 \right)$$

$$Tt_{3} - Tt_{13} = \frac{463,8112}{0,85} \left((8,02)^{\frac{1,4-1}{1,4}} - 1 \right)$$
$$Tt_{3} - Tt_{13} = 443,7499 \ K$$

Sehingga dapat dicari work transfer turbine to drive compressor per unit mass flow; seperti example 2.1 hal 75;

$$W_{tcH} = \frac{cp_{air}(Tt_3 - Tt_{13})}{\eta_m}$$
$$W_{tcH} = \frac{1,005 \times 443,7499}{0,99}$$
$$W_{tcH} = 450,1993 \frac{kJ}{kg}$$

Maka *temperature equivalent of compressor turbine work* seperti example 2.2 hal 76,didapat;

$$Tt_4 - Tt_{4.5} = \frac{W_{tcH}}{cp_{gas}}$$
$$Tt_4 - Tt_{4.5} = \frac{450,1993}{1,148}$$
$$Tt_4 - Tt_{4.5} = 392,1597 K$$

Dengan ditetahui $Tt_4 - Tt_{4.5}$ dan $Tt_{4.5}$ maka bisa didapat Tt_4 ;

 $Tt_4 = Tt_{4.5} + (Tt_4 - Tt_{4.5})$ $Tt_4 = 1234,4977 + 392,1597$ $Tt_4 = 1626,6574 \text{ K}$

Dan nilai pressure Pt_4 dengan pressure loses sebesar 8 persen dari Pt_3 ;

$$Pt_4 = Pt_3 - (Pt_3 \times \Delta P_b)$$
$$Pt_4 = 25,1486 - (25,1486 \times 0,08)$$
$$Pt_4 = 23,1367 \text{ bar}$$

f. Perhitungan state 4.5

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley dan dari data sheet FDR didpapat $Tt_{4.5}$ / *Fan Turbine Inlet Temperature* (FTIT) sebesar 1234,4977 K. Maka properties distate 4.5 bisa diketahui sebagai berikut:

Dengan polytropic efficiency equation (2.17) didapat $Pt_{4.5}$;

$$\left(\frac{n-1}{n}\right)_{gas} = \left(\frac{\eta_{\omega t}k - 1}{k}\right)_{gas}$$

$$\left(\frac{n-1}{n}\right)_{gas} = \eta_t \left(\frac{k-1}{k}\right)_{gas}$$

$$\left(\frac{n-1}{n}\right)_{gas} = 0.85 \left(\frac{1.333 - 1}{1.333}\right)_{gas}$$

$$\left(\frac{n-1}{n}\right)_{gas} = 0.2123$$

$$\frac{Tt_4}{Tt_{4.5}} = \left(\frac{Pt_4}{Pt_{4.5}}\right)^{\left(\frac{n-1}{n}\right)_{gas}}$$

$$\frac{Pt_4}{Pt_{4.5}} = \left(\frac{Tt_4}{Tt_{4.5}}\right)^{\left(\frac{1}{n-1}\right)_{gas}}$$

$$\frac{Pt_4}{Pt_{4.5}} = \left(\frac{1626,6574}{1234,4977}\right)^{\left(\frac{1}{0,2123}\right)_{gas}}$$
$$\frac{Pt_4}{Pt_{4.5}} = 3,6661 \ bar$$

Sehingga Pt_{4.5};

$$Pt_{4.5} = \frac{Pt_4}{\frac{Pt_4}{Pt_{4.5}}}$$
$$Pt_{4.5} = \frac{23,1367}{3,6661}$$

 $Pt_{4.5} = 6,3108$ bar

g. Perhitungan state 5

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley dan dari data sheet FDR didpapat $Tt_{4.5}$ / *Fan Turbine Inlet Temperature* (FTIT) sebesar 1234,4977 *K*. Maka properties distate 5 bisa diketahui sebagai berikut:

Dengan menggunakan temperature equations of work transfer dengan pressure rasio equation (2.11) didapat $Tt_{13} - Tt_2$;

$$Tt_{13} - Tt_2 = \frac{Tt_2}{\eta_f} \left(\left(\frac{Pt_{13}}{Pt_2} \right)^{\frac{k-1}{k}} - 1 \right)$$

$$Tt_{13} - Tt_2 = \frac{319,1959}{0,87} \left((3,12)^{\frac{1,4-1}{1,4}} - 1 \right)$$

$$Tt_{13} - Tt_2 = 140,9460 K$$

Sehingga dapat dicari *work transfer turbine to drive* compressor per unit mass flow; seperti example 2.1 hal 75;

$$W_{tcL} = \frac{cp_{air}(Tt_{13} - Tt_2)}{\eta_m}$$
$$W_{tcL} = \frac{1,005 \times 140,9460}{0,99}$$
$$W_{tcL} = 143,0816\frac{kJ}{kg}$$

Maka *temperature equivalent of compressor turbine work* seperti example 2.2 hal 76,didapat;

$$Tt_{4.5} - Tt_5 = \frac{W_{tcL}}{cp_{gas}}$$
$$Tt_{4.5} - Tt_5 = \frac{143,0816}{1,148}$$

$$Tt_{4.5} - Tt_5 = 124,6355 K$$

Dengan ditetahu
i $Tt_{4.5}-Tt_5$ dan $Tt_{4.5}$ maka bisa didapat
 $Tt_5;$

$$Tt_5 = Tt_{4.5} - (Tt_{4.5} - Tt_5)$$
$$Tt_5 = 1234,4977 - 124,6355$$
$$Tt_5 = 1109,8622 \text{ K}$$

Dengan polytropic efficiency equation (2.17) didapat Pt_5 ;

$$\left(\frac{n-1}{n}\right)_{gas} = \left(\frac{\eta_{\omega t}k - 1}{k}\right)_{gas}$$

$$\left(\frac{n-1}{n}\right)_{gas} = \eta_t \left(\frac{k-1}{k}\right)_{gas}$$

$$\left(\frac{n-1}{n}\right)_{gas} = 0.85 \left(\frac{1.333 - 1}{1.333}\right)_{gas}$$

$$\left(\frac{n-1}{n}\right)_{gas} = 0.2123$$

$$\frac{Tt_{4.5}}{Tt_5} = \left(\frac{Pt_{4.5}}{Pt_5}\right)^{\left(\frac{n-1}{n}\right)_{gas}}$$

$$\frac{Pt_{4.5}}{Pt_5} = \left(\frac{Tt_{4.5}}{Tt_5}\right)^{\left(\frac{1}{n-1}\right)_{gas}}$$

$$\frac{Pt_{4.5}}{Pt_5} = \left(\frac{1234.4977}{1109.8622}\right)^{\left(\frac{1}{0.2123}\right)_{gas}}$$

$$Pt_{4.5}$$

$$\frac{Pt_{4.5}}{Pt_5} = 1,6507 \ bar$$

Sehingga Pt₅;

$$Pt_{5} = \frac{Pt_{4}}{(\frac{Pt_{4}}{Pt_{4.5}}) \times (\frac{Pt_{4.5}}{Pt_{5}})}$$

$$Pt_5 = \frac{23,1367}{3,6661 \times 1,6507}$$

$$Pt_5 = 3,8231$$
 bar

h. Perhitungan state 6

Dari buku Pritchard, Philip J., 2011. Introduction To Fluid Mechanic. Eight Edition. United State America : R.R. Donnelley-JC. Dengan local isentropic stagnation propeties didapat bahwa Tt_0 = constant. Dari bukuSaravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley.Maka properties distate 6 bisa diketahui sebagai berikut:

Dengan Local Isentropic Stagnation Properties, maka nilai Tt₆;

$$Tt_5 = Tt_6 = 1109,8622 \text{ K}$$

Sedangkan Pt₆;

$$Pt_6 = Pt_5 = 3,8231$$
 bar

i. Perhitungan state 16

Dari buku Pritchard, Philip J., 2011. Introduction To Fluid Mechanic. Eight Edition. United State America : R.R. Donnelley-JC. Dengan local isentropic stagnation propeties didapat bahwa Tt_0 = constant. Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley.Maka properties distate 16 bisa diketahui sebagai berikut:

Dengan Local Isentropic Stagnation Properties, maka nilai Tt_{16} ;

$$Tt_{13} = Tt_{16} = 463,8112 \text{ K}$$

Sedangkan Pt_{16} ;

$$Pt_{16} = Pt_{13} = 3,1357$$
 bar

j. Perhitungan state 6A

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley, dan Pratt & Whitney. *Introduction Intermediate Level Maintenance F100-PW-*220.dan dari data sheet FDR didapat M_6 = 0,5 dan Pt_{6A} = 1,0182 bar. Maka properties distate 6A bisa diketahui sebagai berikut:

Dengan bypasa rasio dari Introduction Intermediate Level Maintenance F100-PW-220. Didapat bypass rasio 0,6:1. Maka m_{cold};

$$\dot{m}_{cold} = 0.6 \times \dot{m}_i$$
$$\dot{m}_{cold} = 0.6 \times 116,3866$$
$$\dot{m}_{cold} = 69,8320 \frac{\text{kg}}{\text{s}}$$

Sedangkan m_{hot};

$$\dot{m}_{hot} = 0.4 \times \dot{m}_i$$
$$\dot{m}_{hot} = 0.4 \times 116,3866$$
$$\dot{m}_{hot} = 46,5546 \frac{\text{kg}}{\text{s}}$$

Feul/ air didapat dari feul/air rasio hal 68;

$$f = \frac{\dot{\mathrm{m}}_{feul}}{\dot{\mathrm{m}}_{hot}}$$

$$f = \frac{1,1555}{46,5546}$$
$$f = 0,0248$$

Temperature 6a didapat dengan *equations* antara *the properties mixture of gases*di *mixing of hot and cold streams hal* 127.

$$cp_{mix} = \frac{\dot{m}_{cold}cp_{air} + \dot{m}_{hot}(1+f)cp_{gas}}{(\dot{m}_c + \dot{m}_h)}$$

$$cp_{mix} = \frac{(69,8320 \times 1,005) + (46,5546(1+0,0248) \times 1,148)}{(69,8320 + 46,5546)}$$

$$cp_{mix} = 1,0129 \frac{KJ}{kg}K$$

Temperature 6a didapat dengan *enthalpy balance* di *mixing of hot and cold streams hal* 127.

$$\begin{split} \dot{\mathbf{m}}_{cold} cp_{air} Tt_{16} + \dot{\mathbf{m}}_{hot} (1+f) cp_{gas} Tt_6 \\ &= \dot{\mathbf{m}}_{mix} cp_{mix} Tt_{6A} \\ Tt_{6A} = \frac{\dot{\mathbf{m}}_{cold} cp_{air} Tt_{16} + \dot{\mathbf{m}}_{hot} (1+f) cp_{gas} Tt_6}{\dot{\mathbf{m}}_{mix} cp_{mix}} \\ Tt_{6A} = \\ (69,8320 \times 1,005 \times 463,8112) + \\ \underline{(46,5546(1+0,0248)1,148 \times 1109,8622)} \\ 117,5421 \times 1,0129 \\ Tt_{6A} = 783,9577 \, K \end{split}$$

A distate 6 dan 16 bidapat dari Introduction Intermediate Level Maintenance F100-PW-220 yaitu dari gambar skema engine F100-PW-220. Berikut ini a dari state 6 dan 16;

 Tabel 4.48 Data A6 dan A16 kondisi Mill After MRO

A6 dan A16					
		SKALA	1 : 4,1372		
	Dgambar	Dreal	Agambar		А
STATE	(mm)	(mm)	(mm^2)	Areal (mm)	(m^2)
Cone					
Nozzle	72,960	301,853	71561,839	71561,839	0,072
6	176,050	728,362	416662,009	345100,169	0,345
16	224,630	929,349	678339,893	261677,884	0,262

 A_6 dan A_{16} didapat dari perhitungan dibawah ini;

• $A_{GAMBAR}STATE 6$

 $D_{REAL}STATE 6 = D_{GAMBAR}STATE 6 \times SKALA$

 $D_{REAL}STATE 6 = 176,050 \times 4,1372$

 $D_{REAL}STATE 6 = 728,362 \text{ mm}$

 $A_{GAMBAR}STATE \ 6 = \pi \times \frac{D_{REAL}^2STATE \ 6}{4}$

$$A_{GAMBAR}STATE \ 6 = \pi \times \frac{728,362}{4}$$

 $A_{GAMBAR}STATE 6 = 416662,009 \text{ mm}^2$

• A_{GAMBAR}CONE NOZZLE

 $D_{REAL}CONE NOZZLE = D_{GAMBAR}CONE NOZZLE \times SKALA$

 $D_{REAL}CONE NOZZLE = 72,960 \times 4,1372$

 $D_{REAL}CONE NOZZLE = 301,853 \text{ mm}$

 $A_{GAMBAR}CONE \ NOZZLE = \pi \times \frac{D_{REAL}^2 CONE \ NOZZLE}{4}$

$$A_{GAMBAR}CONE \ NOZZLE = \pi \times \frac{301,853}{4}$$

 $A_{GAMBAR}CONE NOZZLE = 71561,839 \text{ mm}^2$

• $A_{GAMBAR}STATE$ 16 $D_{REAL}STATE$ 16 = $D_{GAMBAR}STATE$ 16 × SKALA $D_{REAL}STATE$ 16 = 224,630 × 4,1372

 $D_{REAL}STATE \ 16 = 929,349 \ mm$

 $A_{GAMBAR}STATE \ 16 = \pi \times \frac{D_{REAL}^2STATE \ 16}{4}$ $A_{GAMBAR}STATE \ 16 = \pi \times \frac{929,349}{4}$

 $A_{GAMBAR}STATE 16 = 678339,893 \text{ mm}^2$

• A₆

$$A_{REAL}STATE \ 6 = A_{GAMBAR}STATE \ 6 - A_{GAMBAR}CONE \ NOZZLE$$

 $A_{REAL}STATE 6 = 416662,009 - 71561,839$

 $A_{REAL}STATE 6 = 345100,169 \text{ mm}^2$

$$A_6 = 0,345 \text{ m}^2$$

• A₁₆

 $A_{REAL}STATE 16 = A_{GAMBAR}STATE 16 - A_{GAMBAR}STATE 6$

 $A_{REAL}STATE 16 = 678339,893 - 416662,009$

 $A_{REAL}STATE 16 = 261677,884 \text{ mm}^2$

$$A_{16} = 0,262 \text{ m}^2$$

Unt uk daerah *mixing properties* didapat dengan cara iterasi meunggunakan *momentum balance* di *mixing of hot and cold streams* hal 127;

Sehingga harus diketahui *propeties state* 6 dan 16 sebelum melakukan iterasi untuk menentukan properties di state 6A;

• Properties state 6

Tabel 4.49 Data Properties State 6 kondisi Mill AfterMRO

PROPERTIES STATE 6		
STATE		
6	MILL AFTER MRO	SATUAN
M6	0,5	
P 6	3,2472	bar
T6	1065,5103	К
A6	0,3451	m^2
a 6	638,4617	m/s
Сө	319,2309	m/s
ρ6	0,4226	KJ/Kg K

Dengan diketahui Pt_6 data sheet dan M_6 merupakan Mach number turbine design diasumsikan dengan bilai 0,5 sesuai di *mixng of hot and cold streams* hal 128, maka didapat P_6 dengan menggunakan *local isentropic stagnation properties* equiation (12.21a);

$$\frac{Pt_6}{P_6} = \left(1 + \frac{k-1}{2}M_6^2\right)^{\frac{k}{k-1}}$$

$$P_6 = \frac{Pt_6}{\left(1 + \frac{k-1}{2}M_6^2\right)^{\frac{k}{k-1}}}$$

$$P_6 = \frac{3,8231}{\left(1 + \frac{1,333-1}{2}0,5_6^2\right)^{\frac{1,333}{1,333-1}}}$$

$$P_6 = 3,2472 \text{ bar}$$

Dengan diketahui Tt_6 dari perhitungan enthalpy balance, M_6 merupakan Mach number turbine design diasumsikan dengan bilai 0,5 sesuai di mixng of hot and cold streams hal 128, maka didapat T_6 dengan menggunakan local isentropic stagnation properties equiation (12.21b);

$$\frac{Tt_6}{T_6} = \left(1 + \frac{k - 1}{2}M_6^2\right)$$
$$T_6 = \frac{1109,8622}{\left(1 + \frac{k - 1}{2}M_6^2\right)}$$
$$T_6 = \frac{636,9793}{\left(1 + \frac{1,333 - 1}{2}0,5_6^2\right)}$$
$$T_6 = 1065,5103 \text{ K}$$

Dengan diketahui T_6 , bisa menentukan a_6 dengan *Propagation of Sound Waves* equation (12.18);

$$a_{6} = \sqrt{kRT_{6}}$$

$$a_{6} = \sqrt{1,333 \times 0,287 \times 1065,5103 \times 1000}$$

$$a_{6} = 638,4617 \frac{\text{m}}{\text{s}}$$

Dengan diketehui a_6 dan M_6 maka bisa ditentukan C_6 dengan *Propagation of Sound Waves* equation (12.13);

$$M_6 = \frac{C_6}{a_6}$$
$$C_6 = M_6 \times a_6$$
$$C_6 = 0.5 \times 638,4617$$
$$C_6 = 319,2309 \frac{\text{m}}{\text{s}}$$

Dengan diketahui nilai C_6 bisa mencari nilai ρ_6 menggunakan *continuty equation compressible flow;*

$$\dot{m}_{hot} = \rho_6 C_6 A_6$$

$$\dot{m}_{hot} (1+f) = \rho_6 C_6 A_6$$

$$\rho_6 = \frac{\dot{m}_h (1+f)}{C_6 A_6}$$

$$\rho_6 = \frac{46,5546(1+0,0248)}{319,2309 \times 0,3451}$$

$$\rho_6 = 0,4226 \frac{kJ}{kg} K$$

• Properties state 16

PROPERTIES STATE 16			
STATE	MILL AFTER		
16	MRO	SATUAN	
M 16	1,9875		
P 16	3,2472	bar	
T 16	259,1026	К	
A16	0,2617	m^2	
a 16	314,8415	m/s	
C 16	625,7618	m/s	
ρ16	0,4265	KJ/Kg K	

Tabel 4.50 Data Properties State 16 kondisi Mill AfterMRO

Dengan aliran yang di $P_{16}P_{16}$ yang uniform across duct di state 6 dan 16 di *mixing of hot and cold streams* hal 127, maka nilai $P_{16} = P_{16}$, maka didapat M_{16} dengan menggunakan *local isentropic stagnation properties* equiation (12.21b);

$$\frac{Pt_{16}}{P_{16}} = \left(1 + \frac{k - 1}{2}M_{16}^2\right)^{\frac{k}{k - 1}}$$
$$M_{16} = \sqrt{\frac{2}{k - 1}\left(\left(\frac{Pt_{16}}{P_{16}}\right)^{\frac{k - 1}{k}} - 1\right)}$$
$$M_{16} = \sqrt{\frac{2}{1,4 - 1}\left(\left(\frac{3,8231}{3,2472}\right)^{\frac{1,4 - 1}{1,4}} - 1\right)^{\frac{1}{2}}}$$

 $M_{16} = 1,9875$

Dengan diketahui Tt_{16} dan M_{16} maka didapat T_6 dengan menggunakan *local isentropic stagnation* properties equiation (12.21b);

$$\frac{Tt_{16}}{T_{16}} = \left(1 + \frac{k - 1}{2}M_{16}^2\right)$$
$$T_{16} = \frac{Tt_{16}}{\left(1 + \frac{k - 1}{2}M_{16}^2\right)}$$
$$T_{16} = \frac{1109,8622}{\left(1 + \frac{1,4 - 1}{2}1,9875_6^2\right)}$$
$$T_{16} = 259,1026 \text{ K}$$

Dengan diketahui T_{16} , bisa menentukan a_{16} dengan *Propagation of Sound Waves* equation (12.18);

$$a_{16} = \sqrt{kRT_{16}}$$

$$a_{16} = \sqrt{1.4 \times 0.287 \times 259.1026} \times 1000$$

$$a_{16} = 314.8415 \frac{\text{m}}{\text{s}}$$

Dengan diketehui a_{16} dan M_{16} maka bisa ditentukan C_{16} dengan *Propagation of Sound Waves* equation (12.13);

$$M_{16} = \frac{C_{16}}{a_{16}}$$
$$C_{16} = M_{16} \times a_{16}$$
$$C_{16} = 1,9875 \times 314,8415$$

$$C_{16} = 625,7618\frac{\text{m}}{\text{s}}$$

Dengan diketahui nilai C_{16} bisa mencari nilai ρ_{16} menggunakan *continuity equation compressible flow;*

$$\dot{m}_{cold} = \rho_{16}C_{16}A_{16}$$

$$\rho_{16} = \frac{\dot{m}_c}{C_{16}A_{16}}$$

$$\rho_{16} = \frac{69,8320}{625,7618 \times 0,2617}$$

$$\rho_{16} = 0,4265\frac{kJ}{kg}K$$

Dengan momentum balance di mixing hot and cold streams hal 127, maka didapat:

Tabel 4.51 Data Momentum Balance kondisi Mill AfterMRO

MOMENTUM BALANCE		
	MILL AFTER	
STATE	MRO	
(ṁh (1+f)C6+P6A6)	15231,6616	
(ṁcC16+P16A16)	43699,0310	
(mhot(1+f)C6+P6A6)+(mcoldC16+P16A16)	58930,6926	

Dimana momentum balance;

$$(\dot{\mathbf{m}}_{hot} (1+f)C_6 + P_6A_6) + (\dot{\mathbf{m}}_{cold} C_{16} + P_{16}A_{16}) = (\dot{\mathbf{m}}_{mix} C_{6A} + P_{6A}A_{6A})$$

 $\dot{m}_{mix} C_{6A} + P_{6A} A_{6A} =$

 $(69,8320(1+0,0248) \times 319,2309 + 3,2472 \\ \times 0,345)$

 $+(46,5546 \times 625,7618 + 3,2472 \times 0,2617)$

 $\dot{m}_{mix} C_{6A} + P_{6A} A_{6A} = 16666,7801$

Dengan iterasi setiap kenaikan 0,1 Mach Number di *mixing hot and cold streams* equaitons 8 hal 128. Didapat properties distate 6A sebagai berikut;

Tabel 4.52 Data Properties 6A kondisi Mill AfterMRO

PROPERTIES STATE 6A			
STATE	MILL AFTER		
6A	MRO	SATUAN	
М6А	0,9983		
Р 6А	1,4796	bar	
Т6А	672,3716	К	
СбА	506,3217	m/s	
ρ 6Α	0,2119	KJ/Kg K	

k. Perhtiunga state 7

Dari buku Pritchard, Philip J., 2011. *Introduction To Fluid Mechanic*. Eight Edition. United State America : R.R. Donnelley-JC. Dengan *local isentropic stagnation propeties* didapat properties 6A=7= constant. Sebagai berikut;

> $Pt_{6A} = Pt_7 = 2,7355$ bar $Tt_{6A} = Tt_7 = 783,9577 K$

Tabel 4.53 Data Properties 7 kondisi Mill After MRO

PROPERTIES STATE 7			
STATE	MILL AFTER		
7	MRO	SATUAN	
M7	0,9983		
P 7	1,4796	bar	
<i>T</i> 7	672,3716	К	
С7	506,3217	m/s	
ρ7	0,2119	KJ/Kg K	

1. Perhitungn state 9

Dari Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220 dan Mattingly, Jack D. with a foreword by Hans Von Ohain. 2005. Elements Of Gas Turbine Propulsion. New Delhi : Tata McGraw Hill Publishing. Diketahui presesntase dari A_j properteies dari state 9. Maka properties distate 9 bisa diketahui sebagai berikut:

Dari presentase A_j bisa diketahui luasan didaerah throat. Diameter dari throat dan divergen bersumber dari dirvegen sizing area Introduction Intermediate Level Maintenance F100-PW-220.

• Diameter A₈Presentase 0 sebesar 22,098 inchi dan presentase 100 sebesar 33,7 icnhi. Dikonversi satuan ke meter.

A 8			
AJ THROAT	MILL AFTER MRO	SATUAN	
0	0,5613	m	
1,7416	0,5665	m	
100	0,8560	m	

Tabel 4.54 DataA₈ kondisi Mill After MRO

A 8 0,2320 III 2

Diameter dari A₈didapat dari interpolasi;

$$D_8 = 0,5613 + \frac{(1,7416 - 0)}{(100 - 0)}(0,8560 - 0,56213)$$
$$D_8 = 0,5665 m$$

Maka luaasan A_8

$$A_8 = \pi \times \frac{D_8^2}{4}$$
$$A_8 = \pi \times \frac{0.5665^2}{4}$$
$$A_8 = 0.2520m^2$$

• Diameter A₉Presentase 0 sebesar 22,098 inchi dan presentase 100 sebesar 40,1 icnhi. Dikonversi satuan ke meter.

A 9			
AJ	MILL AFTER		
DIRVERGEN	MRO	SATUAN	
0	0,5613	m	
1,7416	0,5693	m	
100	1,0210	m	
А 9	0,2545	m^2	

Tabel 4.55 DataA₉ kondisi Mill After MRO

Diameter dari D₉didapat dari interpolasi;

$$D_9 = 0,5613 + \frac{(1,7416 - 0)}{(100 - 0)}(1,0210 - 0,56213)$$
$$D_8 = 0,5693 m$$

Maka luaasan A_9 ;

$$A_9 = \pi \times \frac{D_9^2}{4}$$
$$A_9 = \pi \times \frac{0.5693^2}{4}$$
$$A_9 = 0.2545m^2$$

Dengan menggunakan rasio luasan di Appendix E Compressible Flow Functions dibuku *Elements Of Gas Turbine Propulsion*. Didapat M_9 berikut;

$$\frac{A}{A^*}$$
$$\frac{A_9}{A_8} = 1,0099$$

Dari rasio luasan didapat M_9 dengan interpolasi sebgai berikut;

Tabel 4.56 Data M State 9 kondisi Mill After MRO

M STATE 9	
<i>A/A*</i> M	
1,0099	1,1100
1,00998	1,1106
1,0117	1,1200

$$M_9 = 1,1100 + \frac{(1,0099 - 1,0099)}{(1,0117 - 1,0099)}(1,1200 - 1,1100)$$
$$M_9 = 1,1106$$

Dengan diketaui M_9 , didapat properties di state 9;

Tabel 4.57 Data Properties State 9 kondisi Mill AfterMRO

PROPER	RTIES STATE	
9		SATUAN
Pt9/P9	2,1121	
Pa	1,0011	bar
Р9	3,9196	bar
Pt9	8,2787	bar
T9	650,3901	К
a 9	498,8190	m/s
Cj	553,9868	m/s

Dengan *local isentropic stagnation properies* equation (12.21b) menggunakan M_9 , didapat *Pt9/P9*

$$\frac{Pt_9}{P_9} = \left(1 + \frac{k - 1}{2}M_9^2\right)^{\frac{k}{k - 1}}$$
$$\frac{Pt_9}{P_9} = \left(1 + \frac{1,333 - 1}{2}1,1106^2\right)^{\frac{1,333}{1,333 - 1}}$$
$$\frac{Pt_9}{P_9} = 2,1121$$

Dengan diketaui Pt_9/P_9 bisa didapat P_9 menggunakan parametric cycle analysis of real engines euation (7-86b).

PRESSURE RASIO		
STATE	MILL AFTER MRO	
πr	1	
πd	1,004	
πf	3,120	
πcH	25,022	
πb	0,920	
πtH	0,273	
πtL	0,606	
πm	0,716	
πn	0,97	

Tabel 4.58Data Pressure RasiokondisiMillAfterMRO

Dimana;

$$\frac{Pt_9}{P_9} = \frac{P_a}{P_9} \pi_r \pi_d \pi_f \pi_{cH} \pi_b \pi_{tH} \pi_{tL} \pi_m \pi_n$$

$$P_9 = \frac{P_a \pi_r \pi_d \pi_f \pi_{cH} \pi_b \pi_{tH} \pi_{tL} \pi_m \pi_n}{\frac{P t_9}{P_9}}$$

$$P_{9} =$$

 $(1,0011 \times 1 \times 1,004 \times 3,120 \times 25,022 \times 0.920 \times 0,273 \times 0,606 \times 0.716 \times 0,97)/(2,11219)$

 $P_9 = 3,9196$ bar

Dengan diketahui P_9 maka bisa didapat Pt_9 menggunakan Dengan *local isentropic stagnation* properies equation (12.21b);

$$\frac{Pt_9}{P_9} = \left(1 + \frac{k-1}{2}M_9^2\right)^{\frac{k}{k-1}}$$

$$Pt_9 = P_9 \left(1 + \frac{k-1}{2}M_9^2\right)^{\frac{k}{k-1}}$$

$$Pt_9 = 3,9196 \left(1 + \frac{1,333 - 1}{2}1,1106^2\right)^{\frac{1,333}{1,333 - 1}}$$

$$Pt_9 = 8,2787 \text{ bar}$$

Dengan M_9 dapat diperoleh T_9 menggunakan Dengan *local isentropic stagnation properies* equation (12.21b);

$$\frac{Tt_9}{T_9} = \left(1 + \frac{k-1}{2}M_9^2\right)$$
$$T_9 = \frac{Tt_9}{\left(1 + \frac{k-1}{2}M_9^2\right)}$$
$$T_9 = \frac{783,9577}{\left(1 + \frac{1,333 - 1}{2}1,1106^2\right)}$$
$$T_9 = 650,3901 \text{ K}$$

Dengan diketahui T_9 , bisa menentukan a_9 dengan *Propagation of Sound Waves* equation (12.18);

$$a_9 = \sqrt{kRT_9}$$
179

$$a_9 = \sqrt{1,333 \times 0,287 \times 650,3901} \times 1000$$

 $a_9 = 498,8190 \frac{\text{m}}{\text{s}}$

Dengan diketehui a_9 dan M_9 maka bisa ditentukan C_9 dengan *Propagation of Sound Waves* equation (12.13);

$$M_9 = \frac{C_9}{a_9}$$

$$C_9 = M_9 \times a_9$$

$$C_9 = 1,1106 \times 498,8190$$

$$C_j = C_9 = 553,9868 \frac{\text{m}}{\text{s}}$$

m. Perhitungan Thrust

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley. Yang didapat keadaan nozzle under-expended atau over-expended. Maka Thrust bisa diketahui sebagai berikut:

Tabel 4.59 Data Thrust kondisi Mill After MRO

THRUST		
	MILL AFTER	
STATE	MRO	SATUAN
<i>ṁ</i> mix	117,5421	kg/s
Ca	0	m/s
Cj	553,9868	m/s
Pa	1,0011	bar
P 9	3,9196	bar
L	0,2545	m^2

F 65117,51	N
------------	---

Dengan $P_9 > P_a$ maka keadaan nozzle under-expended menurut buku *Elements Of Gas Turbine Propulsion* bab 3 hal 172., sehingga thrust didapat;

$$F = \dot{m}_{mix}(C_j - C_a) + A_j (P_9 - P_a)$$

F = 117,5421(553,9868 - 0) + 0,2545(3,9196 - 1,0011)

$$F = 65117,51N$$

n. Perhitungan SFC

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley. Maka SFC bisa diketahui sebagai berikut:

Tabel 4.60 Data SFC kondisi Mill After MRO

	SFC	SATUAN
STATE	MILL AFTER MRO	
<i>ṁ</i> feul total	1,1555	kg/s
F	65117,5053	Ν
SFC	0,0639	kg/N.h

Dengan menggunakan SFC di bab 2 hal 71;

$$SFC = \frac{\text{in feul total}}{F}$$
$$SFC = \frac{1,1555 \times 3600}{65117,51}$$
$$SFC = 0,0639 \frac{\text{kg}}{\text{N}}.\text{ h}$$

4.8 Perhitungan Kondisi AB MAX After MRO

Dimana data didapat dari Engine Test Cell bisa menentukan pressure dan temperature tiap state. **Tabel 4.61** Data Kondisi AB MAX After MRO

	DATA DIKETAHUI	
STATE	AB MAX AFTER MRO	SATUAN
Po	1,0011	bar
P 2	0,8807	bar
Pt2	1,0043	bar
Tt2	319,5832	К
FTIT 1	1226,7060	К
FTIT 2	1208,4950	К
FTIT 3	1314,6100	К
FTIT 4	1167,8760	К
FTIT 5	1258,4710	К
FTIT 6	1172,4080	К
FTIT 7	1229,8530	К
FTIT AVG	1225,4884	к
Pt6	3,3077	bar
N2	12898,2000	rpm
N1	10048,4000	rpm
AJ	64,1867	%
EPR	2,7432	
<i>ṁ</i> feul	1,1532	kg/s
<i>ṁ</i> feulAC	2,8021	kg/s
İmfeulAD	1,7002	kg/s

Pressure dan temperature tiap state dapat dilihat sebagai berikut;

KONDISI PRESSURE TIAP STATE		
STATE	AB MAX AFTER MRO	SATUAN
Po	1,0011	bar
Pto	1,0011	bar
Pt2	1,0043	bar
P2	0,8807	bar
Pt13	3,1334	bar
Ptз	25,1298	bar
Pt4	23,1194	bar
Pt4.5	6,4359	bar
Pt5	3,9265	bar
Pt 16	3,1334	bar
Pt6	3,9265	bar
Pt6A	3,3077	bar
Pt7	3,3077	bar
Pt8		bar
Pt9	10,0106	bar

 Tabel 4.62 Data Pressure Tiap State Kondisi AB MAX After MRO

 Tabel 4.63 Data Temperature Tiap State Kondisi AB MAX

 After MRO

KONDISI TEMPERATURE TIAP STATE		
STATE	AB MAX AFTER MRO	SATUAN
То	287,4740	К
Tto	287,4740	К
Tt2	319,5832	К
Tt 13	464,3740	К
Тtз	934,9579	К
Tt4	1618,1240	К
Tt 4.5	1225,4884	К
Tt5	1100,7017	К
--------------	-----------	---
Tt 16	464,3740	К
Tt6	1100,7017	К
Tt6A	780,0902	К
Tt7	2035,3722	К
Tt8	2035,3722	К
Tt9	2035,3722	К

Kondisi tiap state dari temperatur dan pressure stagnasi bisa dikethaui dengan menggunakan nilai konstata. Sebagai berikut;

Tabel 4.64 Data Nilai Konstata Yang Diketahui Kondisi ABMAX After MRO

NILAI KETENTUAN		SATUAN
ηf	0,87	%
ηc, ηt	0,85	%
Ŋm	0,99	%
η n, ηj	0,95	%
η_b	0,98	%
ΔP_b	0,08	%
Kair	1,4	-
kgas	1,333	
R	0,2870	KJ/Kg K
ρair	1,2371	Kg/m^3
CPair	1,005	KJ/Kg K
CP gas	1,148	KJ/Kg K
CP mix	1,0129	KJ/Kg K
Rcold	0,2870	KJ/Kg K
Са	0	m/s

а	339,9048	m/s
Мо	0	
D inlet (")	34,8	inchi
D inlet (m)	0,8839	m
D AB MAX (")	46,5	inchi
D AB MAX (m)	1,1811	m
A inlet	0,6136	m^2
A AB MAX	1,0956	m^2
Tt7	2035,3722	К

Dimana konstata didapt dari;

- η_f didapat dari Abdul-Nabe, Rana Adil and Tariq, Mohammad. 2014. *Thermal Analysis Of A Gas Turbine Cycle For A Turbojet Engine*. International Journal Of Advanced Research In Engineering And Technology (IJARET). Allahabad India.
- η_c, dan η_t didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 2 compressor and turbine efisiencies hal 56.
- η_m didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 2 mechanical loses hal 66.
- η_j/η_n didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 3 propelling nozzles hal 108
- η_b didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth

Edition. India : Dorling Kindersley pada bab 2 combustion efisiensi hal 68.

- ΔP_b didapat dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley pada bab 2 pressure loses hal 61
- cp_{air}, cp_{gas}, cp_{mix}, k_{air}, k_{gas}, dan R didapat dari buku dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley bab 2 variation of spesific heat hal 66.
- *ρ_{air}*, *a*, didapat dari tabel ISA dengan ketinggian 104 mdpl. Dengan mengunakan interpolasi.
- C_a , M_0 didapat dari *a*, dengan ketinggian 104 mpdl dan keadaan Engine statis.
- A_{inlet}, dan A_{AB MAX} didapat dari Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220.
- *Tt*₇ didapat dari Appendix B-4 Mattingly, Jack D. with a foreword by Hans Von Ohain. 2005. *Elements Of Gas Turbine Propulsion*. New Delhi : Tata McGraw Hill Publishing.
- a. Perhitungan State 2

Pengujian yang dilalukan di ketinggian 104 mdpl, berada di Skatek 042. Sehingga kondisi 0 didapat dari ISA tabel.

Tabel 4.65 Data ISA Tabel Dengan Ketinggian 104 mdplSI Kondisi AB MAX After MRO

ISA TABEL				
Altitude Ρο Το ρ/ρο a				
0	1,0133	288,1500	1	340,3

104	1,0011	287,4740	0,990203	339,9048
500	0,9546	284,9000	0,9529	338,4

Dengan cara interpolasi didapat pressure, kecepatan suara dan tempurature statis di ketingginan 104mdpl.

$$P_0 = 1,0133 + \frac{(104 - 0)}{(500 - 104)} (0,9546 - 1,0133)$$

$$P_0 = 1,0011 \text{ bar}$$

$$T_0 = 288,15 + \frac{(104 - 0)}{(500 - 104)} (284,9 - 288,15)$$

$$T_0 = 287,474$$

Dengan *local isentropic stagnation properies* equation (12.21b) keadaan engine yang statis maka stagnasi properties didapat, yang $M_0 = 0$. maka Pt_0 ;

$$\frac{Pt_0}{P_0} = \left(1 + \frac{k-1}{2}M^2\right)^{\frac{k}{k-1}}$$

$$Pt_0 = P_0 \times \left(1 + \frac{k-1}{2}M^2\right)^{\frac{k}{k-1}}$$

$$Pt_0 = 1,0011 \times \left(1 + \frac{1,4-1}{2}0^2\right)^{\frac{1,4}{1,4-1}}$$

$$Pt_0 = 1,0011$$

Dengan *local isentropic stagnation properies* equation (12.21b) keadaan engine yang statis maka stagnasi properties didapat, yang $M_0 = 0$. maka Tt_0 ;

$$\frac{Tt_0}{T_0} = \left(1 + \frac{k-1}{2}M^2\right)$$
$$Tt_0 = T_0 \times \left(1 + \frac{k-1}{2}M^2\right)$$

$$Tt_0 = 287,474 \times \left(1 + \frac{1,4-1}{2}0^2\right)$$
$$Tt_0 = 287,474$$

b. perhitungan state 2

Distate 2 data didapat dari FDR (Flight Data Recorder), yang berupa Tt_2 , Pt_2 , P_2 . Bisa diketahui properties distate 2 yang bersumber dari buku Pritchard, Philip J., 2011. *Introduction To Fluid Mechanic*. Eight Edition. United State America : R.R. Donnelley-JC. Bab 12 *Introdustion* to Compressible Flow.

> $Tt_2 = 319,5832 \text{ K}$ $Pt_2 = 1,0043 \text{ bar}$ $P_2 = 0,8807 \text{ bar}$

• Dari Pt_2 , P_2 yang sudah diketahui kita bisa mencari \dot{m}_i ,

Tabel 4.66 Data mi Kondisi AB MAX After MRO

	ṁ i	
STATE	AB MAX AFTER MRO	SATUAN
Pt2	1,0043	bar
P2	0,8807	bar
Pt2/P2	1,1403	
M2	0,4372	
<i>T</i> 2	307,8138	К
a 2	351,6811	m/s
C2	153,7687	m/s
<i>ṁ</i> i	116,7316	kg/s

Dengan Pt_2 , P_2 yang sudah diketahui dari data FDR dan *local isentropic stagnation properies* equation (12.21a) maka nilai M_2 diperoleh;

$$\frac{Pt_2}{P_2} = \left(1 + \frac{k-1}{2}M^2\right)^{\frac{k}{k-1}}$$
$$M_2 = \sqrt{\frac{2}{k-1}\left(\left(\frac{Pt_2}{P_2}\right)^{\frac{k-1}{k}} - 1\right)}$$
$$M_2 = \sqrt{\frac{2}{1,4-1}\left((1,1403)^{\frac{1,4-1}{1,4}} - 1\right)}$$
$$M_2 = 0,4372$$

Lalu dengan diketahui M_2 dapat menentukan dari T_2 dengan *local isentropic stagnation properies* equation (12.21b);

$$\frac{Tt_2}{T_2} = \left(1 + \frac{k-1}{2}M^2\right)$$
$$T_2 = \frac{Tt_2}{\left(1 + \frac{k-1}{2}M^2\right)}$$
$$T_2 = \frac{319,532}{\left(1 + \frac{1,4-1}{2}0,4372^2\right)}$$
$$T_2 = 307,8138 \text{ K}$$

Dengan diketahui T_2 , bisa menentukan a_2 dengan *Propagation of Sound Waves* equation (12.18);

$$a_2 = \sqrt{kRT}$$

 $a_2 = \sqrt{1,4 \times 0,287 \times 307,8138 \times 1000}$
 $a_2 = 351,6811$

Dengan diketehui a_2 dan M_2 maka bisa ditentukan C2dengan Propagation of Sound Waves equation (12.13).

$$M_{2} = \frac{C_{2}}{a_{2}}$$

$$C_{2} = M_{2} \times a_{2}$$

$$C_{2} = 0.4372 \times 351.6811$$

$$C_{2} = 153.7687 \frac{m}{s}$$

Dengan diketahui nilai C2bisa mencari nilai *mi*menggunakan *continuty equation compressible flow;*

$$\dot{m} = \rho C A$$

 $\dot{m}_i = \rho C_2 A_i$
 $\dot{m}_i = 1,2371 \times 153,7687 \times 0,6136$
 $\dot{m}_i = 116,7316 \frac{kg}{s}$

c. Perhitungan state 13

Dari buku manual Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220 dan Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley. Fan pressure rasio (FPR) didapat sebesar 3,12. Maka properties distate 13 bisa diketahui sebgaia berikut:

Menggunakan pressure rasio maka Pt_{13} diketahui;

$$\frac{Pt_{13}}{Pt_2} = FPR$$

$$Pt_{13} = Pt_2 \times FPR$$

$$Pt_{13} = 1,0043 \times 3,12$$

$$Pt_{13} = 3,1334 \text{ bar}$$

Dengan *polytropic efficiency* equation (2.15) didapat Tt_{13} ,

$$\left(\frac{n-1}{n}\right)_{air} = \left(\frac{k-1}{k\eta_{\omega f}}\right)_{air}$$
$$\left(\frac{n-1}{n}\right)_{air} = \frac{1}{\eta_f} \left(\frac{k-1}{k}\right)_{air}$$
$$\left(\frac{n-1}{n}\right)_{air} = \frac{1}{0.87} \left(\frac{1.4-1}{1.4}\right)_{air}$$
$$\left(\frac{n-1}{n}\right)_{air} = 0.3284$$

$$\frac{Tt_{13}}{Tt_2} = \left(\frac{Pt_{13}}{Pt_2}\right)^{\left(\frac{n-1}{n}\right)_{air}}$$
$$Tt_{13} = Tt_2 \times \left(\frac{Pt_{13}}{Pt_2}\right)^{\left(\frac{n-1}{n}\right)_{air}}$$
$$Tt_{13} = 319,532 + (3,12)^{0,3284}$$
$$Tt_{13} = 464,3740 \text{ K}$$

d. Perhtiungan state 3

Dari buku manual Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220 dan Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley. Compressor pressure rasio(CPR) didapat sebesar 8,02. Maka properties disatet 3 bisa diketahui sebgaia berikut:

$$\frac{Pt_3}{Pt_{13}} = CPR$$

$$Pt_3 = Pt_{13} \times CPR$$

$$Pt_3 = 3,1334 \times 8,02$$

$$Pt_3 = 25,1298 \text{ bar}$$

Dengan polytropic efficiency equation (2.15) didapat Tt_3 ;

$$\left(\frac{n-1}{n}\right)_{air} = \left(\frac{k-1}{k\eta_{ooc}}\right)_{air}$$
$$\left(\frac{n-1}{n}\right)_{air} = \frac{1}{\eta_c} \left(\frac{k-1}{k}\right)_{air}$$

$$\begin{pmatrix} \frac{n-1}{n} \\ air \end{pmatrix}_{air} = \frac{1}{0.85} \begin{pmatrix} \frac{1.4-1}{1.4} \\ \frac{1.4}{1.4} \end{pmatrix}_{air}$$

$$\begin{pmatrix} \frac{n-1}{n} \\ \frac{1}{n} $

e. Perhitungan state 4

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley dan dari data sheet FDR didpapat $Tt_{4.5}$ / *Fan Turbine Inlet Temperature* (FTIT) sebesar 1225,4884 K. Maka properties distate4 bisa diketahui sebagai berikut:

Dengan menggunakan temperature equations of work transfer dengan pressure rasio equation (2.11) didapat $Tt_3 - Tt_{13}$;

$$Tt_{3} - Tt_{13} = \frac{Tt_{13}}{\eta_{c}} \left(\left(\frac{Pt_{3}}{Pt_{13}}\right)^{\frac{k-1}{k}} - 1 \right)$$
$$Tt_{3} - Tt_{13} = \frac{464,3740}{0,85} \left((8,02)^{\frac{1,4-1}{1,4}} - 1 \right)$$
$$Tt_{3} - Tt_{13} = 444,0180 \ K$$

Sehingga dapat dicari work transfer turbine to drive compressor per unit mass flow; seperti example 2.1 hal 75;

$$W_{tcH} = \frac{cp_{air}(Tt_3 - Tt_{13})}{\eta_m}$$
$$W_{tcH} = \frac{1,005 \times 444,0180}{0,99}$$
$$W_{tcH} = 450,7456\frac{kJ}{kg}$$

Maka *temperature equivalent of compressor turbine work* seperti example 2.2 hal 76,didapat;

$$Tt_4 - Tt_{4.5} = \frac{W_{tcH}}{cp_{gas}}$$
$$Tt_4 - Tt_{4.5} = \frac{450,7456}{1,148}$$
$$Tt_4 - Tt_{4.5} = 392,6355 K$$

Dengan ditetahu
i $Tt_4-Tt_{4.5}$ dan $Tt_{4.5}$ maka bisa didapat
 $Tt_4;$

$$Tt_4 = Tt_{4.5} + (Tt_4 - Tt_{4.5})$$
$$Tt_4 = 1225,4884 + 392,6355$$
$$Tt_4 = 1618,1240 \text{ K}$$

Dan nilai pressure Pt_4 dengan pressure loses sebesar 8 persen dari Pt_3 ;

$$Pt_4 = Pt_3 - (Pt_3 \times \Delta P_b)$$

 $Pt_4 = 25,1298 - (25,1298 \times 0,08)$
 $Pt_4 = 23,1194$ bar
194

f. Perhitungan state 4.5

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley dan dari data sheet FDR didpapat $Tt_{4.5}$ / *Fan Turbine Inlet Temperature* (FTIT) sebesar 1225,4884 K. Maka properties distate 4.5 bisa diketahui sebagai berikut:

Dengan polytropic efficiency equation (2.17) didapat $Pt_{4.5}$;

$$\left(\frac{n-1}{n}\right)_{gas} = \left(\frac{\eta_{\omega t}k - 1}{k}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = \eta_t \left(\frac{k-1}{k}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = 0.85 \left(\frac{1.333 - 1}{1.333}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = 0.2123$$
$$\frac{Tt_4}{Tt_{4.5}} = \left(\frac{Pt_4}{Pt_{4.5}}\right)^{\left(\frac{n-1}{n}\right)_{gas}}$$
$$\frac{Pt_4}{Pt_{4.5}} = \left(\frac{Tt_4}{Tt_{4.5}}\right)^{\left(\frac{1}{n-1}\right)_{gas}}$$
$$\frac{Pt_4}{Pt_{4.5}} = \left(\frac{1618,1240}{1225,4884}\right)^{\left(\frac{1}{0,2123}\right)_{gas}}$$
$$\frac{Pt_4}{Pt_{4.5}} = 3,5922 \ bar$$

Sehingga Pt_{4.5};

$$Pt_{4.5} = \frac{Pt_4}{\frac{Pt_4}{Pt_{4.5}}}$$
$$Pt_{4.5} = \frac{23,1194}{3,5922}$$

$$Pt_{4.5} = 6,4359$$
 bar

g. Perhitungan state 5

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley dan dari data sheet FDR didpapat $Tt_{4.5}$ / *Fan Turbine Inlet Temperature* (FTIT) sebesar 1225,4884 *K*. Maka properties distate 5 bisa diketahui sebagai berikut:

Dengan menggunakan temperature equations of work transfer dengan pressure rasio equation (2.11) didapat $Tt_{13} - Tt_2$;

$$Tt_{13} - Tt_2 = \frac{Tt_2}{\eta_f} \left(\left(\frac{Pt_{13}}{Pt_2} \right)^{\frac{k-1}{k}} - 1 \right)$$

$$Tt_{13} - Tt_2 = \frac{319,5832}{0,87} \left((3,12)^{\frac{1,4-1}{1,4}} - 1 \right)$$

$$Tt_{13} - Tt_2 = 141,1170 K$$

Sehingga dapat dicari *work transfer turbine to drive* compressor per unit mass flow; seperti example 2.1 hal 75;

$$W_{tcL} = \frac{cp_{air}(Tt_{13} - Tt_2)}{\eta_m}$$

$$W_{tcL} = \frac{1,005 \times 141,1170}{0,99}$$
$$W_{tcL} = 143,2252 \frac{kJ}{kg}$$

Maka *temperature equivalent of compressor turbine work* seperti example 2.2 hal 76,didapat;

$$Tt_{4.5} - Tt_5 = \frac{W_{tcL}}{cp_{gas}}$$
$$Tt_{4.5} - Tt_5 = \frac{143,2252}{1,148}$$
$$Tt_{4.5} - Tt_5 = 124,7867K$$

Dengan ditetahui $Tt_{4.5} - Tt_5$ dan $Tt_{4.5}$ maka bisa didapat Tt_5 ;

$$Tt_5 = Tt_{4.5} - (Tt_{4.5} - Tt_5)$$

 $Tt_5 = 1225,4884 - 124,7867$
 $Tt_5 = 1100,7017 \text{ K}$

Dengan polytropic efficiency equation (2.17) didapat Pt_5 ;

$$\left(\frac{n-1}{n}\right)_{gas} = \left(\frac{\eta_{\omega t}k - 1}{k}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = \eta_t \left(\frac{k-1}{k}\right)_{gas}$$
$$\left(\frac{n-1}{n}\right)_{gas} = 0.85 \left(\frac{1.333 - 1}{1.333}\right)_{gas}$$
197

$$\left(\frac{n-1}{n}\right)_{gas} = 0,2123$$
$$\frac{Tt_{4.5}}{Tt_5} = \left(\frac{Pt_{4.5}}{Pt_5}\right)^{\left(\frac{n-1}{n}\right)_{gas}}$$
$$\frac{Pt_{4.5}}{Pt_5} = \left(\frac{Tt_{4.5}}{Tt_5}\right)^{\left(\frac{1}{n-1}\right)_{gas}}$$
$$\frac{Pt_{4.5}}{Pt_5} = \left(\frac{1225,4884}{1100,7017}\right)^{\left(\frac{1}{0,2123}\right)_{gas}}$$
$$\frac{Pt_{4.5}}{Pt_5} = 1,6390 \text{ bar}$$

Sehingga Pt₅;

$$Pt_{5} = \frac{Pt_{4}}{(\frac{Pt_{4}}{Pt_{4.5}}) \times (\frac{Pt_{4.5}}{Pt_{5}})}$$
$$Pt_{5} = \frac{23, -235}{3,5922 \times 1,6390}$$
$$Pt_{5} = 3,9265 \text{ bar}$$

h. Perhitungan state 6

Dari buku Pritchard, Philip J., 2011. Introduction To Fluid Mechanic. Eight Edition. United State America : R.R. Donnelley-JC. Dengan local isentropic stagnation propeties didapat bahwa Tt_0 = constant. Dari bukuSaravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley.Maka properties distate 6 bisa diketahui sebagai berikut: Dengan Local Isentropic Stagnation Properties, maka nilai Tt₆;

$$Tt_5 = Tt_6 = 1100,7017 \text{ K}$$

Sedangkan Pt₆;

$$Pt_6 = Pt_5 = 3,9265$$
 bar

i. Perhitungan state 16

Dari buku Pritchard, Philip J., 2011. Introduction To Fluid Mechanic. Eight Edition. United State America : R.R. Donnelley-JC. Dengan local isentropic stagnation propeties didapat bahwa Tt_0 = constant. Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. Gas Turbine Theory. Fifth Edition. India : Dorling Kindersley.Maka properties distate 16 bisa diketahui sebagai berikut:

Dengan Local Isentropic Stagnation Properties, maka nilai Tt_{16} ;

$$Tt_{13} = Tt_{16} = 464,3740 \text{ K}$$

Sedangkan Pt₁₆;

$$Pt_{16} = Pt_{13} = 3,1334$$
 bar

j. Perhitungan state 6A

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley, dan Pratt & Whitney. *Introduction Intermediate Level Maintenance F100-PW-*220.dan dari data sheet FDR didapat M_6 = 0,5 dan Pt_{6A} = 1,0182 bar. Maka properties distate 6A bisa diketahui sebagai berikut: Dengan bypasa rasio dari Introduction Intermediate Level Maintenance F100-PW-220. Didapat bypass rasio 0,6:1. Maka m_{cold};

$$\dot{m}_{cold} = 0,6 \times \dot{m}_i$$
$$\dot{m}_{cold} = 0,6 \times 116,3866$$
$$\dot{m}_{cold} = 70,0390 \frac{\text{kg}}{\text{s}}$$

Sedangkan m_{hot};

$$\dot{m}_{hot} = 0.4 \times \dot{m}_i$$

 $\dot{m}_{hot} = 0.4 \times 116,3866$
 $\dot{m}_{hot} = 0.4 \times 46,6927 \frac{\text{kg}}{\text{s}}$

Feul/ air didapat dari feul/air rasio hal 68;

$$f = \frac{\dot{m}_{feul}}{\dot{m}_{hot}}$$
$$f = \frac{1,1532}{46,6927}$$
$$f = 0,0247$$

Temperature 6a didapat dengan *equations* antara *the properties mixture of gases*di *mixing of hot and cold streams hal* 127.

$$cp_{mix} = \frac{\dot{m}_{cold}cp_{air} + \dot{m}_{hot}(1+f)cp_{gas}}{(\dot{m}_c + \dot{m}_h)}$$
$$cp_{mix} =$$

$$\frac{(70,0390 \times 1,005) + (46,6927(1 + 0,0247) \times 1,148)}{(70,039 + 46,6927)}$$
$$cp_{mix} = 1,0129 \frac{KJ}{kg} K$$

Temperature 6a didapat dengan *enthalpy balance* di *mixing of hot and cold streams hal* 127.

$$\begin{split} \dot{\mathbf{m}}_{cold} cp_{air} Tt_{16} + \dot{\mathbf{m}}_{hot} (1+f) cp_{gas} Tt_6 \\ &= \dot{\mathbf{m}}_{mix} cp_{mix} Tt_{6A} \\ Tt_{6A} = \frac{\dot{\mathbf{m}}_c cp_c Tt_{16} + \dot{\mathbf{m}}_h (1+f) cp_h Tt_6}{\dot{\mathbf{m}}_{mix} cp_{mix}} \\ Tt_{6A} = \\ (70,0390 \times 1,005 \times 4,3740) + \\ \underline{(46,6927(1+0,0247) \times 1100,7017)} \\ 117,8849 \times 1,0129 \\ Tt_{6A} = 780,0902 \, K \end{split}$$

A distate 6 dan 16 bidapat dari Introduction Intermediate Level Maintenance F100-PW-220 yaitu dari gambar skema engine F100-PW-220. Berikut ini a dari state 6 dan 16;

Tabel 4.67 Data A6 dan A16 Kondisi AB MAX After MRO

	A6 dan A16					
		SKALA	1:4,1372			
	Dgambar	Dreal	Agambar		А	
STATE	(mm)	(mm)	(mm^2)	Areal (mm)	(m^2)	
Cone						
Nozzle	72,960	301,853	71561,839	71561,839	0,072	
6	176,050	728,362	416662,009	345100,169	0,345	
16	224,630	929,349	678339,893	261677,884	0,262	

 A_6 dan A_{16} didapat dari perhitungan dibawah ini;

• $A_{GAMBAR}STATE 6$

 $D_{REAL}STATE \ 6 = D_{GAMBAR}STATE \ 6 \times SKALA$ $D_{REAL}STATE \ 6 = 176,050 \times 4,1372$ $D_{REAL}STATE \ 6 = 728,362 \text{ mm}$ $A_{GAMBAR}STATE \ 6 = \pi \times \frac{D_{REAL}^2STATE \ 6}{4}$ $A_{GAMBAR}STATE \ 6 = \pi \times \frac{728,362}{4}$

 $A_{GAMBAR}STATE \ 6 = 416662,009 \ \mathrm{mm^2}$

• A_{GAMBAR}CONE NOZZLE

 $D_{REAL}CONE NOZZLE = D_{GAMBAR}CONE NOZZLE \times SKALA$

 $D_{REAL}CONE NOZZLE = 72,960 \times 4,1372$

 $D_{REAL}CONE NOZZLE = 301,853 \text{ mm}$

 $A_{GAMBAR}CONE \ NOZZLE = \pi \times \frac{D_{REAL}^2 CONE \ NOZZLE}{4}$ $A_{GAMBAR}CONE \ NOZZLE = \pi \times \frac{301,853}{4}$

 $A_{GAMBAR}CONE \ NOZZLE = 71561,839 \ \mathrm{mm^2}$

• $A_{GAMBAR}STATE$ 16 $D_{REAL}STATE$ 16 = $D_{GAMBAR}STATE$ 16 × SKALA $D_{REAL}STATE$ 16 = 224,630 × 4,1372

 $D_{REAL}STATE \ 16 = 929,349 \ mm$

$$A_{GAMBAR}STATE \ 16 = \pi \times \frac{D_{REAL}^2STATE \ 16}{4}$$
$$A_{GAMBAR}STATE \ 16 = \pi \times \frac{929,349}{4}$$
$$A_{GAMBAR}STATE \ 16 = 678339,893 \ \text{mm}^2$$
$$A_6$$
$$A_{REAL}STATE \ 6 = A_{GAMBAR}STATE \ 6 \\ - A_{GAMBAR}CONE \ NOZZLE$$
$$A_{REAL}STATE \ 6 = 416662,009 - 71561,839$$
$$A_{REAL}STATE \ 6 = 345100,169 \ \text{mm}^2$$
$$A_6 = 0,345 \ \text{m}^2$$

• A₁₆

 $A_{REAL}STATE 16 = A_{GAMBAR}STATE 16 - A_{GAMBAR}STATE 6$ $A_{REAL}STATE 16 = 678339,893 - 416662,009$ $A_{REAL}STATE 16 = 261677,884 \text{ mm}^2$ $A_{16} = 0,262 \text{ m}^2$

Unt uk daerah *mixing properties* didapat dengan cara iterasi meunggunakan *momentum balance* di *mixing of hot and cold streams* hal 127;

Sehingga harus diketahui *propeties state* 6 dan 16 sebelum melakukan iterasi untuk menentukan properties di state 6A:

• Properties state 6

Tabel 4.68 Data Properties State 6 Kondisi AB MAXAfter MRO

PROPERTIES STATE 6			
STATE			
6	AB MAX AFTER MRO	SATUAN	
Мв	0,5		
P 6	3,3351	bar	
Тө	1056,7159	К	
A6	0,3451	m^2	
a 6	635,8214	m/s	
С6	317,9107	m/s	
ρ 6	0,4361	KJ/Kg K	

Dengan diketahui Pt_6 data sheet dan M_6 merupakan Mach number turbine design diasumsikan dengan bilai 0,5 sesuai di *mixng of hot and cold streams* hal 128, maka didapat P_6 dengan menggunakan *local isentropic stagnation properties* equiation (12.21a);

$$\frac{Pt_6}{P_6} = \left(1 + \frac{k - 1}{2}M_6^2\right)^{\frac{k}{k - 1}}$$

$$P_6 = \frac{Pt_6}{\left(1 + \frac{k - 1}{2}M_6^2\right)^{\frac{k}{k - 1}}}$$

$$P_6 = \frac{3,9265}{\left(1 + \frac{1,333 - 1}{2}0,5_6^2\right)^{\frac{1,333}{1,333 - 1}}}$$

 $P_6 = 3,3351 \text{ bar}$

Dengan diketahui Tt_6 dari perhitungan enthalpy balance, M_6 merupakan Mach number turbine design diasumsikan dengan bilai 0,5 sesuai di mixng of hot and cold streams hal 128, maka didapat T_6 dengan menggunakan local isentropic stagnation properties equiation (12.21b);

$$\frac{Tt_6}{T_6} = \left(1 + \frac{k-1}{2}M_6^2\right)$$
$$T_6 = \frac{Tt_6}{\left(1 + \frac{k-1}{2}M_6^2\right)}$$
$$T_6 = \frac{1100,7017}{\left(1 + \frac{1,333 - 1}{2}0,5_6^2\right)}$$
$$T_6 = 1056,7159 \text{ K}$$

Dengan diketahui T_6 , bisa menentukan a_6 dengan *Propagation of Sound Waves* equation (12.18);

$$a_{6} = \sqrt{kRT_{6}}$$

$$a_{6} = \sqrt{1,333 \times 0,287 \times 1056,7159 \times 1000}$$

$$a_{6} = 635,8214 \frac{\text{m}}{\text{s}}$$

Dengan diketehui a_6 dan M_6 maka bisa ditentukan C_6 dengan *Propagation of Sound Waves* equation (12.13);

$$M_6 = \frac{C_6}{a_6}$$

$$C_6 = M_6 \times a_6$$

 $C_6 = 0.5 \times 635,8214$
 $C_6 = 317,9107 \frac{\text{m}}{\text{s}}$

Dengan diketahui nilai C_6 bisa mencari nilai ρ_6 menggunakan *continuty equation compressible flow;*

$$\dot{m}_{h0t} = \rho_6 C_6 A_6$$

$$\dot{m}_{hot} (1+f) = \rho_6 C_6 A_6$$

$$\rho_6 = \frac{\dot{m}_{hot} (1+f)}{C_6 A_6}$$

$$\rho_6 = \frac{46,6927(1+0,0247)}{317,9107 \times 0,3451}$$

$$\rho_6 = 0,4361 \frac{kJ}{kg} K$$

• Properties state 16

Tabel 4.69 Data Properties State 16 Kondisi AB MAXAfter MRO

PROPERTIES STATE 16			
STATE	AB MAX AFTER		
16	MRO	SATUAN	
M 16	1,9778		
P 16	3,3351	bar	
T16	260,5430	К	
A16	0,2617	m^2	
a 16	323,5524	m/s	
C 16	639,9191	m/s	

-

Dengan aliran yang di $P_{16}P_{16}$ yang uniform across duct di state 6 dan 16 di *mixing of hot and cold streams* hal 127, maka nilai $P_{16} = P_{16}$, maka didapat M_{16} dengan menggunakan *local isentropic stagnation properties* equiation (12.21b);

$$\frac{Pt_{16}}{P_{16}} = \left(1 + \frac{k - 1}{2}M_{16}^2\right)^{\frac{k}{k - 1}}$$
$$M_{16} = \sqrt{\frac{2}{k - 1}\left(\left(\frac{Pt_{16}}{P_{16}}\right)^{\frac{k - 1}{k}} - 1\right)}$$
$$M_{16} = \sqrt{\frac{2}{1,4 - 1}\left(\left(\frac{3,9265}{3,3351}\right)^{\frac{1,4 - 1}{1,4}} - 1\right)}$$

$$M_{16} = 1,9778$$

Dengan diketahui Tt_{16} dan M_{16} maka didapat T_6 dengan menggunakan *local isentropic stagnation* properties equiation (12.21b);

$$\frac{Tt_{16}}{T_{16}} = \left(1 + \frac{k-1}{2}M_{16}^2\right)$$
$$T_{16} = \frac{Tt_{16}}{\left(1 + \frac{k-1}{2}M_{16}^2\right)}$$

$$T_{16} = \frac{1100,7017}{\left(1 + \frac{1,4 - 1}{2}1,9778_6^2\right)}$$
$$T_{16} = 260,5430 \text{ K}$$

Dengan diketahui T_{16} , bisa menentukan a_{16} dengan *Propagation of Sound Waves* equation (12.18);

$$a_{16} = \sqrt{kRT_{16}}$$

$$a_{16} = \sqrt{1.4 \times 0.287 \times 260.5430} \times 1000$$

$$a_{16} = 323.5524 \frac{\text{m}}{\text{s}}$$

Dengan diketehui a_{16} dan M_{16} maka bisa ditentukan C_{16} dengan *Propagation of Sound Waves* equation (12.13);

$$M_{16} = \frac{C_{16}}{a_{16}}$$
$$C_{16} = M_{16} \times a_{16}$$
$$C_{16} = 1,9778 \times 323,5524$$
$$C_{16} = 639,9191\frac{\text{m}}{\text{s}}$$

Dengan diketahui nilai C_{16} bisa mencari nilai ρ_{16} menggunakan *continuity equation compressible flow;*

$$\dot{m}_{cold} = \rho_{16} C_{16} A_{16}$$
 $\rho_{16} = \frac{\dot{m}_{cold}}{C_{16} A_{16}}$

$$\rho_{16} = \frac{70,0390}{639,9191 \times 0,2617}$$
$$\rho_{16} = 0,4183 \frac{kJ}{kg} K$$

Dengan momentum balance di mixing hot and cold streams hal 127, maka didapat:

 Tabel 4.70 Data Momentum Balance Kondisi AB MAX After

 MRO

MOMENTUM BALANCE		
STATE	AB MAX AFTER MRO	
(ṁh (1+f)C6+P6A6)	15211,8730	
(ṁcC16+P16A16)	44820,1613	
(ṁhot		
(1+f)C6+P6A6)+(mcoldC16+P16A16)	60032,0343	

Dimana momentum balance;

 $(\dot{\mathbf{m}}_{hot} (1+f)C_6 + P_6A_6) + (\dot{\mathbf{m}}_{cold} C_{16} + P_{16}A_{16})$ $= (\dot{\mathbf{m}}_{mix} C_{6A} + P_{6A}A_{6A})$

 $\dot{m}_{mix} C_{6A} + P_{6A} A_{6A} =$

 $(46,6027(1+0,0248) \times 317,9107 + 3,3351 \\ \times 0,345)$

 $+(70,0390 \times 639,9191 + 3,3351 \times 0,2617)$

 $\dot{m}_{mix} C_{6A} + P_{6A} A_{6A} = 60032,0343$

Dengan iterasi setiap kenaikan 0,1 Mach Number di *mixing hot and cold streams* equaitons 8 hal 128. Didapat properties distate 6A sebagai berikut;

Tabel 4.71 Data Properties 6A Kondisi AB MAX AfterMRO

PROPERTIES STATE 6A			
STATE	AB MAX AFTER		
6A	MRO	SATUAN	
М6А	1,0199		
Р6А	1,7460	bar	
Т6А	664,8684	К	
СбА	514,2575	m/s	
ρ 6Α	0,2094	KJ/Kg K	

k. Perhtiunga state 7

Dari buku Pritchard, Philip J., 2011. Introduction To Fluid Mechanic. Eight Edition. United State America : R.R. Donnelley-JC dan Mattingly, Jack D. with a foreword by Hans Von Ohain. 2005. Elements Of Gas Turbine Propulsion. New Delhi : Tata McGraw Hill Publishing.Dengan local isentropic stagnation propeties didapat properties pressure6A=7= constant. Karena ada afterburning. Sebagai berikut;

 $Pt_{6A} = Pt_7 = 3,3077$ bar

Dengan ada nya reheat yang terjadi di Tt_7 , maka temperatur naik sebesar 2035,3722 K. Yang berasal dari Apenddix B-4 buku *Elements Of Gas Turbine Propulsion*.

$$Tt_7 = 2035,3722 K$$

Tabel 4.72 Data Properties 7 Kondisi AB MAX AfterMRO

PROPERTIES STATE 7		
STATE 7	AB MAX AFTER MRO	SATUAN

<i>ṁ</i> ѧв	122,3871	kg/s
А АВ МАХ	1,0956	m^2
M7	1,0199	
P 7	1,7460	bar
T7	1734,8926	К
a 7	814,6899	m/s
С7	830,9146	m/s
ρ7	0,1344	KJ/Kg K

Dengan diketahui Tt_7 dan M_7 maka didapat T_7 dengan menggunakan *local isentropic stagnation properties equiation* (12.21b);

$$\frac{Tt_7}{T_7} = \left(1 + \frac{k-1}{2}M_{16}^2\right)$$
$$T_7 = \frac{Tt_7}{\left(1 + \frac{k-1}{2}M_{16}^2\right)}$$
$$T_7 = \frac{2035,3722}{\left(1 + \frac{1,4-1}{2}1,0199_6^2\right)}$$
$$T_7 = 1734,8926 \text{ K}$$

Dengan diketahui T_7 , bisa menentukan a_7 dengan *Propagation of Sound Waves* equation (12.18);

$$a_7 = \sqrt{kRT_7}$$

 $a_7 = \sqrt{1.4 \times 0.287 \times 1734.8926} \times 1000$
 $a_7 = 814.6899 \frac{\text{m}}{\text{s}}$

Dengan diketehui a_7 dan M_7 maka bisa ditentukan C_7 dengan *Propagation of Sound Waves* equation (12.13);

$$M_{7} = \frac{C_{7}}{a_{7}}$$

$$C_{7} = M_{7} \times a_{7}$$

$$C_{7} = 1,0199 \times 814,6899$$

$$C_{7} = 830,9146 \frac{m}{s}$$

Dengan diketahui nilai C_7 bisa mencari nilai ρ_7 menggunakan *continuity equation compressible flow*;

$$\dot{m}_{AB} = \rho_7 C_7 A_7$$

$$\rho_7 = \frac{\dot{m}_{AB}}{C_7 A_7}$$

$$\rho_7 = \frac{122,3871}{830,9146 \times 1,0956}$$

$$\rho_{16} = 0,1344 \frac{kJ}{kg} K$$

1. Perhitungn state 9

Dari Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220 dan Mattingly, Jack D. with a foreword by Hans Von Ohain. 2005. Elements Of Gas Turbine Propulsion. New Delhi : Tata McGraw Hill Publishing. Diketahui presesntase dari A_j properteies dari state 9. Maka properties distate 9 bisa diketahui sebagai berikut: Dari presentase A_j bisa diketahui luasan didaerah throat. Diameter dari throat dan divergen bersumber dari dirvegen sizing area Introduction Intermediate Level Maintenance F100-PW-220.

 Diameter A₈Presentase 0 sebesar 22,098 inchi dan presentase 100 sebesar 33,7 icnhi. Dikonversi satuan ke meter.

A 8		
AJ		
THROAT	AB MAX AFTER MRO	SATUAN
0	0,5613	m
64,1867	0,7505	m
100	0,8560	m
A 8	0,4423	m^2

Tabel 4.73 Data A₈ Kondisi AB MAX After MRO

Diameter dari A8didapat dari interpolasi;

$$D_8 = 0,5613 + \frac{(64,1867 - 0)}{(100 - 0)} (0,8560 - 0,5613)$$
$$D_8 = 0,7505 m$$

Maka luaasan A_8

$$A_8 = \pi \times \frac{D_8^2}{4}$$
$$A_8 = \pi \times \frac{0.7505^2}{4}$$
$$A_8 = 0.4423m^2$$

• Diameter A₉Presentase 0 sebesar 22,098 inchi dan presentase 100 sebesar 40,1 icnhi. Dikonversi satuan ke meter.

Tabel 4.74 Data A₉ Kondisi AB MAX After MRO

A 9		
AJ DIRVERGEN	AB MAX AFTER MRO	SATUAN
0	0,5613	m
64,1867	0,8564	m
100	1,0210	m
А 9	0,5759	m^2

Diameter dari D₉didapat dari interpolasi;

$$D_9 = 0,5613 + \frac{(64,1867 - 0)}{(100 - 0)}(1,0210 - 0,5613)$$

$$D_8 = 0,8564 m$$

Maka luaasan A_9 ;

$$A_9 = \pi \times \frac{D_9^2}{4}$$
$$A_9 = \pi \times \frac{0.8564^2}{4}$$
$$A_9 = 0.5759 m^2$$

Dengan menggunakan rasio luasan di Appendix E Compressible Flow Functions dibuku *Elements Of Gas Turbine Propulsion*. Didapat M_9 berikut;

$$\frac{A}{A^*}$$

$$\frac{A_9}{A_8} = 1,30191$$

Dari rasio luasan didapat M_9 dengan interpolasi sebgai berikut;

Tabel 4.75 Data M State 9 Kondisi AB MAX AfterMRO

M STATE 9			
A/A*	М		
1,3098	1,6400		
1,30191	1,6317		
1,3193	1,6500		

$$M_9 = 1,6400 + \frac{(1,30191 - 1,3098)}{(1,3193 - 1,3098)}(1,6500 - 1,6400)$$

$$M_9 = 1,6317$$

Dengan diketaui M_9 , didapat properties di state 9;

Tabel 4.76 Data Properties State 9 Kondisi AB MAXAfter MRO

PROPERTIES STATE 9		SATUAN
Pt9/P9	4,3440	
Pa	1,0011	bar
P 9	2,3044	bar
Pt9	10,0106	bar
Т9	1410,2315	К
a 9	734,5159	m/s
Cj	1198,4994	m/s

Dengan *local isentropic stagnation properies*equation (12.21b) menggunakan M_9 , didapat *Pt9/P9*

$$\frac{Pt_9}{P_9} = \left(1 + \frac{k - 1}{2}M_9^2\right)^{\frac{k}{k - 1}}$$
$$\frac{Pt_9}{P_9} = \left(1 + \frac{1,333 - 1}{2}1,6317^2\right)^{\frac{1,333}{1,333 - 1}}$$
$$\frac{Pt_9}{P_9} = 4,3440$$

Dengan diketaui Pt_9/P_9 bisa didapat P_9 menggunakan parametric cycle analysis of real engines euation (7-86b).

Tabel 4.77 Data Pressure RasioKondisi AB MAXAfter MRO

PRESSURE RASIO		
	AB MAX AFTER	
STATE	MRO	
πr	1	
π_d	1,003	
πf	3,120	
πсн	25,022	
πb	0,920	
πtH	0,278	
πtL	0,610	
πm	0,842	
π ав	1	
πn	0,97	

Dimana;

$$\frac{Pt_9}{P_9} = \frac{P_a}{P_9} \pi_r \pi_d \pi_f \pi_{cH} \pi_b \pi_{tH} \pi_{tL} \pi_m \pi_{AB} \pi_n$$
$$P_9 = \frac{P_a \pi_r \pi_d \pi_f \pi_{cH} \pi_b \pi_{tH} \pi_{tL} \pi_m \pi_{AB} \pi_n}{\frac{Pt_9}{P_9}}$$

$$P_{9} =$$

$$(1,0011 \times 1 \times 1,003 \times 3,120 \times 25,022 \times 0.920 \times 0,278 \times 0,610 \times 0,842 \times 1 \times 0,97)/(4,3440)$$

$$P_9 = 2,3044$$
 bar

Dengan diketahui P_9 maka bisa didapat Pt_9 menggunakan Dengan *local isentropic stagnation* properies equation (12.21b);

$$\frac{Pt_9}{P_9} = \left(1 + \frac{k-1}{2}M_9^2\right)^{\frac{k}{k-1}}$$

$$Pt_9 = P_9 \left(1 + \frac{k-1}{2}M_9^2\right)^{\frac{k}{k-1}}$$

$$Pt_9 = 2,3044 \left(1 + \frac{1,333 - 1}{2}1,6317^2\right)^{\frac{1,333}{1,333 - 1}}$$

$$Pt_9 = 10,0106 \text{ bar}$$

Dengan M_9 dapat diperoleh T_9 menggunakan Dengan *local isentropic stagnation properies* equation (12.21b);

$$\frac{Tt_9}{T_9} = \left(1 + \frac{k-1}{2}M_9^2\right)$$

$$T_{9} = \frac{Tt_{9}}{\left(1 + \frac{k - 1}{2}M_{9}^{2}\right)}$$
$$T_{9} = \frac{2135,3722}{\left(1 + \frac{1,333 - 1}{2}1,6317^{2}\right)}$$
$$T_{9} = 1410,2315 \text{ K}$$

Dengan diketahui T_9 , bisa menentukan a_9 dengan *Propagation of Sound Waves* equation (12.18);

$$a_9 = \sqrt{kRT_9}$$

 $a_9 = \sqrt{1,333 \times 0,287 \times 1410,2315} \times 1000$
 $a_9 = 734,5159 \frac{\text{m}}{\text{s}}$

Dengan diketehui a_9 dan M_9 maka bisa ditentukan C_9 dengan *Propagation of Sound Waves* equation (12.13);

$$M_9 = \frac{C_9}{a_9}$$

$$C_9 = M_9 \times a_9$$

$$C_9 = 1,6317 \times 734,5159$$

$$C_j = C_9 = 1198,4994 \frac{\text{m}}{\text{s}}$$

m. Perhitungan Thrust

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley. Yang didapat keadaan nozzle under-expended atau over-expended. Maka Thrust bisa diketahui sebagai berikut:

THRUST		
	AB MAX AFTER	
STATE	MRO	SATUAN
<i>ṁ</i> ѧв	122,3871	kg/s
Ca	0	m/s
Cj	1198,4994	m/s
Pa	1,0011	bar
Р9	2,3044	bar
LΑ	0,5759	m^2
F	146681,6418	N

Tabel 4.78 Data Thrust Kondisi AB MAX After MRO

Dengan $P_9 > P_a$ maka keadaan nozzle under-expended menurut buku *Elements Of Gas Turbine Propulsion* bab 3 hal 172., sehingga thrust didapat;

 $F = \dot{m}_{mix} (C_j - C_a) + A_j (P_9 - P_a)$ F = 122,3871(1198,4994 - 0) + 0,5759(2,3044 - 1,0011)

$$F = 146681,6418N$$

n. Perhitungan SFC

Dari buku Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley. Maka SFC bisa diketahui sebagai berikut:

Tabel 4.79 Data SFC Kondisi AB MAX After MRO
	SFC	
STATE	AB MAX AFTER MRO	SATUAN
ṁfeul total	5,6555	kg/s
F	146681,6418	Ν
SFC	0,1388021	kg/N.h

Dengan menggunakan SFC di bab 2 hal 71;

$$SFC = \frac{\dot{m}_{feul \ total}}{F}$$
$$SFC = \frac{5,6555 \times 3600}{146681,6418}$$

 $SFC = 0,1388021 \frac{\text{kg}}{\text{N}}.\text{ h}$

4.9 Performa Dari Sebelum dan Sesudah MRO

Dari MRO (Maintenance Repair Overhoul) yang dilakukan di Skatek 042, didapat hasil berupa grafik sebelum dan setelah MRO. Hasil hasil ini menunjukan kenaikan trhrust di konsisi idle sebelum ke sesudah MRO sebesar 5854,9448 N. Dan menghasilkan thrust di kondisi mill 65117,5052 N, sedangkan dalam kondisi AB MAX menghasilkan thrust sebesar 146681,6418 N. Berikut ini grafik yang dihasilkan dari sebelum dan sesudah MRO;

Gambar 4.4 Grafik Thrust Sebelum dan Sesudah MRO

Selain Thrust yang menjadi ouputan tetapi juga spesific feul consumption. Dengan grafik yang dihasilkan dari sebelum dan sesudah MRO, menunjukan bahwa pada kondisi idle sebelum ke sesudah MRO mengalami penurunan sebesar 0,11089 kg/N.h, sedangkan dalam kondisi dari mill SFC sebesar 0,06387 kg/N.h, sedangkan dalam kondisi AB MAX sebesar 0,1388 kg/N.h. Berikut ini grafik SFC yang dihasilkan sebelum dan sesudah MRO;

Gambar 4.5 Grafik SFC Sebelum dan Sesudah MRO

Dengan dari data kedua grafik diatas disimpulkan bahwa MRO yang dilakukan menghasilkan kenaikan thrust sebesar 5854,9448 N dan penurunan SFC sebesar 0,11089 kg/N.h dalam kondisi idle.

BAB V PENUTUP

5.1 Kesimpulan

Dengan permasalahan yang terjadi di engine F100-PW-220 berupa *blow out* saat *idle to AB MAX*, maka dilakukan perawatan yang berupa penggantian main feul pump sesuai dengan maintenance manual *Introduction Intermediate Level Maintenance F100-PW-220*. Dengan data yang didapat pada kondisi sebelum dan sesudah penggantian *main feul pump*.

Berdasarkan perhitungan yang dilakukan pada kondisi idle sebelum dan sesudah penggantian mainfeul pump, memberikan kenaikan *thrust* sebesar 5854,9248 N dan *SFC* mengalami penurrunan sebesar 0,11089 kg/N.h. Dengan perbandingan *thrust* dan *SFC* di kondisi idle sebelum dan sesudah penggantian *main feul pump*, maka dapat disimpulkan bahwa terjadi *blow out* saat *idle to AB MAX* dikarena keadaan dari *main feul pump* yang tidak berkerja sesuai kebutuhan. Sehingga tejadi *blow out* saat *idle to AB MAX*.

Sedangkan dalam kondisi mill menghasilkan *thrust* sebesar 65117,5052 N dan *SFC* dari kondisi ini sebesar 0,06387 kg/N.h. Pada kondisi AB MAX mengahasilkan *thrust* sebesar 146681,6418 N dan *SFC* kondisi ini sebesar 0,1388 kg/N.h.

5.2 Saran

Berdasarkan perhitungan, analisis, dan kesimpulan dapat disampaikan beberapa saran untuk pengembangan penelitian selanjutnya sebagai berikut :

• Melakukan perhitungan yang menggunakan fungsi putaran pada N1 dan N2, sehingga hasilnya lebih real.

• Melakukan perhitungan dengan menggunakan reaksi kimia di combustion chamber maupun di afterburner.

DAFTAR PUSTAKA

- 1. Saravanamutto, H.I.H., Cohen, H., and Rogers, G.F.C. 2001. *Gas Turbine Theory*. Fifth Edition. India : Dorling Kindersley.
- Mattingly, Jack D. with a foreword by Hans Von Ohain.
 2005. *Elements Of Gas Turbine Propulsion*. New Delhi
 Tata McGraw Hill Publishing.
- 3. Pritchard, Philip J., 2011. *Introduction To Fluid Mechanic*. Eight Edition. United State America : R.R. Donnelley-JC.
- 4. Mobley, R. Keith. 2002. *An Introduction To Predictive Maintenance*. Second Edition. United State America : Elsevier Science.
- 5. Pratt & Whitney. Introduction Intermediate Level Maintenance F100-PW-220.
- Abdul-Nabe, Rana Adil and Tariq, Mohammad. 2014. *Thermal Analysis Of A Gas Turbine Cycle For A Turbojet Engine*. International Journal Of Advanced Research In Engineering And Technology (IJARET). Allahabad India.

(halaman ini sengaja dikosongkan)

Lampiran 1 : Tabel Konversi Satuan

TABLE A.1 Conversion Factors

```
Area (4)
   1 \text{ mm}^2 = 1.0 \times 10^{-6} \text{ m}^2
                                                             1 \text{ ft}^2 = 144 \text{ in.}^2
   1 \text{ cm}^2 = 1.0 \times 10^{-4} \text{ m}^2 = 0.1550 \text{ in.}^2 \qquad 1 \text{ in.}^2 = 6.4516 \text{ cm}^2 = 6.4516 \times 10^{-4} \text{ m}^2
    1 \text{ m}^2 = 10.7639 \text{ ft}^2
                                                             1 \text{ ft}^2 = 0.092 903 \text{ m}^2
Conductivity (k)
    1 W/m-K = 1 J/s-m-K
               = 0.577 789 Btu/h-ft-"R
                                                             1 Btu/h-ft-R = 1.730 735 W/m-K
Density (p)
   1 \text{ kg/m}^3 = 0.06242797 \text{ lbm/ft}^3
                                                             1 lbm/ft<sup>3</sup> = 16.018 46 kg/m<sup>3</sup>
    1 g/cm<sup>3</sup> = 1000 kg/m<sup>3</sup>
    1 g/cm<sup>3</sup> = 1 kg/L
Energy (E, U)
  1 lbf-ft = 1.355 818 J
    1 cal (Int.) = 4.186 81 J
                                                                = 1.285 07 \times 10^{-3}Btu
                                                              1 Btu (Int.) = 1.055 056 kJ
   1 \text{ erg} = 1.0 \times 10^{-7} \text{ J}
                                                                          = 778.1693 lbf-ft
              = 1.602 \ 177 \ 33 \times 10^{-19} \ J
    1 eV
Force (F)
   1 N = 0.224 809 lbf
                                                             1 lbf = 4.448 222 N
   1 kp = 9.806 65 N (1 kgf)
Gravitation
   g = 9.806.65 \text{ m/s}^2
                                                              g = 32.174 05 ft/s<sup>2</sup>
Heat capacity (Cp, Cr, C), specific entropy (s)
   1 kJ/kg-K = 0.238 846 Btu/lbm-*R
                                                              1 Btu/lbm-"R = 4.1868 kJ/kg-K
Heat flux (per unit area)
   1 \text{ W/m}^2 = 0.316 998 \text{ Btu/h-ft}^2
                                                              1 \text{ Btu/h-ft}^2 = 3.15459 \text{ W/m}^2
```

```
TABLE A.1 (continued)
```

Conversion Factors

```
Heat-transfer coefficient (h)
   1 W/m<sup>2</sup>-K = 0.176 11 Btu/n-ft<sup>2</sup>-*R
                                                          1 Btu/h-ft<sup>2</sup>-*R = 5.678 26 W/m<sup>2</sup>-K
Length (L)
  1 \text{ mm} = 0.001 \text{ m} = 0.1 \text{ cm}
                                                         1 \text{ ft} = 12 \text{ tn}.
   1 \text{ cm} = 0.01 \text{ m} = 10 \text{ mm} = 0.3970 \text{ in}.
                                                       1 in. = 2.54 cm = 0.0254 m
   1 m = 3.280 84 ft = 39.370 in.
                                                       1 \text{ ft} = 0.3048 \text{ m}
                                                         1 \text{ mi} = 1.609 344 \text{ km}
   1 km = 0.621 371 mi
   1 mi = 1609.3 m (US statute)
                                                        1 \text{ yd} = 0.9144 \text{ m}
Mass (m)
   1 kg = 2.204 623 lbm
                                                         1 \text{ Ibm} = 0.453 592 \text{ kg}
   1 tonne = 1000 kg
                                                         1 slug = 14.5939 kg
   1 \text{ grain} = 6.479 \, 89 \times 10^{-5} \, \text{kg}
                                                         1 \text{ ton } = 2000 \text{ lbm}
Moment (torque, T)
   1 N-m = 0.737 562 lbf-ft
                                                          1 lbf-ft = 1.355 818 N-m
Momentum (mV)
   1 kg-m/s = 7.232 94 lbm-ft/s
                                                       1 lbm-fl/s = 0.138 256 kg-m/s
             = 0.224 809 lbf-s
Power (Q, W)
   1 W
                                                         1 lbf-ft/s = 1.355 818 W
                 = 1 J/s = 1 N-m/s
                                                         = 4.626 24 Btu/h
1 Btu/s = 1.055 056 kW
                 = 0.737 562 lbf-ft/s
   1 kW = 3412.14 Btu/h
   1 hp (metric) = 0.735 499 kW
                                                         1 hp (UK) = 0.7457 kW
                                                                       = 550 \text{ lbf-ft/s}
                                                                       = 2544.43 Btu/h
    1 ton of
                                                          1 ton of
    refrigeration = 3.516 85 kW
                                                          refrigeration = 12 000 Btu/h
Pressure (P)
                                                         1 lbf/in.2
  1 Pa
                  = 1 \text{ N/m}^2 = 1 \text{ kg/m-s}^2
                                                                           = 6.894 757 kPa
                    = 1.0 \times 10^{5}Pa = 100 kPa
   1 bar
                                                                           = 14.695 94 lbf/in.2
   1 arm
                    = 101.325 \text{ kPa}
                                                          1 atm
                    = 1.013 25 bar
                                                                           = 29.921 in. Hg [32*F]
                    = 760 mm Hg [0-C]
                                                                           = 33.8995 ft H<sub>2</sub>O [4-C]
                    = 10.332 56 m H<sub>2</sub>O [4°C]
   1 torr
                    = 1 mm Hg [0°C]
   1 mm Hg [0°C] = 0.133 322 kPa
                                                         1 in. Hg [0°C] = 0.491 15 lbf/in.2
                                                          1 in. H<sub>2</sub>O [4°C] = 0.0361 26 lbf/in.<sup>2</sup>
   1 m H<sub>2</sub>O [4°C] = 9.806 38 kPa
Specific energy (a, a)
                                                          1 Btu/lbm = 2.326 kJ/kg
   1 kJ/kg = 0.429 92 Btu/Ibm
            = 334.55 lbf-ft/lbm
                                                          1 lbf-ft/lbm = 2.989 07 × 10<sup>-3</sup> kJ/kg
                                                                       = 1.285 07 × 10<sup>-3</sup> Btu/Ibm
```

TABLE A.1 (continued) Conversion Factors Specific kinetic energy (1 V2) $1 \text{ m}^2/\text{s}^2 = 0.001 \text{ kJ/kg}$ 1 ft²/s² = 3.9941 × 10⁻⁵ Btu/Ibm $1 \text{ kJ/kg} = 1000 \text{ m}^2/\text{s}^2$ 1 Btu/Ibm = 250 37 ft²/s² Specific potential energy (Zg) $1 \text{ m-g}_{rid} = 9.806.65 \times 10^{-3} \text{ kJ/kg}$ $1 \text{ ft}_{-2 \text{ std}} = 1.0 \text{ lbf}_{-} \text{ft/lbm}$ $= 4.21607 \times 10^{-3}$ Btu/lbm = 0.001 285 Btu/bm = 0.002 989 kJ/kg Specific volume (v) $1 \text{ cm}^3/\text{g} = 0.001 \text{ m}^3/\text{kg}$ $1 \text{ cm}^3/\text{g} = 1 \text{ L/kg}$ 1 m3/kg = 16.018 46 ft3/lbm $1 \text{ ft}^3/\text{lbm} = 0.062 428 \text{ m}^3/\text{kg}$ Temperature (T) $1~K = 1^{\circ}C = 1.8~R = 1.8~F$ 1 R = (5/9) K TC = TK - 273.15TF = TR - 459.67= 1.8 TC + 32 =(TF - 32)/1.8TK = TR/1.8TR = 1.8 TK Universal Gas Constant $\bar{R} = N_0 t = 8.31451 \text{ kJ/kmol-K}$ $\bar{R} = 1.985$ 89 Btu/bmol-R = 1.985 89 kcal/kmol-K = 1545.36 lbf-ft/lbmol-R - 82.0578 atm-L/kmol-K = 0.730 24 atm-ft³/lbmol-R = 10.7317 (lbt/in.2)-ft3/lbmol-R Velcotty (V) 1 m/s = 3.6 km/h 1 ft/s = 0.681 818 mi/h = 3.280 84 ft/s = 0.3048 m/s = 2.236 94 mi/h = 1.097 28 km/h1 km/h = 0.277 78 m/s1 mi/h = 1.466.67 ft/s= 0.911 34 ft/s = 0.447 04 m/s = 0.621 37 mi/h = 1.609 344 km/h Volume (V) $1 m^3$ = 35.3147 ft³ 1 L = 1 dm³ = 0.001 m³ $\begin{array}{ll} 1 \mbox{ ft}^3 & = 2.831 \mbox{ 685} \times 10^{-2} \mbox{ m}^3 \\ 1 \mbox{ in}.^3 & = 1.6387 \times 10^{-5} \mbox{ m}^3 \end{array}$ 1 ft³ 1 Gal (UK) = 4.546 090 L 1 Gal (US) = 3.785 412 L $= 3.785 412 \times 10^{-3} m^3$ 1 Gal (US) = 231.00 in.3

	SUMMA	RY					
ENGINE TEST BE		AENIT	0				
	GOINEN	ICIN I	0				
Table C.3-1. Engine	Test Requirem	wints					
MODULE PART COMPONINT	CORE RUN-IN*	ACCEPTANCE TEST	CHECK CHECK	PRIMARY FUNCTIONAL CHECK	IGNITION SYSTEM FUNCTIONAL CHECK	ACCEL/DECEL CHECK	IDLE FUNCTIONAL CHECK
MODULE REMOVAL/		-			100	-	
AUGMENTOR							
CORE	-	-	-	-	-	• 1	-
COMPRESSOR	•		-	-	-	-	-
		•	-	-	-	-	-
FAN	-		-	-	-	-	-
GEARBOX	-		-	-	-	-	- 1
	-	-	-	-	-		
REMOVAL/INSTALLATION BEARINGS				-	*IF F	REQUI	RED BY
BLADES	-		-	-		-	-
-HPT	-			-	-	-	-
-FAN	-	•	-	-	-	-	-
-LPI	-	* 2	-	-	-	-	-
CASES-FAN DUCTS (F & R)	-	•		-	1	-	-
FAN INLET	-	-	-	-			-
COMBUSTION CHAMBER	-	-	-	-	-	100	-
FUEL NOZZLE	-	•	-	-	-	-	-
SPRAY RINGS	-		-	-	-	-	-
VANES	-	-	-	-	-		-
-HPT	-		-	-	-	1000	-
-LPT	-		-		-	-	-
1. ENGINE START AND ACCEL/DECH. CHECK ARE REQUID APTER AUGMENTOR AND/OR NO/ZLE BURN-TIROUGH. 2. HARD TO ROTATE FAM MOULTES MORT BE RUN AT BUL PRIMARY WORE FOR FIVE MINUTES. FAN SHOULD ROTA FRIETY BY HAND ATTIF IDE CHECK RUN	ED IN ITE	•	-	-	-	-	-

		20	22%	23	25	28	08	
MODILE PART COMPONENT	RE RUN-IN*	CEPTANCE TES	C FUNCTIONAL BUCK BUCK	MARY NCTIONAL CHE	NITION SYSTEM NCTIONAL CHE	CET DECIT.	ECK	
				8	CK			
NON-MODULAR COMPONENTS	and the second s	-	1	1000		-		
REMOVALINSTALLATION (CONT'D)		-	-			-	1 .	
		-				1 -	1 .	
		-						
- BOARD							-	1
- SENSOR		-	-		-	-	1 -	1
AUG FLEL PUMP CONTROLLER		-		-	-	1	-	-
		-	-	-		-		
- SIGNALS		-						1
	100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100	-		-		-	- tom	
- GAS GENERATOR		-	-	-	-		-	-
- AUGMENTOR		-	-	-	-	-		-
CYLINDER		1 -	-	-	-	1	-	
					-		-	and the second
			-					
- GEAR PUMP		-	-	-		-	200	1
	-	-	-	-				-
- MAIN FUEL		-	-		-	-	-	_
GENERATOR - STATOR		-	-	-	-	-	-	-
- ROTOR		-	-	-		2	-	
LOD & IGHT-OFF DETECTOR	-	-	-	-	-	-	-	
			-	-			-	
		-				-	-	
EXCITER		-		-	12 1 12	• 2	-	
MAIN FUEL GEAR PUMP		-	-	-	· Land	-	-	
			-		•	*	+	
	-	-	-		-	-		
		-	-	-	•	1-1-1	-	
			-		-	-	-	*
		-	-	-	-	-	-	
NI SENSOR	-	-	C	-	-	-	-	•
P&D VALVE.		-	-	-	-	-	-	*
			-		-	-	-	
COOLERS - A/O	and the second s	-	-		-		-	•
			-	•	-			•
2. FUNCTIONAL CHECK USING PWA 50025 IGNITION SYS	TEM TEST SET IS C	PHON	AL.		-	and the	CONTRA 1	INC. AL
			-IF REC	WIRED	BY AF	10.95	FORM	92040

Table C.1-1. Engine Test Requirem	nents (C	ontinue	000	-	12	02	0=	
MODULE PART COMPONENT	ORE RUN-IN*	NGINE ACCEPTANCE TEST	HECK	RIMARY UNCTIONAL CHECK	INITION SYSTEM UNCTIONAL CHECK	INECK	HE FUNCTIONAL	
COMPONENTS		10000						
REMOVAL/INSTALLATION (CONT'D)		1000	-			-		
PS2 PROBE	-	-	-			-		
ENDT (EVHAUST NOZZI E DOC TRANC)			-			-		
MOPT MAIN OF DESCRIPT DANS		-	-		-	-		
MAIN FUEL CONTROL					-		-	
- IGNITION SYSTEM	-	-	-				-	
- S/B SOLENOID				-				
- MODE SOLENOID								
- RCVV EHV					-			
- MV EHV		-						
- METERING VALVE RESOLVER					-	-	· · · · · · · · · · · · · · · · · · ·	
- PLA RESOLVER			• 3		1.040	-		
- TT2 SENSOR					-		2.0	
AUG FUEL CONTROL								
- DUCT MV EHV	-	-		-				
- CORE MV EHV		-	-	1	-			
- SEG SEQ ENV	-	-	-	-	-			
- FILL SWITCH AND KIN KELAY	-	-	-	-	-		-	
CODE METERING VALVE RESOLVER		-	-	-	-			
CORE METERING VALVE RESOLVER	*	-	-	-	-	-	•	
- SEGMENT SEQUENCE VALVE RESOLVER				242	-			
LUNC	-		-	10	-	-		
AIRMOTOR	-	-	-		-			
OIL TANK	-	-		-	-			
PRIMARY/SECONDARY FLEY SHAFTS	-	-		-	-	-		
NOZZI F ACTUATOR	-	-	-			-	· ·	
RREATHER PRESSURIZING VALVE	-	-	-	-	-		· ·	
3 MONITOR PLA POSITION WITH FAIL DURING FUNCTIONAL	-	1						
CHECK. JRING START, MONITOR PLA POSITION (4020) AT BOTH CUTORY AND IDLE TRAINARTE START ATTEMPT IF ETTHER VALUE IS OUT OF IDMITS IHROTTLE: PLA CUTOFF 0 TO 4 DIGMETS DUE. I AT D14 DIGMETS DUE. I AT D14 DIGMETS			-11-	REQU	IRED B	Y AFTC	95 FORM	

This Antonio	BENTUK 12000
INI ANGKATAN UDARA	
PF	RINTAH KER IA LITAMA
	Nomor - PKI//120/III/2019
1 Puinkan	
i. Kujukan	B/NL-310/II/2019/Skd 3
2. Kepada	Komandan Skatek 042 Lanud Iswahjudi
2 Habit	Databas Fasia a success Although 40,000 fast
J. Untuk	AB blow out saat Throttle snan dari idle ke max AB
incontraction in deliver	MFL Engine 022 & 026
Nama Barang	Engine F-100
Type Barang	F100-PW-220
Nomor Barang	P/N :-
	S/N : PW-E000433
Usia	TSN : 1206.8 jam
	TSO :-
Anal	Skadron Urlara 3
ASA	
Pekerjaan Menurut	
	1 Fa / Push / Sat / Pasana
Jumlah Pesanan	Ea / buan / Set / Fasang
Dikerjakan mulai tanggal	28 - 03 - 2019 Sampai dengan selesai
	Martine 19 Marth 2010
	Madiun, -7 Maret 2019
	a.n. Komandan Pangkalan TNI AU Iswahjudi
	Kepala Dinas Logistik
	Mewakili,
	aler
	Tri Handika Himawan
	Letkol Lek NRP 320040

Lampiran 3 : Perintah Kerja Utama

TNI ANGKATAN UDARA	
BUKTI SI	ERAH TERIMA MOTOR PESAWAT TERBANG
Jenis	Motor : F100-PW-220
Part	No. Motor : 4075300
No. S	Seri Motor : PW-E680433
Usia	Motor : 1206.8 Hrs 8387.3 Hrs / 11959 Ccy (EOT)
Sisa	Usia : 2679.2 Hrs (Gearbox Module)
Diserahkan Oleh : Ko	mandan Skadron Teknik 042 Lanud Iswahjudi
Diterima Oleh : Ko	nandan Skadron Udara 3 Wing 3 Lanud Iswahjudi
Tanggal	April 2019
Alasan Sel Altit MFI	esai Pemeliharaan Rectifikasi : ude 40.000 Feet AB Blow Out saat Throttle Snap dari Idle ke Max Af . Engine 022 & 026
	Bentuk 14502 Catatan Kerusakan dan Penggantian komponen
X	Bentuk 14201 Keterangan Lulusan Motor Pesawat Terbang
X	Bentuk 21500 Riwayat Komponen
X	Bentuk 21200 Riwayat Motor / Log Book Motor
×	Data Run Sheet sesuai T.O. 2J-F100-41-2 WP 013 00
X	Bentuk 12000 Perintah Kerja Utama (PKU)
DITERIMA OLEH	DISERAHKAN OLEH
	Komandan Skadron Teknik 042,

A. Subagio, M.Han. Letkol Tek NRP 526243

and the second se	1.	and the same in the second structure of the	I Kantunn :	
ype : F100-PW-220	No Seri : PW	-E680433	Ska	tek 042 Lanud Iswahjudi
V 1 55M			PESAWAT TEL	AH SELESAI DILAKSANAKAN
I. OL MO				TANGANI
X 2. SEML	A DAFTAR P	EMERIKSAAN TEI	AH DISELESA	IKAN DAN DITANDA TANGAN
SETE	LAH DIPERIK	(SA		
X 3. SEM	JA DOKUMEN	MOTOR PESAW	AT TELAH DISI	ELESAIKAN
		NOTOD HE		WAT TERBANG
X 4. LAPC	ORAN PENGL	JIAN MOTOR ME	NENOPIPEON	
X 5. KEM	AMPUAN MO	TOR PESAWAT TE	ELAH MEMENU	IHI SYARAT SESUAI
T.O.	2J-F100-46-1	s.d. 11		
1.0.	2J-F 100-41-1	S.U. J		Diluluskan oleh :
Tanggal :		Kasil	har,	Kasidalkual
				Mewakili,
	April 2019			
		Aep Kor	naruloh	Amir Yadi

	INI AU ISW	AHJUDI		Pro Lancia Contra			8141.4	At 1920
S	KADRON TEKNIK	042		ENGINE	F=100 PV	A 330 BINN EIH	ET	1 4
1 EN	GINE S/N	E 680433		PRIMA	BY FUNC	HONAL CHE	*	
2 DA	TE	30.03.2010			F	H MED	A476	17.75
3 RE	ASON FOR TEST	Change Mi	0	-	0	EEC VI	146.57	7 4797
4 RE	FERENSI	TO 2LEN	0 41 02 100		t	OTBEFORE	3757	
. MOT	OR ENGINE PER	TORIETOR	04102 W	014 00	j¢.	OLAFIER	395	
I. STA	RT ENGINE IN PRU	10 2J-F100	41-02 WP 0	10 02				
101	DATA START	MART MODE	PER TO. 2	J-F100-41-0	2 WP 010	00		
1 LO	(WITHIN 20 SEC)	0	1	2	3	6	5	
2 N2	RPM 8400		9					
3 FT	T (MAY SPO)	Dry / Wet	18			1		
4 MC	P (20 80 DEID)		439					1
5 MAC	(20-00 PSID)		40			_		1 1
	JUE	Motor	Pry					11
ETER	THARY FUNCTION	AL CHECK					and a state of the	1
SIEP	PAI	RAMETER		LIMI	TS	VALUE	\$K\$.	WARX .
1	Start Engine in PR	Y MODE per V	/P 010			Ok		
2	Engine stabilize at	idle 5 minute				Ok		
3	Check and Record	Idle Operation				Ok		and the second design of the second design of the second design of the second design of the second design of the
	N1C2 Rpm			(4200-	4400)	4290		
-	FTIT			(max 5	75 ° C)	429		
	AJ / ENP			70%	95%	80		
4	Advance Throt to 1	11.200 N2 Rpm	1	No limit	Exeeded	Ok		
	(Stabilize for 1 mnt)						
5	Check Part Power	Operation	PLA : 44	No limit	Exeeded	Ok	-	
	Check part Power	Tt2				31	-	
	N2			LT. 1	3200	11267	-	
	N1			LT.	1500	8146	-	
	FTIT			LT.	970 °c	593		
e	Soon Throttle to ld	le				Ok		
0	Shap mone to it	e per WP 019	00			Ok		
1	IShut down engin	e per vir . ore						
KE I E	Engine dinyata	akan " S "						
	Tanggal,	Insp	ector,	Re	corder,	Opera	ator,	Ground Man
	30 Maret 2019	Bint	oro A		Sunarto	Ali	W.	Schidin Dorka / 540

PANG	KALAN TNI ALLISWA	HJUDI		ENGINE	F	100 FW	CTIONAL C	HECK	
CL	ADDON TEKNIK 04	2		SECON	DA	RYFUN	CHOILE	4426	32-23
1 EN	CINE S/N	E 680433			1	PN MFC		NEEC	1792
1 EN	IGINE S/N	20.2.2010			2	DEEC	1	325.5	
Z DA	IE TOO TOO	30-3-2019	-		3	EOT BE	FORE	325.8	
3 RE	ASONFORTEST	Change MF	A4 00 MAD /	14 00	4	EOT AF	TER	520,0	
4 RE	FERENSI	TO. 2J-F100	-41-02 VVP	014 00	-				
. MOT	FOR ENGINE PER :	TO 2J-F100-41-	02 WP 010 0	2	20.1	A/D 010 0	0		
I. STA	RT ENGINE IN SECO	NDARY MODE	PER TO. 2.	J-F100-41-0	2	3	4	5	
NO	DATA START	0	1	2	-				+
1 LO	(WITHIN 20 SEC)	-	6		-				
2 N2	RPM 8400	Dry / Wet	500		-				
AMO	P (20-80 PSID)	-	41						
5 MO	DF	Motor	Sec						
II SE	CONDARY FUNCTION	AL CHECK PRO	CEDURE					-	TRAADY
TED	P	ADAMETED	CED CILL	1 1	IMIT	rs	VALUE	-	LINIAN
1	Start Engine in SEC	MODE por WP 0	10				Ok		
2	Engine stabilize at Id	le for 5 minutes	10		-		Ok	-	
3	Anti-Ice Switch to OF	F Stabilize of 30	Sec	Gre	en	OFF	Ok	-	
4	Check and Record Id	le Operation						-	
	a. RCVV (EAU) pe	ar WP 012 table 9	or 10				-33,8	-	
	b. Tt2		01.10				28	-	
	c. CIVV (EAU)			(-27	7 to	-23)	-25		
	d. N2C2.5 (EAU)	Rpm per WP 012	table 11				9686	-	
	e. AJ/ENP			L	T. 5	%	1,2	-	
	f. PLA (EAU)			PLA 1	15° 1	to 20°	1/		
5	Anti-Ice Switch to ON	I, Stabilize for 30	sec	Am	ber	ON	OK	-	
	N2C2.5 (EAU) Rpm	1					01		
6	Advance to 35°- 40°	PLA, Stabilize 1	minutes	No limi	t Ex	ceeded	OK		
7	Check Part Power Op	peration			_		10		
	a. RCVV (EAU) pe	er WP 012 table 9	or 10				-10		
	b. Tt2			/ 27	10	221	-25		
	b. CIVV (EAU)			(-2/	10 ·	-23)	12		
-	C. AJ/ENP	Ctabilize for 20			1. 5	70	Ok		
8	Shap I hrottle to Idle,	Stabilize for 30 s	ec.	Gre	non	ON	Ok	-	
9	Place MODE SELEC	I SWIICH ID FRT		70%	6 - 9	5%	86	+	
10	Advance to 70° PLA			TAL-	incre	eases	Ok		0.000
11	Retard Throttle to Idle	-		TAI - C	lecr	eases	Ok		
12	Advance Throttle to S	800 N2 Rpm. St	ab. 1 min.	No limit	Ex	ceeded	Ok	-	
13	Place MODE switch t	o SEC. Stab.1 mi	nutes	Am	ber	ON	Ok	1	
10	AJ/ENP			L	T. 5	%	1,7		
14	Snap Throttle to Idle,	Stabilize 30 sec					Ok		
15	Place MODE SELEC	T switch to PRY					Ok		
	AJ / ENP			70%	6 - 9	5%	86		
	Chut down onging r	per WP. 019 00					Ok		

Tanggal,	Inspector,	Recorder,	Operator,	Ground Man,
30 Maret 2019	Distance			
	Peltu / 521050	Serka / 522109	All VV. Serka / 535157	Sohidin Praka / 540666

Lampiran 4 : Tabel B-4 *Eelements of Gas Turbine Propulsion*

TABLE B-4 Temperature/pressure data for some engines

Engine: Type: Exhaust	Pegasus Turbolan Separate	187 Turbojet	JT3D Turbofan Separati	JT8D Tarbofsa Mixed	J19D Turbolas Separate	P100-PW-580 Turbolan Mixed w/AB
P _C (psia)	14.7	14.7	14.7	14.7	14.7	13.1
$T_{cs}(\mathbf{P})$	59	.99	.59	59	59	59
Pau (pria)	36.1	.54	63	60	32.1	
$\Sigma_{2,2}(\mathbf{F})$	242	330	.360	3.55	210	
Par (print)	36.5		26	28	22.6	39.3
L.CP	2.97		170	190	130	297
P., (prin)	216.9	167	200	233	316	316
L.(T)	7038	000	715	800	SBD	1,014
P _n (psia)		1.58	190	220	302	304
15 (T)	1,028	1,570	1,600	1,720	1.970	2,566
Por or Pariprial	29.3	36			20.9	36.0
$\tilde{L}_{\mu} = \tilde{L}_{\mu}(\tilde{T})$	510	1,013			850	1,368
Pro (pola)						36.8
R _m (P)						303
P _{nex} (psia)				29		37.5
T ₁₁₁ ('T')				8/9/8		960
P ₂₇ (psia)		31.9	28	29	20:9	33.8
$T_{C}(T)$		2.540	890	890	10/10	3,204
P _{AD} (psia)	345.5		26		22.4	
$T_{n,r}(T)$	257		170		1.30	
Bypans tatio o	1.4	agila.	1.36	1.1	5.0	0.69
Threast (Th)	21,500	16,000	18,000	14,000	43,500	21,768
Airflow (Ib/sec)	0.01	167	490	3015	1,495	224

Sources: Reference 58 and monolactores' literature.

Lampiran 5 : compressible flow Elements Of Gas Turbine Propulsion

		Compressib	le flow func	tions ($\gamma = 1.3$	3)	
М	T/T_i	P/P_r	p/p,	A/A^*	$\mathrm{MFP}\sqrt{R/g_c}$	М
0	1	1	1	, Indef	0	0
0.01	0.999984	0.999934	0.999950	58.3277	0.011532	0.01
0.02	0.999934	0.999734	0.999800	29.1689	0.023060	0.02
0.03	0.999852	0.999402	0.999550	19.4516	0.034580	0.03
0.04	0.999736	0.998937	0.999200	14.5947	0.046087	0.04
0.05	0.999588	0.998339	0.998751	11.6819	0.057579	0.05
0.06	0.999406	0.997610	0.998202	9.74111	0.069050	0.06
0.07	0.999192	0.996748	0.997554	8.35585	0.080498	0.07
0.08	0.998945	0.995755	0.996807	7.31775	0.091917	0.08
0.09	0.998665	0.994632	0.995961	6.51110	0.103305	0.09
0.10	0.998353	0.993378	0.995017	5.86647	0.114656	0.10
0.11	0.998007	0.991994	0.993974	5.33967	0.125968	0.11
0.12	0.997630	0.990481	0.992834	4.90125	0.137236	0.12
0.13	0.997219	0.988840	0.991597	4.53081	0.148457	0.13
0.14	0.996776	0.987071	0.990264	4.21378	0.159626	0.14
0.15	6.996301	0.985176	0.988834	3.93949	0.170740	0.15
0.16	0.995794	0.983155	0.987308	3.69992	0.181796	0.16
0.17	0.995254	0.981010	0.985688	3.48894	0.192788	0.17
0.18	0.994682	0.978741	0.983973	3.30181	0.203715	0.18
0.19	0.994079	0.976349	0.982165	3.13474	0.214572	0.19
0.20	0.993443	0.973836	0.980263	2.98473	0.225356	0.20
0.21	0.992776	0.971202	0.978269	2.84935	0.236064	0.21
0.22	0.992077	0.968450	0.976184	2.72660	0.246691	0.22
0.23	0.991347	0.965580	0.974009	2.61484	0.257235	0.23
0.24	0.990585	0.962594	0.971743	2.51270	0.267691	0:24
0.25	0.989793	0.959494	0.969388	2.41902	0.278058	0.25
0.26	0.988969	0.956279	0.966946	2.33283	0.288332	0.26
0.27	0.988114	0.952953	0.964416	2.25329	0.298509	0.27
0.28	0.987229	0.949517	0.9618D0	2.17970	0.308587	0.28
0.29	0.986313	0.945972	0.959099	2.11145	0.318563	0.29
0.30	0.985367	0.942320	0.956314	2.04799	0.328433	0.30
0.31	0.984391	0.938563	0.953445	1.98888	0.338195	0.31
0.32	0.983385	0.934702	0.950495	1.93369	0.347846	0.32
0.33	0.982349	0.930740	0.947464	1.88209	0.357384	0.33
0.34	0.981283	0.926677	0.944353	1.83375	0.366806	0.34
C.35	0.980188	0.922516	0.941163	1.78839	0.376109	0.35
0.36	0.979064	0.918259	0.937895	1.74577	0.385290	0.36
0.37	0.977910	0.913908	0.934552	1.70567	0.394349	0.37
0.38	0.976728	0.909464	0.931133	1.66789	0.403281	0.38
0.39	0.975518	0.904930	0.927640	1.63225	0.412086	0.39
0.40	0.974279	0.900307	0.924075	1.59860	0.420760	0.40
0.41	0.973012	0.895597	0.920438	1.56679	0.429302	0.41
0.42	0.971717	0.890804	0.916731	1.53670	0.437711	0.42
0.43	0.970395	0.885928	0.912956	1.50819	0.445983	0.43
0.44	0.969045	0.880971	0.909113	1.48118	0.454117	0.44
0.45	0.967668	0.875936	0.905204	1.45555	0.462113	0.45
0.46	0.966264	0.870826	0.901230	1.43123	0.469967	0.46
0.47	0.964833	0.865641	0.897193	1.40812	0.477678	0.47
0.48	0.963376	0.860385	0.893093	1.38616	0.485246	0.48
0.49	0.961893	0.855059	0.888933	1.36528	0.492668	0.49
0.50	0.960384	0.849665	0.884714	1.34541	0.499944	0.50

Compressible flow functions ($\gamma = 1.33$)									
м	T/T_i	P/P_r	ρ/ρ_i	A/A*	$MFP\sqrt{R/g_r}$	м			
0.50	0.940384	0.849665	0,884714	1.34541	0.499944	0.50			
0.51	0.958850	0.844207	0.880437	1.32649	0.507072	0,51			
0.52	0.957290	0.838685	0.876104	1.30849	0.514051	0.52			
0.53	0.955705	0.833102	0.871715	1.29133	0.520881	0.53			
0.54	0.954095	0.827461	0.867273	1.27498	0.527559	0.54			
0.55	0.952460	0.821763	0.862779	1.25940	0.534087	0.55			
0.56	0.950802	0.816011	0.858234	1.24454	0.540461	0.54			
0.57	0.949119	0.810206	0.853640	1.23038	0.546684	0.51			
0.58	0.947413	0.804352	0.848999	1.21687	0.552752	0.58			
0.59	0.945683	0.798450	C.844310	1.20399	0.558667	0.55			
0.60	0.943931	0.792503	0.839577	1.19170	0.564427	0.60			
14.0	0.942155	0.786512	0.834801	1.17998	0.570033	0.61			
0.62	0.940357	0.780480	0.829982	1.16881	0.575483	0.63			
0.63	0.938537	0.774409	0.825123	1.15815	0.580779	0.63			
0.64	0.936694	0.768300	0.820225	1.14799	0.585919	0.64			
0.65	0.934831	0.752158	0.815290	1.13530	0.590905	0.65			
0.66	0.932945	0.755982	0.810318	1.12907	0.595735	0.66			
0.67	0.931039	0.749776	0.805311	1.12028	0.600411	0.67			
0.68	0.929112	0.743542	0.800271	1.11191	0.604931	0.65			
0.69	0.927165	0.737281	0.795199	1.10394	0.609298	0.65			
0.70	0.925198	0.730996	0.790097	1.09636	0.613510	0.70			
9.71	0.923211	0.724689	0.784966	1.08916	0.617569	0.71			
0.72	0.921204	0.718361	0.779807	1.08234	0.621475	0.72			
0.73	0.919178	0.712016	0.774622	1.07581	0.625228	0.73			
0.74	0.917133	0.705654	0.769412	1.06965	0.628829	0.74			
0.75	0.915070	0.699277	0.764179	1.06381	0.6322#0	0.75			
0.76	0.912989	0.692888	0.758923	1.05829	0.435580	0.76			
0.77	0.910889	0.686489	0.753647	1.05307	0.638730	0.77			
0.78	0.908772	0.680081	0.748352	1.04815	0.641732	0.78			
0.79	0.906638	0.671667	0.743039	1.04350	D.644586	0.75			
0.80	0.904486	0.667247	0.737708	1.03914	0.647294	0.80			
18.0	0.902318	0.660824	0.732363	1.03504	0.649856	0.81			
3.82	0.900134	0.654400	0.727004	1.03121	0.652273	0.82			
5.83	0.897933	0.647977	0.721431	1.02762	0.654548	0.83			
0.84	0.895717	0.641555	0.716248	1.02429	0.656680	0.84			
0.85	0.893485	0.635137	0.710854	1.02119	0.658671	0.85			
0.86	0.891239	0.628725	0.705451	1.01833	0.440523	0.84			
0.87	0.888977	0.622319	0.700040	1.01569	0.662237	0.87			
0.88	0.886701	0.611923	0.694623	1.01328	0.663813	0.85			
0.89	0.884411	0.609516	0.689200	1.01108	0.665255	0.85			
0.90	0.882106	0.603161	0.683773	1.009100	0.666563	0.90			
19.0	0.879789	0.596799	0.678344	1.007324	0.667738	0.91			
5.92	0.877458	0 590452	0.672912	1.005750	0.668783	0.92			
0.01	0.875114	0.584121	0.667480	1.004376	0.669698	0.93			
1.94	0.872757	0.577807	0.662048	1.003195	0.670484	0.94			
0.95	0.870388	0.571512	0.656617	1.0022060	0.671148	0.95			
1.94	0.868007	0.565237	0.651189	1.0014037	0.671686	0.96			
0.97	0.865615	0.558984	0.645765	1.0007851	0.472101	0.97			
	0.163210	0.552753	0.640345	1.0003470	0.672395	0.95			
0.00	0 160795	0.546546	0.634931	1.0000863	0.672570	0.95			
1 S & S	0.000133	0.044040	0.000000			1.00			

Compressible flow functions ($\gamma = 1.33$)										
М	T/T_c	P/P_r	ρ/ρ,	A/A^*	$MFP\sqrt{R/g_c}$	М				
1.00	0.858369	0.540364	0.629524	1.0000000	0.672628	1.00				
1.01	0.855932	0.534208	0.624124	1.0000854	0.672571	1.01				
1.02	0.853486	0.528080	0.618733	1.0003399	0.672400	1.02				
1.03	0.851029	0.521980	0.613352	1.0007609	0.672117	1.03				
1.04	0.848562	0.515910	0.607981	1.0013462	0.671724	1.04				
1.05	0.846086	0.509870	0.602621	1.0020936	0.671223	1.05				
1.06	0.843601	0.503861	0.597274	1.003001	0.670616	1.06				
1.07	0.841108	0.497885	0.591940	1.004066	0.669904	1.97				
1.08	0.838605	0.491942	0.586619	1.005288	0.669091	1.08				
1.09	0.836095	0.486034	0.581314	1.006663	0.668176	1.09				
1.10	0.833576	0.480160	0.576024	1.008192	0.667163	1.10				
1.11	0.831050	0.474323	0.570751	1.009872	0.666053	1.11				
1.12	0.828517	0.468522	0.565494	1.01170	0.664849	1.12				
1.13	0.825976	0.462758	0.560256	1.01368	0.663552	1.13				
1.14	0.823429	0.457033	0.555036	1.01580	0.662163	1.14				
1.15	0.820875	0.451347	0.549836	1.01808	0.660586	1.15				
1.16	0.818315	0.445700	0.544656	1.02049	0.659122	1.16				
1.17	0.815748	0.440093	0.539496	1.02305	0.657473	1.17				
1.18	0.813176	0.434527	0.534358	L.02575	0.655741	1.18				
1.19	0.810598	0.429002	0.529241	1.02860	0.653927	1.19				
1.20	0.808016	0.423519	0.524148	1.03158	0.652034	1.20				
1.21	0.805428	0.418079	0.519077	1.03471	0.650064	1.21				
1.22	0.802835	0.412682	0.514030	1.03798	0.648019	1.22				
1.23	0.800238	0.407327	0.509008	1.04138	0.645900	1.23				
1.24	0.797636	0.402017	0.504010	1.04493	0.643709	1.24				
1.25	0.795031	0.396751	0.499038	1.04861	0.641448	1.25				
1.26	0.792422	0.391529	0.494092	1.05243	0.639120	1.26				
1.27	0.789809	0.386352	0.489172	1.05639	0.636725	1.27				
1.28	0.787193	0.381221	0.484278	1.06048	0.634266	1.28				
1.29	0.784574	0.376135	0.479413	1.06471	0.631745	1.29				
.30	C.781953	0.371095	0.474574	1.06908	0.629164	1.30				
1.31	0.779328	0.366100	0.469764	1.07359	0.626523	1.31				
1.32	0.776701	0.361153	0.464983	1.07823	0.623826	1.32				
1.33	0.774073	0.356251	0.460230	1.08301	0.621074	1.33				
1.34	0.771442	0.351397	0.455506	1.08792	0.618268	1.34				
.35	0.768809	0.346589	0.450813	1.09298	0.615411	1.35				
1.36	0.766175	0.341828	0.446149	1.09816	0.612503	1.36				
1.37	0.763540	0.337114	0.441515	1.10349	0.609548	1.37				
1.38	0.760904	0.332448	0.436912	1.10895	0.606546	1.38				
.39	0.758267	0.327829	0,432339	1.11455	0.603499	1.39				
40	0.755629	0.323257	0,427798	1.12028	0.600409	1.40				
.41	0.752991	0.318732	0.423288	1.12616	0.597278	1.41				
.42	0.750353	0.314255	0.418810	1.13217	0.394106	1.42				
.43	C.747715	0.309826	0.414364	1.13832	0.390896	1.43				
.44	0.745077	0.305443	0.409949	1.14461	0.587650	1.44				
.45	0.742439	0.301109	0.405567	1.15104	0.584368	1.45				
.46	0.739801	0.296821	0.401217	1.15760	0.581053	1.46				
.47	0.737165	0.292581	0.396900	1.16431	0.577705	1.47				
1.48	0.734529	0.268387	0.392615	1.17116	0.574327	1.48				
.49	0.731895	0.284241	0.388364	1.17815	0.570920	1.49				
1.50	0.729262	0.280142	0.384145	1.18528	0.567484	1.50				

Compressible flow functions ($\gamma = 1.33$)									
М	T/T_c	P/P,	plp,	$A \{A^*$	$MFP\sqrt{R/g_c}$	М			
1.50	0.729262	0.280142	0.384145	1.18528	0.567484	1.50			
1.51	0.726630	0.276090	0.379959	1.19256	0.564023	1.51			
1.52	0.724000	0.272084	0.375807	1.19997	0.560536	1.52			
1.53	0.721371	0.268125	0.371688	1.20754	0.557026	1.53			
1.54	0.718745	0.264212	0.367602	1.21524	0.553493	1.54			
1.55	0.716121	0.260346	0.363550	1.22309	0.549940	1.55			
1.56	0.713499	0.256525	0.359532	1.23109	0.546367	1.56			
1.57	0.710879	0.252751	0.355547	1.23924	0.542775	1.57			
1.58	0.708262	0.249022	0.351595	1.24753	0.539167	1.58			
1.59	0.705648	0.245338	0.347678	1.25598	0.535542	1.59			
1,60	0.703037	0.241700	0.343794	1.26457	0.531903	1.60			
1.61	0.700429	0.238106	0.339943	1.27331	0.528251	1.61			
1.62	0.697824	0.234557	0.336127	1.28221	0.524586	1.62			
1.63	0.695222	0.231053	0.332344	1.29126	0.520910	1.63			
1.64	0.692624	0.227592	0.328594	1.30046	0.517224	1.64			
1.65	0.690030	0.224176	0.324879	1.30982	0.513529	1.65			
1.65	0.687439	0.220803	0.321196	1.31933	0.509826	1.66			
1.67	0.684852	0.217473	0.317548	1.32900	0.506116	1.67			
1.68	0.682270	0.214187	0.313933	1.33883	0.502400	1.68			
1.69	0.679691	0.210943	0.310351	1.34882	0.498630	1.69			
1.70	0.677117	0.207741	0.306803	1.35897	0.494955	1.70			
1.71	0.674547	0.204582	0.303288	1.36928	0.491228	1.71			
1.72	0.671982	0.201464	0.299806	1.37975	0.487499	1.72			
1.73	0.669421	0.198388	0.296358	1.39039	0.483768	1.73			
1.74	0.666865	0.195353	0.292942	1.40120	0.480038	1.74			
1.75	0.664314	0.192358	0.289559	1.41217	0.476308	1.75			
1.76	0.661768	0.189404	0.286209	1.42331	0.472580	1.76			
1.77	0.659227	0.186490	0.282892	1.43462	0.468854	1.77			
1.78	0.656691	0.183616	0.279608	1.44611	0.465131	1.78			
1.79	0.654161	0.180781	0.276355	1.45776	0.461412	1.79			
1.80	0.651636	0.177985	0.273136	1.46959	0.437698	1.80			
1.81	0.649116	0.175228	0.269948	1.48160	0.453989	1.81			
1.82	0.646602	0.172508	0.266792	1.49378	0.450287	1.82			
1.83	0.644094	0.169827	0.263669	1.50614	0.446591	1.83			
1.84	0.641592	0.167184	0.260577	1.51868	0.439223	1.85			
1.63 -	0.659095	0.1042077	0.254483	1 64431	0.435551	1.86			
1.86	0.636603	0.162006	0.254487	1.54451	0.431890	1.87			
1.87	0.634120	0.154077	0.231469	1.52060	0.428238	1.88			
1.88	0.631642	0.154516	0.246525	1.58416	0.424597	1.89			
1.89	0.626704	0.152090	0.243587	1.59782	0.420967	1.90			
1.01	0.634344	0 149498	0.239807	1.51167	0.417349	1.91			
1.91	0.621792	0.147342	0.236963	1.62572	0.413743	1.92			
1.03	0.619345	0.145010	0.234149	1,63996	0.410150	1.93			
1.95	0.616905	0.142731	0 231366	1.65440	0.406570	1.94			
1.95	0.614472	0.140475	0.228611	1.66904	0.403004	1.95			
1.96	0.612046	0.138253	0.225887	1.68388	0.399452	1.96			
1.97	0.609627	0.136064	0.223192	1.69892	0.395915	1.97			
1.98	0.607214	0.133906	0.220526	1.71417	0.392393	1.98			
1.99	0.604808	0.131781	0.217889	1.72962	0.388887	1.99			
2.00	0.602410	0.129687	0.215281	1.74529	0.385396	2.00			

Compressible flow functions ($\gamma = 1.33$)									
м	T/T_{c}	P/P_{c}	ρ/ρ_r	$A A^*$	$MFP\sqrt{R/g_c}$	М			
2.00	0.602410	0.129687	0.215281	1.74529	0.385396	2.00			
2.02	0.597634	0.125593	0.210150	1.77726	0.378464	2.02			
2.04	0.592886	0.121620	0.205133	1.81008	0.371601	2.04			
2.06	0.588168	0.117766	0.200226	1.84379	0.364807	2.06			
2.08	0.583480	0.114028	0.195428	1.87839	0.358087	2.08			
2.10	0.578821	0.110403	0.190738	1.91391	0.351443	2,10			
2.12	0.574193	0.106888	0.186154	1.95035	0.344875	2.12			
2.14	0.569595	0.103480	0.181673	1.98775	0.338387	2.14			
2.16	0.565028	0.1001767	0.177295	2.02611	0.331979	2.16			
1.18	0.560492	0.0969749	0.173017	2.06547	0.325654	2.18			
2.20	0.555988	0.0938721	0.168838	2.10583	0.319413	2.20			
2.22	0.551515	0.0908655	0.164756	2.14722	0.313256	2.22			
2.24	0.547075	0.0879526	0.160769	2.18966	0.307184	2.24			
2.26	0.542666	0.0851307	0.156875	2.23317	0.301199	2.26			
2.28	0.538290	0.0823973	0.153072	2.27777	0.295301	2.28			
2.30	0.533946	0.0797499	0.149360	2.32348	0.289491	2.30			
1.32	0.529634	0.0771861	0.145735	2.37034	0.283769	2.32			
2.34	0.525355	0.0747035	0.142196	2.41835	0.278135	2.34			
2.36	0.521109	0.0722997	0.138742	2.46754	0.272590	2.36			
2.38	0.516896	0.0699725	0.135371	2.51795	0.267134	2.38			
2.40	0.512715	0.0677195	0.132080	2.56958	0.261766	2.40			
.42	0.508568	0.0655386	0.128869	2.62248	0.256486	2.42			
1.44	0.504453	0.0634276	0.125735	2.67665	0.251295	2.44			
1.46	0.500372	0.0613845	0.122678	2.73213	0.246192	2.46			
2.48	0.496323	0.0594072	0.119695	2.78895	0.241176	2.48			
2.50	0.492308	0.0574937	0.116784	2.84713	0.236248	2.50			
1.52	0.488325	0.0556421	0.113945	2.90670	0.231406	2.52			
2.54	0.484375	0.0538504	0.111175	2.96769	0.226651	2.54			
2.56	0.480459	0.0521168	0.108473	3.03012	0.221981	2.56			
1.58	0.476575	0.0504395	0.105838	3.09403	0.217396	2.58			
2.60	0.472724	0.0488168	0.103267	3.15944	0.212895	2.60			
2.62	0.468905	0.0472470	0.100760	3.22639	0.208477	2.62			
2.64	0.465120	0.0457283	0.098315	3.29490	0.204142	2.64			
2.66	0.461367	0.0442592	0.095931	3.36501	0.199889	2.66			
2.68	0.457646	0.0428382	0.093606	3.43675	0.195716	2.68			
2,70	0.453957	0.0414636	0.091338	3.51016	0.191624	2.70			
2.72	0.450301	0.0401340	0.089127	3.58525	0.187610	2.72			
2.74	0.446677	0.0388480	0.086971	3.66208	0.183674	2.74			
2.76	0.443085	0.0376041	0.084869	3.74066	0.179815	2.76			
2.78	0.439525	0.0364010	0.082819	3.82105	0.176032	2.78			
2.80	0.435996	0.0352375	0.080821	3.90326	0.172325	2.80			
2.82	0.432499	0.0341121	0.078872	3.98735	0.168691	2.82			
2.84	0.429033	0.0330237	0.076972	4.07334	0.165129	2.84			
2.86	0.425598	0.0319710	0.075120	4.16128	0.1616-40	2.86			
2.88	0.422195	0.0309530	0.073315	4.25119	0.158221	2.88			
2.90	0.418822	0.0299684	0.071554	4.34313	0.154872	2.90			
2.92	0.415480	0.0290162	0.069838	4.43712	0.151591	2.92			
2.94	0.412168	0.0280953	0.068165	4.53321	0.148378	2.94			
2.96	0.408887	0.0272047	0.066533	4.63144	0.145231	2.96			
2.98	0.405636	0.0263433	0.064943	4.73185	0.142149	2.98			
3.00	0.402414	0.0255103	0.063393	4.83448	0.139131	3.00			

Compressible flow functions ($\gamma = 1.33$)									
м	$T/T_{\rm f}$	P/P;	pip,	A/A^*	$MFP\sqrt{R/g_c}$	м			
3.00	0.402414	0.0255103	0.063393	4.83448	0.1391314	3.00			
3.02	0.399223	0.0247046	0.061882	4.93938	0.1361766	3.07			
3.04	0.396061	0.0239254	0.060408	5.04659	0.1332838	3.04			
3.06	0.392928	0.0231718	0.058972	5.15615	0.1304518	3.06			
80.6	0.389825	0.0224429	0.057572	5.26810	0.1276795	3.08			
3.10	0.386750	0.0217380	0.056207	5.38250	0.1249658	3.10			
3.12	0.3#3704	0.0210561	0.054876	5.49938	0.1223098	3.12			
3.14	0.380686	0.0203967	0.053579	5.51881	0.1197102	3.14			
3.16	0.377697	0.0197588	0.052314	5.74081	0.1171661	3.10			
3.18	0.374736	0.0191418	0.051081	5.86545	0.1146764	3.11			
3.20	0.371802	0.0185451	0.049879	5.99276	0.1122401	3.20			
5.22	0.368897	0.0179678	0.048707	6.12281	0.1098561	3.22			
3.24	0.366018	0.0174094	0.047564	6.25564	0.1075235	3.24			
3.26	0.363167	0.0168692	0.046450	6.39130	0.1052412	3.26			
3.28	0.360343	0.0163467	0.045364	6.52985	0.1030082	3.28			
3.30	0.357545	0.0158412	0.044305	6.67134	0.1008236	3.30			
3.32	0.354774	0.0153522	0.043273	6.81582	0.0986864	3.52			
3.34	0.352029	0.0148790	0.042266	6.96334	0.0945956	3.3			
3.36	0.349310	0.0144213	0.041285	7.11397	0.0945503	3.3			
3.38	0.346617	0.0139784	0.040328	7.26776	0.0925496	3.38			
3.40	0.343950	0.0135499	0.039395	7.42477	0.0905925	3.40			
3.42	0.341308	0.0131352	0.038485	7.58505	0.0886782	3.43			
1.44	0.338691	0.0127340	0.037598	7,74866	0.0868052	3.4			
5.46	0.336099	0.0123458	0.036733	7.91567	0.0849743	3.41			
1.48	0.333552	0.0119701	0.035889	8.08613	0.0831830	3.41			
3.50	0.330989	0.0116065	0.035066	8_76011	0.0814309	3.50			
3.52	0.328470	0.0112547	0.034264	8.43767	0.0797134	3.52			
3.54	0.325976	0.0109141	0.033481	8,61887	0.0780414	3.54			
1.56	0.323505	0.0105845	0.032718	8.80377	0.0764923	3.5			
3.58	0.321052	0.0102655	0.031974	8.99245	0.0747992	3.51			
1.60	0.318634	0.0099567	0.031248	9.1850	0.0732314	3.61			
1.52	0.316233	0.0096578	0.030540	9.3814	0.0716981	3.63			
1.64	0.313855	0.0093684	0.029849	9.5818	0.0701985	3.64			
3.66	0.311500	0.0090883	0.029176	9.7862	0.0687321	3,66			
1.68	0.309167	0.0088171	0.028519	9.9948	0.0672979	3,61			
1.70	0.306857	0.0085545	0.027878	10.2075	0.0458954	3,7(
.72	0.304568	0.0083003	0.027253	10.4245	0.0645237	3.7			
1.74	0.302302	0.0080541	0.026643	10.6458	0.0631822	3.74			
1.76	0.300057	0.0078158	0.026048	10.8716	0.0618704	3.90			
.78	0.297833	0.0075849	0.025467	11.1018	0.0605874	3.75			
3.80	0.295631	0.0073614	0.024901	11.3366	0.0593327	3,80			
.82	0.293449	0.0071449	0.024348	11.5760	0.0581057	3.82			
.84	0.291288	0.0069352	0.023809	11.8201	0.0569057	3.84			
.86	0.289148	0.0067321	0.023285	12.0690	0.0557321	3.86			
88.6	0.287028	0.0065354	0.022769	12.3227	0.0545843	3.88			
9.90	0.284929	0.0063449	0.022268	12.5815	0.0534618	3.90			
.92	0.282849	0.0061603	0.021779	12.8452	0.0523641	3.92			
1.94	0.280789	0.0059814	0.021302	13.1141	0.0512904	3.94			
.96	0.278748	0.0058082	0.020837	13.3882	0.0502404	3.96			
89.1	0.276727	0.0056403	0.020382	13.6676	0.0492134	3.98			
	A 374734	0.0014774	0 010010	12 0433	0.0483000	1 00			

Lampiran 6 : Diameter State 6 dan 16

Lampiran 7 : Sizing Exhaust

T.O. 2J-F100-46-10 WP 702 00 TIT 3 Figure 2. Secondary Augmentor N Area - Augmentor Nozzle Levers (S et 2 of 6

Lampiran 8 : Diameter Throat

Lampiran 9 : Diameter Divergent

ITERASI IDLE B MRO										
M6A	Pt6A	P6A	T6A	R m	a 6A	Сба	A 6A	ρm	ṁтіхС6А+Р6А А6А	
0,1	1,0372	1,0303	564,7809	0,2870	464,8320	46,4832	1,0956	0,2855	676,9338	
0,2	1,0372	1,0100	561,9784	0,2870	463,6773	92,7355	1,0956	0,1431	1349,3591	
0,3	1,0372	0,9772	557,3690	0,2870	461,7718	138,5316	1,0956	0,0958	2015,1386	
0,4	1,0372	0,9335	551,0415	0,2870	459,1432	183,6573	1,0956	0,0723	2671,1600	
0,5	1,0372	0,8809	543,1141	0,2870	455,8286	227,9143	1,0956	0,0582	3314,5415	
0,6	1,0372	0,8216	533,7295	0,2870	451,8732	271,1239	1,0956	0,0489	3942,6883	
0,7	1,0372	0,7577	523,0483	0,2870	447,3289	313,1302	1,0956	0,0424	4553,3346	
0,8	1,0372	0,6915	511,2432	0,2870	442,2520	353,8016	1,0956	0,0375	5144,5707	
0,9	1,0372	0,6250	498,4921	0,2870	436,7020	393,0318	1,0956	0,0338	5714,8538	
1	1,0372	0,5599	484,9732	0,2870	430,7397	430,7397	1,0956	0,0308	6263,0061	
1,1	1,0372	0,4975	470,8595	0,2870	424,4257	466,8683	1,0956	0,0284	6788,2005	
1,2	1,0372	0,4387	456,3151	0,2870	417,8193	501,3831	1,0956	0,0265	7289,9365	
1,3	1,0372	0,3844	441,4920	0,2870	410,9769	534,2700	1,0956	0,0248	7768,0096	
1,4	1,0372	0,3349	426,5281	0,2870	403,9521	565,5329	1,0956	0,0235	8222,4766	
1,5	1,0372	0,2902	411,5459	0,2870	396,7940	595,1911	1,0956	0,0223	8653,6189	
1,6	1,0372	0,2504	396,6522	0,2870	389,5480	623,2768	1,0956	0,0213	9061,9047	
1,7	1,0372	0,2152	381,9383	0,2870	382,2545	649,8326	1,0956	0,0204	9447,9541	
1,8	1,0372	0,1844	367,4803	0,2870	374,9497	674,9095	1,0956	0,0197	9812,5055	
1,9	1,0372	0,1576	353,3406	0,2870	367,6654	698,5643	1,0956	0,0190	10156,3854	
2	1,0372	0,1344	339,5686	0,2870	360,4290	720,8581	1,0956	0,0184	10480,4823	

Lampiran 10 : Iterasi Kondisi Idle Before MRO

ITERASI IDLE A MRO										
M6A	Pt6A	P 6A	Тба	R m	a 6A	Сба	A 6A	ρm	ṁтіхС6А+Р6А А6А	
0,1	1,0182	1,0114	514,2233	0,2870	443,5391	44,3539	1,0956	0,8863	1911,4280	
0,2	1,0182	0,9915	511,6717	0,2870	442,4373	88,4875	1,0956	0,4443	3812,2353	
0,3	1,0182	0,9593	507,4749	0,2870	440,6191	132,1857	1,0956	0,2974	5694,2818	
0,4	1,0182	0,9165	501,7138	0,2870	438,1109	175,2444	1,0956	0,2243	7548,7668	
0,5	1,0182	0,8648	494,4961	0,2870	434,9481	217,4741	1,0956	0,1808	9367,5404	
0,6	1,0182	0,8065	485,9515	0,2870	431,1739	258,7044	1,0956	0,1520	11143,2632	
0,7	1,0182	0,7438	476,2265	0,2870	426,8377	298,7864	1,0956	0,1316	12869,5261	
0,8	1,0182	0,6789	465,4781	0,2870	421,9934	337,5947	1,0956	0,1164	14540,9258	
0,9	1,0182	0,6136	453,8685	0,2870	416,6976	375,0279	1,0956	0,1048	16153,0978	
1	1,0182	0,5497	441,5598	0,2870	411,0085	411,0085	1,0956	0,0956	17702,7094	
1,1	1,0182	0,4884	428,7095	0,2870	404,9837	445,4821	1,0956	0,0882	19187,4196	
1,2	1,0182	0,4307	415,4671	0,2870	398,6799	478,4159	1,0956	0,0822	20605,8114	
1,3	1,0182	0,3774	401,9709	0,2870	392,1510	509,7963	1,0956	0,0771	21957,3058	
1,4	1,0182	0,3287	388,3465	0,2870	385,4479	539,6271	1,0956	0,0728	23242,0628	
1,5	1,0182	0,2849	374,7054	0,2870	378,6178	567,9267	1,0956	0,0692	24460,8768	
1,6	1,0182	0,2458	361,1450	0,2870	371,7037	594,7258	1,0956	0,0661	25615,0720	
1,7	1,0182	0,2113	347,7482	0,2870	364,7443	620,0653	1,0956	0,0634	26706,4014	
1,8	1,0182	0,1810	334,5845	0,2870	357,7741	643,9934	1,0956	0,0610	27736,9526	
1,9	1,0182	0,1547	321,7105	0,2870	350,8235	666,5646	1,0956	0,0590	28709,0632	
2	1,0182	0,1320	309,1713	0,2870	343,9186	687,8372	1,0956	0,0572	29625,2453	

Lampiran 11 : Iterasi Kondisi Idle After MRO

ITERASI MILL A MRO										
M6A	Pt6A	P 6A	T6A	R m	a 6A	C6A	A 6A	ρm	ṁmixC6A+P6A А6А	
0,1	2,7355	2,7173	782,6545	0,2870	547,1937	54,7194	1,0956	1,9606	6371,5797	
0,2	2,7355	2,6638	778,7710	0,2870	545,8344	109,1669	1,0956	0,9827	12708,4836	
0,3	2,7355	2,5774	772,3835	0,2870	543,5913	163,0774	1,0956	0,6579	18982,8514	
0,4	2,7355	2,4622	763,6150	0,2870	540,4969	216,1988	1,0956	0,4962	25165,3430	
0,5	2,7355	2,3235	752,6295	0,2870	536,5950	268,2975	1,0956	0,3999	31228,7863	
0,6	2,7355	2,1669	739,6246	0,2870	531,9388	319,1633	1,0956	0,3361	37148,7120	
0,7	2,7355	1,9984	724,8230	0,2870	526,5893	368,6125	1,0956	0,2910	42903,7518	
0,8	2,7355	1,8239	708,4638	0,2870	520,6128	416,4902	1,0956	0,2576	48475,8912	
0,9	2,7355	1,6485	690,7938	0,2870	514,0794	462,6715	1,0956	0,2319	53850,5781	
1	2,7355	1,4767	672,0597	0,2870	507,0607	507,0607	1,0956	0,2116	59016,7011	
1,1	2,7355	1,3121	652,5015	0,2870	499,6280	549,5908	1,0956	0,1952	63966,4543	
1,2	2,7355	1,1572	632,3463	0,2870	491,8510	590,2211	1,0956	0,1818	68695,1137	
1,3	2,7355	1,0139	611,8049	0,2870	483,7963	628,9351	1,0956	0,1706	73200,7482	
1,4	2,7355	0,8832	591,0684	0,2870	475,5267	665,7374	1,0956	0,1611	77483,8908	
1,5	2,7355	0,7654	570,3066	0,2870	467,1004	700,6506	1,0956	0,1531	81547,1901	
1,6	2,7355	0,6604	549,6674	0,2870	458,5704	733,7126	1,0956	0,1462	85395,0606	
1,7	2,7355	0,5677	529,2773	0,2870	449,9846	764,9739	1,0956	0,1402	89033,3465	
1,8	2,7355	0,4864	509,2420	0,2870	441,3856	794,4940	1,0956	0,1350	92469,0080	
1,9	2,7355	0,4157	489,6476	0,2870	432,8106	822,3401	1,0956	0,1305	95709,8379	
2	2,7355	0,3545	470,5628	0,2870	424,2920	848,5840	1,0956	0,1264	98764,2114	

Lampiran 12 : Iterasi Kondisi Mill After MRO
ITERASI MAX A MRO									
M6A	Pt6A	P 6A	T6A	R m	a 6A	Сба	A 6A	ρm	ṁтіхС6А+Р6А А6А
0,1	3,3077	3,2858	778,7935	0,2870	545,8423	54,5842	1,0956	1,9712	6375,3071
0,2	3,3077	3,2210	774,9292	0,2870	544,4864	108,8973	1,0956	0,9880	12715,2878
0,3	3,3077	3,1165	768,5732	0,2870	542,2488	162,6747	1,0956	0,6614	18992,6945
0,4	3,3077	2,9773	759,8479	0,2870	539,1621	215,6648	1,0956	0,4989	25178,1737
0,5	3,3077	2,8095	748,9166	0,2870	535,2698	267,6349	1,0956	0,4020	31244,5411
0,6	3,3077	2,6202	735,9758	0,2870	530,6251	318,3751	1,0956	0,3380	37167,3168
0,7	3,3077	2,4165	721,2473	0,2870	525,2888	367,7021	1,0956	0,2926	42925,1236
0,8	3,3077	2,2055	704,9688	0,2870	519,3271	415,4617	1,0956	0,2590	48499,9394
0,9	3,3077	1,9934	687,3859	0,2870	512,8098	461,5288	1,0956	0,2331	53877,2063
1	3,3077	1,7856	668,7443	0,2870	505,8084	505,8084	1,0956	0,2127	59045,8084
1,1	3,3077	1,5865	649,2825	0,2870	498,3941	548,2335	1,0956	0,1963	63997,9369
1,2	3,3077	1,3993	629,2268	0,2870	490,6362	588,7635	1,0956	0,1827	68728,8660
1,3	3,3077	1,2260	608,7868	0,2870	482,6014	627,3819	1,0956	0,1715	73236,6642
1,4	3,3077	1,0679	588,1525	0,2870	474,3523	664,0932	1,0956	0,1620	77521,8649
1,5	3,3077	0,9255	567,4931	0,2870	465,9468	698,9202	1,0956	0,1539	81587,1180
1,6	3,3077	0,7985	546,9558	0,2870	457,4379	731,9006	1,0956	0,1470	85436,8403
1,7	3,3077	0,6864	526,6663	0,2870	448,8733	763,0846	1,0956	0,1410	89076,8785
1,8	3,3077	0,5882	506,7298	0,2870	440,2955	792,5319	1,0956	0,1358	92514,1963
1,9	3,3077	0,5027	487,2321	0,2870	431,7417	820,3092	1,0956	0,1312	95756,5899
2	3,3077	0,4287	468,2414	0,2870	423,2441	846,4883	1,0956	0,1271	98812,4383

Lampiran 13 : Iterasi Kondisi AB MAX After MRO

BIODATA PENULIS

Penulis merupakan anak kedua dari tiga bersaudara yang lahir di Magetan, Jawa Timur pada tanggal 17 September 1995. Pendidikan formal yang pernah ditempuh meliputi TK Ria Sumberagung, SD Negeri Sumberagung 1, SMP Negeri 2 Plaosan, dan SMK Penerbangan Angkasa Lanud Iswahjudi Magetan. Kemudian pada tahun 2016

penulis melanjutkan pendidikan di Departemen Teknik Mesin Industri, Fakultas Vokasi – Institut Teknologi Sepuluh Nopember Surabaya.

Selama menempuh perkuliahan penulis juga aktif dalam kegiatan organisasi sebagai Anggota UKM Penalaran ITS 2016/2017, Anggota Laboratorium Perautan Departemen Teknik Mesin Industri ITS, staff magang ITS Team Sapuangin 2016/2017, staff ITS Team Sapuangin 2017/2018, dan terakhir menjabat sebagai Kepala Divisi Frame Body ITS Team Sapuangin 2018/2019.

Penulis juga mengikuti beberapa pelatihan seperti Pelatihan Karya Tulis Ilmiah (PKTI) TD FTI-ITS, Latihan Keterampilan Manajemen Mahasiswa (LKMM) Pra-TD XIV FTI-ITS, LKMM TD X HMDM FV-ITS, Program Studi Islam JMMI ITS 2017, dan Autodesk Inventor Training DECIMO Surabaya 2017.

Kemudian penulis juga mempunyai prestasi Juara 1 Internal Combustion Engine Urban Concept Kontes Mobil Hemat Energi 2017 KEMENRISTEKDIKTI Tingkat Nasional, Juara 1 Hybrid Engine Urban Concept Kontes Mobil Hemat Energi 2017 KEMENRISTEKDIKTI Tingkat Nasional, Juara 1 FDR Award Kontes Mobil Hemat Energi 2017 KEMENRISTEKDIKTI Tingkat Nasional, Juara 1 Kontes Mobil Balap Hemat Energi 2017 KEMENRISTEKDIKTI Tingkat Nasional, Juara 3 Kontes Mobil Balap Hemat Energi 2017 KEMENRISTEKDIKTI Tingkat Nasional, The Winner Internal Combustion Engine Urban Class Shell Eco Marathon Asia, Singapure, Runner up Driver's World Championship Regional Asia, Singapure, The Winner Driver's World Championship Global, London UK, dan Driver's World Championship Ferrari Manarello Experience.

Penulis juga pernah melaksanakan Kerja Praktek di PT. GMF AeroAsia - Soekarno–Hatta International Airport, Cengkareng.

E-mail: <u>bakdamhamz@gmail.com</u>