Multi-feature Fusion Menggunakan Fitur Scale Invariant Feature Transform dan Local Extensive Binary Pattern untuk Pengenalan Pembuluh Darah pada Jari

Khusnuliawati, Hardika (2016) Multi-feature Fusion Menggunakan Fitur Scale Invariant Feature Transform dan Local Extensive Binary Pattern untuk Pengenalan Pembuluh Darah pada Jari. Masters thesis, Institut Teknologi Sepuluh Nopember.

[img]
Preview
Text
5114201047-master theses.pdf - Accepted Version

Download (2MB) | Preview
[img]
Preview
Text
5114201047-paperpdf.pdf - Accepted Version

Download (181kB) | Preview
[img]
Preview
Text
5114201047-presentationpdf.pdf - Presentation

Download (1MB) | Preview

Abstract

Pengenalan pembuluh darah jari merupakan salah satu area dalam bidang biometrika. Sehingga tahap-tahap dalam proses pengenalan pembuluh darah jari memiliki kesamaan dengan proses pengenalan menggunakan biometrika lain yaitu meliputi pengumpulan citra, praproses, ekstraksi fitur, dan pencocokan. Tingkat keberhasilan dari tahap pencocokan ditentukan oleh pemilihan fitur pembuluh darah jari yang digunakan. Kondisi citra pembuluh darah yang rentan terhadap perubahan skala, rotasi maupun translasi menyebabkan kebutuhan akan fitur yang tahan terhadap kondisi tersebut menjadi hal yang penting. Fitur Scale Invariant Feature Transform (SIFT) adalah fitur yang telah cukup banyak digunakan untuk kasus pencocokan citra serta mampu tahan terhadap degradasi kondisi citra akibat perubahan skala, rotasi maupun translasi. Akan tetapi, fitur SIFT kurang memberikan hasil optimal jika diekstraksi dari citra dengan variasi tingkat keabuan seperti yang disebabkan oleh perbedaan intensitas pencahayaan. Fitur Local Extensive Binary Pattern (LEBP) merupakan fitur yang tahan terhadap variasi tingkat keabuan dengan informasi karakteristik lokal yang lebih kaya dan diskriminatif. Oleh karena itu digunakan teknik fusi untuk memperoleh informasi dari fitur SIFT dan fitur LEBP sehingga diperoleh fitur yang memiliki ketahanan terhadap degradasi kondisi citra akibat perubahan skala, rotasi, translasi, variasi tingkat keabuan seperti yang disebabkan oleh perbedaan intensitas pencahayaan. Penelitian ini mengusulkan multi-feature fusion menggunakan fitur SIFT dan LEBP untuk pengenalan pembuluh darah pada jari. Fitur hasil fusion diproses dengan metode Learning Vector Quantization (LVQ) untuk menentukan apakah citra pembuluh darah jari yang diuji dapat dikenali atau tidak. Dengan menggunakan multi-feature fusion diharapkan mampu representasi fitur yang dapat meningkatkan akurasi dari proses pengenalan pembuluh darah jari meskipun fitur diambil dari citra yang mengalami degradasi. Berdasarkan hasil uji coba diperoleh bahwa penggunaan multi-feature fusion dengan fitur SIFT dan LEBP memberikan hasil yang relatif lebih baik jika dibandingkan dengan hanya menggunakan fitur tunggal. Hal tersebut dapat dilihat dari peningkatan hasil kinerja sistem pada kondisi optimum dengan nilai akurasi sebesar 97,50%, TPR sebesar 0,9400 dan FPR sebesar 0,0128. ========== Finger vein recognition is one of the areas in the field of biometrics. The steps of finger vein recognition has in common with other biometric recognition process which include image acquisition, preprocessing, feature extraction and matching. The success rate of matching stage is determined by the selection of features. The conditions of finger vein images are susceptible to changes in scale, rotation and translation. The need for features that are resistant to these conditions becomes important. Scale invariant Feature Transform (SIFT) feature is a feature that has been quite widely used for image matching case and be able to withstand degradation due to changes in the condition of the image scale, rotation and translation. However, SIFT feature provide less optimal results when extracted from the image with gray level variations such as those caused by differences in lighting intensity. Local Extensive Binary Pattern (LEBP) feature is a feature that has resistance to gray level variations with richer and discriminatory local characteristics information. Therefore the fusion technique is used to obtain information from SIFT feature and LEBP feature. So that, the feature that has been produced can resist degradation problems such as changes in the condition of the image scale, rotation, translation, and gray level variations which caused by differences in lighting intensity. This study proposes a multi-feature fusion using SIFT and LEBP features for finger vein recognition. This fusion feature will be processed by Learning Vector Quantization (LVQ) method to determine whether the testing image can be x recognized or not. By using a multi-feature fusion, it is expected to get representations of features that can improve the accuracy of the finger vein recognition although the feature is taken from the degraded image. Based on experiment results, finger vein recognition that use multi-feature fusion using integration feature of scale invariant feature transform and local extensive binary pattern provide a better result than only use a single feature. It can be seen from the increase of performance system in optimum condition. The accuracy value can achieve 97.50%, TPR at 0.9400 and FPR at 0.0128.

Item Type: Thesis (Masters)
Additional Information: RTIf 006.248 Khu m 3100016068192
Uncontrolled Keywords: pembuluh darah jari, Scale Invariant Feature Transform, Local Extensive Binary Pattern,multi-feature fusion, Learning Vector Quantization, finger vein, Scale Invariant Feature Transform, Local Extensive Binary Pattern, multi-feature fusion, Learning Vector Quantization
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7882.B56 Biometric identification
Divisions: Faculty of Information Technology > Informatics Engineering > 55101-(S2) Master Thesis
Depositing User: - Davi Wah
Date Deposited: 12 Nov 2019 03:45
Last Modified: 12 Nov 2019 03:45
URI: https://repository.its.ac.id/id/eprint/71687

Actions (login required)

View Item View Item