

TESIS - SF 142502

KARAKTERISASI PEMBENTUKAN KOMPOSIT KATODA LFP/C MENGGUNAKAN METODE SOLID-STATE REACTION DENGAN VARIASI TEMPERATUR KALSINASI PADA KONDISI GAS INERT

Metatia Intan Mauliana 1113201015

DOSEN PEMBIMBING Dr. M. Zainuri, M.Si.

PROGRAM MAGISTER BIDANG KEAHLIAN MATERIAL JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2015

THESIS - SF 142502

CHARACTERIZATION OF CARBON COMPOSITE LFP/C BY SOLID-STATE REACTION METHODS IN VARIOUS TEMPERATURE CALCINATION IN INERT CONDITION

Metatia Intan Mauliana 1113201015

Supervisor Dr. M. Zainuri, M.Si.

MAGISTER PROGRAMME PHYSICS OF MATERIALS DEPARTMENT OF PHYSICS FACULTY OF MATHEMATIC AND NATURAL SCIENCES SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY SURABAYA 2015

KARAKTERISASI PEMBENTUKAN KOMPOSIT KATODA LFP/C MENGGUNAKAN METODE SOLID-STATE REACTION DENGAN VARIASI TEMPERATUR KALSINASI PADA KONDISI GAS INERT

Nama	: Metatia Intan Mauliana
NRP	: 1113 201 015
Pembimbing	: Dr. M. Zainuri, M.Si

ABSTRAK

Material katoda lithium ferro phospat carbon composite (LFP/C) telah berhasil disintesis menggunakan metode solid-state reaction dengan memanfaatkan salah satu sumber alam batuan besi Tanah Laut Kalimantan sebagai sumber bahan dasar Fe. Metode solid state reaction dilakukan dengan menggunakan alat high energy ball milling. Material katoda LFP dibuat dengan menggunakan bahan dasar (Li₂CO₃), Fe₃O₄, dan (NH₄)₂HPO₄ dengan perbandingan 3:6:2 serta ditambahkan asam sitrat 5% wt sebagai sumber karbon. Pada penelitian ini digunakan variasi temperatur kalsinasi pada 400°C, 500°C, 600°C, dan 700°C untuk mengetahui pengaruh pada struktur fasa yang terbentuk, konduktivitas listrik, dan performa baterai komposit katoda LFP/C. Analisis pola difraksi sampel menunjukkan komposisi terbesar LFP dengan struktur olivine terbentuk pada temperatur 700°C sebesar 93.3 %wt dengan impuritas Fe₂O₃ sebesar 6.7 %wt. Selain hematite, impuritas yang muncul pada temperatur lain adalah monoclinic Li₂FeP₂O₇, akan tetapi fasa-fasa impuritas tersebut berkurang seiring dengan bertambahnya temperatur kalsinasi. Identifikasi ukuran partikel rerata dan konduktivitas sampel menggunakan PSA dan EIS menunjukkan bahwa sampel dengan temperatur kalsinasi 500°C memiliki ukuran rerata terkecil berkisar 236.5 nm dan konduktivitas tertinggi sebesar 5.676 x 10⁻³ S.cm⁻¹. Performa baterai terbaik juga dimiliki sampel yang sama dengan nilai kapasitas spesifik rerata dari tiga siklus sebesar 31.019 mAh/g. Puncak redox sampel 500°C dari hasil pengujian Cyclic Voltammetry (CV) didapatkan pada 3.49 V sebagai puncak oksidasi dan 3.24 V sebagai puncak reduksi, dengan selisih tegangan 0.25V pada *scan rate* tegangan 100 μ V.s⁻¹.

Kata kunci: komposit katoda LFP/C, *solid-state reaction*, batuan alam, Fe₃O₄, variasi temperatur, inert gas

CHARACTERIZATION OF CARBON COMPOSITE LFP/C BY SOLID-ST ATE REACTION METHODS IN VARIOUS TEMPERATURE CALCINAT ION IN INERT CONDITION

Name	: Metatia Intan Mauliana
Registration Number	: 1113 201 015
Adviser	: Dr. M. Zainuri, M.Si

ABSTRACT

A carbon composite cathode material LFP/C has been synthesized by a simple solid-state reaction method with utilizing one of the natural sources of iron stone at Tanah Laut Kalimantan as Fe source. The solid-state reaction method was conducted by milling process. A LFP/C cathode material used raw materials Li₂CO₃, Fe_3O_4 , and $(NH_4)_2HPO_4$ with ratio 3:6:2 mole comparison and 5% wt citric acid as carbon source. The precursor of lithium iron phosphate has been calcinations in various temperature. The calcination temperature was varied at 400°C, 500°C, 600°C, and 700°C to determine the phase transformation, effect on the electrical conductivity, and performance of LFP/C. Based on diffraction analysis of sample obtain high composition of olivine LFP reached at temperature 700°C with 93.3%wt and 6.7%wt impurities of Fe₂O₃. The others temperature was formed monoclinic $Li_2FeP_2O_7$ as impurities but $Li_2FeP_2O_7$ and hematite phase gradually decreased in higher temperature. Identification particle size and conductivity properties using PSA and EIS show that the sample calcined at 500 °C has the smallest average particle size around 236.5 nm and highest conductivity at 5.676 x 10^{-3} S.cm⁻¹. The highest performance batteries was reached by the same sample with specific capacity average 31.019 mAh/g in $25\mu A$ discharge current applied. The redox peak of sample calcined at 500 °C investigate by Cyclic Voltammetry (CV), there was a cathodic intensity peak at 3.49 V and anodic at 3.24 V with potential difference 0.25V at 100 $\mu V.s^{-1}$ scan rate voltage applied.

Keywords: *composite cathode LFP/C, solid-state reaction, natural sources, Fe₃O₄, temperature variation, inert gas*

KATA PENGANTAR

Puji syukur penulis panjatkan atas kehadirat Allah SWT karena berkat rahmat, taufik dan hidayah-Nya penulis dapat menyelesaikan Tesis sebagai syarat wajib untuk memperoleh gelas Magister Sains (M.Si) di jurusan Fisika FMIPA ITS Surabaya dengan judul:

KARAKTERISASI PEMBENTUKAN KOMPOSIT KATODA LFP/C MENGGUNAKAN METODE *SOLID-STATE REACTION* DENGAN VARIASI TEMPERATUR KALSINASI PADA KONDISI GAS INERT

Penulis menyadari bahwa terselesaikannya penyusunan Tesis ini tidak lepas dari bantuan dan dukungan dari berbagai pihak, maka pada kesempatan ini penulis mengucapkan terimakasih kepada:

- 1. Bapak Dr. M. Zainuri, selaku dosen pembimbing tesis yang senantiasa memberikan bimbingan, wawasan dan motivasi, sehingga penulis dapat menyelesaikan tesis ini.
- 2. Bapak Prof. Suminar Pratapa, M.Sc., Ph.D. dan Bapak Dr. Mashuri selaku dosen penguji. Terimakasih banyak atas saran, kritik, masukan, dan arahan sehingga dapat memperluas wawasan penulis.
- Dr. Yono Hadi Pramono, selaku Ketua Jurusan Fisika FMIPA ITS yang telah memberikan kemudahan sarana kepada penulis selama melaksanakan perkuliahan sampai dengan terselesaikannya tesis ini.
- 4. Bapak Dr. Joko Triwibowo, yang memberikan arahan dan bimbingan selama riset di LIPI.
- 5. Seluruh Staff Pengajar di Jurusan Fisika FMIPA ITS, terimakasih atas ilmu pegetahuan dan motivasi yang telah diberikan.
- 6. Keluargaku (Ibu Hermawati, Bapak Djumarto, dan Adikku Yuni Wulandari) serta patnerku Arista D.P., terimakasih atas doa restu, dukungan, motivasi, dan semangat yang terus diberikan kepada penulis selama ini.
- Teman seperjuangan mahasiwa fisika angkatan 2013: Musyarofah, Nuraini Fauziyah, Umi Nuraini, Zuffa dan Rizqa.

- 8. Dikti yang telah memberikan beasiswa kepada penulis selama studi di Fisika FMIPA ITS.
- 9. Segenap pihak yang berkontribusi dalam penyelesaian tesis ini yang tidak dapat penulis sebutkan satu persatu.

Penulis menyadari sepenuhnya atas keterbatasan ilmu pengetahuan dan kemampuan yang dimiliki. Oleh karena itu penulis mengharapkan kritik dan saran yang bersifat membangun demi kesempurnaan penulisan tesis ini. Semoga penelitian ini dapat memberikan inspirasi bagi pembaca dan bermanfaat bagi perkembangan ilmu pengetahuan lebih lanjut.

Surabaya, Juli 2015

Penulis

DAFTAR ISI

Halaman

HALAMAN JUDUL	i
HALAMAN PENGESAHAN	ii
ABSTRAK	iii
KATA PENGANTAR	v
DAFTAR ISI	vii
DAFTAR GAMBAR	ix
DAFTAR TABEL	xi
DAFTAR LAMPIRAN	xi

BAB 1 PENDAHULUAN

1.1	Latar Belakang	1
1.2	Perumusan Masalah	4
1.3	Tujuan Penelitian	4
1.4	Batasan Masalah	4
1.5	Manfaat Penelitian	4

BAB 2 KAJIAN PUSTAKA

2.1	Baterai Ion Lhitium	6
2.2	Katoda Baterai Ion Lithium	14
2.3	Lhitium Iron Phosphate (LFP)	16
2.4	Metode Solid-state	18

BAB 3 METODOLOGI PENELITIAN

3.1 Persiapan Alat dan Bahan	21
3.2 Prosedur Penelitian	21
3.2.1 Ekstraksi Prekursor Fe ₃ O ₄	21
3.2.2 Sintesis Komposit LiFePO ₄ /C	22
3.3 Karakterisasi Bahan Uji	17

3.3.1 Difraktometer Sinar-X (XRD)	23
3.3.2 Analisis Scanning Electron Microscopy (SEM)	25
3.3.3 Analisis Particle Size Analyzer (PSA)	26
3.3.4 Analisis Konduktifitas dengan EIS	27
3.3.5 Analisis Peforma baterai	31
3.4 Diagram Alir Penelitian	34
3.4.1 Sintesis Komposit LiFePO4/C	34

BAB 4 HASIL DAN PEMBAHASAN

4.1	Analisis Pemurnian Batuan Besi Tanah Laut Kalimantan	35
4.2	Karakterisasi Komposit LFP/C	37
	4.2.1 Identifikasi Perlakuan Panas pada Prekursor LFP/C	37
	4.2.2 Analisis Struktur Komposit LFP/C dengan Difraksi sinar-X	39
	4.2.3 Analisis Distribusi Ukuran Partikel dengan PSA	41
	4.2.4 Analisis Bentuk Morfologi Partikel dengan SEM-EDX	43
4.3	Hasil Pengujian EIS pada Material Komposit LFP/C	46
4.4	Performa Baterai Komposit Katoda LFP/C berdasarkan Temperatur	
	Kalsinasi	49
	4.4.1 Analisis Charge-Discharge (CD)	50
	4.4.2 Analisis Cyclic Voltametry (CV)	54
4.5	Pembahasan	57

BAB 5 KESIMPULAN

5.1 Kesimpulan	60
5.2 Saran	60
DAFTAR PUSTAKA	61
LAMPIRAN	64
BIOGRAFI PENULIS	82

DAFTAR TABEL

Tabel 2.1	Standar potensial material elektroda pada temperatur 25°C9
Tabel 2.2	Kelebihan dan kekurangan Struktur olivine dan NASICON pada
	material katoda LFP17
Tabel 4.1	Hasil X-ray fluorescence (XRF) dari serbuk batu Tanah Laut
	Kalimantan
Tabel 4.2	Analisis PDXL terhadap sampel komposit LFP/C pada temperatur 400
	°C, 500°C, 600°C dan 700°C
Tabel 4.3	Standar deviasi dan Z-average sampel komposit LFP/C pada
	temperatur 400 °C, 500°C, 600°C dan 700°C41
Tabel 4.4	Hasil spektrum komposisi unsur-unsur pada sample komposit LFP/C pada temperatur 500°C dan 700°C
Tabel 4.5	Grafik nilai konduktivitas material komposit LFP/C dengan variasi
	temperatur kalsinasi46
Tabel 4.6	Hasil kapasitas spesifik sampel komposit LFP/C dengan variasi
	temperatur 400 °C, 500°C, 600°C dan 700°C
Tabel 4.7	Hasil pengujian CV sampel komposit LFP/C dengan variasi
	temperatur 400 °C, 500°C, 600°C dan 700°C

DAFTAR GAMBAR

Gambar 2.1	Perbandingan gravimetric power dan energy densities untuk
	berbagai jenis sistem rechargeable battery6
Gambar 2.2	Mekanisme (a) proses charging (b) proses discharging
	pada sel baterai ion lithium8
Gambar 2.3	Kurva Discharge sel baterai (a)&(b) merupakan kurva V vs. t pada
	I tertentu yang menunjukkan polarisasi pada (a) insertion reaction
	pada sebuah solid state solution, (b) reaksi dengan dua fasa, (c)
	pengaruh polarisasi pada profil I-V sel baterai12
Gambar 2.4	Katoda material dengan penyisipan ion Li interstitial 1D, 2D, 1D
	pada struktur (a) spinel, (b) lamellar, dan (c) olivine16
Gambar 2.5	Ilustrasi pergerakan bola dan serbuk dalam ball mill
Gambar 3.1	Peralatan XRD di Riset Center ITS (a) alat XRD dan (b) prinsip
	kerja alat XRD25
Gambar 3.2	Peralatan SEM di laboratorium COE (Center Of Energy) gedung
	robotika ITS Surabaya25
Gambar 3.3	Peralatan pengujian PSA (Particle Size Analyzer) di laboratorium
	zat padat fisika, ITS Surabaya27
Gambar 3.4	(a) skematik setup pengukuran EIS dan (b) alat pengujian EIS 28
Gambar 3.5	Profil kurva hasil pengukuran impedansi komponen sel baterai 29
Gambar 3.6	(a) grid dan botol tempat <i>salary</i> , (b) proses kompaksi, dan (c)
	preparasi aktif material, separator, serta elektrolit untuk
	membentuk sel baterai
Gambar 3.7	Profil tegangan yang harus dipenuhi selama pengisian ulang sel
	baterai lithium
Gambar 3.8	baterai lithium
Gambar 3.8	baterai lithium
Gambar 3.8 Gambar 3.9	baterai lithium

Gambar 3.10	Diagram alir sintesis prekursor komposit <i>lithium ferro phosphate</i>
	(LFP/C)
Gambar 4.1	Hasil serbuk batu Tanah Laut Kalimantan sebelum dan setelah
	pencucian menggunakan Ultrasonic Cleaner
Gambar 4.2	Hasil grafik XRD dari serbuk batu Tanah Laut Kalimantan setelah
	diekstraksi
Gambar 4.3	Hasil grafik XRD material komposit LFP/C menggunakan metode
	solid state pada temperatur 400 °C, 500°C, 600°C dan 700°C 38
Gambar 4.4	Distribusi ukuran partikel material komposit LFP/C yang telah
	dikalsinasi pada temperatur (a) 400 °C, (b) 500°C, (c) 600°C dan
	(d) 700°C
Gambar 4.5	Morfologi partikel material komposit LFP/C (a) tanpa karbon aktif
	(b) dengan karbon aktif (asam sitrat) dengan temperatur kalsinasi
	500°C42
Gambar 4.6	Hasil mapping partikel material komposit LFP/C (a) Pada
	temperatur kalsinasi 500°C (b) pada temperatur kalsinasi
	700°C43
Gambar 4.7	Kurva nilai impedansi keseluruhan material komposit LFP/C
	dengan variasi temperatur kalsinasi pada 400 °C, 500°C, 600°C
	dan 700°C
Gambar 4.8	Grafik hasil Charge/discharge pada material komposit LFP/C
	dengan variasi temperatur kalsinasi pada 400 °C
Gambar 4.9	Grafik CV material komposit LFP/C pada temperatur kalsinasi
	500°C (a) terhadap tegangan (b) terhadap waktu

DAFTAR LAMPIRAN

А.	Hasil X-ray Fluorence (XRF) Serbuk batu besi Tanah Laut	
	Kalimantan	50
B.	Hasil Rifinement dari X-ray Diffractometer (XRD) dari serbuk	
	batu besi Tanah Laut Kalimantan yang telah di ekstraksi	50
Lampiran B	Hasil Rifinement dari X-ray Diffractometer (XRD) dari Material	
	Komposit LFP/C pada Tiap Variasi Temperatur Kalsinasi	52
Lampiran C	Hasil Pengujian Particle Size Analyzer (PSA)	57
Lampiran D	Hasil Pengujian Performa Baterai Material LFP/C	59

BAB I PENDAHULUAN

1.1 Latar Belakang

Teknologi peralatan elektronik, seperti laptop, alat komunikasi portable, bahkan kendaraan berbasis listrik sedang gencar dikembangkan di negara-negara berkembang termasuk Indonesia. Hal ini menyebabkan perlunya peralatan penyimpan energi listrik (baterai) yang efisien, ramah lingkungan, berkapasitas tinggi, ekonomis, dan terutama berasal dari bahan baku yang mudah diperoleh. Salah satu jenis baterai yang efisien adalah baterai sekunder. Di antara jenis-jenis baterai sekunder yang beredar di pasaran, yang paling menonjol adalah jenis baterai Li-ion.

Selain baterai Li-ion terdapat bermacam-macam alat penyimpanan energi (energy storage system), seperti fuel cell dan supercapacitors. Supercapacitors memiliki power density lebih tinggi (~10000 kg⁻¹) dibandingkan dengan baterai (1000-3000 W.kg⁻¹) dan dapat menahan charge-discharge dengan arus tinggi dalam beberapa menit sementara baterai (terutama baterai Li-ion) membutuhkan beberapa menit bahkan setengah jam untuk mengisi. Meskipun demikian baterai Li-ion telah mengklaim sebagian besar pasar konsumen elektronik karena mampu memberikan kepadatan energi yang tinggi dan tegangan kerja yang lebih tinggi dibandingkan dengan supercapacitors. Selain itu, baterai ion lithium memiliki kelebihan-kelebihan yang dapat diandalkan seperti, lifecycle panjang (500-1000 siklus), beda potensial tinggi, dan kapasitas spesifik lebih tinggi dibandingkan dengan baterai sumber energi untuk peralatan elektronik *portable* dan dapat digunakan pada mobil listrik (Chew, 2008).

Indonesia mulai mengembangkan material baterai terutama untuk mobil listrik nasional yang terealisasi pada tahun 2013 lalu. Namun, realisasi pembuatan mobil listrik tidak dapat dikatakan sepenuhnya berhasil dikarenakan salah satu komponen terpenting pada mobil listrik yaitu material baterai masih didatangkan dari luar negeri. Oleh karena itu Pemerintah Indonesia berusaha memperbaiki kekurangan tersebut dengan mencanangkan penelitian pembuatan material baterai terutama untuk jenis baterai ion lithium.

Secara umum, baterai ion lithium terdiri dari tiga komponen utama yaitu elektrolit, anoda dan katoda. Material elektrolit yang digunakan antara lain adalah *lithium hexafluorophosphat* (LiPF₆). Material elektrolit tersebut berfungsi sebagai media transfer ion. Sementara, untuk material anoda digunakan lithium metal. Komponen yang terakhir adalah katoda, material tersebut harus memenuhi spesifikasi antara lain, memiliki kapasitas spesifik yang tinggi, bersifat ionik konduktif dan elektronik konduktif serta memiliki profil tegangan yang rata. Hal ini berkaitan dengan peristiwa menerima dan melepas elektron pada proses elektrokimia, sehingga diperlukan material katoda dengan konduktivitas listrik yang tinggi.

Beberapa material katoda pada baterai ion litium yang telah disintesis yaitu *lithium mangan oxide* (LiMn₂O₄) (Chew, 2008), *lithium cobalt oxide* (LiCoO₂) (Ritchie, 2001) dan *lithium ferro phospate* (LFP) (Hamid, 2013). Dari ketiga material katoda, yang gencar dikembangkan saat ini LFP yang memiliki kelebihan pada biaya pembuatan lebih murah, bahan dasar Fe yang berlimpah di alam, tidak beracun, kapasitas sedang (170 mAh/g), memiliki tegangan *flat* 3.45 vs Li/Li⁺ dan ramah lingkungan. Namun, material LFP memiliki beberapa kelemahan yaitu konduktivitas listrik rendah (10⁻⁹ S/cm) dan difusi ion lithium yang lamban. Kelemahan tersebut membatasi aplikasi LFP sebagai material katoda, khususnya pada temperatur rendah dan densitas arus yang tinggi (Padhi, 2002). Kelemahan tersebut dapat diatasi dengan mereduksi ukuran partikel, *coating* karbon, atau doping dengan supervalen kation (Nb⁵⁺, Ti⁴⁺, W⁶⁺).

Berbagai metode mulai dikembangkan mulai dari metode kopresipitasi (Zhu, 2013), *solid state* (Liu, 2010), *sol-gel* (Choi, 2007), *microwave heating* (Zhou, 2009), *carbothermal reduction* (Kong, 2012), *spray pyrolisis* (Hamid, 2012) dan lain–lain. Pada keseluruhan metode tersebut, bahan-bahan dasar yang dipakai masih merupakan bahan *proanalis* yang relatif mahal. Oleh karena itu, pada penelitian ini mencoba untuk memanfaatkan bahan alam sebagai sebagai bahan dasar pembuatan katoda. Bahan alam yang digunakan adalah batuan besi Tanah Laut Kalimantan dengan kandungan senyawa Fe₃O₄ tinggi. Fe₃O₄ yang

diperoleh selanjutnya digunakan sebagai sumber prekursor Fe pada sintesis pembuatan material katoda LFP. Penggunaan bahan alam pada salah satu bahan dasar baterai tentu dapat mengurangi harga dari material baterai Li-ion yang masih tergolong mahal.

Pada penelitian ini digunakan metode *solid state reaction*. Metode *solid state reaction* memiliki keunggulan pada proses yang sederhana, ekonomis dan mudah untuk dilakukan dalam skala industri. Metode ini merupakan metode pencampuran padatan tanpa menggunakan medium pelarut. Sintesis *solid state reaction* untuk serbuk LFP dimulai dengan pencampuran dari tiap-tiap prekursor dengan menggunakan ball milling. Sebagai contoh pada penelitian (Li dkk, 2005) mampu menghasilkan serbuk LFP dengan kapasitas listrik sebesar 111 mAh/g dengan menggunakan pencampuran *solid state reaction method*, kemudian dikalsinasi pada temperatur 700°C selama 10 jam dalam lingkungan atmosfer nitrogen (N₂).

Bahan dasar yang digunakan pada pembentukan fasa material LFP terdiri dari Li₂CO₃ sebagai sumber ion Li, Fe₃O₄ sebagai sumber ion Fe yang didapat dari pemurnian batuan besi Tanah Laut Kalimantan dan (NH₄)₂HPO₄ sebagai sumber ion PO₄, dan asam sitrat sebagai sumber karbon untuk meningkatkan konduktivitas material. Proses kalsinasi material katoda dilakukan dalam lingkungan atmosfer nitrogen (N₂) dengan diberikan variasi pada temperatur kalsinasi. Karakterisasi yang digunakan dalam penelitian ini yaitu *X-Ray Diffraction* (XRD), *Particle Size Analyzer* (PSA), *Scanning Electron Microscopy - Energi Dispersive X-ray Spectroscopy* (SEM-EDX), *Electrochemical Impedance Spectroscopy* (EIS), dan uji performa baterai yang terdiri dari uji *chargedischarge* (CD) serta uji *Cyclic Voltametri* (CV).

1.2 Rumusan Permasalahan

Penelitian ini memiliki rumusan masalah yang mengkaji pengaruh variasi temperatur kalsinasi terhadap material komposit katoda LFP/C. Permasalahan yang diangkat pada penelitian ada beberapa hal pertama, yaitu mendapatkan material LFP dengan metode *solid state reaction*, kedua mengidentifikasi struktur *olivine* yang terbentuk akibat pengaruh variasi temperatur kalsinasi, dan ketiga mengidentifikasi sifat kelistrikan dan performa baterai yang dihasilkan material komposit katoda LFP/C.

1.3 Batasan Masalah

Batasan masalah dalam penelitian ini adalah bahan dasar pembentuk LFP berupa Li₂CO₃ sebagai sumber ion Li, Fe₃O₄ sebagai sumber ion Fe, dan (NH₄)₂HPO₄ sebagai sumber ion *phosphate*. Metode yang digunakan pada penelitian ini adalah *solid state* dengan menggunaka alat *High Energy Ball Milling*. Pada penelitian dilakukan variasi temperatur kalsinasi yaitu 400°C, 500°C, 600°C dan 700°C pada prekursor komposit LFP dalam lingkungan atmosfer nitrogen (N₂) dengan waktu penahanan selama 10 jam.

1.4 Tujuan Penelitian

Tujuan dari penelitian ini adalah :

- 1. Membentuk material katoda *lithium ferro phosphate* komposit karbon (LFP/C) melalui mekanisme *solid state reaction*.
- 2. Mengidentifikasi struktur *olivine* pada katoda *lithium ferro phosphate* (LFP) berdasarkan pengaruh temperatur kalsinasi.
- 3. Mengidentifikasi sifat kelistrikan dan performa baterai berdasarkan variasi temperatur kalsinasi pada komposit katoda LFP /C.

1.5 Manfaat penelitian

Manfaat yang dapat diberikan melalui pembuatan tesis ini, yaitu memberikan informasi mengenai pengaruh temperatur kalsinasi terhadap morfologi, fasa dan sifat kelistrikan serta performa baterai pada komposit katoda LFP/C yang dihasilkan. Selanjutnya, memunculkan inovasi baru terutama pada

jenis bahan baku yang berasal dari batuan alam Tanah Laut Kalimantan sebagai bahan dasar sumber Fe pada sintesis pembuatan material LFP/C. Selain itu, diharapkan ke depannya dapat menunjang teknologi dan rujukan penelitian-penelitian selanjutnya.

"Halaman ini sengaja dikosongkan"

BAB II TINJAUAN PUSTAKA

2.1. Baterai Ion Lithium

Baterai dibagi menjadi dua kelompok utama yaitu baterai primer (*primary battery*) dan baterai sekunder (*secondary battery*). Baterai primer adalah baterai yang dapat digunakan sekali saja sampai energi yang ada di dalamnya habis digunakan. Sedangkan baterai sekunder merupakan penyimpan energi listrik yang dapat diisi ulang setelah digunakan. Pada baterai ion litium, ion litium bergerak dari elektroda negatif ke elektroda positif saat dilepaskan, dan kembali saat diisi ulang. Baterai Li-ion memiliki bahan paling ringan dan memiliki potensial elektrokimia yang paling tinggi dibandingkan dengan logam lainnya. Baterai berbasis lithium cukup menjanjikan karena memiliki densitas tinggi, beda tegangan tinggi, *life time* lama, *no memory effect*, ramah lingkungan, *specific energi*, kepadatan energi tinggi, dan *power density* yang tinggi dibandingkan dengan jenis *rechargeable battery* yang lain, seperti yang ditunjukkan pada Gambar 2.1..

Gambar 2.1 Perbandingan *gravimetric power* dan *energi densities* untuk berbagai jenis sistem *rechargeable battery* (Zhu, 2013)

Secara umum, komponen dasar suatu sel baterai tunggal terdiri dari tiga bagian, yaitu anoda, elektrolit, dan katoda. Anoda adalah elektroda negatif tempat terjadinya reaksi setengah sel, yaitu reaksi oksidasi yang berkaitan dengan pelepasan elektron ke dalam sirkuit eksternal. Sedangkan katoda adalah elektroda positif tempat terjadinya reaksi setengah sel lainnya, yaitu reaksi reduksi yang berkaitan dengan penerimaan elektron dari sirkuit eksternal. Oleh karena itu, pemilihan material katoda dan anoda baterai dengan kapasitas listrik yang besar sangat diperlukan untuk dapat menghasilkan sel baterai dengan power yang memadai (Triwibowo, 2011). Komponen elektrolit berfungsi sebagai material vang mampu menjadi penghubung reaksi yang memungkinkan terjadinya transfer ion antara anoda dan katoda. Karakteristik yang perlu dimiliki elektrolit adalah konduktivitas ionik tinggi dan sekaligus konduktivitas elektronik yang rendah sehingga mampu menghantarkan ion selama proses reaksi redoks yang terjadi antara elektroda positif dan elektroda negatif tanpa terjadi kebocoran arus elektron yang dapat mengakibatkan terjadinya hubungan pendek atau short cut (Linden and Reddy, 2002).

Pada baterai ion litium akan terjadi proses elektroimia yaitu perubahan energi kimia menjadi energi listrik melalui proses oksidasi-reduksi pada saat kondisi charging dan discharging. Proses pengisian atau charging merupakan peristiwa aliran elektron dari sumber tegangan mengalir dari katoda ke anoda. Elektron yang diberikan akan bergerak melalui rangkaian luar menuju anoda. Pada kondisi charging katoda akan menjadi lebih negatif dan anoda menjadi lebih positif sehingga kation akan bergerak menuju ke kutub negatif, sebaliknya anion akan bergerak ke kutub positif. Untuk kesetimbangan muatan, material katoda akan terionisasi menghasilkan ion lithium bermuatan positif (Li⁺) dan bermigrasi ke dalam elektrolit menuju komponen anoda. Ion lithium akan masuk ke dalam anoda melalui mekanisme interkalasi. Pada saat proses ini, baterai akan menyimpan energi kimia. Sedangkan pada proses *discharging* (pengosongan) akan terjadi aliran ion dan elektron dengan arah berlawanan dari proses charging. Pada saat pemakaian atau discharging, kondisi sebaliknya terjadi. Muatan listrik dalam bentuk elektron mengalir dari kutub anoda. Selanjutnya, untuk mengimbangi pergerakan ini, ion-ion lithium yang berasal dari kutub anoda mengalir melalui elektrolit dan menembus pori-pori separator menuju kutub katoda. Kejadian ini terus menerus terjadi hingga seluruh muatan ion di katoda habis atau mengalamai kesetimbangan muatan. Setelah baterai kosong atau habis, proses *charging* kembali dilakukan. Proses *charging-discharging* diilustrasikan pada Gambar 2.2.

Gambar 2.2 Mekanisme (a) proses *charging* (b) proses *discharging* pada sel baterai ion lithium (Topracki, 2010).

Proses *charge-discharge* akan diikuti proses elektrokimia. Persamaan dasar dari reaksi elektrokimia yang terjadi dalam sel ditunjukkan sebagai berikut. Reaksi Reduksi $aA+ne \leftrightarrow xX$(2.1)

Reaksi Oksidasi

$bB + ne \leftrightarrow yY$	(2.2)
------------------------------	-------

Total reaksi Redoks

$aA + bB \rightarrow xX$	X + yY	(2.3))
--------------------------	--------	-------	---

Sehingga, besarnya perubahan energi bebas Gibbs yang dihasilkan dari reaksi redoks di atas adalah,

 $\Delta G^{\circ} = - n F E^{\circ} \qquad (2.4)$

dengan ΔG merupakan perubahan energi bebas Gibbs dalam Joules, E° adalah potensial elektron standar atau gaya elektromotif (EMF) dari reaksi sel atau umumnya merujuk pada nilai *open circuit voltage*, *n* adalah jumlah mol elektron yang ditransfer dalam satuan reaksi sel per mol reaksi, dan F adalah konstanta Faraday dalam satuan Coulomb per mol (besar muatan listrik per mol elektron). Berdasarkan perumusan di atas dapat diketahui bahwa ketika dalam keadaan setimbang, tidak terdapat aliran elektron. besar standart potensial E° dari material elektroda dapat dilihat pada Tabel 2.1,

Electrode Reaction	<i>E</i> •,V	Electrode Reaction	<i>E</i> •,V
$Li^+ + e \leftrightarrow Li$	-3.01	$Tl^+ + e \leftrightarrow Tl$	-0.34
$Rb^+ + e \leftrightarrow Rb$	-2.98	$\mathrm{Co}^{2+} + 2\mathrm{e} \leftrightarrow \mathrm{Co}$	-0.27
$Cs^+ + e \leftrightarrow Cs$	-2.92	$Ni^{2+} + 2e \leftrightarrow Ni$	-0.23
$K^+ + e \leftrightarrow K$	-2.92	$\operatorname{Sn}^{2+} + 2e \leftrightarrow \operatorname{Sn}$	-0.14
$Ba^{2+} + 2e \leftrightarrow Ba$	-2.92	$Pb^{2+} + 2e \leftrightarrow Pb$	-0.13
$\mathrm{Sr}^{2+} + 2\mathrm{e} \leftrightarrow \mathrm{Sr}$	-2.92	$D^+ + e \leftrightarrow D$	-0.003
$Ca^{2+} + 2e \leftrightarrow Ca$	-2.92	$H^+ + e \leftrightarrow H$	0.000
$Na^+ + e \leftrightarrow Na$	-2.71	$Cu^{2+} + 2e \leftrightarrow Cu$	0.34
$Mg^{2+} + 2e \leftrightarrow Mg$	-2.38	$^{1/2}O_2 + H_2O + 2e \leftrightarrow 2OH^{-1}$	0.40
$Ti^+ + e \leftrightarrow Ti$	-1.75	$Cu^+ + e \leftrightarrow Cu$	0.52
$Be^{2+} + 2e \leftrightarrow Be$	-1.70	$Hg^{2+} + 2e \leftrightarrow Hg$	0.80
$Al^{3+} + 3e \leftrightarrow Al$	-1.66	$Ag^+ + e \leftrightarrow Ag$	0.80
$Mn^{2+} + 2e \leftrightarrow Mn$	-1.05	$Pd^{2+} + 2e \leftrightarrow Pd$	0.83
$Zn^{2+} + 2e \leftrightarrow Zn$	-0.76	$Ir^{3+} + 3e \leftrightarrow Ir$	1.00
$Ga^{3+} + 3e \leftrightarrow Ga$	-0.52	$Br_2 + 2e \leftrightarrow 2Br^-$	1.07
$Fe^{2+} + 2e \leftrightarrow Fe$	-0.44	$O_2 + 4H + 4e \leftrightarrow 2H_2O$	1.23
$Cd^{2+} + 2e \leftrightarrow Cd$	-0.40	$Cl_2 + 2e \leftrightarrow 2Cl^-$	1.36
$In^{3+} + 3e \leftrightarrow In$	-0.34	$F_2 + 2e \leftrightarrow 2F$	2.87

Tabel 2.1 Standar potensial material elektroda pada temperatur 25°C (Buchman, 2001)

Persamaan di atas adalah untuk kondisi dalam keadaan setimbang, ketika tidak ada arus listrik yang mengalir. Namun, apabila terdapat arus listrik yang mengalir maka besarnya potensial pada sistem sel baterai mengikuti persamaan *Nernst* sebagai berikut,

$$\mathbf{E} = E^{\circ} + \frac{RT}{nF} \ln \frac{a_X^x a_Y^y}{a_A^a a_B^b} \dots (2.5)$$

dengan R adalah konstanta gas, T adalah suhu absolut, $a_X^x a_Y^y$ adalah produk aktifitas dari produk hasil reaksi dan $a_A^a a_B^b$ produk aktifitas dari reaktan. Pada keadaan tidak dalam kesetimbangan atau ketika baterai dalam keadaan *discharging* akan menghasilkan arus listrik dengan besaran yang mengikuti persamaan *Nernst* sebagai berikut,

$$I = nFAk \left[\left(C_o \exp \frac{-\alpha nF E_c^o}{RT} \right) - \left(C_R \exp \frac{(1-\alpha)nF E_c^o}{RT} \right) \right] \dots (2.6)$$

dengan *FAk* merupakan perubahan kerapatan arus, dengan *k* adalah konstanta laju reaksi dari elektroda dan α adalah koefisien transfer yang bersesuaian dengan fraksi dari perubahan overpotensial yang menyebabkan perubahan laju konstan dari reaksi *charge-transfer*. Pada persamaan 2.6 dapat dilihat pula bahwa besarnya arus listrik bergantung pada besarnya luas permukaan aktif A, temperatur T, konsentrasi material yang teroksidasi C_o dan konsentrasi material yang tereduksi C_R, dan standar potensial material elektroda E_{C}^{o} yaitu selisih potensial elektroda dan potensial gas hidrogen yang dianggap 0 volt. Pada baterai banyaknya material aktif dalam proses elektrokimia akan mempengaruhi besarnya kapasitas listrik suatu sel baterai.

Pengkonversian energi kimia menjadi energi listrik tidak dapat mencapai efisiensi 100%. Pada kondisi *discharging* baterai kehilangan energinya diakibatkan oleh proses polarisasi. Secara umum, efek kinetik yang menyebabkan terjadinya polarisasi diklasifikasikan dalam 3 bentuk, yaitu:

- a. Polarisasi aktifasi, merupakan polarisasi yang menyebabkan terjadinya proses elektrokimia redoks (*charge transfer*) pada daerah permukaan elektroda.
- b. Polarisasi ohmik, merupakan polarisasi yang diakibatkan adanya hambatan pada komponen individu sel dan hambatan akibat problem kontak antara komponen sel.
- c. Polarisasi konsentrasi, merupakan polarisasi akibat adanya perbedaan konsentrasi material yang bereaksi dan konsentrasi material hasil reaksi yang berada di bulk dan permukaan elektroda akibat dari transfer massa.

Polarisasi ini menyebabkan berkurangnya energi baterai serta menjadi faktor timbulnya panas. Polarisasi dilambangkan dengan η, dengan persamaan:

 $\eta = E_{\text{OCV}} - E_{\gamma} \quad \dots \qquad (2.7)$

dengan E_{ocv} merupakan tegangan sel dalam kondisi sirkuit terbuka (*open circuit voltage*) dan E_{γ} merupakan tegangan terminal sel selama arus i mengalir. Polarisasi aktifasi meningkat seiring dengan laju penghalang reaksi *charge transfer* pada permukaan elektroda. Perubahan kerapatan arus secara langsung berhubungan dengan laju konstan reaksi, akibat aktifitas reaktan dan produk, dan drop potensial. Perubahan kenaikan dan penurunan (*decay*) dari polarisasi aktifasi berlangsung cepat dan bisa dideteksi dengan perubahan tegangan yang terjadi selama interupsi arus yang berjalan antara 10^{-2} - 10^{-4} detik. Polarisasi aktifasi mengikuti persamaan Tafel sebagai berikut:

Polimerisasi ohmik dipengaruhi oleh faktor dari hambatan dalam elektrolit, material penyusun elektroda, terminal, bahan kolektor arus, hambatan tipis pada permukaan elektroda, dan kontak antar partikel dari material aktif. Polarisasi ohmik muncul dalam waktu dan hilang dalam waktu singkat pada saat arus mengalir dan berhenti ($\leq 10^{-6}$ s). Besar polarisasi ohmik dapat dilihat pada persamaan linier menurut hukum Ohm berikut,

 $\eta = IR$ (2.9)

Polarisasi konsentrasi muncul ketika terdapat keterbatasan pada kemampuan transport material, misal akibat keterbatasan difusi pada permukaan elektroda. Proses difusi umumnya berlangsung lambat ($\geq 10^{-2}$ s). Persamaan polarisaasi konsentrasi ditunjukkan sebagai berikut:

$$\eta = \left(\frac{RT}{n \ln\left(\frac{C}{C_0}\right)}\right) \dots (2.10)$$

dengan C adalah konsentrasi pada permukaan elektroda dan C_o adalah konsentrasi dalam bulk larutan. Polasisasi-polarisasi yang telah disebutkan di atas akan selalu mempengaruhi arus dan tegangan dalam sel elektrokimia. Profil karakteristik I-V yang diakibatkan efek kinetik dapat diamati pada Gambar 2.3 berikut

(c)

Gambar 2.3 Kurva *discharge* sebuah sel baterai, (a) & (b) merupakan kurva V vs. t pada I tertentu yang menunjukkan polarisasi pada (a) *insertion rection* pada sebuah *solid-state solution*, (b) reaksi dengan dua fasa (Goodenough and Kim, 2011), dan (c) pengaruh polarisasi pada profil I-V sel baterai.

Kemampuan kapasitas energi yang tersimpan dalam baterai lithium tergantung pada berapa banyak ion lithium yang dapat disimpan dalam struktur bahan elektrodanya dan berapa banyak yang dapat digerakan dalam proses charging dan discharging. Hal ini dikarenakan jumlah arus elektron yang tersimpan dan tersalurkan sebanding dengan jumlah ion lithium yang bergerak (Park dkk., 2010). Berdasarkan hal tersebut, dipilih jenis aktif material penyusun sel baterai dari material yang memiliki struktur kristal dengan kemampuan insertion compound, yaitu material yang mampu menerima dan melepaskan x koefisien ion litium per mol tanpa mengalami perubahan besar atau kerusakan dalam struktur kristalnya. Kapasitas baterai dimaksudkan sebagai besarnya energi listrik yang dapat dikeluarkan baterai dalam kurun waktu tertentu. Selain bergantung pada jenis aktif material yang digunakan, kapasitas baterai bergantung pula pada luasnya kontak permukaan antara aktif material dan besarnya kecepatan reaksi elektrokimia ketika baterai digunakan. Luas permukaan aktif material dapat diperbesar dengan menggunakan material aktif ber-orde nano dan porous. Sedangkan untuk kecepatan reaksi elektrokimia dapat ditingkatkan dengan mempertimbangkan besarnya jalur difusi yang dilalui oleh ion litium, konsentrasi ion metal pada larutan elektrolit, konduktifitas elektron pada elektroda, konduktifitas ionik pada elektrolit, dan memperhatikan temperatur ruang tempat sistem baterai itu bekerja.

Besarnya kapasitas baterai secara teoritik tergantung dari material aktif yang digunakan. Sebagai contoh untuk menghitung kapasitas material katoda LiCoO₂ dengan berat 1 gram adalah sebagai berikut,

Berat Atom Li = 7, Fe = 56, dan O=16 \rightarrow P = 31

Bahan material yang digunakan sebesar 1 gram, sehingga bila dikonversi kedalam mol sebesar n = gram/Mr = 1/158 = 0.00632911 mol, jumlah muatan = 1

Dengan bilangan Avogadro diketahui bahwa 1 mol material mengandung 96500 Coulomb

Maka, 1 gram LiCoO₂ memiliki kapasitas listrik sebesar,

= 0.00632911 x 1 x 96500/ 3600 = 0.169655 Ah/g = 170 mAh/g

2.2. Katoda Baterai Ion Lithium

Material katoda merupakan komponen yang penting dalam pembuatan sel baterai ion litium. Hal ini dikarenakan material katoda menjadi acuan dalam menghitung kapasitas sel baterai secara teoritik. Untuk setiap berat material katoda, jumlah ion litium yang dilepaskan material katoda saat *charging* dan jumlah ion litium yang kembali saat *discharging* menggambarkan densitas energi dan densitas power dari sel baterai ion lithium. Densitas power adalah besaran energi yang dapat digunakan dalam berat tertentu dari sel baterai, sedangkan densitas energi dimaksudkan sebagai kandungan energi yang dimiliki sel baterai dalam berat tertentu. Semakin banyak ion litium yang dipindahkan dari katoda ke anoda maka semakin besar pula densitas energi sel baterai. Semakin banyak ion litium yang kembali ke katoda dari anoda tiap detiknya, maka semakin besar densitas powernya. Fenomena perpindahan ion ini disebut juga dengan *charge transfer* atau transfer muatan. Oleh karena itu, performa pada sel baterai sangat bergantung pada kondisi transfer muatan. Mekanisme ini berkaitan dengan proses difusi, konduktivitas elektronik dan ionik dari komponen pembentuk sel baterai.

Material katoda harus bersifat konduktif ionik serta bersifat konduktif elektronik. Kedua hal tersebut merupakan indikator bahwa material katoda yang digunakan memenuhi persyaratan sebagai bahan baterai. Hal ini berhubungan dengan proses *charging*, dimana ion litium akan dilepaskan dari katoda ke anoda melalui elektrolit dan bersamaan dengan itu elektron akan dilepaskan melalui rangkaian luar menuju anoda. Selain itu, material katoda juga harus memiliki profil tegangan yang rata dan kapasitas spesifik yang tinggi. Hal ini berkaitan dengan peristiwa menerima dan melepas elektron pada proses elektrokimia (Park, 2010).

Sony pertama kali mengkomersialkan baterai ion lithium pertama dilengkapi dengan LiCoO₂ pada elemen katoda pada tahun 1990. Baterai LiCoO₂ dapat digunakan dalam alat-alat portable tetapi gagal diaplikasikan pada alat yang membutuhkan daya tinggi seperti dalam kendaraan listrik dan hybrid dikarenakan tingkat keamanan masih rendah. Perkembangan selanjutnya, telah berhasil disintesis berbagai macam elemen katoda yang dikelompokkan menjadi tiga kelompok besar berdasarkan struktur yaitu, *lamellar, spinel,* dan *olivine*. Salah satu contoh *lamellar* adalah katoda LiCoO₂ dengan proses difusi yang dilakukan oleh multi-ion Co secara subtitusi. Jenis kedua, *spinel* dengan pola dasarnya berbentuk LiMn₂O₄. Kelebihan LiMn₂O₄ terletak pada konduktivitas elektronik sedang (10⁻⁵ S/cm), biaya produksi cukup rendah, dan ramah lingkungan. Sedangkan untuk kekurangan, terdapat pada kapasitas listrik rendah (110 mAh/g), dan terdapat kendala pada pemutusan ikatan mangan (Mn) dalam elektrolit yang menyebabkan berkurangnya waktu hidup (*cycling*) terutama ketika suhunya berada di atas suhu ruang (*low termal stability*) (Zhang, 2012).

Jenis ketiga, *olivine* merupakan salah satu yang banyak diteliti, hal ini dikarenakan sifat elektrokimianya yang memuaskan, memiliki stabilitas termal yang bagus, ekonomis, tidak beracun dan ramah lingkungan. Selain itu, memiliki kapasitas teoritis yang cukup tinggi 170 mAh/g dan tegangan open-circuit sebesar 3.45 V *versus* (Li/Li⁺) serta memiliki kerapatan energi *gravimetric* sebesar 586 Wh/kg, sedikit lebih tinggi dibandingkan LiCoO₂. Salah satu contoh katoda yang memiliki struktur *olivine* adalah LiFePO₄ (LFP). Pada eksperimen pembuatan LFP didapatkan gap pada tingkat kapasitas teoritis sebesar 170 mAh/g, hal ini dikarenakan konduktivitas elektronik intrinsik rendah (10⁻⁹ S/cm) dan kecepatan difusi ion Li⁺ yang rendah (Zhang, 2012). Perbedaan dari struktur *lamellar*, *spinel*, and *olivine* dapat dilihat pada Gambar 2.4 berikut:

Gambar 2.4 Katoda material dengan penyisipan ion Li interstitial 3D, 2D, dan 1D pada struktur (a) *Spinel* pada LiMn₂O₄ (Kazuhiko, 2013), (b) *lamellar* pada material katoda Li_xTiS₂, Li_{1-x}MO₂ (Goodenough, 2011), dan (c) *Olivine* Li_{1-x} FePO₄ [001] (Goodenough, 2011)

2.3. Lithium Ferro Phosphate (LFP)

Lithium ferro phosphate (LFP) merupakan material katoda yang cukup menjanjikan terutama pada besarnya potensi sebagai generasi selanjutnya dari baterai ion lithium yang digunakan dalam EVs atau HEVs dikarenakan keunggulannya. Katoda jenis ini telah diperkenalkan pertama kali pada tahun 1997 dan sampai saat ini telah banyak penelitian dan pengembangan yang dilakukan mulai dari investigasi *synthesis routes*, struktur kristal, pembentukan sifat fisik, kimia, dan sifat elektrokimia dari katoda LFP.

LFP ini memiliki dua tipe utama yaitu tipe yang berstruktur NASICON yaitu Li₃Fe₂(PO₄)₃, Li₂FeTi(PO₄)₃, atau LiFeP₂O₇ dan tipe yang berstruktur *olivine* yaitu LiFePO₄. Jika dibandingkan antara Li₃Fe₂(PO₄)₃ dengan LiFePO₄ sebagai material pembentuk katoda menunjukan bahwa keduanya memenuhi kriteria sebagai material katoda pada baterai ion litium, karena keduanya memiliki *reversibility* yang baik untuk pasangan redoks Fe³⁺/Fe²⁺. Selain itu, kedua jenis tipe ini memiliki keunggulan yaitu biaya fabrikasi rendah, kestabilan termal yang baik, aman, unsur-unsur pembentuk yang berlimpah di alam, ramah lingkungan, tidak beracun, serta memberikan densitas energi yang tinggi (Zhang, 2012). Potensial redox dari LiFePO₄ vs. Li/Li⁺ sebesar 3.45 V lebih tinggi dibandingkan

NASICON yaitu 2.8 V untuk Li₃Fe₂(PO₄)₃ dan 2.75 V untuk Li₂FeTi(PO₄)₃ (Zhu, 2013) meskipun masih rendah bila dibandingkan dengan Li₂FeP₂O₇ sebesar 3.5 V. Kapasitas teoritis NASICON, contohnya Li₃Fe₂(PO₄)₃ memiliki kapasitas teoritis sebesar 128,2 mAh/g dan 110 mAh/g untuk Li₂FeP₂O₇, masih lebih rendah dibandingkan dengan tipe *olivine* LiFePO₄ yang secara teoritis memiliki kapasitas sebesar 170 mAh/g (Masquilier, 1998). Untuk lebih jelas tentang keunggulan dan kelemahan tipe *olivine* dan NASICON dapat dilihat pada Tabel 2.2 berikut,

Struktur Kristal	Kelebihan	Kekurangan
OLIVINE	 Meningkatkan stabilitas material selama <i>cycling</i> dan tidak ada pelepasan O₂ selama <i>charge- discharge</i> Memiliki stabilitas termal yang tinggi akibat adanya ikatan kovalen pada ikatan P-O Struktur yang hampir sama dengan FePO₄ mencegah degradasi <i>volumetric</i> pada saat proses <i>charge-discharge</i> (Changbao, 2013) 	 Sintesis LiFePO₄ tidak mudah karena terdapat fase pengotor yang tidak diinginkan, seperti Fe₂O₃ dan Li₃Fe₂(PO₄)₃ akibat reaksi oksidasi besi Memiliki konduktivitas ionik dan pergerakan difusi ion lithium yang rendah (Andersson, 2000)
NASICON	 Bersifat metastabil Sebagai hasil pasangan redoks Fe²⁺/Fe³⁺, 2 mol Li⁺ dapat berinterkalasi kedalam 1 mol Li₃Fe₂(PO₄)₃ dan 1 mol Li⁺ untuk struktur Li₂FeP₂O₇ Sintesis Li₃Fe₂(PO₄)₃ lebih mudah dibandingkan LiFePO₄ Memiliki konduktivitas ionik relatif baik yang dihasilkan dari ion lithium pada strukturnya (Andersson, 2000). 	 Kapasitas teoritis yang yang lebih rendah dari <i>olivine</i> Koduktivitas listrik rendah Lebih rentan terhadap degradasi <i>volumetric</i> dibandingkan <i>olivine</i>

Tabel 2.2 Kelebihan dan kekurangan Struktur *olivine* dan NASICON pada materialkatoda LFP

Selama proses *charge/discharge*, fasa Li₄Fe₂(PO₄)₃ berada diantara fasa Li₃Fe₂(PO₄)₃ dan fasa Li₅Fe₂(PO₄). Struktur nano Li₃Fe₂(PO₄)₃ dapat meningkatkan kemampuan kapasitas penyimpanan muatan sehingga dapat

meningkatkan performa dari baterai. Selanjutnya, untuk *charge/discharge* pada tipe *olivine*, terjadi proses keluar/masuk ion lithium dalam LFP sedangkan ion Fe mengalami oksidasi/reduksi. Proses tersebut bersifat *reversible*. Struktur PO₄ pada tipe *olivine* membuat fasa LFP tetap stabil saat proses pelepasan ion lithium pada saat interkalasi (Toprakci, 2010). Dalam proses interkalasi, ketika ion lithium meninggalkan katoda melewati elektrolit menuju anoda, maka akan dihasilkan satu bentuk fasa FePO₄ yaitu isostruktural dengan *heterosite*. Pada saat proses pelepasan ion lithium ini tidak terjadi perubahan struktur kristal dari bahan katoda dan anoda. Reaksi *charge/discharge* untuk tipe NASICON, misalnya Li₃Fe₂(PO₄)₃ dan tipe *olivine* dalam baterai Li-ion adalah sebagai berikut,

Tipe NASICON:

Discharge step :2Li ⁺ + Li ₃ Fe ₂ (PO ₄) ₃ +2e ⁻ \rightarrow Li ₅ Fe ₂ (PO ₄) ₃	(2.11))
Charge step : $Li_5Fe_2(PO4)_3 \rightarrow Li_3Fe_2(PO_4)_3 + 2Li^+ + 2e^-$	(2.12)

Sedangkan untuk tipe olivin	e LiFePO ₄ dan Li ₂ FeP ₂ O ₇
-----------------------------	---

Charge/Discharge step:

$LiFePO_4 \leftrightarrow xFePO_4 + (1-x) LiFePO_4 + xLi^+ + x e^- \dots$	(2.1	[3])
$Li_2FeP_2O_7 \leftrightarrow LiFeP_2O7 + Li^+ + e^-$	(2.1	4)

2.4. Metode Solid State

Metode *Solid-state reaction* merupakan metode konvensional dalam sintesis material katoda *Lithium iron phosphate* (LFP). Produk material katoda yang dihasilkan melalui metode *solid-state* berbentuk partikel *non-uniform, non-crystalline* dan cenderung membutuhkan waktu sintesis yang lebih lama (Zhang, 2012), serta membutuhkan temperatur kalsinasi yang tinggi, energi yang tinggi, waktu proses pemanasan yang panjang dan dalam lingkungan atmosfer tertentu agar bahan dasar atau bahan baku seluruhnya bereaksi menjadi material katoda tanpa adanya pengotor (Toprakci, 2010). Kelebihan metode *solid-state* adalah proses sangat sederhana, ekonomis dan mudah untuk dilakukan dalam skala industri. Selain itu, metode *solid-state* memungkinkan reaktan dapat mengalami reaksi kimia tanpa pelarut sehingga ramah lingkungan karena tidak menimbulkan limbah sisa pelarutan.

Metode *solid-state* ini digunakan untuk material-material khusus misalnya keramik. *Lithium ferro phosphate* (LFP) merupakan salah satu bahan keramik. Bahan-bahan yang biasanya digunakan untuk membentuk prekursor LFP yaitu LiF, CH3COOLi, Li2CO3 atau LiOH.H₂O sebagai sumber ion Li, selanjutnya FePO₄(H₂O)₂, Fe₂O₃, FeC2O4.2H₂O atau Fe(C₂O₄)₂ sebagai sumber ion Fe, dan NH₄H₂PO₄ atau (NH₄)₂HPO₄ sebagai sumber ion PO₄. Pada metode *solid-state*, performa *electrochemical* dari LFP bergantung pada material dasar yang digunakan (Zhang, 2012). Proses pembuatan katoda pada metode *solid state reaction* dilakukan dengan cara menggerus bahan dasar menjadi satu dalam waktu yang relatif panjang dengan menggunakan mortar atau melalui *ball milling*. Hal ini bertujuan untuk mendapatkan pencampuran secara homogen serta mereduksi ukuran serbuk. Ilustrasi metode *solid state* dengan menggunakan *ball milling* ditunjukkan pada gambar berikut,

Rotation of the milling bowl

Pada proses *milling*, bola-bola penggerus, biasanya terbuat dari zirkonia yang memiliki densitas tinggi yaitu 5,7 gr/cm³ digunakan untuk memberikan beban berulang, pemberian beban secara berulang tersebut akan menyebabkan material mengalami deformasi plastis sehingga ukuran material tereduksi. Proses *ball milling* terbagi menjadi dua yaitu dengan cara *dry milling* dan *wet milling*.

Dry miling berarti pada saat proses pencampuran tidak digunakan pelarut apapun, sedangkan *wet milling* menggunakan medium pelarut biasanya berupa alkohol, *aceton, butanol*, aquades dan lain-lain bergantung pada jenis bahan dasar yang digunakan.

Proses *milling* dipengaruhi oleh beberapa hal, yang pertama adalah oleh *ball to powder ratio* (BPR), *ball to powder ratio* (BPR) yang ideal digunakan agar terjadi *milling* yang efektif adalah 4:1 (Basu, 2011), selanjutnya adalah jenis bola yang digunakan, bola harus lebih keras dari pada material yang mengalami *milling*. Selain itu terdapat pengaruh kecepatan, dimana m*illing* dilakukan dengan kecepatan tertentu. Kecepatan *milling* efektif bila kecepatan bola lebih besar dari kecepatan kritis. Hal ini dikarenakan bola berputar sesuai gaya sentrifugal yang menyebabkan terjadinya gesekan dan tumbukan untuk mereduksi ukuran partikel. Jika kecepatan *ball milling* lebih kecil dari kecepatan kritis, maka beban bola yang menyebabkan *milling* tidak akan mereduksi secara maksimal.

BAB III METODOLOGI

Tujuan dari penelitian ini adalah mensintesis material komposit katoda *lithium ferro phospat* (LFP/C) dengan variasi temperatur kalsinasi pada kondisi inert dan mengkarakterisasi sifat listrik serta performa baterai yang dimiliki. Metode penelitian ini diuraikan menjadi beberapa bagian yaitu (1) persiapan bahan dan alat, (2) sintesis material komposit katoda LFP/C, (3) karakterisasi bahan uji.

3.1 Persiapan Alat dan Bahan

3.1.1 Alat

Peralatan yang digunakan dalam penelitian ini adalah gelas beker 500 mL, labu ukur 50 mL, gelas ukur, pipet, spatula kaca dan besi, mortar, *High Energy Ball Milling*, bola zirconia, timbangan digital (*digital balance*), pengaduk magnet (*stirring magnetic*), magnet, *crucible*, oven, *furnace*, *Ultrasonic Cleaner*, sel baterai, *X-Ray Diffraction* (XRD), *Particle Size Analyzer* (PSA), *Scanning Electron Microscopy- Energy Dispersive X-Ray* (SEM-EDX), *Electrochemical Impedance Spectroscopy* (EIS), alat uji *Charge-Discharge* (CD) dan *Cyclic Voltametry* (CV).

3.1.2 Bahan

Bahan yang digunakan dalam penelitian ini yaitu Besi (III) Oksida (Fe₃O₄) yang merupakan bahan alam dari Tanah Laut Kalimantan, di-Amonium hidrogen phospat (NH₄)₂HPO₄ (*merck*), Lithium karbonat (Li₂CO₃) (*merck*), sumber karbon adalah *citrid acid*, alkohol, gas inert (N₂), Aluminium, dan aquades

3.2 Prosedur Penelitian

3.2.1 Ekstraksi Prekursor Fe₃O₄

Proses pertama yaitu batu besi yang diperoleh dihancurkan sampai menjadi serbuk, kemudian dilakukan *sieving* dengan ukuran 140 mesh, setelah itu,

dilakukan separasi menggunakan magnet batang untuk memisahkan Fe₃O₄ dengan impuritas-impuritas lainnya. Tahap selanjutnya, serbuk dimasukkan ke dalam *Ultrasonic Cleaner* untuk menghilangkan impuritas yang masih menempel. Proses pencucian dengan menggunakan *Ultrasonic Cleaner* dilakukan berulangulang sampai didapatkan serbuk dengan warna kehitaman. Selanjutnya, serbuk yang telah diperoleh dikarakterisasi dengan menggunakan *X-Ray Diffraction* (XRD) untuk mengetahui fasa yang terbentuk.

3.2.2 Sintesis Komposit LFP/C

Proses sintesis prekursor lithium ferro phosphate carbone composite (LFP/C) dilakukan menggunakan metode solid-state reaction dengan ball miling. Prekursor LFP/C dibuat dari pencampuran serbuk fosfat (NH₄)₂HPO₄ (merck), Lithium karbonat (Li₂CO₃) (merck), serbuk Besi(III) Oksida (Fe₃O₄), dan asam sitrat sebagai sumber karbon. Selanjutnya dilakukan proses *miling* menggunakan zirkonia ball milling dengan perbandingan massa bahan dengan bola zirkonia adalah 1:5. Proses milling dilakukan secara wet milling dengan alkohol sebagai media pencampurnya dengan kecepatan 300 rpm selama 5 jam dan dikeringkan pada temperatur 110°C selama 7 jam. Selanjutnya, dari proses ball milling didapatkan prekursor lithium ferro phosphate (LFP). Langkah selanjutnya, dilakukan proses kalsinasi yang divariasi pada temperatur tertentu. Prekursor lithium ferro phosphate (LFP) dipanaskan dengan menggunakan tube furnace selama 10 jam dalam lingkungan atmosfer nitrogen (N₂) pada variasi temperatur 400 °C, 500°C, 600°C dan 700°C. Selanjutnya serbuk prekursor lithium ferro phosphate (LFP) dikarakterisasi dengan menggunakan X-Ray Diffraction (XRD) untuk mengetahui fasa-fasa yang terbentuk, Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX) untuk identifikasi mikrostruktur, Particle Size Analyzer (PSA) untuk mengidentifikasi distribusi ukuran partikel rata-rata, dan Electrochemical Impedance Spectroscopy (EIS) untuk mengetahui nilai konduktivitas pada baterai serta pengujian Charge-Discharge (CD) dan Cyclic Voltametry (CV) untuk mengetahui performa baterai yang dihasilkan.
3.3 Karakterisasi Bahan Uji

Karakterisasi material pada penelitian ini dilakukan dengan menggunakan *X-Ray Diffraction* (XRD) untuk identifikasi fasa yang terbentuk, *Scanning Electron Microscopy-Energy Dispersive X-Ray* (SEM-EDX) untuk identifikasi mikrostruktur, *Particle Size Analyzer* (PSA) untuk mengidentifikasi distribusi ukuran partikel rata – rata, *Electrochemical Impedance Spectroscopy* (EIS) untuk mengetahui nilai konduktivitas pada baterai dan pengujian *Charge-Discharge* (CD) dan *Cyclic Voltametry* (CV) untuk mengetahui performa baterai.

3.3.1 X-Ray Diffractometer (XRD)

Material komposit katoda LFP/C yang diberikan variasi temperatur kalsinasi pada penelitian ini akan di uji dengan X-Ray Diffractometer (XRD) untuk mengetahui terjadinya transformasi fasa dan mengetahui karakteristik material secara kuantitatif dan kualitatif berdasarkan data difraksi sinar-X dengan menggunakan analisis Rietveld (Rietveld, 1969). Metode Rielved merupakan metode pencocokan non-linier (non-linear fitting) dengan kurva pola difraksi terhitung (model) dengan pola difraksi terukur yang didasarkan pada data struktur kristal dengan menggunakan metode kuadrat terkecil (least-squares). Keluaran yang dihasilkan berupa parameter-parameter diperhalus (refined) selama pencocokan. Hasil yang diperoleh menggambarkan sifat-sifat material yang diteliti. Metode ini dapat digunakan sebagai alat bantu karakterisasi material kristalin dan mengetahui berbagai informasi kimiawi maupun struktur-mikro. Selain itu, analisis Rietveld dapat digunakan secara khusus untuk menentukan parameter kisi secara akurat (O'Connor & Pratapa, 2002). Hasil XRD yang diperoleh selanjutnya di analisis dengan menggunakan software PDXL untuk mengetahui komposisi fasa dan lattice parameter yang diperoleh.

Sumber yang digunakan dalam pengujian ini yaitu sinar-X dengan radiasi gelombang elektromagnetik transversal pada daerah panjang gelombang 0,1–1000 Å yang terdiri dari partikel tidak bermuatan. Sinar-X dapat terbentuk apabila suatu logam sasaran ditembak dengan berkas elektron berenergi tinggi. Dalam eksperimen digunakan sinar-X yang monokromatis. Kristal akan memberikan

hamburan yang kuat jika arah bidang kristal terhadap berkas sinar-X (sudut θ) memenuhi persamaan Bragg, seperti ditunjukkan dalam persamaan 3.1

n $\lambda = 2 d \sin \theta$ (3.1) dengan:

n = orde (0, 1, 2, 3, ...),

 λ = panjang gelombang sinar-X yang digunakan,

d = jarak antar bidang kristal,

 θ = sudut sinar datang.

Pada pengujian ini, digunakan peralatan difraksi sinar-X tipe Philips X'Pert MPD (*Multi Purpose Diffractometer*) di Laboraturium Difraksi Sinar-X *Research Center* LPPM ITS Surabaya. Pengukuran ini akan dilakukan pada tegangan 40 kV dan arus 30 mA dengan menggunakan target Cu ($\lambda = 1,54056$ Å). Pengukuran dilakukan pada *scanning step* 0,02° dan sudut 2 *theta* antara 15° hingga 65°. Berikut gambar peralatan yang digunakan dalam pengujian XRD:

(a)

Gambar 3.1 Peralatan XRD di Riset Center ITS (a) alat XRD dan (b) prinsip kerja alat XRD

3.3.2 Scanning Electron Microscopy (SEM)

SEM (*Scanning Electron Microscope*) adalah salah satu jenis mikroskop elektron yang menggunakan berkas elektron untuk menggambar morfologi permukaan benda. Prinsip kerja SEM adalah menembakkan berkas elektron berenergi tinggi pada permukaan benda. Permukaan benda yang dikenai berkas akan memantulkan kembali berkas tersebut atau menghasilkan elektron sekunder ke segala arah. Pantulan elektron-elektron sekunder, elektron-elektron terhambur dan radiasi sinar-X karakteristik akan memberikan informasi tentang keadaan sampel seperti bentuk permukaan (topografi) dan komposisi kimia yang terkandung dalam material apabila dihubungkan dengan alat EDX (*Energy Dispersive X-Ray*).

Gambar 3.2 Peralatan SEM di laboratorium COE (*Center of Energy*) gedung robotika ITS Surabaya.

3.3.3 Uji Particle Size Analyzer (PSA)

Karakterisasi menggunakan PSA digunakan untuk menentukan ukuran rata-rata partikel LFP/C. PSA (*Particle Size Analyzer*) menggunakan metode *Dinamyc Light Scattering* (DLS) yang memanfaatkan hamburan inframerah. Hamburan inframerah ditembakkan oleh alat terhadap sampel sehingga sampel akan bereaksi menghasilkan gerak *Brown* (gerak acak dari partikel yang sangat kecil dalam cairan akibat dari benturan dengan molekul-molekul yang ada dalam zat cair). Gerak inilah yang kemudian di analisis oleh alat, semakin kecil ukuran molekul maka akan semakin cepat gerakannya (Malvern Instrumen Limited, 2012).

Pengujian PSA dilakukan dengan menggunakan metode basah dimana metode ini menggunakan media pendispersi untuk mendispersikan material uji. Hal ini dikarenakan partikel didispersikan ke dalam media sehingga partikel tidak saling beraglomerasi (menggumpal). Dengan demikian ukuran partikel yang terukur adalah ukuran dari *single particle*. Selain itu hasil pengukuran dalam bentuk distribusi, sehingga hasil pengukurandapat diasumsikan sudah menggambarkan keseluruhan kondisi sampel.

Keunggulan penggunaan *Particle Size Analyzer* (PSA) untuk mengetahui ukuran partikel:

- Lebih akurat. Pengukuran partikel dengan menggunakan PSA lebih akurat jika dibandingkan dengan pengukuran partikel dengan alat lain seperti SEM. Hal ini dikarenakan partikel didispersikan ke dalam media sehingga ukuran partikel yang terukur adalah ukuran dari single partikel.
- 2. Hasil pengukuran dalam bentuk distribusi, sehingga dapat menggambarkan keseluruhan kondisi sampel.
- 3. Rentang pengukuran dari 0,6 nanometer hingga 7 mikrometer.

Gambar 3.3 Peralatan pengujian PSA (*Particle Size Analyzer*) di Laboratorium Zat Padat, Fsika ITS Surabaya.

3.3.4 Uji Electrochemical Impedance Spectroscopy (EIS)

Pengujian *Electrochemical Impedance Spectroscopy* EIS dilakukan untuk mengetahui perilaku impedansi komplek dari material keramik komposit katoda LFP/C. EIS merupakan suatu pengujian ekperimental elektrokimia non-destruktif pada berbagai jenis baterai. Alat yang digunakan adalah LCR meter, HIOKI 3532-50 *Chemical Impedance Meter* LCR HiTESTER. Parameter yang dapat dihasilkan berupa impedansi riil, impedansi imaginer, pergeseran sudut fasa, dan impedansi total, dengan menggunakan variasi spektrum frekuensi dalam skala logaritmik.

Spektrum frekuensi dibangkitkan dari 0.1 Hz-10 KHz dengan tegangan 20 mV. Pemilihan skala log (*f*) penting dilakukan untuk menghasilkan sebaran *f* pada frekuensi rendah. Spektrum frekuensi yang digunakan akan mengidentifikasi perubahan impedansi komplek yang terkait dengan reaksi elektrokimia yang terjadi, yang menggambarkan gejala dinamika internal reaksi elektrokimia. Pengujian EIS menggunakan pendekatan teknik pengukuran spektroskopi impedansi elektrokimia berdasarkan pengertian bahwa arus listrik yang mengalir melintasi suatu antarmuka logam dan larutan dipandang sebagai bagian dari reaksi elektrokimia yang terdiri atas sejumlah resistor dan kapasitor listrik. Pada Gambar 3.4 diperlihatakan skema dan peralatan pengukuran EIS.

Gambar 3.4 (a) skematik setup pengukuran EIS, dan (b) alat pengujian EIS (Subhan, 2011)

Prinsip dari EIS yaitu menentukan sejumlah parameter yang berkaitan dengan kinetika elektrokimia yang berupa tahanan polarisai (R_p), tahanan larutan (R_s), kapasitansi lapisan rangkap atau *double layer* (C_{DL}). Profil kurva tunggal EIS semicircle menunjukkan keberadaan konduktansi ionik/bulk yang berhubungan dengan R_s dan elektronik/grain boundary yang berhubungan dengan R_p , dimana nilai konduktansi elektronik didapatkan dengan menentukan potongan semicircle dengan sumbu real pada daerah spektrum frekuensi rendah. Hal ini ditunjukkan dengan jelas pada Gambar 3.5.

Gambar 3.5 Profil kurva hasil pengukuran impedansi komponen sel baterai (Subhan, 2011)

Berdasarkan gambar terlihat model sirkuit system elektrokimia elektroda yang tercelup dalam larutan elektrolit. Pada Gambar 3.5 (a) menunjukkan adanya tahanan polarisasi antara antarmuka elektroda dengan larutan (R_p dan R_s), sedangkan untuk gambar (b) menunjukkan adanya hambatan transfer muatan R_{ct} dan hambatan difusi R_d. Hasil pengukuran impedansi dari komponen sel dianalisa dengan menggunakan persamaan konduktifitas sebagai berikut,

Untuk mengetahui nilai konduktivitas material baterai, digunakan persamaan sebagai berikut,

 $\sigma_g = 1 \ / \ \rho_g \ \ldots \ldots (\ 3.2)$

 $\sigma_{gb} = 1 / \rho_{gb}$ (3.3)

 $\sigma_{total} = \sigma_g + \sigma_{gb} \dots (3.4)$

dengan,

$R = hambatan yang terukur (\Omega)$	A = Luas penampang (cm^2)
$\rho = \text{resistivitas} (\Omega.cm)$	σ = konduktivitas ion (ohm. cm) ⁻¹
l = dimensi tebal sampel (cm ³)	

Pengukuran konduktivitas dilakukan dengan prosedur tertentu. Komponen harus berupa dalam bentuk sel baterai. Langkah pertama setelah memperoleh sampel aktif material yang dilakukan adalah membuat *salary*. *Salary* merupakan campuran dari *Polyvinylidene Fluoride* (PVDF) ditambahkan dengan DMAC, *asytelene black*, dan aktif material. Preparasi baterai menggunakan perbandingan 80:10:10 untuk aktif material, *asyteline black*, PVDF. Pencampuran PVDF, DMAC, dan *asytelene black* dilakukan dengan menggunakan magnetik stirer dengan kecepatan 150 rpm, sedangkan aktif material dicampurkan dengan menggunakan mortar. Material yang telah tercampur kemudian ditempelkan diatas grid atau lembar aluminium kemudian dikeringkan selama 24 jam dalam oven dan kemudian dikompaksi. Sampel yang telah siap dimasukkan kedalam tempat sel baterai berikut dengan anoda (lithium metal), separator dan elektrolit untuk diuji konduktifitas dan performa baterai, selengkapanya dapat diamati pada Gambar 3.6 berikut ini,

(c)

Gambar 3.6 (a) grid dan botol tempat *salary*, (b) proses kompaksi, dan (c) preparasi aktif material, separator serta elektrolit untuk membentuk sel baterai

Alat uji konduktifitas akan menghasilkan data-data yang berasal dari respon material terhadap rentang frekuensi yang diberikan. Data yang dihasilkan berupa nilai impedansi real (Z') dan impedansi imajiner (Z"). Plot kurva yang akan terlihat berbentuk seperti kurva Nyquist seperti pada Gambar 3.5. Selanjutnya nilai konduktifitas ionik dapat dihitung dengan menggunakan persamaan (3.1-3.4).

3.4.5 Uji Performa Baterai

Sebuah material dikatakan material baterai bila telah di diuji peformanya melalui beberapa pengujian seperti uji *charge/discharge* (CD) untuk menentukan kapasitas muatan sel baterai pada material katoda yang telah dibuat, dan uji *Cyclic Voltametry* untuk menentukan *working voltage* dan melihat puncak oksidasi-reduksi pada baterai. Pada pengujian CD, pola pengisian baterai lithium sekunder memerlukan *charger* dengan profil I-V yang memenuhi karakteristik Fabrikasi dan karakterisasi sebagai sumber arus sekaligus sumber tegangan diakhir tahap pengisian. Gambar 3.7 menunjukkan profil I-V pengisian baterai lithium ion *rechargeable*.

Gambar 3.7 Profil tegangan yang harus dipenuhi selama pengisian baterai lithium. Terdiri dari 3 tahapan. Stage 1 baterai diisi dengan sumber arus tetap, stage 2-3 dengan sumber tegangan tetap.

Data selama pengujian sel baterai direkam denga menggunakan picologer ADC20 yang terdiri dari 8 channel input, dengan kemampuan rekam 50 ms dan multimeter sebagai pengatur waktu *switch* ketika *charge-discharge*. Pengujian CD dilakukan di RISTEK serpong Jakarta. Selanjutnya setelah dilakukan pengujian CD diteruskan dengan pengujian CV. Uji CV merupakan teknik elektrokimia yang digunakkan untuk mengukur reaksi redox, kinetik transfer elektron dan transisi fasa dari *sell volta* dengan cara mengukur arus untuk setiap potensial yang diberikan. Perbedaan energi kerja dan referensi elektroda menghasilkan potensial terapkan. Potensial yang bekerja pada elektroda dipindai bolak-balik, linear dengan waktu memproduksi gelombang segitiga seperti pada Gambar 3.8. Scan unit menggunakan satuan dalam V.s⁻¹ atau mV.s⁻¹.

Gambar 3.8 Potensial signal segitiga berulang pada 0.1 mV.s⁻¹ dengan tegangan cut off 2.3 - 4.0 V vs Li/Li⁺. (Hamid, 2013)

Data yang diperoleh diplot sebagai arus terhadap potensial diterapkan seperti ilustrasi pada Gambar.3.8. Untuk pengukuran bahan katoda, pola scan pengujian dimulai dengan tegangan rendah dan meningkat menjadi potensial yang lebih

tinggi sebelum berbalik kembali ke potensial awal. Peningkatan arus puncak yang muncul mengindikasikan terjadinya reaksi oksidasi. Reaksi reduksi terjadi ketika arus menurun. Integral dari keduanya baik pada puncak anodik atau katodik dapat disederhanakan sebagai persamaan 3.5 berikut ini,

Berdasarkan Gambar 3.9 menunjukkan CV dari LFP pada tingkat scan 0.01mV / s menaikkan produksinya antara 2.3 dan 4 V vs Li / Li +. itu jelas tergambar bahwa reaksi redoks terjadi sementara Li diekstraksi dan dimasukkan selama reaksi elektrokimia seperti yang dinyatakan dalam persamaan reversibel berikut.

 $LiFePO_4 \leftrightarrow xFePO_4 + (1-x) LiFePO_4 + xLi^+ + xe^-$

Gambar 3.9 Diagram CV dari LFP dengan scan rate 0.1 mV.s⁻¹ dan tegangan cut off 2.3 - 4.0 V vs Li/Li⁺. (Hamid, 2013)

3.1.2 Diagram Alir Penelitian

Sintesis Komposit Lithium Ferro Phosphate (LiFePO4/C)

Gambar 3.10 Diagram alir sintesis prekursor komposit lithium ferro phosphate (LFP/C).

BAB IV HASIL DAN PEMBAHASAN

4.1 Analisis Pemurnian Batuan Besi Tanah Laut Kalimantan

Sintesis *lithium ferro phosphate carbone composites* (LFP/C) menggunakan bahan alam sebagai sumber ion Fe. Langkah awal dilakukan ekstraksi Fe₃O₄ dari batuan Tanah Laut Kalimantan Selatan. Bahan alam yang digunakan berasal dari endapan laterit, batuan tersebut mengeras akibat udara sehingga menyerupai batu. Batu laterit berasal dari endapan yang dihasilkan melalui proses pelapukan batuan dasar. Jenis batuan ini umumnya mengandung sejumlah besar kwarsa, oksida titanium, zirkon, besi, timah, mangan, alumunium, mineral hematite dan magnetite serta soil yang berpotensi mengandung banyak unsur Fe.

Kajian awal dengan menggunakan analisis *X-ray fluorescence* (XRF) menunjukkan bahwa batu Tanah Laut Kalimantan yang digunakan mengandung lebih dari 90% unsur Fe dan terjadi peningkatan setelah dilakukan *sieving* dan dilakukan pencucian menggunakan *Ultrasonic Cleaner*. Hasil dari pengujian menggunakan XRF pada batuan tanah laut sebelum dan setelah proses pencucian dapat dilihat pada Tabel. 4.1.

Gambar 4.1 Hasil serbuk batu Tanah Laut Kalimantan sebelum dan setelah pencucian menggunakan *Ultrasonic Cleaner*,

Perlakuan	Unsur (%)					
	Fe Si Ca Cu Mn Lain-lai					Lain-lain
Sebelum Ekstraksi	95.83	2.6	0.13	0.17	0.13	1.298
Setelah Ekstraksi	98.02	1	0.1	0.14	0.13	0.677

Tabel. 4.1 Hasil X-ray fluorescence (XRF) dari serbuk batu Tanah Laut Kalimantan

Pada Tabel 4.1 terlihat adanya elemen-elemen impuritas, dimana dari segi konsentrasi tidak terlalu signifikan sehingga dapat diabaikan. Berdasarkan data pada tabel, konsentrasi unsur Fe sebelum pencucian sebesar 95.83% dan meningkat menjadi 98.02% akibat dari hilangnya impuritas, seperti pada unsur Si yang berkurang dari 2.6% menjadi 1%. Perbedaan warna akibat adanya pengurangan impuritas dapat dilihat secara makroskopis pada Gambar 4.1. Berdasarkan gambar serbuk sampel sebelum ekstraksi memiliki warna hitam kemerahan dan berubah menjadi hitam setelah diekstraksi. Hasil ekstraksi serbuk akan dianalisa dengan menggunakan *X-Ray Diffractometer* (XRD). Hasil yang diperoleh dari data XRD selanjutnya dianalisis secara kualitatif dan kuantitatif dengan menggunakan *software* PDXL untuk mengetahui kandungan fasa yang terbentuk seperti yang ditunjukkan pada Gambar 4.2.

Gambar 4.2 Hasil grafik XRD dari serbuk batu Tanah Laut Kalimantan setelah diekstraksi

Berdasarkan Gambar 4.2 diperoleh puncak-puncak difraksi yang sesuai dengan fasa tunggal Besi(III) Oksida (Fe₃O₄) *magnetite*. Serbuk Fe₃O₄ ini selanjutnya digunakan sebagai sumber ion Fe dalam pembuatan komposit katoda LFP/C.

4.2 Karakterisasi Komposit LFP/C

Identifikasi kandungan Fe₃O₄ pada serbuk batu Tanah Laut Kalimantan selanjutnya dijadikan sumber ion Fe pada pembuatan material komposit katoda baterai ion lithium. Sampel yang telah disiapkan kemudian diberi variasi temperatur kalsinasi. Variasi temperatur kalsinasi didasarkan pada studi referensi dan percobaan yang dilakukan sebelum pengambilan data. Rentang variasi temperatur terkecil diambil di atas temperatur karbonisasi asam sitrat, yaitu 400 °C dan temperatur terbesar pada 700 °C (Zhang dkk., 2012). Selanjutnya sampel yang telah dikalsinasi, diuji dengan menggunakan *X-Ray Diffractometer* (XRD).

4.2.1 Analisis Struktur Komposit LFP/C dengan Difraksi Sinar-X

Hasil proses variasi temperatur kalsinasi pada prekursor selanjutnya akan dianalisis secara kualitatif dan kuantitatif dengan menggunakan *X-Ray Diffractometer* (XRD) untuk mengetahui fasa-fasa yang terbentuk. Karakterisasi hasil sintesis komposit LFP/C dengan menggunakan XRD dilakukan pada rentang sudut antara 15°-80°. Pemilihan rentang sudut tersebut didasarkan pada pertimbangan munculnya puncak pertama dari fasa yang diinginkan, dimana untuk LFP muncul pada sudut $\pm 17^{\circ}$ (PDF 040-160416). Untuk mengidentifikasi fasa yang diduga sebagai struktur LFP dilakukan proses pencocokan data posisiposisi puncak difraksi terukur dengan *database* dalam bentuk PDF (*Powder Diffraction File*).

Serbuk dari sintesa LFP menunjukkan adanya perubahan warna pada tiap perlakuan temperatur kalsinasi. Hal ini menunjukkan adanya perubahan fasa seiring dengan perubahan temperatur. Hasil pengamatan dengan menggunaan XRD untuk semua sampel komposit LFP/C dengan variasi temperatur 400°C-700 °C ditunjukkan seperti pada Gambar 4.3.

Berdasarkan pola hasil data difraksi dapat dilihat bahwa keempat sampel memiliki puncak-puncak utama yang hampir sama apabila dilihat secara umum. Hal ini terlihat pada puncak difraksi sampel dengan temperatur kalsinasi 400°C yang memiliki kemiripan dengan sampel 500 °C, sedangkan sampel pada 600 °C memiliki kemiripan dengan sampel 700°C. Selain itu, terlihat bahwa peningkatan temperatur kalsinasi menyebabkan peningkatan kristalinitas fasa yang ditunjukkan dengan intesitas puncak-puncak difraksi yang meningkat.

Gambar 4.3 Pola XRD material komposit LFP/C menggunakan metode *solid state reaction* pada temperatur 400 °C, 500°C, 600°C dan 700°C

Analisis secara signifikan untuk mengetahui komposisi fasa-fasa yang terbentuk dengan lebih tepat dapat menggunakan *software* PDXL. Hasil yang diperoleh mengindikasikan lebih dari satu fasa terbentuk pada setiap perlakuan temperatur kalsinasi, untuk lebih jelasnya dapat dilihat pada Tabel 4.2. Impuritas yang muncul kebanyakan dalam bentuk fasa hematite Fe₂O₃ dengan struktur hexagonal. Kemunculan hematite sebagai impuritas dimungkinkan akibat

beberapa hal. Penyebab pertama, akibat adanya O₂ yang terbawa oleh aliran gas atau berasal dari O₂ yang terjebak (*trapping*) pada *bulk* prekursor sehingga menyebabkan oksidasi. Selain itu, bisa diakibatkan karena temperatur yang dibutuhkan untuk membentuk kristalinitas tidak mencukupi seperti pada sampel temperatur 400 °C sehingga tidak semua ion Li dapat menyisip atau bereaksi dengan material awal yang berupa Fe₃O₄, akibatnya terdapat material Fe₃O₄ yang bertransformasi membentuk Fe₂O₃. Namun, impuritas dari fasa hematite perlahanlahan berkurang seiring dengan meningkatnya temperatur kalsinasi yang digunakan. Komposisi fasa yang terbentuk pada masing-masing variasi temperatur kalsinasi dapat dilihat pada Tabel 4.2 berikut,

Sampel	Phase	No. ICDD	% Weight	Chi ²	Rwp
LiFePO ₄ /C	(Space Group)	(card	Phase	• • • •	P
at		number)	Composition		
400°C	LiFePO ₄ (62/Pnma)	00-040-1499	31	1.06	6.90
	LiFeP ₂ O ₇ (P1211)	04-011-6388	48		
	Fe_2O_3 (R-3c)	00-033-0664	21		
500°C	LiFePO ₄ (62/Pnma)	04-015-7065	62	1.13	10.58
	$Fe_2O_3(R-3c)$	01-080-5409	38		
600°C	LiFePO ₄ (62/Pnma)	01-080-6319	69	1.29	28.01
	Li ₂ FeP ₂ O ₇ (P121/c1)	04-017-3008	31		
700°C	LiFePO ₄ (62/Pnma)	04-016-0416	93.3	1.31	23.98
	Fe_2O_3 (R-3c)	01-089-0599	6.7		

Tabel. 4.2 Analisis PDXL terhadap sampel komposit LFP/C pada temperatur 400 °C, 500°C, 600°C dan 700°C

Berdasarkan hasil pada tabel dapat terlihat bahwa komposisi LFP dengan struktur *olivine* terbanyak terbentuk pada temperatur kalsinasi 700°C sebesar 93.3 wt% dengan fasa impuritas hematit sebesar 6.7 wt%. Struktur-struktur yang terbentuk pada saat pemberian variasi temperatur kalsinasi pada kondisi inert akan memberikan pengaruh pada performa baterai yang dihasilkan oleh komposit katoda.

4.2.2 Analisis Distribusi Ukuran partikel dengan Particle Size Analyzer (PSA)

Distribusi partikel setiap sampel pada temperatur kalsinasi 400 °C, 500°C, 600°C dan 700°C dianalisis dengan menggunakan alat *Particle Size Analyzer* (PSA). Berdasarkan hasil PSA diketahui bahwa distribusi partikel pada masing-masing sampel umumnya kurang homogen. Hal tersebut ditunjukkan pada Gambar 4.4

Gambar 4.4 Distribusi ukuran partikel material komposit LFP/C yang telah dikalsinasi pada temperatur (a) 400 °C, (b) 500°C, (c) 600°C dan (d) 700°C

Berdasarkan hasil PSA diketahui terdapat dua puncak yang terbentuk pada masing-masing sampel. Pada Gambar 4.4 (a), (b), dan (c) dengan temperatur kalsinasi 400 °C, 500 °C, dan 600 °C masing-masing menunjukkan dua distribusi ukuran partikel, dengan ukuran 60nm-1µm dan 3-7µm. Pada Gambar 4.4 (d) dengan temperatur kalsinasi 700 °C puncak pertama berada pada kisaran 70nm-1µm sedangkan puncak kedua berada pada kisaran 3µm-7µm. Dua puncak yang muncul pada hasil PSA secara kualitatif menggambarkan adanya distribusi yang kurang homogen. Tingkat homogenitas partikel dapat pula dilihat berdasarkan aspek nilai standar deviasi yang diperoleh, dimana semakin kecil standart deviasi

maka semakin besar homogenitas suatu sampel. Pada Tabel 4.3 disajikan nilai standar deviasi masing-masing sampel.

Material	Z-Average (nm)	St.Deviasi
LFP/C 400	251.7	173.9
LFP/C 500	236.5	113.2
LFP/C 600	298.9	163.9
LFP/C 700	301.9	221.2

Tabel. 4.3 Standar deviasi dan *Z-average* sampel komposit LFP/C pada temperatur 400 °C, 500°C, 600°C dan 700°C

Berdasarkan tabel, dapat dilihat bahwa pada sampel LFP/C dengan temperatur kalsinasi 500°C memiliki ukuran rerata terkecil (236.5nm) dan homogenitas distribusi ukuran partikel paling baik diantara keempat sampel karena kecilnya nilai standar deviasi yang dimiliki.

Dari kedua aspek besaran partikel pada Tabel 4.3 dapat diketahui bahwa tidak ada keterkaitan antara kenaikan temperatur kalsinasi dengan kehomogenan partikel. Akan tetapi terdapat keterkaitan antara dimensi ukuran rerata partikel terhadap kenaikan temperatur kalsinasi, dimana ukuran partikel rata-rata cenderung meningkat seiring dengan kenaikan temperatur kalsinasi. Hal tersebut disebabkan adanya pembentukan kristalinitas fasa yang lebih stabil (*olivine*) atau akibat adanya aglumerasi selama proses kalsinasi.

4.2.4 Analisis Bentuk Morfologi dengan SEM-EDX

Performa katoda LFP/C sangat dipengaruhi oleh beberapa faktor, diantaranya terdapat pengaruh dari struktur kristal, dimensi partikel dan kehomogenan distribusi ukuran partikel. Pada prinsipnya pembuatan LFP/C merupakan gabungan dari material LFP dengan karbon aktif yang berperan sebagai material konduktif. Untuk mengetahui bentuk struktur morfologi pada partikel LFP dengan dan tanpa karbon dilakukan uji *Scanning Electron Microscope* (SEM). Sedangkan untuk mengetahui distribusi karbon pada sampel LFP/C dilakukan uji *Energi Dispersive X-ray Spectroscopy* (EDX). Selanjutnya, distribusi ukuran partikel hasil SEM ditunjukkan pada Gambar 4.5.

(b)

Gambar 4.5 Morfologi partikel material komposit LFP/C (a) tanpa karbon aktif dan (b) dengan karbon aktif (asam sitrat) pada temperatur kalsinasi 500°C

Pada gambar menunjukkan morfologi partikel LFP tanpa dan setelah penambahan karbon aktif. Pada gambar (a) menunjukkan *range* ukuran partikel aglumerasi antara 0.1-1 μ m. Hal tersebut apabila dibandingkan dengan dengan gambar (b) yang sudah ditambahkan karbon aktif menunjukkan ukuran yang tidak jauh berbeda, namun pada sampel ini terlihat adanya *carbon network* yang membentuk warna blur abu-abu.

Selanjutnya, untuk mengetahui distribusi karbon pada material komposit LFP/C akan digunakan metode *mapping* yang ditunjukkan dengan pengujian EDX pada Gambar 4.6. Hasil *mapping* ini menujukkan hasil distribusi karbon yang terbatas pada daerah *scanning*. Pada pengujian EDX sampel yang akan dibandingkan adalah sampel dengan temperatur kasinasi 500°C dan 700°C. Hal ini dikarenakan pertimbangan dari hasil struktur yang dimiliki dan hasil pada performa baterai yang akan ditampilkan pada subbab selanjutnya.

(b)

Gambar 4.6 Hasil *mapping* partikel material komposit LFP/C (a) Pada temperatur kalsinasi 500°C (b) pada temperatur kalsinasi 700°C

Pada gambar di atas, warna kuning mengindikasikan adanya kandungan elemen karbon, warna ungu menunjukkan kandungan P, warna merah adalah Fe dan warna hijau adalah O. Berdasarkan Gambar (a) dan (b) dapat dilihat bahwa distribusi penyebaran karbon yang ditunjukkan pada daerah tersebut, pada sampel

dengan temperatur kalsinasi 500°C memiliki penyebaran distribusi karbon yang lebih homogen dibandingan dengan sampel 700°C. Hal ini ditunjukkan dengan meratanya warna kuning yang merujuk pada simbol warna untuk unsur C pada hasil *mapping*. Perbandingan jumlah komposisi elemen unsur yang mendetail pada masing-masing sampel yang telah di-*mapping* ditunjukkan pada Tabel 4.4

Temperatur	Unsur	Komposisi (at.%)
	С	29.35
500	Р	57.73
	0	7.04
	Fe	5.89
	С	9.32
700	Р	59.18
	0	13.60
	Fe	17.90

Tabel. 4.4 Hasil spektrum komposisi unsur-unsur pada sampel komposit LFP/C pada temperatur 500°C dan 700°C

Pada hasil tabel ditunjukkan bahwa tingkat karbon pada daerah yang diamati dengan EDX untuk sampel pada temperatur kalsinasi 500 °C lebih tinggi jika dibandingkan dengan sampel pada temperatur kalsinasi 700 °C.

4.3 Hasil Pengujian EIS pada Material Komposit Katoda LFP/C

Pengukuran nilai impedansi sampel yang telah diberikan variasi temperatur kalsinasi dilakukan dengan menggunakan *Electrochemical Impedance Spectroscopy* (EIS). Pengukuran EIS menggunakan signal AC kecil sebesar 20 mV dan tegangan bias DC lebih dari 3V agar dapat menghasilkan kurva yang dapat membentuk pola busur semi setengah lingkaran (Subhan, 2011). Rentang frekuensi yang digunakan adalah pada 0.1 Hz – 10 KHz. Kurva cole-cole hasil pengujian EIS dari keempat sampel dapat dilihat pada Gambar 4.7 berikut,

Gambar 4.7 Kurva nilai impedansi keseluruhan material komposit LFP/C dengan variasi temperatur kalsinasi pada 400 °C, 500°C, 600°C dan 700°C

Berdasarkan gambar dapat diketahui untuk sampel pada setiap variasi membentuk kurva *semicircle* tunggal. Keempat sampel memiliki diameter *semicircle* yang berbeda-beda. Besarnya diameter *semicircle* dari grafik tersebut menunjukkan nilai impedansi, semakin besar diameter maka nilai impedansi akan semakin tinggi dan sebaliknya. Nilai impedansi yang paling tinggi dimiliki oleh sampel 700°C sedangkan nilai impedansi paling rendah dimiliki oleh sampel 500°C.

Selain itu, berdasarkan tinggi puncak kurva *semicircle* dapat diketahui sifat kapasitif dari masing-masing sampel. Semakin tinggi puncak kurva *semicircle* maka semakin rendah sifat kapasitif yang dimiliki ($1/j\omega$ C). Oleh karena itu, dari kurva cole-cole di atas dapat diketahui material yang memiliki sifat kapasitif paling baik adalah sampel dengan temperatur kalsinasi 500°C. Sifat kapasitif berhubungan dengan kemampuan material untuk menyimpan ion Li dalam strukturnya. Selanjutnya, dengan menggunakan persamaan 3.1-3.4 akan diperoleh nilai konduktivitas yang ditunjukkan pada Tabel 4.5.

Temperatur	Hambatan Total	Permitivitas Total	Konduktivitas
LFP/C	(Ω)	(Ω)	Total (10 ⁻⁶ S/cm)
400°C	9483	334954	155.57
500°C	322	11388	5676.53
600°C	2568	90706	781.34
700°C	41758	1474921	33.50

Tabel 4.5 Grafik nilai konduktivitas material komposit LFP/C dengan variasi temperatur kalsinasi

Berdasarkan tabel, diketahui bahwa sampel dengan nilai konduktivitas terbesar ditunjukkan oleh sampel 500°C dengan nilai konduktivitas 5.676 x 10⁻³ S.cm⁻¹. Nilai ini lebih tinggi dibandingkan material LFP tanpa karbon yang memiliki nilai konduktivitas rendah (10⁻⁹ S.cm⁻¹). Pada tabel terlihat adanya kecenderungan penurunan nilai konduktivitas seiring dengan meningkatnya temperatur kalsinasi.

4.4 Performa Katoda LFP/C berdasarkan Variasi Temperatur Kalsinasi

Material komposit katoda yang telah diberi perlakuan panas selanjutnya diuji performa baterai untuk mengetahui apakah material tersebut memiliki sifat sebagai material katoda atau tidak. Pengujian performa baterai yang akan dilakukan meliputi pengujian *charge-discharge* (CD) dan pengujian *cyclic voltametry* (CV) pada sel baterai.

4.4.1 Analisis Charge-Discharge untuk Mengetahui Kapasitas Spesifik Material Katoda

Hasil data pengujian *Charge-Discharge* (CD) dapat digunakan untuk menentukan kapasitas muatan spesifik material (Q_s) komposit katoda, dimana pengukuran menggunakan scan rate tipe *constant current* (I_{CC}). Besarnya I_{CC} yang digunakan saat pengujian adalah sebesar 25 μ A dengan tegangan *cut off* (V_{co}) sebesar 2V-3.5V. Besarnya kapasitas muatan spesifik dapat dilihat ketika baterai telah masuk dalam kondisi *discharge*. Contoh hasil dari pengujian CD pada salah satu sampel dapat diamati pada Gambar 4.8 (selengkapnya pada Lampiran D).

Gambar 4.8 Grafik hasil *Charge/discharge* pada material komposit LFP/C dengan variasi temperatur kalsinasi pada 400 °C

Garis biru dan merah pada Gambar 4.8 merupakan garis simbol arus dan tegangan, dengan garis biru adalah scan rate arus (I_{CC}) yang diberikan dari luar sedangkan garis merah adalah tegangan yang ditimbulkan oleh baterai. Pada Gambar 4.8 dapat diketahui bahwa pada sampel temperatur kalsinasi 400 °C nilai kapasitas muatan spesifik pada kondisi *discharging* (Q_{sd}) mengalami penurunan pada *cycle* kedua dan ketiga. Untuk *cycle* pertama nilai Q_{sd} yang dihasilkan adalah 4.422 mAh/g dan mengalami penurunan pada *cycle* kedua menjadi 4.074 mAh/g sedangkan pada *cycle* ketiga berkurang kembali menjadi 3.7203 mAh/g. Selain itu, terlihat bahwa nilai Q_{sc} lebih kecil dibandingkan Q_{sd}. Hal ini mengindikasikan bahwa densitas energi yang dimiliki baterai lebih kecil dibandingkan densitas powernya. Selanjutnya, untuk membandingkan nilai kapasitas muatan spesifik yang dimiliki oleh keempat sampel dapat dilihat pada Tabel 4.6 berikut.

Suhu	Tegangan ARUS		Kapasitas	Rerata	
LFP/C	Open Circuit	KONSTAN	Qsc	Q_{sd}	Discharge
	(Vocv)	(μΑ)	(mAh/g)	(mAh/g)	(mAh/g)
			3.2822	4. 422	
400	3.34	25	2.747	4.074	4.072
			2.593	3.7203	
			6.7153	7.196	
500	3.13	25	5.7197	74.845	31.019
			8.7401	11.016	
			9.543	12.203	
600	3.35	25	3.394	5.252	6.795
			1.597	2.931	
			586.91 x 10 ⁻³	3.1488	
700	3.08	25	567.82 x 10 ⁻³	2.9357	2.949
			561.77 x 10 ⁻³	2.7637	

Tabel. 4.6 Hasil Kapasitas spesifik sampel komposit LFP/C dengan variasi temperatur 400 °C, 500°C, 600°C dan 700°C

Berdasarkan informasi pada tabel di atas terlihat bahwa nilai V_{ocv} yang dimiliki oleh sampel berada pada rentang nilai standart potensial material elektroda baterai lithium yaitu sebesar 3.01 V dan potensial material LFP 3.45 V (Li/Li⁺). Hasil tabel menunjukkan nilai kapasitas muatan spesifik yang dihasilkan masih tergolong rendah, selain itu muncul pola penurunan yang terjadi hampir pada semua variasi sampel pada *cycle* kedua. Pada tabel mengindikasikan bahwa nilai Q_{sd} terbesar dimiliki oleh sampel 500 °C, dengan nilai Q_{sd} pada *cycle* pertama sebesar 7.196 mAh/g, meningkat menjadi 74.845 mAh/g pada *cycle* kedua, dan 11.016 mAh/g pada *cycle* ketiga.

4.4.2 Pengujian Cyclic Voltametry untuk Mengetahui Working Voltage Material Katoda

Performa dari baterai di samping tergantung nilai besarnya muatan spesifik dari material katoda juga dipengaruhi oleh mekanisme oksidasi dan reduksi pada sel baterai. Selisih potensial yang diperoleh dari peristiwa oksidasi dan reduksi dapat mengindikasikan reversibilitas material baterai. Model pengujian redoks dari elemen baterai dapat menggunakan *Cyclic Voltammetry* (CV). Uji CV merupakan teknik elektrokimia yang digunakan untuk mengukur reaksi redoks, kinetik transfer elektron dan transisi fasa dari sel volta (hamid, 2013). Pengujian dilakukan dengan cara mengukur arus untuk setiap potensial

yang diberikan. Peningkatan arus puncak yang muncul mengindikasikan terjadinya reaksi oksidasi sedangkan reaksi reduksi terjadi ketika arus menurun. Scan rate tegangan (V_{cv}) yang digunakan adalah 100 μ Vs⁻¹ dan 200 μ Vs⁻¹, untuk tegangan *cut off* (V_{co}) diseting pada rentang 2.5V-4V. Pola arus yang dihasilkan pada pengujian CV salah satu sampel sel baterai dapat dilihat pada Gambar.4.9.

Gambar 4.9 Grafik CV material komposit LFP/C pada temperatur kalsinasi 500°C (a) terhadap tegangan (b) terhadap waktu

Berdasarkan gambar di atas, garis dengan warna merah merupakan scan rate tegangan yang diberikan dari luar dan garis biru merupakan arus yang dihasilkan baterai, sedangkan nilai tegangan pada sumbu-y di kanan grafik merupakan nilai V_{co}. Tegangan V_{co} untuk kondisi *charging* dimulai pada 2.5V dan berakhir pada 4V kemudian dilanjutkan dengan kondisi *discharging* dari 4V sampai kembali menjadi 2.5V. Pada gambar di atas muncul puncak oksidasi dan reduksi yang berasal dari kenaikan bilangan oksidasi (Fe²⁺/Fe³⁺) dan penurunan bilangan oksidasi (Fe³⁺/Fe²⁺) ketika dalam kondisi *charging/discharging*. Selanjutnya, untuk Gambar 4.9 (a) merupakan grafik CV terhadap tegangan pada baterai pada scan rate 100 μ Vs⁻¹ dan 200 μ Vs⁻¹. Pola pertama dengan scan rate 100 μ Vs⁻¹ diperoleh puncak oksidasi pada 3.49 V dan puncak reduksi pada 3.24 V dengan selisih tegangan (Δ E) 0.25 V. Untuk scan rate tegangan 200 μ Vs⁻¹, puncak oksidasi muncul pada 3.52 V dan puncak reduksi muncul pada 3.29 V dengan selisih tegangan 0.23 V.

Pada Gambar 4.9 (b) merupakan grafik CV terhadap waktu. Dari gambar terlihat bahwa lama waktu yang dibutuhkan untuk menyelesaikan satu siklus proses *charging/discharging* pada scan rate tegangan 100 μ Vs⁻¹ lebih lama dibandingkan dengan scan rate 200 μ Vs⁻¹. Waktu yang dibutuhkan untuk menyelesaikan proses *discharging* pada scan rate tegangan 100 μ Vs⁻¹ kurang-lebih 4 jam, sedangkan pada scan rate tegangan 200 μ Vs⁻¹ hanya membutuhkan waktu sekitar 2 jam untuk menyelesaikan proses *discharging*. Hasil uji CV pada keempat sampel dapat dilihat pada Tabel 4.7 (Lampiran D).

Suhu	Scan Rate	Puncak		Selisih	Waktu
LFP/C	Tegangan (μVs ⁻¹)	Oksidasi (Volt)	Reduksi (Volt)	Potensial (ΔE)	Discharge (±jam)
	100	-	-	-	2.77
400	200	-	-	-	1.52
	100	3.49	3.24	0.25	4.16
500	200	3.52	3.29	0.23	2.08
	100	-	3.10	-	2.77
600	200	-	3.15	-	1.52
	100	3.52	3.09	0.43	8.33
700	200	3.50	3.10	0.40	4.16

Tabel. 4.7 Hasil Pengujian CV sampel komposit LFP/C dengan variasi temperatur 400 °C, 500°C, 600°C dan 700°C

4.5 Pembahasan

Bahan dasar utama dalam penelitian ini menggunakan batuan besi Tanah Laut Kalimantan yang direduksi hingga menjadi serbuk dengan kandungan Fe sebesar 95.83 %. Peningkatan unsur Fe terjadi setelah dilakukan separasi magnet dan pencucian menggunakan *Ultrasonic Cleaner*, sebesar 98.02 %. Serbuk yang telah dicuci memiliki kandungan unsur Fe lebih tinggi akibat menurunnya komposisi elemen impuritas Si, Ca, dan Cu. Senyawa Fe yang terdapat pada pasir besi memiliki kandungan fasa *magnetite* (Fe₃O₄) seperti yang ditunjukkan pada Gambar 4.2. Pola puncak-puncak difraksi menunjukkan bahwa hanya terdapat satu jenis fasa yang terbentuk. Material Fe₃O₄ ini selanjutnya digunakan sebagai bahan dasar sumber ion Fe dalam pembuatan komposit LFP/C.

Sintesis komposit LFP/C dilakukan menggunakan metode *solid state reaction* dengan variasi pada temperatur kalsinasi pada kondisi inert. Perlakuan gas inert pada proses kalsinasi diberikan untuk menghindari peristiwa oksidasi Fe²⁺/Fe³⁺ yang tidak diinginkan. Analisis identifikasi fasa dilakukan pada keempat sampel seperti yang terlihat pada Tabel 4.2. Pola hasil difraksi menunjukkan lebih dari satu fasa terbentuk untuk tiap variasi kalsinasi. Pada temperatur 400°C, sampai dengan 700°C terdapat fasa impuritas Fe₂O₃ dan fasa metastabil LFP (Li₂FeP₂O₇). Adanya fasa metastabil pada 400°C diasumsikan bahwa pada temperatur tersebut masih berada pada rentang transisi awal pembentukan LFP. Sedangkan fasa metastabil yang muncul pada 600°C dikarenakan temperatur tersebut merupakan temperatur terbentuknya fasa Li₂FeP₂O₇ (Tan dkk, 2015) sehingga kemungkinan terbentuknya Li₂FeP₂O₇ sebagai fasa impuritas cukup tinggi. Untuk impuritas Fe₂O₃ yang muncul pada temperatur 400°C, 500°C, dan 700°C dimungkinkan akibat timbulnya reaksi oksidasi sebagai berikut.

 $4Fe_3O_4 + O_2 \rightarrow 6Fe_2O_3$(4.1) Reaksi oksidasi yang tidak diharapkan ini kemungkinan diakibatkan oleh masih adanya oksigen yang terbawa aliran gas atau akibat oksigen yang terperangkap (*trapping*) pada rongga-rongga partikel prekursor. Berdasarkan informasi pada tabel, diketahui bahwa komposisi fasa *olivine* tertinggi terbentuk pada sampel dengan temperatur kalsinasi 700°C sebesar 93.3 wt% dengan impuritas Fe₂O₃ sebesar 6.7 wt%. Hal ini sesuai dengan temperatur pembentukan LFP yang pernah dilakukan pada penelitian sebelumnya (Zhang dkk, 2012). Struktur-struktur yang terbentuk pada saat pemberian variasi temperatur kalsinasi pada kondisi inert akan memberikan pengaruh pada performa baterai yang dihasilkan oleh komposit katoda. Hal ini dikarenakan, masing-masing jenis fasa LFP memiliki struktur kristal yang berbeda sehingga tingkat kapasitas penyimpanan ion Li yang dihasilkan tidak akan sama.

Analisis selanjutnya mengkaji mengenai ukuran rerata dan distribusi ukuran partikel komposit LFP/C seperti yang ditunjukkan pada Tabel 4.3. Pada tabel ditemukan adanya korelasi kesebandingan antara ukuran rerata partikel dengan kenaikan temperatur kalsinasi. Hal tersebut disebakan adanya pembentukan kristalinitas fasa yang lebih stabil (olivine) atau akibat adanya aglumerasi selama proses kalsinasi. Namun demikian, tidak ditemukan korelasi antara distribusi ukuran partikel dengan kenaikan temperatur. Tingkat homogenitas distribusi ukuran partikel didasarkan pada nilai standar deviasi yang diperoleh pada pengujian PSA dengan metode setengah lebar puncak. Ukuran rerata terkecil sebesar 236.5 nm dan distribusi ukuran partikel yang lebih homogen dimiliki oleh sampel pada temperatur kalsinasi 500°C. Dimensi ukuran partikel yang kecil dan distribusi ukuran yang homogen dari material komposit katoda akan memberikan pengaruh pada performa baterai yang dihasilkan. Semakin kecil ukuran dimensi partikel maka akan memperpendek jalur difusi ion Li serta memperluas spesifik kontak area antar partikel, sehingga akan meningkatkan transfer muatan saat interkalasi dan deinterkalsi.

Performa baterai yang dihasilkan oleh komposit katoda LFP/C, selain dipengaruhi struktur material katoda juga dipengaruhi oleh konduktivitas. Oleh karena itu, dilakukan pengujian EIS untuk mengetahui nilai konduktivitas yang dimiliki sampel. Hasil uji EIS pada Gambar 4.7 menunjukkan nilai impedansi terkecil dimiliki sampel 500°C sebesar 322 Ω . Nilai impedansi yang diperoleh adalah nilai tahanan polarisasi (R_p) yang berhubungan dengan karateristik dari *bulk* material yang bersifat ohmik dan tahanan larutan (R_s) yang berhubungan dengan karakteristik kualitatif *grain boundary* yang bersifat kapasitif (Subhan, 2011). Berdasarkan Gambar 4.7 diketahui bahwa pada sampel dengan temperatur kalsinasi 500°C memiliki tahanan polarisasi yang paling kecil dibandingkan

dengan sampel lainnya. Nilai polarisasi yang kecil akan memberikan pengaruh yang baik pada performa baterai khususnya pada saat transfer muatan antar elektroda. Selanjutnya, dari nilai impedansi dapat ditentukan besarnya nilai konduktivitas seperti yang ditunjukkan pada Tabel 4.5. Berdasarkan informasi pada tabel terlihat adanya kecenderungan penurunan nilai konduktivitas seiring dengan meningkatnya temperatur kalsinasi. Hal ini diakibatkan peningkatan temperatur kalsinasi menyebabkan ukuran partikel membesar serta memungkinkan adanya aglumerasi mengakibatkan jarak difusi (difusi length) bertambah sehingga konduktivitasnya menurun. Nilai konduktivitas tertinggi dimiliki oleh sampel 500°C sebesar 5.67 x 10⁻³ S.cm⁻¹, sedangkan konduktivitas terendah dimiliki oleh sampel 700°C sebesar 3.35 x 10⁻⁵ S.cm⁻¹.

Selanjutnya, mengkaji mengenai performa baterai yang dihasilkan oleh material komposit katoda LFP/C. Pengujian performa baterai meliputi pengujian charge-discharge (CD) dan pengujian cyclic voltametry (CV) pada sel baterai. Pengujian CD digunakan untuk melihat berapa nilai kapasitas muatan spesifik (Q_s) pada sampel LFP/C. Pola hasil dari pengujian CD, salah satu contohnya dapat dilihat pada Gambar 4.8 dan untuk nilai Qs dari keempat sampel dapat dilihat pada Tabel 4.6. Kapasitas spesifik yang dimiliki oleh material komposit katoda ditinjau pada saat proses discharging, karena pada kondisi ini terjadi proses deinterkalasi dimana ion-ion Li bergerak kembali dari anoda menuju katoda sampai tercapai kesetimbangan muatan dalam baterai. Seperti penjelasan sebelumnya yang menyatakan bahwa besarnya performa baterai tidak hanya bergantung pada struktur fasa material tetapi juga dipengaruhi juga oleh beberapa hal, salah satunya adalah tingkat konduktivitas. Hal ini menjelaskan alasan kenapa besar Q_{sd} yang dimiliki sampel pada temperatur 500°C bisa lebih tinggi dibandingkan temperatur 700°C yang memiliki komposisi struktur fasa olivine lebih banyak. Pada Tabel 4.6 diketahui nilai rerata Q_{sd} pada sampel 500°C sebesar 31.109 mAh/g sedangkan rerata Q_{sd} pada sampel 700°C sebesar 2.949 mAh/g. Meskipun sampel LFP/C 700°C memiliki komposisi struktur olivine terbanyak, namun nilai konduktivitas yang dimiliki sampel ini lebih rendah dibandingkan sampel lainnya. Selain itu, ukuran rerata partikel dan distribusi ukuran partikel yang dimiliki sampel 700°C lebih besar dan lebih tidak homogen dibandingkan

keempat sampel lainnya. Hal ini menyebabkan kecilnya kapasitas muatan spesifik yang dihasilkan.

Selain beberapa faktor di atas, peforma baterai juga ditentukan dari parameter hasil pengujian CD dan CV, dimana nilai-nilai tersebut tergantung dari scan rate arus dan tegangan yang digunakan. Scan rate arus yang sesuai dengan struktur dan komposisi material aktif yang digunakan akan menghasilkan kapasitas muatan spesifik yang lebih valid dan lebih stabil pada tiap *cycle*. Selain itu, rentang nilai kapasitas spesifik yang besar pada tiap *cycle* ketika *discharging* dapat diakibatkan oleh hambatan ohmik yang tinggi dan banyaknya komposisi impuritas yang terbentuk sehingga dapat menghambat difusi ion Li saat interkalasi dan deinterkalasi. Brdasarkan informasi pada Tabel 4.6 menunjukkan nilai kapasitas muatan spesifik yang dihasilkan secara keseluruhan masih tergolong rendah, selain itu muncul pola penurunan yang terjadi hampir pada semua variasi sample pada *cycle* kedua. Hal tersebut terjadi diakibatkan oleh beberapa faktor, antara lain adalah:

a) Faktor Struktur

Komposisi struktur yang memiliki fasa LiFePO₄ (*olivine*) dengan struktur orthorombik memiliki sifat reversible (Goodenough, 2007) dan stabil pada kondisi interkalasi dan deinterkalasi.

LiFePO₄ \leftrightarrow xFePO₄ + (1-x) LiFePO₄ + xLi⁺ +x e⁻ (Triphylite) \leftrightarrow (Heterosite)

Struktur LFP memiliki volume kristal hampir sama dengan FePO₄, sehingga perubahan volume yang terjadi tidak terlalu signifikan yaitu sebesar 291 Å ³-272 Å³ (Hamid, 2013). Struktur yang tidak stabil dapat menyebabkan degradasi *volumetric* pada saat transfer muatan yang berimbas pada kapasitas yang semakin mengecil akibat struktur yang tidak dapat kembali seperti semula (tidak reversibel).

b) Faktor distribusi dan ukuran rerata partikel

Ukuran partikel yang terlalu besar atau adanya aglomerasi dapat memperlebar jarak difusi (*difusi length*) sehingga mempengaruhi pergerakan ion Li saat transfer muatan pada proses *charging-discharging*. Sebaliknya, partikel yang berukuran kecil atau nano dapat meningkatkan *surface contact*

area sehingga dapat mempercepat reaksi interkalasi ion Li (Zhu, 2013). Selain itu, distribusi ukuran partikel yang merata dapat mencegah terjadinya kemampatan pada saat proses interkalasi dan deinterkalasi.

c) Faktor distribusi karbon

Distribusi karbon yang merata akan meningkatkan nilai konduktivitas elektronik material komposit katoda LFP/C. Karbon aktif yang terbentuk akan membantu difusi ion Li pada saat transfer muatan pada saat interalasi-deinterkalasi (Park dkk, 2010).

d) Faktor Polarisasi

Pada baterai terjadi proses konversi energi dari energi kimia menjadi energi listrik. Perubahan energi tersebut tidak dapat mencapai efisiensi 100% karena pada proses *discharging* terjadi proses polarisasi. Polarisasi ini mengkonsumsi energi baterai dan menghasilkan panas (Triwibowo, 2011).

Uji performa baterai selanjutnya adalah pengujian redoks dari elemen baterai dengan menggunakan Cyclic Voltammetry (CV). Hasil dari uji CV dapat dilihat pada Gambar 4.9 dan Tabel 4.7. Berdasarkan tabel terlihat bahwa tidak semua sampel memunculkan peak oksidasi dan reduksi. Hal ini diasumsikan akibat penentuan scan rate tegangan 100 µVs⁻¹ dan 200 µVs⁻¹ yang digunakan kurang sesuai untuk beberapa komposisi sampel seperti pada sampel 400 °C dan 600 °C. Puncak redoks muncul hanya pada sampel 500 °C dan 700 °C. Sampel dengan temperatur kalsinasi 500°C memiliki puncak oksidasi yang muncul pada 3.49 V dan puncak reduksi pada 3.24 V dengan selisih tegangan sebesar 0.25 V pada scan rate 100 μ Vs⁻¹. Sedangkan untuk scan rate 200 μ Vs⁻¹, puncak oksidasi muncul pada 3.53 V dan puncak reduksi pada 3.29 V dengan selisih tegangan 0.23 V. Sedangkan untuk sampel 700°C puncak oksidasi muncul pada 3.52 V dan puncak reduksi muncul pada 3.09 V dengan selisih tegangan 0.43 V dengan scan rate arus 100 μ Vs⁻¹, selanjutnya saat scan rate tegangan dinaikkan menjadi 200 μ Vs⁻¹, puncak oksidasi muncul pada 3.5 V dan puncak reduksi muncul pada 3.1 V dengan selisih tegangan 0.4 V. Selisih potensial tegangan (ΔE) secara kualitatif menentukan tingkat reversibilitas dan kinetik ion Li saat transfer muatan. Nilai ΔE yang semakin kecil mengindikasikan reversibilitas yang lebih baik dan kinetic transfer ion yang tinggi saat interkalasi dan deinterkalasi.

"Halaman ini sengaja dikosongkan"

BAB V KESIMPULAN

5.1 Kesimpulan

Berdasarkan penelitian yang telah dilakukan, diperoleh beberapa kesimpulan, antara lain:

- 1. Material *Lithium Ferro Phospat Carbon Composite* (LFP/C) telah berhasil dibuat dengan menggunakan metode *Solid-state reaction* menggunakan *High Energy Ball Milling* dan kalsinasi pada kondisi inert.
- Identifikasi fasa yang terbentuk menggunakan pengujian X-ray Diffractometer (XRD) dan dianalisis menggunakan software PDXL. Fasa olivine dari LFP memiliki persen komposisi paling tinggi pada temperatur kalsinasi 700°C dengan fasa olivine sebesar 93.3 % wt dan impuritas berupa fasa hematit sebesar 6.7 % wt.
- 3. Nilai konduktivitas LFP/C paling tinggi ditunjukkan oleh sampel dengan temperatur kalsinasi 500°C dengan nilai konduktivitas total sebesar 5.676 10⁻³ S.cm⁻¹. Performa baterai yang paling baik dimiliki oleh sampel yang sama, dengan nilai kapasitas muatan spesifik rata-rata sebesar 31.019 mAh/g serta diperoleh puncak oksidasi pada 3.49 V dan puncak reduksi 3.29 V dengan selisih tegangan redox sebesar 0.25 V pada scan rate tegangan 100 μVs⁻¹.

5.2 Saran

Beberapa saran untuk penelitian selanjutnya adalah sebagai berikut:

- Pemberian perlakuan panas pada material sebaiknya dilakukan melalui dua tahap yaitu, prekalsinasi untuk proses karbonisasi dan kalsinasi pada temperatur pembentukkan LFP untuk meminimalisir impuritas.
- Diperlukan pengujian TEM untuk mengetahui lebih detail bentuk dari *coating* karbon pada LFP/C.
- 3. Preparasi proses pencampuran *salary* pada sel baterai perlu dilakukan dengan lebih cermat, serta penting untuk memilih scan rate arus dan tegangan yang sesuai dengan karakter dan komposisi material yang akan diuji sehingga dapat diperoleh performa baterai yang lebih baik dan valid.

DAFTAR PUSTAKA

- Andersson, S., Kalska, B, JoÈnsson, J, Lennart, R., Thomas, O, 2000. The magnetic structure and properties of rhombohedral Li₃Fe₂(PO₄)₃. Journal Material Chemstry 10, 2542-2547.
- Basu, B and Balani, K. 2011. Advanced Structural Ceramic. Wiley., New York.
- Buchmann, I., 2001. Batteries in A portable World, cadex electronics Inc.
- Cheruvally, G., 2008. A Promising Cathode Active Material for Lithium Secondary Batteries. Trans Tech Publications Ltd, Switzerland.
- Chew, S.Y., Patey, T.Y., Waser, O., Ng, S.H., Buchel, R., Tricoli, A., Krumeich, F., Wang, J., 2008. Thin Nanostuctured LiMn2O4 Film by Flame Spray Deposition an In Situ Annealing Method. J. Power Sources 189, 449–453.
- Choi, D., Kumta, P.N., 2007. Surfactant based sol gel approach to nanostructured LiFePO₄ for high rate Li ion batteries. J. Power Sources 163, 1064–1069.
- Du, J., et al., 2014. Template free Synthesis of Porous LiFePO₄/C Nanocomposite for High Power Lihitium-ion Batteries. Electrochimica Acta 123, 1-6.
- Goodenough, J.B., Kim, Y., 2011. Challenges for rechargeable batteries. J. Power Sources 196, 6688–6694.
- Hamid, N.A., Wennig, S., Hardt, S., Heinzel, A., Schulz, C., Wiggers, H., 2012. High-capacity Cathodes for Lithium-ion Batteries from Nanostructured LiFePO₄ Synthesized by Highly-flexible and Scalable Flame Spray Pyrolysis. Journal of Power Sources 216,76 – 83.
- Hamid, N.A., 2013. Cathode Materials Produced by Spray Flame Synthesis for Lithium Ion Batteries. Universitat Duisburg, Essen.
- Kazuhiko, M., Yutaka, I., Kazuya, K., Brewer, D., Eduardo, J., 2013. The Gradient Distribution Of Ni Ions In Cation-Disordered Li[Ni1/2mn3/2]O₄ Clarified By Muon-Spin Rotation And Relaxation. J. R. Soc. Chem.
- Kong, B.L., Zhang, P., Liu, C.M., 2012. Fabrication of Promising LiFePO₄/C Composite with a Core–shell Structure by a Moderate in situ Carbothermal Reduction Method. J. Electrochimica Acta 70, 19–24.
- Li, M., Xie, K., Li, D. and Pan Y., 2005. Synthesis of LiFePO₄ by One-step Annealing under The Vacuum Condition. Journal of Material Science 40, 2639-2641.
- Linden, D., Reddy, T.B. 2002. Handbook of Batteries. New-York: McGraw-Hill.
- Liu, H., Zhao, W., 2010. Synthesis of LiFePO₄/C by Solid-liquid Reaction Milling Method. J. Powder Technol. 197, 309–313.
- Malvern Instruments Limited.2012. A Basic Guide to Particle Characterization. Tersedia di www.malvern.com [diakses 26-10-2014].
- Masquelier, C., Padhi, A., Nanjudaswamy, Goodenough, J., 1998. New Cathode Materials For Rechargeable Lithium Batteries: The 3-D Framework Structures Li₃Fe₂(XO₄)₃. J. Solid State Chem. 135, 228–234.
- Padhi, A.K., Nanjundaswamy,S., Goodenough, J.B., 2002. Phospo Olivine as Positive-electrode Materials for Rechargeable Lithium Batteries. Journal electrochemical 144, 1188-1194.
- Park, M., Zhanga, X., Chunga, M., Less, G.B., Sastry, A.M., 2010. A review of Conduction Phenomena in Li-ion Batteries. J. Power Sources 195, 7904– 7929.
- Pratapa, S.,O'Connor, B. H. & Hunter, B. 2002, 'A comparative study of singleline and Rietveld strain-size evaluation procedures using MgO ceramics', *J. Appl. Cryst.*, vol. 35, pp. 155-162.
- Ritchie, A.G., 2001. Recent Development and Future Prospects For Lithium Rechargeable Batteries. J. Power Sources 96, 1–4.
- Rietveld, H. M. 1969. A Profile Refinement Method For Nuclear and Magnetic Structures. J. Appl. Cryst. 2, 65-71.
- Subhan, A., 2011. Fabrikasi dan Karakterisaasi Li₄T₅O₁₂ untuk Bahan Anoda Baterai Lithium Keramik. Departemen Tenik Metalurgi dan Material Universitas Indonesia, Jakarta.
- Tan, L., Zhang, S., Deng, C., 2015. Fast lithium intercalation chemistry of the hierarchically porous Li₂FeP₂O₇/C composite prepared by an ironreduction method. J. Power Sources 275, 6–13.
- Triwibowo, J., 2011. Rekayasa Bahan LixTiMnyFez(PO)₄ sebagai Katoda Solid Polimer Battery (SPB) Lithium. Departemen Tenik Metalurgi dan Material Universitas Indonesia, Jakarta.

- Tropacki, H.A.K., Ji, L., Zhang, X., 2010. Fabrication and Elektrochemical Characteristict of LiFePO₄ Powders for Lithium-Ion Batteries. J. Powder Part. 28, 311–318.
- Zhang, Y., Huo, Q., Du, P., Wang, L., Zhang, A., Song, Y., 2012. Advances in New Cathode Material LiFePO4 for Lithium Ion Batteries. Synth. Met. 162, 1315–1326.
- Zhou, W., He, W., Li, Z., Zhao, H., Yan, S., 2009. Biosynthesis and electrochemical characteristics of LiFePO₄/C by microwave processing. Journal of Solid State Electrochemistry 13, 1819-1823.
- Zhu, C., 2013. Size Effects on Lithium Storage and Phase Transition in LiFePO₄/FePO₄ System. Thesis, Department of Max Planck Institute for Solid State Research Stuttgart, Stuttgart.
- Zhu, M.Y., Tang, S., Shi, H., Hub, H., 2013. Synthesis of FePO₄.xH₂O for Fabricating Submicrometer Structured LiFePO₄/C by a Co-precipitation Method. Ceram. Int. 40, 2685–2690.

"Halaman sengaja dikosongkan"

LAMPIRAN A

A. Hasil X-ray Fluorence (XRF) Serbuk batu besi Tanah Laut Kalimantan

a. Sebelum Ekstraksi

Compoud	Si	Ca	V	Cr	Mn	Fe	Cu	Br	Rb	La
Conc Unit	2.6	0.13	0.03	0.098	0.13	95.83	0.17	0.48	0.59	0.1
(%)										

b. Setelah Ekstraksi

Compoud	Si	Ca	V	Cr	Mn	Fe	Cu	Br
Conc Unit	1	0.1	0.03	0.097	0.13	98.02	0.14	0.55
(%)								

(a)

B. Hasil Rifinement dari *X-ray Diffractometer* (XRD) dari serbuk batu besi Tanah laut Kalimantan yang telah di ekstraksi

Lattice constants

Angular correction

Analysis results

Contra the state of the state o							
Data set name	a(A)	b(A)	c(A)		alpha(deg)	beta(deg)	gamma(deg)
Besi	8.3956(15)	8.3956(15)	8.3956(15)		90.000000	90.000000	90.000000
Phase name	a(A)	b(A)	c(A)	alpha(deg)	beta(deg)	gamma(deg)	V(A^3)
magnetite, syn	8.3956(15)	8.3956(15)	8.3956(15)	90.000000	90.000000	90.000000	591.78(18)

0							
Crystal structure	analysis resul	5					
Indexing							
Dhasaas	5		Circuit of mo	-:+		DBaard	
Phase name	For	nuia	Figure of me	nı	Phase reg. detail	DB card	number
magnetite, <u>syn</u>	Fe3	04	0.395		ICDD (PDF-4+ 2013 RDE	3) 04-015-3	3102
0							
Quantitative analys	sis results						
		Pt	nase name		Content(%)		
-		m	agnetite, <u>syn</u>		100.0(19)		
Lattice information							
Phase name	a(A)	b(A)	c(A)	alpha(deg)	beta(deg)	gamma(deg)	V(A^3)
magnetite, <u>syn</u>	8.3956(15)	8.3956(15)	8.3956(15)	90.000000	90.000000	90.000000	591.78(18)
Phase name		Space group		Z	Z	Calc. density	(g/cm^3)
magnetite, <u>syn</u>		227 : Fd-3m,choice-2		8	0.042	5.201	
Structure determin	ation						
Refinement							
Measurement range: 1 Number of refined par	0.0114-89.9917de ameters: 21	g_Refinementrange:	10.0114-89.9917deg (1	1.09 A)			
Phase name		At	omic coords		# of indep. re	efins	
magnetite, <u>syn</u>		Fr	actional coords		21		

Rwp = 5.96% S = 1.0843

LAMPIRAN B

Hasil Rifinement dari X-ray Diffractometer (XRD) dari Material Komposit LFP/C pada Tiap Variasi Temperatur Kalsinasi

A. Hasil PDXL LFP/C-400

Qualitative analysis results				
Phase name	Formula	Figure of merit	Phase reg. detail	DB card number
Triphylite	Li Fe (PO4)	1.615	ICDD (PDF-4+ 2013 RDB)	00-040-1499
Lithium Iron Phosphate	Li Fe (P2 07)	1.045	ICDD (PDF-4+ 2013 RDB)	04-011-6388
Hematite, syn	Fe2 O3	1.135	ICDD (PDF-4+ 2013 RDB)	00-033-0664
Phase name	Formula	Space group	Phase reg. detail	DB card number
Triphylite	Li Fe (PO4)	62 : Pnma	ICDD (PDF-4+ 2013	00-040-1499
Lithium Iron Phosphate	Li Fe (P2 O7)	4 : P1211,unique-b	ICDD (PDF-4+ 2013	04-011-6388
Hematite, syn	Fe2 O3	167 : R-3c,hexagonal	ICDD (PDF-4+ 2013	00-033-0664

Lattice constants

Angular correction

Analysis res	uns							
Data set name		a(A)	b(A)	c(A)		alpha(deg)	beta(deg)	gamma(deg)
400-10		10.314(3)	6.078(2)	4.6459(13)		90.000000	90.000000	90.000000
400-10		4.815(3)	8.0735(10)	6,945(4)		90.000000	109,43(3)	90.000000
400-10		5.0352(16)	5.0352(16)	13.762(5)		90.000000	90.000000	120.000000
Phase name		a(A)	b(A)	с(A)	aipha(deg)	beta(deg)	gamma(deg)	V(A^3)
Triphylite		10.314(3)	6.078(2)	4.6459(13)	90.000000	90.000000	90.00000	291.26(15)
Lithium	Iron	4.815(3)	8.0735(10)	6.945(4)	90.000000	109,43(3)	90.000000	254,6(2)
Hematite, syn		5.0352(16)	5.0352(16)	13.762(5)	90.000000	90.000000	120.000000	302.16(17)

Crystal struct	ure analysis	esults					
Indexing							
Phase name		Formula	Figure of me	erit	Phase reg. detail	DB card	number
Triphylite		LiFe(PO4)	1.615	an.	ICDD (PDF-4+ 2013 RDB)	00-040-1	499
Lithium Iron Phose	phale	LiFe(P2O7)	1.045		ICDD (PDF-4+ 2013 RDF)	04-011-6	388
Hematite, syn.		Fe2 03	1,135		ICDD (PDF-4+ 2013 RDB)	00-033-0	664
Quantitative an	nalysis results						
		P	ase name		Content(%)		
-		Jt	ipbylite.		31(3)		
-		Lit	hium Iron Phosphate		48(3)		
1		He	amatite, şyn.		21(2)		
Lattice informa	ition						
Phase name	a(A)	b(A)	c(A)	alpha(deg)	beta(deg)	gamma(deg)	V(A^3)
Triphylite	10.314(3)	6.078(2)	4.6459(13)	90.000000	90.000000	90.000000	291,26(16)
Lithium Ir	on 4.815(3)	8.0735(10)	6,945(4)	90.000000	109.43(3)	90.000000	254.6(2)
Hematite, syn.	5.0352(16)	5.0352(16)	13.762(5)	90,000000	90,00000	120.000000	302,16(17)
Phase name		Space group		Z	Z	Calc. density	(g/cm*3)
Triphylite		62 : Roma		4	0.500	3 597	
Lithium Iron Phos	phate	4 : P1211, unique-b		2	1.000	3.087	
Hematite, syn	1.20	167 : R-3c hexagonal		6	0.167	5.277	
Structure deter	mination						
Ser as any o dotor	and the second second						
Refinement							
Number of refined	parameters: 47						
Phase name		At	omic coords		# of indep. ref	05	
Tripbylite		Fr	actional coords		100		
Lithium Iron Phos	phate	Fr	actional coords		168		
Hematite, syn		Fr	actional googes		.23		

Rwp = 6.90% S = 1.0665

B. Hasil PDXL LFP/C-500

Qualitative analysis	results			
Phase name	Formula	Figure of merit	Phase reg. detail	DB card number
Jriphylite, syn	Li Fe (PO4)	1.730	ICDD (PDF-4+ 2013 RDB)	04-015-7065
Hematite, syn	Fe2 O3	2.982	ICDD (PDF-4+ 2013 RDB)	01-080-5409
Phase name	Formula	Space group	Phase reg. detail	DB card number
Triphylite, syn	LiFe (PO4)	62 : Roma	ICDD (PDF-4+ 2013	04-015-7065
Hematite, syn	Fe2 O3	167 : R-3c,hexagonal	ICDD (PDF-4+ 2013	01-080-5409

Lattice constants Angular correction

Analysis results

10.245(19) 5.040(3)	6.074(11)	4.804(9)		90.000000	90.000000	90.000000
5.040(3)	5 (MO/3)	4/5 777 8/05				
	3,040(0)	13.774(5)		90.000000	90.000000	120.000000
a(A)	b(A)	c(A)	alpha(deg)	beta(deg)	gamma(deg)	V(A*3)
10.245(19)	6.074(11)	4.804(9)	90.000000	90.000000	90,000000	299.0(9)
5.040(3)	5.040(3)	13.774(6)	50.000000	90,000000	120,000000	303.0(3)
	a(A) 10.245(19) 5.040(3)	a(A) b(A) 10.245(19) 6.074(11) 5.040(3) 5.040(3)	s(A) b(A) c(A) 10.245(19) 6.074(11) 4.804(9) 5.040(3) 5.040(3) 13.774(6)	s(A) b(A) c(A) elpha(deg) 10.245(19) 6.074(11) 4.804(9) 90.00000 5.040(3) 5.040(3) 13.774(6) 90.00000	s(A) b(A) c(A) elpha(deg) beta(deg) 10.245(19) 6.074(11) 4.804(9) 90.000000 90.000000 5.04D(3) 5.04D(3) 13.774(6) 50.000000 90.000000	s(A) b(A) c(A) s[pha(deg)] beta(deg) gamma(deg) 10.245(19) 6.074(11) 4.804(9) £0.000000 90.000000 90.000000 5.040(3) 5.040(3) 13.774(6) \$0.000000 90.000000 120.000000

Crystal structure analysis results

			_	
Formula	Figure of merit	Phase reg. detail	DB card number	
LiFe(PO4)	1.730	ICDD (PDF-4+ 2013 RDB)	04-015-7065	
Fe2 03	2.982	ICDD (PDF-4+ 2013 RDB)	01-080-5409	
	Formula Li Fe (P O4) Fe2 O3	Formula Figure of merit Li Fe (P O4) 1.730 Fe2 O3 2.982	Formula Figure of merit Phase reg. detail Li Fe (P O4) 1.730 ICDD (PDF-4+ 2013 RDB) Fe2 O3 2.982 ICDD (PDF-4+ 2013 RDB)	Formula Figure of merit Phase reg. detail DB card number Li Fe (P O4) 1.730 ICDD (PDF-4+ 2013 RDB) 04-015-7065 Fe2 O3 2.982 ICDD (PDF-4+ 2013 RDB) 01-080-5406r

Quantitative analysis results

		4	Phase name		Content(%	5)	
-		1	Imphylite, syn	62(5)			
-		4	lematite, syn		38(5)		
Lattice informa	tion						
Phase name	a(A)	b(A)	c(A)	alpha(deg)	beta(deg)	gamma(deg)	V(A#3)
Triphylite, syn	10,245(19)	6.074(11)	4.804(9)	90.000000	90.000000	90.000000	299.0(9)
Hematite, syn	5.040(3)	5.040(3)	13.774(6)	90.000000	90,000000	120,000000	303.0(3)
Phase name		Space group		Z	Z'	Calc. densit	y(g/cm^3)
Triphylite, syn		62 : Eoma		4	0.500	3.584	
Hematite, syn.		167 : R-3c,hexagonal	1	6	0.167	5.546	

Structure determination

Refinement

Phase name	Atomic coords	# of indep. refins	
Triphylite, syn	Fractional coords	101	
Hematite, syn	Fractional coords	.21	

Ewg = 10.58% S = 1 1374

C. Hasil PDXL LFP/C-600

Qualitative analysis results									
Phase name	Formula	Figure of merit	Phase reg. detail	DB card number					
Lithium Iron Phosphate	Li Fe (PO4)	0.503	ICDD (PDF-4+ 2013 RDB)	01-080-6319					
Lithium Iron Phosphate	Li2 Fe (P2 O7)	1.116	ICDD (PDF-4+ 2013 RDB)	04-017-3008					
-									
Phase name	Formula	Space group	Phase reg. detail	DB card number					
Lithium Iron Phosphate	Li Fe (PO4)	62 : Pnma	ICDD (PDF-4+ 2013	01-080-6319					
Lithium Iron Phosphate	Li2 Fe (P2 O7)	14 : P121/c1,unique-b,cell-1	ICDD (PDF-4+ 2013	04-017-3008					

Lattice constants

Angular correction

Analysis results

Data set name		a(A)	b(A)	c(A)		alpha(deg)	beta(deg)	gamma(deg)
C6		10.319(4)	6.002(3)	4.692(2)		90.000000	90.000000	90.000000
C6		11.019(13)	9.753(11)	9.809(11)		90.000000	101.70(5)	90.000000
Phase name		a(A)	b(A)	c(A)	alpha(deg)	beta(deg)	gamma(deg)	V(A^3)
Lithium	Iron	10.319(4)	6.002(3)	4.692(2)	90.000000	90.00000	90.000000	290.6(2)
Lithium	Iron	11.019(13)	9.753(11)	9.809(11)	90.000000	101.70(5)	90.000000	1032(2)

Crystal structure analysis results								
Indexing								
Phase name	Formula	Figure of merit	Phase reg. detail	DB card number				
Lithium Iron Phosphate	LiFe(PO4)	0.503	ICOD (PDF-4+ 2013 RDB)	01-080-6319				
Lithium Iron Phosphate	Li2 Fe (P2 07)	1,116	ICOD (PDF-4+ 2013 RDB)	04-017-3008				

Quantitative analysis results

Phase name Jithium Iron Phosphate					Content(%)					
					69.1(15)					
ithium Iron	hium Iron Phosphate					31(2)				
attice info	ormatio	1								
hase name	. <u> </u>	a(A)	b(A)	c(A)	alpha(deg)	beta(deg)	gamma(deg)	V(A*3)		
ithium	Iron	10.319(4)	6.002(3)	4.692(2)	90.000000	90.000000	90.000000	290.6(2)		
lithium	Iron	11.019(13)	9.753(11)	9.809(11)	90.000000	101.70(5)	90.000000	1032(2)		
hase name			Space group		Z	Z	Calb. density	(g/cm^3)		
ithium Iron	Phospha	te	62 : Eoma	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	0.500	3.589			
ithium Iron	Phospha	te	14 : P121/c1.unique	b.cell-1	8	2,000	3.106			

Structure determination

Refinement

Vumber of refined parameters: 41							
Phase name	Atomic coords	# of indep. reflos					
Lithium Iron Phosphate	Fractional coords	48					
Lithium Iron Phosphate	Fractional coords	297					
caracter a contra notipitato	The second se	ED1					

Ewp = 28.01% S = 1.2975

D. Hasil PDXL LFP/C-700

Qualitative analysis results									
Phase name	Formula	Figure of merit	Phase reg. detail	DB card number					
Lithium Iron Phosphate	Li Fe (P O4)	0.336	ICDD (PDF-4+ 2014 RDB)	04-016-0416					
Hematite, syn	Fe2 O3	0.712	ICDD (PDF-4+ 2014 RDB)	01-089-0599					
Phase name	Formula	Space group	Phase reg. detail	DB card number					
Lithium Iron Phosphate	Li Fe (PO4)	62 : Pnma	ICDD (PDF-4+ 2014	04-016-0416					
Hematite, syn	Fe2 O3	167 : R-3c,hexagonal	ICDD (PDF-4+ 2014	01-089-0599					

Lattice constants

Angular correction

Analysis results

Data set name		a(A)	b(A)	c(A)		alpha(deg)	beta(deg)	gamma(deg)
C7_2		10.308(2)	5.9989(12)	4.6928(10)		90.000000	90.000000	90.000000
C7_2		5.0287(17)	5.0287(17)	13.787(6)		90.000000	90.000000	120.000000
Phase name		a(A)	b(A)	c(A)	alpha(deg)	beta(deg)	gamma(deg)	V(A^3)
Lithium	Iron	10.308(2)	5.9989(12)	4.6928(10)	90.000000	90.000000	90.000000	290.19(10)
Hematite, syn		5.0287(17)	5.0287(17)	13.787(6)	90.000000	90.000000	120.000000	301.9(2)

Crystal structure analysis resul	l
Indexing	

Phase name	Formula	Figure of merit	Phase reg. detail	DB card number
Lithium Iron Phosphate	LiFe(PO4)	D.336	IGOD (PDF-4+ 2014 RDB)	04-016-0416
Hematite, syn	Fe2 03	0.712	ICOD (PDF-4+2014 RDB)	01-089-0599

Quantitative analysis results

	Phase name Lithium Iron Phosphate				Content(%	a)		
-					93.3(11)			
				Hematite, syn		6.7(11)		
Lattice inform	nation							
Phase name		e(A)	b(A)	c(A)	alpha(deg)	beta(deg)	gamma(deg).	V(A^3)
Lithium	Iron	10.308(2)	5.9989(12)	4.6928(10)	90.000000	90.000000	90.000000	290.19(10)
Hematite, syn.	- 1	5.0287(17)	5.0287(17)	13.787(6)	90.000000	90,000000	120.000000	301.9(2)
Phase name			Space group		Z	Z'	Calc. density	(g/cm^3)
Lithium Iron Pho	osphate		62 : Poma		.4	0.500	3.612	

 Hematile, syn.
 167 - R-3c hexagonal
 6
 0.167
 5.285

 Structure determination
 6
 0.167
 5.285

mar

+

Refinement

hase name	Atomic coords	# of indep refins	
ithium Iron Phosphate	Fractional coords	48	
ematite, syn	Fractional coords	11	

Bwg = 23.98% S = 1.3118

LAMPIRAN C

Hasil Pengujian Particle Size Analyzer (PSA)

(LFP/C-400)

			Size (d.nm	% Intensity:	St Dev (d.n
Z-Average (d.nm):	236.5	Peak 1:	245.8	96.7	113.2
Pdl:	0.315	Peak 2:	5282	3.3	417.9
Intercept:	0.919	Peak 3:	0.000	0.0	0.000
Result quality	Good	Peth 1:	0.00.0		

(LFP/C-500)

(LFP/C-600)

Results

			Size (d.nm	% Intensity:	St Dev (d.n
Z-Average (d.nm):	301.9	Peak 1:	386.4	96.3	221.2
Pdl:	0.340	Peak 2:	4792	3.7	729.7
Intercept:	0.853	Peak 3:	0.000	0.0	0.000
Result quality	Good				

(LFP/C-700)

LAMPIRAN D

Hasil Pengujian Performa Baterai Material LFP/C

1. Charge-Discharge

Baterai #15 (LFP/C-400)

						c	apacity Data I	Report						
					Runnin	g Time : 20	15/ 3/ 16/ 15:	21 - 2015/ 3	18/ 2:34					
File Nan Cycle Na Memo :	ne : CDBat1: ame : CD Ba	5 2002.std 1 0.025m	Test Cycle	er : Bat15 e Creator		G	oods No. : /eight : 0.04g							
Cycle	Current(A)	DisCha Hour	arge (1) AHr	AHr/g	Current(A)	Char Hour	ge (2) AHr	AHr/g	Current(A)	DisCh	arge (3) AHr	AHr/g	DisCharg Hour	e Rest (4) V
12345678	-25.000e-6	1:25:20.3	-35.512e-6	-887.81e-6	25.000e-6 25.000e-6 25.000e-6	5:15:22.3 4:24:10.0 4:09:17.7	131.29e-6 109.91e-6 103.72e-6	3.2822e-3 2.7478e-3 2.5930e-3	-25.000e-6 -25.000e-6 -25.000e-6	7:04:34.2 6:26:31.0 5:57:31.6	-176.91e-6 -160.99e-6 -148.81e-6	-4.4227e-3 -4.0248e-3 -3.7203e-3	30:01.0	2.4518e+0

ave & Clos	se Can	cel	Test Info.		3	Sampling Paste	Туре	On/	- Sampl Cond.	ing Condition — Value	Delta-Time
Type Value Scan Rate I Range NO Char 1 Next	Control C Rest 3.5700e+0 0.0000e+0 Auto see Step Step Tim	verticition	Coop Type - Next Cycle Cuop Count Cond. Value >	Add Ste Insert Ste Delete Str No. S 1 15 e c 0:10	p p p p p p p p p p p p p p	Step <u>Copy</u> Step <u>Copy</u> Step Pagte <u>Prev. Step</u> Next Step Type C	Imme Timme IdV/dtj IdV/dtj IdV/dtj IdV/dtj			0:10 0.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 dt	(d) 0:00 0:00 0:00 Cut off Condition Add Insert Delete Copy Paste
Step No 1-1 2-1 3-1 4-1 5-1	Step Name 1STEP 2STEP 6STEP 7STEP 17STEP	Type Rest CNDV Current Current Rest	Value (Scan R 2.2000e+0 25.000e-6 -25.000e-6	ate)	Range / Lo / Next Auto / C-0 Auto / C-0 Auto / C-3 / Next	pp Turn Ste Next Step Next Step 6STEP End Step	p Cut-off TIME TIME VOLT VOLT TIME	F Cond > 0 > 1 > 3.5 < 2.0 > 3	lition :10 :10 000e+0 000e+0 0:01		

Baterai #9 (LFP/C-500)

		Runni	Ca == ng Time : 20	apacity Data 15/3/2/15	Report 39 - 2015/	3/ 6/ 11:15				
File Nan Cvcle Na Merno :	ne : CDBat9 2002.sfd ame : CD Batt 25mik	Tester : Bat9 2 Cycle Creator :		Q V	Goods No. : Veight : 0.02	g				
Cycle	DisCharge Rest (1) Hour V	Charge Rest (2) Hour V	Current(A)	Charge Hour	e (3) AHr	AHr/g	 Current(A)	DisCha Hour	urge (4) AHr	AHr/g
1 2 3 4 5 6 7 8	10.0 2.2819e+0 		25.000e-6 25.000e-6 25.000e-6	5:22:47.1 4:34:59.2 6:59:33.2	134.31e-6 114.39e-6 174.80e-6	6.7153e-3 5.7197e-3 8.7401e-3	-25.000e-6 -25.000e-6 -25.000e-6	5:45:51.1 59:34:02.0 8:47:29.0	-143.93e-6 -1.4969e-3 -220.31e-6	-7.1966e-3 -74.845e-3 -11.016e-3

Baterai #14 (LFP/C-600)

File Nan Cycle Na Merno :	ne : CDBat ame : CD B	14 2005.sfd att 25to5	Test	er : Bat14 e Creator :		Ge	oods No.: eight : 0.04g			Runnir	Car ng Time : 2015	bacity Data	Report 5: 3 - 2015/ 3	/ 15/ 14:11
Cycle	DisCharge	Rest (1) V	Current(A)	DisCha Hour	arge (2) AHr	AHr/g	Current(A)	Charg	ge (3) AHr	AHr/g	Current(A)	DisCha Hour	arge (4) AHr	AHrig
12345678910 1111213	1:10.0	2.5811e+0	-25.000e-8	9:26:37.8	-236.486-6	-5.9120e-3	25.000e-8 25.000e-8 25.000e-6	15:13:08.6 5:26:15:2 2:33:20:2	381.73e-6 135.76e-6 63.904e-6	9.5431e-3 3.3940e-3 1.5976e-3	-25.000e-81 -25.000e-6 -25.000e-6	9:27:05.9 8:23:41.5 4:42:04.0	-488,10e-6 -210,09e-6 -117,25e-6	-12.203e-3 -5.2524e-3 -2.9312e-3

Baterai #20 (LFP/C-700)

			Testints	1		Councilla or Donato			- Sampli	ing Condition –	
save & Cit	use Can	cei	Test Into.]	_	Sampling Paste	Type	On/	Cond	Value	Delta-Ti
	Control C	ondition —		1	1	Sampling Copy		Off			(dt)
		_	Loop Type -	Add Step			Time	$\mathbf{\nabla}$	>	0:10	-
Тура	e Rest	-	Next	Insert Step		Step Copy	1				
		_	C. Cycle						>	0.0000e+0	0:00
value	e 0.0000e+0		- Cycle	Delete Ste	p	Step Paste	IdVdti			0.0000e+0	0:00
Scan Rate	e 0.0000e+0	_	C Loop								
		_	Count	No. St	ep Name	Prev. Step	[dT/dt]		>	0.0000e+0	0:00
I Range	e Auto	-	0	145	STEP	Next Step	IdV2/dtl	Г	>	0.0000e+0	0:00
			1-			wext Step				1	1 3.00
NO Cha 1 <mark>Nex</mark>	inge Step t Step <mark>▼</mark> Tin	Type ne(s)_▼	Cond. Va	lue dt <mark>::00:01</mark>	And	d Type (Cond. Valu	ıe		dt	Cut of Condition Add Insert
NO Cha 1 <mark>Nex</mark>	inge Step t Step ▼ ∫ Tim	Type ne(s) _▼	Cond. Va	- dt 1:00:01	: And	i Type (Cond. Valu	16		dt	Cut of Condition Add Insert Delete Copy Paste
NO Cha 1 Nex Step No	inge Step t Step ▼	Type ne(s) ▼ Type	Cond. Va	lue dt :00:01 Rate)	And	i Type (oop Turn St	Cond. Valu	Je f Cond	ition	dt	Cut of Condition Add Insert Delete Copy Paste
NO Cha 1 Nex Step No 1-1	Inge Step t Step Tim Step Name 1aSTEP	Type Type Rest	Cond. Va	- dt :00:01 Rate)	And	d Type (oop Turn St	cond. Vak	10 f Cond > 12:0	ition 10:01	dt	Cut of Condition Add Insert Delete Copy Paste
NO Cha 1 Nex Step No 1-1 2-1	Inge Step t Step Tim Step Name 18STEP 1STEP	Type re(s) ▼ Type Rest Current	Cond. Va	- dt	Range / L /Next Auto / C-0	d Type (cop Turn St Next Ste Next Ste	ep Cut-of P TME P VOLT	f Cond > 12:(< 2.5	ition 10:01 1000=+0	dt	Cut of Condition
NO Cha 1 Nex Step No 1-1 2-1 3-1 4-1	Inge Step t Step Tim Step Name 1aSTEP 1STEP 4STEP SSTEP	Type re(s) Type Rest Current Current	Cond. Va ≥ 12 Value (Scan -25.000e-6 25.000e-6 25.000e-6 25.000e-6	- dt	Range / L /Next Auto / C-0 Auto / C-0	oop Turn St Next Ste Next Ste Next Ste	ep Cut-of p TME p VOLT VOLT	f Cond > 12:0 < 2.5 > 3.5 < 2.5	ition 10:01 000e+0 000e+0	dt	Cut of Conditi Add Insert Delete Copy Paste
NO Cha 1 Nex Step No 1-1 2-1 3-1 4-1 5-1	Step Name 18STEP 18STEP 18STEP 4STEP 5STEP 5bSTEP	Type Type Rest Current Current Current	Cond. Va > 12 Value (Scan -25.000e-6 -25.000e-6 -25.000e-6	- (lue dt ::00:01	Range / L /Next Auto / C-0 Auto / C-3 Auto / C-3	t Type (cop Turn St Next Ste Next Ste Next Ste Next Ste Next Ste Next Ste Next Ste Next Ste Next Ste Next Ste	ep Cutof p TME p Volr p Volr volr p Volr	f Cond > 12:0 > 3.5 < 2.5 > 3.5 < 2.5 > 3.5	ition 00:01 000e+0 000e+0 000e+0 000e+0	dt	Cut of Condition Add Insert Delete Copy Paste
NO Cha 1 Nex Step No 1-1 2-1 3-1 4-1 5-1 6-1	Inge Step t Step V Tin Step Name 1aSTEP 1STEP 4STEP 5STEP 5bSTEP 5bSTEP 5bSTEP	Type Type Rest Current Current Current Current Current	Cond. Va 12 Value (Scan -25.000e-6 -25.000e-6 -25.000e-6 -25.000e-6	- dt dt ::00:01	Range / L /Next Auto / C-0 Auto / C-0 Auto / C-3 Auto / C-0 Auto / C-0	t Type (cop Turn St Next Ste Next Ste Ste Ste Ste Ste Ste Ste Ste	Cond. Value ep Cut-of ep TimE ep VOLT vOLT VOLT vOLT VOLT	f Cond > 12:0 < 2.5 > 3.5 < 2.5 > 3.5 < 2.5	tion 000e+0 000e+0 000e+0 000e+0 000e+0 000e+0	dt	Cut of Condition

2. Cyclic Voltametri

	1	1	1				1		Samol	ing Condition -	
Save & Clo	se Can	icel	Test Info.			Sampling Paste		0.0/	Jampi	ing contaition	Delta Time
	Control C	Condition				Sampling Copy	Туре	Off	Cond.	Value	(dt)
			- Loop Type -	<u>A</u> dd	Step		Time			0:10	-
Туре	VSCAN	-	Next	Insert	Step	Step Copy	1		4		
Value	2 6550010	- 00	C Cycle	· ·	<u> </u>				>	0.0000e+0	0:00
value	2.05500+0	(v)	C .	Delete	Step	Step Pa <u>s</u> te	dVdt		>	0.0000e+0	0:00
Scan Rate	50.000e-3	(mV/s)	C Loop			-	1 147748				0.00
10		_	Count	No.	Step Name	Prev. Step				0.000000+0	10.00
TRange	Auto	•	0	1	2STEP	Next Step	dV2/dt		>	0.0000e+0	0:00
NO Cha 1 <mark>Next</mark>	nge Step t Step 👻 🔽 Vo	Type • <mark>Itage(V</mark> ▼	Cond. Val.	ue D0e+0	dt Ai	nd Type C	ond. Valu	ie		dt	Cut off Condition Add Insert Delete
NO Cha 1 <mark>Next</mark>	nge Step t Step 💌 🔽	Type Mage(V ▼	Cond. Valu	ue 00e+0	dt Ar	nd Type C	ond. Valu	ie		dt	Cut off Condition Add Insert Delete Copy Paste
NO Cha 1 Next	nge Step t Step 💌 Vo Step Name	Type	Cond. Valu	ue 00e+0 Rate)	dt Ar	nd Type C	ond. Valu	ie f Cond	ition	dt	Cut off Condition Add Insert Delete Copy Paste
NO Cha 1 Next Step No 1-1	nge Step t Step 💌 Vo Step Name 2STEP	Type tage(V -	Cond. Value 4.000	ue 00e+0 Rate) 50.000e-3)	dt Ar	nd Type C	p Cut-of	ie f Cond > 4.01	ition 000e+0	dt	Cut off Condition Add Insert Delete Copy Paste
NO Cha 1 Next Step No 1-1 2-1	nge Step t Step Vo Step Name 2STEP 3aSTEP	Type ittage(V Type VSCAN VSCAN	Cond. Value > 4.000 Value (Scan 2.6550e+0 (4.0000e+0 (-	ue 00e+0 Rate) 50.000e-3) 50.000e-3)	dt Ar	nd Type C Loop Turn Ste ext Next Ste -0 Next Ste	p Cut-of VOLT VOLT	f Cond > 4.00 < 2.51	ition 000e+0 000e+0	dt 🔹	Cut off Condition Add Insert Delete Copy Paste
NO Cha 1 Next Step No 1-1 2-1 3-1 4-1	nge Step t Step v Vo Step Name 2STEP 3aSTEP 3STEP 3STEP	Type ittage(V ▼) Type VSCAN VSCAN VSCAN	Value (Scan 2.6550e+0 (1 4.000e+0 (- 2.500e+0 (1 4.0000e+0 (-	Rate) 50.000e-3) 50.000e-3) 100.00e-3) 100.00e-3)	dt Ar	nd Type C Loop Turn Ste ext Next Ste 0 Nex	p Cut-of VOLT VOLT VOLT	f Cond > 4.00 < 2.50 > 4.00	ition 000e+0 000e+0 000e+0	dt	Cut off Condition Add Insert Delete Copy Paste
NO Cha 1 Next Step No 1-1 2-1 3-1 4-1 5-1	nge Step t Step Vo Step Name 2STEP 3aSTEP 3STEP 9STEP 10STEP	Type tage(V ▼ Type VSCAN VSCAN VSCAN VSCAN VSCAN	Value (Scan 2.6550e+0 (4.0000e+0 (- 2.5000e+0 (4.0000e+0 (- 2.5000e+0 (Rate) 50.000e-3) 50.000e-3) 100.00e-3) 100.00e-3) 100.00e-3)	dt Ari	Loop Turn Ste ext Next Ste -0 Next Ste -0 Next Ste -0 Next Ste -0 Next Ste ext Next Ste -0 Next Ste ext Next Ste	p Cut-of VOLT VOLT VOLT VOLT VOLT	f Cond > 4.0 < 2.5 > 4.0 < 2.5 > 4.0	ition 000e+0 000e+0 000e+0 000e+0 000e+0	dt	Cut off Condition Add Insert Delete Copy Paste
NO Cha 1 Next Step No 1-1 2-1 3-1 4-1 5-1 6-1	nge Step t Step ▼ Vo Step Name 2STEP 3STEP 9STEP 10STEP 11STEP	Type Type VSCAN VSCAN VSCAN VSCAN VSCAN VSCAN	Value (Scan 26550e+0 (4.000e+0 (- 2.5000e+0 (4.0000e+0 (- 2.5000e+0 ()	Rate) 50.000e-3) 50.000e-3) 100.00e-3) 100.00e-3) 200.00e-3) 200.00e-3)	dt An	hd Type C Loop Turn Ste ext Next Ste -0 Next Ste ext Next Ste -0 Next Ste ext Next Ste -0 Next Ste -0 Next Ste	p Cut-of VOLT VOLT VOLT VOLT VOLT VOLT	f Cond > 4.00 < 2.51 > 4.00 < 2.51 > 4.00 < 2.51 > 4.00 < 2.51 > 4.00	ition 000e+0 000e+0 000e+0 000e+0 000e+0 000e+0	dt	Cut off Condition Add Insert Delete Copy Paste

,	VSCAN	Charg Hour	ge (3) AH	AHr/g	VSCAN	DisCha Hour	arge (4) AHr	AHr/g	VSCAN	Charg	ge (5) AHr	AHr/g	VSCAN	DisCha Hour	arge (6) AHr	AHr/g	DisCharge Res Hour	t (7) v
31	2.5000e+0	4:11:46.1	73.442e-6	1.8360e-3	4.0000e+0	4:11:33.5	-48.560e-6	-1.2140e-3	2.5000e+0	2:05:52.9	44.369e-6	1.1092e-3	4.0000e+0	2:05:47.6	-28.870e-6	-721.74e-6	30:01.0 2.89	12e+0

CV scanrates 100mikr per second.cyc - • • Save & Close Cancel Test Info. Sampling Paste Delta-Time Type On/ Cond. Value Sampling Copy (dt) - Control Condition Loop Type Add Step Time 🔽 > 0:10 Type Rest 💌 • Next Insert Step Step Copy Value 3.5700e+0 C Cycle Step Paste Delete Step C Loop Scan Rate 0.0000e+0 No. Step Name Prev. Step Count 0 I Range Auto 💌 |dV2/dt| > 0.0000e+0 0:00 1 ISTEP Next Step Cut off Condition NO Change Step Type Cond. Value dt And Type Cond. Value 1 Next Step ▼ Time(s) ▼ > 0:10 Add Г Insert Сору Range / Loop Turn Step Cut-off Condition Step No Step Name Type Value (Scan Rate) Type Value (Scan Kate) Rest CNDV 3.4000e+0 VSCAN 3.4000e+0 (100.00e-3) VSCAN 3.6000e+0 (100.00e-3) VSCAN 4.0000e+0 (-200.00e-3) VSCAN 2.5000e+0 (200.00e-3) VSCAN 4.0000e+0 (-200.00e-3) VSCAN 4.0000e+0 (-200.00e-3) 1-1 2-1 1STEP 2STEP / Next Auto / C-0 TIME > 0:10 TIME > 1:00 TIME > 1:00 VOLT < 2.5000e+0 VOLT > 4.0000e+0 VOLT < 2.5000e+0 VOLT > 4.0000e+0 VOLT > 2.5000e+0 VOLT < 2.5000e+0 TIME > 30.01 2STEP 3STEP 8STEP 9STEP 10STEP 11STEP 17STEP 3-1 4-1 5-1 6-1 7-1 Auto / Next Ε Auto / Next Auto / Next Auto / C-0 Auto / Next Auto / C-0 / Next Next Step Next Step Next Step Next Step Next Step -

Baterai #9 (LFP/C 500)

		/	1	7	1		1	7 \	- 3.0
0.04	1	15				1	12	1	V 2.5
0.00	>	1			L	~			- 2.0 00
0.04	2	[2		V	-15
-0.00						1	C Graph Legens	1	1 - 1.0
							VOLTAG	E-CV849002	- 0.5

Capacity	Data Report - CVI	Bat9002.sfd															0
											Running Tir	Capacit me : 2015/ 3/	v Data Repo / 9/11:19 - 2	nt 015/ 3/ 10/ 3	2:57		
File Nar Cycle N Memo :	ne : CVBat90 ame : CV sca	002.sfd anrates	Tester Cycle (: bat9 Creator :		G	oods No /eight : 0.04	lg									
Cycle	Total(-AHr)	DisCharge	e Rest (1) v	Charge Rest (2) Hour	v	VSCAN	DisCh	arge (3) AHr	AHr/g	VSCAN	Charg	e (4) AHr	AHr/g	VSCAN	DisCha Hour	rge (5) AHr	AHr/g
1234	0.0000e+0 -122.33e-6 -61.447e-6 0.0000e+0	10.0	2.9305e+0 		1	3.4000e+0	2.30.55.3	-43.369e-6	-1.0842e-3	2.5000e+0	4:11:44.7	169.50e-6	4.2375e-3	4.0000e+0	4:11:35.3	78.960e-6	-1.9740e-3

Capacity D	ata Report - CVBa	9002.sfd															- 6 -
			Running Time :	Capacity 2015/ 3/	Data Report 9/ 11:19 - 20	15/ 3/ 10/ 2	57										
ge (3) AHr	AHr/g	VSCAN	Charge (4 Hour	4) AHr	AHr/g	VSCAN	DisCharge (Hour	5) AHr	AHr/g	VSCAN	Charge (6) Hour	AHr	AHr/g	VSCAN	DisCharge Hour	(7) AHr	AHr/g
43,369e-6	-1.0842e-3	2,5000e+0	4:11:44.7 16	39.50e-6	4.2375e-3	4.0000e+0	4:11:35.3 -78	960e-6	-1.9740e-3	2.5000e+0 2	2.05:52.3 90.5	19e-6	2.2630e-3	1.0000e+0 3	2.05.47.6 -6	1.447e-6 -	1.5362e-3

Baterai #14 (LFP/C-600)

Baterai #20 (LFP/C-700)

i8e-3 2.5000e+0 4:10:59.9	129.26e-6	3.2314e-3	4:10:51.4 -15	51.84e-6	-3.7959e-3	1 12.5000e+0 2:05:29.5	91.209e-6	2.2802e-3	4.0000e+0 2:05:25.7	-105.27e-6	-2.6319e-3	30:01.0	2.7403e+0
------------------------------	-----------	-----------	---------------	----------	------------	---------------------------	-----------	-----------	---------------------	------------	------------	---------	-----------

"Halaman ini sengaja dikosongkan"

BIOGRAFI PENULIS

Metatia Intan Mauliana, lahir di Sidoarjo pada tanggal 15 Februari 1990, merupakan anak pertama dari dua bersaudara pasangan Bapak Djoemarto dan Ibu Hermawati. Penulis telah menempuh pendidikan formal di TK Darma Wanita, SDN Siring 1, SMPN 2 Porong, SMAN 1 Porong, S1 Pendidikan Fisika UM angkatan 2008 dan mengambil S2 Fisika ITS pada 2013 melalui program beasiswa BPP-

DN yang diadakan oleh Dikti. Di Jurusan Fisika ITS, penulis mengambil bidang minat fisika material. Selama menjadi mahasiswa S2 Fisika ITS, penulis mengikuti publikasi artikel ilmiah dalam seminar *International Conference On Research, Implementation And Education Of Mathematics And Sciences (ICRIEMS)* di Yogyakarta dan aktif mengikuti kegiatan yang diselenggarakan oleh jurusan. Akhir kata apabila ada kritik dan saran sehubungan dengan tesis, dapat dikirimkan ke: metatialiana@gmail.com.