Simulasi keruntuhan pelat beton bertulang dengan dan tanpa takikan

Dibiantara, Dimas P (2015) Simulasi keruntuhan pelat beton bertulang dengan dan tanpa takikan. Masters thesis, Institut Teknologi Sepuluh Nopember.

[img]
Preview
Text
3112202009-Dissertation.pdf

Download (4MB) | Preview

Abstract

Pola keruntuhan elemen beton bertulang tentunya tak dapat dipisahkan dari karakteristik material pembentuknya. Secara umum, pola keruntuhannya diawali dengan perkembangan dan perambatan retak rambut yang memang sudah ada saat proses pencetakan elemen ini. Beberapa hal yang mengawali terjadinya retak sebelum pembebanan seperti proses hidrasi yang menimbulkan panas, proses curing yang kurang tepat, penyusutan akibat hilangnya air. Sedangkan pada saat pembebanan, perkembangan dan perambatan retak inisial ini disebabkan oleh terjadinya deformasi pada elemen penahan gaya tarik elemen tersebut, sehingga mempengaruhi deformasi elemen penahan gaya tekannya. Makalah ini membahas dan membandingkan keruntuhan yang terjadi pada pelat beton bertulang secara eksperimental dan numerik (250x100x1000), dengan dan tanpa takikan. Pemodelan pelat dilakukan dengan program bantu CAST3M 13 secara 2D, elemen beton dimodelkan sebagai elemen QUA4 dan elemen baja tulangan sebagai BARR (Beton CEA). Perbandingan secara eksperimental menunjukkan pelat tak bertakik memiliki nilai modulus Young 24 Gpa dengan angka kekakuan 14285 N/mm dan lendutan maksimum 0.7mm, sedangkan pelat bertakik 19 Gpa dengan 13749 N/mm dan 0.8mm. Perbandingan secara numerik menunjukkan nilai lendutan batas elastis pelat tak bertakik sebesar 0.3mm dan batas plastis 4.3mm, sedangkan pelat bertakik sebesar 0.56mm dan 4.4mm. Hal ini mengindikasikan bahwa dampak keberadaan takikan berfungsi untuk meningkatkan nilai lendutan di awal pembebanan, yang berarti kekakuan benda uji menurun secara signifikan pada awal pembebanan. ===================================================================================================================== Collapse scheme of reinforced concrete element certainly can not be separated from the characteristics of the constituent material. In general, the pattern collapse started with the development and propagation of cracks that was already there when the casting process of these elements was finished. Some of the things that led to a crack before loading as hydration process that generate heat, lack of proper curing, shrinkage due to water loss. While at the time of loading, the development and initial crack propagation is caused by the deformation of the retaining elements gravity of these elements, thus affecting the compressive force resisting deformation element. This paper discusses and compares the collapse that occurred in reinforced concrete slab experimentally and numerically (250x100x1000), with and without the notch. Modeling plate carried by program CAST3M 13 in 2D, concrete elements are modeled as QUA4 elements and reinforcing steel elements as BARR (Concrete CEA). Comparison of experimentally showed un-notched plate has a Young's modulus value of 24 GPa with stiffness numbers 14 285 N / mm and a maximum deflection of 0.7mm, while the notched plate 19 GPa to 13 749 N / mm and 0.8mm. Comparison of numerically demonstrate the value of the elastic limit deflection plate was notched by 0.3mm and 4.3mm plastic limit, while the notched plate of 0.56mm and 4.4mm. This indicates that the impact of the presence of the notch serves to increase the deflection value at the beginning of loading, which means the specimen stiffness decreased significantly at the start of loading.

Item Type: Thesis (Masters)
Additional Information: RTS 624.177 65 Dib s
Uncontrolled Keywords: Pelat beton bertulang, pemodelan numerik, takikan, runtuh, retak
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Civil Engineering and Planning > Civil Engineering > 22101-(S2) Master Thesis
Depositing User: - Taufiq Rahmanu
Date Deposited: 21 Nov 2019 04:40
Last Modified: 21 Nov 2019 04:40
URI: https://repository.its.ac.id/id/eprint/71938

Actions (login required)

View Item View Item