

TUGAS AKHIR - MO 141326

ANALISIS UMUR KELELAHAN STRUKTUR CATENARY ANCHORED LEG MOORING BUOY PADA SINGLE POINT MOORING FSO ARCO ARDJUNA SAAT KONDISI TERTAMBAT

Wiradhani Pratama

NRP. 4311 100 001

DOSEN PEMBIMBING :

Nur Syahroni, S.T., M.T., Ph.D. Ir. Mas Murtedjo, M.Eng.

JURUSAN TEKNIK KELAUTAN Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya 2015

FINAL PROJECT - MO 141326

FATIGUE LIFE ANALYSIS OF CATENARY ANCHORED LEG MOORING BUOY STRUCTURE ON SINGLE POINT MOORING FSO ARCO ARDJUNA DUE TO THE INFLUENCE OF MOORING CONDITION

Wiradhani Pratama

NRP. 4311 100 001

SUPERVISORS :

Nur Syahroni, S.T., M.T., Ph.D. Ir. Mas Murtedjo, M.Eng.

DEPARTEMENT OF OCEAN ENGINEERING Faculty of Marine Technology Sepuluh Nopember Institute of Technology Surabaya 2015

ANALISIS UMUR KELELAHAN STRUKTUR CATENARY ANCHORED LEG MOORING BUOY PADA SINGLE POINT MOORING FSO ARCO ARDJUNA SAAT KONDISI TERTAMBAT

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat

Memperoleh Gelar Sarjana Teknik

pada

Program Studi S-1 Jurusan Teknik Kelautan

Fakultas Teknologi Kelautan

Institut Teknologi Sepuluh Nopember

Oleh:

WIRADHANI PRATAMA NRP, 4311 100 001

SURABAYA, AGUSTUS 2015

ü

ANALISIS UMUR KELELAHAN STRUKTUR *CATENARY ANCHORED LEG MOORING BUOY* PADA *SINGLE POINT MOORING* FSO ARCO ARDJUNA SAAT KONDISI TERTAMBAT

Nama Mahasiswa	: Wiradhani Pratama
NRP	: 4311100001
Jurusan	: Teknik Kelautan – FTK ITS
Dosen Pembimbing	: Nur Syahroni, S.T., M.T., Ph.D.
	Ir. Mas Murtedjo, M. Eng

ABSTRAK

Dalam tugas akhir ini akan dilakukan analisa umur kelelahan struktur *catenary* anchored leg mooring buoy pada single point mooring FSO Arco Ardjuna saat kondisi tertambat. Analisa ini dilakukan karena masa pengoperasian FSO Arco Ardjuna akan diperpanjang, oleh karena itu perlu dilakukan analisis umur kelelahan struktur SPM yang dimana merupakan salahsatu fungsi mooring pada FSO Arco Ardjuna. Dengan mengetahui perilaku gerak antara FSO Arco Ardjuna dan Single Point Mooring akibat beban lingkungan perairan pada kondisi tertambat, akan didapatkan nilai tension pada anchor legs dan hawser dari beberapa konfigurasi pembebanan. Selain itu, akan diketahui nilai tekanan hidrostatis dan akselerasi pada struktur Single Point Mooring sebagai input dalam analisis tegangan struktur global. Setelah itu dilakukan analisa tegangan global struktur Single Point Mooring dengan beban tension pada anchor legs dan hawser, selain itu juga beban tekanan hidrostatis, akselerasi struktur dan beban berat keseluruhan struktur itu sendiri. Dari hasil tegangan global, dilakukan perhitungan umur kelelahan struktur SPM dengan menggunakan metode S-N Curve berdasarkan hukum kegagalan Palmgren Miner dengan mengestimasi kumulatif kegagalan fatigue menggunakan metode simplified. Dari hasil pemodelan numerik yang dilakukan, diketahui bahwa perilaku gerak terbesar pada FSO Arco Ardjuna yaitu sebesar 1.104 deg/m untuk gerakan roll saat kondisi light load dan 3.968 deg/m untuk gerakan heave pada SPM saat tertambat dengan FSO Arco Ardjuna kondisi full load. Untuk hasil tension pada anchor legs terbesar yaitu 571.51 kN pada anchor leg1 pada arah 0° dengan safety factor 12.34, dimana hasil ini memenuhi syarat yang dianjurkan oleh ABS yaitu 1.67. Sedangkan hasil tension pada hawser terbesar yaitu 997.07 kN pada hawser 2 pada arah 0^0 dengan safety factor 4.11, dimana hasil ini masih memenuhi syarat yang dianjurkan oleh ABS yaitu 1.82. Setelah itu, didapatkan tegangan maksimum pada struktur SPM sebesar 137.16 MPa dan deformasi sebesar 5.6 mm. Hasil ini masih lebih kecil jika dibandingkan dengan tegangan ijin dan deformasi yang dianjurkan oleh ABS yaitu 225 MPa dan 11.2 mm. Berdasarkan tegangan maksimum tersebut, diperoleh hasil umur kelelahan konstruksi bolder yaitu 68 tahun selama umur operasi.

Kata Kunci: hot-spot stress, maximum principal stress, simplified fatigue assessment, single point mooring

FATIGUE LIFE ANALYSIS OF CATENARY ANCHORED LEG MOORING BUOY STRUCTURE ON SINGLE POINT MOORING FSO ARCO ARDJUNA DUE TO THE INFLUENCE OF MOORING CONDITION

Name	: Wiradhani Pratama
NRP	: 4311100001
Department	: Teknik Kelautan – FTK ITS
Supervisors	: Nur Syahroni, S.T., M.T., Ph.D.
-	Ir. Mas Murtedjo, M. Eng

ABSTRACT

In this paper, fatigue life that occur in catenary anchred leg mooring buoy structure on single point mooring FSO Arco Ardjuna due to the influence of mooring condition. This analyzing due to operation life of FSO Arco Ardjuna becomes longer, so it is important to do fatigue analysis for Single Point Mooring that became one of moring function of FSO Arco Ardjuna. This case study begins with motion analysis of FSO and Single Point Mooring due to the environment load in mooring condition, then the tension of anchor legs and hawser will be found due to mooring condition. In addition, it will be known the hydrostatic pressure and structure acceleration of Single Point Mooring that used for input of global stress analysis. Based of tension of anchor legs and hawser, and so hydrostatic pressure, structure acceleration and structure's self weight, global stress analysis of Single Point Mooring structure will be done. From the results of the global stress, the calculation will be known for the fatigue life analysis of SPM structure by using S-N curve method based of Palmgren Miner's rules with estimate the cumulative fatigue damage using the method of simplified. Based on the modeling, it is known that the dominant motion for FSO Arco Ardjuna is 1.104 deg/m in roll at light condition and 3.968 deg/m in heave for SPM that moored with full load condition of FSO Arco Ardjuna. Based on the simulation carried out to obtain the maximum tension, the maximum anchor leg tension obtained on the anchor leg 1 is 571.51 kN at heading 0^0 and the safety factor is 12.34. That safety factor was requires by ABS, which is 1.67. And the maximum hawser tension obtained on the hawser 2 is 997.07 kN at heading 0^0 and the safety factor is 4.11. That safety factor was requires too by ABS, which is 1.82. While, the global stress analysis of SPM structure with maximum stress of 137.16 MPa and maximum deformation of 5.6 mm. This stress and deformation is less than the allowable maximum stress required by ABS, 225 MPa and 11.2 mm. based on the maximum stress, obtained the result of fatigue life in bolder construction is 68 years as long as the operation.

Keywords : hot-spot stress, maximum principal stress, simplified fatigue assessment, single point mooring

KATA PENGANTAR

Puji syukur penulis ucapkan kepada Allah SWT yang telah memberikan segala rahmat dan hidayah sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul, "Analisis Umur Kelelahan Struktur *Catenary Anchored Leg Mooring Buoy* Pada *Single Point Mooring* FSO Arco Ardjuna Saat Kondisi Tertambat" ini dengan tepat waktu dan tanpa halangan yang berarti.

Tugas Akhir ini disusun sebagai syarat untuk mendapatkan gelar sarjana (S-1) di Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember Surabaya. Tugas Akhir ini berisi tentang analisis gerakan pada SPM saat kondisi tertambat dengan FSO Arco Ardjuna, kemudian didapatkan *tension* pada *anchor legs* dan *hawser* yang menghubungkan antara SPM dengan FSO untuk dipakai sebagai pembebanan pada pemodelan global struktur sehingga didapatkan hasil tegangan maksimum dan dilanjutkan dengan perhitungan umur kelelahan struktur untuk mengetahui apakah struktur masih aman untuk beroperasi.

Penulis mengharapkan saran dan kritik dari para pembaca demi perbaikan dan kesempurnaan penyusunan dan penulisan berikutnya. Semoga Tugas Akhir ini bermanfaat bagi perkembangan teknologi di bidang rekayasa kelautan, bagi pembaca pada umumnya dan bagi penulis sendiri pada khususnya..

Surabaya, Agustus 2015

Penulis

DAFTAR ISI

COVER	i
LEMBAR PENGESAHAN	ii
ABSTRAK	iii
ABSTRACT	iv
KATA PENGANTAR	•••••V
UCAPAN TERIMA KASIH	vi
DAFTAR ISI	vii
DAFTAR GAMBAR	X
DAFTAR TABEL	xxii
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang Masalah	1
1.2 Rumusan Masalah	4
1.3 Tujuan	4
1.4 Manfaat	5
1.5 Batasan Masalah	5
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI	7
2.1 Tinjauan Pustaka	7
2.2 Dasar Teori	8
2.2.1 Moda Gerak Struktur Apung	8
2.2.2 Konsep Pembebanan	9
2.2.3 Beban Gelombang	10
2.2.4 Beban Arus	10
2.2.5 Beban Angin	11
2.2.6 Response Amplitude Operator (RAO)	11
2.2.7 Spektrum Gelombang	12
2.2.8 Respon Spektra	13
2.2.9 Offset dan Tension maksimum	13
2.2.10 Boundary Condition dan meshing	14

2.2.11 Tegangan Maksimum Utama	16
2.2.12 Metode Perhitungan Kelelahan	16
2.2.13 Kurva S-N	18
2.2.14 Penaksiran kelelahan sederhana (Simplified Fatigue	
Assessment)	19
BAB III METODOLOGI PENELITIAN	21
3.1 Diagram Alir Penelitian	21
3.2 Prosedur Penelitian	23
3.3 Pengumpulan Data	26
BAB IV ANALISIS DAN PEMBAHASAN	31
4.1 Pemodelan Struktur	31
4.1.1 FSO Arco Ardjuna	31
4.1.2 Single Point Mooring	33
4.2 Hidrostatik	34
4.3 Konfigurasi Arah Pembebanan Gelombang	36
4.4 Response Amplitude Operator	37
4.4.1 FSO Arco Ardjuna kondisi mooring	37
4.4.1.1 Light Load – Mooring	38
4.4.1.2 Full Load – Mooring	45
4.4.2 Single Point Mooring kondisi mooring	53
4.4.2.1 Single Point Mooring kondisi mooring dengan	
FSO Arco Ardjuna kondisi <i>light load</i>	53
4.4.2.2 Single Point Mooring kondisi mooring dengan	
FSO Arco Ardjuna kondisi <i>full load</i>	61
4.5 Spektrum Gelombang	68
4.6 Respon Spektra FSO Arco Ardjuna saat kondisi tertambat	69
4.6.1 Respon Spektra FSO Arco Ardjuna – <i>light load</i>	69
4.6.2 Respon Spektra FSO Arco Ardjuna – <i>full load</i>	76
4.7 Respon Spektra Single Point Mooring saat kondisi tertambat	83
4.7.1 Respon Spektra Single Point Mooring tertambat dengan	
FSO Arco Ardjuna kondisi <i>light load</i>	84

4.7.2 Respon Spektra Single Point Mooring tertambat der	ıgan FSO
Arco Ardjuna kondisi <i>full load</i>	91
4.8 Analisis Tegangan Pada Anchor Legs dan Hawser	98
4.9 Analisis Tekanan Hidrostatis dan Structure Acceleration	102
4.10 Pemodelan Struktur Single Point Mooring	103
4.11 Sensitivity Meshing Analysis	
4.12 Pembebanan pada ANSYS Mechanical	
4.12 Analisis Tegangan Pada Struktur SPM	111
4.13 Analisis Umur Kelelahan Struktur SPM	113
BAB V KESIMPULAN DAN SARAN	117
5.1 Kesimpulan	117
5.2 Saran	119
DAFTAR PUSTAKA	
LAMPIRAN A	
LAMPIRAN B	
LAMPIRAN C	
LAMPIRAN D	
LAMPIRAN E	
LAMPIRAN F	
LAMPIRAN G	
BIODATA PENULIS	

DAFTAR TABEL

Tabel 3.1 Principle dimension dan data hidrostatis FSO Arco Ardjuna
Tabel 3.2 Main dimension CALM buoy 27
Tabel 3.3 Karakteristik anchor legs 27
Tabel 3.4 Karakteristik mooring hawser 28
Tabel 3.5 Data lingkungan 29
Tabel 4.1 Main dimension CALM buoy
Tabel 4.2 Data hidrostatik model FSO Arco Ardjuna dari software Maxsurf35
Tabel 4.3 Koreksi hidrostatik data dengan model Maxsurf
Tabel 4.4 Nilai maksimum RAO FSO Arco Ardjuna light condition45
Tabel 4.5 Nilai maksimum RAO FSO Arco Ardjuna full condition 52
Tabel 4.6 Nilai maksimum RAO SPM tertambat dengan FSO Arco Ardjuna light condition
Tabel 4.7 Nilai maksimum RAO SPM tertambat dengan FSO Arco Ardjuna full condition .68
Tabel 4.8 Analisis tension maksumum pada anchor legs pada SPM saat tertambatdengan FSO Arco Ardjuna kondisi light load
Tabel 4.9 Analisis tension maksimum pada anchor legs pada SPM saat tertambatdengan FSO Arco Ardjuna kondisi full load100
Tabel 4.10 Analisis tension maksimum pada hawser pada SPM saat tertambat dengan FSO Arco Ardjuna kondisi light load100
Tabel 4.11 Analisis tension maksimum pada hawser pada SPM saat tertambat dengan FSO Arco Ardjuna kondisi full load100
Tabel 4.12 Analisis tension minimum pada anchor legs pada SPM saat tertambat dengan FSO Arco Ardjuna kondisi light load101
Tabel 4.13 Analisis tension minimum pada anchor legs pada SPM saat tertambat dengan FSO Arco Ardjuna kondisi full load

Tabel 4.14 Analisis tension minimum pada hawser pada SPM saat tertambat dengan FSO Arco Ardjuna kondisi light load1	02
Tabel 4.15 Analisis tension minimum pada hawser pada SPM saat tertambat dengan FSO Arco Ardjuna kondisi full load	02
Tabel 4.16 Tekanan hidrostatis dan percepatan struktur SPM1	03
Tabel 4.17 Tabulasi hasil Maximum Principal Stress untuk variasi kerapatan meshing 1	07
Tabel 4.18 dan Tabal 4.19 di bawah ini menjelaskan perhitungan hot-spot stressdengan menggunakan faktor 1.12	14
Tabel 4.18 Perhitungan Hot-Spot Stress	14
Tabel 4.19 Perhitungan Hot-Spot Stress Range 1	15
Tabel 4.21 Hasil perhitungan kelelahan struktur SPM saat tertambat dengan FSC Arco Ardjuna kondisi light load) 16
Tabel 4.19 Hasil perhitungan kelelahan struktur SPM saat tertambat dengan FSC Arco Ardjuna kondisi full load) 16

DAFTAR GAMBAR

Gambar 1.1 FSO (Floating Storage and Offloading System) Arco Ardjuna2
Gambar 1.2. Single Point Mooring
Gambar 2.1 General Arrangement FSO Arco Ardjuna
Gambar 2.2 Moda gerak struktur apung
Gambar 2.3 Pembuatan mesh pada konstruksi kapal15
Gambar 2.4 Tegangan Maksimum Utama16
Gambar 2.5 Kurva S-N
Gambar 3.1 Flowchart penyelesaian Tugas Akhir
Gambar 3.2 Anchor legs pattern
Gambar 4.1 General Arrangement FSO Arco Ardjuna
Gambar 4.2 Hasil pemodelan FSO Arco Ardjuna pada Maxsurf tampak samping (sheer plan)
Gambar 4.3 Hasil pemodelan FSO Arco Ardjuna pada Maxsurf tmpak depan (body plan)
Gambar 4.4 Hasil pemodelan FSO Arco Ardjuna pada Maxsurf tampak atas (half breadth plan)
Gambar 4.5 Hasil pemodelan FSO Arco Ardjuna pada Maxsurf tampak isometri33
Gambar 4.6 Hasil pemodelan Single Point Mooring pada Autocad tampak 2- dimensi
Gambar 4.7 Hasil pemodelan Single Point Mooring pada Autocad tampak 3- dimensi

Gambar 4.8 Konfigurasi arah pembebanan gelombang
Gambar 4.9 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi light load saat mooring dengan heading pembebanan 0 derajat
Gambar 4.10 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi light load saat mooring dengan heading pembebanan 0 derajat
Gambar 4.11 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi light load saat mooring dengan heading pembebanan 30 derajat
Gambar 4.12 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi light load saat mooring dengan heading pembebanan 30 derajat
Gambar 4.13 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi light load saat mooring dengan heading pembebanan 60 derajat40
Gambar 4.14 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi light load saat mooring dengan heading pembebanan 60 derajat40
Gambar 4.15 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi light load saat mooring dengan heading pembebanan 90 derajat41
Gambar 4.16 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi light load saat mooring dengan heading pembebanan 90 derajat41
Gambar 4.17 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi light load saat mooring dengan heading pembebanan 120 derajat42
Gambar 4.18 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi light load saat mooring dengan heading pembebanan 120 derajat42
Gambar 4.19 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi light load saat mooring dengan heading pembebanan 150 derajat43
Gambar 4.20 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi light load saat mooring dengan heading pembebanan 150 derajat43

Gambar 4.21 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi light
load saat mooring dengan heading pembebanan 180 derajat
Gambar 4.22 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi light load saat mooring dengan heading pembebanan 180 derajat44
Gambar 4.23 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi full load saat mooring dengan heading pembebanan 0 derajat45
Gambar 4.24 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi full load saat mooring dengan heading pembebanan 0 derajat
Gambar 4.25 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi full load saat mooring dengan heading pembebanan 30 derajat
Gambar 4.26 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi full load saat mooring dengan heading pembebanan 30 derajat47
Gambar 4.27 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi full load saat mooring dengan heading pembebanan 60 derajat47
Gambar 4.28 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi full load saat mooring dengan heading pembebanan 60 derajat
Gambar 4.29 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi full load saat mooring dengan heading pembebanan 90 derajat
Gambar 4.30 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi full load saat mooring dengan heading pembebanan 90 derajat49
Gambar 4.31 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi full load saat mooring dengan heading pembebanan 120 derajat
Gambar 4.32 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi full load saat mooring dengan heading pembebanan 120 derajat

Gambar 4.33 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi fu	11
load saat mooring dengan heading pembebanan 150 derajat	50
Gambar 4.34 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi full	
load saat mooring dengan heading pembebanan 150 derajat	51
Gambar 4.35 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi fu	11
load saat mooring dengan heading pembebanan 180 derajat	51
Gambar 4.36 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi full	
load saat mooring dengan heading pembebanan 180 derajat	52
Gambar 4.37 Grafik RAO gerakan translasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardjuna kondisi light load dengan heading	
pembebanan 0 derajat	53
Gambar 4.38 Grafik RAO gerakan rotasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardjuna kondisi light load dengan heading	
pembebanan 0 derajat	54
Gambar 4.39 Grafik RAO gerakan translasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardjuna kondisi light load dengan heading	
pembebanan 30 derajat	54
Gambar 4.40 Grafik RAO gerakan rotasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardjuna kondisi light load dengan heading	
pembebanan 30 derajat	55
Gambar 4.41 Grafik RAO gerakan translasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardjuna kondisi light load dengan heading	
pembebanan 60 derajat	55
Gambar 4.42 Grafik RAO gerakan rotasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardjuna kondisi light load dengan heading	
pembebanan 60 derajat	

Gambar 4.43 Grafik RAO gerakan translasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardjuna kondisi light load dengan heading	
pembebanan 90 derajat	.56
Gambar 4.44 Grafik RAO gerakan rotasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardiuna kondisi light load dengan heading	
pembebanan 90 derajat	.57
Gambar 4.45 Grafik RAO gerakan translasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardjuna kondisi light load dengan heading	
pembebanan 120 derajat	.57
Gambar 4.46 Grafik RAO gerakan rotasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardjuna kondisi light load dengan heading	
pembebanan 120 derajat	.58
Gambar 4.47 Grafik RAO gerakan translasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardjuna kondisi light load dengan heading	
pembebanan 150 derajat	.58
Gambar 4.48 Grafik RAO gerakan rotasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardjuna kondisi light load dengan heading	
pembebanan 150 derajat	.59
Gambar 4.49 Grafik RAO gerakan translasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardjuna kondisi light load dengan heading	
pembebanan 180 derajat	.59
Gambar 4.50 Grafik RAO gerakan rotasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardjuna kondisi light load dengan heading	
pembebanan 180 derajat	.60
Gambar 4.51 Grafik RAO gerakan translasi pada Single Point Mooring saat	
mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembeban	nan
0 derajat	.61

Gambar 4.52 Grafik RAO gerakan rotasi pada Single Point Mooring saat
mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan
0 derajat
Gambar 4.53 Grafik RAO gerakan translasi pada Single Point Mooring saat
mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan
30 derajat
Gambar 4.54 Grafik RAO gerakan rotasi pada Single Point Mooring saat
mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan
30 derajat
Gambar 4.55 Grafik RAO gerakan translasi pada Single Point Mooring saat
mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan
60 derajat
Gambar 4.56 Grafik RAO gerakan rotasi nada Single Point Mooring, saat
maaring dangan ESO Araa Ardiuna kandici full laad dangan haading nambahanan
(0. dansist
60 derajat
Gambar 4.57 Grafik RAO gerakan translasi pada Single Point Mooring saat
mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan
90 derajat
Gambar 4.58 Grafik RAO gerakan rotasi pada Single Point Mooring saat
mooring dengan FSO Arco Ardiuna kondisi full load dengan heading pembebanan
90 derajat
Gambar 4.59 Grafik RAO gerakan translasi pada Single Point Mooring saat
mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan
120 derajat
Gambar 4.60 Grafik RAO gerakan rotasi pada Single Point Mooring saat
mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan
120 derajat

Gambar 4.61 Grafik RAO gerakan translasi pada Single Point Mooring saat
mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan
150 derajat
Gambar 4.62 Grafik RAO gerakan rotasi pada Single Point Mooring saat
mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan
150 derajat
Gambar 4.63 Grafik RAO gerakan translasi pada Single Point Mooring saat
mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan
180 derajat
Gambar 4.64 Grafik RAO gerakan rotasi pada Single Point Mooring saat
mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan
180 derajat
Gambar 4.65 Spektrum Jonswap Perairan Laut Jawa dengan Hs = 1,8 m68
Gambar 4.66 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna
saat kondisi light load tertambat dengan SPM dengan heading pembebanan 0
derajat
Gambar 4.67 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat
kondisi light load tertambat dengan SPM dengan heading pembebanan 0 derajat70
Gambar 4.68 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna
saat kondisi light load tertambat dengan SPM dengan heading pembebanan 30
derajat70
Gambar 4.69 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat
kondisi light load tertambat dengan SPM dengan heading pembebanan 30 derajat/1
Gambar 4.70 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna
saat kondisi light load tertambat dengan SPM dengan heading pembebanan 60
derajat71

Gambar 4.71 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi light load tertambat dengan SPM dengan heading pembebanan 60 derajat72

Gambar 4.73 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi light load tertambat dengan SPM dengan heading pembebanan 90 derajat73

Gambar 4.75 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi light load tertambat dengan SPM dengan heading pembebanan 120 derajat74

Gambar 4.77 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi light load tertambat dengan SPM dengan heading pembebanan 150 derajat75

Gambar 4.79 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi light load tertambat dengan SPM dengan heading pembebanan 180 derajat76

 Gambar 4.81 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi full load tertambat dengan SPM dengan heading pembebanan 0 derajat .77 Gambar 4.82 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi full load tertambat dengan SPM dengan heading pembebanan 30 derajat.....77 Gambar 4.83 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi full load tertambat dengan SPM dengan heading pembebanan 30 derajat78 Gambar 4.84 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi full load tertambat dengan SPM dengan heading pembebanan 60 Gambar 4.85 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi full load tertambat dengan SPM dengan heading pembebanan 60 derajat79 Gambar 4.86 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi full load tertambat dengan SPM dengan heading pembebanan 90 Gambar 4.87 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi full load tertambat dengan SPM dengan heading pembebanan 90 derajat80 Gambar 4.88 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi full load tertambat dengan SPM dengan heading pembebanan 120 Gambar 4.89 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi full load tertambat dengan SPM dengan heading pembebanan 120 derajat81 Gambar 4.90 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi full load tertambat dengan SPM dengan heading pembebanan 150 Gambar 4.91 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi full load tertambat dengan SPM dengan heading pembebanan 150 derajat82 Gambar 4.92 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi full load tertambat dengan SPM dengan heading pembebanan 180 Gambar 4.93 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi full load tertambat dengan SPM dengan heading pembebanan 180 derajat83 Gambar 4.94 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load dengan heading

Gambar 4.95 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 0 derajat
Gambar 4.96 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 30 derajat
Gambar 4.97 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 30 derajat
Gambar 4.98 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 60 derajat
Gambar 4.99 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 60 derajat
Gambar 4.100 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 90 derajat
Gambar 4.101 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 90 derajat
Gambar 4.102 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 120 derajat
Gambar 4.103 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 120 derajat
Gambar 4.104 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 150 derajat
Gambar 4.105 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 150 derajat
Gambar 4.106 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 180 derajat

Gambar 4.107 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 180 derajat	0
Gambar 4.108 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 0 derajat9	1
Gambar 4.109 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 0 derajat9	1
Gambar 4.110 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 30 derajat92	2
Gambar 4.111 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 30 derajat92	2
Gambar 4.112 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 60 derajat92	3
Gambar 4.113 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 60 derajat92	3
Gambar 4.114 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 90 derajat94	4
Gambar 4.115 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 90 derajat94	4
Gambar 4.116 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 120 derajat	5
Gambar 4.117 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 120 derajat93	5
Gambar 4.118 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 150 derajat90	6

Gambar 4.119 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 150 derajat
Gambar 4.120 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 180 derajat
Gambar 4.121 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 180 derajat
Gambar 4.122 Pemodelan pada software ANSYS Aqwa tampak samping98
Gambar 4.123 Pemodelan pada software ANSYS Aqwa tampak isometric99
Gambar 4.125 Hasil pemodelan global pada Autocad – tampak atas104
Gambar 4.126 Hasil pemodelan global pada Autocad – tampak samping104
Gambar 4.127 Hasil pemodelan global pada Autocad – isometris
Gambar 4.128 Hasil pemodelan global pada ANSYS Mechanical105
Gambar 4.129 Meshing struktur
Gambar 4.130 Refinement di daerah kritis
Gambar 4.131 Sensitivitas meshing model struktur SPM108
Gambar 4.132 Beban akselerasi struktur
Gambar 4.133 Beban berat struktur
Gambar 4.134 Beban tekanan hidrostatis
Gambar 4.135 Tension hawser
Gambar 4.136 Tension Anchor Legs
Gambar 4.137 Deformasi pada struktur SPM
Gambar 4.138 Maximum stress struktur
Gambar 4.139 Penomoran titik-titik kritis pada struktur SPM
Gambar 4.140 Konstruksi kritis

BAB I

PENDAHULUAN

1.1 Latar Belakang Masalah

Infrastruktur lepas pantai dapat dikatakan jika infrastruktur tersebut terlepas langsung dari daratan, baik itu struktur tetap maupun terapung. Contoh dari infrastruktur lepas pantai seperti bangunan eksplorasi minyak dan gas bumi, pembangkit listrik tenaga laut, bandara terapung, dan lainlain. *Floating structure* atau struktur terapung merupakan jenis bangunan lepas pantai yang dibiarkan terapung di lautan lepas. Jenis dari struktur terapung ini seperti semi-submersible, spar, kapal, dan lain-lain. Jenis bengunan ini umumnya dibuat bebas bergerak dalam 6 (enam) derajat kebebasan (*heave, surge, sway, pitch, roll, dan yaw*). Untuk menahan ke-enam gerakan ini, struktur terapung dibantu oleh sistem *mooring*.

Berkembangnya teknologi pengeboran migas lepas pantai menyebabkan kecenderungan untuk melakukan eksplorasi dan eksploitasi di laut dalam dengan menggunakan struktur terapung (*floating structure*). FSO merupakan fasilitas terapung yang dioperasikan di suatu ladang minyak dan gas bumi lepas pantai yang berfungsi untuk menerima, menyimpan, dan menyalurkan hidrokarbon. Struktur FSO terdiri dari sebuah struktur apung berbentuk sebuah kapal (dapat berupa bangunan baru atau modifikasi dari kapal tanker) berukuran besar yang ditambatkan secara permanen di tempat operasinya. Dalam penelitian ini membahas mengenai SPM pada FSO Arco Ardjuna.

Gambar 1.1 FSO (Floating Storage and Offloading System) Arco Ardjuna

(Sumber: <u>http://ekanuri.com</u>)

Sarana tambat apung (mooring buoy) banyak digunakan dalam kegiatan tambat lepas kapal tanker khususnya yang mengangkut minyak seperti pada Gambar 1.1 di atas. Hal ini ditempuh selain dari faktor ekonomis juga pertimbangan faktor keselamatan, draft kapal dan praktis karena saran ini dapat dipindah-pindahkan seusai kebutuhan migas. Ada beberapa sarana buoy tambat yang telah ada saat ini, salah satunya adalah SPM/SBM (Single Point Mooring). SPM (Single Point Mooring) adalah struktur yang memiliki sistem penambatan dan cargo transfer yang terintegrasi dimana tanker dapat bertambat pada haluannya dan memungkinkan loading hose berputar mengikuti posisi tanker yang dipengaruhi oleh gelombang dan arus selama pelaksanaan bongkar muat. Sistem *mooring* dimanfaatkan untuk menahan pergerakan bangunan terapung agar tetap pada posisinya. Beragam jenis sistem mooring yang telah ada salah satunya adalah sistem catenary mooring. Catenary merupakan sebuah struktur berbentuk kurva yang biasanya berupa kabel ataupun rantai, menggantung bebas akibat bebannya sendiri. Penambat struktur terapung yang menggunakan prinsip *catenary mooring* bertujuan untuk memanfaatkan berat *mooring* sehingga struktur terapung tertahan di posisinya selama mendapatkan gangguan dari lingkungan laut seperti pada Gambar 1.2 di bawah ini.

Gambar 1.2. Single Point Mooring

(Sumber: http://ekanuri.com)

Kelelahan (fatigue) pada struktur masih menjadi penyebab mayoritas kerusakan pada bangunan laut termasuk mayoritas kerusakan pada bangunan laut termasuk struktur SPM. Perkiraan umur kelelahan dilakukan berdasar pada fluktuasi beban yang akan diterima struktur selama masa operasinya. Beban yang diterima bangunan laut lebih didominasi oleh beban gelombang sehingga menyebabkan bangunan laut mempunyai kecenderungan lebih tinggi untuk mengalami kelelahan, selain itu faktor operasi pada tingkat tertentu menambah beban siklis sehingga struktur menjadi bertambah kritis (Djatmiko, 2003).

Pada kasus ini, *buoy* memerlukan adanya analisis umur kelelahan struktur yang dijadikan sebagai acuan apakah struktur tersebut masih layak untuk dioperasikan atau tidak. Dengan memodelkan FSO Arco Ardjuna dan SPM (*Single Point Mooring*) dalam kondisi tertambat, akan didapatkan respon struktur akibat adanya eksitasi gelombang pada FSO dan SPM.

Selanjutnya mencari tegangan global yang terjadi pada struktur SPM (*Single Point Mooring*) dalam kondisi tertambat yang didapatkan dari analisa tegangan pada *hawser* dan rantai jangkar pada SPM. Sehingga didapatkan umur kelelahan dari konstruksi SPM dengan menggunakan kurva S-N sesusai dengan hukum Palmgren Miner dengan mengestimasi kumulatif kegagalan *fatigue* dengan menggunakan metode *simplified fatigue assessment*.

1.2 Rumusan Masalah

Permasalahan yang akan dibahas dalam tugas akhir ini adalah :

- 1. Bagaimana karakteristik respon struktur yang terjadi pada FSO Arco Ardjuna dan SPM (*Single Point Mooring*) akibat beban gelombang pada saat kondisi terapung bebas maupun saat kondisi tertambat?
- Berapa besar tegangan pada *hawser* yang menghubungkan FSO Arco Ardjuna dengan SPM, dan *anchor legs* pada saat kondisi tertambat ?
- 3. Berapa besar tegangan global maksimum yang terjadi pada struktur SPM dan umur kelelahan struktur SPM (*Single Point Mooring*) akibat pengaruh beban siklis pada saat kondisi tertambat dengan FSO?

1.3 Tujuan

Tujuan dari tugas akhir ini adalah :

- 1. Menghitung karakteristik respon struktur yang terjadi pada FSO Arco Ardjuna dan SPM (*Single Point Mooring*) akibat beban gelombang pada saat kondisi terapung bebas maupun saat kondisi tertambat.
- Menghitung besar tegangan pada *hawser* yang menghubungkan FSO Arco Ardjuna dengan SPM, dan *anchor legs* pada saat kondisi tertambat
- Menghitung besar tegangan global maksimum yang terjadi pada struktur SPM dan umur kelelahan struktur SPM (*Single Point Mooring*) akibat pengaruh beban siklis pada saat kondisi tertambat dengan FSO

1.4 Manfaat

Dalam penelitian ini diharapkan dapat memberikan manfaat bagi industri eksplorasi dan eksploitasi minyak dan gas bumi yang berlangsung di Indonesia. Secara spesifik manfaat daripada penelitian ini adalah:

- Dapat mengetahui prosedur dalam menganalisis dan menghitung karakteristik respon pada struktur SPM (*Single Point Mooring*) dan FSO Arco Ardjuna pada saat kondisi tertambat satu sama lain dan juga mengetahui nilai tegangan pada *anchor legs* dan juga *hawser* yang menghubungkan SPM dengan FSO pada saat kondisi tertambat.
- Dapat mengetahui cara untuk menganalisis dan menghitung umur kelelahan pada struktur SPM (*Single Point Mooring*) akibat adanya beban siklis pada saat kondisi tertambat dengan FSO.

1.5 Batasan Masalah

Adapun batasan masalah yang digunakan dalam penyelesaian tugas akhir ini antara lain :

- 1. Penelitian ini merupakan studi kasus pada FSO Arco Ardjuna milik Pertamina Hulu Energi *Offshore North West Java* (PHE ONWJ).
- 2. Sistem tambat yang digunakan adalah *single point mooring* tipe CALM (*Catenary Anchored Leg Mooring*) *buoy*.
- 3. *Heading* pembebanan pada *head sea, quartering sea, beam sea,* dan *following sea.*
- 4. Sistem offloading side by side dan tandem tidak diperhitungkan.
- 5. Pemodelan dan pergerakan subsea hose maupun floating hose diabaikan.
- 6. Validasi Maxsurf FSO Arco Ardjuna pada kondisi *Light Condition* dan *Full Condition*.
- Pemodelan mekanisme konstruksi *turn table* pada *Single Point* Mooring diasumsikan fix

- 8. Beban yang digunakan untuk analisa tegangan dan umur kelelahan struktur yaitu *hawser tension* dan *anchoring legs tension*, *hydrostatic pressure, structure acceleration,* dan beban berat strutur SPM sendiri.
- 9. Analisis *fatigue* pada struktur FSO menggunakan metode S-N Curve dengan mengestimasi kumulatif kegagalan *fatigue (cumulative fatigue damage)* menggunakan metode *simplified fatigue assessment*.
- 10. Analisis fatigue sampai 30 tahun masa operasi

BAB II

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 Tinjauan Pustaka

Single Point Mooring (SPM) seringkali digunakan pada eksplorasi dan eksploitasi minyak dan gas untuk menahan tegangan yang terjadi pada FSO akibat adanya beban lingkungan yang terjadi. Sedangkan beban lingkungan yang selama ini memiliki pengaruh paling signifikan adalah beban gelombang di perairan laut. FSO merupakan fasilitas terapung yang dioperasikan di suatu ladang minyak dan gas bumi lepas pantai yang berfungsi untuk menerima, menyimpan, dan menyalurkan hidrokarbon.

Struktur FSO terdiri dari sebuah struktur apung berbentuk sebuah kapal (dapat berupa bangunan baru atau modifikasi dari kapal tanker) berukuran besar yang ditambatkan secara permanen di tempat operasinya. Dalam penelitian ini membahas mengenai SPM pada FSO Arco Ardjuna. Untuk dapat menahan beban yang cukup besar tersebut, *buoy* telah di desain sedemikian rupa agar mampu menahan beban yang diterimanya pada saat FSO dalam kondisi tertambat. Oleh karena itu dibutuhkan analisa *fatigue* untuk mengetahui umur kelelahan daripada struktur *buoy* sebagai acuan apakah struktur tersebut masih dapat untuk dioperasikan atau perlu dilakukan pemeliharaan lebih lanjut.

Data Ukuran Utama Arco Ardjuna adalah sebagai berikut :

Length	(Loa)	: 142,6	m
Breadth	(B)	: 48,2	m
Depth	(H)	: 26,5	m
Draft Light Load	(T)	: 2,50	m
Draft Full Load		: 24,00	m
Displacement	(Δ)	: 153,20	02 Ton

Sebagai gambaran umum dari FSO Arco Ardjuna, dapat dilihat pada Gambar 2.1 berikut ini.

Gambar 2.1 General Arrangement FSO Arco Ardjuna

(Sumber: Pertamina PHE ONWJ)

2.2 Dasar Teori

2.2.1 Moda Gerak Struktur Apung

Setiap struktur apung yang bergerak di atas permukaan laut selalu mengalami gerakan osilasi. Gerakan osilasi ini terdiri 6 (enam) macam gerakan, yang dapat dikategorikan dalam 3 (tiga) gerakan translasional dan 3 (tiga) gerakan rotasional. Macam-macam gerakan dapat dilihat pada Gambar 2.2 di bawah ini meliputi:

Gambar 2.2 Moda gerak struktur apung

(Sumber: Ramadhan, 2010)

a.	Surging	: Gerak osilasi translasi pada sumbu-x
b.	Swaying	: Gerak osilasi translasi terhadap sumbu-y
c.	Heaving	: Gerak osilasi translasi terhadap sumbu-z
d.	Rolling	: Gerak osilasi rotasional terhadap sumbu-x
e.	Pitching	: Gerak osilasi rotasional terhadap sumbu-y
f.	Yawing	: Gerak osilasi rotasional terhadap sumbu-z

2.2.2 Konsep Pembebanan

Suatu sistem *mooring* dianalisa dengan berdasarkan desain kriteria yang dapat diformulasikan dalam 3 batasan yang telah ditetapkan, yaitu (DNV):

1. *Ultimate Limit State* (ULS), untuk memastikan bahwa sebuah struktur cukup kuat untuk bertahan terhadap efek beban yang ditimbulkan oleh beban lingkungan pada kondisi ekstrem.

- Accidental Limit State (ALS), untuk memastikan bahwa suatu sstruktur memiliki kapasistas yang cukup untuk bertahan pada kegagalan sebuah sistem struktur yang dimana penyebab dari terjadinya kegagalan
- 3. *Fatigue Limit State* (FLS), untuk memastikan bahwa sebuah struktur memiliki kapasitas yang cukup untuk bertahan pada beban bersifat siklis.

2.2.3 Beban Gelombang

tidak diketahui

Widodo (2010), dalam penelitiannya menyebutkan bahwa beban yang dapat menyebabkan terjadinya kelelahan pada struktur adalah beban yang bersifat siklik. Dalam tugas akhir ini akan divariasikan berbagai kondisi pembebanan gelombang dengan mengacu pada data kondisi lingkungan tempat FSO dan SPM beroperasi.

Gelombang yang digerakkan oleh angin adalah komponen utama dari beban lingkungan yang mempengaruhi struktur bangunan apung lepas pantai. Gelombang-gelombang tersebut bersifat random, bervariasi berdasarkan tinggi dan panjang, dan untuk aplikasi pada bangunan apung lepas pantai perlu dilakukan pendekatan dengan memvariasikan gelombang lebih dari satu arah secara serempak. Karena kondisi gelombang yang acak, *sea-state* biasanya dijabarkan dalam bentuk statistik parameter gelombang seperti tinggi gelombang, periode puncak spektral, bentuk spektral dan arah gelombang.

2.2.4 Beban Arus

Beban arus dapat dimodelkan sebagai tambahan pada beban gelombang yang diaplikasikan. Penerapan beban arus dapat dilakukan sebagai masukan konstan atau dengan menggunakan nilai kedalaman, kecepatan dan arah arus. Apabila *cable dynamics* digunakan dalam analisa maka pembebanan arus juga akan teraplikasikan sepanjang *cable* dengan menggunakan variabel kecepatan arus dan kedalaman

2.2.5 Beban Angin

Selain beban gelombang dan beban arus, beban angin juga dapat diaplikasikan dalam analisa model dengan menggunakan *spectrum option, user time dependent data,* maupun dengan hanya memasukkan kecepatan konstan

2.2.6 Response Amplitude Operator (RAO)

Response Amplitude Operator (RAO) atau sering disebut sebagai *Transfer Function* adalah fungsi respon yang terjadi akibat gelombang dalam rentang frekuensi yang mengenai sebuah struktur lepas pantai. RAO juga disebut sebagai *Transfer Funstion* karena RAO merupakan alat untuk mentransfer beban luar (gelombang) dalam bentuk respon pada suatu struktur. *Response Amplitude Operator* (RAO) merupakan suatu fungsi respon struktur per meter amplitudo gelombang dalam rentang frekuensi tertentu. RAO dapat juga didefinisikan sebagai hubungan antara amplitudo respon terhadap amplitudo gelombang. Bentuk umum dari persamaan RAO dalam fungsi frekuensi adalah sebagai berikut (Chakrabarti, 1987):

$$RAO(\omega) = \frac{X_p(\omega)}{\eta(\omega)}.$$
(2.1)

Dimana:

 $X_p(\omega) =$ amplitudo struktur

 $\eta(\omega) =$ amplitudo gelombang

2.2.7 Spektrum Gelombang

Spektrum gelombang adalah karakteristik dari suatu gelombang pada perairan tertentu dimana intensitas gelombang dalam membentuk gelombang acak. Model matematik spektrum secara umum didasarkan pada 1 (satu) atau lebih parameter. Spektra gelombang dinyatakan dalam:

- bentuk spektrum kepadatan energi gelombang (spektrum gelombang)
- energi per 1 m² luas permukaan.

Spektrum gelombang JONSWAP (*Joint North Sea Wave Project*) merupakan salah satu jenis spektrum yang sering digunakan dalam perhitungan gelombang. Spektrum JONSWAP didasarkan pada percobaan yang dilakukan di *North Sea*. Berikut persamaan dari spektrum JONSWAP:

$$S(\omega) = a g^2 \omega^{-5} \exp\left[-1.25 \left(\frac{\omega}{\omega_0}\right)\right] \gamma^{\exp\left[\frac{-(\omega-\omega_0)^2}{2\tau^2 \omega_0^2}\right]}....(2.2)$$

Dimana:

 $S(\omega)$ = spektrum gelombang

- γ = parameter puncak (*peakedness parameter*)
- τ = parameter bentuk (*shape parameter*)

untuk
$$\omega \le \omega_0 = 0.07 \, \text{dan} \, \omega \ge \omega_0 = 0.9$$

 $a = 0.0076 (X_0) - 0.22$, untuk X_0 tidak diketahui a = 0.0081

Sedangkan nilai dari parameter puncak (γ) dapat ditentukan dengan menggunakan rumus sebagai berikut :

$$\gamma = 5 \quad \text{for } Tp/\sqrt{H_s} \le 3.6; \text{ and}$$

$$\gamma = \exp\left(5.75 - 1.15 \frac{T_p}{\sqrt{H_s}}\right) \quad \text{for } T_p/\sqrt{H_s} > 3.6$$

.....(2.3)

Dimana:

 T_p = periode puncak spektra

 H_s = tinggi gelombang signifikan

2.2.8 Respon Spektra

Respon spektra didefinisikan sebagai respon energi dari struktur akibat energi gelombang. Pada sistem linier, respon spektra didapat dengan mengkuadratkan *RAO* yang kemudian dikalikan dengan spektra gelombang, yang secara persamaan matematis dapat ditulis dengan:

$$S_R(\omega) = [RAO(\omega)]^2 x S(\omega)....(2.4)$$

Dimana :

 $S_R(\omega)$ = spektrum respon (m² – sec)

 $S(\omega) = \text{spektrum gelombang } (\text{m}^2 - \text{sec})$

RAO = *response* amplitude operator

 ω = frekuensi gelombang (rad/sec)

2.2.9 Offset dan Tension maksimum

Maximum offset dapat ditentukan dengan prosedur di bawah ini:

1. $S_{lfmax} > S_{wfmax}$, maka :

 $S_{max} = S_{mean} + S_{lfmax} + S_{wfsig}.$ (2.5)

2. $S_{wfmax} > S_{lfmax}$, maka :

$$S_{max} = S_{mean} + S_{wfmax} + S_{lfsig}....(2.6)$$
dimana,

S_{mean}	= mean vessel offset
S_{max}	= maximum vessel offset
$S_{w\text{fmax}}$	= maximum wave frequency motion
\mathbf{S}_{wfsig}	= significant wave frequency motion
S_{lfmax}	= maximum low-frequency motion
Slfsig	= significant low-frequency motion

Menurut *API-RP2SK 3rd edition*, *maximum tension* dapat ditentukan dengan prosedur dibawah ini:

1.	T lfmax > T wfmax , maka:
	Tmax =T mean +T lfmax +T wfsig(2.7)
2.	T wfmax >T lfmax , maka:
	Tmax =T mean +T wfmax +T lfsig(2.8)
	dengan:
	$Tmean = mean \ tension$
	Tmax = maximum tension
	<i>Twfmax</i> = <i>maximum wave frequency tension</i>
	<i>Twfsig</i> = <i>significant</i> wave frequency tension
	<i>Tlfmax</i> = maximum low-frequency tension
	<i>Tlfsig</i> = <i>significant low-frequency tension</i>

2.2.10 Boundary Condition dan meshing

Boundary condition atau kondisi batas sangatlah penting dalam proses analisis suatu struktur. *Boundary condition* sendiri dapat terbagi menjadi 3 bagian utama, yaitu *inertial, loads,* dan *supports. Boundary condition* tipe *inertial* diantaranya yaitu percepatan, *standard earth gravity,* dan kecepatan rotasi. Kemudian *Boundary condition* tipe *loads* diantaranya yaitu tekanan (*pressure*), gaya, momen, dan lain-lain. Sedangkan boundary condition tipe support diantaranya adalah fixed supports, displacement, dan lain-lain. Boundary condition sendiri dapat kita aplikasikan sesuai dengan analisis yang akan kita lakukan. Seperti contohnya pada sebuah geometri struktur, boundary condition dapat diterapkan pada struktur sebagai body, face, edge, maupun titik sesuai dengan kondisi analisis yang ingin kita lakukan.

Pembuatan *mesh* sangat diperhatikan ukuran *mesh* dan jenis *mesh* yang digunakan, semakin kecil ukuran *mesh* yang digunakan pada model, maka hasil yang didapatkan akan semakin teliti, tetapi membutuhkan daya komputasi dan waktu yang lebih lama dibandingkan dengan *mesh* yang memiliki ukuran yang lebih besar. Oleh karena itu, besar ukuran *mesh* harus diatur sedemikian rupa sehingga diperoleh hasil yang teliti.

Dalam BKI "Guidelines for Floating Production Installations, 2013" ukuran mesh telah diatur sesuai dengan elemen-elemen yang akan ditinjau, seperti plate element, beam elements for stiffeners, truss elements for stiffeners. Untuk elemen stiffener, ukuran mesh minimum yang dianjurkan sebesar 0,5 dari tebal stiffener. Contoh pembuatan mesh pada konstruksi kapal dapat dilihat pada Gambar 2.3 di bawah ini.

Gambar 2.3 Pembuatan mesh pada konstruksi kapal

2.2.11 Tegangan Maksimum Utama

Tegangan dapat ditransformasi dari suatu set sumbu koordinat ke set sumbu koordinat lainnya. Dengan transformasi pula dapat dicari set sumbu koordinat pada suatu titik yang memberikan tegangan utama dari kondisi tegangan yang telah diketahui di titik itu. Yang dimaksud tegangan utama ialah tegangan yang hanya memiliki nilai tidak nol untuk tegangan normal saha, sedangkan nilai tegangan gesernya nol. Ilustrasi tegangan maksimum utama dapat dilihat pada Gambar 2.3 berikut.

Gambar 2.4 Tegangan Maksimum Utama (Sumber: ANSYS)

- $\sigma_1-Maximum$
- $\sigma_2-Middle$
- σ_3 Minimum

2.2.12 Metode Perhitungan Kelelahan

Secara umum, terdapat 2 (dua) metode yang dapat digunakan untuk analisis kelelahan, yaitu pendekatan kurva S-N (*S-N curve approach*) yang dibuat berdasarkan tes kelelahan, dan pendeketan mekanika kepecahan (*fracture mechanics appproach*). Untuk tujuan desain kelelahan, pendekatan kurva S-N lebih banyak digunakan dan dianggap

sebagai metode yang paling cocok. Sedangkan metode mekanika kepecahan digunakan untuk menentukan ukuran cacat yang dapat diterima, menaksir perambatan retak kelelaha, merencanakan inspeksi dan strategi untuk memperbaikinya, dan lain-lain.

Analisa fatigue dengan metode S-N curve pada sambungan struktur dilakukan berdasarkan hukum kegagalan Palmgren-Miner (miner's rule). Menurut white dan ayyub (1996) miners's rule merupakan hipotesis kumulatif kerusakan berdasarkan konsep *strain energy*. Konsep *strain energy* menyatakan bahwa kerusakan terjadi ketika total *strain energy* pada siklus (n) dari variable amplitudo pembebanan adalah sama dengan total dari siklus N dari konstan amplitudo pembebanan.

Menurut Paik dan Thayambali (2007) analisa fatigue dengan menggunakan pendekatan S-N curve dapat dilakukan dengan tiga cara, yaitu :

- 1. Mendefinisikan histogram siklik rentang tegangan
- 2. Memilih kurva S-N yang sesuai dengan karakteristik material
- 3. Menghitung kumulatif kerusakan fatigue (*cumulative fatigue damage*)

Metode pendekatan S-N curve mempunyai 4 metodologi dalam mengestimasi kumulatif kegagalan *fatigue (cumulative fatigue damage)* yaitu metode *deterministic*, metode *simplified fatigue assesssment*, metode *spectral* dan metode *time domain fatigue*. Diantara keempat metode tersebut, metode yang paling banyak digunakan dalam berbagai rules klasifikasi terutama anggota IASC seperti ABS, GL, LR dan bahkan CSR adalah metode *simplified fatigue* dengan pendekatan empiris parameter distribusi weibull (Bai, 2003). Pada penelitian ini metode yang digunakan untuk analisa fatigue adalah menggunakan metode S-N Curve dengan *Simplified Fatigue Analysis*. Untuk analisis kelelahan dengan

menggunakan metode *simplified fatigue assessment* akan didapatkan hasil yang lebih akurat, karena adanya faktor parameter bentuk dari distribusi *Weibull* dalam *Simplified fatigue assessment*. Blagojevic (2010) menyebutkan bahwa untuk menghitung umur kelelahan dari struktur kapal, dibutuhkan *long-term stress distribution* dari struktur. Penelitian tentang beban gelombang yang mengenai badan kapal menunjukkan bahwa *long-term distribution of stress range* dapat direpresentasikan dengan parameter distribusi Weibull dan disebutkan bahwa pengaruh dari parameter bentuk Weibull ini sangat signifikan. Hasil dari penelitian menyebutkan bahwa dengan perubahan kecil dari parameter bentuk Weibull tersebut berpengaruh besar terhadap nilai *fatigue damage* yang dihasilkan.

2.2.13 Kurva S-N

Dasar dari kurva S-N atau *Wohler* curve adalah plot dari *stress* (S) dan cycle (N).Kurva S-N digunakan dalam karakteristik *fatigue* pada material yang mengalami pembebanan yang berulang pada magnitude konstan (Ariduru, 2004). Secara umum persamaan dan kurva S-N dapat dilihat sebagai berikut (ABS) :

 $NS^{m} = A \operatorname{atau} \log(N) = \log(A) - m \log(S) \dots (2.9)$

Dimana :

A = koefisien kekuatan kelelahan (*fatigue strength coefficient*)

m = kemiringan kurva S-N

S = rentang tegangan

Gambar 2.5 Kurva S-N

2.2.14 Penaksiran kelelahan sederhana (Simplified Fatigue Assessment)

Penaksiran ini menggunakan metode *simplified*, yang dinyatakan sebagai berikut (BKI):

$$DM_{i} = \sum_{i=1}^{k} \frac{N_{L}}{K_{2}} \frac{S_{Ri}^{m}}{(\ln N_{R})^{m/\xi}} \mu_{i} \Gamma\left(1 + \frac{m}{\xi}\right)$$
(2.10)

$$v_i = \left(\frac{S_q}{S_{Ri}}\right)^{\xi} \ln N_R \tag{2.12}$$

 $N_{L} = \text{jumlah siklus untuk rencana umur desain} = \frac{f_{0}U}{4 \log L}$ $K_{2} = \text{konstanta sesuai kurva S-N}$ $S_{Ri} = \text{stress range (Mpa)}$

 $S_q = stress \ range$ pada perpotongan 2 segmen pada kurva S-N m = slope $\Delta m =$ perubahan slope pada segmen atas-bawah pada kurva S-N $N_R = 10000$, jumlah siklus $\xi =$ parameter distribusi tegangan = 1,4 - 0,2. α . $L^{0.2}$ $\mu_i =$ kofisien tegangan $\Gamma(x) =$ fungsi gamma U = design-life (detik) L = panjang struktur (m)

Selanjutnya, rasio *cumulative fatigue damage (D)* dapat diubah ke dalam perhitungan umur kelelahan menggunakan persamaan di bawah ini

BAB III

METODOLOGI PENELITIAN

3.1 Diagram Alir Penelitian

Diagram alir penelitian dapat dilihat pada Gambar 3.1 di bawah ini

Gambar 3.1 Flowchart penyelesaian Tugas Akhir

3.2 Prosedur Penelitian

1. Studi Literatur

Pada tugas akhir ini mengambil bahan-bahan yang dibutuhkan sebagai studi literatur dari buku, materi perkuliahan, jurnal, dan juga mengacu dari penelitian yang telah dilakukan sebelumnya yang mempunyai keterkaitan pembahasan sebagai acuan dasar teori yang digunakan, selain itu juga pada penelitian ini mengacu pada *standart* maupun *code* yang relevan.

- Pengumpulan Data FSO Arco Ardjuna, SPM, data hidrostatis FSO Arco Ardjuna, *mooring line property* dan data lingkungan Data FSO Arco Ardjuna, SPM, data hidrostatis FSO Arco Ardjuna, *mooring line property* dan data lingkungan didapatkan dari PT. Citra Mas.
- Pemodelan FSO dan SPM kondisi terapung bebas pada software Maxsurf v.20

Pemodelan struktur FSO dan SPM pada *software* yang digunakan yaitu Maxsurf v.20. Dari pemodelan ini akan dilanjutkan dengan mendapatkan data hidrostatik dari struktur

4. Validasi model software Maxsurf

Setelah dilakukan pemodelan struktur FSO dan SPM pada *software* Maxsurf, langkah selanjutnya yang dilakukan adalah memvalidasi model yang telah dibuat dengan data yang telah didapatkan sebelumnya. Adapun batas *error* yang digunakan pada proses validasi sebagai acuan pendeketan model struktur yaitu tidak melebihi 5% dari data. Jika nilai *error*-nya melebihi dari 5%, maka harus dilakukan pemodelan kembali terkait model struktur FSO maupun SPM.

- 5. Analisis respon gerak FSO dan SPM pada kondisi terapung bebas Menganalisis respon gerakan pada struktur FSO maupun struktur SPM (*Single Point Mooring*) untuk mengetahui karakteristik gerakan pada masing-masing struktur dalam kondisi terapung bebas dan juga didapatkan data RAO (*Response Amplitude Operator*) pada masingmasing struktur yang nantinya akan digunakan pada langkah selanjutnya.
- 6. Pemodelan FSO dan SPM saat kondisi tertambat pada *software* ANSYS Langkah selanjutnya yaitu melakukan pemodelan FSO dan SPM dalam kondisi tertambat pada *software* ANSYS Aqwa.
- Analisis tegangan pada *hawser* dan *anchor legs* Dari hasil analisis ini didapatkan tegangan yang terjadi pada *hawser* dan rantai jangkar. Kemudian menghitung *safety factor* yang kemudian

divalidasikan dengan ABS untuk mengetahui apakah nilai *safety factor* yang terjadi memenuhi syarat yang sesuai pada ABS. Setiap *tension* pada *anchor legs* dan *hawser* yang diijinkan menurut ABS yaitu pada *anchor legs* harus lebih dari 1,67, sedangkan pada *hawser* harus lebih dari 1.82. *Safety factor* didapat dari membagi MBL (*Minimum Breaking Load*) dengan *tension* maksimum yang didapat.

9. Pemodelan *local structure* SPM pada *software* ANSYS

Langkah selanjutnya yaitu melakukan pemodelan SPM dalam kondisi tertambat pada *software* ANSYS.

10. Analisis tegangan global

Melakuakan analisis tegangan global pada struktur SPM pada *software* ANSYS. Dari analisa yang dilakukan dapat dilanjutkan dengan memvalidasi hasil analisis tegangan global pada struktur SPM sehingga memenuhi syarat yang tertera pada ABS.

11. Analisa umur kelelahan struktur

Dari hasil analisis tegangan global pada struktur SPM yang telah dilakukan. Langkah selanjutnya yaitu menganalisis umur kelelahan daripada struktur *Single Point Mooring* dengan menggunakan kurva S-N berdasarkan hukum kegagalan *Palmgren Miner* dengan mengestimasi kumulatif kegagalan *fatigue* menggunakan metode *simplified fatigue assessment*.

3.3 Pengumpulan Data

Data yang dibutuhkan meliputi data struktur dan data lingkungan. Data struktur terdiri dari *principle dimension* dan data hidrostatis FSO Arco Ardjuna, *main dimension* SPM, *property of anchor legs* dan *property mooring line* dapat dilihat pada Tabel 3.1 sampai Tabel 3.5 dan Gambar 3.2 di bawah ini

- FSO Arco Ardjuna:

Designation	Units	Minimum Operating Draft	Maximum Operating Draft
Length, Loa	m	14	2.6
Breadth, B	m	48	3.2
Depth, D	m	26	5.5
Displacement	tonne	15,529	153,202
Draft to Baseline	m	2.5	24
WSA	m^2	6,681	12,813
Max. Cross sect. area	m^2	114.34	1,150.63
Waterplane area	m^2	6239	6,239
Ср		0.91	0.91
Cb		0.87	0.9
Cm		0.959	0.99
Cwp		0.91	0.91
LCB from zero pt.	m	-2.69	-2.78
LCF from zero pt.	m	-2.79	-2.79
KB	m	1.26	12.02
KMt	m	78	19.73
KMl	m	590.8	71.3

Tabel 3.1 Principle dimension dan data hidrostatis FSO Arco Ardjuna

(Sumber: Pertamina PHE ONWJ)

- Single Point Mooring:

Designation	Unit	Data
Shell Outer Diameter	m	12
Centre Well Diameter	m	3.57
Skirt Outer Diameter	m	16.26
Buoy Body Height	m	5.3
Skirt Height/ Baseline	m	1
Buoy Installed Draft	m	2.38
Centre of Gravity		
(KG)	m	3.42
Mass	kg	255340
Kxx	7,6	3
Куу	7,6	3
Kzz	10,6	61

Tabel 3.2 Main dimension CALM buoy

(Sumber: Pertamina PHE ONWJ)

- Anchor Legs

Tabel 3.3 Karakteristik anchor legs

Number of Legs	6
Anchoring Pattern	Even Spacing (60°)
Paid out length	350 m
Pretension	262.17 kN
Pretension angle (w/horizontal)	45.26°
Number of segment	1
Chain diameter	102 mm
Chain type	R3
Minimum breaking load	8315 kN
Minimum breaking load after	
corrosion	7051 kN
Unit weight in Air	210.16 kg/m
Unit weight in Water	182.72 kg/m
Stiffness EA	868 MN
Anchoring radius	302.57 m

(Sumber: Pertamina PHE ONWJ)

- Anchor legs pattern (Top view)

(Sumber: Pertamina PHE ONWJ)

Mooring Hawsers

_

Tabel 3.4 Karakteristik m	nooring hawser
---------------------------	----------------

Number of Lines	Twin Line
Material	Nylon
Length	220 ft
Design Mooring Force	400 tonnes
New Dry Breaking Strength per	
Hawser	4094 kN

⁽Sumber: Pertamina PHE ONWJ)

- Data Lingkungan Perairan Laut Jawa

Parameter	Unit	1-year return period	
Kedalaman	m	45	
Tinggi Gelombang Maksimum/Hm	m	3.2	
Periode Gelombang Maksimum /Tm	S	6.6	
Tinggi Gelombang Signifikan/Hs	m	1.8	
Periode Gelombang Signifikan/Ts	S	6.3	
Periode Puncak Gelombang (Tp)	S	s 6.3	
Kecepatan Angin	m/s	12.3	
Spektrum gelombang	rum gelombang JONSWAP		
Kecepatan Arus 0% kedalaman	m/s 0.72		
Kecepatan Arus 10% kedalaman	m/s	0.62	
Kecepatan Arus 20% kedalaman	m/s	0.54	
Kecepatan Arus 30% kedalaman	m/s	m/s 0.48	
Kecepatan Arus 40% kedalaman	m/s 0.44		
Kecepatan Arus 50% kedalaman	m/s	0.41	
Kecepatan Arus 60% kedalaman	m/s	0.39	
Kecepatan Arus 70% kedalaman	m/s	0.37	
Kecepatan Arus 80% kedalaman	m/s	0.36	
Kecepatan Arus 90% kedalaman	m/s	0.35	
Kecepatan Arus 100% kedalaman	m/s	0.34	

Tabel 3.5 Data lingkungan

(Sumber: Pertamina PHE ONWJ)

(halaman ini sengaja dikosongkan)

BAB IV

ANALISIS DAN PEMBAHASAN

4.1 Pemodelan Struktur

4.1.1 FSO Arco Ardjuna

Pada pengerjaan pemodelan ini, menggunakan kapal FSO Arco Ardjuna yang sedang beroperasi di Laut Jawa. Pemodelan pada FSO Arco Ardjuna dengan menggunakan *software* Maxsurf yang mengacu pada *General Arrangement* pada Gambar 4.1 dan *principal dimension* sebagai berikut:

Length	(Loa)	: 142,6	m
Breadth	(B)	: 48,2	m
Depth	(H)	: 26,5	m
Draft Light Load	(T)	: 2,50	m
Draft Full Load		: 24,00	m
Displacement	(Δ)	: 153,20	02 Ton

Gambar 4.1 General Arrangement FSO Arco Ardjuna

(Sumber: Pertamina PHE ONWJ

Pada Gambar 4.2 sampai Gambar 4.5 berikut adalah hasil pemodelan FSO Arco Ardjuna dengan menggunakan *software* Maxsurf

Gambar 4.2 Hasil pemodelan FSO Arco Ardjuna pada Maxsurf tampak samping (*sheer plan*)

Gambar 4.3 Hasil pemodelan FSO Arco Ardjuna pada Maxsurf tmpak depan (body plan)

Gambar 4.4 Hasil pemodelan FSO Arco Ardjuna pada Maxsurf tampak atas (*half breadth plan*)

Gambar 4.5 Hasil pemodelan FSO Arco Ardjuna pada Maxsurf tampak isometri

4.1.2 Single Point Mooring

Pemodelan *Single Point Mooring* menggunakan data utama dapat dilihat pada Tabel 4.1 sebagai berikut

Designation	Unit	Data
Shell Outer Diameter	m	12
Centre Well Diameter	m	3.57
Skirt Outer Diameter	m	16.26
Buoy Body Height	m	5.3
Skirt Thickness	mm	12
Skirt Height/ Baseline	m	1
Buoy Installed Draft	m	2.38
Centre of Gravity (KG)	m	3.42
(0 1 1		

Tabel 4.1 Main dimension CALM buoy

(Sumber: Pertamina PHE ONWJ)

Berikut Gambar 4.6 dan Gambar 4.7 merupakan hasil pemodelan *Single Point Mooring* dengan menggunakan *software* Autocad

Gambar 4.6 Hasil pemodelan Single Point Mooring pada Autocad tampak 2dimensi

Gambar 4.7 Hasil pemodelan *Single Point Mooring* pada Autocad tampak 3dimensi

4.2 Hidrostatik

Perlu dilakukan proses validasi untuk mendapatkan model kapal yang sama dengan keadaan sebenarnya. Validasi model dilakukan dengan cara membandingkan data hasil hidrostatik yang diperoleh dari *software* Maxsurf dengan data hidrostatik FSO Arco Ardjuna yang sudah ada.

Dalam proses validasi ini dilakukan dalam dua kondisi yaitu saat *light load* maupun saat *full load*.

Besaran-besaran hidrostatik yang dibandingkan terdapat pada Tabel 4.2 dan Tabel 4.3 di bawah ini. Perbedaan hasil perhitungan hidrostatik yang diperoleh antara *software* Maxsurf dengan data hidrostatik pada FSO Arco Ardjuna yang sebenarnya diberikan toleransi atau faktor *error* sebesar 5%. Dengan begitu hasil perancangan model yang dibuat dapat dikatakan valid untuk dipakai sebagai input dalam menghitung karakteristik gerakan kapal.

	Measurement	Value	Units
1	Displacement	15083	t
2	Volume (displaced)	14714,925	m^3
3	Draft Amidships	2,500	m
4	Immersed depth	2,500	m
5	WL Length	142,200	m
6	Beam max extents o	47,999	m
7	Wetted Area	6690,549	m^2
8	Max sect. area	114,658	m^2
9	Waterpl. Area	6198,083	m^2
10	Prismatic coeff. (Cp)	0,903	
11	Block coeff. (Cb)	0,862	
12	Max Sect. area coeff	0,958	
13	Waterpl. area coeff.	0,908	
14	LCB length	-2,617	from z
15	LCF length	-2,880	from z
16	LCB %	-1,840	from z
17	LCF %	-2,025	from z
18	КВ	1,301	m
19	KG fluid	14,040	m
20	BMt	76,942	m
21	BML	595,077	m
22	GMt corrected	64,203	m
23	GML	582,338	m
24	KMt	78,243	m
25	KML	596,378	m
26	Immersion (TPc)	63,530	tonne/c
27	MTc	617,671	tonne.

	Measurement	Value	Units
1	Displacement	147745	t
2	Volume (displaced)	144141,109	m^3
3	Draft Amidships	24,000	m
4	Immersed depth	24,000	m
5	WL Length	142,200	m
6	Beam max extents o	47,556	m
7	Wetted Area	13252,794	m^2
8	Max sect. area	1119,948	m^2
9	Waterpl. Area	6131,747	m^2
10	Prismatic coeff. (Cp)	0,905	
11	Block coeff. (Cb)	0,888	0
12	Max Sect. area coeff	0,981	
13	Waterpl. area coeff.	0,907	
14	LCB length	-2,731	from z
15	LCF length	-2,783	from z
16	LCB %	-1,920	from z
17	LCF %	-1,957	from z
18	KB	12,124	m
19	KG fluid	13,440	m
20	BMt	7,593	m
21	BML	60,156	m
22	GMt corrected	6,277	m
23	GML	58,840	m
24	KMt	19,717	m
25	KML	72,280	m
26	Immersion (TPc)	62,850	tonne/c
27	MTc	611,343	tonne.

	UNIT	LIGHT			FULL		
	UNIT	Data	Model	Error	Data	Model	Error
Displacement	tonne	15529	15083	0,029	153202	147745	0,0356
Volume	m3	15009,76	14714,93	0,020	149293,7	144141,107	0,0345
Draft to Baseline	m	2,5	2,5	0,000	24	24	0,0000
Immersed depth	m	2,5	2,5	0,000	24	24	0,0000
Lwl	m	142,6	142,2	0,003	142,6	142,2	0,0028
Beam Lwl	m	48,2	47,999	0,004	48,2	47,556	0,0134
WSA	m2	6681	6690,549	-0,001	12813	13252,794	-0,0343
Max. Cross sect. area	m2	114,34	114,658	-0,003	1150,63	1119,948	0,0267
Waterplane area	m2	6239	6198,083	0,007	6239	6131,747	0,0172
Ср		0,91	0,903	0,008	0,908	0,905	0,0033
Съ		0,873	0,862	0,013	0,904	0,888	0,0177
Cm		0,959	0,958	0,001	0,996	0,981	0,0151
Cwp		0,908	0,908	0,000	0,908	0,907	0,0011
LCB from midship	m	-2,69	-2,617	0,027	-2,78	-2,731	0,0176
LCF from midship	m	-2,79	-2,88	-0,032	-2,79	-2,783	0,0025
KB	m	1,26	1,301	-0,033	12,02	12,124	-0,0087
KMt	m	78	78,243	-0,003	19,73	19,717	0,0007
KML	m	590,8	596,378	-0,009	71,3	72,28	-0,0137

Tabel 4.3 Koreksi hidrostatik data dengan model Maxsurf

4.3 Konfigurasi Arah Pembebanan Gelombang

Gambar 4.8 Konfigurasi arah pembebanan gelombang

Gambar 4.8 di atas menjelaskan konfigurasi arah pembebanan gelombang dilakukan pada sudut 0° , 30° , , 60° , 90° , 120° , 150° 180° untuk analisa respon gerakan struktur apung FSO maupun SPM.

4.4 Response Amplitude Operator

Untuk mendapatkan perhitungan karakteristik gerakan pada FSO Arco Ardjuna dan SPM perlu dilakukan dengan mendapatkan *Response Amplitude Operator* (RAO) dengan menggunakan *software* Maxsurf. Berikut adalah grafik RAO pada FSO Arco Ardjuna dan *Single Point Mooring*. Pada FSO Arco Ardjuna, RAO dibedakan pada tiga kondisi yaitu *light load* dan *full load*

4.4.1 FSO Arco Ardjuna kondisi mooring

Perhitungan karakteristik gerakan FSO Arco Ardjuna saat kondisi *mooring* dilakukan pada kondisi *light load* dan *full load*. Pada kondisi *light load* dilakukan pada sarat 2,5 m , sedangkan pada kondisi *full load* dilakukan pada sarat 24 m, dengan kedalaman laut 45 m. Berikut adalah grafik RAO pada kondisi *light load* maupun *full load* untuk gerakan *surge, sway, heave, roll, pitch,* dan *yaw* dengan *heading* pembebanan 0°, 30°, 60°, 90°, 120°, 150°, 180°

4.4.1.1 Light Load – Mooring

Gambar 4.9 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi *light load* saat *mooring* dengan *heading* pembebanan 0 derajat

Gambar 4.10 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi *light load* saat *mooring* dengan *heading* pembebanan 0 derajat

Gambar 4.11 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi *light load* saat *mooring* dengan *heading* pembebanan 30 derajat

Gambar 4.12 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi *light load* saat *mooring* dengan *heading* pembebanan 30 derajat

Gambar 4.13 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi *light load* saat *mooring* dengan *heading* pembebanan 60 derajat

Gambar 4.14 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi *light load* saat *mooring* dengan *heading* pembebanan 60 derajat

Gambar 4.16 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi *light load* saat *mooring* dengan *heading* pembebanan 90 derajat

Gambar 4.17 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi *light load* saat *mooring* dengan *heading* pembebanan 120 derajat

Gambar 4.18 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi *light load* saat *mooring* dengan *heading* pembebanan 120 derajat

Gambar 4.19 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi *light load* saat *mooring* dengan *heading* pembebanan 150 derajat

Gambar 4.20 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi *light load* saat *mooring* dengan *heading* pembebanan 150 derajat

Gambar 4.21 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi *light load* saat *mooring* dengan *heading* pembebanan 180 derajat

Gambar 4.22 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi *light load* saat *mooring* dengan *heading* pembebanan 180 derajat

Mada Garakan	Unit	RAO Maksimum						Max	
WOUd Gerakan		0 deg	30 deg	60 deg	90 deg	120 deg	150 deg	180 deg	IVIdX
Surge	m/m	0,211	0,093	0,051	0,000	0,073	0,193	0,119	0,211
Sway	m/m	0,000	0,054	0,087	0,237	0,129	0,112	0,001	0,237
Heave	m/m	0,169	0,167	0,167	0,295	0,181	0,273	0,176	0,295
Roll	deg/m	0,004	0,469	0,805	1,104	0,807	0,536	0,005	1,104
Pitch	deg/m	0,947	0,817	0,468	0,005	0,466	0,925	1,083	1,083
Yaw	deg/m	0,001	0,001	0,001	0,004	0,002	0,001	0,000	0,004

Tabel 4.4 Nilai maksimum RAO FSO Arco Ardjuna light condition

Berdasarkan Gambar 4.9 sampai Gambar 4.22 dan Tabel 4.4 di atas dapat dilihat bahwa *surge* tertinggi ialah sebesar 0,211 (m/m) yaitu pada *heading* 0° , *sway* tertinggi pada *heading* 90° sebesar 0,237 (m/m), dan *heave* tertinggi sebesar 0,295 (m/m) pada *heading* 90° . Untuk gerak osilasi rotasional *roll* maksimum pada *heading* 90° sebesar 1,104 (deg/m), *pitch* maksimum sebesar 1.083 (deg/m) pada *heading* 180° , dan *yaw* maksimum sebesar 0.004 (deg/m) pada *heading* 90° .

4.4.1.2 Full Load – Mooring

Gambar 4.23 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi *full load* saat *mooring* dengan *heading* pembebanan 0 derajat

Gambar 4.24 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi *full load* saat *mooring* dengan *heading* pembebanan 0 derajat

Gambar 4.25 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi *full load* saat *mooring* dengan *heading* pembebanan 30 derajat

Gambar 4.26 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi *full load* saat *mooring* dengan *heading* pembebanan 30 derajat

Gambar 4.27 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi *full load* saat *mooring* dengan *heading* pembebanan 60 derajat

Gambar 4.28 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi *full load* saat *mooring* dengan *heading* pembebanan 60 derajat

Gambar 4.29 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi *full load* saat *mooring* dengan *heading* pembebanan 90 derajat

Gambar 4.30 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi *full load* saat *mooring* dengan *heading* pembebanan 90 derajat

Gambar 4.31 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi *full load* saat *mooring* dengan *heading* pembebanan 120 derajat

Gambar 4.32 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi *full load* saat *mooring* dengan *heading* pembebanan 120 derajat

Gambar 4.33 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi *full load* saat *mooring* dengan *heading* pembebanan 150 derajat

Gambar 4.34 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi *full load* saat *mooring* dengan *heading* pembebanan 150 derajat

Gambar 4.35 Grafik RAO gerakan translasi pada FSO Arco Ardjuna kondisi *full load* saat *mooring* dengan *heading* pembebanan 180 derajat

Gambar 4.36 Grafik RAO gerakan rotasi pada FSO Arco Ardjuna kondisi *full load* saat *mooring* dengan *heading* pembebanan 180 derajat

Moda Gerakan	Unit	RAO Maksimum							Max
		0 deg	30 deg	60 deg	90 deg	120 deg	150 deg	180 deg	IVIdX
Surge	m/m	0,140	0,118	0,071	0,000	0,068	0,108	0,115	0,140
Sway	m/m	0,000	0,068	0,122	0,126	0,118	0,062	0,001	0,126
Heave	m/m	0,052	0,052	0,052	0,058	0,052	0,057	0,055	0,058
Roll	deg/m	0,001	0,193	0,487	0,581	0,486	0,048	0,000	0,581
Pitch	deg/m	0,565	0,489	0,281	0,001	0,280	0,501	<mark>0,</mark> 568	0,568
Yaw	deg/m	0,001	0,001	0,001	0,002	0,001	0,001	0,002	0,002

Tabel 4.5 Nilai maksimum RAO FSO Arco Ardjuna full condition

Berdasarkan Gambar 4.23 sampai Gambar 4.36 dan Tabel 4.5 di atas dapat dilihat bahwa *surge* tertinggi ialah sebesar 0,140 (m/m) yaitu pada *heading* 0° , *sway* tertinggi pada *heading* 90° sebesar 0,126 (m/m), dan *heave* tertinggi sebesar 0,058 (m/m) pada *heading* 90° . Untuk gerak osilasi rotasional *roll* maksimum pada *heading* 90° sebesar 0.581 (deg/m), *pitch* maksimum sebesar 0.568 (deg/m) pada *heading* 180° , dan *yaw* maksimum sebesar 0.002 (deg/m) pada *heading* 90° .

4.4.2 Single Point Mooring kondisi mooring

Perhitungan RAO pada *Single Point Mooring* saat kondisi *mooring* dilakukan pada sarat 2.38 m, dengan kedalaman laut 45 m. Grafik RAO pada SPM dilakukan untuk gerakan *surge, sway, heave, roll* dan *pitch. Heading* pembebanan untuk mencari RAO *Single Point Mooring* saat kondisi tertambat adalah 0°, 30°, 60°, 90°, 120°, 150° 180°, hal ini untuk mencari respon gerakan *Single Point Mooring* akibat *heading* pembebanan yang searah dengan salah satu *anchor line* pada *Single Point Mooring* dan juga mengetahui respon gerakan *Single Point Mooring* akibat *heading* pembebanan yang berasal dari *between anchor legs*.

4.4.2.1 *Single Point Mooring* kondisi *mooring* dengan FSO Arco Ardjuna kondisi *light load*

Gambar 4.37 Grafik RAO gerakan translasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 0 derajat

Gambar 4.38 Grafik RAO gerakan rotasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 0 derajat

Gambar 4.39 Grafik RAO gerakan translasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 30 derajat

Gambar 4.40 Grafik RAO gerakan rotasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 30 derajat

Gambar 4.41 Grafik RAO gerakan translasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 60 derajat

Gambar 4.42 Grafik RAO gerakan rotasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 60 derajat

Gambar 4.43 Grafik RAO gerakan translasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 90 derajat

Gambar 4.44 Grafik RAO gerakan rotasi pada *Single Point Mooring* saat *mooring* dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 90 derajat

Gambar 4.45 Grafik RAO gerakan translasi pada *Single Point Mooring* saat *mooring* dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 120 derajat

Gambar 4.46 Grafik RAO gerakan rotasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 120 derajat

Gambar 4.47 Grafik RAO gerakan translasi pada *Single Point Mooring* saat *mooring* dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 150 derajat

Gambar 4.48 Grafik RAO gerakan rotasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 150 derajat

Gambar 4.49 Grafik RAO gerakan translasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi light load dengan heading pembebanan 180 derajat

Gambar 4.50 Grafik RAO gerakan rotasi pada *Single Point Mooring* saat *mooring* dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 180 derajat

Moda Gerakan	Unit	RAO Maksimum							Mari
		0 deg	30 deg	60 deg	90 deg	120 deg	150 deg	180 deg	IVIAX
Surge	m/m	0,934	0,715	0,536	0,000	0,614	0,390	0,528	0,934
Sway	m/m	0,004	0,481	0,864	0,934	0,649	0,246	0,001	0,934
Heave	m/m	2,742	3,096	3,380	2,846	3,968	2,707	1,499	3,968
Roll	deg/m	0,001	1,209	2,291	3,159	2,205	1,270	0,001	3,159
Pitch	deg/m	2,567	2,000	1,852	0,000	2,009	1,961	1,736	2,567
Yaw	deg/m	0,001	0,005	0,000	0,000	0,000	0,000	0,001	0,005

 Tabel 4.6 Nilai maksimum RAO SPM tertambat dengan FSO Arco Ardjuna light

 condition

Berdasarkan Gambar 4.37 sampai Gambar 4.50 dan Tabel 4.6 di atas dapat dilihat bahwa *surge* tertinggi ialah sebesar 0.934 (m/m) yaitu pada *heading* 0° , *sway* tertinggi pada *heading* 90° sebesar 0,934 (m/m), dan *heave* tertinggi sebesar 3.968 (m/m) pada *heading* 120° . Untuk gerak osilasi rotasional *roll* maksimum pada *heading* 90° sebesar 3.159 (deg/m), *pitch* maksimum sebesar 2.567 (deg/m) pada *heading* 30° .

4.4.2.2 *Single Point Mooring* kondisi *mooring* dengan FSO Arco Ardjuna kondisi *full load*

Gambar 4.51 Grafik RAO gerakan translasi pada *Single Point Mooring* saat *mooring* dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 0 derajat

Gambar 4.52 Grafik RAO gerakan rotasi pada *Single Point Mooring* saat *mooring* dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 0 derajat

Gambar 4.53 Grafik RAO gerakan translasi pada *Single Point Mooring* saat mooring dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 30 derajat

Gambar 4.54 Grafik RAO gerakan rotasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 30 derajat

Gambar 4.56 Grafik RAO gerakan rotasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 60 derajat

Gambar 4.57 Grafik RAO gerakan translasi pada *Single Point Mooring* saat mooring dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 90 derajat

Gambar 4.58 Grafik RAO gerakan rotasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 90 derajat

Gambar 4.59 Grafik RAO gerakan translasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 120 derajat

Gambar 4.60 Grafik RAO gerakan rotasi pada *Single Point Mooring* saat *mooring* dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 120 derajat

Gambar 4.61 Grafik RAO gerakan translasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 150 derajat

Gambar 4.62 Grafik RAO gerakan rotasi pada *Single Point Mooring* saat *mooring* dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 150 derajat

Gambar 4.63 Grafik RAO gerakan translasi pada Single Point Mooring saat mooring dengan FSO Arco Ardjuna kondisi full load dengan heading pembebanan 180 derajat

Gambar 4.64 Grafik RAO gerakan rotasi pada *Single Point Mooring* saat *mooring* dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 180 derajat

Moda Gerakan	Unit	RAO Maksimum							
		0 deg	30 deg	60 deg	90 deg	120 deg	150 deg	180 deg	Xbivi
Surge	m/m	0,847	<mark>0,</mark> 539	0,558	0,000	0,579	0,520	0,221	0,847
Sway	m/m	0,002	<mark>0,44</mark> 5	0,627	0,859	0,504	0,342	0,000	0,859
Heave	m/m	2,934	2,106	3,117	2,747	3,835	2,682	2,983	3,835
Roll	deg/m	0,002	1,217	2,287	2,714	2,405	1,244	0,000	2,714
Pitch	deg/m	2,430	2,038	1,577	0,000	2,125	1,838	1,160	2,430
Yaw	deg/m	0,001	0,001	0,000	0,000	0,000	0,000	0,000	0,001

 Tabel 4.7 Nilai maksimum RAO SPM tertambat dengan FSO Arco Ardjuna full

 condition

Berdasarkan Gambar 4.51 sampai Gambar 4.64 dan Tabel 4.7 di atas dapat dilihat bahwa *surge* tertinggi ialah sebesar 0,847 (m/m) yaitu pada *heading* 0° , *sway* tertinggi pada *heading* 90° sebesar 0,859 (m/m), dan *heave* tertinggi sebesar 3.835 (m/m) pada *heading* 120° . Untuk gerak osilasi rotasional *roll* maksimum pada *heading* 90° sebesar 2.714 (deg/m), *pitch* maksimum sebesar 2.430 (deg/m) pada *heading* 0° , dan *yaw* maksimum sebesar 0.001 (deg/m) pada *heading* 30° .

4.5 Spektrum Gelombang

Spektrum Gelombang yang digunakan pada analisis karakteristik gerakan struktur *Single Point Mooring* dan FSO Arco Ardjuna adalah Spektrum Jonswap. Gambar 4.65 di bawah ini menunjukkan grafik spektra JONSWAP.

Gambar 4.65 Spektrum Jonswap Perairan Laut Jawa dengan Hs = 1,8 m

4.6 Respon Spektra FSO Arco Ardjuna saat kondisi tertambat

Perhitungan respon spektra pada FSO Arco Ardjuna dilakukan pada kondsi *Light Load* maupun *Full Load* dengan kedalaman laut 45 m. Grafik respon spektra pada FSO dilakukan untuk gerakan *surge, sway, heave, roll* dan *pitch*. Berikut adalah grafik respon spektra pada FSO Arco Ardjuna dengan *heading* pembebanan 0°, 30°, 60°, 90°, 120°, 150° 180° dapat dilihat pada Gambar 4.66 sampai Gambar 4.93

4.6.1 Respon Spektra FSO Arco Ardjuna – light load

Gambar 4.66 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi *light load* tertambat dengan SPM dengan *heading* pembebanan 0 derajat

Gambar 4.67 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi *light load* tertambat dengan SPM dengan *heading* pembebanan 0 derajat

Gambar 4.68 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi *light load* tertambat dengan SPM dengan *heading* pembebanan 30 derajat

Gambar 4.69 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi *light load* tertambat dengan SPM dengan *heading* pembebanan 30 derajat

Gambar 4.70 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi *light load* tertambat dengan SPM dengan *heading* pembebanan 60 derajat

Gambar 4.71 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi *light load* tertambat dengan SPM dengan *heading* pembebanan 60 derajat

Gambar 4.72 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi *light load* tertambat dengan SPM dengan *heading* pembebanan 90 derajat

Gambar 4.73 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi *light load* tertambat dengan SPM dengan *heading* pembebanan 90 derajat

Gambar 4.74 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi *light load* tertambat dengan SPM dengan *heading* pembebanan 120 derajat

Gambar 4.75 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi *light load* tertambat dengan SPM dengan *heading* pembebanan 120 derajat

Gambar 4.76 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi *light load* tertambat dengan SPM dengan *heading* pembebanan 150 derajat

Gambar 4.77 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi *light load* tertambat dengan SPM dengan *heading* pembebanan 150 derajat

Gambar 4.78 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi *light load* tertambat dengan SPM dengan *heading* pembebanan 180 derajat

Gambar 4.79 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi *light load* tertambat dengan SPM dengan *heading* pembebanan 180 derajat

4.6.2 Respon Spektra FSO Arco Ardjuna – full load

Gambar 4.80 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi *full load* tertambat dengan SPM dengan *heading* pembebanan 0 derajat

Gambar 4.81 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi *full load* tertambat dengan SPM dengan *heading* pembebanan 0 derajat

Gambar 4.82 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi *full load* tertambat dengan SPM dengan *heading* pembebanan 30 derajat

Gambar 4.83 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi *full load* tertambat dengan SPM dengan *heading* pembebanan 30 derajat

Gambar 4.84 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi *full load* tertambat dengan SPM dengan *heading* pembebanan 60 derajat

Gambar 4.85 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi *full load* tertambat dengan SPM dengan *heading* pembebanan 60 derajat

Gambar 4.86 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi *full load* tertambat dengan SPM dengan *heading* pembebanan 90 derajat

Gambar 4.87 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi *full load* tertambat dengan SPM dengan *heading* pembebanan 90 derajat

Gambar 4.88 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi *full load* tertambat dengan SPM dengan *heading* pembebanan 120 derajat

Gambar 4.89 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi *full load* tertambat dengan SPM dengan *heading* pembebanan 120 derajat

Gambar 4.90 Grafik respon spektra gerakan translasi pada FSO Arco Ardjuna saat kondisi *full load* tertambat dengan SPM dengan *heading* pembebanan 150 derajat

Gambar 4.91 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi *full load* tertambat dengan SPM dengan *heading* pembebanan 150 derajat

Gambar 4.93 Grafik respon spektra gerakan rotasi pada FSO Arco Ardjuna saat kondisi *full load* tertambat dengan SPM dengan *heading* pembebanan 180 derajat

4.7 Respon Spektra Single Point Mooring saat kondisi tertambat

Perhitungan respon spektra pada *Single Point Mooring* dilakukan saat tertambat dengan FSO Arco Ardjuna kondisi *light load* dan *full load* pada sarat t = 2,38 m dengan kedalaman laut 45 m. Grafik respon spektra pada SPM dilakukan untuk gerakan *surge, sway, heave, roll* dan *pitch*. Berikut adalah grafik respon spektra pada *Single Point Mooring* dengan *heading* pembebanan 0° , 30° , 60° , 90° , 120° , 150° 180° dapat dilihat pada Gambar 4.94 sampai Gambar 4.121.

4.7.1 Respon Spektra Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi light load

Gambar 4.94 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 0 derajat

Gambar 4.95 Grafik respon spektra gerakan rotasi pada *Single Point Mooring* tertambat dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 0 derajat

Gambar 4.96 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 30 derajat

Gambar 4.97 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 30 derajat

Gambar 4.98 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 60 derajat

Gambar 4.99 Grafik respon spektra gerakan rotasi pada *Single Point Mooring* tertambat dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 60 derajat

Gambar 4.100 Grafik respon spektra gerakan translasi pada *Single Point Mooring* tertambat dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 90 derajat

Gambar 4.101 Grafik respon spektra gerakan rotasi pada *Single Point Mooring* tertambat dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 90 derajat

Gambar 4.102 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 120 derajat

Gambar 4.103 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 120 derajat

Gambar 4.104 Grafik respon spektra gerakan translasi pada *Single Point Mooring* tertambat dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 150 derajat

Gambar 4.105 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 150 derajat

Gambar 4.106 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 180 derajat

Gambar 4.107 Grafik respon spektra gerakan rotasi pada *Single Point Mooring* tertambat dengan FSO Arco Ardjuna kondisi *light load* dengan *heading* pembebanan 180 derajat

4.7.2 Respon Spektra Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi full load

Gambar 4.108 Grafik respon spektra gerakan translasi pada *Single Point Mooring* tertambat dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 0 derajat

Gambar 4.109 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 0 derajat

Gambar 4.110 Grafik respon spektra gerakan translasi pada *Single Point Mooring* tertambat dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 30 derajat

Gambar 4.111 Grafik respon spektra gerakan rotasi pada *Single Point Mooring* tertambat dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 30 derajat

Gambar 4.112 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 60 derajat

Gambar 4.113 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 60 derajat

Gambar 4.114 Grafik respon spektra gerakan translasi pada *Single Point Mooring* tertambat dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 90 derajat

Gambar 4.115 Grafik respon spektra gerakan rotasi pada *Single Point Mooring* tertambat dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 90 derajat

Gambar 4.116 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 120 derajat

Gambar 4.117 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 120 derajat

Gambar 4.118 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 150 derajat

Gambar 4.119 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 150 derajat

Gambar 4.120 Grafik respon spektra gerakan translasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 180 derajat

Gambar 4.121 Grafik respon spektra gerakan rotasi pada Single Point Mooring tertambat dengan FSO Arco Ardjuna kondisi *full load* dengan *heading* pembebanan 180 derajat

4.8 Analisis Tegangan Pada Anchor Legs dan Hawser

Analisis tegangan pada anchor line dan hawser pada struktur Single Point Mooring pada saat tertambat dengan FSO Arco Ardjuna kondisi light load dan full load dilakukan untuk mendapatkan tegangan terbesar pada anchor legs dan hawser sebagai input pada pemodelan selanjutnya. Analisis ini mengacu pada standar American Bureau of Shipping (ABS), dimana safety factor dari tegangan mooring line yang didapat dengan membagi Minimum Breaking Load dengan tension yang didapatkan dari hasil simulasi. Hasil perbandingan tersebut harus lebih besar dari ketentuan ABS, yaitu 1,67 untuk anchor legs dan 1,82 untuk hawser.

Analisis tegangan pada *mooring line* dilakukan dengan menggunakan bantuan *software* ANSYS Aqwa dengan simulasi *time domain* selama 10800 detik (3 jam). Skenario analisis ini dilakukan dalam 2 kondisi yaitu:

- 1. Single Point Mooring FSO Arco Ardjuna kondisi light load
- 2. Single Point Mooring FSO Arco Ardjuna kondisi full load

Untuk arah pembebanan gelombang terhadap *heading* struktur dilakukan dalam tujuh arah, yaitu 0^{0} , 30^{0} , 60^{0} , 90^{0} , 120^{0} , 150^{0} , dan 180^{0} . Gambar 4.122 dan Gambar 4.123 berikut ini adalah hasil pemodelan pada *software* ANSYS Aqwa saat kondisi tertambat.

Gambar 4.122 Pemodelan pada software ANSYS Aqwa tampak samping

Gambar 4.123 Pemodelan pada software ANSYS Aqwa tampak isometric

Setelah dilakukan simulasi dengan software ANSYS Aqwa selama 10800 detik (3jam) didapatkan tension pada anchor legs dan hawser maksimum dan minimum pada setiap sudur pembebanan seperti ditunjukkan pada Tabel 4.8 sampai Tabel 4.15 di bawah ini:

1.1	00	legre	e		30 degr	ee		60 degre	e
	Tension ((N)	Check	Tensio	n (kN)	Che	ck Te	nsion (kN)	Check
Line 1	571,	506	12,34		526,76	1	3,39	487,398	14,47
Line 2	495,	357	14,23	4	63,406	1	5,22	481,096	14,66
Line 3	488,	374	14,44	4	55,681	1	5,47	459,44	15,35
Line 4	402,	075	17,54	4	53,883	1	5,53	474,721	14,85
Line 5	490,	427	14,38	4	61,769	1	5,27	489,184	14,41
Line 6	454,	117	15,53	5	29,895	1	3,31	498,363	14,15
90 de	gree		120 degr	ee	15	0 degr	ree	180 deg	ree
Tension (kN) Check	Tens	sion (kN)	Check	Tension	(kN)	Check	Tension (kN)	Check
463,7	6 15,20		461,255	15,29	44	42,57	15,93	433,58	16,26
420,9	8 16,75	1	451,549	15,62	35	95,26	17,84	413,47	17,05

 Tabel 4.8 Analisis tension maksumum pada anchor legs pada SPM saat
 tertambat dengan FSO Arco Ardjuna kondisi light load

90 degr	ee	120 degr	ee	150 deg	ree	180 degree	
Tension (kN)	Check						
463,76	15,20	461,255	15,29	442,57	15,93	433,58	16,26
420,98	16,75	451,549	15,62	395,26	17,84	413,47	17,05
418,69	16,84	464,035	15,19	596,23	11,83	610,75	11,54
448,03	15,74	481,65	14,64	605,80	11,64	615,16	11,46
470,35	14,99	615,525	11,46	599,17	11,77	610,27	11,55
476,91	14,78	492,012	14,33	422,92	16,67	411,95	17,12

	dengar	n FSO Arc	o Ardjuna kond	isi <i>full loa</i>	d	
	0 degre	e.	30 degr	ee	60 degr	ee
	Tension (kN)	Check	Tension (kN)	Check	Tension (kN)	Check
Line 1	417,554	16,89	450,159	15,66	335,135	21,04
Line 2	301,662	23,37	303,391	23,24	323,126	21,82
Line 3	203,745	34,61	329,753	21,38	265,175	26,59
Line 4	201,992	34,91	326,429	21,60	290,818	24,25
Line 5	208,384	33,84	312,426	22,57	372,368	18,94
Line 6	407,878	17,29	467,402	15,09	481,774	14,64

Tabel 4.9 Analisis tension maksimum pada anchor legs pada SPM saat tertambat

90 degr	ree	120 degr	ee	150 degr	ee	180 deg	ree
Tension (kN)	Check						
324,978	21,70	293,851	24,00	300,20	23,49	341,171	20,67
295,271	23,88	315,619	22,34	287,25	24,55	368,237	19,15
312,166	22,59	317,012	22,24	349,79	20,16	392,131	17,98
324,538	21,73	361,638	19,50	415,88	16,95	435,562	16,19
493,908	14,28	496,968	14,19	403,71	17,47	396,643	17,78
436,149	16,17	367,727	19,17	344,41	20,47	372,684	18,92

 Tabel 4.10 Analisis tension maksimum pada hawser pada SPM saat tertambat

	0 degre	e	30 degr	ee	60 degree		
100	Tension (kN)	Check	Tension (kN)	Check	Tension (kN)	Check	
Line 1	989,119	4,14	891,197	4,59	845,5	4,84	
Line 2	997,068	4,11	896,656	4,57	847,91	4,83	

dengan FSO Arco Ardjuna kondisi light load

90 degr	ee	120 degr	ee	150 deg	ree	180 degr	ee
Tension (kN)	Check						
909,69	4,50	892,444	4,59	859,27	4,76	810,056	5,05
923,45	4,43	919,116	4,45	862,03	4,75	815,481	5,02

Tabel 4.11 Analisis tension maksimum pada hawser pada SPM saat tertambat

dengan FSO Arco Ardjuna kondisi full load

	0	degre	e		30 degi	ree		60 deg	ree	
	Tension	(kN)	Check	: Tens	ion (kN)	Ch	eck 1	Tension (kN)	C	heck
Une1	7	63,59	5,	36	611,501		6,70	642,31		6,37
Line 2	76	6,619	5,	34	622,527		6,58	651,47		6,28
90 deg	ree		120 degr	ee	150	deg	ree	180 d	egree	
Tension (kN)	Check	Tensio	on (kN)	Check	Tension	(kN)	Check	Tension (kN) c	heck
697,759	5,87		701,341	5,84	70	9,31	5,7	614,21	2	6,67
703,271	5,82		707,803	5,78	71	4,43	5,7	73 617,41	6	6,63

	11	0 d	egre	e		30 degr	ee		60 degre	ee
4	Te	ension (k	N)	Check	Tensio	on (kN)	Che	eck T	ension (kN)	Check
Line 1	Г	246	,82	28,5	7	220,952	-	31,91	212,251	33,22
Line 2		258	,76	27,2	5	221,606	- 11	31,82	291,13	24,22
Line 3		245	,42	28,7	3	201,234	1	35,04	239,343	29,46
Line 4		219	,78	32,0	3	199,937	3	35,27	213,842	32,97
Line 5		242	,37	29,05	9	221,77		31,79	210,073	33,56
Line 6	1	256	,22	27,5	2	221,997	-	31,76	249,951	28,21
90 (degr	ee		120 deg	ee	150	0 degr	ree	180 deg	ree
Tension (kN)	Check	Tens	sion (kN)	Check	Tension	(kN)	Check	Tension (kN)	Check
252	2,72	27,90		206,55	34,14	21	7,72	32,35	245,66	28,70
242	2,16	29,12		203,69	34,62	22	27,17	31,04	263,86	26,72
253	3,05	27,86		210,64	33,47	28	31,80	25,02	2 265,65	26,54
268	3,93	26,22		204,62	34,46	21	9,73	32,05	235,14	29,99
216	63	32.55		199.79	35.29	26	12.41	26.8	259.66	27.15

 Tabel 4.12 Analisis tension minimum pada anchor legs pada SPM saat tertambat

dengan FSO Arco Ardjuna kondisi light load

Tabel 4.13 Analisis *tension* minimum pada *anchor legs* pada SPM saat tertambatdengan FSO Arco Ardjuna kondisi *full load*

34,11

284,54

24,78

263,72

26,74

229,60

30,71

206,73

	0 degre	e	30 degr	ee	60 degr	ee
	Tension (kN)	Check	Tension (kN)	Check	Tension (kN)	Check
Line 1	116,395	60,58	121,027	58,26	177,195	39,79
Line 2	149,031	47,31	171,727	41,06	170,766	41,29
Line 3	155,737	45,28	126,114	55,91	166,044	42,46
Une 4	142,834	49,36	179,86	39,20	191,491	36,82
Line 5	153,194	46,03	162,386	43,42	167,72	42,04
Line 6	146,72	48,06	119,913	58,80	117,856	59,83

90 degr	ee	120 degr	ree	150 deg	ree	180 degree	
Tension (kN)	Check						
189,75	37,16	169,486	41,60	141,79	49,73	183,546	38,42
132,411	53,25	136,31	51,73	151,22	46,63	106,023	66,50
139,525	50,54	160,301	43,99	181,55	38,84	190,171	37,08
144,245	48,88	169,9	41,50	124,08	56,83	156,075	45,18
111,218	63,40	114,901	61,37	123,20	57,23	185,89	37,93
130,13	54,18	162,423	43,41	184,77	38,16	105,392	66,90

Tabel 4.14 Analisis tension minimum pada hawser pada SPM saat tertambat

	0 degr	ee	30 deg	ree	60 degree	
1.00	Tension (kN)	Check	Tension (kN)	Check	Tension (kN)	Check
Line 1	0	5	0	-	0	27
Line 2	0		0		0	-

dengan FSO Arco Ardjuna kondisi light load

90 deg	ree	120 deg	ree	ee 150 degree		180 degree	
Tension (kN)	Check	Tension (kN)	Check	Tension (kN)	Check	Tension (kN)	Check
0,00	-	0,00	-	0,00	×	0,00	-
0,00	-	0,00	-	0,00	×	0,00	-

 Tabel 4.15 Analisis tension minimum pada hawser pada SPM saat tertambat

 dengan FSO Arco Ardjuna kondisi full load

	0 degr	ee	30 degi	ree	60 degree		
1.00	Tension (kN)	Check	Tension (kN)	Check	Tension (kN)	Check	
Line 1	-0	5	0	-	0	27	
Line 2	0		0	-	0	-	

90 degree		120 degree		150 degree		180 degree	
Tension (kN)	Check						
0,00	-	0,00	-	0,00	*	0,00	-
0,00	-	0,00	-	0,00	×	0,00	

Berdasarkan tabel – tabel di atas dapat diketahui bahwa *anchor legs* SPM dan *hawser* yang menghubungkan SPM dan FSO Arco Ardjuna memiliki *safety factor* terkecil 11,46 untuk *anchor legs* dan 4,11 pada *hawser* yang berarti lebih besar dari *safety factor* yang dianjurkan oleh ABS. Hal ini menunjukan bahwa *anchor legs* dan *hawser* aman untuk beroperasi. Nilai *tension* maksimum dan minimum ini nantinya akan digunakan untuk pembebanan pada pemodelan ANSYS Mechanical.

4.9 Analisis Tekanan Hidrostatis dan Structure Acceleration

Selain beban *tension* pada *anchor legs* dan *hawser*, tekanan hidrostatis dan percepatan pada struktur juga perlu dipertimbangkan dalam analisis sebuah struktur. Nilai *hydrostatic pressure* dan *structure acceleration* diambil pada detik di mana terjadi *tension* terbesar pada *mooring line*. Tabel 4.16 berikut merupakan hasil perhitungan tekanan hidrostatis dan percepatan struktur.

					Light Loa	d					
Heading 0 Heading 30 Heading 60 Heading 90 Heading 120							Heading 150	Heading 180			
Hyrdrostatic Force (kN)		5954,810	5611,898	6708,883	5941,725	6024,843	5007,014	5344,574			
Accoloration	x	-0,698	0,070	-0,028	0,021	-0,325	-0,724	0,610			
Acceleration	у	5,048	-0,063	0,723	0,580	-0,883	0,903	4,394			
m/s^2	z	0,946	-0,556	1,579	0,933	-0,844	0,604	0,349			

Tabel 4.16 Tekanan hidrostatis dan percepatan struktur SPM

					Full Loop	4		
					Full Load			
		Heading 0	Heading 30	Heading 60	Heading 90	Heading 120	Heading 150	Heading 180
Hyrdrostatic Force (kN)		6528,374	6129,894	6033,032	6541,078	6263,367	6015,166	5580,884
Acceleration	x	-0,539	-0,350	-0,391	0,756	0,236	0,479	0,249
	у	0,331	0,233	0,624	-1,459	0,216	3,134	2,701
m/s^2	Z	1,276	1,138	0,870	0,820	0,835	-0,630	0,703

4.10 Pemodelan Struktur Single Point Mooring

Sebelum dilakukan analisa tegangan dan umur kelelahan struktur *Single Point Mooring* terlebih dahulu membuat model pada Autocad yang nantinya sebagai *geometry input* pada ANSYS Mechanical. Model yang dibuat merupakan model konstruksi global. Pemodelan pada ANSYS Mechanical dibuat berdasarkan dimensi yang didapatkan dari data ukuran asli *general arrangement Single Point Mooring*. Jenis material konstruksi *Single Point Mooring* menggunakan baja ASTM A36 dengan *yield strength* sebesar 250 Mpa. Data foto struktur *Single Point Mooring* dan hasil pemodelan global dapat dilihat pada Gambar 4.124 sampai Gambar 4.128 berikut.

Gambar 4.124 Foto struktur Single Point Mooring

Gambar 4.125 Hasil pemodelan global pada Autocad – tampak atas

Gambar 4.126 Hasil pemodelan global pada Autocad – tampak samping

Gambar 4.127 Hasil pemodelan global pada Autocad – isometris

Gambar 4.128 Hasil pemodelan global pada ANSYS Mechanical

Setelah pembuatan pemodelan struktur global *Single Point Mooring* dengan menggunakan ANSYS Mechanical, langkah selanjutnya adalah pemberian beban. Hasil *stress* yang didapatkan dari *software* ini nantinya akan dianalisis tegangan ijinnya berdasarkan *American Bureau Shipping*.

4.11 Sensitivity Meshing Analysis

Sensitivity analysis perlu dilakukan untuk memastikan apakah tegangan yg terjadi dari *output* sudah benar dan mendekati nilai kebenaran. Dalam tugas akhir ini, uji sensitivitas dilakukan melalui variasi kerapatan dalam *meshing*. Berdasarkan vatiasi kerapatan *meshing* yang telah dilakukan tersebut akan didapatkan hasil *maximum stress*. Dari beberapa hasil tegangan yang dihasilkan dianalisis hingga didapatkan perbedaan hasil kurang dari 5%. Pada tugas akhir ini dilakukan *running* dengan kondisi kerapatan *meshing* seperti pada Gambar 4.129 dan 4.130

Gambar 4.129 Meshing struktur

Gambar 4.130 Refinement di daerah kritis

Berdasarkan variasi *meshing* yang dilakukan, didapatkan tabulasi *meshing* dan *maximum principal stress* yang dihasilkan pada Tabel 4.17 dan Gambar 4.131 sebagai berikut:

Condition	Mesh Sizing (m)	Max. Stress (Mpa)	Error
1	0,5	120,22	
2	0,45	131,34	0,09
3	0,4	137,16	0,04
4	0,35	138,16	0,01
5	0,3	139,28	0,01

 Tabel 4.17 Tabulasi hasil Maximum Principal Stress untuk variasi kerapatan

 meshing

Gambar 4.131 Sensitivitas meshing model struktur SPM

Berdasarkan Tabel 4.17 dan grafik pada Gambar 4.131 dapat disimpulkan bahwa struktur *Single Point Mooring* dapat dengan baik dimodelkan pada ukuran *mesh* 0.4 meter karena hasil perhitungan *error* untuk *mesh* ini kurang dari 5%.

4.12 Pembebanan pada ANSYS Mechanical

Dalam analisis kelelahan pada struktur *Single Point Mooring*, diperlukan beberapa konfigurasi pembebanan *tension* yang telah didapat sebelumnya. Selain beban *tension anchor legs* dan *hawser*, adapun beban berat dari struktur SPM, *hydrostatic pressure*, dan *structure acceleration*. Beberapa konfigurasi pembebanan struktur pada ANSYS Mechanical berdasarkan *tension*, kondisi FSO Arco Ardjuna dan *heading* pembebanan antara lain:

- 1. Maximum Tension FSO light load heading 0°
- 2. Maximum Tension FSO light load heading 30°
- 3. Maximum Tension FSO light load heading 60°
- 4. Maximum Tension FSO light load heading 90°
- 5. Maximum Tension FSO light load heading 120°
- 6. Maximum Tension FSO light load heading 150°
- 7. Maximum Tension FSO light load heading 180°
- 8. Minimum Tension FSO light load heading 0°

9. Minimum Tension – FSO light load – heading 30° 10. Minimum Tension – FSO light load – heading 60° 11. Minimum Tension – FSO light load – heading 90° 12. Minimum Tension – FSO light load – heading 120° 13. Minimum Tension – FSO light load – heading 150° 14. Minimum Tension – FSO light load – heading 180° 15. Maximum Tension – FSO full load – heading 0° 16. Maximum Tension – FSO full load – heading 30° 17. Maximum Tension – FSO full load – heading 60° 18. Maximum Tension – FSO full load – heading 90° 19. Maximum Tension – FSO full load – heading 120° 20. Maximum Tension – FSO full load – heading 150° 21. Maximum Tension – FSO full load – heading 180° 22. Minimum Tension – FSO full load – heading 0° 23. Minimum Tension – FSO full load – heading 30° 24. Minimum Tension – FSO full load – heading 60° 25. Minimum Tension – FSO full load – heading 90° 26. Minimum Tension – FSO full load – heading 120° 27. Minimum Tension – FSO full load – heading 150° 28. Minimum Tension – FSO full load – heading 180°

Gambar 4.132 sampai Gambar 4.136 berikut adalah *boundary condition* pada struktur SPM:

Gambar 4.132 Beban akselerasi struktur

Gambar 4.133 Beban berat struktur

Gambar 4.134 Beban tekanan hidrostatis

Gambar 4.135 Tension hawser

Gambar 4.136 Tension Anchor Legs

4.12 Analisis Tegangan Pada Struktur SPM

Gambar 4.137 dan Gambar 4.138 berikut ini adalah hasil *maximum stress* dan deformasi pada struktur *Single Point Mooring*

Gambar 4.137 Deformasi pada struktur SPM

Gambar 4.138 Maximum stress struktur

Berdasarkan hasil pemodelan struktur global *Single Point Mooring* pada Gambar 4.137 dan Gambar 4.138 dengan pembebanan sesuai *tension anchor legs* dan *hawser*, tekanan hidrostatis, beban berat struktur, dan akselerasi struktur didapatkan tegangan maksimum sebesar 137,16 MPa dengan deformasi 5,6 mm. Nilai tegangan maksimum tersebut masih lebih kecil jika dibandingkan dengan tegangan ijin yang dianjurkan oleh ABS "*Safehull-Dynamic Loading Approach for FPSO Systems*" sebesar 225 MPa. Dan Nilai deformasi yang dihasilkan juga masih lebih kecil jika dibandingkan dengan syarat deformasi maksimum yang tercantum dalam ABS "Shipbuilding and Repair Quality Standard for Hull Structures during Construction" yaitu 11.2 mm.

4.13 Analisis Umur Kelelahan Struktur SPM

Perhitungan umur kelelahan dalam tugas akhir ini menggunakan metode S-N Curve berdasarkan hukum kegagalan *palmgren miner (miner's rule)* dengan mengestimasi kumulatif kegagalan *fatigue (cumulative fatigue damage)* menggunakan metode *simplified fatigue analysis*. Berikut adalah tabulasi *maximum principal stress* yang terjadi pada lokasi-lokasi kritis di struktur SPM yang nantinya digunakan dalam perhitungan umur kelelahan. Penomoran titik-titik kritis pada struktur SPM dapat dilihat pada Gambar 4.139 dan Gambar 4.140 berikut

Gambar 4.139 Penomoran titik-titik kritis pada struktur SPM

Gambar 4.140 Konstruksi kritis

Tabel 4.18 dan Tabal 4.19 di bawah ini menjelaskan perhitungan *hot-spot stress* dengan menggunakan faktor 1.12

	LC-1				
Code	Maximum Principal Stress	Fastor	Hot-spot Stress		
Coue	[Mpa]	ractor	[Mpa]		
A1-1	106,04	1,12	118,76		
A1-2	105,44	1,12	118,09		
A2-1	80,72	1,12	90,41		
A2-2	50,06	1,12	56,07		
A3-1	88,23	1,12	98,82		
A3-2	93,99	1,12	105,27		
A4-1	66,92	1,12	74,95		
A4-2	86,37	1,12	96,73		
A5-1	68,47	1,12	76,69		
A5-2	96,15	1,12	107,69		
A6-1	33,77	1,12	37,82		
A6-2	43,72	1,12	48,97		

Tabel 4.18	Perhitungan	Hot-Spot Stress
------------	-------------	-----------------

	LC-8										
Code	Maximum Principal Stress	Factor	Hot-spot Stress								
Coue	[Mpa]	ractor	[Mpa]								
A1-1	43,36	1,12	48,56								
A1-2	46,48	1,12	52,06								
A2-1	61,45	1,12	68,82								
A2-2	66,89	1,12	74,92								
A3-1	52,99	1,12	59,35								
A3-2	62,89	1,12	70,44								
A4-1	55,44	1,12	62,09								
A4-2	55,06	1,12	61,67								
A5-1	52,73	1,12	59,06								
A5-2	64,95	1,12	72,74								
A6-1	67,28	1,12	75,35								
A6-2	70,17	1,12	78,59								

	LC-1 / LC-8									
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress							
Code	Maximum Tension	Minimum Tension	Range							
	[Mpa]	[Mpa]	[Mpa]							
A1-1	118,76	48,56	70,20							
A1-2	118,09	52,06	66,04							
A2-1	90,41	68,82	21,58							
A2-2	56,07	74,92	18,85							
A3-1	98,82	59,35	39,47							
A3-2	105,27	70,44	34,83							
A4-1	74,95	62,09	12,86							
A4-2	96,73	61,67	35,07							
A5-1	76,69	59,06	17,63							
A5-2	107,69	72,74	34,94							
A6-1	37,82	75,35	37,53							
A6-2	48,97	78,59	29,62							

Tabel 4.19 Perhitungan Hot-Spot Stress Range

$f_{0} = 1 \text{ operation factor}$ $U = 30 \text{ year}$ $= 9,46\text{E}+08 \text{ second}$ $L = 16,26 \text{ m}$ $= \frac{f_{0}U}{4 \log L}$ $N_{L} = 1,95\text{E}+08$ Hot-spot SN-curve parameters (Class D): m = 3 \Delta m = 2 $K_{2} = 1,52\text{E}+12$ $S_{2} = 53.4 \text{ N/mm}^{2}$	1		
U = 30 year = 9,46E+08 second L = 16,26 m = $\frac{f_0 U}{4 \log L}$ N_{\perp} = 1,95E+08 Hot-spot SN-curve parameters (Class D): m = 3 Δm = 2 K_2 = 1,52E+12 S_2 = 53,4 N/mm ²	f _o	=	1 operation factor
$= 9,46E+08 \text{ second}$ $L = 16,26 \text{ m}$ $= \frac{f_0 U}{4 \log L}$ $N_L = 1,95E+08$ Hot-spot SN-curve parameters (Class D): m = 3 \Delta m = 2 $K_2 = 1,52E+12$ $S_2 = 53.4 \text{ N/mm}^2$	U	=	30 year
L = 16,26 m = $\frac{f_0 U}{4 \log L}$ N _L = 1,95E+08 Hot-spot SN-curve parameters (Class D): m = 3 Δm = 2 K ₂ = 1,52E+12 S ₂ = 53,4 N/mm ²		=	9,46E+08 second
$= \frac{f_0 U}{4 \log L}$ $N_{\rm L} = 1,95E+08$ Hot-spot SN-curve parameters (Class D): m = 3 \Delta m = 2 $K_2 = 1,52E+12$ $S_2 = 53.4 \text{ N/mm}^2$	L	=	16,26 m
$4 \log L$ $N_{L} = 1,95E+08$ Hot-spot SN-curve parameters (Class D): $m = 3$ $\Delta m = 2$ $K_{2} = 1,52E+12$ $S_{2} = 53.4 \text{ N/mm}^{2}$		=	$f_0 U$
$N_{L} = 1,95E+08$ Hot-spot SN-curve parameters (Class D): m = 3 $\Delta m = 2$ $K_{2} = 1,52E+12$ $S_{2} = 53.4 \text{ N/mm}^{2}$			4 log L
Hot-spot SN-curve parameters (Class D): m = 3 Δm = 2 K_2 = 1,52E+12 S_2 = 53.4 N/mm ²	NL	=	1,95E+08
m = 3 $\Delta m = 2$ $K_2 = 1,52E+12$ $S_2 = 53.4 \text{ N/mm}^2$	Hot-s	pot SN-curve	e parameters (Class D):
$\Delta m = 2$ $K_2 = 1,52E+12$ $S_2 = 53.4 N/mm^2$	m	=	3
$K_2 = 1,52E+12$ $S_2 = 53.4 \text{ N/mm}^2$	Δm	=	2
$S_{-} = 53.4 \text{ N/mm}^2$	K 2	=	1,52E+12
- q, · · ·	S _q	=	53,4 N/mm ²

Weibull parameter

α	=	0,9	93	
ξ	=	1,075:	11	
v	=	$\left(\frac{S_{q}}{S_{R}}\right)^{c} lnN$. =	6,86
$1 + \frac{m}{\xi}$			-	3,79
$1 + \frac{m + m}{m}$	- Δm ξ		Ē	5,65
$\Gamma\left(1+\frac{n}{4}\right)$	$\left(\frac{n}{5}\right)$		=	4,64
r (1	$+\frac{m}{\xi}$, 1	rr)	÷	4,2961
r (1 -	$+\frac{m+2}{\xi}$	<u>m</u> , v _f)	=	48,8756
$v_i^{-\Delta m/3}$	=	0,0278	80	

Dalam analisa ini menggunakan metode *simplified*, yang dinyatakan sebagai berikut

 Tabel 4.21 Hasil perhitungan kelelahan struktur SPM saat tertambat dengan FSO

Load	Operation factor						Pa	art					
Condition	operation factor	A1-1	A1-2	A2-1	A2-2	A3-1	A3-2	A4-1	A4-2	A5-1	A5-2	A6-1	A6-2
LC 1-8	0,14	1,74E-01	3,19E-01	5,18E-04	2,63E-04	1,06E-02	5,67E-03	3,88E-05	5,86E-03	1,88E-04	5,76E-03	7,58E-04	2,52E-03
LC 2-9	0,14	1,34E-01	1,66E-01	6,76E-04	3,09E-03	7,44E-03	3,60E-02	1,14E-05	1,24E-04	3,36E-02	8,35E-05	7,10E-02	7,32E-02
LC 3-10	0,14	9,38E-08	5,00E-03	4,87E-04	5,99E-03	6,60E-02	9,37E-05	1,72E-08	3,58E-09	2,25E-02	9,46E-04	8,49E-02	1,06E-01
LC 4-11	0,14	1,43E-10	6,38E-06	3,96E-04	1,30E-02	3,96E-02	9,53E-03	2,73E-02	2,76E-03	8,54E-02	1,50E-01	6,76E-02	1,38E-01
LC 5-12	0,14	7,96E-01	1,69E+00	4,33E-02	2,14E-01	9,30E-02	1,03E-01	1,38E-02	3,03E-01	4,18E-01	2,70E-01	1,95E-07	1,74E-04
LC 6-13	0,14	7,72E-01	8,66E-01	4,03E-02	5,24E-02	6,33E-02	7,80E-02	2,10E-02	1,60E-01	5,43E-01	5,77E-01	9,61E-04	3,18E-08
LC 7-14	0,14	4,11E-04	2,08E-03	4,11E-04	2,08E-03	2,77E-06	3,82E-06	2,96E-01	3,57E-01	1,52E-02	8,50E-02	3,31E-05	1,96E-05
Total Damage Ratio 2,68E-01 4,36E-01 1,23			1,23E-02	4,16E-02	4,00E-02	3,32E-02	5,11E-02	1,18E-01	1,60E-01	1,56E-01	3,22E-02	4,57E-02	
Fatigue Life	(years)	111,9177	68,84437	2437,993	721,5133	750,3315	902,5681	586,9548	253,1856	187,8524	192,8218	932,5377	656,6827

Arco Ardjuna kondisi light load

Tabel 4.19 Hasil perhitungan kelelahan struktur SPM saat tertambat dengan FSOArco Ardjuna kondisi *full load*

Load	Operation factor	Part											
Condition		A1-1	A1-2	A2-1	A2-2	A3-1	A3-2	A4-1	A4-2	A5-1	A5-2	A6-1	A6-2
LC 15-22	0,14	1,42E-01	1,43E-01	1,35E-03	7,06E-03	5,00E-02	3,06E-02	6,19E-04	4,80E-03	4,60E-02	1,98E-04	2,59E-08	1,72E-04
LC 16-23	0,14	5,39E-02	8,04E-02	9,16E-05	2,49E-04	1,44E-03	1,71E-04	6,96E-10	1,58E-05	7,07E-04	3,22E-03	6,28E-03	5,92E-03
LC 17-24	0,14	3,01E-05	2,04E-07	7,06E-08	4,58E-03	3,04E-03	1,14E-03	3,75E-05	2,00E-04	7,10E-03	1,11E-03	2,29E-02	2,73E-02
LC 18-25	0,14	8,01E-05	8,54E-07	3,63E-07	5,52E-04	2,34E-02	5,89E-03	2,19E-02	7,82E-04	5,45E-02	3,23E-02	3,08E-02	1,31E-01
LC 19-26	0,14	4,14E-07	9,22E-06	1,78E-04	2,14E-04	1,50E-02	3,71E-03	1,20E-02	3,88E-03	2,47E-02	3,96E-02	1,09E-06	1,30E-06
LC 20-27	0,14	1,68E-08	4,78E-04	6,97E-04	2,19E-05	5,35E-03	3,10E-04	3,64E-02	2,03E-02	1,76E-02	4,07E-02	2,88E-05	1,99E-04
LC 21-28	0,14	7,95E-14	2,77E-05	2,41E-04	8,70E-05	3,32E-03	2,30E-04	8,65E-03	3,91E-02	3,59E-04	4,49E-05	5,56E-07	1,57E-14
Total Damage Ratio		2,80E-02	3,19E-02	3,66E-04	1,82E-03	1,45E-02	6,00E-03	1,14E-02	9,87E-03	2,16E-02	1,67E-02	8,57E-03	2,36E-02
Fatigue Life (years)		1071,806	939,1712	81940,41	16447,33	2068,578	4996,491	2636,515	3039,92	1391,953	1792,26	3499,84	1272,147

Dari hasil perhitungan umur kelelahan struktur, pada Tabel 4.21 dan Tabel 4.19 diperoleh hasil bahwa struktur *Single Point Mooring* memiliki harga D < 1 sehingga struktur tersebut dapat dikatakan masih aman untuk digunakan dalam kondisi operasi dengan umur kelelahan struktur 68 tahun

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Kesimpulan yang dapat dibuat berdasarkan pengerjaan Tugas Akhir ini adalah :

- 1. Respon struktur FSO Arco Ardjuna dan *Single Point Mooring* akibat beban gelombang pada saat *free floating*, adalah sebagai berikut :
 - RAO FSO Arco Ardjuna, nilai terbesar terjadi pada kondisi *light* dengan *surge* terbesar 0.338 m/m, *sway* terbesar 0.88 m/m, *heave* terbesar 0.910 m/m, *roll* terbesar 4.46 ⁰/m, *pitch* terbesar 1.156 ⁰/m, *yaw* terbesar 0.585 ⁰/m.
 - RAO Single Point Mooring terbesar dengan nilai surge 1.007 m/m, sway 1.005 m/m, heave 4.074 m/m, roll 3.641 ⁰/m, pitch 2.65 ⁰/m, yaw 0.000 ⁰/m.
- 2. Respon struktur FSO Arco Ardjuna dan *Single Point Mooring* akibat beban gelombang pada saat *mooring*, adalah sebagai berikut :
 - RAO FSO Arco Ardjuna, nilai terbesar terjadi pada kondisi *light* dengan *surge* terbesar 0.21 m/m, *sway* terbesar 0.237 m/m, *heave* terbesar 0.295 m/m, *roll* terbesar 1.104 ⁰/m, *pitch* terbesar 1.083 ⁰/m, *yaw* terbesar 0.004 ⁰/m.
 - RAO Single Point Mooring, nilai terbesar pada saat tertambat dengan FSO Arco Ardjuna kondisi light load dengan nilai surge 0.934 m/m, sway 0.934 m/m, heave 3.968 m/m, roll 3.159 ⁰/m, pitch 2.567 ⁰/m, yaw 0.005 ⁰/m.
- 3. Hasil tension anchor leg terbesar yang menghubungkan antara FSO Arco Ardjuna dengan Single Point Mooring dari hasil simulasi terjadi pada anchor leg 1 dengan nilai sebesar 571.51 kN dan sudut pembebanan 0⁰. Anchor Legs memiliki Minimum Breaking Load sebesar 7051 kN sehingga

dengan *tension* yang didapatkan dari hasil simulasi, memiliki *safety factor* 12.34. *Safety factor* ini lebih dari 1.67 yang dianjurkan oleh *American Bureau of Shipping*. Dengan demikian dapat disimpulkan bahwa *anchor leg* dalam kondisi aman melakukan proses *mooring*. Sedangkan hasil *tension hawser* terbesar yang menghubungkan antara FSO Arco Ardjuna dengan *Single Point Mooring* dari hasil simulasi terjadi pada *hawser 2* dengan nilai sebesar 997.07 kN dan sudut pembebanan 0⁰. *Anchor Legs* memiliki *Minimum Breaking Load* sebesar 4094 kN sehingga dengan *tension* yang didapatkan dari hasil simulasi, memiliki *safety factor* 4.11. *Safety factor* ini lebih dari 1.82 yang dianjurkan oleh *American Bureau of Shipping*. Dengan demikian dapat disimpulkan bahwa *hawser* dalam kondisi aman melakukan proses *mooring*

4. Berdasarkan hasil pemodelan struktur global Single Point Mooring dengan pembebanan sesuai tension anchor legs dan hawser, tekanan hidrostatis, beban berat struktur, dan akselerasi struktur didapatkan tegangan maksimum sebesar 137,16 MPa dengan deformasi 5,6 mm. Nilai tegangan maksimum tersebut masih lebih kecil jika dibandingkan dengan tegangan ijin yang dianjurkan oleh ABS "Safehull-Dynamic Loading Approach for FPSO Systems" sebesar 225 MPa. Dan Nilai deformasi yang dihasilkan juga masih lebih kecil jika dibandingkan dengan syarat deformasi maksimum yang tercantum dalam ABS "Shipbuilding and Repair Quality Standard for Hull Structures during Construction" yaitu 11.2 mm. Dengan demikian, dapat disimpulkan bahwa struktur SPM masih aman untuk beroperasi. Dari hasil perhitungan umur kelelahan struktur, diperoleh hasil bahwa struktur Single Point Mooring memiliki harga D < 1 sehingga struktur tersebut dapat dikatakan aman untuk melakukan proses mooring dengan umur kelelahan struktur 68 tahun.</p>

5.2 Saran

- 1. Untuk analisa lebih spesifik dalam penentuan umur kelelahan struktur *Single Point Mooring*, perlu mempertimbangkan faktor korosi.
- 2. Perlu dilakukan analisa umur kelelahan dengan menggunakan metode lain untuk membandingkan hasil yang lebih akurat.

(halaman ini sengaja dikosongkan)

DAFTAR PUSTAKA

- ABS. 1999. The Application of Synthetic Ropes For Offshore Mooring. USA: American Bureau Shipping.
- ABS. 2011. The Application of Fiber Rope for Offshore Mooring. USA: American Bureau Shipping
- ABS. 2014. Fatigue Assessment of Offshore Structures. USA: American Bureau Shipping.

ABS. 2014. Single Point Moorings. USA: American Bureau Shipping

American Petroleum Institute. (2001). "API RP 2P". Washington. DC.
 American Petrolium Institute. (2005). "API RP2SK 3_{rd} edition".
 Washington. DC.

- API RP 2SK. (1996). Recommended Practice for Design and Analysis of Station Keeping Systems for Floating Structures. Washington. DC
- Bai, Jushan. 2003. Inferential Theory for Factor Models of Large Dimensions. Journal of the Econometric Society. Volume 71, Issue 1, pages 135-171.
- Chakrabarti, S.K., 1987, *Hydrodynamics of Offshore Structures*, USA: Computational Mechanics Publications Southampton.
- Djatmiko, E. B. and Murdijanto, 2003, *Seakeeping: Perilaku Bangunan Apung di atas Gelombang*, Surabaya: Jurusan Teknik Kelautan, Institut Teknologi Sepuluh Nopember.

DNV-OS-E301, 2004, Positioning Mooring, Norway: Det Norske Veritas.

KR. 2001. Guidances for Single Point Mooring. Korea: Korean Register.
- Lennseth, L. Dan Torsethaugen, K. 1985. Wave growth under traveling wind field. Polar-lows project. Tecjnical report No.8, The Norwegian Meteorological Institute, Blindern, Oslo.
- Paik J.K., Thayamballi A. K. 2007. *Ship-Shaped Offshore Installations*. Cambridge University Press.
- Ramadhan, Afrizal. 2010. Analisa Kekuatan Memanjang Doble Hull CPO Barge Pengaruh Heaving Pitching couple dan Distribusi Beban. Tugas Akhir Jurusan Teknik Kelautan. ITS Surabaya
- White, G.J., Ayyub, B.M., Mansour,A.E., dan P.H. Wirsching. 1996. Probability Based Design Requirements for Longitudinally Stiffened Panels in Ship Structures. 7th ASCE Speciality Conference on Probabilistic Mechanics and Structural Realibility, Worcester, MA.
- Widodo, M.T. 2010. Analisis Keandalan Scantling Struktur Geladak Dan Dasar Pada Konversi Tanker Menjadi FPSO Terhadap Beban Kelelahan. Tugas Akhir Jurusan Teknik Kelautan. Surabaya : Institut Teknologi Sepuluh Nopember.

LAMPIRAN A DATA STRUKTUR FSO ARCO ARDJUNA DAN SINGLE POINT MOORING

LAMPIRAN B RAO FSO ARCO ARDJUNA DAN SPM SAAT *FREE FLOATING*

RAO FSO Arco Ardjuna kondisi light load saat free floating

RAO FSO Arco Ardjuna kondisi *full load* saat *free floating*

LAMPIRAN C OUTPUT TENSION PADA ANCHOR LEGS DAN HAWSER

FULL 180

LAMPIRAN D *OUTPUT HYDROSTATIC PRESSURE* PADA STRUKTUR *SINGLE POINT MOORING*

LIGHT 0

LIGHT 30

LIGHT 60

LIGHT 90

LIGHT 120

LIGHT 150

LIGHT 180

FULL 0

FULL 30

FULL 60

FULL 90

FULL 120

FULL 150

FULL 180

LAMPIRAN E OUTPUT STRUCTURE ACCELERATION PADA STRUKTUR SINGLE POINT MOORING

LIGHT 150

LAMPIRAN F PERHITUNGAN *HYDROSTATIC PRESSURE* DAN *STRUCTURE ACCELERATION*

Massa SPM = 255340 kg

LO

	Tension	Hydrostatic Pressure	Acceleration (m/s^2)		n/s^2)
	(kN)	(kN)	x	У	z
Anchor Leg 1	571,506	5954,81	-1,190	6,130	0,610
Anchor Leg 2	495,357	5954,81	-1,190	6,130	0,610
Anchor Leg 3	488,374	4867,89	-0,290	1,990	1,400
Anchor Leg 4	402,075	4867,89	-0,290	1,990	1,400
Anchor Leg 5	490,427	4867,89	-0,290	1,990	1,400
Anchor Leg 6	454,117	5954,81	-1,190	6,130	0,610
Hawser 1	989,119	5951,00	-0,570	8,010	0,770
Hawser 2	997,068	5951,00	-0,570	8,010	0,770
		5954,81	-0,698	5,048	0,946

L30

	Tension	Hydrostatic Pressure	Acceleration (m/s^2)		n/s^2)
	(kN)	(kN)	x	у	z
Anchor Leg 1	526,76	645,17	1,650	-0,980	-0,890
Anchor Leg 2	463,406	295,36	-0,220	0,160	-1,410
Anchor Leg 3	455,681	1048,85	-0,890	0,500	-0,640
Anchor Leg 4	453,883	1048,85	-0,890	0,500	-0,640
Anchor Leg 5	461,769	325,61	1,260	-0,740	-1,000
Anchor Leg 6	529,895	645,17	1,650	-0,980	-0,890
Hawser 1	891,197	5611,90	-1,000	0,520	0,510
Hawser 2	896,656	5611,90	-1,000	0,520	0,510
		5611,90	0,070	-0,063	-0,556

L60

	Tension	Hydrostatic Pressure	Acceleration (m/s^2)		n/s^2)
	(kN)	(kN)	x	У	z
Anchor Leg 1	487,398	6708,88	0,520	-0,950	2,241
Anchor Leg 2	481,096	6312,12	0,240	-0,210	1,650
Anchor Leg 3	459,44	6443,50	0,590	-0,690	1,740
Anchor Leg 4	474,721	6596,61	-0,220	1,140	1,330
Anchor Leg 5	489,184	6532,58	0,370	-1,980	1,540
Anchor Leg 6	498,363	6049,38	-0,860	0,970	0,750
Hawser 1	845,5	6520,90	-0,430	3,750	1,690
Hawser 2	847,91	6520,90	-0,430	3,750	1,690
		6708,88	-0,028	0,723	1,579

	Tension	Hydrostatic Pressure	Accel	eration (m	n/s^2)
	(kN)	(kN)	x	у	z
Anchor Leg 1	463,76	5655,29	-0,260	1,550	0,690
Anchor Leg 2	420,98	5794,69	-0,230	-0,670	1,240
Anchor Leg 3	418,69	5794,69	-0,230	-0,670	1,240
Anchor Leg 4	448,03	5941,73	-0,150	1,170	1,130
Anchor Leg 5	470,35	5494,07	0,160	1,330	0,530
Anchor Leg 6	476,91	5655,29	-0,260	1,550	0,690
Hawser 1	909,69	5720,46	0,570	0,190	0,970
Hawser 2	923,45	5720,46	0,570	0,190	0,970
		5941,73	0,021	0,580	0,933

L120

	Tension	Hydrostatic Pressure	Acceleration (m/s^2)		n/s^2)
	(kN)	(kN)	x	у	z
Anchor Leg 1	461,255	462,57	0,460	0,450	-1,420
Anchor Leg 2	451,549	1076,25	1,620	2,210	-0,900
Anchor Leg 3	464,035	33,18	-2,550	0,220	-1,660
Anchor Leg 4	481,65	154,57	-0,130	-6,580	-1,750
Anchor Leg 5	615,525	558,84	-0,860	-1,870	-0,990
Anchor Leg 6	492,012	558,84	-0,860	-1,870	-0,990
Hawser 1	892,444	6024,84	-0,140	0,190	0,480
Hawser 2	919,116	6024,84	-0,140	0,190	0,480
		6024,84	-0,325	-0,883	-0,844

L150

	Tension	Hydrostatic Pressure	Acceleration (m/s^2)		n/s^2)
	(kN)	(kN)	x	У	z
Anchor Leg 1	442,57	5316,18	-0,980	-0,650	0,990
Anchor Leg 2	395,26	5316,18	-0,980	-0,650	0,990
Anchor Leg 3	596,23	5726,89	-0,190	-0,260	1,110
Anchor Leg 4	605,80	5383,36	-7,470	6,690	0,430
Anchor Leg 5	599,17	1724,36	-0,440	-0,110	-0,240
Anchor Leg 6	422,92	5670,519	-0,11	-0,140	0,710
Hawser 1	859,27	5459,31	2,190	1,170	0,420
Hawser 2	862,03	5459,31	2,190	1,170	0,420
		5007,01	-0,724	0,903	0,604

L180

	Tension	Hydrostatic Pressure	Acceleration (m/s^2)		n/s^2)
	(kN)	(kN)	x	У	z
Anchor Leg 1	433,58	5344,57	-7,160	9,890	0,600
Anchor Leg 2	413,47	5344,57	-7,160	9,890	0,600
Anchor Leg 3	610,75	5312,89	-0,120	3,270	0,560
Anchor Leg 4	615,16	5012,48	0,370	-1,580	0,110
Anchor Leg 5	610,27	5211,07	0,440	6,330	0,310
Anchor Leg 6	411,95	5344,57	-7,160	9,890	0,600
Hawser 1	810,056	4828,20	8,950	1,480	0,130
Hawser 2	815,481	4828,20	8,950	1,480	0,130
		5344,57	0,610	4,394	0,349

L90

	Tension	Hydrostatic Pressure	Acceleration (m/s^2)		n/s^2)
	(kN)	(kN)	x	у	z
Anchor Leg 1	417,554	6528,37	-1,200	-2,860	1,340
Anchor Leg 2	301,662	6528,37	-1,200	-2,860	1,340
Anchor Leg 3	203,745	6399,35	0,750	7,000	1,230
Anchor Leg 4	201,992	5925,79	1,590	9,590	0,910
Anchor Leg 5	208,384	6399,35	0,750	7,000	1,230
Anchor Leg 6	407,878	6528,37	-1,200	-2,860	1,340
Hawser 1	763,59	6475,872	-1,900	-6,180	1,410
Hawser 2	766,619	6475,872	-1,900	-6,180	1,410
		6528,37	-0,539	0,331	1,276

F30

	Tension	Hydrostatic Pressure	Acceleration (m/s^2)		n/s^2)
	(kN)	(kN)	x	у	z
Anchor Leg 1	450,159	5866,65	-0,820	0,520	0,990
Anchor Leg 2	303,391	6093,83	0,470	-0,280	1,250
Anchor Leg 3	329,753	6129,89	-0,230	0,170	1,320
Anchor Leg 4	326,429	6129,89	-0,230	0,170	1,320
Anchor Leg 5	312,426	6093,83	0,470	-0,280	1,250
Anchor Leg 6	467,402	5866,65	-0,820	0,520	0,990
Hawser 1	611,501	5866,65	-0,820	0,520	0,990
Hawser 2	622,527	5866,65	-0,820	0,520	0,990
		6129,89	-0,350	0,233	1,138

F60

	Tension	Hydrostatic Pressure	Acceleration (m/s^2)		n/s^2)
	(kN)	(kN)	x	у	z
Anchor Leg 1	335,135	5497,79	-0,620	0,780	0,630
Anchor Leg 2	323,126	5769,88	-0,240	0,230	1,023
Anchor Leg 3	265,175	5712,03	-0,100	-0,250	0,910
Anchor Leg 4	290,818	6033,03	-0,140	0,420	1,220
Anchor Leg 5	372,368	5454,11	-0,260	1,080	0,870
Anchor Leg 6	481,774	5598,25	-0,590	0,910	0,770
Hawser 1	642,31	5598,25	-0,590	0,910	0,770
Hawser 2	651,47	5598,25	-0,590	0,910	0,770
		6033.03	-0.391	0.624	0.870

F90

	Tension	Hydrostatic Pressure	Acceleration (m/s^2)		n/s^2)
	(kN)	(kN)	x	У	z
Anchor Leg 1	324,978	6541,08	0,350	0,490	1,460
Anchor Leg 2	295,271	6038,05	-0,520	-1,390	1,000
Anchor Leg 3	312,166	6038,05	-0,520	-1,390	1,000
Anchor Leg 4	324,538	5849,93	0,760	-8,190	0,850
Anchor Leg 5	493,908	5851,40	0,430	-2,790	-0,680
Anchor Leg 6	436,149	5902,82	5,930	1,020	0,810
Hawser 1	697,759	6066,66	-0,190	0,290	1,060
Hawser 2	703,271	6066,66	-0,190	0,290	1,060
		6541,08	0,756	-1,459	0,820

FO

	Tension	Hydrostatic Pressure	Accel	eration (m	n/s^2)
	(kN)	(kN)	x	у	z
Anchor Leg 1	293,851	5710,01	-0,560	-1,100	0,980
Anchor Leg 2	315,619	5817,27	-0,430	-0,720	0,950
Anchor Leg 3	317,012	6263,37	0,430	0,330	1,420
Anchor Leg 4	361,638	926,68	0,920	0,940	0,870
Anchor Leg 5	496,968	5681,47	0,610	0,840	0,830
Anchor Leg 6	367,727	5802,84	0,380	0,620	0,950
Hawser 1	701,341	4968,77	0,270	0,410	0,340
Hawser 2	707,803	4968,77	0,270	0,410	0,340
		6263,37	0,236	0,216	0,835

F150

	Tension	Hydrostatic Pressure	Accel	eration (m	n/s^2)
	(kN)	(kN)	x	у	z
Anchor Leg 1	300,20	5980,28	0,260	0,160	1,190
Anchor Leg 2	287,25	5980,28	0,260	0,160	1,190
Anchor Leg 3	349,79	6015,17	0,310	8,970	1,290
Anchor Leg 4	415,88	5883,43	0,390	7,310	1,020
Anchor Leg 5	403,71	5883,43	0,390	7,310	1,020
Anchor Leg 6	344,41	5980,28	0,260	0,160	1,190
Hawser 1	709,31	1606,78	0,980	0,500	-5,970
Hawser 2	714,43	1606,78	0,980	0,500	-5,970
		6015,17	0,479	3,134	-0,630

F180

	Tension	Hydrostatic Pressure	Accel	eration (m	n/s^2)
	(kN)	(kN)	x	У	z
Anchor Leg 1	341,171	5187,95	-0,310	-6,760	0,650
Anchor Leg 2	368,237	5580,88	-0,110	2,830	1,050
Anchor Leg 3	392,131	5255,11	1,020	3,710	0,630
Anchor Leg 4	435,562	5255,11	1,020	3,710	0,630
Anchor Leg 5	396,643	5255,11	1,020	3,710	0,630
Anchor Leg 6	372,684	5580,88	-0,110	2,830	1,050
Hawser 1	614,212	5117,60	-0,270	5,790	0,490
Hawser 2	617,416	5117,60	-0,270	5,790	0,490
		5580,88	0,249	2,701	0,703

F120

LAMPIRAN G PERHITUNGAN UMUR KELELAHAN STRUKTUR *SINGLE POINT MOORING*

	LC-1		
Code	Maximum Principal Stress	Eactor	Hot-spot Stress
Coue	[Mpa]	Factor	[Mpa]
A1-1	106,06	1,12	118,79
A1-2	105,44	1,12	118,09
A2-1	80,72	1,12	90,41
A2-2	66,89	1,12	74,92
A3-1	88,23	1,12	98,82
A3-2	93,99	1,12	105,27
A4-1	66,92	1,12	74,95
A4-2	86,37	1,12	96,73
A5-1	68,47	1,12	76,69
A5-2	96,15	1,12	107,69
A6-1	67,28	1,12	75,35
A6-2	70,17	1,12	78,59

	LC-8				
Code	Maximum Principal Stress	Factor	Hot-spot Stress		
	[Мра]		[Mpa]		
A1-1	43,36	1,12	48,56		
A1-2	33,77	1,12	37,82		
A2-1	61,45	1,12	68,82		
A2-2	50,06	1,12	56,07		
A3-1	52,99	1,12	59,35		
A3-2	62,89	1,12	70,44		
A4-1	55,44	1,12	62,09		
A4-2	55,06	1,12	61,67		
A5-1	52,73	1,12	59,06		
A5-2	64,95	1,12	72,74		
A6-1	46,48	1,12	52,06		
A6-2	43,72	1,12	48,97		

	LC-2				
Code	Maximum Principal Stress [Mpa]	Factor	Hot-spot Stress [Mpa]		
A1-1	93,74	1,12	104,99		
A1-2	99,59	1,12	111,54		
A2-1	59,96	1,12	67,16		
A2-2	66,93	1,12	74,96		
A3-1	80,83	1,12	90,53		
A3-2	83,74	1,12	93,79		
A4-1	47,68	1,12	53,40		
A4-2	57,53	1,12	64,43		
A5-1	85,69	1,12	95,97		
A5-2	60,26	1,12	67,49		
A6-1	89,47	1,12	100,21		
A6-2	90,83	1,12	101,73		

	LC-3				
Code	Maximum Principal Stress	Easter	Hot-spot Stress		
Coue	[Mpa]	Factor	[Mpa]		
A1-1	53,03	1,12	59,39		
A1-2	77,46	1,12	86,76		
A2-1	69,17	1,12	77,47		
A2-2	79,39	1,12	88,92		
A3-1	93,71	1,12	104,96		
A3-2	59,35	1,12	66,47		
A4-1	55,09	1,12	61,70		
A4-2	54,43	1,12	60,96		
A5-1	93,64	1,12	104,88		
A5-2	74,38	1,12	83,31		
A6-1	94,64	1,12	106,00		
A6-2	97,75	1,12	109,48		

	LC-4				
Code	Maximum Principal Stress	Eastor	Hot-spot Stress		
Coue	[Mpa]	Factor	[Mpa]		
A1-1	56,24	1,12	62,99		
A1-2	65,65	1,12	73,53		
A2-1	66,56	1,12	74,55		
A2-2	72,43	1,12	81,12		
A3-1	88,60	1,12	99,23		
A3-2	80,98	1,12	90,70		
A4-1	87,35	1,12	97,83		
A4-2	74,33	1,12	83,25		
A5-1	89,6	1,12	100,35		
A5-2	101,34	1,12	113,50		
A6-1	90,98	1,12	101,90		
A6-2	101,37	1,12	113,53		

LC-9				
Code	Maximum Principal Stress	Fastar	Hot-spot Stress	
Code	[Mpa]	Factor	[Mpa]	
A1-1	34,48	1,12	38,62	
A1-2	37,53	1,12	42,03	
A2-1	39,63	1,12	44,39	
A2-2	39,39	1,12	44,12	
A3-1	47,99	1,12	53,75	
A3-2	38,64	1,12	43,28	
A4-1	38,69	1,12	43,33	
A4-2	43,06	1,12	48,23	
A5-1	41,21	1,12	46,16	
A5-2	46,88	1,12	52,51	
A6-1	37,63	1,12	42,15	
A6-2	38,66	1,12	43,30	

	LC-10				
Code	Maximum Principal Stress [Mpa]	Factor	Hot-spot Stress [Mpa]		
A1-1	49 <mark>,</mark> 59	1,12	55,54		
A1-2	47,13	1,12	52,79		
A2-1	50,13	1,12	56, 1 5		
A2-2	47,94	1,12	53,69		
A3-1	<mark>42,6</mark> 4	1,12	47,76		
A3-2	45,66	1,12	51,14		
A4-1	45,42	1,12	58,96		
A4-2	56,49	1,12	58,96		
A5-1	45,85	1,12	58,96		
A5-2	47,35	1,12	58,96		
A6-1	40,83	1,12	45,73		
A6-2	41,36	1,12	46,32		

	LC-11				
Code	Maximum Principal Stress	Factor	Hot-spot Stress		
Coue	[Mpa]	1 actor	[Mpa]		
A1-1	55,3	1,12	61,94		
A1-2	57,65	1,12	64,57		
A2-1	48,29	1,12	54,08		
A2-2	35,72	1,12	40,01		
A3-1	42,61	1,12	47,72		
A3-2	46,47	1,12	52,05		
A4-1	44,71	1,12	50,08		
A4-2	47,39	1,12	53,08		
A5-1	35,72	1,12	40,01		
A5-2	40,61	1,12	45,48		
A6-1	39,66	1,12	44,42		
A6-2	41,77	1,12	46,78		

	LC-5		
Code	Maximum Principal Stress	Factor	Hot-spot Stress
Coue	[Mpa]	Factor	[Mpa]
A1-1	52,39	1,12	<mark>58,68</mark>
A1-2	67,69	1,12	75,81
A2-1	53,13	1,12	59,51
A2-2	63,76	1,12	71,41
A3-1	88,64	1,12	99,28
A3-2	97,92	1,12	109,67
A4-1	92,35	1,12	103,43
A4-2	91,65	1,12	102,65
A5-1	98,17	1,12	109,95
A5-2	98,92	1,12	110,79
A6-1	45,89	1,12	51,40
A6-2	60,60	1,12	67,87

	LC-12				
Code	Maximum Principal Stress [Mpa]	Factor	Hot-spot Stress [Mpa]		
A1-1	47,28	1,12	52,95		
A1-2	43,15	1,12	48,33		
A2-1	40,01	1,12	44,81		
A2-2	39,88	1,12	44,67		
A3-1	34,8	1,12	38,98		
A3-2	42,84	1,12	47,98		
A4-1	36,99	1,12	41,43		
A4-2	45,89	1,12	51,40		
A5-1	32,59	1,12	36,50		
A5-2	33,8	1,12	37,86		
A6-1	41,91	1,12	46,94		
A6-2	45,11	1,12	50,52		

	LC-6				
Code	Maximum Principal Stress [Mpa]	Factor	Hot-spot Stress [Mpa]		
A1-1	54,64	1,12	61,20		
A1-2	69,53	1,12	77,87		
A2-1	62,34	1,12	69,82		
A2-2	71,98	1,12	80,62		
A3-1	80,59	1,12	90,26		
A3-2	62,34	1,12	69,82		
A4-1	90,59	1,12	101,46		
A4-2	97,09	1,12	108,74		
A5-1	91,06	1,12	101,99		
A5-2	103,86	1,12	116,32		
A6-1	57,79	1,12	64,72		
A6-2	58,02	1,12	64,98		

LC-7				
Code	Maximum Principal Stress	Factor	Hot-spot Stress	
Cout	[Mpa]	1 actor	[Mpa]	
A1-1	61,71	1,12	69,12	
A1-2	63,41	1,12	71,02	
A2-1	57,99	1,12	64,95	
A2-2	77,07	1,12	86,32	
A3-1	52,29	1,12	58,56	
A3-2	58,78	1,12	65,83	
A4-1	78,07	1,12	87,44	
A4-2	90,08	1,12	100,89	
A5-1	69,81	1,12	78,19	
A5-2	70,08	1,12	78,49	
A6-1	71,31	1,12	79,87	
A6-2	74,53	1,12	83,47	

LC-15				
Code	Maximum Principal Stress	Easter	Hot-spot Stress	
Coue	[Mpa]	Factor	[Mpa]	
A1-1	95,87	1,12	107,37	
A1-2	96,20	1,12	107,74	
A2-1	66,91	1,12	74,94	
A2-2	70,39	1,12	78,84	
A3-1	86,38	1,12	96,75	
A3-2	90,05	1,12	100,86	
A4-1	59,45	1,12	66,58	
A4-2	75,94	1,12	85,05	
A5-1	86,24	1,12	96,59	
A5-2	63,94	1,12	71,61	
A6-1	41,49	1,12	46,47	
A6-2	61,87	1,12	69,29	

LC-13				
Code	Maximum Principal Stress	Fastar	Hot-spot Stress	
Coue	[Mpa]	Factor	[Mpa]	
A1-1	49,25	1,12	55,16	
A1-2	52,82	1,12	59,16	
A2-1	45,18	1,12	50,60	
A2-2	43,49	1,12	48,71	
A3-1	49,96	1,12	55,96	
A3-2	51,47	1,12	57,65	
A4-1	35,98	1,12	40,30	
A4-2	39,97	1,12	44,77	
A5-1	39,96	1,12	44,76	
A5-2	42,49	1,12	47,59	
A6-1	45,98	1,12	51,50	
A6-2	55,25	1,12	61,88	

IC-14			
Code	Maximum Principal Stress [Mpa]	Factor	Hot-spot Stress [Mpa]
A1-1	49,22	1,12	55,13
A1-2	61,71	1,12	69,12
A2-1	57,27	1,12	64,14
A2-2	70,64	1,12	79,12
A3-1	45 <mark>,</mark> 52	1,12	50,98
A3-2	51,56	1,12	57,75
A4-1	43,36	1,12	48,56
A4-2	45,36	1,12	50,80
A5-1	51,41	1,12	57,58
A5-2	64,64	1,12	72,40
A6-1	60,19	1,12	67,41
A6-2	64,52	1,12	72,26

	LC-22				
Code	Maximum Principal Stress	Factor	Hot-spot Stress		
Coue	[Mpa]	Factor	[Mpa]		
A1-1	35,89	1,12	40,20		
A1-2	36,15	1,12	40,49		
A2-1	43,55	1,12	48,78		
A2-2	37,89	1,12	42,44		
A3-1	38,15	1,12	42,73		
A3-2	46,41	1,12	51,98		
A4-1	39,48	1,12	44,22		
A4-2	45,85	1,12	51,35		
A5-1	38,83	1,12	43,49		
A5-2	48,04	1,12	53,80		
A6-1	38,83	1,12	43,49		
A6-2	46,41	1,12	51,98		

LC-16				
Code	Maximum Principal Stress	Factor	Hot-spot Stress	
Coue	[Mpa]	Factor	[Mpa]	
A1-1	82,23	1,12	92,10	
A1-2	93,42	1,12	104,63	
A2-1	56,12	1,12	62,85	
A2-2	62,9	1,12	70,45	
A3-1	66,89	1,12	74,92	
A3-2	62,23	1,12	69,70	
A4-1	46,33	1,12	51,89	
A4-2	52,57	1,12	58,88	
A5-1	62,73	1,12	70,26	
A5-2	73,42	1,12	82,23	
A6-1	72,73	1,12	81,46	
A6-2	72,9	1,12	81,65	

LC-23				
Code	Maximum Principal Stress	Factor	Hot-spot Stress	
coue	[Mpa]	1 actor	[Mpa]	
A1-1	33,25	1,12	37,24	
A1-2	40,22	1,12	45,05	
A2-1	42,49	1,12	47,59	
A2-2	46,25	1,12	51,80	
A3-1	43,25	1,12	48,44	
A3-2	46,78	1,12	52,39	
A4-1	45,04	1,12	50,44	
A4-2	42,98	1,12	48,14	
A5-1	42,22	1,12	47,29	
A5-2	45,64	1,12	51,12	
A6-1	40,98	1,12	45,90	
A6-2	41,52	1,12	46,50	

	LC-17			
Code	Maximum Principal Stress [Mpa]	Factor	Hot-spot Stress [Mpa]	
A1-1	59,06	1,12	66,15	
A1-2	59,38	1,12	66,51	
A2-1	52,04	1,12	58,28	
A2-2	73,16	1,12	81,94	
A3-1	69,97	1,12	78,37	
A3-2	72,16	1,12	80,82	
A4-1	55,92	1,12	62,63	
A4-2	68,74	1,12	76,99	
A5-1	76,53	1,12	85,71	
A5-2	74,99	1,12	83,99	
A6-1	83,16	1,12	93,14	
A6-2	84,99	1,12	95,19	

LC-18				
Code	Maximum Principal Stress	Factor	Hot-spot Stress	
Coue	[Mpa]	Factor	[Mpa]	
A1-1	61,16	1,12	68,50	
A1-2	60,87	1,12	68,17	
A2-1	48,22	1,12	54,01	
A2-2	68,41	1,12	76,62	
A3-1	81,58	1,12	91,37	
A3-2	74,29	1,12	83,20	
A4-1	81,03	1,12	90,75	
A4-2	62,02	1,12	69,46	
A5-1	82,34	1,12	92,22	
A5-2	83,03	1,12	92,99	
A6-1	82,58	1,12	92,49	
A6-2	98,29	1,12	110,08	

LC-19				
Code	Maximum Principal Stress	Factor	Hot-spot Stress	
	[Mpa]		[Mpa]	
A1-1	52,19	1,12	58,45	
A1-2	62,87	1,12	70,41	
A2-1	<mark>60,93</mark>	1,12	68,24	
A2-2	57,22	1,12	64,09	
A3-1	77,33	1,12	86,61	
A3-2	74,29	1,12	83,20	
A4-1	75,45	1,12	84,50	
A4-2	70,95	1,12	79,46	
A5-1	78,33	1,12	87,73	
A5-2	84,29	1,12	94,40	
A6-1	41,27	1,12	46,22	
A6-2	54,42	1,12	60,95	

LC-24				
Code	Maximum Principal Stress	Fastar	Hot-spot Stress	
Code	[Mpa]	Factor	[Mpa]	
A1-1	48,15	1,12	53,93	
A1-2	55,36	1,12	62,00	
A2-1	48,79	1,12	54,64	
A2-2	43,35	1,12	48,55	
A3-1	42,51	1,12	47,61	
A3-2	49,61	1,12	55,56	
A4-1	44,52	1,12	49,86	
A4-2	52,80	1,12	59,14	
A5-1	43,99	1,12	49,27	
A5-2	52,55	1,12	58,86	
A6-1	41,99	1,12	47,03	
A6-2	42,35	1,12	47,43	

	LC-25		
Code	Maximum Principal Stress	Fastar	Hot-spot Stress
Code	[Mpa]	Factor	[Mpa]
A1-1	47,89	1,12	53,64
A1-2	55,52	1,12	62,18
A2-1	43,71	1,12	48,96
A2-2	48,89	1,12	54,76
A3-1	40,23	1,12	45,06
A3-2	42,95	1,12	48,10
A4-1	40,25	1,12	45,08
A4-2	41,09	1,12	46,02
A5-1	33,25	1,12	37,24
A5-2	38,91	1,12	43,58
A6-1	38,89	1,12	43,56
A6-2	39,28	1,12	43,99

	LC-26			
Code	Maximum Principal Stress	Factor	Hot-spot Stress	
Coue	[Mpa]	Factor	[Mpa]	
A1-1	47,56	1,12	53,27	
A1-2	54,26	1,12	60,77	
A2-1	45,36	1,12	50,80	
A2-2	41,07	1,12	46,00	
A3-1	39,55	1,12	44,30	
A3-2	45,72	1,12	51,21	
A4-1	39,29	1,12	44,00	
A4-2	42,12	1,12	47,17	
A5-1	36,55	1,12	40,94	
A5-2	38,29	1,12	42,88	
A6-1	46,89	1,12	52,52	
A6-2	48,6	1,12	54,43	

	LC-20				
Code	Maximum Principal Stress	Factor	Hot-spot Stress		
Coue	[Mpa]	Factor	[Mpa]		
A1-1	41,32	1,12	46,28		
A1-2	68,51	1,12	76,73		
A2-1	68,22	1,12	76,41		
A2-2	52,49	1,12	58,79		
A3-1	68,73	1,12	76,98		
A3-2	62,15	1,12	69,61		
A4-1	73,15	1,12	81,93		
A4-2	76,92	1,12	86,15		
A5-1	75,28	1,12	84,31		
A5-2	83,23	1,12	93,22		
A6-1	48,74	1,12	54,59		
A6-2	54,19	1,12	60,69		

	LC-27				
Code	Maximum Principal Stress	Factor	Hot-spot Stress		
	[Mpa]		[Mpa]		
A1-1	38,88	1,12	43,55		
A1-2	49,54	1,12	55,48		
A2-1	47,77	1,12	53,50		
A2-2	42,25	1,12	47,32		
A3-1	37,99	1,12	42,55		
A3-2	44,76	1,12	50,13		
A4-1	27,93	1,12	31,28		
A4-2	36,73	1,12	41,14		
A5-1	36,25	1,12	40,60		
A5-2	36,99	1,12	41,43		
A6-1	37,93	1,12	42,48		
A6-2	38,27	1,12	42,86		

	LC-21			
Code	Maximum Principal Stress	Factor	Hot-spot Stress	
	[Mpa]		[Mpa]	
A1-1	46,06	1,12	51,59	
A1-2	68,07	1,12	76,24	
A2-1	68,21	1,12	76,40	
A2-2	57,58	1,12	64,49	
A3-1	67,58	1,12	75,69	
A3-2	62,47	1,12	69,97	
A4-1	72,83	1,12	81,57	
A4-2	85,07	1,12	95,28	
A5-1	65,07	1,12	72,88	
A5-2	65,07	1,12	72,88	
A6-1	45,89	1,12	51,40	
A6-2	40,12	1,12	44,93	

	LC-1 / LC-8			
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress	
Code	Maximum Tension	Minimum Tension	Range	
	[Mpa]	[Mpa]	[Mpa]	
A1-1	118,79	48,56	70,22	
A1-2	118,09	37,82	80,27	
A2-1	90,41	68,82	21,58	
A2-2	74,92	56,07	18,85	
A3-1	98,82	59,35	39,47	
A3-2	105,27	70,44	34,83	
A4-1	74,95	62,09	12,86	
A4-2	96,73	61,67	35,07	
A5-1	76,69	59,06	17,63	
A5-2	107,69	72,74	34,94	
A6-1	75,35	52,06	23,30	
A6-2	78,59	48,97	29,62	

	LC-2 / LC-9			
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress	
Code	Maximum Tension	Minimum Tension	Range	
	[Mpa]	[Mpa]	[Mpa]	
A1-1	104,99	38,62	66,37	
A1-2	111,54	42,03	69,51	
A2-1	67,16	44,39	22,77	
A2-2	74,96	44,12	30,84	
A3-1	90,53	53,75	36,78	
A3-2	93,79	43,28	50,51	
A4-1	53,40	43,33	10,07	
A4-2	64,43	48,23	16,21	
A5-1	95,97	46,16	49,82	
A5-2	67,49	52,51	14,99	
A6-1	100,21	42,15	58,06	
A6-2	101,73	43,30	58,43	

LC-28			
Code	Maximum Principal Stress	Fastar	Hot-spot Stress
Code	[Mpa]	Factor	[Mpa]
A1-1	45,85	1,12	51,35
A1-2	57,34	1,12	64,22
A2-1	51,67	1,12	57,87
A2-2	44,09	1,12	49,38
A3-1	39,63	1,12	44,39
A3-2	46,09	1,12	51,62
A4-1	38,98	1,12	43,66
A4-2	39,21	1,12	43,92
A5-1	47,16	1,12	52,82
A5-2	53,25	1,12	59,64
A6-1	40,98	1,12	45,90
A6-2	40,29	1,12	45,12

	LC-3 / LC-10			
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress	
Code	Maximum Tension	Minimum Tension	Range	
	[Mpa]	[Mpa]	[Mpa]	
A1-1	59,39	55,54	3,85	
A1-2	86,76	52,79	33,97	
A2-1	77,47	56,15	21,32	
A2-2	88,92	53,69	35,22	
A3-1	104,96	47,76	57,20	
A3-2	66,47	51,14	15,33	
A4-1	61,70	58,96	2,74	
A4-2	60,96	58,96	2,00	
A5-1	104,88	58,96	45,92	
A5-2	83,31	58,96	24,35	
A6-1	106,00	45,73	60,27	
A6-2	109,48	46,32	63,16	

	LC-4 / LC-11			
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress	
Code	Maximum Tension	Minimum Tension	Range	
	[Mpa]	[Mpa]	[Mpa]	
A1-1	62,99	61,94	1,05	
A1-2	73,53	64,57	8,96	
A2-1	74,55	54,08	20,46	
A2-2	81,12	40,01	41,12	
A3-1	99,23	47,72	51,51	
A3-2	90,70	52,05	38,65	
A4-1	97,83	50,08	47,76	
A4-2	83,25	53,08	30,17	
A5-1	100,35	40,01	60,35	
A5-2	113,50	45,48	68,02	
A6-1	101,90	44,42	57,48	
A6-2	113,53	46,78	66,75	

	LC-5/LC-12			
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress	
Code	Maximum Tension	Minimum Tension	Range	
	[Mpa]	[Mpa]	[Mpa]	
A1-1	58,68	52,95	5,72	
A1-2	75,81	48,33	27,48	
A2-1	59,51	44,81	14,69	
A2-2	71,41	44,67	26,75	
A3-1	99,28	38,98	60,30	
A3-2	109,67	47,98	61,69	
A4-1	103,43	41,43	62,00	
A4-2	102,65	51,40	51,25	
A5-1	109,95	36,50	73,45	
A5-2	110,79	37,86	72,93	
A6-1	51,40	46,94	4,46	
A6-2	67,87	50,52	17,35	

	LC-7 / LC-14			
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress	
Code	Maximum Tension	Minimum Tension	Range	
	[Mpa]	[Mpa]	[Mpa]	
A1-1	69,12	55,13	13,99	
A1-2	71,02	69,12	1,90	
A2-1	64,95	64,14	0,81	
A2-2	86,32	79,12	7,20	
A3-1	58,56	50,98	7,58	
A3-2	65,83	57,75	8,09	
A4-1	87,44	48,56	38,88	
A4-2	100,89	50,80	50,09	
A5-1	78,19	57,58	20,61	
A5-2	78,49	72,40	6,09	
A6-1	79,87	67,41	12,45	
A6-2	83,47	72,26	11,21	

LC-6 / LC-13			
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress
Code	Maximum Tension	Minimum Tension	Range
	[Mpa]	[Mpa]	[Mpa]
A1-1	61,20	55,16	6,04
A1-2	77,87	59,16	18,72
A2-1	69,82	50,60	19,22
A2-2	80,62	48,71	31,91
A3-1	90,26	55,96	34,31
A3-2	69,82	57,65	12,17
A4-1	101,46	40,30	61,16
A4-2	108,74	44,77	63,97
A5-1	101,99	44,76	57,23
A5-2	116,32	47,59	68,73
A6-1	64,72	51,50	13,23
A6-2	64,98	61,88	3,10

LC-16 / LC-23				
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress	
Code	Maximum Tension	Minimum Tension	Range	
	[Mpa]	[Mpa]	[Mpa]	
A1-1	92,10	37,24	54,86	
A1-2	104,63	45,05	59,58	
A2-1	62,85	47,59	15,27	
A2-2	70,45	51,80	18,65	
A3-1	74,92	48,44	26,48	
A3-2	69,70	52,39	17,30	
A4-1	51,89	50,44	1,44	
A4-2	58,88	48,14	10,74	
A5-1	70,26	47,29	22,97	
A5-2	82,23	51,12	31,11	
A6-1	81,46	45,90	35,56	
A6-2	81,65	46,50	35,15	

LC-15 / LC-22				
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress	
Code	Maximum Tension	Minimum Tension	Range	
	[Mpa]	[Mpa]	[Mpa]	
A1-1	107,37	40,20	67,18	
A1-2	107,74	40,49	67,26	
A2-1	74,94	48,78	26,16	
A2-2	78,84	42,44	36,40	
A3-1	96,75	42,73	54,02	
A3-2	100,86	51,98	48,88	
A4-1	66,58	44,22	22,37	
A4-2	85,05	51,35	33,70	
A5-1	96,59	43,49	53,10	
A5-2	71,61	53,80	17,81	
A6-1	46,47	43,49	2,98	
A6-2	69,29	51,98	17,32	
LC-18 / LC-25				

LC-18 / LC-25				
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress	
Code	Maximum Tension	Minimum Tension	Range	
	[Mpa]	[Mpa]	[Mpa]	
A1-1	68,50	53,64	14,86	
A1-2	68,17	62,18	5,99	
A2-1	54,01	48,96	5,05	
A2-2	76,62	54,76	21,86	
A3-1	91,37	45,06	46,31	
A3-2	83,20	48,10	35,10	
A4-1	90,75	45,08	45,67	
A4-2	69,46	46,02	23,44	
A5-1	92,22	37,24	54,98	
A5-2	92,99	43,58	49,41	
A6-1	92,49	43,56	48,93	
A6-2	110,08	43,99	66,09	

LC-17 / LC-24			
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress
Code	Maximum Tension	Minimum Tension	Range
	[Mpa]	[Mpa]	[Mpa]
A1-1	66,15	53,93	12,22
A1-2	66,51	62,00	4,50
A2-1	58,28	54,64	3,64
A2-2	81,94	48,55	33,39
A3-1	78,37	47,61	30,76
A3-2	80,82	55,56	25,26
A4-1	62,63	49,86	12,77
A4-2	76,99	59,14	17,85
A5-1	85,71	49,27	36,44
A5-2	83,99	58,86	25,13
A6-1	93,14	47,03	46,11
A6-2	95,19	47,43	47,76

LC-19 / LC-26				
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress	
Code	Maximum Tension	Minimum Tension	Range	
	[Mpa]	[Mpa]	[Mpa]	
A1-1	58,45	53,27	5,19	
A1-2	70,41	60,77	9,64	
A2-1	68,24	50,80	17,44	
A2-2	64,09	46,00	18,09	
A3-1	86,61	44,30	42,31	
A3-2	83,20	51,21	32,00	
A4-1	84,50	44,00	40,50	
A4-2	79,46	47,17	32,29	
A5-1	87,73	40,94	46,79	
A5-2	94,40	42,88	51,52	
A6-1	46,22	52,52	6,29	
A6-2	60.95	54.43	6.52	

LC-20 / LC-27			
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress
Code	Maximum Tension	Minimum Tension	Range
	[Mpa]	[Mpa]	[Mpa]
A1-1	46,28	43,55	2,73
A1-2	76,73	55,48	21,25
A2-1	76,41	53,50	22,90
A2-2	58,79	47,32	11,47
A3-1	76,98	42,55	34,43
A3-2	69,61	50,13	19,48
A4-1	81,93	31,28	50,65
A4-2	86,15	41,14	45,01
A5-1	84,31	40,60	43,71
A5-2	93,22	41,43	51,79
A6-1	54,59	42,48	12,11
A6-2	60,69	42,86	17,83

LC-21 / LC-28			
	Hot-spot Stress	Hot-spot Stress	Hot-spot Stress
Code	Maximum Tension	Minimum Tension	Range
	[Mpa]	[Mpa]	[Mpa]
A1-1	51,59	51,35	0,24
A1-2	76,24	64,22	12,02
A2-1	76,40	57,87	18,52
A2-2	64,49	49,38	15,11
A3-1	75,69	44,39	31,30
A3-2	69,97	51,62	18,35
A4-1	81,57	43,66	37,91
A4-2	95,28	43,92	51,36
A5-1	72,88	52,82	20,06
A5-2	72,88	59,64	13,24
A6-1	51,40	45,90	5,50
A6-2	40,12	40,29	0,17

BIODATA PENULIS

Wiradhani Pratama dilahirkan di Kota Surabaya pada 16 Maret 1993. Lahir dari keluarga yang sederhana yang merupakan anak pertama dari 2 bersaudara pasangan Hadi Prajitno dan Widi Kusmijati. Penulis menempuh pendidikan SD, SMP dan SMA di Sidoarjo. Setelah itu, tahun 2011 penulis melanjutkan pendidikan di Jurusan Teknik Kelautan ITS Surabaya melalui jalur SNMPTN-Undangan. Selama di bangku perkuliahan penulis aktif di berbagai organisasi mahasiswa, kegiatan sosial, dan kegiatan-kegiatan

yang lain. Penulis pernah tergabung dalam beberapa organisasi dalam mapun luar kampus, antara lain Badan Koordinasi Pemandu FTK sebagai pencetus sekaligus ketua pertama, Badan Eksekutif Mahasiswa FTK sebagai staf Departemen Pengembangan Sumber Daya Mahasiswa dan ketua Departemen Sosial Masyarakat, UKM Fotografi ITS atau UKAFO sebagai staf Departemen Pengembangan Sumber Daya Mahasiswa, LDJ Bahrul Ilmi sebagai staf Departemen Syi'ar, LDF Al Bahri sebagai ketua Departemen Kaderisasi, aktif dalam kegiatan-kegiatan yang dilaksanakan oleh Kementerian Sosial Masyarakat Badan Eksekutif Mahasiswa ITS, dan Gerakan Mahasiswa Surabaya sebagai calon anggota. Penulis pernah beberapa kali mendapatkan dana dalam lomba PKM, salah satunya yaitu tentang pembangkit listrik tenaga arus laut sebagai salah satu pembangkit listrik alternatif untuk daerah Indonesia Timur yang dinamakan APUNG (floating breakwater power plant) yang menghabiskan dana lebih dari 11 juta rupiah. Motto penulis ialah kesuksesan seseorang dilihat dari seberapa lama dia mampu bertahan untuk terus berkarya. Penulis yakin jika setiap orang selalu melakukan kebaikan untuk orang lain dan dirinya sendiri. Allah SWT pasti memberikan kemudahan dalam kehidupannya.

Contact Person: wiradhani.pratama@gmail.com