

TUGAS AKHIR - TL 141584

HUSEIN ABDURRACHIM NRP 2712 100 072

Dosen Pembimbing Hariyati Purwaningsih, S.Si, M.Si Vania Mitha Pratiwi S.T., M.T.

JURUSAN TEKNIK MATERIAL DAN METALURGI Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2016

UNDERGRADUATE THESIS - TL 141584

EFFECTS OF SINTERING TEMPERATURE VARIATION OF NATRIUM SUPER IONIC CONDUCTOR (NASICON) Na_{1+x}Zr_2Si_xP_{3-x}O_{12} (X=2) AND IONIC CONDUCTIVITY PROPERTIES OF SOLID ELECTROLYTE

HUSEIN ABDURRACHIM NRP 2712 100 072

Lecturer Hariyati Purwaningsih, S.Si, M.Si Vania Mitha Pratiwi S.T., M.T.

MATERIALS AND METALLURGICAL DEPARTMENT Faculty of Industrial Technology Institut Teknologi Sepuluh Nopember Surabaya 2016

PENGARUH TEMPERATUR SINTERING PADA PEMBENTUKAN FASA NATRIUM SUPER IONIC CONDUCTOR (NASICON) Na_{1+x}Zr₂Si_xP_{3-x}O₁₂ (X=2) DAN SIFAT KONDUKTIFITAS IONIK ELEKTROLIT PADAT

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Bidang Studi Material Inovatif Program Studi S-1 Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

> Oleh : Husein Abdurrachim NRP. 2712 100 072

Disetujui oleh Tim Penguji Tugas Akhir (Pembimbing 1) 1. Hariyati Purwaningsih, S.Si., M.Si 2. Vania Mitha Pratiwi, S.T., M.T. (Pembimbing 2)

PENGARUH TEMPERATUR SINTERING PADA PEMBENTUKAN FASA NATRIUM SUPER IONIC CONDUCTOR (NASICON) Na_{1+x}Zr₂Si_xP_{3-x}O₁₂ (X=2) DAN SIFAT KONDUKTIFITAS IONIK ELEKTROLIT PADAT

Nama	: Husein Abdurrachim
NRP	: 2712 100 072
Jurusan	: Teknik Material dan Metalurgi
ITS	
Dosen Pembimbing 1	: Hariyati Purwaningsih, S.Si.,
M.Si.	
Dosen Pembimbing 2	: Vania Mitha Pratiwi, S.T., M.T.

Abstrak

Penanganan limbah sekam padi saat ini umumnya ingin memanfaatkan kandungan Silika (SiO₂) pada sekam padi yang telah dibakar (abu sekam padi). Kandungan silika yang diperoleh dapat dimanfaatkan dalam pembuatan material inovatif seperti Natrium Super Ionic Conductor (NASICON). Pada penelitian ini, pembentukan NASICON menggunakan metode sol-gel dari, Na₂SiO₃, H₃PO₄ dan ZrOCl.8H₂O dengan variasi temperatur sintering yakni 900°C, 1000°C dan 1100°C. Pengujian SEM, XRD, FTIR, dan LRC dilakukan struktur, gugus fungsi, untuk mengetahui fasa, dan konduktifitas yang dimilikinya. Dari hasil pengujian diketahui bahwa fasa NASICON yang paling baik diperoleh pada temperatur 900°C yaitu Na₃Zr₂Si₂PO₁₂, kemudian nilai konduktivitas ionik tertinggi juga diperoleh pada NASICON dengan temperatur 900°C sebesar 0.241x10⁻⁶ S/cm

Kata kunci: Sekam Padi, Silika, Natrium Super Ionic Conductor (NASICON), Sol-Gel

EFFECTS OF SINTERING TEMPERATURE VARIATION OF NATRIUM SUPER IONIC CONDUCTOR (NASICON) Na_{1+x}Zr₂Si_xP_{3-x}O₁₂ (X=2) PHASE AND IONIC CONDUCTIVITY PROPERTIES OF SOLID ELECTROLYTE

Name	: Husein Abdurrachim
NRP	: 2712 100 072
Department	: Teknik Material dan Metalurgi
ITS	_
Lecturer 1	: Hariyati Purwaningsih, S.Si.,
M.Si.	• • • • •
Lecturer 2	: Vania Mitha Pratiwi, S.T., M.T.

Rice husk waste handling today generally want to utilize the content of silica (SiO₂) on rice husks that have been burned (rice husk ash). The content of silica obtained can be used in the manufacture of innovative materials such as sodium Super Ionic Conductor (NASICON). In this study, the formation of NASICON obtained by using sol-gel method, Na₂SiO₃, H₃PO₄ and ZrOC1.8H₂O with the sintering temperature variation of 900°C, 1000°C and 1100°C. SEM, XRD, FTIR, and LRC were conducted to determine the phase, structure, functional groups, and its conductivity. From the test results it is known that most good NASICON phase obtained at 900°C is Na₃Zr₂Si₂PO₁₂, then the highest ionic conductivity values were also obtained in NASICON with temperatures of 900°C for 0,241x10⁻⁶S/cm.

Keywords: Rice Husk, Silica, Natrium Super Ionic Conductor (NASICON), Sol-Gel Method

DAFTAR ISI

HALAMAN JUDUL	i
LEMBAR PENGESAHAN	v
ABSTRAK	vii
KATA PENGANTAR	xi
DAFTAR ISI	xiii
DAFTAR GAMBAR	XV
DAFTAR TABEL	xvi

BAB I PENDAHULUAN

1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Batasan Masalah	2
1.4 Tujuan Penelitian	3
1.5 Manfaat Penelitian	3

BAB II TINJAUAN PUSTAKA

1.1 Sekam Padi	5
1.2 Silika	6
1.3 Konduktor Ionik	13
1.4 Natrium Super Ionic Conductor (NASICON)	14
1.5 Reaksi Sol-Gel	20
1.6 Proses Sintering	22

BAB III METODOLOGI PENELITIAN

3.1 Diagram Alir	25
3.2 Bahan	
3.3 Alat dan Pengujian	29
3.4 Rancangan Penelitian	
3.5 Metode Penelitian	
3.5.1 Ekstraksi Silika	
3.5.2 Pembuatan NASICON	

3.6 Pengujian	
3.6.1 X-Ray Diffraction (XRD)	32
3.6.2 Scanning Electron Microscope (SEM)	33
3.6.3 Fourier Transform-Infra Red Spectrometry (H	FTIR)34
3.6.4 LCR Meter	
BAB IV ANALISA DATA DAN PEMBAHASAN	
4.1 Ekstraksi Silika	37
4.2 Proses Sol-Gel NASICON	
4.3 Hasil Pengujian XRD	
4.4 Hasil Pengujian FTIR	45
4.5 Hasil Pengujian SEM	49
4.6 Hasil Pengujian LCR	56
BAB V KESIMPULAN DAN SARAN	
5.1 Kesimpulan	

5.2 Saran	60

DAFTAR PUSTAKA	xix
LAMPIRAN	xxiii

DAFTAR TABEL

Tabel 2.1	Karakteristik Silika Amorf	.7
Tabel 2.2	Bentuk Kristal Utama Silika	8
Tabel 4.1	Ukuran Kristal Sampel NASICON4	1
Tabel 4.2	Daerah Serapan Infra Merah Silika4	-2
Tabel 4.3	Daerah Serapan Infra Merah Serbuk NASICON4	4
Tabel 4.4	Impedansi, dan Nilai Konduktifitas Ionik pada sampel	
]	NASICON dengan beberapa Variabel Temperatur5	1

DAFTAR GAMBAR

Gambar 2.1 Struktur Silika Tetrahderal7
Gambar 2.2 Struktur TEOS (Tetraetilortosilikat)13
Gambar 2.3 Representasi Skematik Struktur NASICON15
Gambar 2.4 Bottleneck pada Struktur NASICON16
Gambar 2.5 Pola Difraksi NASICON dengan Metode Sol Gel18
Gambar 2.6 Spektra Infra Merah NASICON18
Gambar 2.7 Representasi Geometri dari Menyelaraskan Sel
Satuan Monoklinik dengan Sel Satuan
Rhombohedral19
Gambar 2.8 Proses Sol-Gel dan Produk yang Dihasilkan21
Gambar 3.1 Diagram Alir Pembuatan Silika26
Gambar 3.2 Diagram Alir Pembuatan NASICON28
Gambar 3.3 (a) Pola Difraksi Sinar-x (b) Instrumen XRD32
Gambar 3.4 (a) Skema Kerja SEM (b) Alat SEM33
Gambar 4.1 Hasil Uji XRD pada sampel (a) Sekam Padi (b)
Sekam Padi yang Telah Direndam HCL dan (c)
Serbuk Silika (SiO ₂) dengan Temperatur Pemanasan
650°C40
Gambar 4.2 Hasil Uji XRD sample NASICON dengan
Temperatur Pemansan (a) 900°C (b) 1100°C
(c) 1100°C41
Gambar 4.3 Hasil Uji XRD pada Pellet NASICON dengan
Temperatur Sintering (a) 900°C (b) 1000°C (c)
1100°C44
Gambar 4.4 Hasil Pengujian FTIR Serbuk Silika dengan
Pemanasan Temperatur 650°C46
Gambar 4.5 Hasil Pengujian FTIR pada Serbuk NASICON

	dengan Temperatur Pemanasan (a) 900°C (b)
	1000 C (c) $1100 C$ 4/
Gambar 4.6	Hasil Uji SEM pada sample Silika dengan perbesaran
	(a) 150x (b) 500x (c) 1000x50
Gambar 4.7	Hasil Uji SEM pada sample NASICON dengan
	Perbesaran 1000x pada Temperatur Pemanasan
	(a) $900^{\circ}C$ (b) $1000^{\circ}C$ (c) $1100^{\circ}C$
Gambar 4.8	Hasil Uji SEM dengan perbesaran 5000x pada
	sample pellet NASICON pada Temperatu Pemanasan
	(a) 900°C (b) 1000°C (c) 1100°C54
Gambar 4.9	Grafik Spectra Impedansi pada Sampel NASICON
	pada Temperatur Pemansan (a) 900°C (b) 1000°C
	(b) 1100°C

BAB I PENDAHULUAN

1.1 Latar Belakang

Limbah sekam padi yang merupakan produk samping dari hasil penggilingan padi, selama ini hanya digunakan sebagai bahan bakar untuk pembakaran batu merah, pembakaran untuk memasak atau dibuang begitu saja. Penanganan sekam padi yang kurang tepat akan menimbulkan pencemaran terhadap lingkungan.

Penanganan limbah sekam padi saat ini adalah dengan memanfaatkan kandungan Silika (SiO₂) pada sekam padi yang telah dibakar (abu sekam padi). Folleto (2006), telah melakukan eksperimen untuk mengetahui kandungan dalam abu sekam padi. Silika mendominasi kandungan dari abu sekam padi yaitu sekitar 94.4%. Nilai paling umum kandungan silika (SiO₂) dalam abu sekam padi adalah 90-99% dan sejumlah kecil alkali dan logam pengotor. Apabila kandungan silikanya mendekati atau di bawah 90% kemungkinan disebabkan oleh adanya sampel sekam padi yang telah terkontaminasi oleh zat lain yang kandungan silikanya rendah (Prasad, 2001).

Diantara banyak metode yang dapat dilakukan, metode sol-gel adalah metode yang paling banyak digunakan dari berbagai peneletian yang ada sebelumnya. Hal ini disebabkan karena sintesis silika dengan metode ini dapat mempermudah pengendalian ukuran partikel dan dan bentuk dengan mengatur kondisi sintesisnya. Proses sol-gel memperkenankan sintesis dari nanopartikel silika dengan reaksi hidrolisis dan kondensasi pada alkoksida dengan adanya alkohol agar menyediakan regulasi yang lebih dari reaksi kinetik. (Zulfiqar, 2015)

Nanopartikel silika dapat diaplikasikan sebagai precursor beberapa material inovatif saat ini, salah satunya sebagai precursor dalam pembuatan Natrium Super Ionic Conductor (NASICON) .Elektrolit padat saat ini merupakan material yang banyak diaplikasikan di dunia industri karena sifat konduksi

ionnya yang tinggi. Material ini banyak digunakan pada perangkat elektrokimia yang canggih seperti *fuel cell*, baterai, membran pemisah gas, sensor kimia, dan yang masih dikembangankan yaitu *ionic switches*. NASICON type konduktor ion telah diuji secara massal dalam aplikasi energi di berbagai bidang. Konduktifitas ion yang tnggi dan unit fosfat yang stabil adalah keunggulan dari NASICON dibanding material elektrolit yang lain (Hong, 1976).

Terdapat dua metode dalam pembuatan NASICON ini, yaitu metode *Solid-State*, yaitu padatan kristalin yang disintesis secara langsung dari pereaksi-pereaksinya yang berwujud padat (Ismunandar,2006), dan metode *Sol-Gel* yaitu larutan yang mengalami perubahan fase menjadi sol, kemudian menjadi gel (Zulfiqar, 2015). Metode sol-gel dipilih dalam sintesis ini karena kebutuhan bahan pembuatan yang lebih murah dan mudah, membutuhkan temperatur yang tidak terlalu tinggi serta material yang diperoleh lebih padat dan lebih homogen. (Yadav, 2011).

Dalam mengaplikasikan NASICON sebagai solid elektrolit baterai, fasa serta konduktivitas ionik material ini sangat penting. Pengontrolan temperatur sintering terhadap gel yang sudah dihasilkan tentunya diperlukan, hal ini dikarenakan pada proses sintering, terjadi proses pembentukan fase baru serta berpengaruh pada struktur pertumbuhan kristal melalui proses pemanasan (Setyowati, 2008). Sehingga, kontrol temperatur sintering pada penelitian memegang peranan penting dalam pembuatan NASICON.

1.2 Rumusan Masalah

Berdasarkan uraian diatas maka dirumuskan suatu masalah, yaitu :

 Bagaimana pengaruh temperatur sintering pada pembentukan Natrium Super Ionic Conductor (NASICON) Na_{1+x}Zr₂Si_xP_{3-x}O₁₂ (x=2) terhadap fasa yang terbentuk ?

- Bagaimana pengaruh temperatur sintering pada pembentukan Natrium Super Ionic Conductor (NASICON) Na_{1+x}Zr₂Si_xP_{3-x}O₁₂ (x=2) terhadap Sifat Konduktifitas Ionik ?
- 1.3 Batasan masalah

Untuk mengetahui penelitian yang baik dan lebih terfokus, maka ditentukan batasan masalah antara lain :

- 1. Fluktuasi yang terjadi pada temperatur furnace dianggap konstan
- 2. Sekam padi yang diperoleh bebas dari pengotor.
- 3. Waktu tahan dianggap akurat.
- 4. Temperatur dan tekanan udara dianggap konstan
- 1.4 Tujuan Penelitian

Tujuan dari penelitian ini adalah :

- 1. Menganalisis pengaruh temperatur sintering pada pembentukan Natrium Super Ionic Conductor (NASICON) $Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$ (x=2) terhadap fasa yang terbentuk.
- 2. Menganalisis pengaruh temperatur sintering pada pembentukan Natrium Super Ionic Conductor (NASICON) terhadap Sifat Konduktifitas Ionik
- 1.5 Manfaat Penelitian

Manfaat dari penelitian ini bertujuan untuk menghasilkan Natrium Super Ionic Conductor (NASICON) yang bisa digunakan sebagai aplikasi solid baterai elektrolit dengan bahan dasar limbah alam yaitu sekam padi dengan memanfaatkan kandungan silika yang ada didalamnya.

BAB II TINJAUAN PUSTAKA

2.1 Sekam Padi

Menurut Badan Pusat Statistik (2011), Indonesia memiliki sawah seluas 12,84 juta hektar yang menghasilkan padi sebanyak 65,75 juta ton. Limbah sekam padi yang dihasilkan sebanyak 8,2 sampai 10,9 ton. Potensi limbah yang besar ini hanya sedikit yang baru dioptimalkan. Secara tradisional, sekam padi biasanya hanya digunakan sebagai bahan bakar konvensional (Danarto, et al., 2010).

Sekam padi merupakan bagian pelindung terluar dari padi (Oryza sativa). Dari proses penggilingan dihasilkan sekam sebanyak 20-30%, dedak 8-12% dan beras giling 52% bobot awal gabah (Hsu dan Luh, 1980). Pada proses penggilingan padi, sekam akan terpisah dari butiran beras dan menjadi bahan sisa atau limbah penggilingan. Karena bersifat abrasif, nilai nutrisi rendah, bulk density rendah, serta kandungan abu yang tinggi membuat penggunaan sekam padi terbatas. Diperlukan tempat penyimpanan sekam padi yang luas sehingga biasanya sekam dibakar untuk mengurangi volumenya. padi Jika hasil pembakaran sekam padi ini tidak digunakan, akan menimbukan masalah lingkungan (Hsu dan Luh, 1980).

Sekam padi terdiri unsur organik seperti selulosa, hemiselulosa, dan lignin. Selain itu, sekam padi juga mengandung unsur anorganik, berupa abu dengan kandungan utamanya adalah silika 94-96%. Selain itu, juga terdapat komponen lain seperti Kalium, Kalsium, Besi, Fosfat, dan Magnesium (Hsu dan Luh, 1980). Komposisi anorganik dari abu sekam padi berbeda, tergantung dari kondisi geografis, tipe padi, dan tipe pupuk yang digunakan (Shukla, 2011). Abu sekam padi berwarna putih keabuan, yang mengandung silika (SiO₂) dengan kisaran 86,9-97,3% (Widwiastuti, et al., 2013).

Studi sekam padi sudah lama dilakukan dan menarik perhatian banyak penelitian, termasuk pematenan riset (Amick, 1982;. Della et al, 2006; De Souza et al, 1999, 2002.; Hanna et al, 1984.; Nyata et al., 1996). Proses pencucian awal beras sekam menggunakan teknik perebusan dan penggunaan larutan asam yang terkonsentrasi di bawah tekanan sebelum pembakaran terbukti efektif dalam menghilangkan sebagian besar kotoran logam dan memproduksi silika benar-benar berwarna putih dengan luas permukaan spesifik yang tinggi (Chakravarty et al, 1988;. Della et al., 2002; Berburu et al, 1984.; James dan Rao, 1985; Mishra et al. 1985; Patel et al., 1987).

2.2 Silika

2.2.1 Definisi Silika

Silika adalah senyawa kimia dengan rumus molekul SiO₂ (silicon dioxsida) yang dapat diperoleh dari silika mineral, nabati dan sintesis kristal. Silika mineral adalah senyawa yang banyak ditemui dalam bahan tambang/galian yang berupa mineral seperti pasir kuarsa, granit, dan fledsfar yang mengandung kristal-kristal silika (SiO₂) (Bragmann and Goncalves, 2006; Della et al, 2002). Selain terbentuk secara alami, silika dengan struktur kristal tridimit dapat diperoleh dengan cara memanaskan pasir kuarsa pada suhu 870°C dan bila pemanasan dilakukan pada suhu 1470°C dapat diperoleh silika dengan struktur kristobalit (Cotton and Wilkinson, 1989). Silika juga dapat dibentuk dengan mereaksikan silikon dengan oksigen atau udara pada suhu tinggi (Iler, 1979). Karakteristik silika amorf diperlihatkan dalam Tabel 2.1.

Nama Lain	Silikon Dioksida
Rumus Molekul	SiO ₂
Berat Jenis (g/cm ³)	2,6
Bentuk	Padat
Daya Larut Dalam Air	Tidak Larut
Titik Cair (°C)	1610
Titik Didih (°C)	2230
Kekerasan (Kg/mm2)	650
Kekuatan Tekuk	70
(MPa)	
Kekuatan Tarik (MPa)	110
Modulus Elastisitas	73 – 75
(GPa)	
Resistivitas (Ohm.m)	>1014
Koordinasi Geometri	Tetrahedral
Struktur Kristal	Kristobalit, Tridimit, Kuarsa

Tabel 2. 1 Karakteristik SIlika Amorf (Sudia, dkk 2000)

2.2.2 Klasifikasi Silika

Silika terbentuk melalui ikatan kovalen yang kuat serta memiliki struktur dengan empat atom oksigen terikat pada posisi sudut tetrahedral di sekitar atom pusat yaitu atom silikon. Gambar 2.1 memperlihatkan struktur silika tetrahedral.

Gambar 2. 1 Struktur silika tetrahedral (Anonim B, 2013).

Pada umumnya silika adalah dalam bentuk amorf terhidrat, namun bila pembakaran berlangsung terus-menerus pada suhu diatas 650°C maka tingkat kristalinitasnya akan cenderung naik dengan terbentuknya fasa quartz, crystobalite, dan tridymite (Hara, 1986). Bentuk struktur guartz, crystobalite, dan tridymite yang merupakan jenis kristal utama silica memiliki stabilitas dan kerapatan yang berbeda (Brindley and Brown, 1980). Struktur Kristal quartz, crystobalite, dan tridymite memiliki nilai densitas masing-masing sebesar 2,65×103 kg/m³, 2,27×103 kg/m³, dan 2,23×103 kg/m³ (Smallman and Bishop 2000). Berdasarkan perlakuan termal, pada suhu < 570°C terbentuk low quartz, untuk suhu 570-870°C terbentuk high quartz yang mengalami perubahan struktur menjadi crystobalite dan tridymite, sedangkan pada suhu 870-1470°C terbentuk high tridymite, pada suhu > 1470°C terbentuk high crystobalite, dan pada suhu 1723°C terbentuk silika cair. Silika dapat ditemukan di alam dalam beberapa bentuk meliputi kuarsa dan opal, silika memiliki 17 bentuk kristal dan memiliki tiga bentuk kristal utama vaitu kristobalit, tridimit, dan kuarsa seperti diperlihatkan pada Tabel 2.2.

Bentuk	Rentang Stabilitas (°C)	Modifikasi
Kristobalit	1470 - 1723	β-(Kubik) α-(Tetragonal)
Tridimit	870 - 1470	γ-(?) β-(Heksagonal) α-(Ortorombik)
Kuarsa	<870	β-(Heksagonal) α-(Trigonal)

Tabel 2. 2 Bentuk Kristal Utama Silika (Smallman and Bishop, 2000)

Diketahui bahwa satuan struktur primer silika adalah tetrahedron SiO_4 , dimana satu atom silika dikelilingi oleh empat atom oksigen (seperti terlihat pada Gambar 2.1). Gaya-gaya yang mengikat tetrahedral ini berasal dari ikatan ionik dan kovalen sehingga ikatan tetrahedral ini kuat. Pada silika murni tidak terdapat ion logam dan setiap atom oksigen merupakan atom penghubung antara dua atom silikon (Van and Lawrench, 1992).

Silika mengandung senyawa pengotor yang terbawa selama proses pengendapan. Pasir kuarsa juga dikenal dengan nama pasir putih merupakan hasil pelapukan batuan yang mengandung mineral utama seperti kuarsa dan feldsfar. Pasir kuarsa mempunyai komposisi gabungan dari SiO₂, Al₂O₃, CaO, Fe₂O₃, TiO₂, CaO, MgO,dan K₂O, berwarna putih bening atau warna lain bergantung pada senyawa pengotornya. Silika biasa diperoleh melalui proses penambangan yang dimulai dari menambang pasir kuarsa sebagai bahan baku. Pasir kuarsa tersebut kemudian dilakukan proses pencucian untuk membuang pengotor yang kemudian dipisahkan dan dikeringkan kembali sehingga diperoleh pasir dengan kadar silika yang lebih besar bergantung dengan keadaan kuarsa dari tempat penambangan. Pasir inilah yang kemudian dikenal dengan pasir silika atau silika dengan kadar tertentu (Anonim C, 2013).

2.2.3 Silika Gel

Silika gel merupakan suatu bentuk dari silika yang dihasilkan melalui penggumpalan sol natrium silikat (NaSiO₂). Sol mirip agar-agar ini dapat didehidrasi sehingga berubah menjadi padatan atau butiran mirip kaca yang bersifat tidak elastis. Sifat ini menjadikan silika gel dimanfaatkan sebagai zat penyerap, pengering, dan penopang katalis. Garam-garam kobalt dapat diadsorpsi oleh gel ini. Silika gel mencegah terbentuknya kelembaban yang berlebihan sebelum terjadi (Punkels, 2008). Dalam proses adsorpso silika gel merupakan salah satu yang paling sering digunakan sebagai adsorben. Hal ini disebabkan oleh mudahnya silika diproduksi dan sifat permukaan (struktur

geometri pori dan sifat kimia pada permukaan) dan dapat dengan mudah dimodifikasi (Fahmiati dkk., 2004)

Silika amorf adalah material yang dihasilkan dari reaksi alkali-silika. Reaksi alkali-silika dimulai dengan pecahnya ikatan Si-O-Si dan hasilnya membentuk fasa amorf dan nanokristal (Boinski, 2010). Silika amorf terbentuk ketika silikon teroksidasi secara termal. Silika amorf terdapat dalam beberapa bentuk yang tersusun dari partikel-partikel kecil yang kemungkinan ikut tergabung. Biasanya silika amorf mempunyai kerapatan 2,21 g/cm (Harsono, 2006)

Ketidakteraturan susunan permukaan tetrahedral SiO_4 pada silika gel menyebabkan jumlah distribusi satuan luas bukan menjadi ukuran kemampuan adsorpsi silika gel walaupun gugus silanol dan siloksan terdapat pada permukaan silika gel. Kemampuan adsorpsi silika gel ternyata tidak sebanding dengan jumlah gugus silanol dan siloksan yang ada pada permukaan silika gel, namun bergantung pada distribusi gugus –OH per satuan luas adsorben (Oscik, 1982).

2.2.4 Karakteristik Keramik Silika

Mineral silika atau kuarsa merupakan salah satu komponen utama dalam pembentukan badan keramik dan jumlahnya melimpah ruah di permukaan kulit bumi. Bentuk umum fasa kristal silika antara lain adalah tridimit, quartz, dan kristobalit (Worr'al W.E, 1986). Struktur silikat primer adalah tetrahedron SiO4, jadi setiap satu atom silikon dikelilingi empat atom oksigen. Gaya-gaya yang mengikat atom tetrahedral berasal dan ikatan ionik dan kovalen sehingga ikatan tetrahedral sangat kuat.

Fasa yang stabil mencapai tridimit pada suhu 1470°C. Kristobalit mempunyai jangkauan stabil suhu lebur pada suhu 1730°C yang kemudian berubah menjadi cairan (liquid). Sifatsifat fisik dari berbagai bentuk kuarsa diantaranya adalah:

- Densitas tridimit = $2,27 \times 103 \text{ kg/m}^3$;

⁻ Densitas kuarsa = $2,65 \times 103 \text{ kg/m}^3$;

- Densitas kristobalit = 2,33 x 103 kg/m³ Disamping itu silika memiliki sifat-sifat (Worr'al, 1986):

- Tidak plastis (elastisitasnya rendah);
- Titik lebur tinggi sekitar 1728°C;
- Kuat dan keras.

2.2.5 Proses Sol-Gel

Proses sol-gel telah banyak dikembangkan terutama untuk pembuatan hibrida, kombinasi oksida anorganik (terutama silika) dengan alkoksisilan. Proses ini didasarkan pada prekursor molekular yang dapat mengalami hidrolisis, kebanyakan merupakan alkoksida logam atau semi logam. Terutama untuk pembuatan hibrida, kombinasi oksida anorganik (terutama silika) dengan alkoksisilan. Proses ini didasarkan pada prekursor molekular yang dapat mengalami hidrolisis, kebanyakan merupakan alkoksida logam atau semi logam.

Proses sol-gel merupakan suatu suspensi koloid dari partikel silika yang digelkan ke bentuk padatan. Menurut Rahaman (1995) suspensi dari partikel koloid pada suatu cairan atau molekul polimer disebut sol. Proses sol-gel dapat digambarkan sebagai pembentukan suatu jaringan oksida melalui reaksi polikondensasi yang progresif dari molekul prekursor dalam medium cair atau merupakan proses untuk membentuk material melalui suatu sol, gelation dari sol dan akhirnya membentuk gel (Schubert and Husing, 2000).

Proses sol-gel berlangsung melalui langkah-langkah sebagai berikut:

- 1. Hidrolisis dan kondensasi
- 2. Gelation (transisi sol-gel)
- 3. Aging (pertumbuhan gel)
- 4. Drying (pengeringan)

Menurut Farook and Ravendran (2000) melalui polimerisasi kondensasi akan terbentuk dimer, trimer, dan seterusnya sehingga membentuk bola-bola polimer. Sampai pada

ukuran tertentu (diameter sekitar 1,5 nm) dan disebut sebagai partikel silika primer. Proses kondensasi terjadi pada gugus silanol permukaan partikel bola polimer yang berdekatan disertai pelepasan air sampai terbentuk partikel sekunder dengan diameter sekitar 4,5 nm. Pada tahap ini larutan sudah mulai menjadi gel ditandai dengan bertambahnya viskositas. Gel yang dihasillkan masih sangat lunak dan tidak kaku yang disebut alkogel. Tahap selanjutnya adalah proses pembentukan gel. Pada tahap ini, polimer kondensasi antara bola-bola terus berlangsung membentuk ikatan siloksan menyebabkan menurunnya jari-jari partikel sekunder dari 4.5 nm menjadi 4 nm dan akan teramati penyusun alkogel yang diikuti dengan berlangsungnya eliminasi larutan garam. Tahap akhir pembentukan silika gel adalah xerogel yang merupakan fasa silika yang telah mengalami pencucian dan pemanasan. Pemanasan pada temperatur 1100°C mengakibatkan dehidrasi pada hidrogel dan terbentuknya silika gel dengan struktur SiO2.xH2O (Enymia dkk., 1998). Produk akhir yang dihasilkan berupa bahan amorf dan keras yang disebut silika gel kering. Bahan dasar yang digunakan untuk membuat sol dapat berupa logam alkoksida pada proses sol-gel adalah TEOS. Keunggulan dari TEOS diantaranya: mudah terhidrolisis oleh air dan mudah digantikan oleh gugus OH. Selanjutnya silanol (SI-OH) direaksikan antara keduanya atau direaksikan dengan gugus alkoksida non-hidrolisis untuk membentuk ikatan siloksan (Si-O-Si) dan mulailah terbentuk jaringan silika. Sehingga TEOS baik digunakan dalam proses sol-gel.

Gambar 2. 2 Struktur TEOS (tetraetilortosilikat)

Reaksi pada proses sol-gel dapat dilihat pada persamaan berikut:

1. Reaksi Hidrolisis	
$\equiv Si-OR + H-O-H \rightarrow \equiv Si-OH + ROH$	(2.1)
2. Reaksi Polikondensasi	
$\equiv Si-OH + HO-Si \rightarrow \equiv Si-O-Si \equiv + H_2O$	(2.2)
$\equiv Si-OH + RO-Si \rightarrow \equiv Si-O-Si \equiv + ROH$	(2.3)
(Prassas, 2002).	

2.3 Konduktor Ionik

Konduktor ionik atau elektrolit padat merupakan konduktor yang daya hantarnya dihantarkan oleh ion yang bergerak. Eksperimen tentang elektrolit padat pertama kali dikembangkan oleh Faraday pada abad 19. Namun perkembangan yang cukup pesat baru berlangsung sejak akhir dekade 70-an seiring dengan penemuan bahan-bahan baru dan terbukanya kemungkinan penggunaan bahan ini di berbagai bidang teknologi.

Berdasarkan jenis ion penghantarnya, elektrolit padat dapat dikelompokkan menjadi elektrolit padat kation seperti Li⁺, Na⁺,

 K^+ , Ag^+ , Cu^+ , Ti^+ , Pb^{2+} , H^+ atau H_3O^+ atau dan elektrilot padat anion seperti F^- atau O^{2-} (Nalbandyan dan Rao, tanpa tahun).

Seperti telah diketahui bahwa daya hantar pada elektrolit padat dihantarkan oleh ion-ion. Ion-ion ini dapat bergerak dengan mudah karena adanya ketidakteraturan atau cacat dalam struktur kristal bahan tersebut. Ketidakteraturan posisi atom atau adanya cacat dalam struktur menyebabkan tersedianya posisi kosong pada tempat-tempat tertentu dalam kristal. Posisi yang kosong ini dapat diisi oleh atom lain di sekitarnya dan meninggalkan posisi kosong yang baru, demikian seterusnya sehingga ion dalam kristal tersebut dapat berpindah-pindah. Inilah yang berperan dalam tingginya konduktifitas ionik elektrolit padat.

Nilai konduktifitas konduktor ionik adalah 10^{-3} S/cm < σ < 10 S/cm, sedangkan konduktor ionik yang memiliki nilai konduktivitas lebih besar dari $10^{-4} - 10^{-5}$ S/cm pada suhu ruangan disebut fast ion atau superionic conductor (Nalbandyan dan Rao, tanpa tahun). Fast ion conductors dapat berasal dari bahan organik maupun anorganik. Contoh fast ion conductors dari bahan organik antara lain gel poliakrilamida, litium perklorat dalam polietilen oksida dan ionomer seperti nafion. Sedangkan fast ion conductors dari bahan anorganik antara lain natrium klorida, zirkonium dioksida, elektrolit padat β -alumina, lanthanum florida, perak sulfida, perak iodida, timbal klorida, rubidium perak iodida, beberapa keramik perovskite serta keramik konduktif seperti NASICON (Na₃Zr₂Si₂PO₁₂).

2.4 Natrium Super Ionic Conductor (NASICON)

Selama kurang lebih 30 tahun , material NASICON (Na_{1+x}Zr₂Si_xP_{3-x}O₁₂) telah banyak digunakan sebagai sensor gas, baterai berdasar Na⁺ dan elektroda ion karena konduktifitas ioniknya yang tinggi dibandingkan dengan solid elektrolit baterai lainnya seperti sodium beta alumina atau *cubic stabilized* zirconium. (Anantharamulu, 2011)

Tingginya nilai konduktifitas ionik dari NASICON ini memberikan efek terhadap kedua konsentrasi *ion charge carrier*

yang tinggi dan mobilitas yang tinggi. Konsentrasi dan mobilitas dari *charge carriers* yang tinggi dari solid elektrolit NASICON ini disebabkan oleh stuktur kristalnya. Struktur kristal material ini terdiri dari dua jenis ion, satunya mengenai ruang kisi kristal yang tidak bergerak dan lainnya, ion yang mudah bergerak di dalam kisi dan membangun sub kisi yang dicairkan. Umumnya, NASICON memiliki tiga kerangka dimensi untuk migrasi Na⁺. Ion-ion yang bergerak ini umumnya adalah kation dengan ukuran kecil, jadi beberapa tipe konduktor dapat dinamakan Konduktor Kation. (Hong, 1976)

Gambar 2. 3 Representasi skematik terkait Struktur NASICON (Yadav, 2011)

Struktur dasar dari material NASICON adalah rhombohedral dimana dua struktur octahedral ZrO_6 dipisahkan dengan tiga struktur tetrahedral (Si,P)O₄ yang kemudian mereka berbagi atom-atom oksigen dibagian sudut dan dua tipe Na *sites* (Na1 dan Na2). Na1 terdapat diantara dua octahedral sepanjang c axis dan Na2 terdapat dibagian tengah dari dua Na1 sepanjang a axis. (Boilot, 1988)

Kedua Na sites, Na1 dan Na2, yang berada didalam, terhubung melalui atom-atom oksigen dengan *triangular bottlenecks*. Bottleneck diantara kedua sites pada simetris rhombohedral terbentuk dari tiga oksigen atom dimana bagian tengahnya membentuk segitiga seperti pada Gambar 2.4

Tingginya konduktifitas ionik, akibat dari pergerakan ion natrium, bergantung dari ukuran bottleneck, energi aktifasi yang dibutuhkan untuk pergerakan ion-ion dan parameter kisi dimana nilainya dabat dimodifikasi dengan mengubah komposisi NASICON. (Juarez, 1998)

Gambar 2. 4 Bottleneck pada struktur NASICON (Hong, 1976)

Ada dua metode yang bisa digunakan dalam sintesis NASICON, yaitu metode padat-padat (*solid state reaction*) dan metode sol-gel. Pada metode padat-padat penelitian yang pernah dilakukan digunakan campuran Na₂CO₃, SiO₂, ZrO₂, dan NH₄HPO₄ (Goodenough dan Hong (1976)). Campuran Na₂CO₃, ZrSiO₄, Na₂HPO₄, dam H₃PO₄ (Lee et al (2003), Kale et al (2003), Banga et al (2004) dan Sadaoka et al (2007)). Campuran sederhana ZrSiO₄ dan Na₃PO₄ (Ono et al (2000)), Kida et al (2001), dan Min et al (2003)) digunakan dalam sintesis NASICON sebagai komponen sensor gas CO₂, NO₂, dan SO₂.

Sedangkan pada metode sol-gel penelitian yang pernah dilakukan untuk sintesis NASICON diantaranya digunakan campuran Zr(OPr)₄, Si(OEt)₄, OP(OBu)₃, dan Na(Ot-Bu) (Licoccia et al (1999)). Campuran ZrO(NO₃)₂.xH₂O, NH₄H₂PO₄, Na₂SiO₃.9H₂O, dan asam hidroksi (asam tartarat, asam sitrat, asam malat, dan asam laktat) (Shimizu et al (2000)). Penggunaan zat yang sama dilakukan oleh Mouzer et al (2003) tetapi asam hidroksi yang digunakan hanya asam tartarat dan asam sitrat. Campuran ZrOCl₂.8H₂O, NH₄OH, asam oksalat, dan (NH₄)₂HPO₄ (Zhang et al (2003)). Campuran ZrOCl₂, NaNO₃, (NH₄)₂HPO₄, dan Si(C₂H₅O)₄ (Fabin Qiu et al (2004)). Serta campuran antara Si(C₂H₅O)₄, Zr(OC₄H₉)₄, PO(OC₄H₉)₃, dan NaOC₂H₅ (Miyachi et al (2003)) dan Obata et al (2005)).

Setiap material mempunyai karakteristik yang khas dan untuk mengetahui karakteristik NASICON dapat dilihat dari pola XRD dan spektra inframerahnya. Pola XRD untuk NASICON berada pada puncak $2\theta = 14$, 19, 20, 22, 27.5, 32, 41, 46, dan 53.

Gambar 2. 5 Pola XRD NASICON dengan metode Sol-Gel (Moutzer, 2003)

Sedangkan untuk mengetahui gugus fungsi pada NASICON digunakan spektroskopi inframerah. NASICON memberiakan serapan pada bilangan gelombang 400-1600 cm⁻¹. Serapan pada bilangan gelombang 420-750 cm⁻¹ menunjukkan vibrasi tekuk (bending) ZrO6, , dan Serta serapan dengan bilangan gelombang sekitar 800-1091 menunjukkan adanya vibrasi ulur (stretching) ZrO₆, , dan (Zhang et al, 2003). Gambar 2.6 menunjukkan polaserapan inframerah NASICON melalui metode sol-gel.

Gambar 2. 6 Spektra Inframerah NASICON (Qiu, 2003)

Gambar 2.7 (A) representasi geometri dari menyelaraskan sel satuan monoklinik dengan sel satuan rhombohedral. Dasar oranye mewakili fase rhombohedral dan dasar biru mewakili monoklinik. Sistem kisi heksagonal digunakan sebagai referensi. **(B)** Menggambarkan base-distortion diamati dari arah 001 **(C)** Identifikasi deformasi geser dari unit sel diamati dari arah 010 angka-angka subscript Untuk semua R menunjukkan rhombohedral, R' mewakili nonrhombohedral, dan subscript M adalah monoklinik (Jolley, 2015)

Dari penelitian sebelumnya (Hong,1976 dan Goodenough 1976), diketahui bahwa struktur kristal NASICON dengan nilai konduktivitas yang sesuai dengan kategori superkonduktor adalah *rhombohedral* dan *monolinic*. Kemudian, penelitian yang dilakukan oleh Alpen(1979), pada temperatur kamar diperoleh NASICON dengan komposisi $Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$ dengan komposisi $1,8 \le x \le 2,2$ diperoleh nilai konduktivitas yang tinggi pada struktur kristal monoclinic dibandingkan rhombohedral.

Hal ini dikarenakan, struktur kristal dengan kelonggaran menyebabkan konduksi ionik menjadi cepat. *Void* pada struktur yang saling terhubung memungkinkan transportasi ion cepat, jumlah *sites* yang tersedia menjadi lebih besar daripada jumlah pergerakan ion (Hagenmuller, 1978). Dari penelitian Alpen(1979), terlihat lebih banyak kelonggaran bagi pergerakan ion pada NASICON dengan struktur kristal monoclinic sehingga memiliki nilai konduktivitas yang lebih tinggi dibandingkan NASICON dengan struktur kristal rhombohedral.

2.5 Reaksi Sol-Gel

Proses sol-gel adalah salah satu proses untuk membuat material kaca atau keramik. Secara umum, proses sol-gel meliputi transisi sistem dari cairan (sol), menjadi fase padatan (gel). Sol merupakan sistem koloid padatan dengan ukuran 0.1-1 mm yang terdispersi dalam cairan (Ismunandar, 2004). Material awal yang digunakan dalam preparasi sol biasanya garam logam anorganik atau senyawa logam organik seperti logam alkoksida. Gel adalah emulsi dalam medium pendispersi zat padat, dapat juga dianggap sebagai hasil pembentukan dari penggumpalan sebagian sol cair. Partikel-partikel sol akan bergabung untuk membentuk suatu rantai panjang pada proses penggumpalan ini. Rantai tersebut akan saling bertaut sehingga membentuk suatu struktur padatan di mana medium pendispersi cair terperangkap dalam lubang-lubang struktur tersebut. Sehingga terbentuklah suatu massa berpori yang

semi-padat dengan struktur gel. Dalam proses sol-gel prekursor menjadi sasaran reaksi hidrolisis dan polimerisasi untuk membentuk suspensi koloid atau sol. Kemudian fasa cair yang terbentuk mengalami kondensasi membentuk gel yang memiliki padatan berukuran makromolekul. Reaksi yang terjadi adalah: M-O-R + H2O \rightarrow M-OH + R-OH ... (hidrolisis) M-OH + HO-M \rightarrow M-O-M + H2O ... (kondensasi air) M-O-R + HO-M \rightarrow M-O-M + R-OH ... (kondensasi alkohol)

(dengan M = Si, Zr, Ti)

Tahapan-tahapan proses sol-gel meliputi pencampuran larutan logam oksida menjadi sol, gelling (pembentukan gel basah), pemanasan gel basah (suhu 25-100°C) menjadi gel kering atau xerogel, pembentukan material dan terakhir adalah pengeringan. Proses sol-gel memungkinkan pembuatan material keramik dengan berbagai bentuk, seperti: serbuk ultra-fine, keramik monolitik dan kaca, keramik fiber, membran anorganik, coating film tipis dan aerogel. Gambar 2.7 menunjukkan proses sol-gel dan produk-produk yang dapat dihasilkannya.

Gambar 2. 8 Proses Sol-Gel dan Produk-Produk yang Dihasilkan

2.6 Proses Sintering

Sintering merupakan proses pemanasan dibawah titik leleh dalam rangka membentuk fase kristal baru sesuai dengan yang diinginkan dan bertujuan untuk membantu mereaksikan bahan-bahan penyusun baik bahan keramik maupun bahan logam.

Proses *sintering* akan berpengaruh cukup besar pada pembentukan fase kristal bahan. Fraksi fase yang terbentuk umumnya bergantung pada lama atau temperatur sintering. Semakin besar temperatur sintering, maka semakin cepat proses pembentukan kristal tersebut. Besar kecilnya temperatur juga berpengaruh pada bentuk serta ukuran celah dan juga berpengaruh pada struktur pertumbuhan kristal. Sintering bahan keramik biasanya ditentukan sekitar 75% dari titik leleh total.

Pada proses ini, terjadi proses pembentukan fase baru melalui proses pemanasan dimana pada saat terjadi reaksi komponen pembentuk masih dalam bentuk padat dari campuran serbuk. Hal ini bertujuan agar butiran-butiran dalam partikel yang berekatan dapat bereaksi dan berikatan. Proses sintering terbagi menjadi tiga tahapan, yaitu:

1) Tahap Awal

Pada tahap ini terbentuk ikatan atomik. Kontak antar partikel membentuk leher yang tumbuh menjadi batas butir antar partikel. Pertumbuhan akan menjadi semakin cepat dengan adanya kenaikan temperatur sintering. Pada tahap ini, penyusutan juga terjadi akibat permukaan porositas menjadi halus.

2) Tahap Menengah

Pada tahap ini, terjadi desifikasi dan pertumbuhan partikel yaitu butir kecil larut dan bergabung dengan butir besar. Akomodasi bentuk butir ini menghasilkan pemadatan yang lebih baik. Pada tahap ini juga berlangsung penghilangan porositas,

akibat pergeseran batas butir, porositas mulai saling berhubungan dan membentuk silinder di sisi butir.

3) Tahap Akhir

Fenomena desifikasi dan pertumbuhan butir terus berlangsung dengan laju yang lebih rendah dari sebelumnya. Demikian juga dengan proses penghilangan porositas, pergeseran batas butir terus berlanjut. Apabila pergeseran batas butir lebih lambat daripada porositas maka porositas akan muncul dipermukaan dan saling berhubungan. Akan tetapi jika pergeseran batas butir lebih cepat daripada porositas maka porositas akan mengendap di dalam produk dan akan sulit dihilangkan.

Produk yang dihasilkan diharapkan memiliki densitas yang tinggi dan homogen, maka pada proses sintering harus terjadi homogenisasi. Jika terdapat lapisan oksida pada serbuk logam, proses sintering yang diharapkan bisa menjadi lebih lambat. Selain lapisan oksida ini menyebabkan produk yang dihasilkan menjadi lebih getas, lapisan oksida tersesbut juga menghambat proses difusi antar partikel serbuk saat sintering dan meningkatkan temperatur sintering. (Setyowati, 2008)

BAB III METODOLOGI PENELITIAN

3.1 Diagram Alir

Dalam penelitian ini, terdapat dua tahapan yang akan dilakukan, yaitu tahap ekstraksi silika dari sekam padi dan tahap pembuatann NASICON

3.1.1 Diagram Alir Ekstraksi Silika

Gambar 3.1 Diagram Alir Pembuatan Silika

3.1.2 Diagram Alir Pembuatan NASICON

Gambar 3.2 Diagram Alir Pembuatan NASICON

3.2 Bahan

Bahan yang digunakan dalam penelitian ini, antara lain sebagai berikut:

- 1. Serbuk Natrium Hidroksida (NaOH)
- 2. Larutan Asam Fosfat (H₃PO₄) 85%
- 3. Serbuk Zirkonium Oksida Diklorida Oktahidrat (ZrOCl₂.8H₂O)
- 4. Larutan Asam Klorida (HCl) 37%
- 5. Sekam Padi
- 6. Aquades

3.3 Alat

Alat yang digunakan dalam penelitian ini, antara lain sebagai berikut:

- 1. Timbangan Digital digunakan untuk mengukur massa serbuk.
- Spatula digunakan untuk mengambil serbuk yang akan digunakan.
- 3. Crusible digunakan sebagai wadah spesimen saat *drying*, kalsinasi maupun sintering.
- 4. Dies digunakan sebagai cetakan saat kompaksi dilakukan
- 5. Mesin Kompaksi digunakan untuk membuat spesimen menjadi bentuk pellet
- 6. Furnace digunakan untuk proses pengeringan, kalsinasi, dan sintering
- 7. Kertas pH digunakan untuk mengukur pH larutan
- Kertas Saring digunakan untuk memisahkan ampas hasil dari reaksi sekam padi dengan larutan NaOH 1 M

- 9. Gelas Ukur digunakan untuk mengukur volume larutan yang akan digunakan
- Scanning Electroc Microscope (SEM) Zeiss EVO MA 10, Alat Uji X-Ray Diffraction (XRD) Philips Analytical, Alat Uji Fourier Transform Infra Red Spectrometry (FT-IR Spectrometry) Shimadzu, FT-IR 8400S, Alat Uji LCR meter.

3.4 Rancangan Penelitian

Untuk pelaksanaan penelitian, dibawah ini terdapat rancangan penelitian untuk proses pembuatan NASICON yang akan dilakukan.

No.	Material	SEM -	XRD	FTIR	LCR
		EDX			
1.	Silika	V	V	V	
2.	NASICON,	V	V	V	V
	T Sintering =				
	900°C				
3.	NASICON,	V	V	V	V
	T Sintering =				
	1000°C				
4.	NASICON,	V	V	V	V
	T Sintering =				
	1100°C				

3.5 Metode Penelitian

3.5.1 Ekstraksi Silika

Ekstraksi Silika (SiO_2) dilakukan dengan cara menambahkan HCl 2M sebanyak 500ml ke dalam gelas beaker berisi sekam padi sebanyak 50 gram sambil dipanaskan dengan temperatur 90°C selama 2 jam. Kemudian, hasil tersebut dicuci dengan aquades hingga pH 7 dan sekam padi kemudian dibakar dalam muffle furnace pada temperatur 600°C selama 4 jam. Hasil pemanasan berupa serbuk sekam padi kemudian direaksikan dengan NaOH 2M sebanyak 100ml sambil dilakukan stirring 90°C selama 2 jam. Setelah itu, dibiarkan mendingin dan disaring menggunakan kertas saring. Larutan hasil saringan kemudian dititrasi dengan larutan H₃PO₄ 2M sedikit demi sedikit hingga pH mencapai 7. Setelah itu, dibiarkan 30 menit untuk proses aging pada temperatur ruangan. Lalu, hasil aging dicuci minimal 3 kali hingga tidak berkeruh. Endapan tersebut kemudian dilakukan drying dengan temperatur 650°C selama 4 jam dalam furnace. Hasil dari proses pengeringan tersebut diambil sampel kemudian dilakukan pengujian.

3.5.2 Proses Pembuatan NASICON

Dalam tahap ini, bahan-bahan yang diperlukan yaitu larutan Na₂SiO₃, larutan ZrOCl.8H₂O₂ larutan H₃PO₄, Kemudian, semua bahan dicampur menjadi satu dengan metode sol-gel perbandingan dalam mol tertentu untuk memperoleh $Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$ (x=2) dalam bentuk gel. Setelah terbentuk gel NASICON, bahan-bahan tersebut dibagi menjadi 3 untuk disintering dengan temperatur 900°C, 1000°C, dan 1100°C selama 3 jam vang kemudian akan dihasilkan serbuk NASICON. Serbuk NASICON kemudian dikompaksi dengan tekanan 3000 psi membentuk pellet. Kemudian, masing-masing pellet disinter kembali sesuai variabel yang ditentukan untuk dilakukan pengujian selanjutnya.

3.6 Pengujian

Pengujian-pengujian yang akan dilakukan untuk mengetahui fasa, struktur, dan sifat konduktifitas dari NASICON dengan variasi temperatur kalsinasi dalam pembentukannya. Pengujian-pengujian yang akan dilakukan antara lain:

3.6.1 X-Ray Diffraction (XRD)

Difraksi sinar-X atau yang lebih dikenal sebagai XRD, adalah instrumen yang digubakan untuk mengidentifikasi struktur kristal dan fasa dari suatu bahan dengan memanfaatkan radiasi gelombang elektromagnetik sinar-X. Data XRD berupa intensitas dan besar sudut hamburan sinar.

Gambar 3.3 (a) Pola difraksi sinar x (b) Instrumen XRD PANalytical

Cara kerja dari mesin XRD ini adalah generator tegangan tinggi pada tabung sinar X akan menghasilkan sinar X yang kemudian ditembakkan ke permukaan sampel. Sinar yang mengenai permukaan sampel akan mengeksitasi elektron pada kulit terluar sehingga elektron yang hilang akan menempati daerah yang memilki tingkat energi yang lebih tinggi selama transisi dan terjadilah radiasi sinar X. Sinar X akan dihamburkan dan ditangkap oleh detektor yang kemudian diterjemahkan dalam bentuk kurva intensitas dan sudut. Kondisi refleksi sinar X dirumuskan dalam persamaan Bragg (Mitchell, 2004):

$$n\lambda = 2d \sin\theta$$
 (3.1)

Pada penelitian ini, pengujian XRD dilakukan dengan pengamatan difraksi sinar X pada sudut $2\theta = 5^{\circ} - 90^{\circ}$ menggunkan mesin XRD X' Pert Pro PANalytcal Philips.

3.6.2 Scanning Electron Microscopy (SEM)

Scanning Electron Microscopy (SEM) adalah tipe mikroskop elektron vang menghasilkan Gambar dari suatu sampel dengan memindainya menggunakan pancaran elektron. Elektron berinteraksi dengan atom di dalam sampel sehingga menghasilkan berbagai sinyal yang meghasilkan informasi tentang topografi permukan dan komposisi dari sampel. SEM dapat mencapai resolusi lebih baik daripada 1 nm. Spesimen yang dapat diamati oleh SEM antara lain dalam keadaan vakum, sedikit vakum, dan kondisi basah dalam lingkungan SEM. Berbagai sampel dapat diamati dengan SEM, mulai dari logam, polimer, keramik, dan komposit. Sampel yang digunakan merupakan material konduktor, jika tidak konduktor maka akan dikonduktifkan dengan lembaran karbon. SEM dapat memperbesar Gambar hingga perbesaran 100.000 kali karena memiliki resolusi mencapai 1,5 nm pada 30 kV.

Gambar 3.4 (a) Skema kerja SEM (b) Alat SEM Inspect S50

Cara kerja dari SEM seperti ditunjukkan oleh Gambar 3.10 a adalah dengan menembakkan elektron ke spesimen. Elektron yang dipancarkan diperkuat oleh kumparan dan difokuskan pada satu daerah oleh fineprobe. Pancaran elektron yang mengenai spesimen akan dihamburkan dan ditangkap oleh backscatter electron (BSE) dan secondary electron detector. Kemudian hasilnya akan diterjemahkan di layar. Dengan adanya BSE maka akan tampak material yang ringan (berwarna terang) dan material yang berat (berwarna gelap). Pengujian SEM pada penelitian ini menggunakan SEM Inspect S50

3.6.3 Fourier Transform Infra Red Spectrometry (FTIR)

FT-IR merupakan teknik yang digunakan untuk memeriksa adanya gugus atau ikatan dalam suatu sampel. Radiasi inframerah merupakan hal yang paling penting dalam teknik ini. Radiasi inframerah dilewatkan melalui sampel. Beberapa radiasi diserap oleh sampel namun sebagian radiasi dilewatkan (ditransmisikan) dan spektrum yang dihasilkan merupakan hasil dari penyerapan molekul dan transmisi.

Jika sinar inframerah dilewatkan melalui sampel senyawa organik, maka terdapat sejumlah frekuensi yang diserap dan ada yang diteruskan atau ditransmisikan tanpa diserap. Serapan cahaya oleh molekul tergantung pada struktur elektronik dari molekul tersebut. Molekul yang menyerap energi tersebut terjadi perubahan energi vibrasi dan perubahan tingkat energi rotasi.

Oleh karena itu, spektroskopi inframerah dapat menghasilkan identifikasi analisis kualitatif dari setiap jenis materi yang berbeda. Selain itu, ukuran puncak dalam spektrum merupakan indikasi langsung dari jumlah ikatan atom dalam suatu sampel.

3.6.4 LCR Meter

LCR meter adalah bagian dari peralatan tes elektronik yang digunakan untuk mengukur inductance (L), capacitance (C), dan resistance (R) dari komponen. Dalam versi sederhana dari

nilai-nilai alat ini sebenarnya dari kuantitas ini tidak diukur, melainkan dengan impedansi yang diukur secara internal dan dikonversi untuk ditampilkan dengan kapasitansi yang sesuai atau nilai induktansi. Bacaan akan cukup akurat jika kapasitor atau induktor perangkat yang diuji tidak memiliki komponen resistif signifikan impedansi. Desain yang lebih canggih mengukur induktansi atau kapasitansi, dan juga resistansi seri setara kapasitor dan faktor Q komponen induktif. LCR meter biasanya memiliki uji frekuensi dari 100 Hz, 120 Hz, 1kHz, 10kHz, dan 100kHz untuk akhir meter atas. Resolusi layar dan pengukuran kemampuan jangkauan biasanya akan berubah dengan uji frekuensi.

Ketika akan dilakukan pengukuran impedansi dengan menggunakan LCR meter, sampel harus dilapisi dengan pasta perak di kedua permukaannya dengan menggunakan teknik *screen printing*. Pertama, lapisi salah satu permukaan pelet dengan pasta perak, kemudian dipanaskan pada temperatur 500°C. Kemudian, lapisi permukaan lainnya dan panaskan pada temperatur 550°C, setelah itu ditahan selama 5 menit.

Untuk menghitung konduktivitas ionik NASICON dengan mengukur impedansi dengan dilakukan cara menggunakan LCR meter presisi dengan rentang frekuensi 1kHz-1MHz pada temperatur 300°C – 700°C dengan selang kenaikan atau penurunan temperatur 50°C yang selanjutnya dapat diperoleh nilai impedansi total dari hubungan grafik antara impedansi real (Z') saat pengujian dengan impedansi imaginer (Z") yaitu nilai yang diperoleh dengan cara mengalikan Z' dengan tangen dari nilai sudut yang diperoleh. Selanjutnya, nilai konduktivitas ionik dapat dihitung dengan menggunakan persamaan :

$$\sigma = \frac{t}{L \, x \, Z} \tag{3.1}$$

dimana : t = tebal pelet (cm) L = luas pelet (cm)

 $\begin{array}{l} Z = impedansi \ total \ (\Omega) \ \ atau \ (ohm) \\ \sigma = konduktivitas \ ionik \ (\Omega^{-1}cm^{-1}) \ atau \ (S/cm) \end{array}$

(Ruswanti, 2012)

BAB IV ANALISA DATA DAN PEMBAHASAN

4.1 Ekstraksi Silika

Mekanisme pembentukan dalam proses sol-gel meliputi dua tahap, yaitu suspensi koloid (sol) terbentuk dimana partikel tersuspensi di dalam cairan dan tahap kedua yaitu terbentuknya formasi gel. Proses pembentukan silika diawali dengan memanaskan 50gr sekam padi di dalam 500mL larutan HCL 2M selama 2 jam. Penggunaan larutan HCl dalam tahap pertama diatas dilakukan untuk menghilangkan pengotor *metallic*. Untuk memperoleh silika dari sekam padi, pada penelitian sebelumnya menggunakan metode *acid-leaching* yaitu dengan pemanasan sekam padi dalam larutan HCL 2M selama 2 jam dan diketahui pengotor-pengotor dapat terlarut. (Zulfiqar, 2015)

Kemudian, sekam padi dicuci hingga memperoleh pH 7. Setelah itu, sekam dibakar di dalam furnace dengan temperatur 600° C selama 4 jam yang kemudian menghasilkan serbuk sekam padi. Senyawa-senyawa organik terdegradasi ketika dilakukan perlakuan termal dan membentuk residu karbon, yang kemudian terbakar pada temperatur tinggi. Proses penghilangan termal dari sekam padi meliputi tiga tahap, yaitu : (a) pengeringan dan penghilangan uap lembab sampai temperatur 150° C, (b) penghilangan senyawa-senyawa organik pada temperatur 215° C – 350° C dan (c) pembakaran residu material karbon pada temperatur 350° C dan 690° C.

Hasil serbuk sekam padi kemudian dicampur ke dalam 100mL larutan NaOH 2M dan diaduk selama 1 jam yang dilanjutkan dengan penyaringan dengan kertas saring hingga diperoleh larutan Na₂SiO₃. Lalu, larutan tersebut dititrasi dengan

Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri ITS Surabaya

larutan H_3PO_4 2M hingga diperoleh pH 7. Reaksi yang terjadi ketika penambahan H_3PO_4 dapat dilihat sebagai berikut:

 $3Na_2SiO_3 + 2H_3PO_4 \leftrightarrow 3SiO_2 + 2Na_3PO_4 + 3H_2O$ (4.1)

Penambahan larutan H_3PO_4 pada larutan Natrium Silikat menyebabkan pembentukan dan kondensasi dari gugus Si-OH, yang kemudian memicu pembentukan gugus -Si-O-Si-.

Hasil titrasi didiamkan selama kurang lebih 30menit hingga terbentuk gel, kemudian gel dicuci dengan aquades dan dilakukan proses pengeringan dalam furnace dengan temperatur 650°C selama 4 jam, lalu diperoleh serbuk silika.

4.2 Proses Sol-Gel NASICON

Setelah diperoleh serbuk silika dari hasil ekstraksi sekam padi, selanjutnya adalah pembentukan NASICON dengan komposisi Na $_3$ Zr $_2$ Si $_2$ PO $_{12}$. Pertama, pembuatan larutan Na $_2$ SiO $_3$ dilakukan dengan melarutkan serbuk NaOH sebanyak 0,72 gram ke dalam aquades dengan temperatur 90°C sambil diaduk dengan reaksi sebagai berikut :

$$NaOH_{(s)} + H_2O_{(l)} \rightarrow NaOH_{(aq)} + H_2O_{(l)} \dots (4.2)$$

Kemudian melarutkan serbuk SiO₂ sebanyak 0,72 gram sambil diaduk selama 1 jam dengan reaksi sebagai berikut:

$$3\text{NaOH}_{(aq)} + 2\text{SiO}_{2(s)} \rightarrow \frac{3}{2}\text{Na}_2\text{SiO}_{3(aq)} + \frac{1}{2}\text{SiO}_{2(s)} + \frac{3}{2}\text{H}_2\text{O}_{(l)} \dots (4.3)$$

Kedua, pembuatan larutan ZrOCl₂.8H₂O diperoleh dengan melarutkan 3,27 gram serbuk ZrOCl₂.8H₂O ke dalam 100mL aquades pada temperatur kamar sambil diaduk selama 1 jam dengan reaksi sebagai berikut:

$$ZrOCl_2.8H_2O_{(s)} + H_2O_{(l)} \rightarrow ZrOCl_2.8H_2O_{(aq)} + H_2O_{(l)}....(4.4)$$

Terakhir, pembuatan larutan H_3PO_4 2M diperoleh dengan melarutkan 6mL H_3PO_4 2M ke dalam 100mL aquades pada temperatur kamar sambil diaduk selama 1 jam dengan reaksi sebagai berikut:

$$H_3PO_{4(1)} + H_2O_{(1)} \rightarrow H_3PO_{4(1)} + H_2O_{(1)}$$
.....(4.5)

Ketika semua bahan telah disiapkan, larutan $ZrOCl_2.8H_2O$ dimasukan kedalam larutan Na_2SiO_3 sambil diaduk dengan temperatur kamar selama 1 jam .Setelah itu, larutan H_3PO_4 dimasukan kedalam larutan sebelumnya sambil diaduk dengan temperatur kamar sampai larutan terlihat menggumpal. Pencampuran tersebut berdasarkan reaksi sebagai berikut:

$$\frac{3}{2}Na_{2}SiO_{3(aq)} + \frac{1}{2}SiO_{2(s)} + 2ZrOCl_{2}.8H_{2}O_{(aq)} + H_{3}PO_{4(l)} + \frac{7}{2}H_{2}O_{(l)} \rightarrow$$

 $Na_{3}Zr_{2}Si_{2}PO_{12}.8H_{2}O_{(aq)}+4HCl_{(aq)}+3H_{2}O_{(l)}+16H^{+}\(4.6)$

Setelah itu, gel NASICON disinter sesuai dengan variabel temperatur yang telah ditentukan, yaitu: 900°C , 1000°C, dan 1100°C sehingga menghasilkan serbuk NASICON dengan rumus senyawa Na $_3\mathrm{Zr}_2\mathrm{Si}_2\mathrm{PO}_{12(s)}$

4.3 Hasil Pengujian XRD

Pengujian XRD dilakukan dengan mengambil sampel yang berupa serbuk sebanyak kurang lebih 0,05 gram menggunakan alat Philips Analytical X-Ray Diffraction.

Gambar 4.1 Hasil Uji XRD pada sampel (a) Sekam Padi , (b) Sekam Padi yang telah direndam HCL (c) Serbuk Silika dengan pemanasan 650°C

Dari **Gambar 4.1** (a) pada sekam padi terdapat puncakpuncak yang menunjukkan adanya pengotor-pengotor metalik antara lain magnesium silikat yang ditunjukkan pada puncak difraksi 36.585°, lalu besi oksida pada puncak difrasi 36.072°,

kemudian zirconium fosfat pada puncak difraksi 21.532, serta terlihat adanya kandungan SiO₂ didalamnya pada puncak difraksi 22.079°. Kemudian, pada **Gambar 4.1** (b), sekam padi yang telah direndam dengan HCL selama 2 jam dengan temperatur pemanasan 90°C terbukti telah menghilangkan pengotor metalikmetalik yang ada dan menyisakan kandungan silika pada puncak difraksi 21.460° didalamnya sesuai dengan penelitian yang dilakukan oleh Zulfiqar (2015). Terakhir, pada **Gambar 4.1** (c), sekam yang telah dibakar dengan temperatur 650°C diperoleh silika murni dengan struktur kristal *low-quartz*.

Gambar 4.2 Hasil Uji XRD sample serbuk NASICON dengan temperatur pemanasan (a) 900°C, (b) 1000°C dan (c) 1100°C

Kemudian dari **Gambar 4.2**, hasil uji XRD sampel NASICON ini menunjukan adanya sedikit kemiripan ketinggian puncak akibat adanya perlakuan thermal dengan variasi temperatur 900°C, 1000°C, dan 1100°C yang dilakukan pada saat proses sintering.

Pada sample dengan pemanasan 900°C, diperoleh fasa NASICON dengan rumus kimia $Na_3Zr_2Si_2PO_{12}$ berdasarkan

JCPDF card nomor 01-084-1200 dengan struktur kristal monoclinic. Pada sample dengan pemanasan 1000°C, fasa NASICON vang diperoleh adalah Na₃Zr₂Si₂PO₁₂ berdasarkan JCPDF card nomor 01-084-1199 dengan struktur kristal rhombohedral. Kemudian, fasa lain juga terlihat vaitu $Na_{14}Al_2Si_{12}P_4Zr_8O_{60}$ berdasarkan JCPDF card nomor 00-046-0009 dengan struktur kristal monoclinic. Terakhir, pada sample dengan pemanasan 1100°C, hasil menunjukkan bahwa fasa NASICON yang diperoleh adalah Na_{3.1}Zr₂Si_{2.05}P_{0.95}O₁₂ berdasarkan JCPDF card nomor 01-084-1574 dengan struktur kristal rhombohedral.

Perbedaan fasa ini terjadi akibat adanya pengaruh temperatur sintering yang diberikan pada masing-masing sampel. Penelitian yang dilakukan oleh Biao (2009) menunjukkan bahwa tingginya temperatur sintering diatas 900°C akan mengakibatkan hilangnya kandungan fosfor karena penguapan akibat temperatur yang tinggi. Selain itu, tingginya temperatur sintering juga akan mempengaruhi perbedaan struktur kristal pada sampel serta agregrasi antar partikel sehingga diperoleh struktur kristal yang berbeda tiap kenaikan temperatur pemanasan (Zhang, 2003). Kemudian, munculnya fasa lain yang memiliki unsur Aluminium pada sampel dengan temperatur 1000°C diatas seharusnya tidak mungkin terjadi. Namun, berdasarkan hasil XRD diatas unsur tersebut ternyata ditemukan. Berdasarkan hasil analisa yang dilakukan, hal ini terjadi karena adanya pengotor dalam furnace ketika sintering berlangsung, sehingga serbuk bereaksi dengan lingkungan furnace.

Ukuran kristal yang terbentuk pada ketiga sampel NASICON adalah sesuai dengan rumus Debye Scherrer, yaitu :

$$D = \frac{0.9\lambda}{B\cos\theta}$$
(4.1)

dimana D adalah ukuran kristal dalam Å, λ adalah panjang gelombang yang digunakan dalam uji XRD yaitu 1,54056 Å, dan B adalah lebar setengah puncak dalam radian. θ adalah posisi sudut terbentuknya puncak. Dengan menggunakan FWHM yang

didapat dari software match, maka dapat diketahui nilai B(rad). Ukuran kristal yang terbentuk adalah seperti pada tabel di bawah ini.

Temp (°C)	λ(Å)	B(rad)	θ(°C)	Cos θ	D (Á)
900	1,54056	0.0060	15,023	0,9658	239.267
1000	1,54056	0.0049	15,04115	0,9657	293.010
1100	1,54056	0.0037	15,0826	0.9655	388.121

Tabel 4.1 Ukuran Kristal Sampel NASICON

Perhitungan ukuran kristal menunjukkan bahwa pemanasan pada temperatur 1100°C menghasilkan sampel NASICON dengan ukuran kristal paling besar dibandingkan dengan dua lainnya. Hasil ini menunjukkan bahwa semakin besar temperatur yang diberikan pada sampel saat proses sintering maka akan menghasilkan ukuran kristal yang dihasilkan seperti pada penelitian yang dilakukan Biao (2009).

Gambar 4.3 Hasil XRD pada Pellet NASICON dengan temperatur sintering (a) 900°C (b) 1000°C dan (c) 1100°C

Kemudian, dari hasil uji XRD pada pellet NASICON, terjadi perubahan struktur kristal pada temperatur pemanasan 900°C. Pada awal pembentukan, diketahui bahwa sampel ini memiliki struktur kristal monoclinic. Namun, akibat pemanasan kedua dalam pembuatan pellet dengan temperatur 1000°C, terjadi perubahan struktur kristal menjadi rhombohedral. Kemudian, tidak terjadi perubahan signifikan pada sampel dengan temperatur

1000°C dan 1100°C jika dibandingkan dengan hasil XRD pada saat sampel masih dalam bentuk serbuk.

4.3 Hasil Pengujian FTIR

Pada **Gambar 4.4** menunjukan grafik hasil uji FTIR pada sampel silika. Terlihat pada grafik, terdapat penyerapan vibrasi pada lekukan 457,93 cm⁻¹, 913,88 cm⁻¹ dan 1080,85 cm⁻¹ yang merupakan bidang vibrasi dari gugus (Si-O-Si). Selain itu, pada lekukan dari mulai 3257,67 cm⁻¹ sampai 3629,55 cm⁻¹ merupakan bidang vibrasi dari gugus (Si-OH). Kemudian, terdapat gugus karbonil (C=O) pada lekukan 1653,94 cm⁻¹ pada sample serbuk silika, hal ini dapat terjadi karena silika amorf yang dihasilkan pada temperatur ini biasanya memiliki pori yang cukup banyak pada permukaan sehingga mudah reaktif sekali terhadap kandungan CO₂ di udara (Wiltoon, 2012)

Tabel	4.2	Daerah	Serapan	Infra	Merah	Serbuk	Silika

Daerah Serapan (cm⁻¹)	Ikatan	Nama Gugus
450 - 1100	Si-O-Si	Silika
1600	C=0	Karboksil
2300	C=C	Karbon
3200 - 3600	Si-OH	Siloksil

Gambar 4.5 Grafik Hasil Uji FTIR pada serbuk NASICON dengan temperatur pemanasan (a) 900°C (b) 1000°C (c) 1100°C

Pada **Gambar 4.5**, menunjukan grafik yang identik dari ketiga sampel yang diuji. Terlihat pada grafik, terdapat penyerapan vibrasi pada gelombang 450 - 650cm⁻¹ menunjukan adanya vibrasi tekuk (bending) ZrO₆ yaitu antar ikatan Zr-O, P-O-P, dan Si-O. Kemudian pada gelombang 700 - 1300cm⁻¹ menunjukan adanya vibrasi ulur (stretching) ZrO₆ pada ikatan yang sama pada saat *bending*, sesuai dengan penelitian yang pernah dilakukan oleh Zhang, dkk (2003). Kemudian pada gelombang 2200-2400cm⁻¹ terlihat adanya penyerapan vibrasi tekuk (C=O) pada masing-masing sampel. Hal ini dapat disebabkan karena adanya pengotor dalam furnace. Bagian penyerapan vibrasi dari ketiga sampel dapat dilihat pada tabel berikut:

	Wavenumber (cm ⁻ 1)							
Gugus	Temperatur (°C)							
	900	1000	1100					
δ(Zr-O)	490,29	480,73	479,62					
δ(P-O)	555,16	560,28	564,67					
δ(Si-O)	644,43	643,44	644,44					
v(Zr-O)	1041,05	891,27	792.55					
v(P-O)	1041,05	996,27	1014,40					
v(Si-O)	1226,05	996,27	1204,15					
v(C=O)	2356,53	2333,57	2357,19					

Tabel 4.3 Daerah Serapan Infra Merah Serbuk NASICON

v= stretching mode

 δ = bending mode

Dari **Tabel 4.3**, adanya kejadian tekuk dan ulur pada ZrO_6 menunjukan bahwa terdapat struktur Bottleneck pada NASICON seperti pada penelitian Yadav (2011), dimana struktur ini akan mempengaruhi tinggi rendahnya konduktifitas ionik dari sampel NASICON akibat pergerakan ion natrium.

Seiring kenaikan temperatur sintering, bagian bending mode pada P-O tiap sampel mengalami penurunan atau melemah dimana menurut penelitian yang dilakukan Biao (2009) bagian bending mode P-O terbaik berada dibawah 550cm^{-1.} Hal ini terjadi karena temperatur tinggi mengakibatkan hilangnya kandungan fosfor pada saat proses temperatur sintering akibat menguap, sesuai dengan analisa XRD yang telah dilakukan.

4.5 Hasil Pengujian SEM

Pengujian ini dilakukan untuk mengetahui morfologi dari serbuk silika yang berhasil diekstraksi dan serbuk NASICON dari beberapa variabel temperatur sintering

Gambar 4.6 Hasil SEM pada sampel Silika (SiO₂) dengan pemanasan 650°C dengan perbesaran (a)150x, (b)300x dan (c)1000x

Dari **Gambar 4.6**(a), terlihat bahwa morfologi yang terbentuk pada sampel Silika (SiO₂) dengan pemanasan 650° C memiliki penampakan berupa semi-nodular dan amorfus. Selain itu, pada **Gambar 4.6**(b) dan (c), terlihat jelas adanya porositas pada permukaan silika. Poros ini mengakibatkan silika menjadi reaktif terhadap zat sekitar misal karbon dioksida (CO₂) terbukti dari hasil FTIR yang menunjukkan adanya gugus karbonil.

Gambar 4.7 Hasil SEM pada sampel NASICON dengan temperatur sintering (a) 900°C, (b) 1000°C dan (c) 1100°C

Dari hasil uji SEM pada sampel NASICON, terlihat pada **Gambar 4.7(a)** bahwa partikel-partikel nya masih terlihat homogen dan tidak adanya penggumpalan. Kemudian, pada **Gambar 4.7(b)** dan (c) terlihat adanya penggumpalan pada partikel serbuk NASICON seiring dengan kenaikan temperatur sintering yang dilakukan. Ukuran partikel yang menggumpal juga terlihat membesar seiring dengan kenaikan temperatur. Hal ini diperkuat dengan hasil penelitian yang dilakukan Biao (2009) bahwa temperatur sintering NASICON diatas 900°C akan adanya penguapan kandungan fosfor dalam sampel serta terjadinya penggumpalan antar partikel.

Kemudian, ukuran partikel dapat dihitung dengan manual dengan distribusi pada partikel yang kecil, sedang, dan besar untuk mengetahui rerata besar ukuran partikel pada masingmasing sampel. Sampel dengan temperatur sintering 900°C memiliki ukuran partikel sekitar 310nm - 970nm. Kemudian, sampel dengan temperatur sintering 1000°C memiliki ukuran partikel sekitar 410nm – 1100nm . Terakhir, sampel dengan temperatur sintering 1100°C memiliki ukuran partikel sekitar 450nm – 1250nm.

Gambar 4.8 Hasil Uji SEM dengan perbesaran 5000x pada Sampel Pellet NASICON dengan temperatur pemanasan (a) 900°C (b) 1000° C dan (c) 1100° c

Dari hasil uji SEM pada sampel pellet NASICON, terlihat pada **Gambar 4.8(a)** terlihat adanya gumpalan partikel akibat adanya pengaruh temperatur sintering yang lebih tinggi dibandingkan pada saat pembuatan serbuk NASICON pada sampel ini. Penggumpalan partikel juga terlihat pada temperatur pemanasan lain pada **Gambar 4.8 (b)** dan (c) sesuai pada keadaan serbuk yang telah dibuat sebelumnya. Ukuran aglomerasi partikel juga terlihat meningkat seiring dengan kenaikan temperatur sintering yang dilakukan pada sampel.

4.6 Hasil Pengujian LCR Meter

Pengujian ini dilakukan dengan melapisi masing-masing permukaan pellet NASICON dengan pasta perak, kemudian dilakukan pengujian untuk mendapatkan nilai impedansi serta kapasitansinya.

Nilai Nilai impedansi total, impedansi real serta sudut pengujian diperoleh pada alat uji LCR. Kemudian, dari data yang diperoleh dari rentang frekuensi 1kHZ – 100kHz, maka dapat diketahui nilai impedansi imaginer yaitu dengan mengalikan impedansi real dengan tangen dari nilai sudut yang diperoleh. Setelah data impedansi real dan impedansi imaginer diperoleh, maka Nyquist diagram dapat dibuat seperti **Gambar 4.9** berikut.

Gambar 4.9 Grafik spectra impedansi pada sampel NASICON pada Temperatur Pemanasan (a) 900°C (b) 1000°C dan (c) 1100°C

Nyquist plot pada ketiga variabel temperatur NASICON diatas dibuat pada rentang frekuensi 1kHz – 100kHz. Bentuk semi-lingkaran diatas menunjukkan bahwa material tersebut material yang bersifat semi-conducting berdasarkan penelitian yang pernah dilakukan oleh Yadav (2011).

Kemudian untuk memperoleh nilai konduktifitas ionik pada sampel NASICON ini, rumus (3.1) digunakan dengan menggunakan nilai impedansi yang diperoleh pada masingmasing spesimen pada frekuensi 10kHz berdasarkan penelitian Yadav (2011). **Tabel 4.4** menunjukan perbandingan hasil konduktifitas ionik masing-masing spesimen.

Tabel 4.4 Impedansi, dan Nilai Konduktifitas Ionik pada sampelNASICON dengan beberapa Variabel Temperatur

Temperatur (°C)	Z(Ω)	Konduktifitas (S/cm)
900	$1,32 \times 10^{6}$	0.241x10 ⁻⁶
1000	2.5773x10 ⁶	0.194x10 ⁻⁶
1100	$2,181 \times 10^{6}$	0.146x10 ⁻⁶

Dari hasil perhitungan rumus (3.1), struktur NASICON temperatur sintering menunjukkan dengan 900°C nilai konduktifitas yang lebih tinggi dibandingkan dengan temperatur 1000°C dan 1100°C. Hal ini disebabkan karena struktur kristal NASICON vaitu monoclinic sesuai dengan hasil XRD, kemudian disertai dengan struktur bottleneck yang sesuai sehingga membuat ion Natrium memiliki mobilitas yang tinggi. Ketika sampel dipanskan lebih dari 900°C, temperatur yang tinggi ini menyebabkan ketidaksempurnaan dari struktur NASICON yang diperoleh sehingga menyebabkan penurunan mobilitas dari ion Natrium dan juga menurunkan nilai konfuktivitas dalam waktu vang bersamaan (Zhang, 2003).

LAMPIRAN

Name and formula

Reference code: Compound name:

Common name: Empirical formula:

Chemical formula:

01-078-1237 Sodium Zirconium Silicate Phosphate Nasicon high, syn Na_{3.05}O₁₂P_{0.95}Si_{2.05}Zr₂ Na_{3.05}Zr₂Si_{2.05}P.95O₁₂

Crystallographic parameters

Crystal system: Space group: Space group number: a (Å): b (Å): c (Å): Alpha (°): Beta (°): Gamma (°): Volume of cell (10^6 pm^3): Z: RIR: **Status, subfiles and quality**

Status:

Subfiles:

Quality:

Comments

ANX: Creation Date: Modification Date: ANX: Analysis: Rhombohedral R-3c 167 9.0680 9.0680 22.9800 90.0000 90.0000 120.0000 1636.45 6.00 2.12

Diffraction data collected at non ambient temperature ICSD Pattern Inorganic Ionic Conductors Blank (B)

A2B3C3X12 11/20/2008 1/19/2011 A2B3C3X12 Na3.05 O12 P0.95 Si2.05 Zr2

Formula from original source:	Na3.05 Zr2 Si2.05 P.95 O12
ICSD Collection Code:	62383
Temperature of Data Collection:	443 K
Significant Warning:	Reported displacement
	parameters on non H atoms are
	outside the range 0.001 <u<0.1.< td=""></u<0.1.<>
	Ueq=0.012 used in the
	calculation
Wyckoff Sequence:	f3 e2 c b(R3-CH)
Unit Cell Data Source:	Single Crystal.
References	
Primary reference:	Calculated from ICSD using
-	<i>POWD-12++</i> , (2004)

Structure:

Calculated from ICSD using POWD-12++, (2004) Boilot, J.P., Collin, G., Colomban, Ph., J. Solid State Chem., **73**, 160, (1988)

Peak list

No.	h	k	1	d [A] 2	2Theta[de	<u>g]I[%]</u>
1	0	1	2	6.48350	13.647	36.4
2	1	0	4	4.63670	19.126	90.4
3	1	1	0	4.53400	19.563	62.6
4	1	1	3	3.90170	22.773	39.3
5	0	0	6	3.83000	23.205	1.2
6	2	0	2	3.71560	23.930	1.6
7	0	2	4	3.24170	27.492	55.4
8	2	1	1	2.94380	30.338	18.4
9	1	1	6	2.92580	30.529	100.0
10	1	2	2	2.87390	31.095	1.3
11	0	1	8	2.69770	33.182	1.4
12	2	1	4	2.63700	33.969	22.8
13	3	0	0	2.61770	34.227	47.0
14	1	2	5	2.49340	35.990	1.0
15	2	0	8	2.31840	38.811	3.7
16	2	2	0	2.26700	39.728	1.3

17	1	1	9	2.22480	40.514	1.0
18	1	0	10	2.20550	40.885	3.3
19	2	1	7	2.20170	40.958	2.6
20	2	2	3	2.17380	41.508	7.0
21	1	3	1	2.16840	41.616	2.3
22	0	3	6	2.16120	41.761	3.7
23	3	1	2	2.14000	42.195	2.8
24	1	2	8	2.06420	43.823	10.4
25	1	3	4	2.03660	44.448	17.5
26	0	2	10	1.98330	45.709	11.4
27	3	1	5	1.96820	46.080	1.4
28	2	2	6	1.95090	46.512	29.9
29	0	4	2	1.93520	46.912	3.1
30	0	0	12	1.91500	47.437	4.0
31	4	0	4	1.85780	48.992	1.2
32	1	3	7	1.81710	50.164	26.9
33	2	1	10	1.81710	50.164	26.9
34	3	2	1	1.79610	50.792	0.6
35	2	3	2	1.77990	51.288	0.6
36	1	1	12	1.76410	51.781	0.3
37	3	1	8	1.73560	52.696	4.2
38	3	2	4	1.71910	53.242	9.8
39	4	1	0	1.71370	53.423	18.9
40	2	3	5	1.67740	54.674	1.7
41	4	1	3	1.67240	54.851	1.2
42	0	4	8	1.62090	56.749	2.3
43	0	1	14	1.60670	57.296	2.9
44	1	3	10	1.58080	58.325	13.0
45	3	2	7	1.58080	58.325	13.0
46	1	4	6	1.56420	59.004	17.1
47	5	0	2	1.55620	59.338	0.6
48	0	3	12	1.54560	59.786	4.9
49	2	3	8	1.52630	60.621	1.4
50	2	0	14	1.51440	61.148	8.4
51	0	5	4	1.51440	61.148	8.4

52	3	3	0	1.51130	61.287	6.6
53	3	1	11	1.50770	61.449	2.3
54	4	0	10	1.49270	62.135	4.0
55	2	4	1	1.48280	62.596	0.7
56	3	3	3	1.48280	62.596	0.7
57	4	2	2	1.47190	63.113	0.1
58	2	2	12	1.46290	63.546	0.2
59	1	1	15	1.45140	64.109	0.7
60	1	2	14	1.43640	64.860	8.7
61	2	4	4	1.43640	64.860	8.7
62	4	1	9	1.42290	65.552	0.4
63	3	2	10	1.41780	65.818	5.5
64	1	0	16	1.41230	66.107	2.5
65	4	2	5	1.41230	66.107	2.5
66	5	1	1	1.40780	66.346	2.4
67	3	3	6	1.40580	66.452	1.5
68	5	0	8	1.37810	67.968	0.2
69	5	1	4	1.36980	68.436	7.1
70	2	3	11	1.36440	68.745	0.3
71	2	4	7	1.35230	69.448	0.6
72	1	5	5	1.34880	69.654	1.6
73	0	2	16	1.34880	69.654	1.6
74	4	2	8	1.31850	71.496	0.5
75	3	1	14	1.31090	71.975	5.3
76	6	0	0	1.30880	72.109	7.5
77	3	3	9	1.30060	72.636	0.1
78	0	5	10	1.29590	72.942	2.5
79	5	1	7	1.29590	72.942	2.5
80	2	1	16	1.29280	73.145	2.0
81	3	4	2	1.28300	73.796	1.0
82	1	4	12	1.27670	74.221	2.3
83	0	0	18	1.27670	74.221	2.3
84	2	2	15	1.26930	74.727	0.2
85	1	5	8	1.26610	74.948	0.1
86	3	2	13	1.26180	75.248	0.9

87	0	4	14	1.25960	75.402	2.1
88	4	3	4	1.25960	75.402	2.1
89	5	2	0	1.25750	75.550	2.8
90	2	4	10	1.24670	76.322	2.0
91	2	5	3	1.24090	76.743	0.3
92	0	6	6	1.23850	76.919	0.5
93	1	2	17	1.23020	77.535	1.3
94	2	3	14	1.21340	78.814	3.4
95	4	2	11	1.20990	79.087	0.2
96	4	3	7	1.20210	79.702	0.7
97	5	1	10	1.20210	79.702	0.7
98	1	3	16	1.19900	79.950	0.6
99	5	2	6	1.19480	80.288	5.5
100	6	1	2	1.19110	80.588	0.3
101	3	3	12	1.18640	80.974	0.8
102	3	4	8	1.17760	81.707	1.6
103	1	6	4	1.17240	82.147	1.9
104	1	5	11	1.16900	82.438	1.6
105	4	0	16	1.15920	83.289	0.3
106	6	1	5	1.15920	83.289	0.3
107	3	0	18	1.14750	84.333	1.8
108	1	4	15	1.14210	84.824	0.1
109	2	4	13	1.13690	85.304	2.6
110	0	1	20	1.13690	85.304	2.6
111	5	0	14	1.13480	85.500	1.0
112	4	4	0	1.13350	85.621	0.8
113	4	3	10	1.12560	86.368	4.5
114	1	6	7	1.12560	86.368	4.5
115	3	2	16	1.12310	86.608	1.1
116	2	1	19	1.12010	86.898	0.2
117	3	5	1	1.12010	86.898	0.2
118	0	7	2	1.11660	87.238	0.5
119	2	2	18	1.11240	87.651	0.1
120	6	1	8	1.10540	88.350	0.5
121	2	0	20	1.10280	88.613	1.1

122	5	1	13	1.10280	88.613	1.1
123	4	2	14	1.10080	88.816	2.0
124	3	5	4	1.10080	88.816	2.0
125	3	4	11	1.09820	89.082	0.1
126	5	3	5	1.08990	89.944	0.2
127	4	4	6	1.08690	90.261	1.4
128	6	2	1	1.08690	90.261	1.4
129	0	6	12	1.08060	90.934	0.7
130	3	3	15	1.07590	91.444	0.1
131	1	2	20	1.07150	91.927	1.4
132	1	5	14	1.06980	92.116	4.5
133	6	2	4	1.06980	92.116	4.5
134	1	1	21	1.06370	92.800	0.3
135	1	6	10	1.06200	92.993	1.4
136	3	5	7	1.06200	92.993	1.4
137	2	6	5	1.05990	93.232	0.8
138	0	5	16	1.05990	93.232	0.8
139	1	3	19	1.05740	93.519	0.2
140	5	2	12	1.05110	94.252	0.1
141	0	7	8	1.04500	94.975	1.6
142	7	1	0	1.04020	95.553	1.1
143	6	2	7	1.03360	96.363	0.5
144	2	4	16	1.03210	96.549	1.0
145	4	1	18	1.02380	97.596	0.9
146	2	6	8	1.01830	98.306	0.2
147	3	1	20	1.01630	98.567	1.6
148	3	4	14	1.01480	98.764	1.2
149	3	5	10	1.00820	99.642	3.7
150	5	1	16	1.00630	99.899	1.3
151	1	7	6	1.00380	100.239	2.2
152	1	6	13	0.99170	101.927	1.5
153	0	4	20	0.99170	101.927	1.5
154	5	4	4	0.99040	102.113	2.2
155	6	3	0	0.98940	102.256	1.6
156	6	2	10	0.98410	103.025	1.2

157	4	5	5	0.98230	103.290	0.3	
158	8	0	2	0.97810	103.914	0.1	
159	3	3	18	0.97530	104.335	0.9	
160	4	4	12	0.97530	104.335	0.9	
161	5	2	15	0.97200	104.838	0.1	
162	2	3	20	0.96880	105.331	1.1	
163	0	8	4	0.96750	105.533	1.7	
164	6	1	14	0.96750	105.533	1.7	
165	2	6	11	0.96570	105.814	0.3	
166	7	1	9	0.96330	106.193	0.1	
167	5	4	7	0.96140	106.495	0.1	
168	4	3	16	0.96020	106.687	0.1	
169	6	3	6	0.95800	107.041	1.7	
170	4	5	8	0.94900	108.524	0.1	
171	2	7	4	0.94630	108.980	1.0	
172	1	2	23	0.94630	108.980	1.0	
173	1	3	22	0.94180	109.751	0.1	
174	7	2	5	0.93920	110.203	0.1	
175	1	1	24	0.93680	110.625	1.8	
176	2	4	19	0.93680	110.625	1.8	
177	3	4	17	0.93360	111.194	0.1	
178	8	0	8	0.92890	112.046		0.3

Stick Pattern

Name and formula	
Reference code:	01-075-9645
Compound name:	Zirconium Oxide
Empirical formula:	O ₂ Zr
Chemical formula:	ZrO ₂
Crystallographic parameters	
Crystal system:	Tetragonal
Space group:	P42/nmc
Space group number:	137
a (Å):	3.6019
b (Å):	3.6019
c (Å):	5.1740
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
Volume of cell (10 ⁶ pm ³):	67.13
Z:	2.00
RIR:	9.84
<u>Status, subfiles and quality</u>	
Status:	Alternate Pattern
Subfiles:	Alloy, metal or intermetalic
	Ceramic
	ICSD Pattern
	Inorganic
	Mineral
Quality:	Indexed (I)
Comments	
ANX:	AX2
Creation Date:	11/4/2008
Modification Date:	1/19/2011
ANX:	AX2
Analysis:	O2 Zr1
-	

Formula from original source:	Zr O2
ICSD Collection Code:	157617
Calculated Pattern Original Rem	arks: Sample synthesized by
	gel-combustion with alanine at
	723 K
Minor Warning:	No R factors
-	reported/abstracted
Wyckoff Sequence:	d a (P42/NMCS)
Unit Cell Data Source:	Powder Diffraction.
<u>References</u>	
Primary reference:	Calculated from ICSD using
	<i>POWD-12++</i>
Structure:	Lamas, D.G., Rosso, A.M.,
	Suarez Anzorena, M.,
	Fernandez, A., Bellino, M.G.,
	Cabezas, M.D., Walsoe de
	Reca, N.E., Craievich, A.F.,
	Scr. Mater., 55, 553, (2006)

<u>Peak list</u>

No.	h	k	1	d [A]	2Theta[de	g]I[%]
1	1	0	1	2.95610	30.209	100.0
2	0	0	2	2.58700	34.646	7.0
3	1	1	0	2.54690	35.209	12.9
4	1	0	2	2.10120	43.012	0.3
5	1	1	2	1.81500	50.226	34.4
6	2	0	0	1.80100	50.644	17.1
7	2	0	1	1.70090	53.857	0.1
8	1	0	3	1.55550	59.367	10.9
9	2	1	1	1.53800	60.112	21.0
10	2	0	2	1.47810	62.818	4.7
11	2	1	2	1.36740	68.573	0.1
12	0	0	4	1.29350	73.099	1.9
13	2	2	0	1.27350	74.439	3.7
14	1	0	4	1.21740	78.505	0.1

15	2	1	3	1.17720	81.741	6.7
16	3	0	1	1.16960	82.387	3.3
17	1	1	4	1.15330	83.812	1.9
18	2	2	2	1.14250	84.788	1.7
19	3	1	0	1.13900	85.110	1.7
20	3	0	2	1.08910	90.028	0.1
21	2	0	4	1.05060	94.311	3.1
22	3	1	2	1.04240	95.287	6.2
23	2	1	4	1.00860	99.589	0.1
24	1	0	5	0.99460	101.516	1.8
25	3	0	3	0.98540	102.835	1.7
26	3	2	1	0.98090	103.497	3.4
27	3	2	2	0.93190	111.500	0.1
28	2	2	4	0.90750	116.166	1.9
29	4	0	0	0.90050	117.611	1.0
30	3	0	4	0.88000	122.171	0.1
31	2	1	5	0.87060	124.452	2.6
32	3	2	3	0.86440	126.033	2.5
33	4	1	1	0.86140	126.822	2.5
34	3	1	4	0.85480	128.618	1.7
35	4	0	2	0.85040	129.865	0.8
36	3	3	0	0.84900	130.270	0.4
37	1	0	6	0.83860	133.431	0.1
38	4	1	2	0.82770	137.073	0.1
39	1	1	6	0.81680	141.148	1.5
40	3	3	2	0.80660	145.491	1.7
41	4	2	0	0.80540	146.045	1.7

Name and formula

Reference code: Compound name:

Common name: Empirical formula:

Chemical formula:

Crystallographic parameters

Crystal system:	Rhombohedral
Space group:	R-3c
Space group number:	167
a (Å):	9.0580
b (Å):	9.0580
c (Å):	23.0705
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	120.0000
Volume of cell (10 ⁶ pm ³):	1639.28
Z:	6.00
RIR:	2.42

01-084-1199 Sodium Zirconium Silicon Phosphorus Oxide nasicon, heated, syn Na₃O₁₂PSi₂Zr₂ Na₃Zr₂Si₂PO₁₂

Status, subfiles and quality

Status:

Subfiles:

Quality: <u>Comments</u> ANX: Creation Date:

Modification Date: Additional Patterns:

ANX:

Analysis: Formula from original source: Delete duplicate: Marked as deleted by ICDD Diffraction data collected at non ambient temperature ICSD Pattern Inorganic Ionic Conductors Mineral Blank (B)

A3B2C3X12 12/16/2004 1/24/2011 See PDF 00-033-1314 and 01-078-2349 A3B2C3X12 Na3 O12 P1 Si2 Zr2 Na3 Zr2 Si2 P O12 Delete: ICSD 2008/1 version removed this collection code. See PDF 01-084-1190 SK 1/09. ICSD Collection Code: 202153. Calculated Pattern Original Remarks: Observed occupancies of the Na atoms are about 2/3 of the chemical composition. As stated in paper, high anisotropic thermal motion makes it difficult to refine the Na occupancies. Scaled up occupancies have been given for Na(1) and Na(2) to reflect formula. Temperature of Data Collection: 573 K. Significant Warning: Reported temperature

factors were outside the range 0.001<U<0.1. U=0.012 was used in the calculation. Wyckoff Sequence: f2 e2 c b (R3-CH). Unit Cell Data Source: Powder Diffraction.

<u>References</u>

Primary reference:

Structure:

Calculated from ICSD using POWD-12++, (2004) Baur, W.H., Dygas, J.R., Whitmore, D.H., Faber, J., Solid State Ionics, **1819**, 935, (1986)

Peak list

No.	h	k	1	d [A] 2	2Theta[deg	g] I [%]
1	0	1	2	6.48670	13.640	43.6
2	1	0	4	4.64680	19.084	88.0
3	1	1	0	4.52900	19.585	56.5
4	1	1	3	3.90250	22.768	29.9
5	0	0	6	3.84510	23.113	2.1
6	2	0	2	3.71340	23.945	0.9
7	0	2	4	3.24330	27.479	43.0
8	1	1	6	2.93120	30.472	100.0
9	1	2	2	2.87160	31.120	0.6
10	0	1	8	2.70670	33.069	1.1
11	2	1	4	2.63690	33.970	14.4
12	3	0	0	2.61480	34.266	45.4
13	1	2	5	2.49440	35.975	0.7
14	2	0	8	2.32340	38.725	3.3
15	2	2	0	2.26450	39.774	1.5
16	1	1	9	2.23080	40.400	0.3
17	1	0	10	2.21330	40.734	2.2
18	2	1	7	2.20420	40.910	1.3
19	2	2	3	2.17230	41.538	7.3

20	1	3	1	2.16600	41.664	5.6
21	0	3	6	2.16220	41.741	4.0
22	3	1	2	2.13800	42.236	1.6
23	1	2	8	2.06720	43.756	8.7
24	1	3	4	2.03560	44.471	13.2
25	0	2	10	1.98860	45.580	9.2
26	3	1	5	1.96790	46.087	1.5
27	2	2	6	1.95120	46.505	27.8
28	0	4	2	1.93340	46.959	2.5
29	0	0	12	1.92250	47.241	4.0
30	4	0	4	1.85670	49.023	1.0
31	2	1	10	1.82080	50.055	19.2
32	1	3	7	1.81570	50.206	15.3
33	3	2	1	1.79420	50.850	0.5
34	2	3	2	1.77810	51.344	0.4
35	1	1	12	1.76970	51.605	0.2
36	3	1	8	1.73680	52.657	3.5
37	3	2	4	1.71800	53.278	6.7
38	4	1	0	1.71180	53.487	15.0
39	1	2	11	1.71180	53.487	15.0
40	2	3	5	1.67660	54.702	1.4
41	4	1	3	1.67090	54.904	1.1
42	0	4	8	1.62170	56.718	1.8
43	0	1	14	1.61270	57.064	2.4
44	1	3	10	1.58280	58.244	9.8
45	3	2	7	1.57950	58.377	5.9
46	1	4	6	1.56380	59.021	14.6
47	5	0	2	1.55460	59.405	0.9
48	0	3	12	1.54890	59.646	5.4
49	2	3	8	1.52680	60.599	1.3
50	2	1	13	1.52270	60.779	1.0
51	2	0	14	1.51920	60.934	4.8
52	0	5	4	1.51390	61.170	3.4
53	3	1	11	1.50970	61.359	8.0
54	3	3	0	1.50970	61.359	8.0

55	4	0	10	1.49420	62.065	2.9
56	3	3	3	1.48140	62.662	0.6
57	4	2	2	1.47040	63.185	0.1
58	2	2	12	1.46560	63.416	0.1
59	1	1	15	1.45640	63.863	0.5
60	1	2	14	1.44040	64.658	4.6
61	2	4	4	1.43580	64.891	3.9
62	4	1	9	1.42360	65.516	0.3
63	1	0	16	1.41900	65.755	4.7
64	3	2	10	1.41900	65.755	4.7
65	4	2	5	1.41140	66.155	1.3
66	5	1	1	1.40630	66.426	2.3
67	3	3	6	1.40630	66.426	2.3
68	5	0	8	1.37820	67.962	0.2
69	1	3	13	1.37520	68.131	0.6
70	5	1	4	1.36870	68.499	5.8
71	2	3	11	1.36580	68.665	3.1
72	0	2	16	1.35340	69.383	0.9
73	2	4	7	1.35340	69.383	0.9
74	1	5	5	1.34750	69.731	0.9
75	4	2	8	1.31850	71.496	0.4
76	3	1	14	1.31360	71.804	4.0
77	6	0	0	1.30740	72.198	5.7
78	2	1	16	1.29670	72.889	2.2
79	0	5	10	1.29670	72.889	2.2
80	5	1	7	1.29550	72.968	2.5
81	4	3	1	1.28760	73.489	0.1
82	3	4	2	1.28170	73.883	2.2
83	0	0	18	1.28170	73.883	2.2
84	4	1	12	1.27850	74.099	1.2
85	2	2	15	1.27230	74.521	0.2
86	3	2	13	1.26360	75.122	0.7
87	0	4	14	1.26160	75.262	0.5
88	4	3	4	1.25850	75.480	1.4
89	5	2	0	1.25610	75.649	2.4

90	2	4	10	1.24720	76.286	1.4
91	2	5	3	1.23970	76.831	0.2
92	0	6	6	1.23780	76.971	0.4
93	1	2	17	1.23400	77.251	1.0
94	1	1	18	1.23400	77.251	1.0
95	2	3	14	1.21540	78.660	2.6
96	1	3	16	1.20190	79.718	0.8
97	4	3	7	1.20190	79.718	0.8
98	5	2	6	1.19400	80.353	5.0
99	6	1	2	1.18990	80.687	2.6
100	3	3	12	1.18740	80.892	1.0
101	3	4	8	1.17730	81.732	1.2
102	1	6	4	1.17130	82.241	1.5
103	1	5	11	1.16950	82.395	1.5
104	4	0	16	1.16170	83.070	0.2
105	6	1	5	1.15800	83.395	0.1
106	3	0	18	1.15090	84.026	1.5
107	1	4	15	1.14410	84.642	0.1
108	0	1	20	1.14120	84.907	1.8
109	2	4	13	1.13770	85.230	1.3
110	5	0	14	1.13630	85.360	0.8
111	4	4	0	1.13220	85.743	0.7
112	3	2	16	1.12570	86.359	3.8
113	4	3	10	1.12570	86.359	3.8
114	2	1	19	1.12370	86.550	2.0
115	0	7	2	1.11540	87.356	0.4
116	2	0	20	1.10670	88.219	0.7
117	6	1	8	1.10500	88.390	0.5
118	5	1	13	1.10340	88.552	0.6
119	4	2	14	1.10210	88.684	1.5
120	3	4	11	1.10010	88.888	0.8
121	3	5	4	1.10010	88.888	0.8
122	5	3	5	1.08900	90.039	0.1
123	6	2	1	1.08610	90.345	1.4
124	4	4	6	1.08610	90.345	1.4

125	2	6	2	1.08350	90.622	0.7
126	2	3	17	1.08350	90.622	0.7
127	0	6	12	1.08110	90.880	0.7
128	1	2	20	1.07500	91.542	0.9
129	1	5	14	1.07090	91.994	2.1
130	6	2	4	1.06900	92.205	1.8
131	1	6	10	1.06200	92.993	1.3
132	0	5	16	1.06200	92.993	1.3
133	2	6	5	1.05880	93.358	0.8
134	5	2	12	1.05160	94.193	0.1
135	0	7	8	1.04450	95.035	1.3
136	6	1	11	1.03900	95.699	1.0
137	7	1	0	1.03900	95.699	1.0
138	4	4	9	1.03570	96.103	0.5
139	6	2	7	1.03360	96.363	0.9
140	2	4	16	1.03360	96.363	0.9
141	4	1	18	1.02600	97.316	0.4
142	3	1	20	1.01910	98.202	1.3
143	2	6	8	1.01780	98.371	0.3
144	3	4	14	1.01560	98.659	1.1
145	0	2	22	1.01310	98.988	0.5
146	3	5	10	1.00800	99.669	3.3
147	5	1	16	1.00800	99.669	3.3
148	1	7	6	1.00300	100.349	2.0
149	4	5	2	1.00060	100.679	1.0
150	4	2	17	1.00060	100.679	1.0
151	0	4	20	0.99430	101.559	1.1
152	1	6	13	0.99190	101.899	0.6
153	5	4	4	0.98950	102.242	1.6
154	5	3	11	0.98830	102.415	1.5
155	6	3	0	0.98830	102.415	1.5
156	6	2	10	0.98390	103.055	1.0
157	4	5	5	0.98140	103.423	0.7
158	3	3	18	0.97710	104.064	0.9
159	8	0	2	0.97710	104.064	0.9

160	5	2	15	0.97290	104.700	0.1
161	2	3	20	0.97120	104.960	0.9
162	6	1	14	0.96810	105.439	1.0
163	0	8	4	0.96670	105.658	0.5
164	2	6	11	0.96570	105.814	0.7
165	1	7	9	0.96290	106.256	0.1
166	4	3	16	0.96120	106.527	0.1
167	5	4	7	0.96120	106.527	0.1
168	6	3	6	0.95720	107.171	1.4
169	7	2	2	0.95510	107.513	0.7
170	1	2	23	0.95020	108.323	0.1
171	3	5	13	0.94750	108.777	0.1
172	2	7	4	0.94540	109.133	0.7
173	1	1	24	0.94030	110.011	1.4
174	7	2	5	0.93830	110.361	0.7
175	3	4	17	0.93480	110.980	0.1
176	5	0	20	0.92940	111.954	0.9
177	8	0	8	0.92840	112.137	0.4
178	5	3	14	0.92670	112.450	0.7

Stick Pattern

Name and formula					
Reference code:	01-072-7115				
Mineral name:	Zirconia				
Compound name:	Zirconium Oxide				
Empirical formula:	O ₂ Zr				
Chemical formula:	ZrO ₂				
Crystallographic parameters					
Crystal system:	Tetragonal				
Space group:	P42/nmc				
Space group number:	137				
a (Å):	3.5980				
b (Å):	3.5980				
c (Å):	5.1850				
Alpha (°):	90.0000				
Beta (°):	90.0000				
Gamma (°):	90.0000				
Volume of cell (10 ⁶ pm ³):	67.12				
Z:	2.00				
RIR:	9.86				
Subfiles and quality					
Subfiles:	Alloy, metal or intermetalic				
	Ceramic				
	ICSD Pattern				
	Inorganic				
	Mineral				
Quality:	Star (S)				
<u>Comments</u>					
ANX:	AX2				
Creation Date:	11/20/2008				
Modification Date:	1/19/2011				
ANX:	AX2				
Analysis:	O2 Zr1				
Formula from original source:	Zr O2				
ICSD Collection Code: 97004					
Calculated Pattern Original Rema	irks: Stable from 1273 to				

xxiii

Wyckoff Sequence: Unit Cell Data Source: <u>References</u> Primary reference:

Structure:

2573 K (2nd ref., Tomaszewski), below P21/c, m.p. 2950 K d b(P42/NMCZ) Powder Diffraction.

Calculated from ICSD using POWD-12++ Hyeon Taeghwan, Zhang Jin Z, Wu Fan-Xin, Park Hyun Min, Kim Young Woon, Yu Taek-Yung, Joo Jin, J. Am. Chem. Soc., **125**, 6553, (2003)

Peak list

No.	h	k	1	d [A] 2	2Theta[de	g]I[%]
1	1	0	1	2.95600	30.210	100.0
2	0	0	2	2.59250	34.570	8.6
3	1	1	0	2.54420	35.248	12.8
4	1	0	2	2.10340	42.965	1.6
5	1	1	2	1.81580	50.203	31.8
6	2	0	0	1.79900	50.705	17.1
7	2	0	1	1.69960	53.901	0.1
8	1	0	3	1.55790	59.267	11.1
9	2	1	1	1.53680	60.164	20.8
10	2	0	2	1.47800	62.823	5.3
11	2	1	2	1.36720	68.584	0.4
12	0	0	4	1.29620	72.922	1.4
13	2	2	0	1.27210	74.535	3.8
14	1	0	4	1.21950	78.344	0.3
15	2	1	3	1.17770	81.699	6.8
16	3	0	1	1.16850	82.481	3.3
17	1	1	4	1.15500	83.661	2.8
18	2	2	2	1.14200	84.834	1.9
19	3	1	0	1.13780	85.221	1.6

20	3	0	2	1.08850	90.091	0.1
21	2	0	4	1.05170	94.182	2.4
22	3	1	2	1.04190	95.347	5.9
23	2	1	4	1.00940	99.481	0.2
24	1	0	5	0.99640	101.263	1.8
25	3	0	3	0.98530	102.850	1.7
26	3	2	1	0.97990	103.645	3.4
27	3	1	3	0.95030	108.306	0.1
28	3	2	2	0.93130	111.609	0.1
29	2	2	4	0.90790	116.085	1.6
30	4	0	0	0.89950	117.822	1.1
31	3	0	4	0.88030	122.100	0.1
32	2	1	5	0.87170	124.178	2.6
33	0	0	6	0.86420	126.085	3.0
34	3	2	3	0.86420	126.085	3.0
35	4	1	1	0.86050	127.062	2.6
36	3	1	4	0.85510	128.535	2.3
37	4	0	2	0.84980	130.038	0.9
38	3	3	0	0.84810	130.534	0.4
39	1	0	6	0.84030	132.896	0.1
40	4	1	2	0.82700	137.320	0.1
41	1	1	6	0.81830	140.556	1.0
42	3	3	2	0.80600	145.767	1.7
43	4	2	0	0.80450	146.467	1.8

Stick Pattern

Name and formula

Reference code:

Compound name:

Common name:

Empirical formula: Chemical formula: 01-084-1200

Sodium Zirconium Silicon Phosphorus Oxide nasicon, syn

 $\begin{array}{l} Na_{3}O_{12}PSi_{2}Zr_{2}\\ Na_{3}Zr_{2}Si_{2}PO_{12} \end{array}$

Crystallographic parameters

Crystal system:	Monoclinic
Space group:	C2/c
Space group number:	15
a (Å):	15.6513
b (Å):	9.0550
c (Å):	9.2198
Alpha (°):	90.0000
Beta (°):	123.7420
Gamma (°):	90.0000
Volume of cell (10 ⁶ pm ³):	1086.54
Z:	4.00
RIR:	1.05

Status, subfiles and quality

Status:	Alternate Pattern
Subfiles:	ICSD Pattern

	Inorganic Ionic Conductors Mineral
Quality:	Blank (B)
<u>Comments</u>	
ANX: Creation Date: Modification Date: ANX: Analysis: Formula from original source: ICSD Collection Code: Calculated Pattern Original Rem	A2B3C3X12 11/20/2008 1/19/2011 A2B3C3X12 Na3 O12 P1 Si2 Zr2 Na3 Zr2 (Si O4)2 (P O4) 202154 arks: Cell in I12/c1-setting: a`=13.025, beta`=92.31. Observed occupancies of the Na atoms are about 2/3 of the chemical composition. As stated in paper, high anisotropic thermal motion makes it difficult to refine the Na occupancies. Scaled up occupancies have been given for Na(1) and Na(2) to reflect formula. Temperature of Data Collection: 293 K. Significant Warning: Reported displacement parameters on non H atoms are outside the range 0.001 <u<0.1. ueq="0.012<br">used in the calculation. Wyckoff Sequence: f9 e2 d(C12/C1). Unit Cell Data Source: Powder Diffraction.</u<0.1.>

References

Primary reference:

Structure:

Calculated from ICSD using POWD-12++, (2004) Baur, W.H., Dygas, J.R., Whitmore, D.H., Faber, J., Solid State Ionics, **1819**, 935, (1986)

Peak list

No.	h	k	1	d [A] 2	2Theta[de	g]I[%]
1	1	1	0	7.43300	11.897	0.3
2	2	0	0	6.50740	13.596	43.4
3	-1	1	1	6.45770	13.702	28.9
4	1	1	1	4.65010	19.070	84.1
5	-2	0	2	4.60610	19.254	50.5
6	-3	1	1	4.52020	19.624	100.0
7	0	2	0	4.52020	19.624	100.0
8	-1	1	2	3.95640	22.454	4.7
9	3	1	0	3.91240	22.710	21.3
10	0	2	1	3.89850	22.792	26.9
11	-3	1	2	3.87550	22.929	28.6
12	0	0	2	3.83340	23.184	1.2
13	-4	0	2	3.69000	24.099	3.2
14	4	0	0	3.25370	27.389	29.4
15	-2	2	2	3.22890	27.604	47.0
16	2	2	1	2.99240	29.834	0.9
17	3	1	1	2.93940	30.385	81.9
18	-4	2	1	2.93940	30.385	81.9
19	-5	1	2	2.92560	30.531	61.6
20	0	2	2	2.92560	30.531	61.6
21	-3	1	3	2.90810	30.720	62.3
22	-1	3	1	2.86830	31.157	1.9

23	-5	1	1	2.86830	31.157	1.9
24	2	0	2	2.70960	33.032	3.0
25	-1	1	3	2.69370	33.233	1.0
26	4	2	0	2.64220	33.900	13.3
27	1	3	1	2.63690	33.970	15.1
28	-3	3	1	2.61260	34.296	65.5
29	-6	0	2	2.61260	34.296	65.5
30	-2	2	3	2.51010	35.743	0.4
31	5	1	0	2.50160	35.868	0.4
32	-1	3	2	2.48870	36.060	0.8
33	3	3	0	2.47870	36.211	1.2
34	-4	2	3	2.47870	36.211	1.2
35	2	2	2	2.32500	38.697	1.7
36	-4	0	4	2.30310	39.080	5.6
37	-6	2	2	2.26010	39.854	3.5
38	0	4	0	2.26010	39.854	3.5
39	3	1	2	2.23500	40.321	1.0
40	0	2	3	2.22550	40.501	1.1
41	-3	1	4	2.21440	40.713	2.7
42	4	2	1	2.21070	40.784	2.6
43	1	1	3	2.21070	40.784	2.6
44	-2	0	4	2.19920	41.007	4.8
45	-5	1	4	2.18570	41.272	3.6
46	-6	2	1	2.17430	41.498	9.2
47	6	0	0	2.17110	41.562	9.1
48	0	4	1	2.17110	41.562	9.1
49	-2	4	1	2.16420	41.701	3.7
50	-5	3	2	2.16420	41.701	3.7
51	-3	3	3	2.15260	41.936	7.2
52	-6	0	4	2.14400	42.112	1.1
53	2	4	0	2.13830	42.230	1.7
54	-5	3	1	2.13830	42.230	1.7
55	-7	1	3	2.12820	42.440	0.9
56	5	1	1	2.07400	43.605	3.1
57	-1	3	3	2.06120	43.890	12.8

58	-4	2	4	2.05280	44.079	4.6
59	-7	1	1	2.03890	44.395	9.7
60	-2	4	2	2.03160	44.563	8.3
61	-5	3	3	2.02660	44.679	6.0
62	-1	1	4	2.01710	44.901	0.8
63	4	0	2	1.99370	45.457	2.3
64	-2	2	4	1.97820	45.834	12.6
65	2	4	1	1.97120	46.006	1.3
66	5	3	0	1.97120	46.006	1.3
67	-7	1	4	1.95620	46.379	22.8
68	6	2	0	1.95620	46.379	22.8
69	0	4	2	1.94920	46.555	22.5
70	-6	2	4	1.93770	46.848	13.7
71	-8	0	2	1.93260	46.979	3.2
72	-4	4	2	1.92960	47.057	2.9
73	0	0	4	1.91670	47.393	4.8
74	4	4	0	1.85820	48.981	0.7
75	2	2	3	1.84960	49.224	1.5
76	-8	0	4	1.84500	49.355	0.9
77	4	2	2	1.82460	49.944	13.3
78	-3	3	4	1.81910	50.105	12.2
79	1	3	3	1.81910	50.105	12.2
80	-2	4	3	1.81050	50.360	3.1
81	-5	1	5	1.80550	50.509	13.8
82	-5	3	4	1.80550	50.509	13.8
83	-4	4	3	1.79860	50.717	1.0
84	1	5	0	1.79370	50.865	1.2
85	-7	3	2	1.79370	50.865	1.2
86	-7	3	3	1.77230	51.524	0.8
87	3	1	3	1.77230	51.524	0.8
88	0	2	4	1.76500	51.753	0.4
89	-3	1	5	1.75780	51.981	0.1
90	5	3	1	1.74070	52.530	6.1
91	2	4	2	1.73720	52.644	2.6
92	-7	3	1	1.71970	53.222	5.3

93	1	5	1	1.71760	53.292	6.1
94	5	1	2	1.71760	53.292	6.1
95	-9	1	3	1.71080	53.520	21.3
96	-3	5	1	1.71080	53.520	21.3
97	-4	2	5	1.70030	53.877	1.1
98	0	4	3	1.69450	54.077	0.8
99	4	4	1	1.68760	54.316	0.3
100	-6	2	5	1.68400	54.442	0.7
101	-8	2	1	1.67940	54.603	0.6
102	-1	5	2	1.67460	54.773	1.3
103	-6	4	1	1.67160	54.880	0.8
104	3	5	0	1.67160	54.880	0.8
105	-7	3	4	1.66780	55.015	1.3
106	-6	4	3	1.66780	55.015	1.3
107	-9	1	4	1.66250	55.205	1.6
108	8	0	0	1.62680	56.524	2.3
109	-4	4	4	1.61440	56.998	1.6
110	2	0	4	1.61190	57.094	0.9
111	-1	1	5	1.60590	57.328	5.1
112	7	1	1	1.58820	58.027	8.2
113	7	3	0	1.58300	58.236	1.0
114	-2	4	4	1.57740	58.462	5.6
115	1	5	2	1.57740	58.462	5.6
116	-5	3	5	1.57260	58.658	8.7
117	-9	1	1	1.56710	58.884	9.6
118	3	5	1	1.56710	58.884	9.6
119	-3	5	3	1.55990	59.183	4.3
120	-6	4	4	1.55670	59.317	6.6
121	6	0	2	1.55280	59.481	6.8
122	-9	1	5	1.55280	59.481	6.8
123	3	3	3	1.55000	59.599	3.0
124	-3	3	5	1.54080	59.991	2.1
125	-6	0	6	1.53540	60.224	1.1
126	8	2	0	1.53100	60.415	0.8
127	-1	5	3	1.52410	60.718	0.5

128	4	2	3	1.52410	60.718	0.5
129	-7	3	5	1.51850	60.965	8.3
130	2	2	4	1.51850	60.965	8.3
131	-5	5	3	1.50990	61.350	8.5
132	0	6	0	1.50990	61.350	8.5
133	-9	3	3	1.50670	61.494	8.9
134	-4	0	6	1.50670	61.494	8.9
135	4	4	2	1.49620	61.973	6.4
136	-7	1	6	1.49620	61.973	6.4
137	0	6	1	1.48100	62.681	2.7
138	-8	0	6	1.48100	62.681	2.7
139	-8	4	3	1.47720	62.860	0.6
140	-10	2	3	1.47720	62.860	0.6
141	-9	3	4	1.47540	62.946	0.5
142	-8	4	2	1.46980	63.213	0.2
143	6	2	2	1.46980	63.213	0.2
144	-10	2	4	1.46490	63.449	0.1
145	0	4	4	1.46280	63.551	0.1
146	3	1	4	1.45690	63.839	0.7
147	0	2	5	1.45230	64.065	1.0
148	-6	2	6	1.45230	64.065	1.0
149	-3	1	6	1.44730	64.313	2.0
150	5	1	3	1.44350	64.503	4.6
151	-10	2	2	1.43660	64.850	2.6
152	-1	3	5	1.43540	64.911	2.7
153	-2	6	2	1.43420	64.972	2.9
154	-4	2	6	1.43080	65.146	6.3
155	-8	4	4	1.43080	65.146	6.3
156	6	4	1	1.42640	65.371	0.6
157	-4	4	5	1.42640	65.371	0.6
158	7	3	1	1.42280	65.558	2.4
159	3	5	2	1.42280	65.558	2.4
160	1	5	3	1.41800	65.808	2.9
161	-3	5	4	1.41800	65.808	2.9
162	1	1	5	1.41550	65.939	2.4

163	-6	4	5	1.41550	65.939	2.4
164	2	6	1	1.41140	66.155	1.5
165	-2	0	6	1.41140	66.155	1.5
166	-9	3	1	1.40760	66.356	2.7
167	-8	2	6	1.40760	66.356	2.7
168	0	6	2	1.40530	66.479	2.9
169	-7	5	2	1.40530	66.479	2.9
170	-11	1	4	1.40180	66.666	1.7
171	-9	3	5	1.39720	66.915	1.8
172	-4	6	2	1.39720	66.915	1.8
173	7	1	2	1.37960	67.884	0.6
174	5	5	1	1.37960	67.884	0.6
175	4	6	0	1.36940	68.459	6.0
176	-7	5	1	1.36940	68.459	6.0
177	-11	1	5	1.36140	68.918	5.2
178	-1	5	4	1.36140	68.918	5.2
179	4	0	4	1.35480	69.301	0.7
180	-10	2	1	1.35480	69.301	0.7
181	-2	6	3	1.34960	69.607	0.7
182	-11	1	2	1.34960	69.607	0.7
183	-2	2	6	1.34680	69.772	1.7
184	-8	4	5	1.34470	69.897	1.4
185	-4	6	3	1.34470	69.897	1.4
186	-7	5	4	1.34270	70.017	0.9
187	-1	1	6	1.33180	70.675	0.1
188	3	3	4	1.32600	71.031	0.2
189	8	4	0	1.32110	71.334	0.2
190	2	6	2	1.31850	71.496	1.1
191	4	4	3	1.31850	71.496	1.1
192	5	3	3	1.31590	71.660	1.7
193	2	4	4	1.31300	71.842	3.1
194	-10	2	6	1.30900	72.096	1.0
195	-6	6	2	1.30630	72.269	7.3
196	9	3	0	1.30420	72.403	3.9
197	-12	0	4	1.30420	72.403	3.9

198	10	0	0	1.30240	72.519	2.4
199	-7	1	7	1.30240	72.519	2.4

Stick Pattern

Pengaruh Temperatur Sintering pada Pembentukan Fasa Natrium Super Ionic Conductor (NASICON) Na_{1+x}Zr₂Si_xP_{3-x}O₁₂ (x=2) dan Sifat Konduktifitas Ionik Elektrolit Padat.

BAB V KESIMPULAN

5.1 Kesimpulan

Silika (SiO₂) berhasil diekstrak dengan menggunakan metode *acid-leaching* dengan bahan dasar limbah sekam padi. Hasil XRD menunjukkan bahwa silika yang diperoleh merupakan silika amorf dengan struktur kristal low quartz.

Adanya variasi temperatur sintering pada pembuatan NASICON menunjukkan adanya perbedaan fasa serta struktur kristal. Sampel dengan temperatur 900°C menunjukkan NASICON dengan rumus kimia $Na_3Zr_2Si_2PO_{12}$ dengan struktur kristal monoklinik. Sampel dengan temperatur 1000°C menunjukkan NASICON dengan rumus kimia $Na_3Zr_2Si_2PO_{12}$ dengan struktur kristal rhombohedral. Kemudian, sampel dengan temperatur 1100°C menunjukkan NASICON dengan rumus kimia $Na_3Zr_2Si_2PO_{12}$ dengan struktur kristal rhombohedral. Kemudian, sampel dengan temperatur 1100°C menunjukkan NASICON dengan rumus kimia $Na_3Zr_2Si_2PO_{12}$ dengan struktur kristal rhombohedral.

Pemanasan kedua dengan temperatur 1000°C dalam pembuatan pellet NASICON menunjukkan adanya perubahan struktur kristal pada temperatur pemanasan 900°C dari monoklinik menjadi rhombohedral.

Kemudian, variasi temperatur sintering yang dilakukan pada sampel NASICON menunjukkan adanya perbedaan nilai konduktivitas yang dihasilkan. Sampel NASICON dengan nilai konduktivitas ionik paling tinggi yakni 0,241x10⁻⁶ S/cm diperoleh pada sampel dengan temperatur pemansan 900°C. Hal ini disebabkan karena semakin tingginya temperatur pemanasan yang diberikan, maka semakin hilangnya kandungan fosfor dalam NASICON yang menyebabkan ketidaksempurnaan struktur sehingga menurunkan mobilitas ion Natrium.

5.2 Saran

Untuk penelitian selanjutnya, ada beberapa saran yang perlu diperhatikan:

1. Melakukan pemanasan pada sampel baik silika maupun NASICON dengan furnace dalam keadaan yang bersih dari sisa pemakaian sebelumnya.

DAFTAR PUSTAKA

Adam, F.K., Kandasamy, and S, Batakrishnan. 2006. Rice Husk Ash Silica AS a Support Material for Ruthenium Based Heterogenous Catalyst. Journal of Physical Science. Vol. 17, No.2, pp. 1-13.

Adam, F. Chew, T.S. Andas, J. 2011. A Simple Template Free

Sol-Gel Synthesis of Spherical Nanosilica from Agricultural Biomass. Journal Sol-Gel Science Technology. Vol. 59, pp. 580-583.

Anantharamulu, N.(2011)." A Wide-Ranging Review on Nasicon Type Materials". Journal of MaterialsScience 46(9):2821

Biao, Wang, LIANG Xi-shuang, LIU Feng-min, ZHONG Tie

gang, ZHAO Chun, LU Ge-yu, QUAN Bao-fu .Synthesis and Characterization of NASICON Nanoparticles by Solgel Method[J] 高等学校化学研究, 2009, V25(1): 13-16

Boilot, J.P. (1988). "Crystal Structure of The True NASICON: Na₃Zr₂Si₂PO₁₂". Materials Research Bulletin 22(5):669-676

Danarto, Y.C., Nur, A., Setiawan, D.P., dan Kuncoro, N.D.

(2010). "Pengaruh Waktu Operasi Terhadap Karakterstik Char Hasil Pirolisis Sekam Padi Sebagai Bahan Pembuatan Nano Struktur Supermikrosporous Carbon". Prosiding Seminar Nasional Teknik Kimia Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia. Yogyakarta. Hal. 1-2

Hara. 1986. Utilization of Agrowastes for Bulding Materials.

International Reseach and Development Coorperation Division. Tokyo. Japan.

Harsono, H. 2002. Pembuatan Silika Amorf dari Limbah Sekam

Padi. Jurnal Ilmu Dasar. Vol. 3, No. 2, hal. 98-103.

- Hong, H.Y.P. (1976). "Crystal Structures and Crystal Chemistry in the System Na_{1+x}Zr₂Si_xP_{3-x}O₁₂. Mater. Res. Bull 11 203 220
- Hsu, H.W., dan Luh, B.S. (1980). Rice Hull. Dalam Rice Produck And Utilization. Editor: Bor Shiun Luh. New York: Avi Publishing Company Inc. Hal. 736-740.
- Juarez, A.M. (1998). Phase Transition and Ionic Mobility in LiHf₂(PO₄)₃ with NASICON Structure. American Chemical Society pp 1430–1436
- Kalapathy, U., A. Proctor., and J. Shultz. 2000. A Simple Method for Production of Pure Silica From Rice Hull Ash. Bioresource Technology. Vol. 73, pp. 257-262.
- Kalapathy, U., A. Proctor., and J. Shultz. 2002. An Improved Method for Production of Silica From Rice Hull Ash. Bioresource Technology. Vol. 85, pp. 285-289.
- Prasad C.S., Maiti K,N., and Venugopal R., (2001), "Effect of rice husk ash in whiteware compositions", Ceramic International, 27, 629-635.
- Smallman, R. E. and Bishop, R. J. 2000. Metalurgi Fisik Modern dan Rekayasa Material. Edisi keenam. Terjemahan Sriati Djaprie. Erlangga. Jakarta.
- Surdia, T dan Saito, S. 2000. Pengetahuan Bahan Teknik. Pradanya Pramita. Jakarta.
- Yadav, Parul. Bhatnagar, MC. (2012). "Structural studies of NASICON material of different compositions by sol–gel method". Ceramics International 38 pp 1731–1735
- Zhang, S. et al. (2003). "Preparation and Characterization of

NASICON with A New Sol-Gel Process". Material Letters. (58), 226-229

Zulfiqar, Usama.Subhani, Tayyab. Husain, SW. (2015)." Towards tunable size of silica particles from rice husk". Journal of Non Crystalline Solids 429 pp 61-69

BIODATA PENULIS

Penulis bernama lengkap Husein Abdurrachim dilahirkan di kota Jakarta, 18 Mei 1995, merupakan putra dari pasangan Bapak Darisdal Darisan dan Ibu Santi Iriani Wartabone. Penulis merupakan anak keempat dari empat bersaudara. Penulis telah menempuh pendidikan formal yaitu SDN Menteng 02 Jakarta, SMPN 216 Jakarta dan SMAN 3 Jakarta. Setelah lulus dari SMA pada tahun 2012, penulis diterima menjadi mahasiswa di Jurusan Teknik

Material dan Metalurgi Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember (FTI-ITS).

Penulis aktif sebagai staff Departemen Media dan Informasi Himpunan Mahasiswa Teknik Material dan Metalurgi (HMMT) FTI-ITS masa kepengurusan 2013-2014. Kemudian penulis aktif sebagai Sekretaris Departemen Media dan Informasi Himpunan Mahasiswa Teknik Material dan Metalurgi (HMMT) FTI-ITS masa kepengurusan 2014-2015.

Alamat penulis saat ini adalah Jl. Menteng Atas Selatan No.1 Setiabudi – Jakarta Selatan. Nomor telepon yang dapat dihubungi yaitu 081217072337 atau dapat melalui email husein.abdurrachim@gmail.com.