

THESIS - SF 142502

KARAKTERISASI ARUS DAN TEGANGAN (I-V) PADA *DYE SENSITIZED SOLAR CELL* (DSSC) DENGAN TIO₂ TERDOPING NITROGEN MENGGUNAKAN DYE SENSITIZER N749

Bodi Gunawan 1114 201 011

DOSEN PEMBIMBING Endarko, M.Si., Ph.D.

PROGRAM MAGISTER JURUSAN FISIKA BIDANG KEAHLIAN INSTRUMENTASI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2016

THESIS - SF 142502

CURRENT-VOLTAGE CHARACTERIZATION OF DYE SENSITIZED SOLAR CELL (DSSC) WITH TIO₂ DOPPED NITROGEN AND N749 DYE SENSITIZER.

Bodi Gunawan 1114 201 011

SUPERVISOR Endarko, M.Si., Ph.D.

MAGISTER PROGRAMME INSTRUMENTATION DEPARTMENT OF PHYSICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES INSTITUTE OF TECHNOLOGY SEPULUH NOPEMBER SURABAYA 2016

KARAKTERISASI ARUS DAN TEGANGAN (I-V) PADA DYE SENSITIZED SOLAR CELL (DSSC) DENGAN TIO₂ TERDOPING NITROGEN MENGGUNAKAN DYE SENZITISER N749

Nama mahasiswa	: Bodi Gunawan
NRP	: 1114201011
Pembimbing	: Endarko, M.Si., Ph.D.

ABSTRAK

Nanokristal TiO₂ terdoping nitrogen sebagai bahan dasar fotoanoda *dye-sensitized solar cell* (DSSC) telah berhasil dianalisis dan dikarakterisasi. TiO₂ terdoping nitrogen fase anatase disintesis dengan menggunakan metode kopresipitasi. TiCl₃ sebagai bahan perkusor dicampur dengan amonia sebagai sumber dopan nitrogen dengan beberapa variasi konsentrasi amonia yaitu 2, 5, dan 7,5%. Kemudian endapan yang dihasilkan disaring lalu dikeringkan dan dikalsinasi dengan suhu 400°C selama 3 jam. Uji XRD dan UV-Vis dilakukan untuk mengetahui ukuran kristal, spektal absorbansi dan *band-gap* pada masing-masing sampel. Analisis XRD menunjukkan ukuran kristal TiO₂ terdoping nitrogen berkisar antara 7,4 – 9,9 nm sedangkan *band-gap* untuk sampel dengan penambahan amonia 2, 5, dan 7,5% masing-masing adalah 3,0; 2,7 dan 2,5 eV. Hasil karakterisasi I-V dilakukan pada modul-modul sel surya dengan fotoanoda TiO₂ terdoping nitrogen menunjukkan performa terbaik terdapat pada modul DSSC dengan penambahan amonia 7,5% dengan nilai rapat arus 0,784 mA/cm⁻² dan efisiensi 0,18%

Kata kunci: band-gap, DSSC, efisiensi, TiO₂ terdoping nitrogen

CURRENT-VOLTAGE CHARACTERIZATION OF DYE SENSITIZED SOLAR CELL (DSSC) WITH TIO₂ DOPPED NITROGEN AND N749 DYE SENSITIZER.

Name	: Bodi Gunawan
Student Identity	: 1114201011
Supervisor	: Endarko, M.Si., Ph.D

ABSTRACT

Nanocrystal N-doped TiO₂ as photoanode material in the dye-sensitized solar cell has been successfully characterized and analyzed. The anatase phase of N-doped TiO₂ synthesized by co-precipitation method. TiCl₃ as a precursor mixed with ammonia solution with various concentrations, namely, 2, 5 and 7.5%, and calcinated at temperature 400°C over 3 hours. X-ray diffraction (XRD) and UV-Vis spectroscopy were performed to analyze a crystal size and band gap of the samples. The XRD data showed that the crystal size of N-doped TiO₂ was 7.4 - 9.9 nm and the measured band gap around 2.64 eV, respectively. I-V characterization of solar cell module shown that the highest power conversion efficiency was the solar cell module that fabricated with 7.5% of ammonia solution with the short circuit current (*Jsc*) and the efficiency was at 0.784 mA/cm⁻² and 0.18%, respectively.

Keywords: band-gap, DSSC, N-doped TiO₂, power conversion efficiency.

DAFTAR ISI

Halaman

HALAMAN JUDUL	
LEMBAR PENGESAHAN	i
ABSTRAK	ii
ABSTRACT	iii
DAFTAR ISI	iv
DAFTAR GAMBAR	v
KATA PENGANTAR	vii
BAB 1. PENDAHULUAN	1
1.1. Latar Belakang	1
1.2. Rumusan Masalah	3
1.3. Tujuan Penelitian	4
1.4. Batasan Masalah	4
1.5. Manfaat Penelitian	5
BAB 2. TINJAUAN PUSTAKA	7
2.1. Sel Surya	7
2.2. Dye-Sensitized Solar Cell (DSSC)	7
2.3. Struktur DSSC	8
2.4. Fotoanoda	9
2.5. Dye	10
2.6. Prinsip Kerja Dye-Sensitized Solar Cell (DSSC)	11
2.7. Karakteristik Sel Surya	13
BAB 3. METODOLOGI PENELITIAN	15
3.1. Alat dan Bahan	15
3.2. Diagram Alir Penelitian	15
3.3. Prosedur Kerja	16
BAB 4. HASIL DAN PEMBAHASAN	23
4.1. Karakterisasi XRD Fotoanoda	23
4.2. Karakterisasi UV-Vis Fotoanoda	28

4.3. Karakterisasi Morfologi dan Komposisi Lapisan Tipis Fotoanoda	31
4.4. Karakterisasi I-V DSSC	34
BAB 5. KESIMPULAN	37
5.1. Kesimpulan	37
5.2. Saran	37
DAFTAR PUSTAKA	22
LAMPIRAN	45
BIOGRAFI PENULIS	63

DAFTAR GAMBAR

Gambar

Halaman

2.1	Susunan DSSC	8
2.2	Band gap beberapa semikonduktor	9
2.3	Struktur kimia dye N-749	11
2.4	Prinsip kerja DSSC	12
2.5	Karakteristik Arus dan Tegangan (I-V) sebuah sel surya	14
3.1	Diagram alir penelitian	15
3.2	Diagram Sintesis TiO ₂ Dengan Pengotor Nitrogen	16
3.3	Pasta TiO2 yang telah tedeposisi pada kaca ITO	19
4.1	Pola Difraksi Sinar-X (radiasi Cu-Kα) TiO ₂ murni	23
4.2	Pola Difraksi Sinar-X (radiasi Cu-K α) TiO ₂ dengan penambahan NH ₃	25
4.3	Perbandingan FWHM pola difraksi Sinar-X (radiasi Cu-Kα) TiO ₂	26
4.4	Serbuk TiO ₂ tak terdoping dan TiO ₂ terdoping nitrogen	28
4.5	Grafik absorbansi masing-masing sampel	29
4.6	Grafik band gap masing-masing sampel	30
4.6	Struktur morfologi masing-masing sampel	32
4.7	SEM-EDX nilai persentase atom (at.%) masing-masing sampel	33
4.8	Grafik hubungan J-V pada masing-masing sampel DSSC	34

BAB 1 PENDAHULUAN

1.1. Latar Belakang

Energi merupakan salah satu kebutuhan pokok umat manusia dan juga merupakan penggerak perekonomian suatu bangsa. Manusia telah memanfaatkan berbagai macam bentuk energi untuk memudahkan pekerjaan, misalnya: untuk memasak, mencuci, penerngan, komunikasi, distribusi, proses produksi dan lain sebagainya. Energi berperan penting terhadap kemajuan suatu bangsa, karena ketersediaan energi berpengaruh terhadap perkembangan ekonomi suatu daerah. Oleh karena itu ketersediaan energi secara berkelajutan mutlak dibutuhkan untuk pembangunan perekonomian suatu bangsa (Stern, 2004).

Saat ini, energi fosil menduduki peringkat pertama sebagai sumber energi yang paling banyak dimanfaatkan oleh sebagian besar manusia. Data dari Renewables 2010 Global Status Report menunjukkan bahwa energi fosil menempati peringkat teratas sebagai sumber energi yang paling banyak di konsumsi di seluruh dunia dengan persentase sebesar 69% kemudian disusul dengan hydropower sebesar 15%, energi nuklir 13% dan energi terbarukan nonhydropower sebesar 3% (REN21, 2010). Pemanfaatan energi fosil berlebihan secara berkelanjutan dapat memberikan efek negatif karena dalam prosesnya pembakaran energi fosil melepaskan gas CO₂ yang merupakan komponen utama penyebab efek rumah kaca. Gas CO₂ dalam kadar yang tepat dapat menjaga kesimbangan suhu di permukaan bumi karena tanpa tanpa gas ini maka suhu permukaan bumi berada di bawah nol derajat celcius, akan tetapi jika kadar CO₂ di atmosfer menjadi berlebih maka suhu permukaan bumi akan menjadi semakin meningkat. Data penelitian menunjukkan bahwa pnggunaan bahan bakar fosil merupakan salah satu penyebab bertambahnya kadar CO₂ di atmosfer (REN21, 2010). Studi geologis pada batangan es yang diambil dari kutub utara menjelaskan bahwa kadar CO₂ 20 juta tahun yang lalu masih berada berada di batas aman dan terus meningkat sejak terjadinya revolusi industri. Selain sebagai salah satu penyebab global warming, energi fosil masuk dalam katagori sumber energi yang tidak dapat diperbaharui sehingga dalam kurun waktu tertentu persedian energi fosil akan habis. Oleh karena itu perlu dicari sumber energi alternatif yang mampu menggantikan peran energi fosil (EPA, 2013).

Dari berbagai macam bentuk sumber energi yang bisa dimanfaatkan, matahari merupakan salah satu sumber energi utama dan paling melimpah di bumi. Hal ini terlihat sangat jelas karena hampir seluruh bentuk energi yang terdapat di bumi sebenarnya berasal dari perubahan energi yang dipancarkan oleh matahari. Contohnya energi angin, energi ini diakibatkan oleh perbedaan tekanan udara di satu tempat dengan tempat yang lainnya. Perbedaan tekanan ini diakibatkan oleh perbedaan suhu dari kedua lokasi tersebut yang tak lain diakibatkan oleh radiasi panas dari matahari. Bahkan energi fosil sekalipun sejatinya juga merupakan koversi dari energi matahari yang terkumpul selama jutaan tahun hasil dari fotosintesis tumbuhan purba (REN21, 2010).

Sel surya merupakan salah satu solusi menghadapi krisis energi. Berbeda dengan energi fosil yang melepas gas rumah kaca tiap harinya ke atmosfer, sel surya tak menghasilkan hasil sampingan sehingga sel surya merupakan salah satu alternatif pilihan masa depan untuk mengurangi kadar karbondioksida sebagai penyebab efek rumah kaca. Diantara berbagai macam tipe sel surya, DSSC (*Dye sensitized solar cells*) merupakan salah satu sel surya yang cara kerjanya mirip dengan sistem fotosintesis pada tumbuhan. DSSC memiliki beberapa kelebihan antara lainnya pabrikasi yang relatif mudah, biaya pembuatan yang relatif lebih murah daripada sel surya konvensional yang lainnya serta kemudahan dalam modifikasi dan ramah lingkungan (O'regan dan Gratzel, 1991).

Beberapa penelitian telah dilakukan mengenai fabrikasi dan otimasi efisiensi DSSC. Misalnya Nurisma Puspitasari dalam jurnalnya yang berjudul Studi Awal Pembuatan Prototipe *Dye Sensitized Solar Cell* (DSSC) Menggunakan Ekstraksi Rosela (*Hibiscus Sabdariffa*) sebagai Dye Sensitizer dengan Variasi Luas Permukaan Lapisan TiO₂ dia melakukan fabrikasi DSSC dengan menggunakan bahan dye alami (Puspitasari, 2012). Begitu pula dengan S. Ananth dkk, dalam jurnalnya yang berjudul *Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells* dia melakukan

fabrikasi DSSC dengan menggunakan bahan dye yang berasal dari alam yaitu ekstrak dari buah lawsonia inermis. Dalam penelitiannya dia mencoba memodifikasi proses pembuatan TiO₂ dengan metode sol-gel untuk meningkatkan performa dari DSSC yang dihasilkan. Dia mencampurkan bahan dye selama proses pembuatan TiO₂ sedang berlangsung dengan harapan lebih banyak lagi dye yang terserap dalam partikel TiO₂. Hasil pengukuran yang dilanjutkan memang menunjukkan bahwan DSSC dengan menggunakan material TiO₂ yang didapat dengan proses sol-gel yang telah dimodifikasi memiliki efisiensi yang lebih tinggi daripada DSSC dengan menggunakan material TiO₂ yang didapat dengan proses sol -gel konvensional (Ananth et al., 2014). Metode lain juga digunakan oleh Hadi Santoso dalam upaya meningkatkan jumlah dye yang terserap dalam partikel TiO₂ Dalam tulisannya dia memodifikasi proses *dipping* substrat lapisan tipis TiO₂ konvensional dengan menambahkan komponen penggunaan alat ultrasonic cleaner saat proses perendaman. Penggunaan alat ultrasonic cleaner selama perendaman ternyata mempengaruhi jumlah dye yang terserap dalam partikel TiO₂. Selain optimasi dalam jumlah penyerapan dye, Optimasi DSSC juga bisa dilakukan dengan memodifikasi struktur semikonduktor penyusun DSSC. Dengan menggunakan metode ultrasonifikasi ini, efisiensi yang bisa dicapai adalah 0,14% (Santoso, H., 2015). Mukhtar Effendi dalam jurnalnya mampu menurunkan band gap TiO₂ dengan cara melakukan doping nitrogen yang berasal dari urea dalam proses pembuatannya. Hasil yang didapat dalam penelitian ini mampu menggeser absorbsi cahaya dari TiO₂ yang semula pada spekrtum ultraviolet bergeser ke spektrum cahaya tampak (Mukhtar, E., 2012).

Berdasarkan uraian dari beberapa riset di atas peneliti melakukan riset mengenai pengaruh penggunaan bahan semikonduktor TiO₂ yang terdoping nitrogen dengan menggunakan dye sintetis N-749 terhadap performa DSSC. Peneliti menggunakan metode sintesis TiO₂ berdasarkan riset Hadi Santoso dan membandingkannya dengan TiO₂ terdoping nitrogen sebagai fotoanode dari modul DSSC. Kedua metode tersebut akan dibandingkan kemampuan keluaran dan efisiensi yang dihasilkan.

1.2. Rumusan Masalah

Permasalah yang dikaji dalam penelitian ini adalah:

- a) Bagaimana membuat prototipe DSSC berbasis dye sintetis N-749 sebagai dye sensitizer yang dapat mengkonversi energi cahaya menjadi energi listrik.
- b) Bagaimana pengaruh penambahan dopan nitrogen pada semikonduktor TiO₂ terhadap kinerja DSSC yang dihasilkan.

1.3. Tujuan Penelitian

Penelitian ini bertujuan untuk:

- a) Membuat prototipe DSSC berbasis dye sintetis N-749 sebagai dye sensitizer yang dapat mengkonversi energi cahaya menjadi energi listrik
- b) Mengetahui pengaruh penambahan dopan nitrogen pada semikonduktor TiO₂ terhadap kinerja DSSC yang dihasilkan

1.4. Batasan Masalah

Dalam penelitian ini dilakukan beberapa batasan masalah yakni :

- a) Bahan semikonduktor yang digunakan sebagai elektroda kerja adalah nanopartikel TiO₂ dengan fase anatase, dan tidak dibahas secara rinci mengenai pengaruh zat-zat yang dipakai dalam proses pembuatan.
- b) Teknik pendeposisian pasta TiO_2 pada kaca konduktif dilakukan menggunakan teknik doktor blade dengan ketebalan 10 μ m dan tidak dilakukan variasi teknik, ketebalan, dan luas permukaan TiO₂ terdeposisi.
- c) Dye yang digunakan adalah N-749 yang merupakan produk dari Sigma Aldrich dan tidak dilakukan variasi dye.
- d) Perkursor yang digunakan dalam mensintesis TiO₂ adalah TiCl₃ dan tidak dilakukan variasi dengan menggunakan perkursor yang lainnya.
- e) Sumber dopan nitrogen yang digunakan adalah amonia dan tidak dilakukan variasi sumber dopan yang lainnya.
- f) Kaca konduktif yang digunakan adalah kaca konduktif ITO.
- g) Proses dan karakterisasi arus dan tegangan (I-V) dilakukan di Laboratorium fotonik fisika ITB, dengan pengujian menggunakan Alat Keithley I-V meter

dibawah penyinaran sebuah lampu xenon, dan tidak dilakukan variasi sumber sinar lainnya.

1.5. Manfaat Penelitian

Manfaat utama dari penelitian ini adalah sebagai memberi gagasan dan pengembangan dalam bidang riset fotovoltaik sebagai energi terbarukan yang mudah dalam pembuatannya

Halaman ini sengaja dikosongkan

BAB 2 TINJAUAN PUSTAKA

2.1. Sel Surya

Energi surya adalah energi yang berupa panas atau sinar yang diradiasikan dari matahari. Atmosfer bumi menerima 174 petawatt (PW) radiasi dari matahari. Sekitar 30% dipantulkan kembali ke luar angkasa, sedangkan sisanya diserap oleh awan, lautan, dan daratan. Sebagian besar spektrum cahaya matahari yang sampai di permukaan Bumi berada pada jangkauan spektrum sinar tampak dan sekitar inframerah. Sebagian kecil berada pada rentang sekitar ultraviolet.

Sel surya adalah salah satu jenis sel fotofoltaik yang mampu menghasilkan energi dengan jalan mengubah energi cahaya langsung menjadi energi listrik. Efek fotofoltaik terjadi saat elektron berpindah dari pita valensi ke pita konduksi sehingga menhasilkan beda potensial antara 2 elektroda (Brabec dkk, 2001).

Dalam sel surya perpindahan elektron dari pita valensi ke pita konduksi diakibatkan oleh penyerapan energi foton oleh material semikonduktor. Saat energi foton diserap, energi tersebut menyebabkan elektron valensi dalam kristal tereksitasi menuju ke pita konduksi, yang mana hal ini menyebabkan elektron mampu bergerak bebas.

2.2. Dye-Sensitized Solar Cell (DSSC)

Dye-Sensitized Solar Cell pertama kali dikembangkan oleh Grätzel pada tahun 1991. Berbeda dengan sumber energi lainnya DSSC memberikan alternatif sel surya yang murah, mudah, tidak beracun dan ramah lingkungan (Chiba, Y. 2006; Ito, S. 2008) dengan fleksibilitas aplikasi yang luas (Durr, M., 2005; Pitts, J. R., 2000). DSSC merupakan pengembangan atau modifikasi dari sel surya fotoelektrokimia dengan sistem yang baru. Sel surya fotoelektrokimia menggunakan efek fotovoltaik untuk menghasilkan listrik, dimana efek fotovoltaik tersebut didasarkan pada persambungan antara bahan semikonduktor dengan cairan elektrolit yang mengandung pasangan reduksi dan oksidasi. Sistem baru dari DSSC ini adalah adanya dye atau zat warna sebagai sensitizer (membuat sel surya menjadi peka terhadap cahaya) untuk menyerap cahaya dan menginjeksikan elektron pada bahan semikonduktor (Smestad, 1998).

2.3. Struktur DSSC

Dye-Sensitized Solar Cell (DSSC) tersusun dari 5 bahan utama yaitu: (1) substrat yang dilapisi oksida transparan konduktif; (2) Film tipis semikonduktor; (3) zat pemeka yang teradsorbsi pada permukaan film tipis semikonduktor; (4) elektrolit yang berisi pasangan redoks; (5) elektroda *counter* yang memiliki sifat elektrokatalitik sebagai tempat regenerasi elektron (Nazeerudin, M. K., 2011). Semua bahan tersebut disusun secara berlapis atau berbentuk *sandwitch* dimana dua elektroda yaitu lapisan semikonduktor yang berperan sebagai elektroda mengapit elektrolit hingga membentuk sistem fotofoltaik (Maddu, 2010).

Kaca konduktif transparan merupakan tempat melekatnya material DSSC. Biasa pula disebut substrat. Substrat yang digunakan pada umumnya adalah kaca yang berlapis TCO agar dapat menghantar listrik. Oksida yang umum digunakan antara lain AZO (*Aluminium-doped Zinc Oxide*), FTO (*Fluorine-doped Tin Oxide*), ATO (*antimony-doped tin oxide*) dan ITO (*Indium-doped Tin Oxide*). Keunggulan dari kaca konduktif tersebut adalah sifatnya yang meskipun konduktif secara elektrik, dapat ditembus cahaya. Sifat ini penting karena tanpa cahaya yang mengenai penyerap cahaya, foton tidak akan mengeksitasi elektron pada lapisan penyerap cahaya. Tanpa adanya elektron yang tereksitasi, tidak akan terjadi pemisahan elektron yang berarti tidak akan dihasilkan muatan listrik. Sifat penghantar listrik dari kaca kemudian dipergunakan untuk menghantarkan elektron menuju sirkuit dan kembali ke sel surya karena didalam logam juga ada elektron lepas (Puspitasari, 2012). Pada penelitian ini digunakan ITO, hal ini dikarenakan ITO memiliki nilai resistansi terkecil diantara kaca konduktif lainnya.

Bahan semikonduktor yang paling sering digunakan adalah TiO₂ yang memiliki sifat stabil, murah dan tersedia banyak di pasaran, tidak beracun, ramah lingkungan dan memberikan konversi efisiensi daya tertinggi dibanding bahan semikonduktor yang lain (Taylor, P., 2012). Zat pemeka atau dye senyawa organologam berbasis ruthenium menjadi bahan yang paling sering digunakan sebagai molekul pemeka. Sedangkan elektrolit berisi pasangan redoks I⁷/I₃⁻ dengan berbagai kondisi optimasi. Komponen terakhir adalah logam platina yang sering digunakan sebagai elektroda lawan (Nazeerudin, M. K., 2011).

2.4. Fotoanoda

Oksida logam semikonduktor merupakan material yang digunakan dalam pembuatan fotoanoda. Syarat utama sebagai fotoanoda adalah semikonduktor tersebut memiliki nilai celah pita yang cukup lebar seperti TiO₂, ZnO, SnO₂, Nb₂O₅ dll. Gambar di bawah ini memperlihatkan posisi celah pita beberapa semikonduktor dibandingkan dengan elektroda pembanding pada pH 1.

Gambar 2.2 *Band gap* beberapa semikonduktor (Mukhtar, E. 2012) Bahan semikonduktor yang dipakai adalah TiO₂. Semikonduktor TiO₂

merupakan semikonduktor yang paling sering digunakan karena sifatnya yang stabil, murah dan mudah didapat secara komersil, tidak beracun dan ramah lingkungan, serta memiliki nilai efisiensi konversi daya tertinggi diantara semua semikonduktor. Selain itu, banyak molekul dye yang dengan sifat fotoabsorbsi yang baik, memiliki posisi LUMO yang bersesuaian dengan tepi pita konduksi dari TiO₂ (Taylor, P., 2012).

Material TiO₂ adalah material semikonduktor tipe-n yang memiliki energi gap sebesar 3,2 eV dan menyerap sinar pada daerah ultraviolet. Material ini memiliki kemampuan yang baik dalam fotokimia dan fotoelektrokimia, selain itu material TiO₂ tidak beracun. TiO₂ yang bisa digunakan untuk aplikasi DSSC ini adalah TiO₂ dengan fase anatase dan campuran anatase - rutile. Akan tetapi, sebagian besar penelitan menggunakan TiO₂ fase anatase karena mempunyai kemapuan fotoaktif yang tinggi (Gratzel 2003, Maddu 2010). Kemampuan fotoaktif yang tinggi merupakan kemampuan penyerapan yang tinggi. Partikel dari TiO₂ umumnya berukuran mikro atau nano. TiO₂ yang terbentuk merupakan semikonduktor tipe-n yang berfungsi sebagai transpor elektron. TiO₂ hanya akan mengabsorpsi cahaya dengan panjang gelombang dibawah 400 nm, sehingga akan menyisakan sebagain besar spektrum untuk diserap oleh dye (Halme, 2002).

2.5. Dye

Dye dalam DSSC amat berperan penting karena sebagai penangkap elektron tereksitasi dari foton. Dye yang efesien harus memiliki sifat optik dan karakteristik penyerapan yang intens pada daerah cahaya tampak dan memiliki sifat adsorpsi kimia yang kuat ke Permukaan TiO₂. Selain itu, dye teroksidasi harus cepat diregenerasi untuk menghindari proses rekombinasi elektron. Untuk kebutuhan tersebut dihasilkan dye sintesis dari bahan kimia. Dye sintetis yang digunakan sebagai sensitizer adalah dye turunan dari Rhutenium kompleks, salah satunya adalah dye N-749 yang ditunjukkan pada Gambar 2.3.

Gambar 2.3 Struktur kimia dye N-749 (Bang S.Y, 2012)

Senyawa *ruthenium* memiliki gugus karboksil yang berfungsi untuk menempelkan diri pada permukaan semikonduktor oksida (Gratzel, 2003). Bagian COOH adalah yang menempel pada lapisan TiO₂, sedangkan NCS adalah sebagai pendonor elektron. Dye N-749 merupakan pewarna yang kehijauan. Dye N-749 merupakan nama produk dari Sigma Aldrich. Dye ini mempunyai nama lain yakni Black dye, Ruthenium 620, dan lain-lain. Rumus empiris dari dye ini adalah C₆₉H₁₁₆N₉O₆RuS₃. Penyerapan untuk dye N749 adalah sekitar 860 nm (Bang S.Y, 2012).

2.6. Prinsip Kerja Dye-Sensitized Solar Cell (DSSC)

Prinsip kerja pada DSSC secara skematik dapat ditunjukkan pada Gambar 2.4, dan proses yang terjadi di dalam DSSC dapat dijelaskan sebagai berikut (O'regan dan Gratzel, 1991; Smestad dan Grätzel, 1998) :

Gambar 2.4 Prinsip kerja DSSC (Halme, 2002)

 Ketika foton menimpa elektroda kerja, energi foton diserap oleh dye yang ada pada permukaan TiO₂. Sehingga foton dapat mengeksitasi elektron dari level HOMO (Highest Occupied Molecular Orbit) ke level LUMO (Lowest Unoccupied Molecular Orbit). Level LUMO berada pada sisi ligan dye yaitu COOH. Level ini dekat dengan level konduksi TiO₂ dan dye akan tereksitasi (Dye *).

$Dye + cahaya \rightarrow Dye^*$

2. Tahap selanjutnya merupakan tahap pemisahan muatan, elektron berpindah dari dye ke TiO₂. Perpindahan elektron dari dye ke TiO₂ meninggalkan hole dan menyebabkan dye teroksidasi (Dye⁺). Perpindahan elektron ini juga dipengaruhi oleh timbulnya medan listrik antara grup COOH di dye denganlapisan TiO₂. COOH melepaskan ion H⁺ dan teradsorbsi ke lapisan TiO₂ sehingga dye bermuatan lebih negatif. Selain itu, perpindahan elektron disebabkan oleh level konduksi TiO₂ yang lebih rendah dari level LUMO dye.

$$\text{Dye}^* + \text{TiO}_2 \rightarrow e^-(\text{TiO}_2) + \text{Dye}^+$$

 Selanjutnya elektron bergerak melalui struktur kristal TiO₂ -TCO menuju rangkaian luar dan elektron masuk ke elektroda karbon dan bergerak melalui elektrolit sebagai pembawa minoritas. Perjalanan elektron dari elektroda karbon ke elektrolit dipercepat oleh dengan memanfaatkan karbon sebagai katalis.

4. Elektrolit redoks biasanya berupa elektrolit cair berupa pasangan iodide dan triiodide (I⁻/I₃) yang bertindak sebagai mediator elektron sehingga dapat menghasilkan proses siklus dalam sel. Adapun untuk mengatasi kebocoran elektrolit, elektrolit cair diubah bentuk menjadi elektrolit gel dengan memanfaatkan bahan polimer. Polimer tersebut sebagai semikonduktor tipep yang dapat mentransfer hole. Triiodida dari elektrolit yang terbentuk akan menangkap elektron yang berasal dari rangkaian luar dengan bantuan molekul karbon sebagai katalis.

 $I_3^- + 2e^- \rightarrow 3I^-$

5. Pada persambungan elektrolit dengan dan molekul dye terjadi pergerakan hole dari molekul dye ke elektrolit dan pergerakan elektron dengan arah yang sebaliknya, sehingga dapat mereduksi dye, dimana satu ion iodide pada elektrolit mengantarkan elektron yang membawa energi menuju dye teroksidasi. Elektrolit menyediakan elektron pengganti untuk molekul dyeteroksidasi. Sehingga dye kembali ke keadaan awal dengan persamaan reaksi (reaksi reduksi)

 $2Dye^+ + 3I^- \rightarrow I_3^- + Dye$

Tegangan yang dihasilkan oleh sel surya TiO₂ tersensitisasi dye berasal dari perbedaan tingkat energi fermi elektroda semikonduktor TiO₂ dengan potensial redoks (I⁻/I₃⁻) elektrolit. Sedangkan arus yang dihasilkan dari sel surya ini terkait langsung dengan jumlah foton yang terlibat dalam proses konversi dan bergantung pada intensitas penyinaran serta kinerja dye yang digunakan (Li B, Wang L, 2006).

2.7. Karakteristik Sel Surya

Daya listrik yang dihasilkan sel surya ketika mendapat cahaya diperoleh dari kemampuan perangkat sel surya tersebut untuk memproduksi tegangan ketika diberi beban dan arus melalui beban pada waktu yang sama (Green,Martin.A,1982). Karakteristik arus-tegangan sebuah sel surya ketika disinari digambarkan seperti Gambar 2.5.

Gambar 2.5 Karakteristik Arus dan Tegangan (I-V) sebuah sel surya (Green, Martin. A, 1982)

Pada Gambar 2.5, diperlihatkan tegangan *open-circuit* (V_{oc}), Arus *short circuit* (I_{sc}), *Maximum Power Point* (*MPP*), tegangan dan arus pada *MPP* (V_{MPP} dan I_{MPP}). Ketika sel dalam kondisi *short circuit*, arus *short circuit* (I_{sc}) dihasilkan, sedangkan pada kondisi open circuit tidak ada arus yang dapat mengalir sehingga tergangannya maksimum, disebut tegangan *open-circuit* (V_{oc}). Karaktersitik penting lainnya dari sel surya yaitu *Fill factor* (FF) Unjuk kerja sel surya adalah faktor pengisian. *Fill factor* sel surya merupakan besaran tak berdimensi yang menyatakan perbandingan daya maksimum yang dihasilkan sel surya terhadap perkalian antara V_{oc} dan I_{sc} , menurut persamaan (Green,Martin.A, 1982) :

$$FF = \frac{V_{MPP}I_{MPP}}{V_{oc}I_{sc}} \tag{1}$$

Dengan menggunakan *fill factor* maka maksimum daya dari sel surya didapat dari persamaan :

$$P_{max} = V_{oc} I_{sc} FF \tag{2}$$

Sehingga efisiensi sel surya yang didefinisikan sebagai daya yang dihasilkan dari sel (P_{max}) dibagi dengan daya dari cahaya yang datang (P_{cahaya}) (Green,Martin.A,1982) :

$$\eta = \frac{P_{max}}{P_{cahaya}} \times 100\%$$
(3)

BAB 3 METODOLOGI PENELITIAN

3.1. Alat dan Bahan

Alat yang digunakan dalam penelitian ini adalah magnetic stirrer, furnace, spektrometer UV-Vis, pH meter digital, potensiostat, *hot-plate*, neraca digital, *ultrasonic-cleaner*, mikroskop, mortar, krusible, gelas kimia, gelas ukur, pipet, pinset, kabel listrik, dan penggaris

Bahan yang digunakan dalam penelitian ini adalah TiCl₃, NH₄OH, Serbuk dye sintetis N-749, Aquades, PEG 1000 (*Polyethylene Glycol*), KI, Acetonitril, Iodine, Amonia, HCl, Ethanol, Triton X-100, Asam Asetat, Pensil 8B, lem perak dan solder.

3.2. Diagram Alir Penelitian

Terdapat beberapa tahapan yang dilakukan dalam penelitian ini. Langkah-langkah penelitian ini seperti digambarkan pada Gambar 3.1.

Gambar 3.1 Diagram alir penelitian

Proses sintesis TiO₂ terdoping nitrogen pada Gambar 3.1 akan diuraikan lebih jelas pada Gambar 3.2

Gambar 3.2 Diagram Sintesis TiO₂ Dengan Pengotor Nitrogen

3.3. Prosedur Kerja

3.3.1. Preparasi Kaca ITO

Tahap persiapan ini meliputi pembersihan kaca ITO dengan menggunakan ultrasonic cleaner. Alkohol 70% dituangkan pada gelas kimia sebanyak 200 ml.

Kaca ITO berukuran 2×2 cm² yang akan dibersihkan dimasukkan pada gelas kimia yang telah berisi alkohol 70%. Ultrasonic cleaner diisi aquades sampai batas yang ditentukan. Gelas kimia yang berisi alkohol dan kaca ITO dimasukkan ke ultrasonic cleaner kemudian diatur waktu 60 menit. Setelah 60 menit kaca di keringkan. Pembersihan kaca substrat ITO bertujuan agar kaca terbebas dari material-material yang tidak mampu dibersihkan dengan air saja.

3.3.2. Sintesis TiO₂

Sintesis TiO₂ nanopartikel dan fase anatase dilakukan dengan metode kopresipitasi. Metode kopresipitasi dilakukan dengan mencampurkan asam dan basa sehingga memperoleh endapan bahan yang diinginkan. Kopresipitasi merupakan metode yang prosesnya menggunakan suhu rendah dan mudah untuk mengontrol ukuran partikel sehingga waktu yang dibutuhkan relatif lebih singkat. Sintesis serbuk TiO₂ dilakukan dengan proses: 20 mL TiCl₃ dicampurkan dengan 100 mL aquades dan diaduk selama 1 jam. Selama proses pengadukan, larutan tersebut kemudian ditetesi NH4OH hingga larutan mencapai pH 9. Setalah mencapai pH 9 tercapai, hentikan penetesan NH₄OH dan biarkan terus diaduk hingga larutan menjadi warna putih pekat. Selanjutnya larutan tersebut di endapkan pada suhu kamar dan tertutup rapat selama 24 jam. Setelah mengendap, dilakukan pencucian yakni endapan yang ada dipisahkan dari larutannya dan diganti dengan memasukan 200 mL aquades. Setelah itu aduk dan kembali diendapkan. Lakukan proses ini secara berulang hingga didapatkan endapan dengan pH 7. Setelah mendapatkan pH 7, endapan tersebut dikeringkan lalu dikalsinasi pada suhu 300°C selama 3 jam hingga terbentuk serbuk TiO₂ dengan fase anatase. Untuk mengetahui fase yang diperoleh beserta ukuran partikelnya, maka dilakukan uji XRD.

Selanjutnya untuk mendeposisian TiO₂ ke kaca ITO, maka sebuk TiO₂ harus dibuat pasta. Proses pembuatan pasta TiO₂ adalah sebagai berikut: 0,7 g serbuk TiO₂ digerus halus dalam mortar, kemudian ditambahkan 1,4 mL aquades yang tetap digerus dalam mortar selama 10 menit. Selanjutnya ditambahkan 0,3 g PEG-1000, 0,7 mL asam asetat dan 0,7 mL triton X-100. (Kook, Lee Jin. 2009). Pasta TiO₂ yang sudah terbentuk dimasukkan ke dalam botol kemudian ditutup rapat.

3.3.3. Sintesis TiO₂ Dopan Nitrogen

Dopan nitrogen bertujuan untuk memepersempit lebar pita celah energi dari TiO₂ sehingga jika sebelummnya TiO₂ hanya mampu menyerap pada spektrum ultraviolet akan bergeser ke spektrum cahaya tampak. Proses sintisis TiO₂ terdoping nitrogen dilakukan dengan cara: 20 mL TiCl₃ dicampurkan dengan 100 ml aquades dan diaduk selama 1 jam. Selama proses pengadukan, larutan tersebut kemudian ditetesi NH4OH hingga larutan mencapai pH 9. Setalah mencapai pH 9 tercapai, hentikan penetesan NH4OH dan biarkan terus diaduk hingga larutan menjadi warna putih pekat. Selanjutnya larutan tersebut di endapkan pada suhu kamar dan tertutup rapat selama 24 jam. Setelah mengendap, dilakukan pencucian yakni endapan yang ada dipisahkan dari larutannya dan diganti dengan memasukan 200 mL aquades. Setelah itu aduk dan kembali diendapkan. Lakukan proses ini secara berulang hingga didapatkan endapan dengan pH 7. Setelah mendapatkan pH 7, larutkan aduk endapan tersebut ke dalam 100 mL larutan amonia dengan konsetrasi larutan 2%, 5% dan 7,5% selama 4 jam. Setelah proses pengadukan selesai endapkan kembali lalu saring menggunakan kertas saring. Hasil endapan tersebut lalu dikeringkan dengan suhu pengeringan 80°C lalu dikalsinasi pada suhu 300°C selama 3 jam hingga terbentuk serbuk TiO₂ terdoping nitrogen berwarna kuning pucat dengan fase anatase. Serbuk tersebut kemudian digerus dengan mortar selama 1 jam untuk menghomogenkan ukuran kemudian disimpan untuk proses selanjutnya.

3.3.4. Pendeposisian Pasta TiO₂

Pendeposisian pasta TiO₂ pada kaca ITO adalah proses pelapisan pasta TiO₂ pada permukaan konduktif dari kaca ITO, banyak teknik pendeposisian, salah satunya adalah doktor blade yang memiliki keunggulan yakni mudah dalam mengontrol ketebalan yang diinginkan. Pada penelitian ini TiO₂ dideposisi pada Kaca ITO dengan menggunakan metode Doktor Blade.Pada sisi kaca ITO berukuran 2 × 2 cm² dibentuk area pembatas dari plastik setebal 10 μ m untuk mendapatkan area pendeposisian pasta TiO₂ dengan ukuran luasan 1 × 1 cm² juga sebagai kontrol ketebalan lapisan TiO₂ Setelah pasta TiO₂ terdeposisi kemudian dipanaskan pada suhu 400 ⁰C selama 15 menit. Setelah 15 menit elektroda kerja didinginkan pada suhu ruangan. Proses pemanasan dalam langkah kerja ini bertujuan ingin menghilangkan bahan-bahan campuran yang digunakan dalam pelarut, sehingga setelah pemanasan hanya tersisa semikonduktor yang melekat pada kaca sebelum dilakukan perendaman pada larutan dye. Setelah dilakukan deposisi, lapisan TiO₂ terdeposisi akan di uji XRD untuk mengatahui apakah terjadi perubahan pada fasa dan ukuran TiO₂.

Gambar 3.3 Pasta TiO₂ yang telah tedeposisi pada kaca ITO

3.3.5. Pembuatan Larutan Dye

Larutan dye yang digunakan dalam penelitian ini adalah dye berbasis bahan sintetis yakni dye N-749. Dimana 6,8 miligram serbuk dye dilarutkan kedalam 10 mL ethanol dan di aduk menggunakan stirrer selama 10 menit. Larutan dye yang sudah terbentuk dimasukkan ke dalam botol kemudian ditutup rapat.

3.3.6. Karakterisasi Absorbansi Larutan Dye

Untuk mengetahui daya absorbansi larutan dye yang digunakan maka dilakukan karakterisasi absorbansi dengan menggunakan spektrometer UV. Disiapkan dua buah cuvet, sebuah cuvet diisi larutan dye dan cuvet lainnya diisi ethanol untuk mengkalibrasi spektrometer Uv-Vis. Kemudian keduanya di letakan ke dalam alat spektrometer UV dan diprogram untuk mengetahui grafik absorbansi terhadap panjang gelombang.

3.3.7. Perendaman Elektroda kerja

Perendaman elektroda kerja bertujuan agar dye melekat pada semikonduktor TiO₂. Perendaman dilakukan dengan cara elektroda kerja direndam pada 10 ml larutan dye selama 12 jam.

3.3.8. Pembuatan Elektrolit Gel

Elektrolit yang digunakan adalah berupa elektrolit gel berbasis polimer PEG (polyethylene glycole) dengan berat molekul (BM) 1000. 7 g PEG 1000, 25 mL kloroform dan elektrolit cair dicampurkan dan diaduk secara homogen dengan magnetik stirrer sambil dipanasi 80^oC hingga diperoleh elektrolit bersifat gel. Elektrolit cair sendiri dibuat dari 3 g KI dan 1,5 g I₂ yang dilarutkan kedalam 10 mL acetonitril.

3.3.9. Pembuatan Elektroda Karbon

Elektroda karbon dibuat dengan menggunakan *black carbon*. Ambil 1 g *black carbon* halus campurkan dengan 10 mL etanol lalu aduk hingga homogen. Pendeposisian karbon pada kaca ITO dilakukan dengan teknik *screen printing* dan dikeringkan pada suhu 150°C selama 30 menit.

3.3.10. Pabrikasi DSSC

Pada fotoanoda TiO₂ dilakukan proses *sealing* yaitu menutupi sebagian permukaan konduktif sehingga menyisakan ruang elektrolit diatas permukaan TiO₂. *Spacer* yang digunakan gasket. Elektroda TiO₂ yang telah dilapisi *spacer* ditetesi larutan elektrolit sehingga bagian yang kosong di atas TiO₂ terpenuhi dengan elektrolit. Letakkan elektroda lawan (Elektroda *counter*) persis di atas lapisan TiO₂ dan jepit dengan menggunakan penjepit hingga tertutup sempurna.

3.3.11. Karakterisasi Arus dan Tegangan (I-V) pada DSSC

Karakterisasi arus dan tegangan (I-V) akan dilakukan di Lab.Fotonik Fisika

ITB menggunakan alat Keithley I-V meter. Data keluaran dan alat I-V meter merupakan nilai arus dan tegangan. Perlakukan yang diberikan adalah memberikan tegangan input hingga 10 V dengan skala 0,5 V pada kondisi disinari lampu xenon 5,4 A dengan rapat daya 100 mW/cm². Data output dari alat tersebut adalah nilai arus dan tegangan output. Kemudian dapat dibuat grafik hubungan antara tegangan dan arus. Dari grafik hubungan tersebut dapat diketahui karakteristik Sel DSSC yang dibuat dengan menganalisa parameter sel-surya seperti ; tegangan *open-circuit* (V_{oc}), Arus *short circuit* (I_{sc}), *Maximum Power Point* (*MPP*), tegangan dan arus pada *MPP* (V_{MPP} dan I_{MPP}), *Fill factor* (*FF*) dan Efisiensi.

Halaman ini senganja dikosongkan

BAB 4 HASIL DAN PEMBAHASAN

4.1 Karakterisasi XRD fotoanoda

Fotoanoda yang dipakai dalam penyusunan DSSC ini adalah semikonduktor TiO₂ dan TiO₂ terdoping nitrogen (N:TiO₂). Fotoanoda TiO₂ diperoleh melalui sintesis dengan menggunakan metode kopresipitasi dengan menggunakan TiCl₃ sebagai perkursor dan ammonia sebagai sumber dopan atom nitrogen. Uji XRD diterapkan pada masing-masing sampel TiO₂ baik yang terdoping nitrogen maupun yang tidak terdoping. Hasil pola difraksi TiO₂ yang dikalsinasi 400°C selama 3 jam ditunjukkan pada Gambar 4.1.

Gambar 4.1 Pola Difraksi Sinar-X (radiasi Cu-Ka) TiO2 murni

Uji XRD bertujuan untuk mengetahui fasa masing-masing sampel serta menentukan ukuran kristal dengan menggunakan persamaan scherrer. TiO₂ memiliki tiga fasa yaitu Anatase, Rutile, dan Brookite dengan struktur kristal untuk Anatase dan Rutile adalah tetragonal sedangkan untuk Brookite adalah orthorombik. Dalam pemanfaatannya sebangai bahan fotoanode DSSC, TiO₂ yang dihasilkan diharapkan memiliki sifat fotokatalis yang baik. Dari ketiga fase yang dimiliki TiO₂, fase brookite memiliki sifat fotokatalis yang paling tinggi, disusul dengan fase anatase kemudian rutile (Ju-Young Park, 2009). Namun sampai saat ini hanya fase rutile dan anatase yang mampu disintesis dengan mudah pada suhu rendah (Zheng, 2001). Oleh karena itu sampai saat ini penelitian tentang seintesis TiO₂ banyak terfokus pada fase anatase dan rutile. Dari kedua fase tersebut, fase anatase memiliki sifat fotokatalis yang lebih baik dari pada fase rutil. Selain memiliki sifat fotokatalis yang baik, TiO₂ fase anatase juga memiliki kemampuan mengadsorbsi pewarna yang lebih banyak dan koefisien difusi elektronnya tinggi. (Zhang, H, 2000). Oleh karena itu dalam riset ini diharapkan fase TiO₂ yang terbentuk adalah fase anatse.

Berdasarkan hasil pengukuran XRD seperti yang ditunjukkan pada gambar 4.1, pola spektral XRD cocok dengan data PDF No. 21-1272. Dengan puncak 101, 004, 200, 211 dan 204 berada pada sudut difraksi 25,32°; 37,82°; 48,08°; 55,11° dan 62,73°. Data di atas bersesuaian dengan pola difraksi TiO₂ fase anatase. Analisis lanjutan adalah mengolah data XRD menggunakan perangkat lunak MAUD yang bekerja dengan metode koreksi March-Dollase. Hasil pngolahan dengan perangkat lunak MAUD dengan nilai signifikansi 1,3 menunjukkan bahwa sampel yang didapatkan merupakan TiO₂ fase anatase bentruk kristal tetragonal dengan parameter kisi a = 3.7775092 amstrong dan c = 9.474072 amstrong serta ukuran kristal yang didapat adalah 5,9677567 nm.

Sampel selanjutnya yang juga dilakukan analisis XRD adalah sampel TiO₂ terdoping nitrogen. Sampel ini terdiri dari 3 macam dengan tingkat konsentrasi NH₃ sebagai sumber dopan nitrogen yang berbeda pada masing-masing sampel yaitu 2%, 5%, dan 7.5%. NH₃ yang dipakai sebagai sumber dopan ini merupakan NH₃ liquid yang terlarut dalam air dengan konsentrasi 25%. Hasil *plotting* XRD untuk masing-masing sampel adalah seperti ditunjukkan pada Gambar 4.2.

Gambar 4.2 Pola Difraksi Sinar-X (radiasi Cu-K α) TiO₂ dengan penambahan NH₃ konsentrasi (a) 2% (b) 5% dan (c) 7,5%

Berdasarkan hasil pengukuran XRD seperti yang ditunjukkan pada Gambar 4.2, pola spektral XRD dari ketiga sampel cocok dengan data PDF No. 21-

1272. Dengan puncak 101, 004, 200, 211 dan 204 pada sampel TiO₂ dengan perlakuan penambahan NH₃ konsentrasi 2% berada pada sudut difraksi 25,29°; 37,74°; 48,06°; 55,02° dan 62,69°. Untuk TiO₂ dengan perlakuan penambahan NH₃ konsentrasi 5% berada pada sudut difraksi 25,26°; 37,59°; 48,01°; 55,00° dan 62,66°. Untuk TiO₂ dengan perlakuan penambahan NH₃ konsentrasi 7,5% berada pada sudut difraksi 25,28°; 37,86°; 48,07°; 55,00° dan 62,75°. Ketiga data di atas bersesuaian dengan pola difraksi TiO₂ fase anatase.

Sekilas tidak terdapat perbedaan yang mencolok antara TiO₂ tanpa perlakuan penambahan NH₃ dengan TiO₂ dengan perlakukan penambahan NH₃. Tidak ada muncul puncak baru pada pola spektral XRD antara TiO₂ dan TiO₂ dengan perlakukan penambahan NH₃, hal ini menunjukkan bahwa dengan perlakuan doping nitrogen tidak menghasilkan fasa baru pada sampel. Namun terdapat sedikit pergeseran sudut puncak pada pola spektral XRD pada sampel TiO₂ dengan perlakukan penambahan NH₃, hal ini terlihat pada data yang telah dipaparkan sebelumnya di atas terutama pada puncak 101 yang memiliki intensitas paling tinggi, terlihat nilai sudut bragg bergeser sedikit mengecil seiring bertambahnya konsentrasi NH₃ yang diberikan. Menurut hukum Bragg yang dirumuskan seperti persamaan di bawah ini terlihat bahwa ada pengaruh besar sudut bragg terhadap lebar kisi difraksi.

$$n\lambda = 2d\sin\theta \tag{1}$$

Dengan mengkorelasikan data pergeseran sudut pada puncak data difraksi dengan persamaan Bragg, terlihat bahwa kisi drifaksi atau dalam hal ini adalah kisi kristal dari tiap-tiap sampel melebar seiring perlakukan penambahan NH₃. Dengan melebarnya kisi kristal maka ukuran kristal akan semakin membesar atau dengan kata lain proses penambahan NH₃ menyebabkan terjadinya pertubuhan ukuran kristal.

Selain pergeseran puncak, perbedaan intensitas pada puncak 101 antara TiO₂ tanpa perlakuan penambahan NH₃ dengan TiO₂ dengan perlakukan penambahan NH₃ juga mengindikasikan pertumbuhan ukuran kristal seperti yang ditunjukkan oleh Gambar 4.3. Intensitas TiO₂ dengan perlakuan penambahan NH₃ memiliki intensitas yang lebih tinggi daripada TiO₂ tanpa perlakukan penambahan NH₃. Perbedaan ketinggian puncak pada masing-masing sampel berindikasi pada

Gambar 4.3 Perbandingan Intensitas dan FWHM pola difraksi Sinar-X radiasi Cu-Kα (a) TiO₂ tanpa penambahan NH₃, (b) TiO₂ dengan penambahan NH₃ konsentrasi 2%, (c) TiO₂ dengan penambahan NH₃ konsentrasi 5% dan (d) TiO₂ dengan penambahan NH₃ konsentrasi 7,5%

perbedaan nilai FWHM (*full width at half the maximum intensity*) yang mana semakin tinggi puncak maka semakin kecil nilai FWHM. Menurut persamaan yang dikemukakan oleh Scherrer mengenai ukuran kristal berkaitan dengan pola puncak difraksi, besarnya ukuran kristal berbanding terbalik dengan nilai FWHM. Secara matematis ditulis dengan

$$d = \frac{K\lambda}{\beta\cos\theta} \tag{2}$$

Dengan λ adalah panjang gelombang sinar-x, K adalah konstanta scherrer, β adalah lebar FWHM dan θ adalah sudut bragg. Berdasarkan persamaan di atas jelas terjadi pertumbuhan ukuran kristal antara TiO₂ tanpa perlakuan penambahan NH₃ dengan TiO₂ dengan perlakukan penambahan NH₃.

Kedua metode di atas hanya mampu mengkonfirmasi adanya pertumbuhan ukuran kristal tanpa mengetahui seberapa besar ukuran kristal dari masing-masing sampel. Oleh karena itu dibutuhkan analisis lebih lanjut terhadap data difraksi yang peroleh. Analisis lebih lanjut adalah dengan menggunakan perangkat lunak MAUD. Perangkan lunak ini melakukan analisis semi-kuantitatif terhadap data XRD sehingga diperoleh ukuran kristal dari masing-masing sampel. Hasil pengolahan dengan perangkat lunak MAUD dengan nilai signifikansi berada di bawah 1,2 menunjukkan data seperti pada Tabel 4.1.

Tabel 4.1. Tabel hasil pengolahan dengan perangkat lunak MAUD mengenai ukuran kristal masing-masing sampel.

Sampel	Ukuran kristal (nm)
TiO ₂ tanpa penambahan NH ₃	5,967756
TiO ₂ tanpa penambahan NH ₃ konsentrasi 2%	7,475828
TiO ₂ tanpa penambahan NH ₃ konsentrasi 5%	9,979274
TiO ₂ tanpa penambahan NH ₃ konsentrasi 7,5%	9,267348

Dari tabel tersebut terlihat jelas bahwa ukuran kristal bertambah seiring dengan penambahan NH₃. Semakin besarnya ukuran kristal seiring penambahan NH₃ yaitu dari ukuran 5,97 – 9,98 nm. Hal ini salah satunya mengindikasikan adanya intersisi atau doping atom nitrogen pada struktur kristal TiO₂ sehingga ukuran kristal membesar mengingat jari-jari atom oksigen lebih kecil dari pada atom nitrogen sehingga saat proses doping terjadi maka ukuran kristal akan membesar. Untuk mengkonfirmasi adanya intersisi atom nitrogen diperlukan karakterisasi bahan lebih lanjut menggunakan SEM-EDX yang akan di bahas pada pembahasan berikutnya.

4.2 Karakterisasi UV-Vis fotoanoda

Selain melalui analisis spektral XRD, material TiO₂ dan TiO₂ terdoping secara visual mudah terbedakan. Material TiO₂ murni umumnya berwarna putih sedangkan material TiO₂ terdoping nitrogen akan berwarna kuning pucat (Guidong Yang, 2010). Dari hasil sintesis didapatkan bahwa material TiO₂ yang terdoping nitrogen berwarna kuning dan sangat kontras dengan material TiO₂ murni yang berwarna putih. Hal ini terlihat dari Gambar 4.4

Gambar 4.4 Serbuk (a) TiO₂ tak terdoping dan (b) TiO₂ terdoping nitrogen setelah dikalsinasi 400°C selama 3 jam

Seperti yang telah diketahui, walaupun proses mekanisme doping nitrogen masih menjadi perdebatan hingga kini (R. Asahi, 2001), para peneliti sepakat subtitusi atom nitrogen terhadap atom oksigen pada TiO₂ mengakibatkan penyempitan *band gap* yang diakibatkan oleh percampuran antara atom N dan atom O (Fan Dong, 2008). Proses doping atom nitrogen akan menggeser pita valensi TiO₂ sehingga menyebabkan penyempitan nilai *band gap* dan juga menyebabkan kekosongan atom oksigen. Kedua hal tersebut menyebabkan peningkatan kemampuan absorbansi TiO₂ pada rentang cahaya tampak (Hiroshi Irie, 2003). Untuk mengetahui sejauh mana peningkatan absorbansi TiO₂ setelah didoping nitrogen, dilakukan pengukuran menggunakaan alat UV-Vis. Pengukuran dilakukan dengan melarutkan masing-masing serbuk TiO₂, baik yang terdoping maupun yang tidak terdoping nitrogen dengan konsentrasi 0,06 g/L. Selanjutnya sampel dimasukkan ke dalam kuvet dengan lebar 1 cm. Hasil pengukuran UV-Vis dari keempat sampel ditunjukkan oleh Gambar 4.5

Gambar 4.5 Grafik absorbansi material (a) TiO₂ tanpa perlakuan penambahan NH₃. (b) TiO₂ dengan perlakukan penambahan NH₃ konsentrasi 2% (c) TiO₂ dengan perlakukan penambahan NH₃ konsentrasi 5% (d) TiO₂ dengan perlakukan penambahan NH₃ konsentrasi 7,5%

Seperti yang terlihat pada Gambar 4.5a, daya absorbansi sampel TiO₂ tanpa perlakuan penambahan NH₃ menurun drastis di panjang gelombang pada 350 nm yang merupakan daerah panjang gelombang ultraviolet. Sedangkan sampel *b*, *c*, dan *d* yang merupakan TiO₂ dengan perlakuan penambahan NH₃, kemampuan absorbansi bergeser hingga ke daerah cahaya tampak yaitu daerah cahaya biru dan violet dan menurun pada panjang gelombang 400 nm sampai 600 nm. Dari data di atas jelas bahwa perlakuan doping nitrogen mampu meningkatkan absorbansi material TiO₂.

Untuk telaah lebih lanjut dilakukan perhitungan untuk menentukan besarnya band gap pada masing-masing sampel. Untuk menentukan nilai band gap masingmasing sampel dibuat grafik hubungan antara energi (hv) terhadap fungsi (αhv)² dan menentukan titik potong garis singgung terhadap sumbu hv (Rosendo, 2011). Untuk memperoleh nilai α yang juga sering disebut koefisien absorbansi menggunakan persamaan Beer-Lambert yang nilainya berbanding lurus dengan absorbansi dan berbanding terbalik dengan jarak cairan yang di tembus yang dalam hal ini adalah lebar kuvet yaitu 0,01 m serta berbanding terbalik dengan konsentrasi

larutan. Hasil ploting hubungan antara energi (*hv*) terhadap fungsi $(\alpha hv)^2$ untuk masing-masing sampel diperlihatkan pada Gambar 4.6.

Gambar 4.6 Grafik hubungan antara (*hv*) terhadap fungsi $(\alpha hv)^2$ pada sampel (a) TiO₂ tanpa perlakuan penambahan NH₃. (b) TiO₂ dengan perlakukan penambahan NH₃ konsentrasi 2% (c) TiO₂ dengan perlakukan penambahan NH₃ konsentrasi 5% (d) TiO₂ dengan perlakukan penambahan NH₃ konsentrasi 7,5%

Dari Gambar 4.6 didapatkan bahwa nilai band gap untuk sampel TiO₂ tanpa perlakukan penambahan NH₃ adalah 3,2 eV sedangkan untuk sampel TiO₂ dengan perlakuan penambahan NH₃ dengan konsentrasi 2%, 5% dan 7,5% secara berurutan adalah 3,0 eV, 2,7 eV, dan 2,5 eV. Dari gambar 4.6 terlihat bahwa doping nitrogen terhadap TiO₂ mampu mempersempit band gap. Analisis perhitungan lebih lanjut dilakukan untuk mengetahui spektrum cahaya yang mampu diserap dengan nilai *band gap* yang bersesuaian dengan nilai di atas.

$$E = \frac{hc}{\lambda} \tag{3}$$

Dengan menggunakan persamaan di atas didapat panjang gelombang yang bersesuaian dengan nilai *band gap* dari TiO₂ tanpa perlakukan penambahan NH₃ dan TiO₂ dengan perlakuan penambahan NH₃ dengan konsentrasi 2, 5 dan 7,5% secara berurutan adalah 388, 414, 460, dan 497 nm. Dari data ini tampak bahwa TiO₂ tanpa perlakukan penambahan NH₃ hanya mampu bekerja di daerah sinar ultraviolet yaitu daerah dengan panjang gelombang di bawah 400 nm dan TiO₂ dengan perlakuan penambahan NH₃ mampu bekerja pada rentang daerah cahaya tampak yaitu antara 400 – 800 nm.

4.3 Karakterisasi Morfologi dan Komposisi Lapisan Tipis Fotoanoda

Analisis menggnakan SEM-EDX dilakukan pada sampel TiO₂ baik yang terdoping maupun yang tidak terdoping untuk mengetahui struktur morfologi dan analisa semi kuatitatif dari lapisan tipis TiO_2 yang telah terdeposisi ke kaca ITO. Lapisan tipis didapatkan dengan mendeposisikan pasta TiO₂ dengan metode *doctor* blade serta menggunakan pembatas plastik warp dengan ketebalan 10 µm. Kemudian sampel di anneling pada suhu 400°C. Gambar 4.7 merupakan hasil SEM permukaan lapisan tipis TiO₂ pada kaca konduktif ITO. Tidak terdapat perbedaan struktur morfologi yang berarti antara sampel lapisan tipis TiO₂ tak terdoping dengan TiO₂ terdoping nitrogen. Tak terdeteksi retakan pada kedua sampel lapisan tipis TiO₂. Hal ini baik karena retakan menyebabkan terputusnya ikatan antar partikel TiO₂ sehingga kemungkinan terjadinya rekombinasi elektron atau kembalinya elektron ke dalam elektrolit semakin besar. Kristal TiO₂ berbentuk sperikal dominan terdapat pada kedua lapisan tipis ini, namun juga terdapat aglomerasi pada kedua sampel terutama terlihat jelas pada sampel TiO₂ terdoping nitrogen. Aglomerasi partikel-partikel TiO₂ disebabkan saat pencampuran partikel TiO₂ dan PEG sebagai *binder* serta triton yang tidak tercampur secara merata. Akibat pencampuran basah tidak merata ini partikel-partikel yang memiliki muatan yang sama cenderung untuk berkumpul menjadi satu sehingga saat sampel dianneling pada suhu 400°C akan menyebabkan terjadinya penggumpalan partikel TiO₂ (Widyastuti, 2008). Fenomena aglomerasi sebisa mungkin dihindari karena akan mengurangi kinerja DSSC yang dihasilkan karena aglomerasi menyebabkan luas permukaan kontak atau specific surface area TiO₂ menjadi menurun sehingga

(a)

Gambar 4.6 Struktur morfologi lapisan tipis (a) TiO₂ tak terdoping (b) TiO₂ terdoping nitrogen dengan menggunakan SEM

penyerapan *dye* oleh partikel TiO₂ menjadi berkurang. Hal ini berdampak fotoanode yang dihasilkan menjadi kurang optimal dalam menyerap cahaya atau foton yang datang.

Analsis semi kuantitatif mengenai komposisi unsur penyusun lapisan tipis dengan menggunakan SEM-EDX juga dilakukan untuk mengetahui persentase unsur penyusun serta mengkonfirmasi apakah nitrogen benar-benar telah terdoping pada material TiO₂. Secara visual komposisi unsur penyusun lapisan tipis TiO₂ terlihat pada Gambar 4.7

Gambar 4.7 SEM-EDX nilai at % sampel TiO₂ tak terdoping dan TiO₂ terdoping nitrogen

Gambar 4.7(a) mengkonfirmasi adanya unsur Ti dan O dalam sampel lapisan tipis. Hal ini wajar karena lapisan tipis yang dideposisikan merupakan TiO₂ yang fasa kristalnya telah dikofirmasi dari data XRD sebelumnya. Sedangkan pada gambar 4.7(b) mengkonfirmasi adanya unsur N, Ti, dan O. Namun demikian, walaupun pola spektral XRD menunjukkan bahwa sampel (b) tersebut merupakan fasa Anatase TiO₂ yang serupa dengan sampel (a) tapi pada kenyataanya hasil analisis semikuatitatif SEM-EDX memperlihatkan adanya pengotor atom N yang tak mengubah struktur kristal TiO₂, tidak menghasilkan fasa baru ataupun menimbulkan puncak baru pada pola spektral XRD. fakta ini menunjukkan adanya dopan N yang menyusup pada struktur kristal TiO₂. Analisis semi kuantitatif dari gambar 4.7(b) menunjukkan bahwa hanya 7% atom N pada sampel (b) tersebut. Ini lebih kecil dibandingkan dengan dengan atom Ti sebesar 29,44% dan atom O sebesar 63,56%.

4.4 Karakterisasi I-V DSSC

Karakterisasi I-V bertujuan untuk mengetahui efisiensi dari DSSC yang menggunakan fotoanode TiO₂ terdoping nitrogen. Karakterisasi dilakukan di laboratorion fotonik fisika ITB dengan menggunakan *solar simulator*. *Solar simulator* menggunakan sumber cahaya lampu xenon 5,4 A dengan daya pancaran 100 mW/cm². Hasil karakterisasi I-V dari masing-masing sampel lalu di plot untuk menetukan daya maksimum yang bisa dihasilkan oleh sel surya tersebut. Grafik hubungan antara rapat arus dan tegangan dari masing-masing sampel DSSC diperlihatkan pada Gambar 4.8.

Gambar 4.8 Grafik hubungan J-V pada masing-masing sampel DSSC

Sekilas terlihat bahwa terdapat peningkatan performa dari DSSC yang menggunakan fotoanode TiO₂ terdoping nitrogen dibanding dengan DSSC yang hanya menggunakan fotoanode TiO₂. Hal ini dikarenakan tingkat dan jangkauan absorbansi TiO₂ terdoping nitrogen lebih lebar dibanding dengan TiO₂ tak terdoping sehingga TiO₂ terdoping nitrogen mampu menkonversi cahaya menjadi listrik lebih besar dibandingkan dengan TiO₂.

Analisis selanjutnya adalah menghitung besarnya efisiensi DSSC pada masingmasing sampel. Untuk mengetahui besar efisiensi, perlu diketahui daya maksimum yang mampu diberikan oleh sel surya. Daya maksimum adalah besar nilai perkalian antara rapat arus J dan tegangan V yang menghasilkan nilai paling besar. Berdasar Gambar 4.8, daya maksimum merupakan luas maksimum dari segi empat di bawah

kurva J-V. Nilai efisiensi dari masing-masing sampel DSSC diperlihatkan pada Tabel 4.2.

Sampel	Effisiensi (%)	Voc (Volt)	Jsc (mA/cm ²)	FF
Sampel A (TiO ₂)	0,055 %	0,48	0.308	0.36
Sampel B $(TiO_2 + NH_3 (2\%))$	0,070 %	0,49	0.295	0.48
Sampel C $(TiO_2 + NH_3 (5\%))$	0,169 %	0,51	0,646	0.52
Sampel D (TiO ₂ + NH ₃ (7.5%))	0,179 %	0,51	0,784	0.45

Tabel 4.2. Tabel perbandingan kinerja DSSC dengan variasi fotoanoda

Ada 4 data utama yang didapatkan dari karakterisasi arus-tegangan pada modul DSSC, yaitu V_{oc} , V_{MMP} , J_{sc} , dan J_{MMP} . Besar V_{oc} dan J_{sc} menunjukkan kemampuan solar sel dalam mengkonversi foton menjadi arus listrik sedangakan V_{MMP} dan J_{MMP} menunjukkan seberapa besarnya daya listrik yang mampu dihasilkan loleh modul DSSC per luasan 1 cm². Berdasarkan data dari Tabel 4.2, Terjadi peningkatan nilai tegangan open circuit (Voc) dan rapat arus short circuit (J_{sc}) antara sampel tidak terdoping nitrogen dengan sampel yang terdoping nitrogen. Tapi pada sampel B yaitu sampel dengan perlakuan penambahan NH3 konsentrasi 2 %, nilai tegangan open circuit (Voc) relatif sama dengan sampel A yang tidak terdoping nitrogen, bahkan nilai rapat arus *short circuit (Jsc)* pada sampel B lebih kecil daripada sampel A. Namun karena nilai *fill factor* sampel B lebih tinggi daripada sampel A maka nilai efisiensi sampel B lebih dari pada sampel A. Kesamaan profil J-V antara sampel A dan sampel B kemungkinan dikarenakan nilai konsentrasi dopan NH₃ yang begitu kecil sehingga fraksi atom nitrogen yang terdoping ke material TiO₂ sangat kecil sehingga sifat fisis material TiO₂ masih sama dengan sampel A. Hal ini juga terlihat dari hasil pengukuran UV-vis yang memperlihatkan bahwa sampel B nilai absorbansinya turun drastis di panjang gelombang 300 nm yang masih merupakan perbatasan antara panjang gelombang ultraviolet dan cahaya tampak. Sampel C dan sampel D mulai menampakkan pegaruh akibat doping nitogen pada material TiO₂ Nilai tegangan open circuit (Voc) dan rapat arus short circuit (Jsc) berada di atas sampel A. Begitu juga dengan nilai efisiensi sampel C dan D yang jauh lebih tinggi daripada sampel A. Jadi secara umum DSSC dengan menggunakan fotoanode TiO₂ terdoping nitrogen memiliki performa yang lebih baik dibanding hanya menggunakan fotoanode TiO₂.

Dari semua sampel yang menggunakan fotoanoda TiO₂ terdoping nitrogen, sampel D dengan perlakuan penambahan NH₃ konsentrasi 7,5% memiliki efisiensi yang paling tinggi diantara yang lainnya. Namun nilai *fill factor* sampel D lebih kecil daripada sampel C. *Fill factor* adalah faktor pengisian dari sel surya yang merupakan perbandingan antara daya maksimum yang dihasilkan sel surya dengan hasil kali antara V_{oc} dan J_{sc} sel surya tersebut. *Fill factor* merupakan ukuran kuantitatif kualitas sistem sel surya, sehingga semakin besar harga fill factor maka kinerja sel surya akan semakin baik, dan akan memiliki efisiensi konversi energi yang semakin tinggi. Maddu dalam tulisannya menyatakan bahwa salah satu yang mempengaruhi nilai *Fill factor* adalah kualitas larutan elektrolit (Maddu, 2012).

Ada beberapa faktor yang menyebabkan nilai *Fill factor* sampel D lebih kecil daripada sampel C salah satunya adalah saat merakit *sandwitch* DSSC. Dalam perakitannya, terutama saat pemberian larutan elektrolit, kemungkinan masuknya gelembung udara ke dalam *sandwitch* DSSC sangat besar. Hal ini mengakibatkan saat *sandwitch* DSSC disegel, udara akan terjebak dan volume larutan elektrolit dalam masing-masing sampel tidak sama sehingga proses transfer elektron dalam masing-masing *sandwitch* DSSC (Maddu, 2012). Selain hal tersebut faktor lain yang mempengaruhi kemungkinan adalah nilai absorbansi dari kedua material fotoanode yang di pakai. Pada data uji UV-Vis menunjukkan bahwa nilai absorbansi sampel D lebih kecil daripada sampel C saat berada di daerah cahaya tampak. Hal ini kemungkinan menyebakan nilai *fill factor* sampel D lebih kecil dari

Secara umum modul DSSC dengan menggunakan fotoanoda TiO₂ terdoping nitrogen memiliki efisiensi optimum sebesar 0,179% dengan *fill factor* 0,54. Tentu nilai efisiensi ini masih sangat kecil untuk diaplikasikan ataupun dibandingkan dengan sel surya konvensional yang efisiensinya mampu mencapai 20%. Namun dengan kelebihan berupa kemudahan merakit serta bahan yang digunakan tidak beracun menjadikan DSSC layak untuk diteliti dan dikembangkan lebih lanjut dalam berbagai komponen mulai dari optimasi di bidang fotoanoda, elektroda

pembanding, elektrolit, *dye*, maupun dalam hal *packaging* untuk mengoptimalkan efisiensi sebagai alternatif solar sel yang murah dan ramah lingkungan.

LAMPIRAN A

Olah Data XRD Dengan Perangkat Lunak Match! Dan MAUD

1. Sampel TiO₂ tanpa penambahan NH₃

Match! Phase Analysis Report

Institute of Technology Sepuluh November (ITS), Department of Physics

Sample: Sampel I

Sample File nat File pat Data co Data ra Numbe Step si Apha2 Backgr Data sr 2theta c Radiati Wavele	e Data me h kh xilected nge r of points za subtracted ound subtr. moothed correction on ngth	Sa E 20 20 20 0.0 Ye No No 0.7 2 No 1.1	ampel I.rd Bodi/Sampel r 29, 2016 18: 120° - 70.120 93 017 is 50 50 50 50 50 50 50 50 50 50 50 50 50	Ι 07:02 φ	Matched Ph	ases			
Index	Amount (9/1	Mama			Exemula cum				
A	100.0	Anatase, syn			Ti O2				
Entry n Figure- Total n Peaks Peaks Intensil Space Crystal Unit ce Unit ce Unit ce Unit ce Color Referen	umber of-Merit (FoM) umber of peaks in range matched yscale factor group yscale factor group system II ensity noce	00 0.1 39 9 9 0.2 14 14 14 14 3.3 3.1 3.2 3.3 2 7	-021-1272 340761 95 1/amd 1/amd 1/amd 1/amd 3.7852 A 30 993 g/cm ^a 90rless °, Nati. Bur. Sta	and. (U.S.) Monogr	. 25 7 , 82 (1969)				
		I rel.							
		1900					Expe	rimental pattern	alia) (Da-97.5.9)
		1800 -					Calct 100-0	21-12721 Ti O2 Titanii	m Oxide (Anatas
		1000 -							
		1700							
		1700							
		1700 - 1600 -							
		1700 - 1600 - 1500 -							
		1700 - 1600 - 1500 - 1400 - 1300 -							
		1700 - 1600 - 1500 - 1400 - 1300 - 1200 -							
		1700 - 1600 - 1500 - 1400 - 1300 - 1200 - 1100 -							
		1700 - 1600 - 1500 - 1400 - 1300 - 1200 - 1100 - 1000 -							
		1700 1600 1500 1400 1300 1200 1100 1000 900							
		1700 1600 1500 1400 1300 1200 1100 1000 900 800							
		1700 1600 1500 1400 1300 1200 1100 1000 900 800 700							
		1700 1600 1500 1400 1300 1200 1000 1000 900 800 700 600							
		1700 1600 1500 1400 1200 1200 1000 900 800 700 600 500							
		1700 1600 1500 1400 1200 1200 1000 900 800 700 600 500 400							
		1700 1600 1500 1400 1200 1200 1000 900 800 700 600 500 400 300							
		1700 1600 1500 1300 1300 1300 1300 1000 900 900 900 900 900 900							
		1700 1600 1500 1400 1300 1300 1300 1000 900 900 900 900 900 900							
		1700 1600 1500 1400 1300 1300 1000 1000 900 900 900 900 900							
		1700 1600 1500 1400 1200 100 1000 1							

Refined parameters:

0 default.par:Sample x:TiO2 Sample-1: riet par background pol0 value:102.97234 error:4.9302564 1 default.par:Sample x:TiO2 Sample-1: riet par background pol1 value:-3.7382927 error:0.36041066 2 default.par:Sample x:TiO2 Sample-1: riet par background pol2 value:0.047862943 error:0.008478328 3 default.par:Sample x:TiO2 Sample-1: riet par background pol3 value:-1.7743342E-4 error:6.285233E-5 4 default.par:Sample_x:Anatasio:_cell_length_a value:3.7775092 error:4.3496836E-4 5 default.par:Sample_x:Anatasio:_cell_length_c value:9.474072 error:0.0020040246 6 default.par:Sample x:Anatasio:Distributions:unknown:_riet_par_distribution_size_variance value:0.1289843 error:0.032421913 7 default.par:Sample x:Anatasio:Distributions:unknown: riet par distribution strain decay value:0.286239 error:0.23328522 8 default.par:Sample x:Anatasio:Isotropic: riet par cryst size value:59.677567 error:1.4377397 9 default.par:Sample_x:Anatasio:Isotropic:_riet_par_rs_microstrain value:0.005617197 error:7.7564974E-4 10 default.par:Sample x:Anatasio:Atomic Structure:Ti: atom site B iso or equiv value:11.459024 error:0.2642836 11 default.par:Sample x:Anatasio:Atomic Structure:O: atom site B iso or equiv value:-1.6462553 error:0.24909027 Refinement final output indices:

Global Rwp: 0.2000323 Global Rp: 0.1525276 Global Rwpb (no background): 0.20144624 Global Rpb (no background): 0.15009366 Total Energy: 0.0

Refinement final output indices for single samples: Sample Sample_x : Sample Rwp: 0.2000323 Sample Rp: 0.1525276 Sample Rwpb (no background): 0.20144624 Sample Rpb (no background): 0.15009366

Refinement final output indices for single datasets: DataSet TiO2_Sample-1 : DataSet Rwp: 0.2000323 DataSet Rp: 0.1525276 DataSet Rwpb (no background): 0.20144624 DataSet Rpb (no background): 0.15009366

Refinement final output indices for single spectra: Datafile Sampel I.xy : Rwp: 0.2000323, Rp: 0.1525276, Rwpb: 0.20144624, Rpb: 0.15009366

2. Sampel TiO₂ dengan penambahan NH₃ konsentrasi 2%

Match! Phase Analysis Report

Institute of Technology Sepuluh November (ITS), Department of Physics

47

Refined parameters:

0 default.par:Sample x:TiO2 Sample-2: riet par background pol0 value:111.12229 error:4.342466 default.par:Sample x:TiO2 Sample-2: riet par background poll value:-4.3763804 1 error:0.31505308 default.par:Sample x:TiO2 Sample-2: riet par background pol2 2 value:0.06529002 error:0.0072714095 3 default.par:Sample x:TiO2 Sample-2: riet par background pol3 value:-3.314196E-4 error:5.309478E-5 4 default.par:Sample x:Anatase: cell length a value:3.7812855 error:3.0030197E-4 5 default.par:Sample x:Anatase: cell length c value:9.488525 error:0.0014223456 6 default.par:Sample x:Anatase: riet par phase scale factor value:0.94989014 error:0.011367737 default.par:Sample x:Anatase:Distributions:unknown: riet par distribution size variance 7 value:0.07376036 error:0.015035744 default.par:Sample x:Anatase:Distributions:unknown: riet par distribution strain decay 8 value:0.5404444 error:0.08948305 9 default.par:Sample x:Anatase:Isotropic: riet par cryst size value:74.75828 error:1.5182676 10 default.par:Sample_x:Anatase:Isotropic:_riet_par_rs_microstrain value:0.0056209504 error:3.3229485E-4 11 default.par:Sample x:Anatase:Atomic Structure:Ti: atom site B iso or equiv value:4.120247 error:0.12818304 12 default.par:Sample x:Anatase:Atomic Structure:O: atom site B iso or equiv value:6.341718 error:0.22329907 Refinement final output indices: Global Rwp: 0.17517155 Global Rp: 0.13198367 Global Rwpb (no background): 0.17392078 Global Rpb (no background): 0.12213535 Total Energy: 0.0 Refinement final output indices for single samples: Sample Sample x : Sample Rwp: 0.17517155 Sample Rp: 0.13198367 Sample Rwpb (no background): 0.17392078 Sample Rpb (no background): 0.12213535 Refinement final output indices for single datasets: DataSet TiO2 Sample-2 : DataSet Rwp: 0.17517155 DataSet Rp: 0.13198367

Refinement final output indices for single spectra: Datafile Sampel II.xy : Rwp: 0.17517155, Rp: 0.13198367, Rwpb: 0.17392078, Rpb: 0.12213535

DataSet Rwpb (no background): 0.17392078 DataSet Rpb (no background): 0.12213535

3. Sampel TiO₂ dengan penambahan NH₃ konsentrasi 5%

Match! Phase Analysis Report

Institute of Technology Sepuluh November (ITS), Department of Physics

Sample: Sampel III

Refined parameters:

0 default.par:Sample_x:TiO2_sample-3:_riet_par_background_pol0 value:81.750694 error:4.4835234

1 default.par:Sample_x:TiO2_sample-3:_riet_par_background_pol1 value:-2.4654095 error:0.33338574

2 default.par:Sample_x:TiO2_sample-3:_riet_par_background_pol2 value:0.025322756 error:0.008303218

3 default.par:Sample_x:TiO2_sample-3:_riet_par_background_pol3 value:-6.7019704E-5 error:6.314486E-5

4 default.par:Sample_x:Anatase:_cell_length_a value:3.7814906 error:2.957673E-4

5 default.par:Sample_x:Anatase:_cell_length_c value:9.492029 error:0.0012722296

6 default.par:Sample_x:Anatase:_riet_par_phase_scale_factor value:0.56601924 error:0.00913331

7 default.par:Sample_x:Anatase:Distributions:unknown:_riet_par_distribution_size_variance value:0.13439786 error:0.029706348

8 default.par:Sample_x:Anatase:Distributions:unknown:_riet_par_distribution_strain_decay value:0.7301726 error:0.19298157

9 default.par:Sample_x:Anatase:Isotropic:_riet_par_cryst_size value:99.79274 error:2.4435704 10 default.par:Sample_x:Anatase:Isotropic:_riet_par_rs_microstrain value:0.004090276 error:9.189992E-4

11 default.par:Sample_x:Anatase:Atomic Structure:Ti:_atom_site_B_iso_or_equiv value:3.407973 error:0.70506847

12 default.par:Sample_x:Anatase:Atomic Structure:O:_atom_site_B_iso_or_equiv value:5.7174935 error:0.708205

Refinement final output indices: Global Rwp: 0.19307232 Global Rp: 0.14613913 Global Rwpb (no background): 0.20137197 Global Rpb (no background): 0.14405341 Total Energy: 0.0

Refinement final output indices for single samples: Sample Sample_x : Sample Rwp: 0.19307232 Sample Rp: 0.14613913 Sample Rwpb (no background): 0.20137197 Sample Rpb (no background): 0.14405341

Refinement final output indices for single datasets: DataSet TiO2_sample-3 : DataSet Rwp: 0.19307232 DataSet Rp: 0.14613913 DataSet Rwpb (no background): 0.20137197 DataSet Rpb (no background): 0.14405341

Refinement final output indices for single spectra: Datafile Sampel III.xy : Rwp: 0.19307232, Rp: 0.14613913, Rwpb: 0.20137197, Rpb: 0.14405341

4. Sampel TiO₂ dengan penambahan NH₃ konsentrasi 7,5%

Match! Phase Analysis Report

Institute of Technology Sepuluh November (ITS), Department of Physics

Sample: D TiO2 4Mar

Number of points Step size Apha2 subtracted Background subtr	2993 0.017 Yes No				
Data smoothed 2theta correction Radiation	No 0.06° X-rays				
wavelength	1.540596 A	Matched Phases			
Index Amount (%)	Name	Formula sum			
A 100.0	Anatase, syn	Ti O2			
A: Anatase, syn (100.0 % Formula sum Entry number Figure-of-Ment (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Vicor Calc. density Color) Ti O2 00-021-1272 0.835977 39 10 10 0.90 141/amd 141/amd 141/amd a= 3.7852 A 3.30 3.893 g/cm ³ Coloriess				
L.			Experime	ntal pattern	
1900 -			Calculate (00-001-0	d pattern (exp. peaks) (Rp=68.2 15621 Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1800 -			Calculate [00-001-0	d pattern (exp. peaks) (Rp=68.2 I562] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1800 - 1700 -			Calculate [00-001-0	d pattern (exp. peaks) (Rp=68.2 1562] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1800 - 1700 - 1600 -			Calculated	d pattern (exp. peaks) (Rp=68.2 1562] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1700 - 1600 - 1500 -			Calculate [00-001-0	d pattern (exp. peaks) (Rp=68.2 1562] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1700 - 1700 - 1500 - 1400 - 1300 -			Calculate [00-001-0	d pattern (exp. peaks) (Rp=68.2 1562] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1800 - 1700 - 1600 - 1500 - 1400 - 1300 - 1200 -			Calculater [00-001-0	d pattern (exp. peaks) (Rp=68.2 1562] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1800 - 1700 - 1600 - 1500 - 1400 - 1300 - 1200 - 1100 -			Calculater [00-001-0	d pattern (exp. peaks) (Rp=68.2 1562] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1800 - 1700 - 1600 - 1500 - 1400 - 1300 - 1200 - 1100 - 1000 -			Calculate [00-001-0	d pattern (exp. peaks) (Rp=68.2 1562] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1700 - 1700 - 1500 - 1400 - 1300 - 1200 - 1100 - 900 -			Calculater [00-001-0	d pattern (exp. peaks) (Rp=68.2 1562] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1800 - 1700 - 1600 - 1500 - 1400 - 1300 - 1200 - 1100 - 1000 - 900 - 800 -			Calculater [00-001-0	d pattern (exp. peaks) (Rp=68.2 I562] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1800 - 1700 - 1600 - 1500 - 1400 - 1300 - 1200 - 1100 - 1000 - 900 - 800 - 700 -			Calculater [00-001-0	d pattern (exp. peaks) (Rp=68.2 1562] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1800 - 1700 - 1600 - 1500 - 1400 - 1200 - 1100 - 1000 - 900 - 800 - 700 - 600 -			Calculater [00-001-0	d pattern (exp. peaks) (Rp=68.2 1562] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1800 - 1700 - 1600 - 1500 - 1100 - 1200 - 1100 - 1000 - 900 - 800 - 700 - 500 -			Calculate [00-001-0	d pattern (exp. peaks) (Rp=68.2 1562] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1800 - 1700 - 1600 - 1500 - 1400 - 1300 - 1200 - 1000 - 900 - 800 - 700 - 500 - 400 -			Calculater [00-001-0	d pattern (exp. peaks) (Rp=68.2 1562] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1800 - 1700 - 1600 - 1500 - 1400 - 1300 - 1200 - 1000 - 900 - 800 - 700 - 600 - 500 - 400 -			Calculater [00-001-0	d pattern (exp. peaks) (Rp=68.2 IS62] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1800 - 1700 - 1600 - 1500 - 1400 - 1300 - 1200 - 1100 - 1000 - 900 - 800 - 700 - 500 - 400 - 300 -			Calculater [00-001-0	d pattern (exp. peaks) (Rp=68.2 IS62] Ti O2 Titanium Oxide (Anat	%) ase)
1900 - 1900 - 1800 - 1700 - 1600 - 1500 - 1400 - 1300 - 1200 - 1100 - 1000 - 900 - 800 - 700 - 600 - 500 - 100 -			Calculater [00-001-0	d pattern (exp. peaks) (Rp=68.2 IS62] Ti O2 Titanium Oxide (Anat	%) ase)

Cu-Ka (1.541874 A)

Refined parameters:

0 default.par:Sample_x:TiO2_Sample-4:_riet_par_background_pol0 value:96.3852 error:4.8426743 1 default.par:Sample_x:TiO2_Sample-4:_riet_par_background_pol1 value:-3.5696282 error:0.35531884

2 default.par:Sample_x:TiO2_Sample-4:_riet_par_background_pol2 value:0.048693687 error:0.008706848

3 default.par:Sample_x:TiO2_Sample-4:_riet_par_background_pol3 value:-2.1365106E-4 error:6.6271576E-5

4 default.par:Sample_x:Anatase:_cell_length_a value:3.7825358 error:2.1217384E-4

5 default.par:Sample_x:Anatase:_cell_length_c value:9.494743 error:9.4873604E-4

6 default.par:Sample_x:Anatase:_riet_par_phase_scale_factor value:1.2645035 error:0.014191871

7 default.par:Sample_x:Anatase:Distributions:unknown:_riet_par_distribution_size_variance value:0.22938305 error:0.025748638

8 default.par:Sample_x:Anatase:Distributions:unknown:_riet_par_distribution_strain_decay value:0.09852213 error:1.168645

9 default.par:Sample x:Anatase:Isotropic: riet par cryst size value:92.673485 error:1.6183641

10 default.par:Sample_x:Anatase:Isotropic:_riet_par_rs_microstrain value:0.002253957 error:0.0018978589

11 default.par:Sample_x:Anatase:Atomic Structure:Ti:_atom_site_B_iso_or_equiv value:5.4099655 error:0.41356963

12 default.par:Sample_x:Anatase:Atomic Structure:O:_atom_site_B_iso_or_equiv value:7.17517 error:0.4243832

Refinement final output indices: Global Rwp: 0.17649822 Global Rp: 0.13192485 Global Rwpb (no background): 0.17156994 Global Rpb (no background): 0.121942945 Total Energy: 0.0

Refinement final output indices for single samples: Sample Sample_x : Sample Rwp: 0.17649822 Sample Rp: 0.13192485 Sample Rwpb (no background): 0.17156994 Sample Rpb (no background): 0.121942945

Refinement final output indices for single datasets: DataSet TiO2_Sample-4 : DataSet Rwp: 0.17649822 DataSet Rp: 0.13192485 DataSet Rwpb (no background): 0.17156994 DataSet Rpb (no background): 0.121942945

Refinement final output indices for single spectra: Datafile D TiO2 4Mar.xy : Rwp: 0.17649822, Rp: 0.13192485, Rwpb: 0.17156994, Rpb: 0.121942945

LAMPIRAN B

Olah Data Energi Gap Sampel TiO₂

1. Sampel TiO₂ tanpa penambahan NH₃

2. Sampel TiO₂ dengan penambahan NH₃ konsentrasi 2%

3. Sampel TiO₂ dengan penambahan NH₃ konsentrasi 5%

LAMPIRAN C

Olah Data Karakteristik Arus, Tegaangan dan Efesiensi DSSC Perbandingan Elektroda Kerja

ua 1102 tan	pa penanibana		
V (Volt)	I (Ampere)	J (mA/cm ²)	P (mW/cm ²)
0.000981	0.000307531	0.307531236	0.000301662
0.010707	0.000293179	0.29317946	0.003139166
0.020684	0.000279511	0.2795111	0.005781281
0.030876	0.000282245	0.282244772	0.00871467
0.040936	0.000282245	0.282244772	0.011553911
0.050929	0.000277461	0.277460848	0.01413071
0.060422	0.000280195	0.280194516	0.016929885
0.070648	0.000278144	0.278144264	0.019650322
0.080757	0.000265159	0.265159324	0.021413581
0.090717	0.000263109	0.263109068	0.023868461
0.100727	0.000261742	0.261742232	0.026364383
0.110436	0.000265843	0.26584274	0.029358679
0.120629	0.000261742	0.261742232	0.031573704
0.130705	0.000252858	0.2528578	0.033049818
0.140748	0.000246707	0.24670704	0.034723522
0.150541	0.000244657	0.244656784	0.036830881
0.160534	0.000256958	0.256958308	0.041250518
0.17066	0.000251491	0.251490964	0.042919451
0.180736	0.000235772	0.235772352	0.04261259
0.190679	0.000230305	0.230305008	0.043914346
0.200722	0.000233039	0.23303868	0.046775971
0.210781	0.000243973	0.243973368	0.051425052
0.220608	0.000227571	0.227571336	0.050203999
0.230551	0.00021322	0.21321956	0.04915791
0.24076	0.000213903	0.21390298	0.051499291
0.250853	0.000206385	0.20638538	0.051772361
0.260879	0.000207752	0.207752216	0.054198198
0.270589	0.000196134	0.196134112	0.05307169
0.280632	0.0001893	0.189299932	0.053123547
0.290458	0.000182466	0.182465752	0.052998628
0.300651	0.000176998	0.176998412	0.053214693
0.31081	0.000169481	0.169480812	0.052676349
0.320453	0.000170848	0.170847648	0.054748681
0.330363	0.000164697	0.164696888	0.05440973
0.340539	0.000148978	0.148978276	0.050732899

1. Fotoanoda Tio2 tanpa penambahan NH3

0.350632	0.000135993	0.135993336	0.047683576
0.360391	0.000134627	0.1346265	0.048518235
0.370401	0.00013326	0.133259664	0.049359506
0.380627	0.000123008	0.123008392	0.046820314
0.390503	0.000103189	0.103189272	0.040295749
0.400579	9.84053E-05	0.098405348	0.039419158
0.410589	8.33702E-05	0.083370152	0.034230863
0.421015	9.2938E-05	0.092938004	0.03912828
0.430825	6.8335E-05	0.06833496	0.029440376
0.440701	5.19329E-05	0.051932928	0.022886883
0.450894	4.30485E-05	0.043048496	0.019410289
0.460836	3.55309E-05	0.0355309	0.016373934
0.470979	2.93801E-05	0.029380136	0.013837433
0.480689	5.46051E-06	0.005460508	0.002624806

 $V_{MPP} = 0.250853$ volt

 $J_{MPP} = 0.20638538 \text{ mA/cm}^2$ $V_{oc} = 0.480689 \text{ volt}$ $J_{sc} = 0.307531236 \text{ volt}$ FF = 0.36 $\eta = 0.055 \%$

$$J = \frac{I \times 1000}{A}$$
$$FF = \frac{V_{MPP}I_{MPP}}{V_{oc}I_{sc}}$$
$$P_{max} = V_{oc}I_{sc}FF$$
$$\eta = \frac{P_{max}}{P_{cahaya}} \times 100\%$$

	See bernerse		
V (Volt)	I (Ampere)	J (mA/cm²)	P (mW/cm ²)
0.001157	0.00029523	0.295229712	0.000341614
0.013029	0.000283612	0.283611608	0.003695078
0.02486	0.000293863	0.293862876	0.007305498
0.036952	0.000285662	0.28566186	0.010555666
0.049083	0.000287712	0.287712116	0.014121765
0.061054	0.000280878	0.280877936	0.017148845
0.072946	0.000279511	0.2795111	0.020389208
0.085117	0.000274044	0.274043756	0.023325863
0.097089	0.00027336	0.27336034	0.026540218
0.10904	0.00027131	0.271310084	0.029583719
0.120672	0.000276094	0.276094012	0.033316806
0.133063	0.000276777	0.276777428	0.036828871
0.144995	0.000263109	0.263109068	0.038149402
0.157166	0.000257642	0.257641728	0.040492509
0.168818	0.00026721	0.267209576	0.045109693
0.180769	0.000265843	0.26584274	0.048056162
0.192881	0.00027131	0.271310084	0.052330426
0.204992	0.000250808	0.250807548	0.051413509
0.217183	0.000243973	0.243973368	0.052986913
0.228915	0.000252174	0.252174384	0.057726454
0.241026	0.000248757	0.248757292	0.059957022
0.252898	0.000236456	0.236455772	0.059799127
0.265029	0.000231672	0.231671844	0.061399776
0.276961	0.000234406	0.234405516	0.064921086
0.288752	0.000226205	0.2262045	0.06531704
0.301003	0.000231672	0.231671844	0.069734021
0.312815	0.000209119	0.209119052	0.065415579
0.324806	0.000206385	0.20638538	0.067035306
0.336798	0.000203652	0.203651708	0.068589471
0.348949	0.000192034	0.192033604	0.067009983
0.360901	0.000189983	0.189983352	0.068565131
0.372572	0.000184516	0.184516008	0.068745574
0.384744	0.000176998	0.176998412	0.06809903
0.396855	0.00015923	0.159229544	0.063191056
0.409066	0.000138727	0.138727008	0.056748556
0.420698	0.000140094	0.14009384	0.058937212
0.43251	0.000131893	0.131892828	0.057044924
0.444841	0.000116174	0.116174216	0.05167904
0.456852	8.33702E-05	0.083370152	0.038087847

2. Fotoanoda Tio2 dengan penambahan NH3 konsentrasi 2%

0.469064	6.15008E-05	0.06150078	0.028847778
0.480615	4.85158E-05	0.04851584	0.023317458
0.492687	2.39128E-05	0.023912792	0.011781516

 $V_{MPP} = 0.301003$ volt

 $J_{MPP} = 0.231671844 \text{ mA/cm}^2$ $V_{oc} = 0.492687 \text{ volt}$ $J_{sc} = 0.295229712 \text{ volt}$ FF = 0.48 $\eta = 0.070 \%$

$$J = \frac{I \times 1000}{A}$$
$$FF = \frac{V_{MPP}I_{MPP}}{V_{oc}I_{sc}}$$
$$P_{max} = V_{oc}I_{sc}FF$$
$$\eta = \frac{P_{max}}{P_{cahaya}} \times 100\%$$

V (Volt)	I (Ampere)	J (mA/cm ²)	P (mW/cm ²)
0.001446	0.000645762	0.645761612	0.000934023
0.016286	0.000642345	0.64234452	0.010461107
0.031075	0.000676515	0.67651542	0.021022908
0.04619	0.000685058	0.68505814	0.031642503
0.061354	0.000638927	0.63892742	0.039200569
0.076318	0.000609882	0.60988216	0.046545017
0.091182	0.000640636	0.640635972	0.058414764
0.106397	0.000666264	0.66626414	0.070888252
0.121361	0.000613299	0.613299252	0.074430584
0.1363	0.000558626	0.55862582	0.076140874
0.15084	0.00056546	0.56546	0.085293959
0.166329	0.000592797	0.592796712	0.098599234
0.181243	0.000582545	0.58254544	0.10558245
0.196457	0.000529581	0.529580552	0.104040042
0.211022	0.000505661	0.50566092	0.106705612
0.225961	0.000498827	0.49882674	0.112715598
0.241101	0.000474907	0.474907112	0.114500404
0.25624	0.000490284	0.49028402	0.125630299
0.271479	0.000526163	0.526163472	0.142842322
0.286144	0.000512495	0.512495112	0.146647159
0.301283	0.00045953	0.45953022	0.138448522
0.316122	0.000421942	0.421942232	0.133385289
0.331286	0.000415108	0.41510804	0.137519627
0.346201	0.00044757	0.447570392	0.154949191
0.36094	0.000468073	0.46807294	0.168946346
0.376254	0.000415108	0.41510806	0.15618619
0.391019	0.000333098	0.3330979	0.130247531
0.406008	0.000310887	0.310886812	0.126222559
0.420997	0.000338224	0.338223532	0.142391226
0.436187	0.000292093	0.29209282	0.127406965
0.451126	0.000216917	0.216916852	0.097856814
0.465716	0.000186163	0.186163052	0.086699021
0.48093	0.000169078	0.169077612	0.081314439
0.496069	0.000122947	0.1229469	0.06099013
0.511333	2.21428E-05	0.022142752	0.01132232

3. Fotoanoda Tio2 dengan penambahan NH3 konsentrasi 5%

$$V_{MPP} = 0.36094 \text{ volt}$$

 $J_{MPP} = 0.46807294 \text{ mA/cm}^2$
 $V_{oc} = 0.511333 \text{ volt}$
 $J_{sc} = 0.645761612 \text{ volt}$
FF = 0.52
 $\eta = 0,169 \%$

$$J = \frac{I \times 1000}{A}$$
$$FF = \frac{V_{MPP}I_{MPP}}{V_{oc}I_{sc}}$$
$$P_{max} = V_{oc}I_{sc}FF$$

$$\eta = \frac{P_{max}}{P_{cahaya}} \times 100\%$$

V (Volt)	l (Ampere)	J (mA/cm²)	P (mW/cm²)
0.001649	0.000784188	0.784188	0.001293035
0.018566	0.000770652	0.770652	0.014307796
0.035426	0.000764072	0.764072	0.027067879
0.052656	0.000759952	0.759952	0.040016069
0.069943	0.00074464	0.74464	0.052082528
0.087003	0.000719156	0.719156	0.062568425
0.103948	0.000699216	0.699216	0.072682107
0.121292	0.000690708	0.690708	0.083777456
0.138351	0.000681516	0.681516	0.094288755
0.155382	0.000660708	0.660708	0.102662366
0.171958	0.000632548	0.632548	0.108771402
0.189615	0.000608252	0.608252	0.115333681
0.206617	0.000595132	0.595132	0.122964595
0.223961	0.000594588	0.594588	0.133164813
0.240565	0.000599504	0.599504	0.144219773
0.257596	0.000595228	0.595228	0.153328363
0.274855	0.000573668	0.573668	0.157675357
0.292113	0.00054474	0.54474	0.159125863
0.309486	0.000526416	0.526416	0.162918401
0.326204	0.000523612	0.523612	0.17080413
0.343462	0.000520668	0.520668	0.178829838
0.360379	0.000498256	0.498256	0.179561129
0.377666	0.00045706	0.45706	0.172616223
0.394669	0.000415736	0.415736	0.164078036
0.411472	0.000383684	0.383684	0.157875162
0.42893	0.000350288	0.350288	0.150248995
0.445761	0.000306032	0.306032	0.136417252
0.462849	0.00025644	0.25644	0.118693053
0.479937	0.000206512	0.206512	0.099112756
0.497253	0.000146832	0.146832	0.073012606
0.514284	0.000064788	0.064788	0.033319402

4. Fotoanoda Tio2 dengan penambahan NH3 konsentrasi 7,5%

 $V_{MPP} = 0.360379$ volt

 $J_{MPP} = 0.000498256 \text{ mA/cm}^2$

 $V_{oc} = 0.514284$ volt

 $J_{sc} = 0.784188$ volt

FF = 0.45

 $\eta = 0,179 \%$

$$J = \frac{I \times 1000}{A}$$
$$FF = \frac{V_{MPP}I_{MPP}}{V_{oc}I_{sc}}$$
$$P_{max} = V_{oc}I_{sc}FF$$

$$\eta = \frac{P_{max}}{P_{cahaya}} \times 100\%$$

BAB 5 PENUTUP

5.1 Kesimpulan

Berdasarkan penelitian yang telah dilakukan, didapatkan kesimpulan bahwa TiO₂ berhasil disintesis menggunakan metode kopresipitasi dengan menggunakan perkusor TiCl₃ dan H₃ sebagai sumber dopan nitrogen. Doping nitrogen pada material TiO₂ mampu menggeser daya absorbansi TiO₂ dari sinar ultraviolet menjadi ke cahaya tampak serta mampu mempersempit band gap TiO₂. Selanjutnya, fotoanode berbahan TiO₂ terdoping nitrogen mampu meningkatkan performa DSSC, hal ini terlihat dari nilai efisiensi yang dihasilkan dari masing-masing sampel. Pada TiO₂ tanpa perlakuan penambahan NH₃ nilai efisiensinya adalah 0,055%, sementara itu pada TiO₂ dengan perlakuan penambahan NH₃ konsentrasi 2, 5 dan 7,5% menghasilkan nilai efisiensi berturut-turut sebesar 0,070 %, 0,169 % dan 0,179 %

5.2 Saran

Perlu dilakukan penelitian lebih lanjut mengenai pengaruh TiO₂ terdoping nitrogen dengan menggunakan sumber dopan yang lainnya. Untuk bagian elektroda lawan, jika menggunakan *black carbon* akan lebih baik jika ditambahkan *Metyl Selulose* sebagai pengikat karena daya ikat *black carbon* terhadap kaca ITO sangat lemah sehingga mudah terkelupas saat perakitan *sandwitch* DSSC.

DAFTAR PUSTAKA

- Ananth, S., P. Vivek, T. Arumanayagam, and P. Murugakoothan. (2014). "Natural Dye Extract of Lawsonia Inermis Seed as Photo Sensitizer for Titanium Dioxide Based Dye Sensitized Solar Cells." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 128 420–26.
- Bang S.Y et al. (2012). "Evaluation Of Dye Aggregation And Effect Of Deoxycholic Acid Concentration On Photovoltaic Performance Of N749-Sensitized Solar Cell". Solar Cell Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Brabec. C. J., Sariciftci. N. S., Hummelen J. C. (2001). "*Plastic Solar Cells*" Adv. Funct. Mater, 11, 15-26.
- Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L. (2006), "Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%", Japanese Journal of Applied Physics, 45(25), L638–L640.
- Durr, M., Schmid, A., Obermaier, M., Rosselli, S., Yasuda, A., Nelles G. (2005), "Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers", Nature Mater, 4, 607–611.

EPA, 2013, "*Getting to the Core: The Link Between Temperature and Carbon Dioxide*", United State Environmental Protection Agency.

Fan Dong., Weirong Zhao., Zhongbiao Wu. (2008). "*Characterization and photocatalytic activities of C, N and S co-doped TiO*₂ with 1D nanostructure prepared by the nano-confinement effect", Nanotechnology, 19, 365607.

Green, Martin. A. (1982), "Solar Cells Operating Principles Technology and System Application", Prentice Hall, Inc, Evylewood Cliffs.

- Guidong Yang., Zheng Jiang., Huahong Shi., Tiancun Xiao., Zifeng Yan. (2010),
 "Preparation of highly visible-light active N-doped TiO₂ photocatalyst", J.
 Mater. Chem., 20, 5301–5309
- Halme, Janne. (2002), "Dye-Sensitized Nanostructured and Organic Photovoltaic Cells : Technical review and Preliminary Test", Master's thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology, Helsinki University Of Technology.
- Hiroshi Irie., Yuka Watanabe., and Kazuhito Hashimoto. (2003). "Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO_{2-x}N_x Powders", J. Phys. Chem. B, 107 (23), 5483–5486
- Ito, S., Murakami, T. N., Comte, P., Liska, P., Grätzel, C., Nazeeruddin, K., Grätzel, M. (2008), "Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%", Thin Solid Films, 516(14), 4613–4619.
- Ju-Young Park, Changhoon Lee, Kwang-Woo Jung, and Dongwoon Jung. (2009). "Structure Related Photocatalytic Properties of TiO₂", Bull. Korean Chem. Soc. Vol. 30, No. 2
- Kook, Lee Jin, Jeong Bo-Hwa, Jang Sung-il, Kim Young-Guen, Jang YongWook, Lee Su-Bin, Kim Mi-Ra. (2009), "Preparations of TiO₂ pastes and its application to light-scattering layer for dye-sensitized solar cells", Journal of Industrial and Engineering Chemistry 15 724-729
- Li B, Wang L, Kang B, Wang P & Qiu Y. (2006), "Review of Recent Progress in Solid-State Dye-Sensitized Solar Cells". Sol. Energy Mater. Sol. Cells 90:549-573.

- Maddu, A., Zyhri, M., Irmasyah. (2010), "Penggunaan Ekstrak Antosianin Kol Merah Sebagai Fotosensitizer Pada Sel Surya TiO₂ Nanokristal Tersensitisasi Dye", MST 11.
- Maddu, A., Zyhri, M., Irmasyah. (2012), "The Use Of Polymer Gel Electrolyte Containing I⁻/I₃⁻ Redox Couple To Assembly A Solid State Dye Sensitized TiO₂ Solar Cell", LIPI Nomor 536/D.
- Mukhtar, E. (2012) "Analisis Sifat Optik Lapisan Tipis TiO₂ DopingNitrogen yang Disiapkan dengan Metode Spin Coating", Prosiding Pertemuan Ilmiah XXVI HFI.
- Nazeeruddin, M. K., Baranoff, E., Grätzel, M. (2011), "Dye-sensitized solar cells: A brief overview", Solar Energy, 85(6), 1172–1178.
- O'Regan B., Gratzel, M. (1991), "A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO₂ films", Nature, 353, 737–740.
- Pitts, J. R., Gregg, B. A. (2000), "Low-Temperature Sintering of TiO₂ Colloids: Application to Flexible Dye-Sensitized", Langmuir, 16(8), 5626–5630
- Puspitasari, Nurrisma. (2012). "Studi Awal Pembuatan Prototipe Dye Sensitized Solar Cell (DSSC) Menggunakan Ekstraksi Rosela (Hibiscus Sabdariffa) sebagai Dye Sensitizer dengan Variasi Luas Permukaan Lapisan TiO₂". ITS. Surabaya.
- R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga. (2001), "Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides", Science, 293, 269.
- REN21. 2010. *Renewables 2010 Global Status Report*. Deutsche Gesellschaft für Technische Zusammenarbeit. Paris.

- Santoso, H. 2015. "Peningkatan Kinerja Dye-Sensitized Solar Cells menggunakan Metode Ultrasonikasi" ITS. Surabaya.
- Smestad, G.P. Gratzel, M. (1998), Demonstrating Eletron and Nanotechnology, J. Chem.Educ, 75 (6), hal 1-6
- Stern, David I. 2004. *Econimic Growth and Energy*. Encyclopedia of Energy, Volume 2. Elsevier.
- Taylor, P., Jena, A., Mohanty, S. P., Kumar, P., Naduvath, J., Lekha, P., Gondane,
 V. (2012), "Dye Sensitized Solar Cells : A Review Dye Sensitized Solar Cells", Transactions of the Indian Ceramic Society, 71, 37–41
- Widyastuti, E.S. Siradj, D. Priadi, A. Zulfia. (2008) "Kompaktibilitas Komposit Isotropik Al/ Al₂O₃ dengan Variabel Waktu Tahan Sinter", Makara, Sains. Vol. 12 113-119
- Zhang, H., Jillian F. Banfield. (2005). "Size dependence of the kinetic rate constant for phase transformation in TiO₂ nanoparticles" American Chemical Society, 17, 3421-3425.
- Zheng, Y., Shi, E., Chi, S.;Li, W., Hu, X. J. (2000), "Hydrothermal Preparation of Nanosized Brookite Powders". Am. Ceram. Soc, 83, 2634.

Halaman ini senganja dikosongkan

BIOGRAFI PENULIS

Bodi Gunawan, lahir di kota Bondowoso pada tanggal 26 September 1988, merupakan ketiga anak dari tiga bersaudara pasangan Alm. Supardi dan Lilik Syafa'atun Penulis telah menempuh pendidikan formal di SDN Kejayan 1, SMPN 1 Pujer, SMAN 1 Tenggarang, S1 Pendidikan Fisika Universitas Jember dan

Pascasarjana S2 Fisika Institut Teknologi Sepuluh Nopember angkatan 2014 dengan NRP 1114201011. Di Jurusan Fisika, penulis mengambil bidang minat instrumentasi. Selama menjadi mahasiswa S2 Fisika ITS, penulis mengikuti publikasi artikel ilmiah dalam seminar *International Conference on Engineering, Science and Nanotechnology (ICESNANO)* dan kegiatan ini diselenggarakan oleh kolaborasi Universitas Sebelas Maret (UNS) Indonesia dan Universiti Tun Hussein Onn (UTHM) Malaysia. Akhir kata apabila ada kritik dan saran, dapat dikirim ke email: mail4bodi@gmail.com