

### TUGAS AKHIR - TE145561

# MENGATUR KECEPATAN MOTOR 3 PHASA BERBEBAN REM ELEKTROMAGNETIK

Dimas A Baharsyah NRP 2211039010 Alex Siagian NRP 2211039019

Dosen Pembimbing Ir. Josaphat Pramudijanto, M.Eng. Eko Pujiyanto Matni, Spd.

PROGRAM STUDI D3 TEKNIK ELEKTRO Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2015



### FINAL ASSIGNMENT - TE145561

# CONTROLLING 3 PHASE INDUCTION MOTOR WITH ELEKTROMAGNETIK BRAKE

Dimas A Baharsyah NRP 2211039010 Alex Siagian NRP 2211039019

Supervisor Ir. Josaphat Pramudijanto, M.Eng. Eko Pujiyanto Matni, Spd.

PROGRAM STUDI D3 TEKNIK ELEKTRO Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2015

#### MENGATUR KECEPATAN MOTOR 3 FASA DENGAN BEBAN REM ELEKTROMAGNETIK

#### **TUGAS AKHIR**

Diajukan Guna Memenuhi Sebagian Persyaratan Untuk Memperoleh Gelar Ahli Madya Pada Bidang Studi Elektro Industri Program Studi D3 Teknik Elektro Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

Menyetujui :

Dosen Pembimbing I Dosen Pembimbing I Dosen Pembimbing II Dosen Pembimbing II <u>F.Josaphat Pramudijanto, M.Eng</u> NIP, 1962 10 05 1990 03 1003

> SURABAYA JUNI, 2015

#### Mengatur Kecepatan Motor 3 *Phasa* Berbeban Rem Elektromagnetik

| Nama Mahasiswa | : Dimas A Baharsyah                |  |  |
|----------------|------------------------------------|--|--|
| NRP            | : 2211039010                       |  |  |
| Nama Mahasiswa | : Alex Siagian                     |  |  |
| NRP            | : 2211039019                       |  |  |
| Pembimbing I   | : Ir. Josaphat Pramudijanto, M.Eng |  |  |
| NIP            | : 1962 10 05 1990 03 1003          |  |  |
| Pembimbing II  | : Eko Pujiatno Matni, S.Pd         |  |  |
| NIP            | : 19710330 199403 1 002            |  |  |

# ABSTRAK

Motor induksi 3 fasa mempunyai beberapa keunggulan dibandingkan dengan motor *DC*. Kelebihan dari motor induksi tiga fasa adalah konstruksinya sederhana, harganya murah dan murah dalam pemeliharaan. Karena keunggulan-keunggulan itu motor induksi lebih banyak digunakan terutama untuk aplikasi yang memerlukan kecepatan konstan. Namun pengaturan kecepatan motor induksi jauh lebih sulit dibandingkan motor arus searah. Untuk mengatur kecepatan motor induksi pada kecepatan tetap diperlukan pengaturan terhadap frekuensi atau torsi, padahal tidak ada hubungan yang linear antara arus motor dengan torsi yang dihasilkan.

Pada Tugas Akhir kali ini dibuat sebuah simulasi pembebanan yaitu dengan menggunakan rem elektromagnetik. Dengan cara menggunakan motor AC 3 fasa yang dikoneksikan pada *inverter*, yang kemudian datanya diambil oleh *rotary encoder*. Dimana data yang diperoleh oleh *rotary encoder* selanjutnya diolah dengan menggunakan PLC. Namun permasalahan simulasi pembebanan ini adalah cara untuk mengendalikan kecepatan dan menjaga kecepatan tersebut secara konstan. Untuk mengatasi permasalahan tersebut digunakan metode PID pada tugas akhir ini, dan hasil desain akan diimplementasikan pada motor induksi 3 fasa yang diberi beban berupa rem elektromagnetik.

Hasil dari implementasi kontroler *PID* yang dirancang dapat mempertahankan kecepatan mendekati nilai *set point* dengan *error* kurang dari 5%.

Kata kunci : Motor Induksi, PID, PLC.

#### **Controlling 3 Phase Induction Motor With Elektromagnetik Brake**

| Student Name  | : Dimas A Baharsyah               |
|---------------|-----------------------------------|
| NRP           | : 2211039010                      |
| Student Name  | : Alex Siagian                    |
| NRP           | : 2211039019                      |
| Supervisor I  | : Ir. Josaphat Pramudijanto, M.E. |
| NIP           | : 1962 10 05 1990 03 1003         |
| Supervisor II | : Eko Pujiatno Matni, S.Pd        |
| NIP           | : 19710330 199403 1 002           |
|               |                                   |

## ABSTRACT

Three phase induction motors have some special quality than DC motor. The special qualities of three phase induction are simple construction, economy-priced, and cheap of maontenance. Therefore the three phase induction motor are widely used for constant speed application. However speed control of three phase induction motor is more difficult than DC motor. Control of induction motor at the constant speed have a needs frequency regulation and torque regulation, but actually the case is nothing linear relation between motor current and torque.

In this Final Project we make a simulation using elektro magnetic brake. Which is we using 3 phase induction motor and connected it with inverter and take the data using rotary encoder. And then we process the data using PLC. The main problem of the discussion is keep the constant speed of induction motor although there is change of power-loading. To overcome these problems, we choose to use PID) method. In the final design results will be implemented on three phase induction motors which power-loading using electromagnetic brake.

The implementation result of the controller PIDis designed can maintain a velocity approaching the set point value with an error of less than 5%.

Keywords: Induction Motor, PID, PLC.

## **KATA PENGANTAR**

Segala puji syukur penulis panjatkan atas kehadirat Tuhan YME yang selalu memberikan rahmat serta hidayah-Nya sehingga Tugas Akhir ini dapat terselesaikan dengan baik.

Pada Kesempatan ini penulis ingin mengucapkan rasa syukur kehadirat Tuhan YME yang telah memberikan petunjuk, kemudahan, dan kemurahan-Nya serta tidak lupa ucapan terimakasih yang sebesarbesarnya kepada beberapa pihak yang telah memberikan dukungan selama proses pengerjaan tugas akhir ini, antara lain:

- 1. Ibu dan Bapak tercinta yang selalu memberi semangat, doa dan kasih sayangnya.
- 2. Bapak Ir. Josaphat Pramudijanto, M.Eng sebagai pembimbing 1 dan Bapak Eko Pujiatno Matni, S.Pd sebagai pembimbing 2 yang telah (membantu dan membimbing hingga laporan ini terselesaikan.
- 3. Bapak dan Ibu penguji Tugas Akhir yang telah memberi masukan kepada penulis untuk menyusun buku ini menjadi lebih baik.
- 4. Teman-teman D3 Teknik Elektro Industri Disnaker yang telah berbagi suka dan duka selama ini.
- 5. Semua pihak yang turut membantu pengerjaan Tugas Akhir ini yang tidak dapat penulis sebutkan satu per satu.

Penulis menyadari dan memohon maaf atas segala kekurangan pada Tugas Akhir ini dikarenakan keterbatasan kemampuan penulis. Penulis mengharapkan berbagai masukan dan kritik dari berbagai pihak agar lebih baik di masa yang akan datang. Akhir kata, semoga Tugas Akhir ini dapat bermanfaat dalam pengembangan ilmu pengetahuan demi kemajuan Indonesia menuju negeri berteknologi mandiri.

Surabaya, juli 2015

Penulis

# **DAFTAR ISI**

| HALAMAN JUDUL                                | i    |
|----------------------------------------------|------|
| PERNYATAAN KEASLIAN TUGAS AKHIR              | v    |
| HALAMAN PENGESAHAN                           | vii  |
| ABSTRAK                                      | ix   |
| ABSTRACT                                     | xi   |
| KATA PENGANTAR                               | xiii |
| DAFTAR ISI                                   | xv   |
| DAFTAR GAMBAR                                | xvii |
| DAFTAR TABEL                                 | xix  |
|                                              |      |
| BAB I PENDAHULUAN                            | 1    |
| 1.1 Latar Belakang                           | 1    |
| 1.2 Perumusan Masalah                        | 2    |
| 1.3 Batasan Masalah                          | 2    |
| 1.4 Tujuan                                   | 2    |
| 1.5 Sistematika Penulisan                    | 2    |
| 1.6 Relevansi                                | 3    |
|                                              |      |
| BAB II TEORI KONTROL KECEPATAN               |      |
| DENGAN MOTOR AC                              | 5    |
| 2.1 Motor Induksi 3 Fasa                     | 5    |
| ( ) / 2.1.1 Komponen                         | 5    |
| 2.1.2 Prinsip Kerja Motor Induksi            | 6    |
| 2.2 Rotary Encoder                           | 9    |
| 2.2.1 Incremental Rotary Encoder             | 9    |
| 2.3 Elektromagnet                            | 10   |
| 2.4 Rem Elektromagnetik                      | 11   |
|                                              |      |
| BAB III PERANCANGAN OTOMASI                  | 13   |
| 3.1 Perancangan Perangkat Keras              | 13   |
| 3.2 Prosedur Perancangan Rem Elektromagnetik | 13   |
| 3.2.1 Perancangan Panel Box                  | 17   |
| 3.2.2 Perancangan Non Inverting Amplifier    | 19   |
| 3.2.3 Sensor Rotary Encoder                  | 20   |
| 3.2.4 Inverter Siemens Sinamic G110          | 20   |
| 3.3 Perancangan Perangkat Lunak              | 26   |
| 3.3.1 Pemrograman GX Works2                  | 26   |
| 3.3.2 MX Component                           | 28   |
| 3.3.3 MX Sheet                               | 29   |

| 3.4 Tahapan Umum Pengambilan Data      | 31 |
|----------------------------------------|----|
| 3.5 Model Matematik <i>Plant</i>       | 34 |
| 3.6 Proses Pengolahan Data             | 35 |
| 3.6.1 Matlab 7.6.0 (R2008a)            | 35 |
| 3.7 Perancangan Kontroler              | 40 |
| 3.7.1 Metode Analitik                  | 41 |
| 3.8 Perancangan Panel Operator         | 44 |
|                                        |    |
| BAB IV PENGUKURAN DAN ANALISA          | 45 |
| 4.1 Pengukuran Perangkat Keras         | 45 |
| 4.1.1 Pengukuran Penguat Tegangan      | 45 |
| 4.2 Pengukuran Kecepatan Motor 3 Phasa | 46 |
| 4.2.1 Pengukuran Sistem Open Loop      | 47 |
| 4.2.2 Pengukuran Beban Nominal         | 48 |
| 4.2.3 Pengukuran Beban Maksimal        | 48 |
| 4.3 Pengambilan Data Step Response     | 49 |
| 4.4 Nilai Data Kontroler <i>PID</i>    | 52 |
| 4.5 Uji Coba Program                   | 54 |
| ANG ANG ANG ANG ANG                    |    |
| BAB V PENUTUP                          | 57 |
| 5.1 Kesimpulan                         | 57 |
| 5.2 Saran                              | 57 |
|                                        |    |
| DAFTAR PUSTAKA                         | 59 |
| LAMPIRAN 1                             | 61 |
| LAMPIRAN 2                             | 63 |
| LAMPIRAN 3                             | 81 |
| LAMPIRAN 4 March 1994                  | 83 |
| RIWAYAT HIDUP                          | 85 |

# DAFTAR GAMBAR

| Gambar 2.1  | Komponen Motor Induksi                        | 5  |
|-------------|-----------------------------------------------|----|
| Gambar 2.2  | Prinsip Kerja Motor Induksi                   | 6  |
| Gambar 2.3  | Belitan Stator Motor Induksi                  | 7  |
| Gambar 2.4  | Bentuk Gelombang Sinusoida dan Timbulnya      |    |
|             | Medan Putar Pada Stator Motor Induksi         | 8  |
| Gambar 2.5  | Susunan Piringan Untuk Incremental            |    |
|             | Encoder                                       | 9  |
| Gambar 2.6  | Garis Gava Magnet                             | 10 |
| Gambar 2.7  | Garis Magnet Membentuk Selubung Pada Kawat    | DI |
|             | Berarus                                       | 10 |
| Gambar 2.8  | Hukum Tangan Kanan Lorenz                     | 11 |
| Gambar 2.9  | Contoh Bentuk Fisik Rem Elektromagnetik       | 12 |
| Gambar 2.10 | Gava Pengereman Arus <i>Edi</i>               | 12 |
| Gambar 3.1  | Lempeng Besi Tampak Depan                     | 13 |
| Gambar 3.2  | Lempengan Besi Tampak Samping                 | 14 |
| Gambar 3.3  | Kawat <i>Email</i>                            | 14 |
| Gambar 3.4  | Besi Tempat Kumparan Tampak Samping           | 15 |
| Gambar 3.5  | Besi Tempat Kumparan Tampak Depan             | 15 |
| Gambar 3.6  | Besi dan Kumparan Setelah Disatukan dan di    |    |
|             | Semen                                         | 16 |
| Gambar 3.7  | Hasil Perangkaian Pumparan dan                |    |
|             | Lempengan                                     | 16 |
| Gambar 3.8  | Penyatuan Kumparan dan Alumunium              | 17 |
| Gambar 3.9  | Panel Kelistrikan Bagian Dalam.               | 18 |
| Gambar 3.10 | Panel Tampak Depan                            | 18 |
| Gambar 3.11 | Panel Tampak Samping                          | 19 |
| Gambar 3.12 | Rangkaian Non Inverting Amplifier             | 19 |
| Gambar 3.13 | Wiring antar Pin Sensor Rotary Encoder dengan |    |
|             | Konektor                                      | 20 |
| Gambar 3.14 | Bentuk Fisik Inverter Siemens Sinamics        |    |
|             | G110                                          | 21 |
| Gambar 3.15 | Operator Panel BOP                            | 21 |
| Gambar 3.16 | Pembuatan Project Baru                        | 26 |
| Gambar 3.17 | Inisialisasi PLC Parameter                    | 27 |
| Gambar 3.18 | Tampilan New Module                           | 28 |
| Gambar 3.19 | Tampilan Menu Use                             | 29 |
| Gambar 3.20 | Plot Tampilan Menu Access Data                | 30 |
| Gambar 3.21 | Tampilan Menu Operational Internal            | 30 |
| Gambar 3.22 | Tampilan Menu Device Triger                   | 31 |

| Gambar 3.23 | Flowchart Tahapan Umum Pengambilan       |     |
|-------------|------------------------------------------|-----|
|             | Data                                     | 33  |
| Gambar 3.24 | Blok Diagram Kontroler Secara Umum       | 34  |
| Gambar 3.25 | Blok Diagram Bentuk Sederhana            | 34  |
| Gambar 3.26 | Blok Diagram Kontroler dan Plant         | 35  |
| Gambar 3.27 | Model Matematika Dari Plant.             | 35  |
| Gambar 3.28 | Dialog Utama Matlab                      | 36  |
| Gambar 3.29 | Input Data                               | 36  |
| Gambar 3.30 | Penggantian Nama dan Data                | 37  |
| Gambar 3.31 | 2 Input Data                             | 37  |
| Gambar 3.32 | Aktivasi                                 | 38  |
| Gambar 3.33 | System Identification Tools              | 38  |
| Gambar 3.34 | Dialog Time Domain Data                  | 38  |
| Gambar 3.35 | Hasil Dari Pengolahan Data               | 39  |
| Gambar 3.36 | Hasil LTI View                           | 39  |
| Gambar 3.37 | Model Matematika yang Dicari             | 40  |
| Gambar 3.38 | Model Matematik Kontroler                | 40  |
| Gambar 3.39 | Blok Diagram Sistem Kontrol Kecepatan    | 41  |
| Gambar 3.40 | Flowchart Program Pada PLC               | 43  |
| Gambar 3.41 | Panel Operator                           | 44  |
| Gambar 4.1  | Konfigurasi Pengukuran Rangkaian Penguat |     |
|             | Tegangan                                 | 45  |
| Gambar 4.2  | Pengukuran Penguat Tegangan              | .46 |
| Gambar 4.3  | Pengambilan Data Plant Motor             | 47  |
| Gambar 4.4  | Skema Pengukuran Step Response           | 50  |
| Gambar 4.5  | Kurva S dari <i>Plant</i>                | 51  |
| Gambar 4.6  | Potongan Encoder Program                 | 54  |
| Gambar 4.7  | Potongan Program Pemberian Signal Step   | 55  |
| Gambar 4.8  | Potongan Program Kontroler <i>PID</i>    | 56  |



# DAFTAR TABEL

| Tabel 3.1 | Alamat External I/O Terminals yang digunakan | 20 |
|-----------|----------------------------------------------|----|
| Tabel 3.2 | Fungsi Tombol Inverter Micromaster G110      | 22 |
| Tabel 3.3 | Fungsi Tombol Inverter                       | 22 |
| Tabel 3.4 | Name Plate Motor                             | 23 |
| Tabel 4.1 | Hasil Pengukuran Rangkaian Penguat Tegangan  | 46 |
| Tabel 4.2 | Hasil Pengkuran Plant motor 3 fasa           | 47 |
| Tabel 4.3 | Hasil Pengukuran dengan Beban Nominal        |    |
|           | 140 Volt                                     | 48 |
| Tabel 4.4 | Pengukuran dengan Beban Maksimal 220 Volt    | 49 |
| Tabel 4.5 | Step Respons Tanpa Beban Ramp Up             | 50 |
| Tabel 4.6 | Validasi Model Matematika                    | 52 |



## BAB I PENDAHULUAN

#### **1.1 Latar Belakang**

Kontrol otomatik dan motor induksi 3 fasa memiliki peranan yang sangan penting dalam kemajuan teknologi industri. Kemajuan dalam teori dan praktek kontrol otomatik memberikan kemudahan dalam melakukan suatu kinerja, seperti meniadakan pekerjaan rutin yang membosankan, meningkatkan kualitas produksi dan mempertinggi laju produksi. Penggunaan motor 3 fasa banyak digunakan pada industri dengan berbagai aplikasi. Hal ini disebabkan karena motor induksi 3 fasa memiliki keunggulan dibandingkan dengan motor DC. Adapun kelebihan dari motor induksi tiga fasa adalah konstruksinya sederhana, harganya murah dan murah dalam pemeliharaan. Karena keunggulankeunggulan itu motor induksi lebih banyak digunakan terutama untuk aplikasi yang memerlukan kecepatan konstan. Satu hal yang menjadi kelemahan motor induksi adalah pengaturan kecepatannya yang jauh lebih sulit dibandingkan motor arus searah. Untuk mengatur kecepatan motor induksi pada kecepatan tetap diperlukan pengaturan terhadap frekuensi atau torsi, padahal tidak ada hubungan yang linear antara arus motor dengan torsi yang dihasilkan.

Seringkali dalam aplikasinya motor induksi dituntut untuk bekerja pada kecepatan tertentu. Bertambahnya beban yang diberikan akan memperbesar kopel motor sehingga akan memperbesar arus induksi pada rotor yang menyebabkan *slip* antara medan putar dan putaran rotor pun akan bertambah besar. Perubahan beban ini akan menyebabkan kecepatan putar motor induksi tidak stabil.

Persoalan kontrol kecepatan kali ini telah menarik perhatian banyak pihak akibat meningkatnya kebutuhan sistem dengan performa tinggi. Untuk menyelesaikan persoalan kontrol kecepatan, perlu dicari suatu aturan untuk menentukan pengambil keputusan sistem kontrol dengan beberapa kendala tertentu yang akan meminimumkan suatu ukuran simpangan dari perilaku idealnya. Ukuran ini biasanya ditetapkan berdasarkan indeks unjuk kerja system atau berdasarkan *step response* dari motor yang bersangkutan.

Pada tugas akhir ini digunakan motor induksi 3 fasa dengan rem elektromagnetik sebagai *plant* yang akan dikontrol dengan teknk *PID*. Pada motor induksi 3 fasa, perubahan kecepatan dapat diatur dengan cara mengubah-ubah besarnya frekuensi yang diberikan pada motor. Serta merancang dan membuat kontroler *PID* dengan meletakkan operasi algoritmanya pada memori *PLC*.

#### 1.2 Perumusan Masalah

Pengaturan kecepatan motor induksi relatif sulit dilakukan karena putaran motor yang sulit untuk diatur akibat pembebanan. Pada Tugas Akhir ini, motor induksi diberikan pembebanan berupa rem elektromagnetik yang dapat diatur daya kemagnetannya melalui sebuah *auto transformator*. Oleh karena itu dibutuhkan kontroler yang dapat membuat kecepatan motor tetap stabil walaupun diberikan efek pembebanan. Kontroler *PID* diharapkan dapat menjaga kecepatan agar tetap stabil pada saat ada perubahan beban.

#### 1.3 Batasan masalah

Dari perumusan masalah di atas, ada beberapa hal yang perlu dibatasi, sehingga penelitian yang dilakukan dapat tercapai. Batasan masalah dalam pengerjaan Tugas Akhir ini, yaitu:

- 1. Pengontrolan yang dilakukan hanya pada kecepatan saja.
- 2. Sistem kontrol yang digunakan adalah PID.
- 3. Pembebanan diberikan dengan menggunakan rem elektromagnetik dengan nilai *range* dari *output* auto trafo sebesar 140-220 *VDC* (beban nominal dan maksimal).
- 4. Daya magnet yang digunakan oleh rem magnetik tidak diperhitungkan secara matematis.
- 5. Analisa hasil pengujian hanya dititik beratkan pada analisa *step response* pada *plant*.
- 6. Model matematika kontroler *PID* didapatkan dengan menggunakan program *matlab* versi 7.6.0 (R2008a).

Dengan adanya batasan masalah ini diharapkan hasil akhir dari Tugas Akhir ini dapat tercapai.

#### 1.4 Tujuan

Tujuan yang ingin dicapai dalam Tugas Akhir ini adalah :

- Merancang kontrol kecepatan motor induksi 3 phasa berbeban.
- Merancang beban rem elektromagnetik sebagi beban motor.

#### 1.5 Sistematika Penulisan

Dari proses pembuatan alat pada Tugas Akhir ini yang dimulai dari persiapan, perencanaan, pengerjaan, dan perbaikan serta hasil dan analisa yang didapat maka diwujudkan ke dalam bentuk buku laporan Tugas Akhir dengan sistematika sebagai berikut :

#### Bab I : Pendahuluan

Membahas tentang latar belakang, permasalahan, batasan masalah, tujuan, serta relevansi

#### Bab II : Teori Kontrol Kecepatan dengan Motor Ac

Membahas teori – teori yang dipakai dalam pembuatan Tugas Akhir.

#### Bab III :Perencanaan Otomasi

Berisikan tahap – tahap perencanaan berdasarkan cara kerja dari rangkaian yang diinginkan dan pembuatan peralatan yang dilakukan berdasarkan perencanaan yang telah dibuat.

#### Bab IV : Pengukuran dan Analisa

Membahas tentang pengukuran, pengujian, dan penganalisaan terhadap alat.

# Bab V : Penutup

Menjelaskan tentang kesimpulan dari Tugas Akhir ini dan saran - saran untuk pengembangan alat ini lebih lanjut.

#### 1.6 Relevansi

Mengetahui dan mengatur kecepatan motor 3 fasa pada dunia industri adalah suatu permasalahan yang sampai sekarang dialami oleh sebagian industry atau pabrik – pabrik. Dengan hal itu maka kami mempunyai ide untuk membuat suatu alat yaitu rem elektromagnetik untuk mengetahui kecepatan sebuah motor 3 fasa dan mengatur kecepatan motor 3 fasa.



Halaman ini sengaja dikosongkan

# BAB II TEORI KONTROL KECEPATAN DENGAN MOTOR AC

Dalam bab ini adalah untuk membahas teori-teori dasar, rumusan, dan prinsip yang menjadi acuan perencanaan yang nantinya digunakan dalam konsep perancangan yang berdasarkan dengan referensi yang meliputi Rem Elektromagnetik, Motor Induksi 3 fasa, *Rotary Encoder* 

#### 2.1 Motor Induksi 3 Fasa[1]

Motor induksi adalah motor arus bolak-balik (AC) yang paling banyak digunakan dalam setiap aplikasi industri. Motor ini memiliki konstruksi yang kuat, sederhana, handal, serta berbiaya murah. Akan tetapi jika dibandingkan dengan motor DC, motor induksi masih memiliki kelemahan dalam hal pengaturan kecepatan, dimana pada motor induksi pengaturan kecepatan sangat sulit untuk dilakukan.

Motor induksi adalah suatu mesin listrik yang merubah energi listrik menjadi energi gerak dengan menggunakan gandengan medan listrik dan mempunyai *slip* antara medan stator dan medan rotor

#### 2.1.1 Komponen

Motor induksi memiliki dua komponen listrik utama yang dapat dilihat pada Gambar 2.1.



Gambar 2.1 Komponen Motor Induksi

- 1. Rotor adalah bagian dari motor induksi yang bergerak yang berada pada bagian tengah konstruksi motor, berdasarkan konstruksinya rotor dapat diklasifikasikan menjadi dua yaitu:
  - a. Rotor sangkar terdiri dari batang penghantar tebal yang dilekatkan dalam petak-petak *slots* paralel. Batang-batang tersebut diberi hubungan pendek pada kedua ujungnya dengan alat cincin hubungan pendek.
  - b. Rotor belitan yang memiliki gulungan tiga fase, lapisan ganda dan terdistribusi. Dibuat melingkar sebanyak kutub stator. Tiga fase digulungi kawat pada bagian dalamnya dan ujung yang lainnya dihubungkan ke cincin kecil yang dipasang pada batang as dengan sikat yang menempel padanya.
- Stator adalah bagian yang diam pada motor induksi dan umumnya berada pada sisi luar motor induksi. Stator dibuat dari sejumlah stampings dengan slots untuk membawa gulungan tiga fase. Gulungan ini dilingkarkan untuk sejumlah kutub yang tertentu.

#### 2.1.2 Prinsip Kerja Motor Induksi

Motor induksi adalah alat listrik yang mengubah *energi listrik* menjadi *energy mekanik*. Listrik yang diubah adalah listrik 3fasa. Motor induksi sering juga disebut motor tidak serempak atau motor asinkron. Prinsip kerja motor induksi dapatdilihat pada Gambar 2.2.



#### Gambar 2.2 Prinsip Kerja Motor Induksi

Ketika tegangan *phasa U* masuk ke belitan stator menjadikan kutub S (*south* = selatan), garis-garis gaya magnet mengalir melalui stator, sedangkan dua kutub lainnya adalah N (*north* = utara) untuk fasa V dan fasa W. Kompas akan saling tarik-menarik dengan kutub S.

Berikutnya kutub S pindah ke phasa V, kompas berputar 120°, dilanjutkan kutub S pindah ke phasa W, sehingga pada belitan stator timbul *medan magnet putar*. Buktinya kompas akan memutar lagi menjadi 240°. Kejadian berlangsung silih berganti membentuk medan

magnet putar sehingga kompas berputar dalam satu putaran penuh, proses ini berlangsung terus menerus. Dalam motor induksi kompas digantikan oleh rotor sangkar yang akan berputar pada porosnya. Pada motor induksi agar timbul torsi pada rotor harus ada medan induksi ke kumparan rotor sehingga putaran rotor harus lebih kecil dari pada medan stator, maka dari itu disebut motor tidak serempak atau motor asinkron.



Gambar 2.3 Belitan Stator Motor Induksi

Susunan belitan stator motor induksi dengan dua kutub, memiliki tiga belitan yang masing-masing berbeda sudut 120° Gambar 2.3. Ujung belitan phasa pertama U1-U2, belitan phasa kedua V1-V2 dan belitan phasa ketiga W1-W2. Prinsip kerja motor induksi dijelaskan dengan gelombang sinusoidal Gambar 2.4, terbentuknya medan putar pada stator motor induksi. Tampak stator dengan dua kutub, dapat diterangkan dengan empat kondisi.

Prinsip kerja motor induksi dijelaskan dengan gelombang sinusoidal Gambar 2.4, terbentuknya medan putar pada stator motor induksi. Tampak stator dengan dua kutub, dapat diterangkan dengan empat kondisi.

#### 1. Saat sudut 0°.

Arus  $I_1$  bernilai positip dan arus  $I_2$  dan arus I bernilai negatip dalam hal ini belitan  $V_2$ ,  $U_1$  dan  $W_2$  bertanda silang (arus meninggalkan pembaca), dan belitan  $V_1$ ,  $U_2$  dan  $W_1$  bertanda titik (arus listrik menuju pembaca). Terbentuk fluks magnet pada garis horizontal sudut 0°. Kutub S (south = selatan) dan kutub N (north = utara).

2. Saat sudut 120°.

Arus  $I_2$  bernilai positip sedangkan arus  $I_1$  dan arus  $I_3$  bernilai negatif, dalam hal ini belitan  $W_2$ ,  $V_1$ , dan  $U_2$  bertanda silang (arus meninggalkan pembaca), dan kawat  $W_1$ ,  $V_2$ , dan  $U_1$  bertanda titik (arus menuju pembaca). Garis fluk magnit kutub S dan N bergeser 120° dari posisi awal.

#### 3. Saat sudut 240°.

Arus  $I_3$  bernilai positip dan  $I_1$  dan  $I_2$  bernilai negatip, belitan  $U_2$ ,  $W_1$ , dan  $V_2$  bertanda silang (arus meninggalkan pembaca), dan kawat  $U_1$ ,  $W_2$ , dan  $V_1$  bertanda titik (arus menuju pembaca). Garis fluk magnit kutub S dan N bergeser 120° dari posisi kedua.

4. Saat sudut 360°. Posisi ini sama dengan saat sudut 0°, di mana kutub S dan N kembali keposisi awal sekali.



Gambar 2.4 Bentuk Gelombang Sinusoida Dan Timbulnya Medan Putar Pada Stator Motor Induksi

Dari keempat kondisi di atas saat sudut 0°, 120°, 240°, dan 360°, dapat dijelaskan terbentuknya medan putar pada stator, medan magnet putar stator akan memotong belitan rotor. Kecepatan medan putar stator ini sering disebut kecepatan sinkron, tidak dapat diamati dengan alat ukur tetapi dapat dihitung secara teoritis yang besarnya adalah:

$$ns = \frac{f \times 120}{p} \text{Rpm}$$
(2.1)

Rotor ditempatkan di dalam rongga stator, sehingga garis medan magnet putar stator akan memotong belitan rotor. Rotor motor induksi adalah beberapa batang penghantar yang ujung-ujungnya dihubungsingkatkan menyerupai sangkar tupai, maka sering disebut rotorsangkar tupai, kejadian ini mengakibatkan pada rotor timbul induksi elektromagnetis. Medan magnet putar dari stator saling berinteraksi dengan medan magnet rotor, terjadilah *torsi putar* yang berakibat rotor berputar. Kecepatan medan magnet putar pada stator:

#### 2.2 Rotary encoder[2]

Sensor yang digunakan untuk memonitor kecepatan putaran motor induksipada tugas akhir ini adalah *rotary encoder*. *Rotary encoder* digunakan untukmengubah gerakan linier atau putaran menjadi sinyal digital, dimana sensorputaran memonitor gerakan putar dari suatu alat.

Rotary encoder adalah elektro-mekanik yang dapat memonitor gerakan dan posisi. Rotary encoder umumnya menggunakan sensor optik untuk menghasilkan serial pulsa yang dapat diartikan menjadi gerakan, posisi, dan arah. Sehingga posisi sudut suatu poros benda berputar dapat diolah menjadi informasi berupa kode *digital* oleh *rotary* encoder untuk diteruskan oleh rangkaian kendali.

#### 2.2.1 Incremental Rotary Encoder

Incremental encoder adalah jenis sensor rotary encoder yang paling sesuai untuk mendeteksi kecepatan motor dibandingkan dengan jenis absolute. Incremental encoder terdiri dari dua track atau single track dan dua sensor yang disebut channel A dan B. Ketika poros berputar, deretan pulsa akan muncul di masing-masing channel pada frekuensi yang proporsional dengan kecepatan putar sedangkan hubungan fasa antara channel A dan B menghasilkan arah putaran. Dengan menghitung jumlah pulsa yang terjadi terhadap resolusi piringan maka putaran dapat diukur.

Untuk mengetahui arah putaran, dengan mengetahui *channel* mana yang *leading* terhadap *channel* satunya dapat kita tentukan arah putaran yang terjadi karena kedua *channel* tersebut akan selalu berbeda fasa seperempat putaran (*quadrature signal*). Susunan piringan untuk *incremental encoder* dapat dilihat pada Gambar 2.5.



Gambar 2.5 Susunan Piringan Untuk Incremental Encoder

#### 2.3 Elektromagnet[3]

Elektromagnet adalah prinsip pembangkitan magnet dengan menggunakan arus listrik. Aplikasi praktisnya kita temukan pada motor listrik, speaker, relay dsb. Sebatang kawat yang diberikan listrik DC arahnya meninggalkan kita (tanda silang), maka disekeliling kawat timbul garis gaya magnet melingkar, lihat Gambar 2.6



Gambar 2.6 Garis Gaya Magnet

Sebatang kawat pada posisi vertikal diberikan arus listrik DC searah panah, maka arus menuju keatas arah pandang (tanda titik). Garis gaya magnet yang membentuk selubung berlapis lapis terbentuk sepanjang kawat. Garis gaya magnet ini tidak tampak oleh mata kita, cara melihatnya dengan serbuk halus besi atau kompas yang didekatkan dengan kawat penghantar tsb. Kompas menunjukkan bahwa arah garis gaya sekitar kawat melingkar. Arah medan magnet disekitar penghantar sesuai arah putaran sekrup (James Clerk Maxwell, 1831-1879). arah arus kedepan (meninggalkan kita) maka arah medan magnet searah putaran sekrup kekanan. Sedangkan bila arah arus kebelakang (menuju kita) maka arah medan magnet adalah kekiri.



Gambar 2.7 Garis Magnet Membentuk Selubung Pada Kawat Berarus

Hukum tangan kanan untuk menjelas kan terbentuknya garis gaya elektromagnet pada sebuah gulungan atau coil dapat dilihat pada Gambar 2.8. Dimana sebuah gulungan kawat coil dialiri arus listrik, maka arah arusnya ditunjukkan sesuai dengan empat jari tangan kanan, sedangkan kutub magnet yang dihasilkan ditunjukkan dengan ibu jari untuk arah kutub utara dan kutub selatan arah lainnya.



Gambar 2.8 Hukum Tangan Kanan Lorenz

Untuk menguatkan medan magnet yang dihasilkan pada gulungan dipasangkan inti besi dari bahan ferromagnet, sehingga garis gaya elektromagnet menyatu

#### 2.4 Rem Elektromagnetik

Rem adalah suatu alat yang digunakan untuk melakukan suatu aksi yang akan menurunkan kecepatan dalam selang waktu yang ditentukan. Tipe rem yang umum digunakan adalah rem yang menggunakan gaya gesek untuk memberikan gaya lawan terhadap gaya gerak. Sistem pengereman elektromagnetik menggunakan gaya elektromagnetik untuk memperlambat suatu gerakan. Sebuah piringan dengan bahan logam non-feromagnetik terpasang dengan poros yang berputar. Piringan tersebut diapit oleh sisi stator berupa sistem lilitan elektromagnetik yang dapat membangkitkan medan magnet dari aliran listrik.

Arus listrik menimbulkan medan magnet pada lilitan dan logam piringan yang memotong medan magnet tersebut akan menimbulkan arus *eddy* pada piringan itu sendiri. Arus *eddy* ini akan menimbulkan medan magnet yang arahnya berlawanan dengan medan magnet sebelumnya, sehingga menghambat gerakan putar dari poros tersebut. Rem elektromagnetik akan optimal untuk memberikan penurunan kecepatan, bukan untuk menghentikan gerak suatu objek. Sehingga Rem ini sering diaplikasikan untuk sistem pengereman pada *roller coaster*, kereta api dan juga digunakan pada alat *dinamometer* untuk pengukuran torsi suatu mesin. Contoh dari bentuk fisik dari rem elektromagnetik ditunjukkan oleh Gambar 2.9. Arus *eddy* yang melingkar menyebabkan medan magnet induksi melawan arah medan magnet mula-mula. Hal ini menyebabkan gaya pengereman yang melawan arah kecepatan konduktor yang bergerak memotong medan magnet dari kedua solenoid.



Gambar 2.9 Contoh Bentuk Fisik Rem Elektromagnetik

Gaya pengereman yang dihasilkan oleh arus melingkar *eddy* ditunjukkan oleh Gambar 2.10. Medan magnet yang arahnya menjauhi pengamat. Kemudian sebuah konduktor memotong medan magnet tersebut dengan kecepatan (besar dan arah) tertentu. Berdasarkan hukum faraday, apabila terjadi perubahan medan magnet, maka akan timbul ggl pada konduktor. Pada konduktor, bidang yang mengalami perubahan fluks magnet hanya pada kedua sisinya, yang pertama adalah saat keluar dari medan maget (fluks magnet yang lewat pada konduktor berkurang) dan yang kedua adalah saat memasuki medan magnet (fluks magnet yang melewati konduktor bertambah). Sedangkan bagian tengah konduktor tidak mengalami perubahan fluks magnet sehingga tidak timbul lagi. Dengan artian, gaya lawan hanya dihasilkan apabila permukaan tersebut memiliki kecepatan. Semakin tinggi kecepatan maka gaya lawan yang dihasilkan juga semakin besar. Namun semakin rendah kecepatan, maka gaya lawan akan semakin kecil.



Gambar 2.10 Gaya Pengereman Arus Eddy

# BAB III PERANCANGAN OTOMASI

Pada Tugas Akhir yang membuat Motor 3 *Phasa* Berbeban Elektromagnetik, ada 2 tahapan yang dilakukan yaitu :

#### 1.Perancangan Perangkat Keras

- a. Perancangan Beban Rem Elektromagnetik
- b. Perancangan Panel Box
- c. Perancangan Rangkaian Penguat Tegangan non inverting amplifier
- 2.Perancangan Perangkat Lunak

#### **3.1 Perancangan Perangkat keras**

Perancangan Perangkat keras ini dimaksudkan agar tujuan dalam merakit alat tugas akhir kali ini dapat berjalan dengan baik dan tanpa mengalami kebingungan pada saat pengerjaan alat.

#### 3.2 Prosedur Perancangan Rem Elektromagnetik

Prosedur dari perancangan rem elekromagnetik merupakan langkah-langkah apa yang harus diambil dalam pembuatan rem elektro magnetik ini. Beban Rem Elektromagnetik dalam hal ini terdapat beberapa bagian yaitu lempengan besi, kawat kumparan, besi, dan semen. Lempengan besi yang dimaksud dalam hal ini adalah lempengan besi yang dibentuk seperti pada Gambar 3.1 dan 3.2 dimana pada lempengan tersebut nantinya akan dapat digunakan sebagai tempat menempelkan kumparan kawat yang telah digulung pada besi.



#### Gambar 3.1 Lempeng Besi Tampak Depan

Dari Gambar 3.1 dapat dilihat bahwa lempengan besi tampak depan memiliki diameter lebar lempengan 180 mm dan tebal lempengan 5mm.



Gambar 3.2 Lempengan Besi Tampak Samping

Dari Gambar 3.2 dapat dilihat bahwa lempengan besi tampak samping memiliki diameter lebar lempengan 180 mm dan tebal lempengan 5mm. Kawat yang digunakan dapat dilihat pada Gambar 3.3. Setelah terbentuk lempengan besi langkah selanjutnya yang kami lakukan adalah menentukan kawat yang digunakan. Dimana kawat yang digunakan pada hal ini adalah kawat *email* yang memiliki 970 lilitan dengan tebal 3 mm.



Gambar 3.3 Kawat Email

kemudian dibuat besi dimana kawat kumparan yang digunakan baru kemudian dibuat besi dimana kawat kumparan dapat dililitkan. Rencana besi yang kami gunakan dapat dilihat pada Gambar 3.4 dan 3.5.



Gambar 3.4 Besi Tempat Kumparan Tampak Samping

Gambar diatas menunjukkan posisi besi jika dilihat dari samping, sehingga dapat dilihat posisi lubang yang digunakan untuk menempelkan kumparan dengan piringan besi tempat kumparan.

Diameter

Diamete

50 mm



5 mm

Pada besi tempat kumparan, antara lempeng satu dengan yang lainnya disambung menggunakan pipa besi, dimana sambungan tersebut direkatkan dengan cara dilas. Besi tempat kumparan tersebut memiliki lubang di kedua sisi lempengannya sebagai tempat baut yang digunakan untuk merekatkan pada lempengan besi utama.

Setelah besi tempat kumparan selesai dibuka barulah kumparan mulai digulung pada besi tersebut, dan untuk mereduksi panas ketikan kawat email mulai dialiri arus maka di gunakan semen sebagai penahanpanas.Setelah kumparan digulung dan semen telah direkatkan maka tampilan kumparan yang diharapkan dapat dilihat pada Gambar 3.6. Gambar 3.6 Besi dan Kumparan Setelah Disatukan dan di Semen

5 mm -

+15 mm

Setelah kumparan terbentuk langkah selanjutnya melakukan pengukuran terhadap tiap kumparan.Setelah semua kumparan telah diukur dan didapatkan hasil yang diinginkan, selanjutnya adalah menyatukan kumparan tersebut dengan lempengan besi sehingga didapatkan bentuk seperti pada Gambar 3.7.

Gambar 3.7 Hasil Perangkaian Kumparan dan Lempengan

Setelah selesai menyatukan kumparan dengan lempengan besi langkah selanjutnya adalah dengan menyatukan kumparan dan lempeng yang telah disatukan dengan lempengan alumunium yang nantinya akan di rem oleh rem elektromagnetik. Gambar penyatuan keseluruhan kumparan dengan lempengan alumunium yang akan di rem dapa dilihat pada Gambar 3.8.

#### Gambar 3.8 Penyatuan Kumparan dan Alumunium

Dari Gambar 3.8 dapat dilihat bahwa setiap kumparan diletakkan secara berhadap – hadapan dan ditengah antara kumparan adalah lempengan aluminium yang akan direm.

#### 3.2.1 Perancangan Panel Box

Panel box dirancang sebagai tempat untuk semua rangkaian kelistrikan yang diperlukan untuk memberikan sumber tenaga listrik. Perancangan panel dibuat agar rangkaian – rangkaian yang diperlukan bisa lebih praktis dan ada pada satu tempat yang sama. Panel listrik terdiri dari rangkaian penguatan tegangan 2 kali, *Inverter*, dan rangkaian *power supply*. Panel kelistrikan bagian dalam dapat dilihat pada Gambar 3.9.



Gambar 3.9 Panel Kelistrikan Bagian Dalam

INVERTER SIEMENS MACROMASTER (\$110

Pilot lampu yang dipasang pada panel kontrol ada 2 buah dimana lampu berwarna hijau menandakan bahwa sistem sudah aktif menggunakan kontroler dan merah menandakan bahwa sistem tidak sedang beroperasi. Pada *panel box* juga terdapat 2 buah *push button* dimana berfungsi untuk menyalakan sistem dan mengatur mesin beroperasi dengan *controller*.



Gambar 3.10 Panel Tampak Depan

Pada Gambar 3.10 tersebut dapat dilihat posisi tombol *emergency* dan lampu indikator. Lampu indikator berfungsi sebagai penanda bahwa tegangan pada *panel box* sudah tersambung dengan baik. Pada Gambar 3.11 dapat dilihat posisi panel box dari samping, disiui dapat diketahui tempat untuk menancapkan kabel *PLC*, kabel motor, dan kabel *encoder*, serta kabel *grounding*.



Gambar 3.11 Panel Tampak Samping

#### 3.2.2 Perancangan Non Inverting Amplifier

Rangkaian *non inverting amplifier* yang dibuat adalah rangkaian penguat yang digunakan untuk menentukan tegangan agar sesuai dengan tegangan yang dibutuhkan.Karena tegangan keluaran *PLC* antara 0-5 *Volt*, sedangkan tegangan yang dibutuhkan oleh *inverter* adalah sekitar 0-10 *Volt*, maka dibutuhkan rangkaian penguat dua kali agar tegangan keluaran dari *PLC* dapat disesuaikan dengan tegangan yang dibutuhkan oleh *inverter* yaitu 0-10 *Volt*.



Gambar 3.12 Rangkaian Non Inverting Amplifier

Pada rangkaian penguat ini menggunakan *IC LM741* dan 2 buah resistor 10k *Ohm*.Dengan menggunakan rangkaian *non inverting* seperti pada Gambar 3.12 maka dapat diperoleh besar tegangan *output*dua kali lebih besar dari tegangan *input*. Dari rumus tersebut dengan perbandingan R1 dan R2 adalah 1 maka dapat diperoleh Vout = 2 Vin.

#### 3.2.3 Sensor Rotary Encoder

Terdapat 4 kabel koneksi sensor rotary encoder yang memiliki warna dan fungsi berbeda-beda, yaitu channel A (brown), channel B (white), supply +12V (black), dan supply 0V (green). Kabel - kabel ini dihubungkan ke modul High Speed Counter yang ada pada PLC Mitsubishi melalui sebuah konektor A6CONT. Wiring diagram antara kabel rotary encoder dan konektor dapat dilihat pada Gambar 3.13 dan alamat external i/o terminal yang digunakan dapat dilihat pada Tabel 3.1



Gambar 3.13 Wiring antar Pin Sensor Rotary Encoder dengan Konektor A6CONT

| Terminal Number | Signal Name |
|-----------------|-------------|
| B02             | 24 V        |
| A02             | 0 V         |
| A18             | Out B       |
| A20             | Out A       |

Tabel 3.1 Alamat External I/O Terminals yang Digunakan

Gambar 3.13 dan Tabel 3.1 dapat dilihat bahwa sensor *rotary* encoder yang digunakan adalah sensor *rotary* encoder dengan konektor a6cont.

#### 3.2.4 Inverter Siemens Sinamics G110

Inverter siemens sinamics g110 adalah inverter pengendali frekuensi untuk putar balik motor AC tiga fasa Inverter ini adalah sebuah mikroprocessor pengontrol yang menggunakan teknologi Insulated Gate Bipolar Transistor (IGBT) yang membuatnya lebih memiliki kegunaan dan keandalan. Bentuk fisik inverter siemens sinamics g110 dapat dilihat pada Gambar 3.14.



Gambar 3.14 Bentuk Fisik Inverter Siemens Sinamics G110

Sinamics G110 hanya memiliki satu pilihan mode operator panel, yaitu:

Basic Operator Panel (BOP)

Pada *mode BOP* yang ditampilkan hanya berupa informasi frekuensi (Hz),

Parameter dan informasi yang ditampilkan *LCD*. Pada tugas akhir ini, *inverter Sinamics G110* digunakan dalam *mode BOP*. Dapat dilihat pada Gambar 3.15.



#### Gambar 3.15 Operator Panel BOP

Terdapat beberapa tombol yang memiliki fungsi berbeda untuk pengoperasian *inverter sinamics G110*. Beberapa tombol tersebut dapat dilihat pada Tabel 3.2.

| Panel/Button Fungsi Keterangan               |                                                                         | Keterangan                                                                                              |
|----------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| <sup>P(1)</sup><br><sub>Hz</sub> Γ Ο Ο Ο Ο Ο | <b>CODOO</b> Status Indikasi Tampilan <i>LCD</i> sa parameter yang akan |                                                                                                         |
|                                              | Start Motor                                                             | Tombol untuk menjalankan motor                                                                          |
| 0                                            | Stop Motor                                                              | Tombol untuk memberhentikan motor                                                                       |
|                                              | Change<br>Direction                                                     | Tombol untuk mengubah arah putaran motor                                                                |
| DOC                                          | Jog Motor                                                               | Tombol untuk menjalankan motor sesuai <i>joging present</i> . Motor akan berjalan selama tombol ditahan |
| Fn                                           | Functions                                                               | Tombol untuk menampilkan informasi<br>tambahan. Tombol ini                                              |
|                                              | Access<br>Parameter                                                     | Tombol untuk mengakses parameter                                                                        |
|                                              | Increase Value                                                          | Tombol untuk menaikkan nilai yang ditampilkan                                                           |
|                                              | Decrease Value                                                          | Tombol untuk menurunkan nilai yang ditampilkan                                                          |

Tabel 3.2 Fungsi Tombol Inverter Micromaster G110

Dan untuk mengakses parameter pada inverter ini digunakan tombol-tombol sebagai berikut :

Tabel 3.3 Fungsi Tombol Inverter

| No | Langkah-langkah                                    | Tampilan |
|----|----------------------------------------------------|----------|
| 1  | Tekan Puntuk mengakses parameter                   | r 0000   |
| 2  | Tekan hingga muncul P0003                          | P0003    |
| 3  | Tekan Puntuk mengubah nilai parameter              | 1        |
| 4  | Tekan 🗖 atau 🗖 untuk memilih nilai yang diinginkan | З        |

| No | Langkah-langkah                             | Tampilan   |
|----|---------------------------------------------|------------|
| 5  | Tekan P kembali untuk memilih               | P0003      |
| 6  | Sekarang pengguna bias mengatur parameter 7 | The Market |

Quick comissioning adalah cara mudah untuk mengkonfigurasi sinamics G110 secara optimal terhadap motor tertentu yang berarti memberikan tugas kepada inverter untuk menjalankan motor. Namun ada beberapa data atau parameter yang harus dimasukkan atau diubah sesuai name plate pada motor yang akan digunakan, seperti batas frekuensi operasi, waktu ramp-up, waktu ramp-down, dan lain-lain.

Agar nantinya motor bisa dikendalikan melalui *inverter*, maka perlu dilakukan serangkaian proses *Quick Commissioning* untuk memasukan nilai-nilai parameter. Nilai parameter yang dimasukkan harus sesuai dengan spesifikasi mekanis dari motor yang akan diatur kecepatannya. Berikut adalah *name plate motor* yang dapat dilihat pada tabel 3.4.

| Alliance – Italy       |                    | IEC 34 – CE          |
|------------------------|--------------------|----------------------|
| <i>TYPE AY</i> 638 – 4 |                    | No. 02030688         |
| 0,18 KW                | 0,25 HP            | 1,07/0,62 A          |
| 220/380 V              | - 1310 r/min - (() | <i>LW</i> 52 dB (A)  |
| $CON \Delta/Y$         | Port Grade. IP 55  | 50 Hz 4,7 Kg         |
| JB/78680, 1-1998       | Work Rule 51       | INS. CLASS F DATE 02 |

#### Tabel 3.4 Name Plate Motor

Kemudiam dimasukkan datanya ke proses quick commissioning. Berikut langkah-langkah dalam proses Quick Commissioning :

#### 1. P003 (User Access Level)

P003 adalah parameter pertama yang muncul dalam proses pemasukan data parameter ini. Untuk mengakses parameter maka dengan menekan tombol "P", kemudian akan muncul 3 pilihan yang terdapat dalam pengaturan ini. Memilih "1", kemudian menekan kembali tombol "P" untuk menyimpan nilai parameter.

#### 2. P0010 (Start Quick Commissioning)

P0010 adalah pengaturan untuk memulai mengubah parameter dari *inverter* sesuai dengan karakteristik motor. Dengan cara menekan tombol "P" yang ada di *inverter*,

maka untuk memulai *Quick Comissioning* dengan memilih "1", untuk menyimpan parameter yang sudah diatur dengan cara menekan tombol "P" pada *inverter*.

3. P0100 (Operation for Europe / America)

P0100 adalah parameter untuk memilih frekuensi operasi yang akan digunakan untuk menggerakkan motor. Ada 3 pilihan dalam pengaturan ini. Karena frekuensi di Indonesia sendiri hanya menyediakan jaringan listrik dengan frekuensi 50Hz, sehingga diharuskan memilih opsi "0".

4. P0304 (Rated Motor Voltage)

P0304 adalah parameter untuk menentukan nilai suplai tegangan motor, pada bagian ini kisaran yang diperbolehkan yaitu 10 –2000 V. Dalam mengisi parameter ini, nilai yang dimasukkan harus sesuai dengan informasi yang ada pada *name plate* motor. Besar nominal tegangan motor (*Volt*) yang tertera pada *name plate* adalah 380V, sehingga nilai yang harus diisi adalah 380.

5. P0305 (Rated Motor Current)

P0305 adalah parameter untuk nilai arus nominal dari motor. Pada bagian ini kisaran yang diperbolehkan yaitu 0 - 2x. Nilai Arus nominal yang ada pada *name plate* motor yaitu 0,62 A.

6. P0307 (Rated Motor Power)

P0307 adalah parameter yang menentukan nilai daya motor. Pada bagian ini kisaran yang diperbolehkan adalah  $0,12 - 3,0 \ KW \ (0,16 - 4,02 \ HP)$ . Besar nominal daya motor (*KW*motor yaitu 0,18 *KW*.

7. P0310 (Rated Motor Frequency)

P0310 adalah parameter yang menentukan nilai frekuensi motor. Pada bagian ini kisaran yang diperbolehkan 12 – 650 Hz. Besar nominal frekuensi motor yang tertera pada *name plate* yaitu 50 Hz.

8. P0311 (Rated Motor Speed)

P0311 adalah pengaturan untuk menentukan nilai kecepatan motor, pada bagian ini kisaran yang diperbolehkan 0 – 40000 rpm. Besar nominal kecepatan motor (*rpm*) pada *name plate* yaitu 1310 *rpm*.

9. P0700 (Selection of Command Source)

P0700 adalah parameter untuk pemilihan sumber perintah, dimana nantinya akan muncul tiga pilihan, karena semua pengaturan berasal dari *inverter* itu sendiri tanpa memerlukan perangkat lain, maka memilih angka "1" Basic Operator Panel.

10. P1000 (Selection of Frequency Setpoint)

P1000 adalah parameter untuk menentukan pengontrolan frekuensi *inverter*. Ada 4 pilihan ketika kita akan menentukan metode pengontrolan frekuensi pada *inverter*. Karena untuk mengendalikan motor tiga fasa menggunakan *Programmable Logic Controller*dimana *PLC* ini memberikan tegangan kerja 0–5V, maka untuk pengendalian frekuensinya menggunakan pilihan "2", yaitu *analog setpoint*.

11. P1080 (Minimum Frequency)

P1080 adalah parameter untuk menentukan nilai minimal frekuensi motor dengan kisaran frekuensi 0–650 Hz. Motor yang digunakan diatur minimal frekuensi motor sebesar 0 Hz.

12. P1082 (Maximum Frequency)

P1082 adalah parameter untuk menentukan nilai maksimum frekuensi motor dengan kisaran sebesar 0–650 Hz, dimana motor yang digunakan frekuensinya diatur maksimal sebesar 50 Hz.

13. P1120 (Ramp-up Time)

P1120 adalah parameter untuk menentukan nilai *ramp-up time. Ramp-up time* adalah waktu yang dibutuhkan oleh motor dari keadaan diam sampai frekuensi motor maksimum. Waktu yang dibutuhkan untuk mencapai frekuensi motor maksimum adalah sebesar 10s.

14. P1121 (Ramp-down time)

P1121 adalah parameter untuk menentukan nilai *ramp-down time. Ramp-down time* adalah waktu yang dibutuhkan oleh motor untuk mengurangi kecepatan motor pada saat motor dalam keadaan frekuensi motor maksimum sampai berhenti. Waktu yang dibutuhkan untuk mencapai frekuensi motor dalam keadaan maksimum sampai berhenti adalah sebesar 10s.

15. P3900 (End Quick Commissioning)

P3900 adalah parameter untuk menentukan *End Quick Commissioning*. Setelah semua parameter telah diatur, maka yang perlu dilakukan adalah memilih angka "1", yaitu *End Quick Commissioning* dengan mengatur ulang semua pengaturan pabrik.
### 3.3 Perancangan Perangkat Lunak

Pada perancangan perangkat lunak ini akan dibahas pemrograman pada *PLC* untuk mengontrol *Plant* Motor 3 Fasa dengan menggunakan *GX-Works2*, pengambilan data dengan menggunakan *MX- Component* dan *MX-Sheet*.

### 3.3.1 Pemrograman GX Works2[4]

Untuk membuat program pada *PLC Mitsubishi* digunakan software dari *MELSOFT* yaitu *GX Works2*. Pada Tugas Akhir ini menggunakan bahasa pemrograman *ladder diagram*. Berikut adalah langkah-langkah dalam membuat program:

1. Membuat *Project* baru. Langkah pertama adalah menentukan tipe *project* yang akan dibuat, yaitu *simple project* karena hanya membutuhkan *ladder diagram*. Selanjutnya menentukan seri *PLC* yang digunakan, yaitu *QCPU* (*Q-Mode*) dan menentukan tipe *CPU PLC* yang digunakan. Pilih *CPUQ02/Q02H*. Kemudian menentukan bahasa pemrograman yang akan dibuat, yaitu *ladder diagram*. Setelah semua parameter ditentukan, klik *OK* untuk melanjutkan. Untuk lebih jelas dapat dilihat pada Gambar 3.16.

| Project Type:  | ОК       |
|----------------|----------|
| Simple Project | • Cancel |
| I Use Lab      | el       |
| PLC Series:    |          |
| QCPU (Q mode)  |          |
| PLC Type:      |          |
| Q02/Q02H       | J        |
| anguage:       |          |
| ladder         |          |

Gambar 3.16 Pembuatan Project Baru

 Inisialisasi PLC parameter. Pada PLC terdapat modul-modul yang harus diinisialisasi terlebih dahulu sebelum digunakan. Modul yang akan digunakan adalah modul I/O QX42 dan QY42P, modul Q62DA untuk DAC (Digital to Analog Converter) dan modul QD62 (High Speed Counter) yang digunakan untuk menghitung pulsa keluaran dari rotary *encoder* yang akan dikonversi menjadi satuan kecepatan (rpm). Pada *PLC* yang digunakan modul *DAC* pada slot ke-3 dengan alamat 0090 dan sedangkan modul *High Speed Counter* pada slot ke-4 dengan alamat 00A0. Tampilan *PLC* parameter dapat dilihat pada Gambar 3.17



Gambar 3.17 Inisialisasi PLC Parameter

3. Membuat Intelligent Function Module Q62DA. Pada Intelligent Function Module diklik kanan, lalu klik new module. Pada bagian Module Type dipilih Analog Module dan Module Name dipilih QD62DA .Selanjutnya pada Mount Slot No .dipilih 4. Setelah diklik OK, lalu mengisi parameter Switch Setting, Parameter ,dan Auto Refresh. Pada Switch Setting Output range pada CH1 diubah menjadi 0 to 5V . Pada Parameter, Set the D/A conversion system pada CH1 diubah menjadi 0 Enable. Pada Auto Refresh, Digital Value pada CH1 diisi dengan alamat memory yang ingin dijadikan output tegangan pada D/A. Tampilan New Module dapat dilihat pada Gambar 3.18.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Module Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analog Module                                            |
| Module Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10224                                                    |
| Mount Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |
| Base No. Mai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in Base Mounted Sot No.                                  |
| Ø Specify star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nt <u>Y</u> r address 0000 (t) 1 Slot Occupy (16 points) |
| Title Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |
| and the second s |                                                          |
| Itte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |

Gambar 3.18 Tampilan New Module

- Membuat program *ladder diagram*. Program yang telah dibuat pada Tugas Akhir ini dapat dilihat pada Lampiran.
- 5. Compile dan masukkan program ke PLC. Sebelum dimasukkan ke PLC, program harus di Compile dulu dengan cara klik Compile lalu klik Rebuild All. Untuk memasukkan program, klik Online lalu pilih Write to PLC.

### 3.3.2 MX Component[4]

*MX Component* berfungsi sebagai komunikasi antar perangkat *PLC* dengan perangkat komputer yang digunakan untuk penyimpan data dari *plant*. Langkah-langkah untuk melakukan konfigurasi *MX Component* adalah sebagai berikut:

- 1. Start >> All Programs >> Melsoft Application >> MX Component >> Communication Setup Utility
- 2. Klik Wizard >> Isi Logical Station Number >> Klik Next
- 3. Setting PC Side I/F (Serial) >> Connect Port (COM1) >> Time Out (10000ms) >> Klik Next
- 4. Setting PLC Side I/F (CPU module) >> CPU type (Q02(H)) >> Transmission speed (9600ms) >> Control (DTR or RTS Control) >> Next
- 5. Setting Station type (Host Station) >> Klik Next
- 6. Klik Finish, Kembali ke menu Target Setting, dan tekan Exit.

Maka konfigurasi MX Component selesai dilakukan.

### 3.3.3 *MX Sheet*[4]

MX Sheet adalah software digunakan untuk mengambil data dari *plant* yang akan digunakan untuk identifikasi maupun untuk analisa data dari kontroler yang dibuat, tampilan dapat dilihat pada Gambar 3.19. Berikut langkah-langkah untuk melakukan konfigurasi MX-Sheet:

- 1. Start Ms. Excel 2003 dan save Ms. Excel dengan nama yang diinginkan.
- 2. Blok cell area yang akan digunakan untuk pengambilan dimana data *logging* akan ditampilkan.
- 3. Klik Add On MX Sheet >> cell setting dari menu bar untuk setting acces data.
- 4. Menampilkan "cell setting". Setting "Use" dan setelah selesai klik setting acces data.

| Use                                | 11.000100                                                                                                                                                    |                     |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Part Area Marrie                   | Logging data                                                                                                                                                 | -                   |
| Cell Area                          | A2:H1000 Set the Color of Grid line Set the Color<br>Clear cell area at the start of communication                                                           | for Filling         |
| New data locati<br>Display Content | ion Last Line  Add title  Add date and time details                                                                                                          |                     |
|                                    | Captay from the beginning after clearing the cell area     Print the Excel sheet     Save to file     File name to sove     E: Data KulahiSemester 4/Tugas A | khir/Data Hasi Brow |
|                                    | Add date and time to File name     Add sequential number to File name     Ex the File name                                                                   |                     |
|                                    | Use Logical Operation Interval Device Trigger Handshake                                                                                                      | CSV Logging         |

Gambar 3.19 Tampilan Menu Use

# keterangan:

- a) Menu Use
- b) Cell Area Name
- c) Cell Area
- d) New Data Location
- e) Display Content
- f)

: Logging

- : 1 (dapat dirubah)
- : A2:H2000 (dapat dirubah)
- : Last line
- : Add date and time detail

Operation When Cell is Full : Display from the beggingng after clearing the are *cell*(Supaya data yang telah di record apabila telah melebihi 1000 maka data bias disimpan secara otomatis)

### g) Nama Save File

5.

6.

: *File* harus disimpan dengan nama yang berbeda darinama penyimpanan awal

Pada Gambar 3.20 menu Access data, atur Logical Station Number dengan cara klik Communication Settings untuk memulai Communication Setup Utility untuk setting logical station number dengan syarat harus sudah mengaktifkan Communication Setup Utility pada MX Component.

|     |               | -                              |      |      |       |                       |                       | Currinterio              | anter descript             |         |
|-----|---------------|--------------------------------|------|------|-------|-----------------------|-----------------------|--------------------------|----------------------------|---------|
|     | Device        | Data Type                      |      | 130  | e     | No. of<br>characters  | Zoom                  | No of cells              | Dev. points                | In soit |
| 1   | D1100         | Real marsher                   | 100  |      | -     |                       |                       | 10                       | 2                          | Word    |
| 2   | D900          | Reil aunther                   |      |      | *     |                       |                       | 1                        |                            |         |
| 3   | D920          | Real manber                    |      |      | *     |                       |                       | 3                        |                            | Word    |
| 4   | D1140         | Real number .                  | 100  |      | *     |                       |                       | 1                        |                            | Word    |
| 5   | D2540         | Real number .                  | 130  |      | *     |                       |                       | 2                        |                            | Word    |
| 6   | D1060         | Real stamber                   | - 12 |      | *     |                       |                       | 1                        |                            | Word    |
|     | D2060         | Real number                    | 120  |      |       |                       |                       | 1                        |                            | Word    |
| 8   | D1400         | Real mansher                   | 100  |      | ÷     |                       |                       | 1                        |                            | Word    |
| 9   | D2400         | Real number 🖉                  | 100  |      | Ψ.    |                       |                       | 1                        |                            | Word    |
| 10  | D3416         | Real number / /*               | - 15 |      | *     |                       |                       | 1 1/1                    |                            | Word    |
| 11  | D3432         | Real mamber                    | - 10 |      | ٠     |                       |                       | 1                        |                            | Word    |
| 12  | D3456         | Seal mather                    | 12   |      | *     |                       |                       | 1                        |                            |         |
| 12  | D3472         | Real number .                  | 100  |      | -     |                       |                       | 1                        |                            | Word    |
| 14  |               |                                |      |      | +     |                       |                       |                          |                            |         |
|     |               | -                              |      |      | ٠     |                       |                       | -                        |                            |         |
|     |               |                                |      |      |       |                       |                       | 1303                     | 120                        | ۰.<br>/ |
| Mat | a Na<br>ra3 L | Use Logical<br>ogging 1 PLC 5. | 0    | 10 m | dion. | Interval Dev<br>opa 3 | ce Trigger<br>ettings | Handshake<br>Ne settings | CSV Logging<br>No settings | 7       |

Gambar 3.20 Plot Tampilan Menu Access Data

Gambar 3.21 setting logging operation interval untuk sampling pengambilan data dan waktu yang dibutuhkan untuk pengambilan data.

| Cell Settings - Matra3                  |                                                                                                |                         |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------|-------------------------|--|
| Use Access Data Operation In            | torval Device Trigger   Handshaka   CSV Logging                                                |                         |  |
| Operation @ Daily<br>day                | Weekly Sunday Monthey Day                                                                      | Ê                       |  |
|                                         | Windheid dy<br>Friend dy<br>Fried y<br>Saturd ay<br>Estud ay<br>Last day of the current m      | e does not exist        |  |
| Operation @ Regular interval            | Hourity Minute + Time table H91                                                                |                         |  |
| Logging Time zone<br>Log Always         | HH MM -> HH M                                                                                  | <u>M</u>                |  |
| C Log only during the specified         | time zone                                                                                      |                         |  |
| Cell Area Na. Use L<br>Matra3 Logging 1 | ogical Operation Internal Device Tripger Handahaka CS<br>PLC 5 Settings Settings No ettings No | V Logging<br>¢ settings |  |
| Mandatory Settings( Not set /           | Set already ) OK 0                                                                             | Cancel Apply            |  |

Gambar 3.21 Tampilan Menu Operational Internal

#### keterangan:

Gambar

7

- a. Setthe Operation Interval : Check
- b. *Operation day*
- c. Operation time
- d. Logging Time

pengambilan data.

3.22 Setting

Device trigger untuk memulai

: Regular interval (1 s)

: Daily

: Log Always



# Gambar 3.22 Tampilan Menu Device Triger

keterangan: 1. Set Device Triger 2. Bit Device

: Check

: *Device X0 Condition ON*, jadi pengambilan pe data akan dimulai pada saat *device* M10 pada kondisi *ON* 

Untuk Memulai pengmbalian data, klik *start Communication* pada *menu bar mx sheet*.

### 3.4 Tahapan Umum Pengambilan Data

Tahapan proses merupakan suatu gambaran umum dari proses yang terjadi pada *plant* untuk menentukan langkah-langkah atau tahapan yang dilakukan pada *plant* hingga akhirnya keluaran atau hasil *output* dari *plant* dapat di *record* menggunakan *mx sheet*. Dimana dalam bagian ini dapat dilihat bagaimana urutan dalam pengoperasian dari *plant*.Mengetahui gambaran secara umum dari *plant* adalah salah satu

hal penting yang harus dilakukan sebelum memutuskan untuk digunakan seperti apakah nantinya *plant* yang telah dibuat. Karena jika tidak ada gambaran secara umum dari proses awal hingga pengambilan data maka seseorang yang baru mempelajari tentang materi ini akan kesulitan memahami hal apa yang sebenarnya ingindicapai dalam penelitian ini. Karena jika tidak ada gambaran umum ini akan sulit dilihat kontroler apakah sebenarnya yang digunakan dalam penelitia kali ini. Sehingga dengan digambarkannya proses yang terjadi pada plant hingga proses pengambilan data ini akan memudahkan untuk menentukan proses apa saja yang harus dilakukan untuk mendapatkan data yang diharapkan. Dalam tahapan proses ini agar lebih mudah untuk dipahami maka dibuatlah flowchart. Dalam flowchart tersebut dapat dilihat bahwa hal yang paling utama dilakukan sebelum melakukan pengambilan data adalah melakukan inisialisasi, dimana hal ini dimaksudkan agar pengguna dapat mengetahui bagian apa saja yang nantinya dapat menjadi input dan outputdari program pengambilan data yang dibuat. Dimana *flowchart* ini adalah hal yang perlu dilakukan agar *plant* bisa berjalan sesuai dengan yang diinginkan. Dalam flowchart dapat dilihat bahwa control yangdigunakan adalah control PID dan program atau software yang digunakan untuk proses pengambilan data adalah software mx sheet. Dimana hasil data yang di record oleh mx sheet selanjutnya akan ditampilkan dalam bentuk tabel yang dapat diamati dengan mudah menggunakan ms. Excel 2003. Data dari proses ini akan menghasilkan dua data yaitu data model *plant* dan parameter kontrol. Hal tersebut merupakan hal yang sangat penting dalam proses pengambilan data yang dilakukan. Hasil gambar flowchart dapat dilihat pada Gambar 3.23.





Gambar 3.23 Flowchart Tahapan Umum Pengambilan Data

### 3.5 Model Matematik *Plant*[5]

Secara umum model matematika sebuah *plant* dan kontroler jika digambarkan dalam blok diagram maka akan terlihat seperti Gambar 3.24.





Blok diagram tersebut jika dilahat dalam sisi yang lebih sederhana maka akan terlihat seperti pada Gambar 3.25. Dimana bentuk yang lebih sederhana ini dimaksudkan agar model dapat lebih mudah dipahami



Gambar 3.25 Blok Diagram Bentuk Sederhana

#### Keterangan :

- E(s) : Error Signal
- U(s) : Control Signal
- C(s) : Feedback Signal

Setelah ditentukan mana bagian kontroler dan mana bagian blant maka dapat diketahui blok diagram hubungan antara kontroler dan *plant*. Blok diagram ini dapat dilihat pada Gambar 3.26.



Gambar 3.26 Blok Diagram Kontrolerdan Plant

Sehingga dari diagram tersebut dapat diketahui bahwa model matematik dari *plant* tersebut adalah seperti yang dapat diamati pada Gambar 3.27.

$$U(s) \xrightarrow{K} \frac{1}{\omega_n^2} s^2 + \frac{2\xi}{\omega_n} s + 1$$

Gambar 3.27 Model Matematik dari Plant

### 3.6 Proses Pengolahan Data

Pada proses pengolahan data digunakan program *matlab*. Hal ini dikarenakan jika digunakan hanya *mx sheet* saja maka sulit untuk diketahui model matematikanya. Karena dalam *mx sheet*, digunakan program *excel* sebagai alat pengambil. Dalam program *excel* sendiri tidak fungsi untuk mengolah data yang telah didapatkan sehingga diputuskan untuk menggunakan program *matlab*.

### 3.6.1 Matlab 7.6.0 (R2008a)

Matlab adalah suatu program yang digunakan oleh banyak kalangan untuk melakukan proses pengolahan data. Hal ini dikarenakan pengoprasian program yang cukup mudah dan dapat dihasilkan hasil seperti yang diharapkan.Didasari oleh hal tersebutlah pada Tugas Akhir kali ini digunakan program matlab versi 7.6.0 (R2008a). Langkah langkah penggunaan program adalah sebagai berikut :

1. Buka program *matlab* hingga muncul dialog utama seperti Gambar 3.28.



Gambar 3.28 Dialog Utama Matlab

- 2. Klik work space untuk memulai pengolahan data
- 3. Klik *import data*, kemudian pilih data yang akan diolah, dalam hal ini data harus berbentu *.txt*
- 4. Klik *next* kemudian klik *finish*, data sudah dimasukkan. Hasil tampilan dapat dilihat pada Gambar 3.29



Gambar 3.29 Input Data

5. Hilangkan data yang berada pada kolom 2 dan ubah nama data missal *nom3* menjadi *nom3x* dan dapat dilihat pada Gambar 3.30.



Gambar 3.30 Penggantian Nama dan Data

6. Kemudian ulangi langkah diatas untuk memasukkan data kedua, hingga didapatkan 2 data contoh *nom3x*, dan *nom3y*. Tetapi hilangkan data pada kolom pertama. Hasil tampilan dapat dilihat pada Gambar 3.31.



Gambar 3.31 2 Input Data

7. Ketik *ident* pada *command window*. Sehingga muncul dialog *system identification tool*. Dapat dilihat pada Gambar 3.32 dan 3.33

| Command Window                                                                               | ⇒ E ≮ X |
|----------------------------------------------------------------------------------------------|---------|
| New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> . | х       |
| >> ident                                                                                     |         |
|                                                                                              | 6       |

Gambar 3.32 Aktivasi

Gambar 3.32 adalah hasil tampilan aktivasi yang diketik ident.



Gambar 3.33 System Identification Tools

Gambar 3.33 adalah hasil setelah di*ident* dan akan muncul tampilan *system identification tools*.

8. Klik *import data* kemudian pilih *time domain data* hingga muncul dialog seperti pada Gambar 3.34.

| Data Forma                                                              | t for Signals                                   |
|-------------------------------------------------------------------------|-------------------------------------------------|
| Time-Domain Sig                                                         | jnals 😽                                         |
|                                                                         |                                                 |
| Workspa                                                                 | ce Variable                                     |
| Input:                                                                  |                                                 |
| Output:                                                                 |                                                 |
|                                                                         |                                                 |
|                                                                         |                                                 |
|                                                                         |                                                 |
| Data Inf                                                                | ormation                                        |
| Data Inf<br>Data name:                                                  | mycleta                                         |
| Data Inf<br>Data name:<br>Starting time                                 | ormation<br>mydata                              |
| Data Inf<br>Data name:<br>Starting time<br>Sampling Interval:           | mydeta                                          |
| Data Inf<br>Data name:<br>Starting time<br>Sampling interval:           | ormation<br>myclata<br>1<br>1<br>More           |
| Data Inf<br>Data name:<br>Starting time<br>Sampling interval:           | ormation<br>myclete<br>1<br>1<br>More           |
| Data Inf<br>Data name:<br>Starting time<br>Sampling interval:<br>import | or mation<br>mysdeta<br>1<br>1<br>More<br>Reset |

Gambar 3.34 Dialog Time Domain Data

## 9. Kemudian isikan :

| a. | Input             | : nom3x        |
|----|-------------------|----------------|
| b. | Output            | : <i>nom3y</i> |
| c. | Starting time     | : 0            |
| d. | Sampling interval | : 0.1          |

10. Klik *import* kemudian klik *estimate* pilih *process models* kemudian ganti nilai *pole* menjadi 2 lalu klik *estimate* hingga muncul hasilnya seperti Gambar 3.35.



# Gambar 3.35 Hasil Dari Pengolahan Data

Gambar 3.35 adalah hasil setelah diklik *estimate* dan akan muncul tampilan seperti diatas.

11. Kemudian *drag and drop* hasilnya pada bagian *To LTI View* hinggan muncul dialog seperti Gambar 3.36.



Gambar 3.36 Hasil LTI View

Gambar 3.36 adalah hasil setelah di*drag and drop* maka muncul dialog seperti diatas.

12. Kemudian klik *file*, kemudian klik *export*, lalu klik *P2D* dan terakhir klik *export to workspace*.

13. Untuk mengetahui model matematikanya ketikan *P2D* pada *command window* dan akan muncul model matematika yang diinginkan, dan hasilnya dapat dilihat pada Gambar 3.37.

| New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> . |   |
|----------------------------------------------------------------------------------------------|---|
|                                                                                              | M |
|                                                                                              |   |
| 2 205                                                                                        |   |
|                                                                                              |   |
| s*2 + 4.709 s + 5.544                                                                        |   |

Gambar 3.37 Model Matematika yang Dicari

Setelah dilakukan pengolahan data maka model matematik dari *plant* dapat diperoleh. Dan hasil dari pengolahan data ini dapat dilihat pada Tabel 4.5. pog

### 3.7 Perancangan Kontroler[4]

Kontroler merupakan salah satu komponen system yang berfungsi mengolah sinyal umpan balik dan sinyal referensi menjadi sinyal kontrol sedemikian rupa sehingga performansi dari sistem yang dikendalikannya sesuai dengan spesifikasi performansi yang di inginkan.

Dalam perancangan kontroler *plant* rem elektromagnetik digunakan kontroler *PID*. Kontroler PID adalah Merupakan kontroler feed-forward yang berfungsi mengolah sinyal eror menjadi sinyal kontrol, di mana hubungan sinyal kontrol terhadap sinyal eror dapat proporsional, integral, diferensial atau gabungan diantaranya.

Pada Gambar 3.26 maka dapat diketahui bahwa model kontroler yang digunakan dalam *plant* adalah seperti yang dapat dilihat pada Gambar 3.38.

$$E(s) \longrightarrow K_p \left( 1 + \frac{1}{\tau_i s} + \tau_d s \right) \longrightarrow U(s)$$

### Gambar 3.38 Model Matematik Kontroler

(()) Setelah diketahui model dari kontroler yang digunakan maka, dengan menggunakan salah satu metode yaitu metode analitik akan dapat diperoleh nilai Kp, Ti, dan Td.

### 3.7.1 MetodeAnalitik



Gambar 3.39 Blok Diagram Sistem Kontrol Kecepatan

Gmabar 3.39 merupakan blok diagram kecepatan namun blok diagram model analitik secara keseluruhan dapat dilihat pada Gambar 3.26. Sehingga dari gambar tersebut bisa diperoleh Persamaan 3.1 dan 3.5. Metode ini didekati dengan pendekatan orde 2 tanpa adanya *delay*. Kontroler proporsional, integral, dan deferensial sendiri merupakan (*PID*) merupakan kontroler yang aksi kontrolernya mempunyai sifat proporsional, integral , dan deferensial terhadap sinyal kesalahan. Untuk menentukan nilai-nilai control *PID* ini adalah dengan cara menentukan nilai penguatan proporsional (Kp), wakti integral ( $\tau$ i), dan waktu deferensial ( $\tau$ d) yang tepat dan diharapkan respon *plant* orde kedua tanpa delay sesuai dengan performansi yang diharapkan. Persamaan dari metode ini dapat dilihat sebagai berikut :

(3.1)

(3.2)

# $\frac{U_s}{E_s} = K_p \left( 1 + \frac{1}{\tau_{iS}} + \tau_d S \right)$

Keterangan :

 $\frac{K}{\frac{1}{\omega n^2}S^2 + \frac{2\xi}{\omega n}S + 1}$ 

- Kp = Penguatan proporsional
- $\tau i = Waktu integral$
- $\tau d = Waktu differensial$

Dari persamaan tersebut kemudian dapat dicari masing-masing nilai dari Kp,  $\tau$ i, dan  $\tau$ d. Dimana persamaan untuk mencari nilai nilai tersebut adalah sebagai berikut :

 $\tau i = \frac{2\xi}{\omega n}$  $\tau d = \frac{1}{2\xi\omega n}$  $Kp = \frac{1}{\tau^* \omega nK}$ 

Keterangan :

K = gain overall
 ωn = frekuensi alami tak teredam
 ξ = rasio redaman

Setelah nantinya dilakukan perhitungan dan ditemukan nilai konstanta Kp, Ki, dan Kd maka nilai nilai tersebut kemudian diinputkan pada program *PLC* yang dibuat, program ini dapat dilihat pada Lampiran 2. Dan fungsi dari tombol-tombol yang digunakan dapat dilihat pada gambar flowchart yang dapat dilihat pada Gambar 3.40. dari flowchart tersebut dapat diketahui fungsi dari masing-masing tombol vang dipilih. Dimana setiap tombol sangat berpengaruh pada pengoprasian alat yang telah dibuat. *Flowchart* ini juga kami maksudkan agar alata dapat lebih mudah dipahami cara kerja dan cara pengoprasian alat yang telah dibuat. Pada *flowchart* tersebut dijelaskan bahawa hal pertama yang harus dilakukan dalam pembuatan programnya adalaha melakukan inisialisasi, dimana inisialisasi ini bertujuan untuk menentukan memori data dan modul *input output* yang nantinya akan digunakan. Hal ini dilakukan agar dalam pembuatan program dapat dilakukan dengan lebih mudah. Tombol yang digunakan sebagai input adalah X5, X3, dan X0. Tombol-tombol tersebut memiliki peranan masing- masing dalam pengoprasian alat yang telah dibuat. Dan untuk memahami fungsi dari tombol-tombol tersebut dapat dilihat pada flowchart yang telah dibuat. Flowchart ini dapat dilihat pada Gambar 3.40.

(3.2)

(3.3)

(3.4)



Gambar 3.40 Flowchart Program Pada PLC

### **3.8 Perancangan Panel Operator**

Dalam merancang panel operator, digunakan *software* yaitu *GT-Designer 3* dari *mitshubishi*.Pada panel oprator berisi mengenai tombol pengoprasian, yaitu tombol *On Motor, On PID,* dan *On Encoder.* Dengan dasar data yang diperoleh dari bab 4, maka pada perancangan kontrol ini kami buat agar motor berputar pada kecepatan *set point* 330 Rpm selama 20 detik, 1200 Rpm selama 30 detik, dan kembali ke 330 Rpm selama 20 detik sebelum akhirnya berhenti.Gambaran panel operator dapat dilihat pada Gambar 3.41.



Gambar 3.41 Panel Operator

# BAB IV PENGUKURAN DAN ANALISA

Pada Bab ini membahas tentang pengukuran dan analisa sistem yang telah dibuat. Pengukuran dan analisa meliputi pengukuran perangkat keras system. Pengukuran sistem tanpa kontroler, pengukuran simulasi dan implementasi.

### 4.1 Pengukuran Perangkat Keras

Pengukuran perangkat keras bertujuan agar perangkat keras yang digunakan dapat berfungsi dengan baik. Pengukuran tersebut meliputi pengukuran *power supply*, penguat tegangan, *inverter*, dan kecepatan motor 3 fasa dengan beban rem elektromagnetik.

#### 4.1.1 Pengukuran Penguat Tegangan

Pada Tugas Akhir ini pengukuran penguat tegangan menggunakan power supply dengan tegangan +5 VDC yang dirangkai dengan potensiometer 10 K $\Omega$  agar output dari power supply dapat diatur dari 0 -5 VDC, kemudian dihubungkan ke input penguat tegangan. Selanjutnya dilakukan pengukuran tegangan input dan output penguat tegangan menggunakan multimeter. Konfigurasi pengukuran tersebut dapat dilihat pada Gambar 4.1.



Gambar 4.1 Konfigurasi Pengukuran Rangkaian Penguat Tegangan.

Dari Konfigurasi gambar diatas maka dapat diperoleh data yang dapat dilihat pada Tabel 4.1 dan Gambar 4.2.

| Penguku   | ran Naik   | Pengukura | ın Turun   |
|-----------|------------|-----------|------------|
| Input (V) | Output (V) | Input (V) | Output (V) |
| 0         | 0          | 4,99      | 10,0       |
| 0,50      | 1,02       | 4,50      | 9,02       |
| 1,01      | 2,03       | 4,01      | 8,03       |
| 1,51      | -3,03      | - 3,50    | 7,02       |
| 2,02      | 4,05       | 3,01      | 6,02       |
| 2,52      | 5,04       | 2,50      | 5,01       |
| 3,00      | 6,01       | 2,01      | 4,02       |
| 3,51      | 7,03       | 1,50      | - 3,01     |
| 4,01      | 8,01       | 1,02      | 2,03       |
| 4,50      | 9,01       | 0,51      | 1,03       |
| 4,99      | 10,0       | 0         | 0          |





Gambar 4.2 Pengukuran Penguat Tegangan

Dapat dilihat pada hasil pengukuran pada Tabel 4.1 dan Gambar 4.2 bahwa tegangan *output* penguat tegangan adalah dua kali dari tegangan *input*. Maka rangkaian penguat tegangan tersebut sesuai dengan yang diinginkan dapat digunakan sebagai penguat tegangan dari modul *DA PLC* yang mengeluarkan tegangan 0-5 *VDC* ke *inverter* yang membutuhkan tegangan 0 -10 *VDC*.

# 4.2 Pengukuran Kecepatan Motor 3 Phasa

Pengukuran ini dilakukan agar dapat diketahui berapakah kecepatan motor tiga fasa saat diputar atau diberi nilai rentang tegang antara 0 sampai dengan 5 *Volt dc*. Pengukuran kecepatan dilakukan

beberapa kali, mulai pengujian dengan beban maupun pengujian berbeban nominal 140 *Volt* dan berbeban maksimal 220 *Volt*.

### 4.2.1 Pengukuran Sistem Open Loop

Pengukuran ini dilakukan dengan cara menyambungkan *plant* motor 3 fasa dengan *panel box* tanpa menggunakan *PLC* terlebih dahulu dan tanpa sensor. Hal ini dimaksudkan agar didapatkan data mentah terlebih dahulu agar pengambilan data selanjutnya lebih mudah untuk dilakukan.



Gambar 4.3 Pengambilan Data Plant motor

Da<mark>ri Ko</mark>nfigurasi *system* Tersebut maka dapat diperoleh hasil yang dapat dilihat pada Tabel 4.2.

|    |                             | Data K            | ecepatan          | Rata-ra           | ita Tanp          | a Beban           |                   |                                   |
|----|-----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------------------|
| No | Tegangan<br>Input<br>(volt) | Kec<br>1<br>(rpm) | Kec<br>2<br>(rpm) | Kec<br>3<br>(rpm) | Kec<br>4<br>(rpm) | Kec<br>5<br>(rpm) | Kec<br>6<br>(rpm) | Kec<br>Rata <sup>2</sup><br>(rpm) |
| 1  | 0,5                         | 140               | 153               | 152               | 149               | 149               | 149               | 148,66                            |
| 2  |                             | 332               | 352               | 351               | 339               | 344               | 340               | 343                               |
| 3  | 1,5                         | 521               | 536               | 542               | 539               | 532               | 537               | 534,5                             |
| 4  | 1                           | 718               | 730               | 728               | 728               | 722               | 737               | 727,1667                          |
| 5  | 2,5                         | 926               | 909               | 929               | 922               | 927               | 929               | 923,66                            |
| 6  | 3,0                         | 1102              | 1094              | 1108              | 1109              | 1106              | 1110              | 1104,83                           |
| 7  | 3,5                         | 1252              | 1262              | 1263              | 1267              | 1262              | 1264              | 1261,66                           |

| Tabel 4.2 Has | il Pengkuran | Plant | Motor | 3 | Fasa |
|---------------|--------------|-------|-------|---|------|
|---------------|--------------|-------|-------|---|------|

|    | Tegangan | Kec               |
|----|----------|-------|-------|-------|-------|-------|-------|-------------------|
| No | Input    | 1     | 2     | 3     | 4     | 5     | 6     | Rata <sup>2</sup> |
|    | (volt)   | (rpm)             |
| 8  | 4,0      | 1339  | 1403  | 1423  | 1429  | 1411  | 1411  | 1402,6            |
| 9  | 4,5      | 1539  | 1540  | 1552  | 1551  | 1542  | 1540  | 1544              |
| 10 | 4,98     | 1636  | 1639  | 1631  | 1632  | 1625  | 1614  | 1629.5            |

### 4.2.2 Pengukuran Beban Nominal

Setelah dilakukan pengukuran plant tanpa beban dan tidak terjadi masalah pada *plant* maka langkah selanjutnya adalah melakukan pengukuran dengan menggunakan beban nominal 140 *volt*. Maksud dari beban nominal sendiri adalah pengukuran yangdilakukan ketika rem elektromagnetik diberi tegangan sebesar 140 *Volt DC*. Dimana hasil pengukuran dengan beban nominal dapat dilihat pada Tabel 4.3

| No | Tegang<br>an<br>Input<br>(volt) | Kec<br>1<br>(rpm) | Kec<br>2<br>(rpm) | Kec<br>3<br>(rpm) | Kec<br>4<br>(rpm) | Kec<br>5<br>(rpm) | Kec<br>6<br>(rpm) | Kec<br>Rata <sup>2</sup><br>(rpm) |
|----|---------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------------------|
| 1  | 0,5                             | 134               | 140               | 142               | 145               | 148               | 149               | 143                               |
| 2  |                                 | 330               | 325               | 322               | 320               | 335               | 319               | 325,16                            |
| 3  | 1,5                             | 518               | 519               | 515               | 521               | 511               | 515               | 516.5                             |
| 4  |                                 | 710               | 715               | 720               | 721               | 705               | 715               | 714,33                            |
| 5  | 2,5                             | 904               | 899               | 905               | 900               | 900               | 903               | 901,83                            |
| 6  | 3,0                             | 1070              | 1090              | 1069              | 1082              | 1090              | 1090              | 1081,83                           |
| 7  | 3,5                             | 1230              | 1240              | 1233              | 1225              | 1230              | 1235              | 1232,16                           |
| 8  | 4,0                             | 1320              | 1350              | 1384              | 1391              | 1380              | 1370              | 1365,83                           |
| 9  | 4,5                             | 1460              | 1470              | 1430              | 1460              | 1490              | 1485              | 1465,83                           |
| 10 | 4,98                            | 1550              | 1550              | 1552              | 1554              | 1555              | - 1557            | 1553                              |

 Tabel 4.3 Hasil Pengukuran dengan Beban Nominal 140 Volt

### 4.2.3 Pengukuran Beban Maksimal

Setelah melakukan pengukuran kasar dengan menggunakan beban nominal maka langkah selanjutnya adalah melakukan pengukuran data kasar dengan beban maksimal. Maksud dari pengukuran beban maksimal adalah kondisi pada saat rem elektromagnetik diberikan tegangan sebesar 220 *Volt DC*. Dimana pengkuran dengan menggunakan beban maksimal dapa dilihat pada Tabel 4.4.

|    | Data Kecepatan Rata-rata Maksimal |                   |                   |                   |                   |                   |                   |                                   |
|----|-----------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------------------|
| No | Tegangan<br>Input<br>(volt)       | Kec<br>1<br>(rpm) | Kec<br>2<br>(rpm) | Kec<br>3<br>(rpm) | Kec<br>4<br>(rpm) | Kec<br>5<br>(rpm) | Kec<br>6<br>(rpm) | Kec<br>Rata <sup>2</sup><br>(rpm) |
| 1  | -0,5                              | 130               | 140               | 142               | 145               | -142              | 145               | 140 <mark>,66</mark>              |
| 2  | 1                                 | 319               | 325               | 322               | 320               | 322               | 320               | 321,33                            |
| 3  | 1,5                               | 510               | 519               | 504               | 515               | 504               | 515               | 511,16                            |
| 4  | ] 1                               | 689               | 715               | 714               | 713               | 714               | 713               | 709 <mark>,66</mark>              |
| 5  | 2,5                               | 804               | 895               | 894               | 893               | 894               | 893               | 878,83                            |
| 6  | 3,0                               | 1055              | 1082              | 1064              | 1072              | 1064              | 1072              | 1068,16                           |
| 7  | 3,5                               | 1222              | 1219              | 1223              | 1222              | 1223              | 1222              | 1221,8                            |
| 8  | 4,0                               | 1312              | 1314              | 1356              | 1324              | 1356              | 1324              | 1331                              |
| 9  | 4,5                               | 1428              | 1430              | 1429              | 1442              | 1429              | 1442              | 1433,33                           |
| 10 | 4,98                              | 1475              | 1477              | 1477              | 1474              | 1475              | 1477              | 1475,83                           |

Tabel 4.4 Pengukuran dengan Beban Maksimal 220 Volt

### 4.3 Pengambilan Data Step Response

Pengambilan data ini dilakukan untuk menentukan daerah kerja yang digunakan dalam pengontrolan. Dimana dalam hal ini kami menentukan daerah kerja motor adalah dalam tegangan mulai 1 *volt* dan dalam tegangan 3,5 *Volt*. penentuan daerah kerja ini didasarkan pada hasil pengukuran yang dilakukan secara kasar sebelumnya yang dapat dilihat pada bagian 4.2 dan daerah ini ditentukan dengan alasan pada daerah tersebut *plant* motor 3 fasa bekerja secara baik atau bekerja bersama – sama dengan dan tidak terjadi pemecahan data yang terlalu jauh. Hal ini diharapkan bahwa nantinya ketika motor sudah diberikan kontroller dapat bekerja dengan baik dan hasil pengukurannya dapat dilihat dan diamati dengan lebih mudah. Hasil dari pengambilan data *step response* dapat dilihat pada Tabel 4.5. Skema pengujian *step response* dapat dilihat pada Gambar 4.4.





PlantRotaryPLCGambar 4.4 Skema Pengukuran Step Response

Berikut adalah data pengukuran *step response* tanpa beban *ramp up* :

Tabel 4.5 Step Response Tanpa Beban Ramp up

| Set Point | Kecepatan 1<br>(rpm) | Kecepatan 2<br>(rpm) | Kecepatan 3<br>(rpm) |
|-----------|----------------------|----------------------|----------------------|
| 320       | 324                  | 345                  | 348                  |
| 320       | 324                  | 336                  | 342                  |
| 320       | 330                  | 339                  | 336                  |
| 320       | 327                  | 345                  | 342                  |
| 320       | 324                  | 333                  | 339                  |
| 1200      | 330                  | 342                  | 342                  |
| 1200      | 357                  | 396                  | 381                  |
| 1200      | 411                  | 426                  | 411                  |
| 1200      | 498                  | 501                  | 492                  |
| 1200      | 525                  | 579                  | 555                  |
| 1200      | 597                  | 615                  | 597                  |
| 1200      | 678                  | 693                  | 675                  |
| 1200      | 711                  | 762                  | 750                  |
| 1200      | 789                  | 804                  | 786                  |
| 1200      | 828                  | 882                  | 864                  |
| 1200      | 906                  | 954                  | 942                  |
| 1200      | 975                  | 978                  | 984                  |
| 1200      | 1008                 | 1047                 | 1041                 |
| 1200      | 1047                 | 1071                 | -1089                |
| 1200      | 1098                 | 1116                 | 1116                 |
| 1200      | 1119                 | 1173                 | 1170                 |
| 1200      | 1173                 | 1182                 | 1194                 |



| Set Point | Kecepatan 1<br>(rpm) | Kecepatan 2<br>(rpm) | Kecepatan 3<br>(rpm) |
|-----------|----------------------|----------------------|----------------------|
| 1200      | 1179                 | 1203                 | 1230                 |
| 1200      | 1194                 | 1209                 | 1236                 |
| 1200      | 1188                 | 1209                 | 1230                 |
| 1200      | 1203                 | 1209                 | - 1230               |
| 1200      | 1194                 | 1221                 | 1230                 |
| 1200      | 1197                 | 1212                 | 1230                 |
| 1200      | 1194                 | 1212                 | 1230                 |
| 1200      | -1194                | 1212                 | 1236                 |
| 1200      | 1203                 | 1221                 | 1227                 |
| 1200      | 1194                 | 1212                 | 1227                 |
| 1200      | -1197                | -1209                | 1224                 |
| 1200      | 1197                 | 1209                 | 1227                 |
| 1200      | 1200                 | 1209                 | 1227                 |
| 1200      | 1203                 | 1218                 | 1236                 |
| 1200      | 1200                 | 1209                 | 1224                 |
| 1200      | 1200                 | 1215                 | 1221                 |
| 1200      | 1203                 | 1209                 | 1212                 |
| 1200      | 1203                 | 1212                 | 1218                 |
| 1200      | 1206                 | 1221                 | 1227                 |
| 1200      | 1206                 | 1212                 | 1218                 |
| 1200      | 1218                 | 1212                 | 1218                 |
| 1200      | 1209                 | 1206                 | 1221                 |
| 1200      | 1224                 | 1215                 | 1221                 |





Gmbar 4.5 Kurva S Dari Plant

Dari hasil step response seperti pada Tabel 4.5, dengan perangkat Tool Box identifikasi maka didapatkan hasil berupa model transfer function. model tersebut dapat dilihat pada Tabel 4.6

| Tanpa<br>Beban ke- | Model Matematika                                                  | ISE    |
|--------------------|-------------------------------------------------------------------|--------|
| 1                  | $\frac{0.04097}{S^2 + 0.5281 S + 0.06917} \times \exp(-2.39 S)$   | 0,6004 |
| 2                  | $\frac{0.02225}{S^2 + 71.42 S + 0.07687} \times \exp(-2.93 S)$    | 0,8975 |
| 3                  | $\frac{-4,441e^{-18s}+1,076}{S^2+2,122S+1,062}\times\exp(-1,89S)$ | 0,4647 |

Kemudian setelah dilakukan pengukuran tanpa beban dengan menggunakan signal step dan dicari model matematikany dengan menggunakan software matlab, maka langkah selanjutnya adalah menentukan set point steady state yang diharapkan. Dan karena dari hasil-hasil pengukuran yang telah didapatkan datanya, motor ini bekerja dengan baik pada daerah kerja antara 330 Rpm hingga 1200 Rpm, maka ditentukanlah set point steady state berada pada 330 Rpm dan 1200 Rpm.

Pengujian untuk mebgetahui valid atau tidaknya model tersebut, caranya adalah dengan menggunakan identification tools system pada matlab versi 7.6.0 (R2008a). Untuk melakukan validasi model yang telah dibuat, maka dicari nilai *ISE* (*Integral Square Error*) pada nilai set point steady state yaitu 330 Rpm dan 1200 Rpm, jika nilai ISE paling kecil maka model tersebut yang paling valid.

### 4.4 Nilai Data Kontroler PID

Dari hasil matematik yang didapat maka kita dapat menentukan parameter kontroler PID (Kp, Ti dan Td). Setelah kita mengetahui nilai ise yang paling kecil barulah kemudian dapat dicari nilai Kp, Ki, Kd, dengan menggunakan metode analitik. Metode analitik tersebut dapat diuraikan sebagai berikut :

 $\frac{-4,441e^{-16}+1,076}{s^2+2,1225+1,062}\exp(-1,89S)$ 

(4.1)

Persamaan tersebut kemudian dibagi degan nilai 1,062 agar dapat masuk terhadap model analaitik, yang berdasar pada Persamaan 3.2, sehingga didapatkan hasil sebagai berukit :

$$\frac{\frac{1,076}{1,062}}{\frac{1}{1,062}S^2 + \frac{2,122}{1,062}S + 1}$$
(4.2)
$$\frac{1,0131}{0,94 S^2 + 1,99 S + 1}$$
(4.3)

Kemudian setelah didapatkan model analitik tersebut maka nilai  $\omega$ n dan  $\xi$  dapat dicari dengan cara sebagai berikut :

| $\omega n^2 = 1,062$         | (4.4) |
|------------------------------|-------|
| $\omega n = 1,0305$          | (4.5) |
| $\frac{2\xi}{4m} = 1,998$    | (4.6) |
| $2\xi = 1,998 \times 1,0305$ | (4.7) |
| $\xi = 1,0295$               | (4.8) |

Ketika nilai dari  $\omega$ n dan nilai dari  $\xi$  sudah ditemukan maka, langkah selanjutnya adalah mencari nilai Kp, Ti, Td seperti berikut :

| $\tau i = \frac{2\xi}{\omega n} = 1,998$                     | (4.9)  |
|--------------------------------------------------------------|--------|
| $\tau d = \frac{1}{2\xi \omega n} = \frac{1}{2,1218} = 0,47$ | (4.10) |
| <i>τ</i> * = 0,33                                            | (4.11) |
| $Kp = \frac{1}{100} = \frac{1}{200} = 2,87$                  | (4.12) |

Setelah di ketahui nilai dar Kp, Ti, Td seperti tersebut diatas maka langkah selanjutnya adalah menetukan nilai Kp, Ki, dan Kd yang dapat diuraikan seperti berikut ini :

$$\left(Kp\left(1+\frac{1}{\tau is}+\tau dS\right)\right) \tag{4.13}$$

# $\left(2,87 + \frac{1,438}{5} + 1,348 S\right)$

Dari persamaan diatas maka dapat diperoleh nilai Kp, Ki, Kd berturut-turut adalah Kp = 2,87, Ki = 1,438, Kd = 1,348. Nilai tersebut kemudian dimasukkan kedalam program yang telah dibuat sebai nilai konstanta dari kontroler *PID*. Dan hasil dari data setelah diberikan bilai kontroler agar nilainya dapat mendekati *steady state set point* pada nilai 730 dapat dilihat dari Tabel 4.7. Tabel tersebut menunjukan data ketika nilai *signal step* dibrikan yaitu 330 Rpm dan 1200 Rpm nilainya akan tetap menunjukan angka mendekati 730 sebagai *set point steady state*.

### 4.5 Uji Coba Program

Setelah diketahui nilai parameter yang dibutuhkuan, hal yang selanjutnya dilakukan adalah ,melakukan uji coba program dengan memasukkan nilai parameter *PID* yang sudah dibuat. Program yang digunakan haruslah mencakup tentang program *encoder*, program pemberian nilai *signal step*, dan program aritmatik pengolahan data parameter *PID*. Potongan potang program tersebut dapat dilihat pada Gambar 4.6, Gambar 4.7, dan Gambar 4.8.



Gambar 4.6 adalah potongan program encoder. Program ini dibuat dengan tujuan agar sensor kecepatan yang digunakan dapat



dibaca oleh *PLC*. Potongan program ini secara lengkap dilampirkan pada Lampiran 2.

# Gambar 4.7 Potongan Program Pemberian Signal Step

Gambar 4.7 merupakanprotongan program *signal step*. Program tersebut difungsikan sebagai nilai parameter *signal step* yang ingin diimplementasikan pada *plant*.Potongan program yang lain secara lengkap dapat dilihat pada Lampiran 2.

Gambar 4.8 merupakan potongan program kontroler *PID*. Program tersebut merupakan sebuah program aritmatik yang disusun sedemikian rupa agar perhitungan nilainya dapat diberikan nilai parameter kontroler *PID*. Potongan Program ini secara lengkap dapat dilihat pada Lampiran 2.



# BAB V PENUTUP

Setelah melakukan perancangan dan pembuatan alat serta pengujian dan analisa, maka dapat ditarik kesimpulan dan saran dari kegiatan yang telah dilakukan untuk pengembangan Tugas Akhir ini.

### 5.1 Kesimpulan

Dari seluruh tahapan yang sudah dilaksanakan pada penyusunan Tugas Akhir ini, mulai dari studi *literature*, perancangan dan pembuatan sampai pada pengujiannya maka dapat disimpulkan bahwa :

- Kawat *email* yang digunakan pada kumparan menggunakan ukuran 0,3 mm karena dianggap paling mudah untuk digulung.
- Digunakan 940 lilitan karena dari sejumlah percobaan yang dilakukan, jumlah tersebut adalah jumlah yang paling mampu memenuhi kebutuhan magnet yang diinginkan.
- Rem elektromagnetik tidak akan terbakar atau panas karena sudah dilapisi dengan semen, karena semen dapat meredam panas.
- Dipilih kecepatan 330 dan 1200 Rpm karena pada kecepatan tersebut motor mampu bekerja dengan kecepatan yang hampir sama meskipun dalam keadaan tanpa beban, berbeban nominal, dan berbeban maksimal.
- Setelah dilakukan perhitungan dengan metode analitik, maka didapatkan hasil berupa nilai Kp= 2,87, Ki= 1,438, Kd= 1,348.

### 5.2 Saran

>

Untuk lebih memperbaiki dan menyempurnakan kinerja dari alat ini, maka perlu disarankan :

- Pada penelitian selanjutnya perlu ditambahkan sensor suhu pada beban elektromagnetik untuk mengetahui suhu yang ditimbulkan oleh beban.
  - Piringan *shaft* sebaiknya menggunakan bahan metal yang bersifat non ferromagnetik, sehingga tidak mengakibatkan magnet menjadi permanen

Halaman ini sengaja dikosongkan

# DAFTAR PUSTAKA

- [1] Arwanjer Semit, "Perancangan dan Implementasi Kontroller Linear Kuadratik Regulator (LQR) Pada Pengaturan Kecepata Motor Induksi 3 phasa", *Tugas Akhir*, FTI-ITS, Surabaya, 2014.
- [2] Eitel, Elisabeth. "Basics Of Rotary Encoders: Overview and New Technologies". Machine Design Magazine. Jakarta, 2015
- [3] Lister, Eugene. C. "Mesin dan Rangkaian Listrik". Jakarta:Erlangga, 2014
- [4] Bagas Ganjar Nugroho,"Pengaturan Kecepatan Motor Induksi 3 Fasa Pada Mesin Sentrifugal Menggunakan Pengendali Anti-Windup PID dengan Prediksi Integral State", *Tugas Akhir*, FTI-ITS,Surabaya, 2014
- [5] Pramudijanto, Josaphat. "*Catatan Kuliah DSP*". 25 Juni 2015.http://personal.its.ac.id/



Halaman <mark>ini Se</mark>ngaja D<mark>ikoso</mark>ngkan

# LAMPIRAN 1


Halaman in<mark>i sen</mark>gaja di<mark>koso</mark>ngkan





























| Floating |                                                                                                                          | Integer |                                                                                                                                                                                                              |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| D2       | Pengambilan data dari<br>HSC ke PLC                                                                                      | D0      | Ambil data dari HSC ke                                                                                                                                                                                       |  |  |
| D4       | Hasil Perkalian D2                                                                                                       | D8      | Nilai Integer D6                                                                                                                                                                                             |  |  |
| D6       | Haasil Pembagian D2                                                                                                      | D10     | Memori data encoder                                                                                                                                                                                          |  |  |
| D12      | Hasil konversi set point<br>dalam volt                                                                                   | D500    | Konstanta tegangan set<br>point yang berubah ubah<br>namun dapat diatur                                                                                                                                      |  |  |
| D14      | Ha <mark>sil kon</mark> versi set point<br>dalam bit                                                                     | D550    | Hasil konversi set point<br>dalam bit pada bentuk<br>integer                                                                                                                                                 |  |  |
| D510     | Konstanta Tegangan set<br>pont yang dapat dirubah<br>namun dalam nilai floating<br>yang diolah pada program<br>set point | D2300   | Bentuk integer dari nilai<br>upid yang berada pada<br>memori data D2200 dalam<br>bentuk bit                                                                                                                  |  |  |
| D520     | Hasil kali D510 untuk<br>dikonversi ke volt                                                                              | D2700   | Bentuk integer dari nilai<br>upid yang berada pada<br>memori data D2600 dalam<br>bentuk rpm, dan<br>merupakan nilai yang<br>ditampilkan pada seven<br>segment k4y40                                          |  |  |
| D530     | Hasil konversi set point<br>dalam volt                                                                                   | D2400   | Nilai yang sama dari<br>memori data D500 namun<br>fungsinya digunakan<br>sebagai simulasi tanpa<br>menggunakan pid, dan juga<br>merupakan keluaran nilai<br>sinyal control jika nilai dari<br>D2300 k0-k1640 |  |  |
| D540     | Hasil konversi set point<br>dalam bit                                                                                    |         |                                                                                                                                                                                                              |  |  |

| D700  | Konstanta Tegangan set<br>pont yang dapat dirubah<br>namun dalam nilai floating<br>yang diolah pada program<br>pid             |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------|--|
| D800  | Memori data encoder<br>dalam bentuk floating                                                                                   |  |
| D1200 | Hasil kali pengolahan<br>sinyal eror dalam bentuk<br>floating (nilai (e(k) dalam<br>Bentuk bit)                                |  |
| D1300 | Hasil fungsi emov dari<br>D1200, yaitu nilai<br>perkalian pengolahan<br>sinyal eror dalam bentuk<br>floating                   |  |
| D1000 | Nilai (e(k) dalam betuk<br>rpm)                                                                                                |  |
| D1100 | Nilai (e(k) dalam bentuk<br>volt)                                                                                              |  |
| D1200 | Nilai (e(k) dalam bentuk<br>bit)                                                                                               |  |
| D1250 | Nilai up yang didapat dari<br>(Kp x e(k)) menggunakan<br>nilai dalam bit D1200                                                 |  |
| D1600 | Nilai q(k) yang diperoleh<br>dari q(k-1 + $q_{-}$ dot yang<br>selanjutnya di berikan<br>fungsi emov ke D1500<br>sebagai q(k-1) |  |
| D1500 | Nilai q(k-1)                                                                                                                   |  |
| D2700 | Data yang diproses dengan<br>nilai kontanta 0-588<br>dandigunakan untuk<br>menentukan nilai linear                             |  |

|       | ataupun saturasi                                                                                                                               |    |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| D2900 | Nilai yang menetukan<br>apakah hasilnya saturasi<br>atau linear, jika hasilnya<br>linear maka v-u=0, jika<br>hasilnya saturasi maka v-<br>u=a. | )6 |  |
| D3000 | Nilai b yang didapat dari<br>b=a x kb, dimana kb dalam<br>program ini ditentukan<br>nilainya yaitu 1                                           |    |  |
| D2800 | Nilai q_dot yang diperoleh<br>dari e(k) + b                                                                                                    |    |  |
| D1400 | Nilai q(k) seteleh diproses<br>dengan cara q(k) x Ts,<br>dimana nilai dari Ts dalam<br>program ini ditentukan<br>nilainya yaitu 0,002          | )6 |  |
| D1700 | Nilai ui yang di dapat dari<br>q(k) x Ki, dimana nilai ki<br>dalam program ini<br>ditentukan nilaiya yaitu 1                                   |    |  |
| D1900 | Nilai delta_e, yang didapat<br>dari e(k)-e(k-1)                                                                                                |    |  |
| D2000 | Nilai e_dot yang diperoleh<br>dari delta_e/Ts, dimana<br>Ts=0,002                                                                              |    |  |
| D2010 | Nilai ud yang diperoleh<br>dari e_dot x Kd                                                                                                     |    |  |
| D1800 | Nilai upi yang diperoleh<br>dari up+ui                                                                                                         |    |  |
| D2200 | Nilai Upid yang diperoleh<br>dari upi+ud(bit)                                                                                                  |    |  |



Halaman in<mark>i sen</mark>gaja di<mark>koso</mark>ngkan

# LAMPIRAN 3



H<mark>ala</mark>man in<mark>i sen</mark>gaja dikosongkan

# LAMPIRAN 4

Aktivitas Pengerjaan alat :





## DAFTAR RIWAYAT HIDUP



Nama TTL Jenis Kelamin Agama Alamat Rumah Telp/HP E-mail : Alex Siagian

: Porsea 29 – 11 – 1993

: Laki-laki

- : Kristen
- : Porsea Sumatera Utara
- : 085257402611
- : alexsiagian@ymail.com

## **RIWAYAT PENDIDIKAN**

- 1999 2005
- 2005 2008
- : SMPN 2 Porsea
- : SMAN 1 Siantar Narumonda
- 2008 2011 2011 - 2014
- : Program Studi D3 Teknik Elektro, ITS

: SDN 175811 Pangombusan

Disnaker Bidang Studi Elektro Industri.

#### PENGALAMAN KERJA

- Kerja Praktek di PT. Toba Pulp Lestari (Juli 2012)
- Kerja Praktek di PT. Sc Johnson A Family Company (Juli 2013)

#### PENGALAMAN ORGANISASI

Staff PSDM forum komunikasi elektro industi

Halaman Ini Sengaja Dikososngkan

## **DAFTAR RIWAYAT HIDUP**



| Nama              | :Dimas A Baharsyah                                     |
|-------------------|--------------------------------------------------------|
| TTL               | : Lamongan 20 April 1993                               |
| Jenis Kelamin     | : Laki-laki                                            |
| Agama –           | : Islam                                                |
| Alamat Rumah      | :Jl. Mangga 23 Deket Permai                            |
|                   | Lamongan                                               |
| Telp/HP           | :081243401993                                          |
| E-mail            | :dimas039010@gmail.com                                 |
| Telp/HP<br>E-mail | :081243401993<br>:dimas039 <mark>010@</mark> gmail.com |

### RIWAYAT PENDIDIKAN

- 1999 2005.
- 2005 2008
- : SMPN 1 Lamongan
- : SMAN 2 Lamongan
- 2011 2014

2008 - 2011

: MI Murni Sunan Drajat Lamongan

: Program Studi D3 Teknik Elektro, ITS Disnaker Bidang Studi Elektro Industri.

#### PENGALAMAN KERJA

- Kerja Praktek di PT. Coca Cola Amatil Indonesia (Juli Agustus 2011)
- Kerja Praktek di Perkebunan Nasional Watoe toelis (Agustus 2012)
- Transmania trans tv
- Taman Remaja Surabaya

### PENGALAMAN ORGANISASI

- Ketua OSIS SMAN 2 Lamongan
- MUM D3 Teknik Elektro Industri Kejasama Disnakertrans

Halaman Ini Sengaja Dikososngkan