Perancangan Dan Implementasi Sistem Pengaturan Kecepatan Motor BLDC Menggunakan Kontroler Pi Berbasiskan Neural Fuzzy Hibrida Adaptif

Wicaksono, Agung Setyadi (2016) Perancangan Dan Implementasi Sistem Pengaturan Kecepatan Motor BLDC Menggunakan Kontroler Pi Berbasiskan Neural Fuzzy Hibrida Adaptif. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img]
Preview
Text
221210177-Undergraduate Thesis.pdf - Accepted Version

Download (1MB) | Preview

Abstract

Mobil listrik menjadi inovasi terbaru dengan tujuan utama untuk melepaskan ketergantungan pada bahan bakar minyak. Penelitian yang telah ada memaparkan bahwa motor listrik yang sesuai untuk menggerakkan mobil listrik adalah motor Brushless Direct Current (BLDC). Beberapa keunggulan motor BLDC antara lain adalah suara halus, ukuran kompak, torsi besar, efisiensi tinggi, memiliki umur pakai yang panjang, dan mudah dikontrol. Performa dan kecepatan motor BLDC dapat terganggu apabila bekerja pada kondisi berbeban. Oleh karena itu, dibutuhkan pengaturan kecepatan menggunakan sebuah kontroler yang dapat menjaga kecepatan motor BLDC sesuai set-point meskipun sedang beroperasi pada kondisi berbeban. Kontroler yang digunakan untuk mengatur kecepatan motor BLDC adalah kontroler Proposional Integral (PI) berbasiskan Neural-Fuzzy Hibrida Adaptif. Kontroler PI dipilih karena dapat mengeliminasi steadystate error. Sedangkan Neural-Fuzzy Hibrida Adaptif merupakan kombinasi antara Fuzzy dan Neural-Network. Fuzzy digunakan untuk penentuan parameter kontroler PI. Parameter kontroler PI didapatkan dari Neural-Network. Karakteristik respon terhadap hasil implementasi memiliki settling time 20 detik, overshoot sebesar 1,1%, dan time constant 7,7 detik. ==================================================================================================================Electric cars become the latest innovations with the main objective to release the dependence on fossil fuels. Research that has been there explained that the electric motor is suitable to drive an electric car is a Brushless Direct Current (BLDC) motor. Some of the advantages of BLDC motor is smooth sound, compact size, large torque, high efficiency, has a long lifespan, and easy to control. Performance and speed of the BLDC motor can be disturbed when working on load condition. Therefore, it takes the speed setting using a controller that can keep BLDC motor speed suit to set-point even when operating at load condition. The controller used to control the speed of the BLDC motor is a Proportional Integral (PI) controller based Hybrid Adaptive Neural- Fuzzy. PI controller is chosen because it can eliminate the steady-state error. While Hybrid Adaptive Neural-Fuzzy is a combination of Fuzzy Logic and Neural-Network. Fuzzy Logic is used to determine parameters PI controller. Parameters PI Controller obtained from Neural-Network. The response characteristics of the results of the implementation have 20 seconds settling time, overshoot of 1.1%, and the time constant of 7.7 seconds.

Item Type: Thesis (Undergraduate)
Additional Information: RSE 629.831 2 Wic p
Uncontrolled Keywords: Brushless DC, Hybrid Adaptive Neural-Fuzzy, Propotional and Integral (PI) Controller, Brushless DC, Hybrid Adaptive Neural-Fuzzy, Propotional and Integral (PI) Controller.
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ223 PID controllers
Divisions: Faculty of Industrial Technology > Electrical Engineering > 20201-(S1) Undergraduate Thesis
Depositing User: ansi aflacha
Date Deposited: 02 Jan 2020 07:21
Last Modified: 27 May 2020 08:27
URI: https://repository.its.ac.id/id/eprint/72502

Actions (login required)

View Item View Item