Peramalan Siwa-Siswi Sma Yang Diterima Pada Perguruan Tinggi Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation (Studi Kasus Pada Sma Negeri 1 Genteng - Banyuwangi)

Paramita, Novi Kurnia Dyah Pradnya (2016) Peramalan Siwa-Siswi Sma Yang Diterima Pada Perguruan Tinggi Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation (Studi Kasus Pada Sma Negeri 1 Genteng - Banyuwangi). Undergraduate thesis, Institut Teknologi Sepuluh Nopember Surabaya.

[img]
Preview
Text
5209100027-Undergraduate_Thesis.pdf - Published Version

Download (2MB) | Preview

Abstract

Dewasa ini persaingan mendapatkan perguruan tinggi negeri (PTN) bagi lulusan Sekolah Menengah Atas (SMA) di Indonesia semakin ketat.. Menurut data yang dirilis oleh panitia Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN), di tahun 2014, hanya sekitar 17% siswa lulusan SMA se-Indonesia yang diterima di PTN melalui jalur SNMPTN pada tahun 2014. Mengacu pada fenomena ini, banyaknya jumlah siswa yang berhasil diterima di PTN bisa dijadikan salah satu parameter untuk mengukur kualitas pendidikan sebuah SMA. Sebagai langkah untuk mengukur tingkat diterimanya siswa suatu SMA di PTN, beberapa data siswa dikumpulkan dan dianalisis lebih lanjut. Dalam penelitian ini, proses analisis data siswa tersebut menggunakan teknik peramalan dengan teknik Jaringan Syaraf Tiruan. Lebih lanjut, data – data dari siswa SMA Negeri 1 Genteng, Banyuwangi, dipilih sebagai obyek dalam penelitian ini. Tujuan penelitian ini adalah mengetahui penerapan peramalan menggunakan metode jaringan syaraf tiruan dengan teknik Backpropagation pada rata-rata nilai rapor, nilai ujian nasional, pendidikan orang tua dan pekerjaan orang tua terhadap tingkat diterimanya siswa SMA Negeri 1 Genteng di perguruan tinggi. Selain itu, output dari model peramalan yang terbentuk akan digunakan ii untuk memprediksi siswa angkatan 2015 yang diterima di perguruan tinggi ======================================================================== In the recents years, competition is getting tougher to get admitted in public universities for a senior high school student in Indonesia. Based on data released by the committee of the national selection admission for public university (SNMPTN), in 2014, only 17% of the total high school students all over Indonesia who have been successfully admitted in higher education level through the national selection process. With regards to this phenomena, analysis of the number of students who are accepted in university level could be utilized as one of parameters to assess the quality of education from a well-known high school. Therefore, as an approach to evaluate the rate of number of students who are admitted in the university, several data from the students are gathered and analyzed further. Furthermore, in this work, the artificial neural system (ANS) is utilized as a forecasting technique to analyze all the collected data. In particular, data collected from SMA Negeri 1 Genteng’s students are being used as main research object. The purpose of this study is to determine the applicability of forecasting technique using the artificial neural network with backpropagation method in analyzing the student’s average grades, nation exam scores, parental education and occupation, on the level of acceptance in college’s admission. In addition, the result of this iv study will also be used to predict the number of students who are going to be accepted in 2015 national college’s admission

Item Type: Thesis (Undergraduate)
Additional Information: RSSI 006.32 Par p
Uncontrolled Keywords: Peramalan, jaringan syaraf tiruan, Backpropagation, data siswa, perguruan tinggi
Subjects: Q Science > QA Mathematics > QA336 Artificial Intelligence
Q Science > QA Mathematics > QA76.87 Neural networks (Computer Science)
Divisions: Faculty of Information and Communication Technology > Information Systems > 57201-(S1) Undergraduate Thesis
Depositing User: EKO BUDI RAHARJO
Date Deposited: 22 Jan 2020 06:55
Last Modified: 22 Jan 2020 06:55
URI: https://repository.its.ac.id/id/eprint/72891

Actions (login required)

View Item View Item