

TUGAS AKHIR-TM184835

STUDI EKSPERIMEN DAN ANALISIS REDUKSI RESPON GETARAN TRANSVERSAL PADA SISTEM UTAMA (PIPA ELBOW 90°) OLEH MEKANISME DYNAMIC VIBRATION ABSORBER (DVA) TIPE BEAM AKIBAT PENGARUH POSISI PELETAKAN DVA

Freidy Zakaria Al Hamra NRP. 021 1 15 4000 0068

Dosen Pembimbing Dr. Wiwiek Hendrowati, S.T., M.T.

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI DAN REKAYASA SISTEM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA - 2020

TUGAS AKHIR-TM184835

STUDI EKSPERIMEN DAN ANALISIS REDUKSI RESPON GETARAN TRANSVERSAL PADA SISTEM UTAMA (PIPA ELBOW 90°) OLEH MEKANISME DYNAMIC VIBRATION ABSORBER (DVA) TIPE BEAM AKIBAT PENGARUH POSISI PELETAKAN DVA

FREIDY ZAKARIA AL HAMRA

NRP. 021 1 15 4000 0068

Dosen Pembimbing Dr. Wiwiek Hendrowati, S.T., M.T.

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI DAN REKAYASA SISTEM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA - 2020

FINAL PROJECT-TM184835

EXPERIMENTAL STUDY AND ANALYSIS OF TRANSVERSAL VIBRATION REDUCTION RESPONSE IN THE MAIN SYSTEM (ELBOW PIPE 90°) BY MECHANISM OF DYNAMIC VIBRATION ABSORBER (DVA) BEAM TYPE DUE TO THE EFFECT OF DVA PLANNING POSITION

FREIDY ZAKARIA AL HAMRA

NRP. 021 1 15 4000 0068

Adviser Dr. Wiwiek Hendrowati, S.T., M.T.

DEPARTMENT OF MECHANICAL ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY AND SYSTEMS ENGINEERING SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY SURABAYA - 2020

STUDI EKSPERIMEN DAN ANALISIS REDUKSI RESPON GETARAN TRANSVERSAL PADA SISTEM UTAMA (PIPA ELBOW 90°) OLEH MEKANISME DYNAMIC VIBRATION ABSORBER (DVA) TIPE BEAM AKIBAT PENGARUH POSISI PELETAKAN DVA TUGAS AKHIR

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Program Studi S-1 Departemen Teknik Mesin Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember

> Oleh: Freidy Zakaria Al Hamra NRP. 02111540000068

SURABAYA JANUARI, 2020

STUDI EKSPERIMEN DAN ANALISIS REDUKSI RESPON GETARAN TRANSVERSAL PADA SISTEM UTAMA (PIPA *ELBOW 90°*) OLEH MEKANISME *DYNAMIC VIBRATION ABSORBER (DVA)* TIPE *BEAM* AKIBAT PENGARUH POSISI PELETAKAN DVA

Nama Mahasiswa	: Freidy Zakaria Al Hamra
NRP	: 02111540000068
Departemen	: Teknik Mesin FTIRS-ITS
Dosen Pembimbing	: Dr. Wiwiek Hendrowati, S.T., M.T.

ABSTRAK

Pabrik industri mempunyai banyak sistem perpipaan terutama pada industri minyak, gas dan pengilangan minyak, industri air minum, pabrik yang memproduksi bahan kimia serta obat-obatan, dan juga industri pembangkit yang menyediakan sumber listrik untuk masyarakat. Sistem perpipaan adalah suatu sistem yang digunakan untuk transportasi fluida antar equipment dari suatu tempat ke tempat yang lain sehingga proses produksi dapat berlangsung. Aliran fluida pada pipa dapat memberi tekanan yang kemudian timbul getaran pada sistem perpipaan. Getaran berlebih adalah suatu hal yang tidak diharapkan muncul dalam sebuah sistem perpipaan. Getaran yang berlebih dapat terjadi karena frekuensi operasional suatu benda sama dengan frekuensi natural sistem tentunya berpengaruh terhadap performa maupun umur kekuatan dari sistem perpipaan. Getaran yang berlebih harus diredam dengan DVA (Dynamic vibration absorber). DVA (Dynamic vibration absorber) yang terpasang pada sistem perpipaan tersusun dari massa dan beam untuk mereduksi respon getaran transversal.

Dalam penelitian tugas akhir ini menguji ulang mekanisme DVA (Dynamic vibration absorber) tipe beam dengan melihat pengaruh posisi peletakan DVA terhadap respon getaran pada sistem utama. Variasi yang digunakan adalah posisi peletakkan DVA pada 3 titik, variasi kecepatan aliran fluida yang melewati sistem utama sebesar 0,3 m/s; 0,5 m/s; 0,7 m/s, dan variasi rasio massa DVA 1/30,1/20,1/10 dari massa sistem utama. DVA tersebut dipasang pada sistem utama berupa fitting perpipaan jenis elbow 90°. Sistem utama diatur agar bergerak dalam 2 DOF, yaitu Translasi ke arah horizontal(x) dan vertikal(y) dengan ditumpu clamp fixed sebelum dan setelah pipa elbow 90°.

Eksperimen ini dilakukan dengan dua kondisi, yaitu sistem utama tanpa penambahan DVA dan sistem utama dengan penambahan DVA. Didapatkan hasil berupa respon percepatan getaran, persentase reduksi. Berdasarkan hasil eksperimen dapat disimpulkan bahwa penambahan massa peredam 1/10 dari massa pipa elbow 90° yang direpresentasikan dengan koin mampu meredam secara efektif sebesar 55,97% getaran ke arah vertikal dan 31,73% getaran ke arah horizontal pada kecepatan aliran 0,3 m/s. Selain itu, posisi peletakan DVA mempengaruhi besarnya respon percepatan getaran yang dihasilkan, dibuktikan bahwa peletakan posisi DVA pada posisi Bend sangat meredam respon getaran. Semakin besar rasio massa DVA dari massa sistem utama maka semakin meredam untuk respon getaran dari sistem utama.

Kata Kunci : pipa *elbow* 90°, *Dynamic Vibration Absorber* (DVA),Getaran pipa

EXPERIMENTAL STUDY AND ANALYSIS OF TRANSVERSAL VIBRATION REDUCTION RESPONSE IN THE MAIN SYSTEM (ELBOW PIPE 90°) BY MECHANISM OF DYNAMIC VIBRATION ABSORBER (DVA) BEAM TYPE DUE TO THE EFFECT OF DVA PLANNING POSITION

Name	: Freidy Zakaria Al Hamra
NRP	: 02111540000068
Department	: Teknik Mesin FTIRS-ITS
Adviser	: Dr. Wiwiek Hendrowati, S.T., M.T.

ABSTRACT

Industrial plants have many piping systems, especially in the oil, gas and oil refining industries, the drinking water industry, factories that produce chemicals and medicines, and also the power industry that provides electricity to the community. Piping system is a system used to transport fluid between equipment from one place to another so that the production process can take place. Fluid flow in the pipe can put pressure which then emits a vibration in the piping system. Over vibration is something that is not expected to appear in a piping system. Excess vibrations can occur because the operational frequency of an object is the same as the natural frequency of the system, which certainly affects the performance and strength of the piping system. Excessive vibration must be damped with DVA (Dynamic vibration absorber). DVA (Dynamic vibration absorber) mounted on a piping system is composed of mass and beam to reduce the transverse vibration response.

In this final project, retest the beam type dynamic vibration absorber DVA mechanism by looking at the influence of the positioning of the DVA on the vibration response in the main system. The variation used is the position of the placement of DVA at 3 points, variations in the speed of fluid flow through the main system of 0.3 m/ s; 0.5 m/ s; 0.7 m/ s, and variations in the mass ratio of DVA 1 / 30.1 / 20.1 / 10 of the mass of the main system. The DVA is installed in the main system in the form of a 90° elbow piping type. The main system is set to move in 2 DOF, namely horizontal (x) and vertical (y) translation with a fixed clamp supported before and after the 90° elbow pipe.

This experiment was carried out with two conditions, namely the main system without the addition of DVA and the main system with the addition of DVA. The results obtained in the form of the response of the acceleration of vibration, the percentage reduction. Based on the experimental results it can be concluded that the addition of 1/10 dampening mass of 90° elbow pipe mass represented by coins can effectively reduce 55.97% of vibrations in the vertical direction and 31.73% of vibrations in the horizontal direction at a flow velocity of 0.3 m/s. In addition, the positioning of the DVA affects the magnitude of the resulting acceleration of vibration response, it is proven that the placement of the DVA position at the Bend position greatly dampens the vibration response. The greater the ratio of the mass of the DVA from the mass of the main system, the more damping for the vibration response of the main system.

Keywords: 90° elbow pipe, Dynamic Vibration Absorber (DVA), Vibration pipe

KATA PENGANTAR

Puji syukur penulis panjatkan atas kehadirat Allah SWT yang telah melimpahkan segenap rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul "Studi Eksperimen dan Analisis Reduksi Respon Getaran Transversal pada Sistem Utama (Pipa Elbow 90°) oleh Mekanisme Dynamic Vibration Absorber (DVA) tipe Beam Akibat Pengaruh Posisi Peletakan DVA". Tugas Akhir ini disusun untuk memenuhi persyaratan kelulusan pendidikan S-1 di Departemen Teknik Mesin Fakultas Teknologi Industri dan Rekayasa Sistem, Institut Teknologi Sepuluh Nopember Surabaya.

Dalam penyusunan Tugas Akhir ini, banyak pihak yang telah memberikan dukungan dan bantuannya sehingga dapat terselesaikan sesuai dengan waktu yang diharapkan. Oleh karena itu, penulis ingin menyampaikan ucapan terimakasih kepada pihak-pihak tersebut, antara lain:

- 1. Kedua orang tua penulis, Bapak **Ruswandi** dan Ibu **Indah**, serta adik perempuan penulis, **Silmi Syifa Qonita** yang telah memberikan bimbingan, dukungan dalam segala bentuk, dan doa yang tak henti-hentinya agar segala urusan penulis dimudahkan dan dilancarkan oleh Allah SWT.
- 2. **Dr. Wiwiek Hendrowati, S.T., M.T.** selaku dosen pembimbing Tugas Akhir yang telah meluangkan waktu untuk memberikan segala bimbingan, ilmu, serta masukan selama proses pengerjaan Tugas Akhir ini.
- Dr. Harus Laksana Guntur, ST., M.Eng., Aida Annisa Amin Daman, ST., MT., dan Ir. Julendra B. Ariatedja, M. T. selaku dosen penguji dalam sidang Tugas Akhir penulis yang telah memberikan masukan dan saran untuk Tugas Akhir ini.
- 4. **Gigih Bagas** yang selalu memberikan semangat, dan dukungan dalam menyelesaikan Tugas Akhir.
- 5. Teman-teman sedosen pembimbing Cia, Disa, Sla, Ammar, Kevin, Barel, dan Gerald yang selalu

memberikan dukungan dan semangat kepada penulis untuk segera menyelesaikan studinya.

- 6. Seluruh jajaran warga Laboratorium Vibrasi dan Sistem Dinamis Teknik Mesin FTIRS-ITS Surabaya.
- 7. Keluarga besar M58, Sarekat Merah Rakyat Mesin (SMRM), segenap jajaran dosen serta tenaga pendidik di Jurusan Teknik Mesin FTIRS-ITS, dan juga pihak yang belum disebutkan di atas, yang telah memberikan dukungan, doa, dan bantuannya terhadap penulisan laporan Tugas Akhir ini.

Penulis menyadari bahwa Tugas Akhir ini masih jauh dari kesempurnaan, oleh karena itu, kritik dan saran dari pembaca akan diterima untuk menjadikan Tugas Akhir ini lebih baik lagi.

> Surabaya, Januari 2020 Penulis

DAFTAR ISI

HALAMA	N JUDUL	i
LEMBAR	PENGESAHAN	v
ABSTRAK	-	vii
KATA PE	NGANTAR	xi
DAFTAR	ISI	.xiii
DAFTAR	GAMBAR	xvii
DAFTAR '	TABELx	xiii
BAB 1 PE	NDAHULUAN	1
1.1	Latar Belakang Masalah	1
1.2	Perumusan Masalah	2
1.3	Tujuan Penelitian	3
1.4	Batasan Masalah	3
1.5	Manfaat Penelitian	4
BAB II DA	SAR TEORI DAN TINJAUAN PUSTAKA	5
2.1	Dasar Teori	5
2.1.1	Sistem Perpipaan	5
2.1.2	Geometri Elbow	5
2.1.3	Sumber Eksitasi Berupa Fluida	7
2.1.4	Massa Jenis	8
2.1.5	Hal-Hal Yang Sering Menyebabkan Terjadinya	
Getara	n Pada Pipa (Piping Vibration)	9
2.1.6	Getaran	10
2.1.7	Multi Degree of Freedom (MDoF)	12
2.1.8	Response of a Damped System Under the	
Harmo	onic Motion of the Base	14
2.1.9	Dynamic Vibration Absorber	17
2.1.10	Frekuensi Natural	18
2.1.11	Prinsip Desain Eksperimen	18
2.2	Tinjauan Pustaka	19
BAB III M	ETODOLOGI PENELITIAN	31
3.1	Flowchart Penelitian	31

3.2	Penjelasan Tahap Penelitian	33
3.2.1	Studi Literatur	33
3.2.2	Identifikasi Masalah	33
3.2.3	Perancangan Mekanisme Sistem Utama dan D	VA
		33
3.2.4	Model Dinamis dan Persamaan Gerak	38
3.2.5	Rancang Bangun	59
3.2.6	Perencanaan Parameter	60
3.2.7	Flowchart Eksperimen	72
3.2.8	Skema Pengujian	74
3.2.9	Pengambilan Data Eksperimen	75
3.2.10	Analisa Data dan Pembahasan	77
3.2.11	Kesimpulan	77
BAB IV AN	ALISA DATA DAN PEMBAHASAN	79
4.1	Peralatan dan Pelaksanaan Eksperimen	79
4.1.1	Sistem Utama	80
4.1.2	Dynamic Mass Vibration Absorber (DVA)	80
4.1.3	Pelaksanaan Eksperimen	82
4.2	Pengambilan dan Pengolahan Data Eksperimen	83
4.2.1	Data Sistem Utama Respon Getaran tanpa DV	'A85
4.2.2	Data Respon Getaran Sistem Utama dengan D	VA
		87
4.3	Analisa dan Pembahasan Respon Getaran Sistem	
Utama Ta	npa dan dengan DVA	89
4.3.1 A	nalisa dan Pembahasan Respon Getaran Sistem	
Utama	Tanpa DVA	89
4.3.2 A	nalisa dan Pembahasan Respon Getaran dengan	
Variasi	Rasio Massa DVA	91
4.3.3 A	nalisa dan Pembahasan Respon Getaran dengan	
Variasi	Peletakan Posisi DVA	.100
BAB V KES	SIMPULAN DAN SARAN	.111
5.1	Kesimpulan	.111
5.2	Saran	.112
DAFTAR P	PUSTAKA	

LAMPIRAN	115
BIODATA PENULIS	119

Halaman ini sengaja dikosongkan

DAFTAR GAMBAR

Gambar 2.1 Grafik aspect ratio dengan total loss coefficient6
Gambar 2.2 Aliran internal pada pipa7
Gambar 2.3 Free Vibration System (Rao, 2011)11
Gambar 2.4 Forced Vibration System (Rao, 2011)11
Gambar 2.5 Contoh sistem SDoF free vibraton(Rao, 2011)12
Gambar 2.6 Ilustrasi sistem undamped dengan tiga derajat
kebebasan(Rao, 2011)13
Gambar 2.7 Skema base motion vibration(Rao, 2011)14
Gambar 2.8 Grafik hubungan (a) amplitude ratio dengan
frequency ratio, (b) phase angle dengan frequency
<i>ratio</i> (Rao, 2011)16
Gambar 2.9 Skema peredaman dynamic vibration absorber(Rao,
2011)17
Gambar 2.10 Efek penggunaan DVA terhadap rasio frekuensi
natural sistem18
Gambar 2.11 Konstruksi DVA(Ricky,2017)20
Gambar 2.12 Respon percepatan (a)variasi pegas,(b)posisi massa
dan (c)massa (Ricky,2017)20
Gambar 2.13 Konstruksi DVA (Chang LIU, et al., 2018)21
Gambar 2.14 Instalasi 4 DVA pada sistem utama (Chang LIU, et
<i>al.</i> ,2018)21
Gambar 2.15 x/y/z-scale displacement harmonic response curve
of the node 32231 with DVA (Chang LIU,et
al.,2018)212
Gambar 2.16 Tabel Kecepatan fluida terhadap getaran yang
diinduksi. (Keshtkar H dan Jafari AA,2017)23
Gambar 2.17 (a)Skema rangkaian dan (b)rangkaian
eksperimen(S. M. Khot,et al.,2017)25
Gambar 2.18 Tabel perbandingan teori, simulasi dan hasil
eksperimen (S. M. Khot, et al., 2017)

Gambar 2.19 Model massa-pegas dari defleksi getaran pipa
akibat fluida yang mengalir di dalamnya(Etim S
Udoetok,2018)27
Gambar 2.20 Skema getaran pada bagian pipa pada kasus
(a)clamp supportdan (b)simple support(Etim S
<i>Udoetok</i> ,2018)
Gambar 3.1 Flowchart penelitian
Gambar 3.2 Rangkaian sistem perpipaan (a)isometris
view,(b)pandangan atas34
Gambar 3.3 Sistem utama yang akan di analisa (elbow 90°)35
Gambar 3.4 Spesifikasi Pompa Air Sentifugal
Gambar 3.5 Desain DVA untuk getaran arah x dan y36
Gambar 3.6 Posisi Pemasangan DVA pada sistem utama pada
(a) <i>inlet</i> ,(b) <i>bend</i> ,(c) <i>output</i> 37
Gambar 3.7 Model dinamis sistem utama tanpa penambahan
DVA
Gambar 3.8 <i>Free body diagram</i> sistem utama tanpa penambahan
DVA
Gambar 3.9 Model dinamis sistem utama dengan penambahan
DVA yang berada pada input dari sistem utama .41
Gambar 3.10 Free body diagram sistem utama dengan
penambahan DVA yang berada pada input dari
sistem utama42
Gambar 3.11 Free body diagram massa DVA (M ₂)44
Gambar 3.12 Free body diagram massa DVA (M ₃)45
Gambar 3.13 Model dinamis sistem utama dengan penambahan
DVA yang berada pada bend dari sistem utama46
Gambar 3.14 Free body diagram sistem utama dengan
penambahan DVA48
Gambar 3.15 Free body diagram massa DVA (M2) arah sumbu
x50
Gambar 3.16 Free body diagram massa DVA (M2) arah sumbu
y50

Gambar 3.17 Free body diagram massa DVA (M3) arah sumbu	
x5	1
Gambar 3.18 Free body diagram massa DVA (M3) arah sumbu	L
y5	2
Gambar 3.19 Model dinamis sistem utama dengan penambahan	
DVA yang berada pada <i>output</i> dari sistem utama 5	4
Gambar 3.20 Free body diagram sistem utama dengan	
penambahan DVA yang berada pada <i>output</i> dari	_
sistem utama	5
Gambar 3.21 Free body diagram massa DVA (M2)5	7
Gambar 3.22 Free body diagram massa DVA (M3)5	8
Gambar 3.23 Desain massa <i>ring</i> untuk rancang bangun DVA6	0
Gambar 3.24 Desain <i>beam</i> untuk rancang bangun DVA	0
Gambar 3.25 Massa Pipa Elbow 90°	2
Gambar 3.20 Free body alagram benda kerja	4
Gambar 3.2 7 Polongan benda kerja $(0 \le A \le 1)$	5
Cambar 3.20 Dimensi deri ning alkayı 00%	0
Cambar 3.29 Dimensi dan pipa eloow 90	9
Combor 3 31 2 Podediagram Sistem Utomo 2 DOE	9
Combar 3.31 2 Dodeulugrum Sistem Otalila 2 DOF	2
Combor 3 33 Skome Denguijen Tenne DVA	л Л
Cambar 3.33 Skema Pengujian Dengan DVA di	4
(a)inlet (b)bend (c)output tampak atas	Δ
Cambar 41 Alat Eksperimen (a) Oscilloscone (b) Acc nower	-
supply (c) Kabel Penghubung Acc power supply	
dengan Oscilloscope (d) Probe Accelerometer dar	า
kabel penghubung dengan Acc nower supply dan	•
(e) flashdisk	9
Gambar 4.2 Sistem Utama (a)tampak isometris dan (b)tampak	-
atas	0
Gambar 4.3 Komponen DVA (a) massa pemberat berupa ring	-
karet dan koin,(b) <i>beam</i> ,(c) <i>clamp</i> ,(d)rasio massa	

DVA 1/30 dari massa utama,(e) rasio massa DVA
1/20 dari massa utama,(f) rasio massa DVA 1/10
dari massa utama81
Gambar 4.4 Pelaksanaan Eksperimen (a)instalasi alat, pipa
elbow 90° tanpa DVA (b)tampak isometris,(c)
tampak atas82
Gambar 4.5 Peletakan DVA posisi (a) <i>bend</i> ,(b) <i>input</i> ,(c) <i>output</i> 83
Gambar 4.6 Hasil Pembacaan Oscilloscope Eksperimen Sistem
Utama tanpa DVA dengan dengan kecepatan aliran
(a) 0.3 m/s, (b) 0.5 m/s, (c) 0.7 m/s86
Gambar 4.7 Hasil Filtering dan Smoothing Eksperimen Sistem
Utama tanpa DVA dengan kecepatan aliran (a)0.3
m/s, (b)0.5 m/s, (c)0.7 m/s
Gambar 4.8 Grafik RMS Sistem Utama Tanpa Penambahan
DVA90
Gambar 4.9 Grafik bode diagram variasi rasio massa DVA
terhadap posisi peletakan DVA pada posisi (a)input
atau <i>output</i> dan (b) <i>bend</i> 91
Gambar 4.10 Grafik Perbandingan RMS pada DVA posisi <i>Input</i>
terhadap variasi rasio massa DVA93
Gambar 4.11 Grafik Reduksi pada DVA posisi Input terhadap
variasi rasio massa DVA93
Gambar 4.12 Grafik Perbandingan RMS pada DVA posisi Bend
terhadap variasi rasio massa DVA
Gambar 4.13 Grafik Reduksi pada DVA posisi <i>Bend</i> terhadap
variasi rasio massa DVA
Gambar 4.14 Grafik Perbandingan pada DVA posisi <i>Output</i>
terhadap variasi rasio massa DVA
Gambar 4.15 Grafik Reduksi pada DVA posisi <i>Output</i> terhadap
variasi rasio massa DVA
Gambar 4.16 Grafik bode diagram peletakan posisi DVA
terhadap rasio massa DVA

Gambar 4. 17 Grafik Perbandingan RMS pada rasio massa DVA 1/30 massa utama terhadap variasi posisi DVA.103 Gambar 4. 18 Grafik Reduksi pada rasio massa DVA 1/30 massa utama terhadap variasi posisi DVA......103 Gambar 4.19 Grafik Perbandingan RMS pada rasio massa DVA 1/20 massa utama terhadap variasi posisi DVA.106 Gambar 4.20 Grafik Reduksi pada rasio massa DVA 1/20 massa utama terhadap variasi posisi DVA106 Gambar 4.21 Grafik Perbandingan RMS pada rasio massa DVA 1/10 massa utama terhadap variasi posisi DVA.109 Gambar 4.22 Grafik Reduksi pada rasio massa DVA 1/10 massa utama terhadap variasi posisi DVA......109 Gambar 1 Hasil *filtering* dan *smoothing* eksperimen kecepatan aliran 0,3 m/s dengan rasio massa DVA 1/10 pada posisi peletakan (a)bend, (b)input, (c)output.....115 Gambar 2 Hasil *filtering* dan *smoothing* eksperimen kecepatan aliran 0,5 m/s dengan rasio massa DVA 1/10 pada posisi peletakan (a)bend, (b)input, (c)output.....115 Gambar 3 Hasil filtering dan smoothing eksperimen kecepatan aliran 0,7 m/s dengan rasio massa DVA 1/10 pada posisi peletakan (a)bend, (b)input, (c)output.....115 Gambar 4 Hasil filtering dan smoothing eksperimen kecepatan aliran 0,3 m/s dengan rasio massa DVA 1/20 pada posisi peletakan (a)bend, (b)input, (c)output.....116 Gambar 5 Hasil filtering dan smoothing eksperimen kecepatan aliran 0,5 m/s dengan rasio massa DVA 1/20 pada posisi peletakan (a)bend, (b)input, (c)output.....116 Gambar 6 Hasil filtering dan smoothing eksperimen kecepatan aliran 0,7 m/s dengan rasio massa DVA 1/20 pada posisi peletakan (a)bend, (b)input, (c)output.....116 Gambar 7 Hasil filtering dan smoothing eksperimen kecepatan aliran 0,3 m/s dengan rasio massa DVA 1/30 pada posisi peletakan (a)bend, (b)input, (c)output.....117

Gambar 8 Hasil *filtering* dan *smoothing* eksperimen kecepatan aliran 0,5 m/s dengan rasio massa DVA 1/30 pada posisi peletakan (a)*bend*, (b)*input*, (c)*output*117

Gambar 9 Hasil *filtering* dan *smoothing* eksperimen kecepatan aliran 0,7 m/s dengan rasio massa DVA 1/30 pada posisi peletakan (a)*bend*, (b)*input*, (c)*output*.....117

DAFTAR TABEL

Tabel 2. 1 Representative dimensionless equivalent lengths	
(Le/D) untuk katup dan <i>fitting</i>)	6
Tabel 2. 2 Hasil eksperimen, hasil perhitungan rumus peneliti	Ĺ
sebelumnya, dan hasil perhitungan rumus dengan	
clamp support (Etim S Udoetok, 2018)	28
Tabel 3. 1 Dimensi Pipa.	61
Tabel 3. 2 Properties Pipa	61
Tabel 3. 3 <i>Properties</i> Fluida (Venard, 1975)	61
Tabel 3. 4 Pengambilan Data Eksperimen	76
Tabel 4. 1 Nilai RMS Hasil Eksperimen Sistem Utama tanpa	
DVA	87
Tabel 4. 2 Data Hasil Eksperimen	88
Tabel 4. 3 Variasi Rasio Massa DVA terhadap posisi peletaka	n
DVA nada <i>input</i>	
Tabel 4. 4 Variasi Rasio Massa DVA terhadap posisi peletaka	n –
DVA nada <i>Bend</i>	95
Tabel 4. 5 Variasi Rasio Massa DVA terhadap posisi peletaka	n n
DVA nada <i>Output</i>	98
Tabel 4. 6 Variasi Peletakan Posisi DVA terhadan Rasio Mas	sa
DVA 1/30 Dari Massa Utama	102
Tabel 4 7 Variasi Peletakan Posisi DVA terhadan Rasio Mas	59 59
DVA 1/20 Dari Massa Utama	105
Tabel 4 8 Variasi Peletakan Posisi DVA terhadan Rasio Mas	.105 sa
DVA 1/10 Dari Massa Utama	108
	. 100

Halaman ini sengaja dikosongkan

BAB 1 PENDAHULUAN

1.1 Latar Belakang Masalah

Pabrik industri mempunyai banyak sistem perpipaan terutama pada industri minyak, gas dan pengilangan minyak, industri air minum, pabrik yang memproduksi bahan kimia serta obat-obatan, dan juga industri pembangkit yang untuk masyarakat. menyediakan sumber listrik Sistem perpipaan adalah suatu sistem yang digunakan untuk transportasi fluida antar equipment dari suatu tempat ke tempat yang lain sehingga proses produksi dapat berlangsung. Aliran fluida pada pipa dapat memberi tekanan yang kemudian timbul getaran pada sistem perpipaan. Getaran berlebih adalah suatu hal yang tidak diharapkan muncul dalam sebuah sistem perpipaan. Getaran yang berlebih dapat terjadi karena frekuensi operasional suatu benda sama dengan frekuensi natural sistem tentunya berpengaruh terhadap performa maupun umur kekuatan dari sistem perpipaan. Getaran yang berlebih harus diredam dengan DVA (Dynamic vibration absorber). DVA (Dynamic vibration absorber) yang terpasang pada sistem perpipaan tersusun dari massa dan beam untuk mereduksi respon getaran transversal.

Pada penelitian sebelumnya yang dilakukan oleh Chang Liu, yang meneliti getaran pipa *elbow* dan meredam getaran pipa *elbow* pada *Skid Mounted Compressor Unit* dengan menggunakan DVA (*Dynamic vibration absorber*). Penelitian ini dilakukan dengan metode validasi menggunakan analisa *finite element*. Pada penelitian ini didapatkan hasil sebagai berikut :DVA (*Dynamic vibration absorber*) dapat mereduksi getaran secara efektif frekuensi natural dari sistem utama tanpa DVA (*Dynamic vibration absorber*). Penambahan massa dan arah pemasangan DVA (*Dynamic vibration absorber*) pada *annular clamp* dinilai dapat mereduksi getaran secara efektif terhadap sistem utama. Pada penelitian ini digunakan metode eksperimen untuk meneliti peredaman getaran berlebih pada suatu sistem dalam skala laboratorium. Penelitian ini menggunakan DVA (*Dynamic vibration absorber*) yang ditempatkan pada pipa *elbow* yang memiliki getaran terbesar yang disebabkan oleh aliran fluida. Penelitian ini dititik-beratkan pada permodelan DVA (*Dynamic vibration absorber*) untuk mereduksi gerakan translasi pada sistem perpipaan.Model DVA (*Dynamic vibration absorber*) yang digunakan berupa sistem *ring mass-PLA beam-clamp*. Variasi yang dilakukan pada eksperimen ini adalah mengatur posisi pemasangan DVA (*Dynamic vibration absorber*) pada *input* pipa *elbow* 90°, *bend* pipa *elbow* 90°, *output* dari pipa *elbow* 90°, variasi rasio massa DVA 1/30,1/20,1/10 dari massa sistem utama dan variasi kecepatan aliran fluida yang diatur dengan *ball valve*.

1.2 Perumusan Masalah

Berdasarkan latar belakang diatas, dapat dirumuskan permasalahan pada penelitian ini adalah:

- 1. Bagaimana merancang bangun DVA pada *fitting* perpipaan jenis *elbow* 90° untuk mereduksi getaran transversal pada sistem utama ?
- 2. Bagaimana pengaruh variasi kecepatan aliran fluida terhadap respon getaran transversal pada *fitting* perpipaan jenis *elbow* 90° ?
- 3. Bagaimana pengaruh variasi posisi peletakan DVA pada *fitting* perpipaan jenis *elbow* 90° terhadap respon getarannya ?
- 4. Bagaimana pengaruh variasi rasio massa DVA terhadap reduksi respon getaran transversal pada *fitting* perpipaan jenis *elbow* 90° ?
- 5. Bagiamana menganalisa respon getaran sebelum dan sesudah di pasang DVA pada *fitting* perpipaan jenis *elbow* 90° ?

6. Bagaimana menganalisa reduksi getaran transversal yang dihasilkan DVA pada *fitting* perpipaan jenis *elbow* 90°?

1.3 Tujuan Penelitian

Tujuan dari penelitian tugas akhir ini, yaitu:

- 1. Merancang bangun DVA pada *fitting* perpipaan jenis *elbow* 90° untuk mereduksi getaran transversal pada sistem utama.
- 2. Mengetahui pengaruh variasi kecepatan aliran fluida terhadap respon getaran transversal pada *fitting* perpipaan jenis *elbow* 90°.
- 3. Mengetahui variasi posisi peletakan DVA pada *fitting* perpipaan jenis *elbow* 90° terhadap respon getarannya.
- 4. Mengetahui pengaruh variasi rasio massa DVA terhadap reduksi respon getaran transversal pada *fitting* perpipaan jenis *elbow* 90°.
- 5. Menganalisa respon getaran sebelum dan sesudah di pasang DVA pada *fitting* perpipaan jenis *elbow* 90°.
- 6. Menganalisa reduksi getaran transversal yang dihasilkan DVA pada *fitting* perpipaan jenis *elbow* 90°.

1.4 Batasan Masalah

Adapun batasan masaalah yang digunakan agar penelitian dapat berjalaan secara fokus dan terarah, serta dapat mencapai tujuan yang diinginkan, antara lain sebagai berikut.

- Analisis getaran yang dilakukan dua dimensi arah x dan y.
- 2. Tinjuan getaran dan reduksi getaran hanya pada pipa *elbow* 90° yang dialiri fluida.
- **3.** Sumber getar sistem hanya bersumber dari gaya eksitasi fluida air yang masuk ke sistem utama(pipa *elbow* 90°).
- 4. Getaran dari luar mekanisme diabaikan.
- 5. Penelitian di titik beratkan pada alat pereduksi getaran.
- 6. Metode perhitungan di asumsikan beban terpusat.

7. Penelitian ini dititikberatkan pada pipa *elbow* 90° yang diletakkan secara horizontal dengan mengabaikan gaya gravitasi.

1.5 Manfaat Penelitian

Adapun manfaat yang dapat diperoleh dari penelitian ini adalah:

- 1. Penelitian ini bermanfaat sebagai sarana penerapan ilmu pengetahuan untuk perkembangan bidang perindustrian khususnya dalam bidang vibrasi.
- 2. Penelitian ini bermanfaat dalam peredaman getaran guna meningkatkan efisiensi kegiatan yang menggunakan sistem perpipaan pada industri.
- 3. Penelitian ini juga bermanfaat sebagai sumber referensi penelitian selanjutnya mengenai DVA(*Dynamic Vibration Absorber*) dengan berbagai variasi lainya.

BAB II DASAR TEORI DAN TINJAUAN PUSTAKA

2.1 Dasar Teori

Pada bab ini diuraikan beberapa teori yang berhubungan dengan penilitian yang akan dilakukan serta dilengkapi dengan referensi mengenai penelitian-penelitian sebelumnya. Tinjaun pustaka ini digunakan sebagai dasar untuk melakukan simulasi yang dilakukan.

2.1.1 Sistem Perpipaan

Sistem perpipaan sangat penting dalam dunia industri yaitu untuk mengalirkan fluida antara satu plant ke plant lainya. Komponen dari sistem perpipaan secara umum terdiri dari pipa, *Fitiing (elbow, reducer, tee, flange,*dll), Instrumentasi untuk mengukur dan mengendalikan parameter aliran fluida, Peralatan atau *equipment* dan Penyangga pipa. Pada tugas akhir ini dibahas analisa getaran pada *fitting elbow* 90°.

2.1.2 Geometri Elbow

Didalam saluran lengkung (*elbow*) mengalami *pressure drop* yang lebih besar jika dibandingkan dengan *pressure drop* pada aliran di dalam pipa lurus dengan panjang yang sama. Hal ini dapat terjadi karena aliran di dalam sebuah *elbow* mengalami kerugian akibat gesekan (*friction loss*). Selain menglami *friction loss* aliran didalam *elbow* juga mengalami aliran sekunder (*secondary loss*). Geometri *elbow* dinyatakan dengan nilai *aspect ratio*(r/D) yaitu perbandingan antara *mean radius* dan lebar sisi masuk. Pengaruh *aspect ratio* ditunjukan pada gambar 2.1.

Tabel 2. 1 Representative dimensionless equivalent lengths(Le/D) untuk katup dan fitting)

Fitting Type	Equivalent Length," Le/D
Valves (fully open)	
Gate valve	8
Globe valve	340
Angle valve	150
Ball valve	3
Lift check valve: globe lift	600
angle lift	55
Foot valve with strainer: poppet disk	420
hinged disk	75
Standard elbow: 90°	30
45°	16
Return bend, close pattern	50
Standard tee: flow through run	20
flow through branch	60

^{*a*}Based on $h_{l_m} = f(L_e/D)(\overline{V}^2/2)$.

Pada tabel 2.1 ditunjukan bahwa total *loss coefficient* merupakan penjumlahan *resistance due to length* dan *bend resistance. Resistance due to length* yaitu koefisien yang menunjukkan kerugian akibat gesekan, sedangkan *bend resistance* merupakan koefisein yang menunjukkan kerugian akibat separasi. Semakin besar r/D-nya maka jarak tempuh fluida juga semakin panjang. Nilai r/D berbanding terbalik dengan nilai bend *resistance*. Apabila nilai r/D kecil maka nilai dari *bend resistance* mengalami kenaikan, hal ini dapat terjadi dikarenakan fluida

mengalami gesekan yang semakin besar, sehingga potensi terbentuknya separasi semakin besar.

2.1.3 Sumber Eksitasi Berupa Fluida

Pada peneilitian tugas akhir ini digunakan air sebagai fluida kerja yang membuat getaran pada sistem perpipaan. Adapun teori yang digunakan berupa berikut ini.

2.1.3.1 Aliran Internal

Aliran internal adalah aliran dimana fluida mengalir secara penuh serta dilingkupi secara utuh oleh permukaan padat, seperti aliran pada pipa. Gambar 2.2 mengilustrasikan aliran yang masuk pada pipa mulai dari kecepatan *uniform* hingga membentuk aliran *fully developed*. Aliran *fully developed* dapat terbentuk ketika sudah melewati *entrance region* dan *entrance length* pada aliran *laminar* jarak *entrance length* sebesar 13D, sedangkan pada *turbulen* sebesar 25D – 40D. Fenomena aliran seperti ini terjadi ketika aliran yang mengalir tidak mengalami gangguan,seperti pada *fitting*,instalasi,dan sebagainya. Setiap aliran baik *laminar* maupun *turbulen*

Gambar 2.2 Aliran internal pada pipa

2.1.3.2 Aliran Laminar dan Turbulen

Aliran *laminar* merupakan aliran dengan fluida bergerak dalam lapisan-lapisan atau lamina-lamina dengan satu lapisan meluncur secara lancar. Aliran *turbulen* merupakan aliran dimana partikel dari fluida bercampur dengan cepat ketika bergerak bersamaan karena fluktuasi kecepetan tiga dimensi yang bergerak acak. Parameter kecepatan dan ketebalan menentukan apakah aliran tersebut dapat dikatakan aliran *laminar* atau aliran *turbulen*. Berdasarkan parameter tersebut, kondisi aliran *laminar* dan aliran *turbulen* dapat dinyatakan dalam bilangan tak berdimensi yaitu *Reynold Number*. Dimana aliran dapat dikatakan sebagai aliran *laminar* apabila nilai Re < 2300 dan aliran digolongkan sebagai aliran *turbulen* apabila nilai Re > 2300. Namun pendekatan tersebut hanya berlaku pada aliran *incompressible*. Bilangan *reynolds* merupakan rasio antara gaya inersia terhadap gaya geser. Sehingga bilangan *reynolds* dapat dirumuskan sebagai berikut.

$$Re_{Dh} = \frac{\rho . U_{ref} . D_h}{\mu}$$
(2.1)

Dimana : Re_{Dh} adalah bilangan reynolds

 U_{ref} adalah kecepatan aliran fluida (m/s)

 D_h adalah diameter dalam saluran (m)

 μ adalah viskositas kinematik fluida(N.m/s²)

2.1.4 Massa Jenis

Massa jenis berfungsi untuk menentukan zat. Setiap zat memiliki massa jenis yang berbeda. Dan satu zat berapapun massanya berapapun volumenya memiliki massa jenis yang sama.Rumus untuk menentukan massa jenis adalah

$$\rho = \frac{m}{V} \tag{2.2}$$

Dengan:

 ρ adalah massa jenis,

m adalah massa,

V adalah volume.

Satuan massa jenis dalam 'CGS [centi-gram-sekon]' adalah: gram per sentimeter kubik (g/cm³).

1 g/cm³=1000 kg/m³. Massa jenis air murni adalah 1 g/cm³ atau sama dengan 1000 kg/m^{3.}

2.1.5 Hal-Hal Yang Sering Menyebabkan Terjadinya Getaran Pada Pipa (*Piping Vibration*)

Pada umumnya standar design code (ASME B 31.3, B31.1, B31.4, B 31.8 dll) tidak menangani permasalahan getaran pada pipa secara detail, maka kemungkinan terjadi masalah akibat getaran tidak dipertimbangakan dalam tahap design, karena engineer biasanya hanya menganalisa secara static saja dari pipa tersebut. padahal pada jaman sekarang ini tingkat flow rate dalam pipa untuk proses industri semakin tinggi dan juga penggunaan pipa high strengh thin wall (flexible) semakin banyak digunakan. dan getaran pipa ini menjadi masalah ketika plant sudah beroperasi, oleh karena itu sebaiknya isu getaran pipa ini diselesaikan ketika masih dalam tahap *design*, dengan menggunakan metode filosofi design yang tepat. Teknocal merekomendasikan penggunaan CAESAR II untuk mengatasi masalah ini dengan memanfaatkan module dynamic CAESAR II. kemudian kami sebutkan apa saja yang sering menjadi penyebab dari getaran-getaran tersebut sebagai berikut. Ada beberapa penyebab getaran yang menyebabkan pipa menjadi rusak disebabkan oleh fatigue:

- 1. *Flow induced vibration*, yaitu disebabkan oleh *turbulance* dari fluida yang mengalir didalam pipa.
- 2. *Mechanical forces*, yaitu getaran yang disebabkan oleh getaran *equipment* yang tersambung dengan pipa seperti pompa dan kompressor dsb.
- 3. *Pressure pulsation*, yaitu denyut getaran yang disebabkan oleh tekanan dari mesin maupun alat pemompa fluida
- 4. *High Frequency Acoustic*, yaitu getaran yang disebabkan oleh getaran suara yang dikeluarkan dari *relief valve*, *control valves* atau *orifice plates*.

- 5. *Water Hammer (Surge)*, yaitu getaran yang disebabkan oleh perubahan momentum fluida yang disebabkan oleh perubahan dalam buka tutup *valve*.
- 6. *Cavitation or vapour bubble*, yaitu getaran yang disebabkan oleh adanya ruang udara vakum dalam pipa atau penurunan tekanan pada titik tertentu pada pipa.
- 7. *periodic pressure disturbances*, disebabkan karena telah mencapai ujung pipa yang buntu setelah percabangan atau terganggunya aliran karena instrument.

Data statistik menunjukkan bahwa dari semua permasalahan yang menyebabkan plant down time 10 - 15% disebabkan oleh kerusakan pipa yang disebabkan oleh *fatigue* karena getaran. dampak paling utama dari getaran adalah :

- Getaran menyebakan *dyanmic stresses* yang pada akhirnya menyebabkan *fatigue*, lama-lama *fatigue* mengakibatkan *crack* kecil yang merembet dan merusakkan pipa, *welding* terutama yang paling sering dan rentan terkena dampak.
- *Fretting, high stress* yang diakibatkan dua permukaan yang saling berbenturan atau bergesekan dengan ruang terbatas, dalam hal ini itu terjadi pada sambungan pipa dengan menggunakan *bolts* ataupun dengan *threaded pipe*.

2.1.6 Getaran

Getaran dapat didefinisikan sebagai gerakan bolak-balik suatu benda dari posisi awal melalui titik keseimbangan dengan periode, amplitudo dan frekuensi tertentu (Rao, 2004). Getaran berdasarkan sumber getarannya dapat terbagi mendjadi :

2.1.6.1 Free Vibration

Free Vibration adalah getaran yang terjadi pada suatu sistem yang disebabkan oleh eksitasi sesaat yang berupa defleksi awal. Gambar 2.3 merupakan contoh dari sistem yang mengalami getaran dan redaman akibat dari adanya gaya harmonik. Apabila suatu sistem terkena gaya harmonik maka respon getarannya berlangsung pada frekuensi yang sama dengan frekuensi eksitasinya.

Gambar 2.3 Free Vibration System (Rao, 2011).

Sistem diatas dapat dibentuk persamaan matematisnya sebagai berikut.

$$M\ddot{X} + C\dot{X} + kX = 0 \tag{2.3}$$

2.1.6.2 Forced Vibration

Forced Vibration adalah getaran yang terjadi karena gaya eksitasi secara terus menerus terhadap massa sistem. Gambar 2.4 merupakan contoh dari sistem yang mengalami getaran dan redaman akibat mendapatkan gaya dari luar system.

Gambar 2.4 Forced Vibration System (Rao, 2011).

Sistem diatas dapat dibentuk persamaan matematisnya sebagai berikut.

$$M\ddot{X} + C\dot{X} + kX = F(t)$$
(2.4)

2.1.7 Multi Degree of Freedom (MDoF)

Derajat kebebasan atau *Degree of Freedom (DoF)* dapat didefinisikan sebagai jumlah minimum dari koordinat independen yang diperlukan untuk menentukan posisi dari bagian-bagian sistem pada sembarang waktu. Sistem dengan derajat kebebasan satu seperti pada Gambar 2.5, hanya memiliki satu koordinat bebas untuk menentukan kedudukannya. Sedangkan sistem dengan derajat kebebasan lebih dari satu, membutuhkan dua atau lebih koordinat bebas untuk menentukan kedudukannya.

Gambar 2.5 Contoh sistem SDoF free vibraton(Rao, 2011).

Pada Gambar 2.5 menunjukkan sistem satu derajat kebebasan dengan model matematis. Untuk menentukan besar pergerakan, dianalisa dengan hukum kekekalan massa.

$$M_{eq}\ddot{\mathbf{x}} + C_{eq}\dot{\mathbf{x}} + K_{eq}x = 0 \tag{2.5}$$

Dimana: M_{eq} = Massa ekivalen.

 C_{eq} = Koefisien redam ekivalen. K_{eq} = Koefisien pegas ekivalen.

suatu sistem yang terdiri dari dua atau lebih massa dan diantara massa satu ke massa lain dihubungkan oleh pegas dapat dimodelkan sebagai *Multi Degree of Freedom (MDoF)*. Pada sistem mekanik *Multi Degree of Freedom* sering menggunakan Hukum Newton kedua untuk membuat persamaan gerak. Jumlah derajat kebebasan yang semakin banyak memiliki penyelesaian aljabar yang kompleks. Sehingga perlu diselesaikan dalam bentuk matriks. Pemodelan sistem *MDoF* dengan tiga derajat kebebasan dan tiga gaya eksitasi $F_1(t)$, $F_2(t)$, dan $F_3(t)$ diilustrasikan pada Gambar 2.6 sebagai berikut.

Gambar 2.6 Ilustrasi sistem *undamped* dengan tiga derajat kebebasan(Rao, 2011).

Dari ilustrasi pada Gambar 2.6 didapatkan matriks dari persamaan gerak untuk setiap massa sesuai Hukum Newton Kedua.

$$M_i + K_i x_i = F_{ij} \tag{2.6}$$

Persamaan (2.6) terdiri atas j=1, j=2, dan j=3 maka dapat ditulis dalam bentuk matriks.

$$[m] = \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix}, [k]$$
$$= \begin{bmatrix} k_1 + k_2 & -k_2 & 0 \\ -k_2 & k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix}, [F] \quad (2.7)$$
$$= \begin{cases} F_1(t) \\ F_2(t) \\ F_3(t) \end{cases}$$

Sehingga dengan mensubtitusi persamaan 2.7 ke persamaan 2.6 didapatkan persamaan:

$$\begin{bmatrix} m_{1} & 0 & 0 \\ 0 & m_{2} & 0 \\ 0 & 0 & m_{3} \end{bmatrix} \begin{pmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \\ \ddot{x}_{3} \end{pmatrix}$$

$$+ \begin{bmatrix} k_{1} + k_{2} & -k_{2} & 0 \\ -k_{2} & k_{2} + k_{3} & -k_{3} \\ 0 & -k_{3} & k_{3} \end{bmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

$$= \begin{cases} F_{1}(t) \\ F_{2}(t) \\ F_{3}(t) \end{cases}$$

$$(2.8)$$

2.1.8 Response of a Damped System Under the Harmonic Motion of the Base

Salah satu tipe getaran mekanik yang digunakan sebagai teori penelitian ini *adalah base motion vibration. Base motion vibration* merupakan getaran yang terjadi karena adanya pergerakan harmonis dari *base* suatu sistem yang mempengaruhi massa di atasnya (Rao, 2004). Skema *base motion vibraton* ditunjukkan pada Gambar 2.7 (a) di bawah ini dimana y(t) sebagai perpindahan landasan dan x(t) merupakan pepindahan massa dari posisi *equilibrium* statis pada saat waktu t tertentu. Sehingga perubahan panjang pegas dinyatakan x - y dan kecepatan *relative* antara dua ujung peredam adalah $\dot{x} - \dot{y}$. *Free body diagram* ditunjukkan pada Gambar 2.7 (b) di bawah ini.

Gambar 2.7 Skema base motion vibration(Rao, 2011).

Dari Gambar 2.7 di atas, maka didapat bentuk persamaan gerak, yaitu:

$$m\ddot{x} + c(\dot{x} - \dot{y}) + k(x - y) = 0$$
(2.9)

Jika $y(t) = Y \sin \omega t$, persamaan (2.9) menjadi:

$$m\ddot{\mathbf{x}} + c\dot{\mathbf{x}} + kx = ky + c\dot{\mathbf{y}}$$
(2.10)
= kY sin \omega t
+ c\omega Y cos \omega t = A sin(\omega t - \alpha)

Dimana $A = Y \sqrt{k^2 + (c\omega)^2} \operatorname{dan} \alpha = \tan^{-1} \left[-\frac{c\omega}{k} \right]$, *A* adalah gaya harmonis yang bekerja pada sistem. Hal tersebut menujukkan bahwa pemberian gaya eksitasi pada landasan serta dengan memberikan gaya harmonik dengan sejumah *A* kepada massa. Dari persamaan (2.10), didapat respon *steady state* dari massa terhadap *base motion Y(t)*, yaitu:

$$x_p(t) = \frac{Y\sqrt{k^2 + (c\omega)^2}}{\sqrt{[(k - m\omega^2)^2 + (c\omega)^2]}} \sin(\omega t - \phi_1 - \alpha)$$
(2.11)

Dimana:

$$\phi_1 = \tan^{-1} \left[\frac{c\omega}{k - m\omega^2} \right] \tag{2.12}$$

Dengan identitas trigonometri persamaan (2.11) dan (2.12) dapat disederhanakan menjadi persamaan (2.13).

$$x_p(t) = X\sin(\omega_n t - \phi) \tag{2.13}$$

Dimana nilai X dan ϕ didapatkan dari persamaan (2.12) dan (2.13).

$$\frac{X}{Y} = \left[\frac{k^2 + (c\omega)^2}{(k - m\omega^2)^2 + (c\omega)^2}\right]^{\frac{1}{2}}$$
(2.14)
$$= \left[\frac{1 + (2\xi r)^2}{(1 - r^2)^2 + (2\xi r)^2}\right]^{\frac{1}{2}}$$

dan

$$\phi_{1} = \tan^{-1} \left[\frac{mc\omega^{3}}{(k - m\omega^{2}) + (c\omega)^{2}} \right]$$

$$= \tan^{-1} \left[\frac{2\xi r^{3}}{1 + (4\xi^{2} - 1)r^{2}} \right]$$
(2.15)

Persamaan di atas menunjukkan seberapa besar amplitudo yang terjadi pada massa utama dan respon getaran sistem. Dari fenomena *base motion* didapat grafik hubungan amplitudo ratio dan *phase angle* dengan *frequency ratio* yang dapat dilihat pada Gambar 2.8.

Gambar 2.8 Grafik hubungan (a) *amplitude ratio* dengan *frequency ratio*, (b) *phase angle* dengan *frequency ratio*(Rao, 2011).

2.1.9 Dynamic Vibration Absorber

Proses vibration absorber merupakan salah satu proses vibration control pada sistem utama untuk mengurangi atau menghilangkan efek getaran yang tidak diinginkan (Rao, 2004) DVA dapat dimodelkan sebagai sistem dengan komponen absorber atau predam yang dipasang pada system utama yang bergetar. Absorber tersebut dapat berupa sistem massa dan pegas yang dipasangkan pada sistem sumber getar yang direduksi getarannya. Absorber yang dipasang bekerja dengan membuat sistem memiliki dua frekuensi natural. Pemasangan massa absorber pada massa utama ini menghasilkan sistem dengan dua DoF, sehingga sistem tersebut akan memiliki dua frekuensi natural. Skema peredaman dynamic vibration absorber dapat dilihat pada Gambar 2.9 di bawah.

Gambar 2.9 Skema peredaman *dynamic vibration absorber*(Rao, 2011).

Penggunaan *DVA* pada sistem utama berdampak pada respon getaran yang tereduksi karena adanya *DVA* tersebut. Penambahan *DVA* pada sistem utama juga membagi dan mereduksi rasio frekuensi natural sistem menjadi dua bagian yang mana menimbulkan rasio frekuensi natural yang berbeda. Skema efek penggunaan *DVA* pada rasio amplitudo respon sistem terhadap rasio frekuensi natural system pada Gambar 2.10 di bawah.

Gambar 2.10 Efek penggunaan DVA terhadap rasio frekuensi natural sistem

2.1.10 Frekuensi Natural

Frekuensi natural, frekuensi alami atau frekuensi eigen adalah frekuensi osilasi yang cenderung dimiliki suatu sistem saat sistem tersebut dibiarkan bergetar tanpa damping (peredam) maupun eksitasi. Angka ini biasanya khas dari sistem tersebut. Pada sebuah pegas yang memiliki beban dengan massa m dan kekakuan k, angka ini dapat dihitung dengan rumus:

$$\omega_n = \left(\frac{k}{m}\right)^{1/2} \tag{2.16}$$

2.1.11 Prinsip Desain Eksperimen

Ada beberapa prinsip-prinsip dasar dalam eksperimen, yaitu :

- A. Replikasi adalah pengulangan perlakuan yang dilakukan dalam suatu eksperimen. Pengulangan perlakuan ini bisa diberikan kepada kelompok eksperimen yang berbedabeda ataupun diberikan kepada kelompok-kelompok eksperimen yang sama. Tujuannya adalah untuk mengestimasi kesalahan eksperimen dan mempertinggi ketepatan eksperimen.
- B. Randomisasi adalah penentuan anggota atau kelompok eksperimen untuk diberikan perlakuan tertentu. Salah satu

syarat adalah adanya peluang yang sama besar bagi anggota atau kelompok eksperimen untuk menerima perlakuan tertentu.

- C. Kontrol internal adalah upaya pengendalian kondisi di lapangan menjadi lebih homogen. Umumnya dilakukan dengan melakukan pengelompokkan-pengelompokkan agar menjadi lebih homogen dan berimbang.
- D. Perlakuan dan pembanding di samping harus ada perlakuan yang akan diteliti efeknya, juga perlu ada kelompok pembanding (kontrol) yang berfungsi sebagai pembanding kelompok perlakuan.

2.2 Tinjauan Pustaka

Penelitian terdahulu yang digunakan sebagai referensi diantaranya penelitian mengenai Dynamic Vibration Absorber (DVA) Model Beam, validasi dynamic vibration absorber pada sistem perpipaan di kompressor, Analisis Getaran Cairan Turbulen yang Melewati Bagian Dalam Pipa Siku, Studi Eksperimental dan Simulasi aliran yang Diinduksi Getaran Melalui Pipa Lurus dan Internal Fluid Flow Induced Vibration of Pipes. Penelitian sebelumnya mengenai Dynamic Vibration Absorber (DVA) Model Beam telah dilakukan oleh Ricky(Ricky,2017) dengan judul "studi eksperimen dan analisa reduksi respon getaran translasi dan rotasi dengan menggunakan dynamic vibration absorber (dva) model beam". Penelitian tersebut meneliti terkait DVA (Dynamic Vibration Absorber) yang dapat mereduksi gerakan translasi dan rotasi pada sistem utama. Mekanisme DVA yang dirancang merupakan DVA dengan model beam yang ditumpu pada sebuah tumpuan yang diletakkan di bagian atas sistem utama dengan jarak tertentu. Beam dengan kekakuan tertentu berfungsi sebagai pegas absorber dan diberi masa diujungnya sebagai massa absorber. Tiap pegas dan massa absorber divariasikan sebanyak 3 jenis dan diletakkan pada 3 jenis posisi dengan jarak tertentu pada sistem utama.. Pada gambar 2.11 menunjukkan konstruksi dari DVA yang digunakan pada penelitian oleh Ricky(Ricky,2017).

Gambar 2.11 Konstruksi DVA(Ricky,2017)

Gambar 2.12 Respon percepatan (a)variasi pegas,(b)posisi massa dan (c)massa (Ricky,2017)

Gambar 2.12 menunjukkan respon percepatan variasi massa dan pegas dengan DVA model *beam*. Sehingga dapat disimpulkan :Semakin besar nilai massa absorber yang digunakan pada DVA maka respon percepatan sistem utama semakin kecil. Semakin besar nilai koefisien pegas absorber yang digunakan pada DVA maka respon percepatan sistem utama semakin kecil. Semakin jauh jarak peletakan DVA terhadap titik pusat massa sistem utama maka respon percepatan sistem utama semakin kecil.

Pada penelitian selanjutnya yaitu tentang validasi *dynamic* vibration absorber pada sistem perpipaan yang berjudul "Design and Validation of an Adjustable Dynamic Vibration Absorber for Piping Vibration Suppression in Skid Mounted Compressor Unit" oleh Chang LIU(Chang LIU,et al.,2018).Penilitian tersebut meneliti terkait getaran dan mereduksi getaran dengan *dynamic* vibration absorber pada pipa elbow di kompressor. Pada gambar 2.13 menunjukkan konstruksi dari DVA yang digunakan pada penelitian oleh Chang LUI (*Chang LIU, et al., 2018*). Pada gambar 2.13 DVA (*Dynamic vibration absorber*) yang digunakan pada penelitian oleh Chang LUI tersusun *mass block-leaf spring-Bolt connection*.

Gambar 2.13 Konstruksi DVA (Chang LIU, et al., 2018)

Gambar 2.14 Instalasi 4 DVA pada sistem utama (Chang LIU,et al.,2018)

Gambar 2.15 x/y/z-scale displacement harmonic response curve of the node 32231 with DVA (Chang LIU,et al.,2018)

Gambar 2.14 menunjukan instalasi DVA (Dynamic vibration absorber) pada pipa elbow yang menunjukan sistem utama dari penelitian yang dilakukan oleh Chang LIU.Gambar menunjukan perpindahan 2.15 grafik respon harmonik menggunakan DVA (Dynamic vibration absorber) dan tanpa DVA (Dynamic vibration absorber). Pada gambar 2.15 ditunjukan bahwa instalasi DVA (Dynamic vibration absorber) pada pipa elbow dapat mereduksi getaran frekuensi natural sistem utama tanpa DVA (Dynamic vibration absorber) yang ditunjukan dengan garis merah terhadap garis hitam. Dimana garis merah sebgai grafik respon menggunakan DVA dan garis hitam sebagai grafik respon tanpa menggunakan DVA. Pada penelitian ini didapatkan hasil sebagai berikut: DVA (Dynamic vibration absorber) dapat mereduksi getaran secara efektif frekuensi natural dari sistem utama tanpa DVA (Dynamic vibration absorber), Penambahan massa dan arah pemasangan DVA (*Dynamic vibration absorber*) pada annular clamp dinilai dapat mereduksi getaran secara efektif terhadap sistem utama.

Penelitian selanjutnya mengenai Analisis Getaran Cairan Turbulen yang Melewati Bagian Dalam Pipa Siku berjudul "Vibration Analysis of a Turbulent Fluid Passing Inside an Elbow Pipe Section". Penelitian mengenai getaran yang disebabkan cairan turbulen yang melewati bagian dalam pipa siku telah dilakukan sebelumnya oleh Keshtkar H dan Jafari AA(2017). Penelitian yang dilakukan oleh peneliti terdahulu ini dilakukan secara simulasi bertujuan untuk melihat fenomena yang disebabkan oleh cairan yang melewati sebuah sistem perpipaan dapat menyebabkan getaran internal didalam pipa, semua getaran yang terjadi ini di identifikasi dan diprediksi agar tidak menimbulkan kerusakan pada sistem perpipaan apabila getaran yang timbul berosenansi sangat besar dan mendekati frekuensi alami dari sistem. *Keshtkar H dan Jafari AA (2017)* menggunakan ABAQUS sebagai pemecah CFD dan mempelajari getaran paksa dan getaran bebas yang disebabkan oleh aliran turbulensi fluida dengan kecepatan yang berbeda melalui pipa *elbow* 90°.

Pemodelan yang diterapkan pada penelitian ini menggunakan cairan berupa air pada suhu 20°C. Dengan memiliki harga *density* sebesar 1000 (kg/m³), harga *dynamic viscosity* sebesar 1,002 x 10^{-3} (N.S/m²),harga *kinematic viscosity* sebesar 1,004 x 10^{-6} (m²/s), dan air dianggap tidak dapat dimampatkan(*incompressible*).

Fluid velocity	1 st vibration mode	2 nd vibration mode	3 rd vibration mode	4 th vibration mode	5 th vibration mode
0.2 m/s	0.3282 Hz	0.3371 Hz	0.3551 Hz	0.3766 Hz	0.3917 Hz
0.5 m/s	0.3624 Hz	0.3693 Hz	0.3862 Hz	0.4050 Hz	0.4281 Hz
0.7 m/s	0.3963 Hz	0.4005 Hz	0.4214 Hz	0.4356 Hz	0.4586 Hz
1 m/s	0.4090 Hz	0.4124 Hz	0.4356 Hz	0.4480 Hz	0.4689 Hz
1.5 m/s	0.4706 Hz	0.4751 Hz	0.5066 Hz	0.5185 Hz	0.4689 Hz

Gambar 2.16 Tabel Kecepatan fluida terhadap getaran yang diinduksi. (*Keshtkar H dan Jafari AA*,2017).

Dari penelitian yang telah dilakukan oleh *Keshtkar H* dan Jafari AA(2017) didapatkan bahwa dengan meningkatkan kecepatan fluida maka getaran yang ditimbulkan akan meningkatkan frekuensinya. Ini ditunjukkan pada Gambar 2.16 dimana dengan mempertimbangkan frekuensi alami untuk pipa siku yang telah disimulasi, dapat disimpulkan bahwa ada kemungkinan resonansi getaran terjadi pada kecepatan dekat 0,2 m/s. Karena getaran yang ditimbulkan pada kasus ini lebih dekat dengan frekuensi getaran alami pada pipa dan mengenai sifat materialnya. Jadi, jika ingin membangun pipa dengan sifat-sifat yang disebutkan di atas, maka harus berhati-hati untuk tidak membiarkan kecepatan fluida turun di bawah 0,2 m / s - 0,3 m / s yang dapat menyebabkan resonansi getaran.

Dengan memplot grafik untuk setiap *case*, menunjukkan frekuensi getaran dari masing-masing mode. Perpotongan antara garis-garis ini mewakili fenomena yang disebut dengan"flattering" yang pada dasarnya berarti kecepatan fluida telah mencapai nilai kritisnya didalam pipa dan dapat menyebabkan kerusakan pada badan pipa dengan getaran yang di induksi,karena pada simulasi ini garis-garis kecepatan kosntan tidak berpotongan sehingga tidak ada fenomena *flattering* dalam simulasi. Dalam simulasi ini juga menunjukkan dengan meningkatnya kecepatan aliran fluida, distribusi tekanan dan tegangan maksimal pada bagian pipa meningkat baik dalam besaran maupun area yang terpengaruh, efek meningkatnya tekanan pada bagian, menyebabkan dari peningkatan perpindahan maksimum dari titik yang terpengaruh. Variasi perpindahan titik itu melalui dalam waktu. menyebabkannya bergetar. Semakin besar tingkat perpindahan, semakin besar frekuensi getaran.

Penelitian selanjutnya mengenai Studi Eksperimental dan Simulasi aliran yang Diinduksi Getaran Melalui Pipa Lurus berjudul *Experimental and Simulation Study of flow Induced Vibration Through Straight Pipes.* Penelitian mengenai studi eksperimental dan simulasi aliran yang diinduksi getaran melalui pipa lurus telah dilakukan sebelumnya oleh *S. M. Khot, et al.* (2017). Pada penelitian ini membahas pengaruh berbagai parameter seperti diameter pipa, ketebalan dinding pipa, dan laju aliran volumetrik (debit) pada amplitudo getaran pipa pada pipa lurus untuk aliran turbulen. Investigasi dilakukan dengan analitik, eksperimental dan dengan metode simulasi untuk menemukan efek dari parameterparameter ini pada getaran pipa. Teknik DOE digunakan untuk mengetahui efek dari masing-masing faktor yaitu diameter pipa, ketebalan dan debit pada amplitudo getaran

(b) Gambar 2.17 (a)Skema rangkaian dan (b)rangkaian eksperimen(S. M. Khot,et al.,2017)

No. of	Dia.	Thick.	Disch.	Theoretical.	Experimental.	Simulation
Exp.	(mm)	(mm)	(lpm)	(E-8 mm)	(E-8 mm)	(E-8 mm)
1	24	2.4	90	3.92	4.0	3.66
2	24	3.2	90	3.71	3.8	3.56
3	24	4.0	90	3.48	3.6	3.24
4	24	2.4	120	5.43	5.5	5.42
5	24	3.2	120	5.17	5.2	5.03
6	24	4.0	120	4.85	4.9	4.66
7	24	2.4	150	6.97	7.1	6.81
8	24	3.2	150	6.59	6.8	6.67
9	24	4.0	150	6.46	6.6	6.26
10	32	2.4	90	3.36	3.5	3.22
11	32	3.2	90	3.15	3.2	3.0
12	32	4.0	90	2.85	2.9	2.79
13	32	2.4	120	4.90	5.0	4.73
14	32	3.2	120	4.72	4.8	4.91
15	32	4.0	120	4.46	4.6	4.24
16	32	2.4	150	6.11	6.5	5.95
17	32	3.2	150	6.18	6.3	5.94
18	32	4.0	150	6.06	6.1	5.84
19	40	2.4	90	2.90	3.0	2.76
20	40	3.2	90	2.75	2.8	2.61
21	40	4.0	90	2.59	2.6	2.45
22	40	2.4	120	4.41	4.5	4.38
23	40	3.2	120	4.25	4.3	4.13
24	40	4.0	120	3.98	4.1	3.99
25	40	2.4	150	6.05	6.1	5.89
26	40	3.2	150	5.53	5.7	5.58
27	40	4.0	150	5.14	5.4	5.07

TABLE IV. COMPARISON OF THEORETICAL, SIMULATION AND EXPERIMENTAL RESULT

Gambar 2.18 Tabel perbandingan teori, simulasi dan hasil eksperimen (S. M. Khot, et al., 2017)

Gambar 2.18 menunjukan tabel perbandingan teori, simulasi dan hasil eksperimen. Setelah membandingkan ketiga analisis tersebut kesalahan rata-rata antara eksperimen dan simulasi adalah 4,89%, antara simulasi dan teoritis adalah 3,27%, dan antara eksperimen dan teoritis adalah 2.93%. Dari teori,eksperimen dan simulasi yang telah dilakukan didapatkan kesimpulan yaitu amplitudo getaran meningkat ketika laju aliran volumetrik meningkat untuk rentang aliran yang dipilih, dengan meningkatnya diameter pipa maka spektrum getaran menunjukkan pengurangan amplitudo untuk debit yang diberikan dan dengan meningkatnya ketebalan, spektrum getaran menunjukkan sedikit pengurangan dalam amplitudo getaran untuk debit yang dipilih.

Penelitian selanjutnya dilakukan oleh Etim S. Udoetok dengan judul "*Internal Fluid Flow Induced Vibration of Pipes*". Persamaan dibuat sederhana namun tetap dapat dibandingkan dengan hasil eksperimen. Model massa-pegas dalam penurunan rumus ditunjukkan gambar:

Gambar 2.19 Model massa-pegas dari defleksi getaran pipa akibat fluida yang mengalir di dalamnya(Etim S Udoetok,2018)

Dalam penelitian ini dianalisa dua *boundary condition* yaitu kedua ujung diberi *clamp support* dan kedua ujung diberi *simple support*. Gambar 2.20 menunjukkan skema pipa yang terdefleksi akibat adanya getaran.

Gambar 2.20 Skema getaran pada bagian pipa pada kasus (a)*clamp support* (an (b)*simple support*(*Etim S Udoetok*, 2018)

Dimana L adalah panjang pipa dan R adalah jari-jari kelengkungan pipa. Maka persamaan respon getaran dengan *clamp support*(2.17) dan *simple support*(2.18) adalah:

$$Y(x,t) = \frac{16u}{L^4 \left(\frac{384EI}{m_{tot}L^4} - \frac{8m_f V^2}{m_{tot}L^2}\right)^{\frac{1}{2}}} (x^2 L^2 - 2x^3 L + x^4) Sin(wt)$$

$$Y(x,t) = \frac{u}{\left(\frac{384EI}{5 m_{tot}L^4}\right) - \left(\frac{8 m_f V^2}{m_{tot}L^2}\right)^{\frac{1}{2}}} sin\left(\frac{\pi}{L}x\right) sin(wt)$$

$$(2.18)$$

Persamaan frekuensi natural dengan *clamp support*(2.19) dan *simple support*(2.20) adalah:

$$\omega_n = \sqrt{\frac{16(24EI - 0.037123m_f V^2 L^2)}{m_{tot} L^4}}$$
$$\omega_n = \sqrt{\frac{\pi^2 (\pi^2 EI - m_f V^2 L^2)}{m_{tot} L^4}}$$
(2.20)

Persamaan yang telah diturunkan kemudian diuji dengan eksperimen juga dengan persamaan oleh peneliti sebelumnya. Tabel 2.2 ini menunjukkan selisih yang dapat ditoleransi, maka dari itu persamaan ini dapat digunakan.

 Tabel 2. 2 Hasil eksperimen, hasil perhitungan rumus peneliti

 sebelumnya, dan hasil perhitungan rumus dengan clamp support

 (Etim S Udoetok 2018)

(
U(m/s)	w (Hz) Exp [13]	w (Hz) Zhang et al Model [13]	w (Hz) Proposed model (Equation 30)			
0	14.5	14.37	14.751			
1.54	14.26	14.27	14.621			
3.07	14.13	13.95	14.228			
4.34	13.66	13.51	13.685			
5.42	13.27	13.03	13.051			
6.43	12.92	12.48	12.291			
7.19	12.53	12.2	11.594			

Kesimpulan dari penelitian ini adalah model *flow induced vibration* yang dikembangkan untuk kasus *clamp support* dan *simple support* pada tumpuan pipa. Metode pengembangan melibatkan analisa mekanika dan geometris. Pernyataan dikembangkan untuk frekuensi alami,defleksi pipa, kecepatan kritis dan tegangan maksimum karena getaran. Perbandingan hasil ekperimen penelitian terdahulu dan hasil perhitungan yang dijabarkan dapat diterima.

Halaman ini sengaja dikosongkan

BAB III METODOLOGI PENELITIAN

3.1 *Flowchart* Penelitian

Terdapat langkah-langkah yang dilakukan dalam penelitian tugas akhir ini yang ditunjukkan pada *flowchart* penelitian yaitu gambar 3.1 berikut

Gambar 3.1 Flowchart penelitian

3.2 Penjelasan Tahap Penelitian

Berikut ini merupakan penjelasan dari *flowchart* penelitian seperti yang ditunjukkan pada gambar 3.1 diatas.

3.2.1 Studi Literatur

Sebelum penelitian tugas akhir ini dilakukan, maka perlu adanya studi literatur dan mencari referensi yang terkait dengan penelitian ini. Literatur dan referensi tersebut antara lain mengenai *flow induced vibration, multi degree of freedom, base motion vibration, Dynamic Vibration Absorber* (DVA), dan sistem perpipaan. Referensi mengenai *Dynamic Vibration Absorber* (DVA) juga lebih terfokus pada penerapannya di sistem perpipaan. Berbagai sumber tersebut didapatkan dari buku, tugas akhir dan jurnal internasional.

3.2.2 Identifikasi Masalah

Pada penelitian tugas akhir ini, masalah yang diidentifikasi dibagi menjadi dua bagian, yaitu *input* dan *output*. *Input* merupakan suatu masukan yang diberikan pada penelitian ini, yaitu berupa kecepatan aliran fluida, peletakan posisi DVA, dan rasio massa DVA. Sedangkan *output* merupakan hasil yang didapatkan dalam penelitian ini, yaitu berupa reduksi respon getaran sistem utama terhadap DVA.

3.2.3 Perancangan Mekanisme Sistem Utama dan DVA

Berikut merupakan penjelasan dari mekanisme sistem utama yaitu sistem perpipaan pada bagian pipa *elbow* 90° dan DVA yang digunakan:

3.2.3.1 Perancangan Mekanisme Sistem Utama

Sistem utama yang dianalisis adalah pipa *elbow* 90°. Berikut merupakan spesifikasi dari pipa *elbow* 90° yang digunakan.

Jenis pipa	: Pipa elbow 90°
Merk	: Rucika
Tipe	: AW

Bahan: PVCDiameter: 1 inch

Penelitian ini dilakukan dengan mengalirkan sumber gaya eksitasi dari fluida air dari pompa yang mengenai pipa *elbow* 90°. Susunan rangkaian pipa yang digunakan dapat dilihat pada gambar 3.2. Sistem utama yang di analisa dapat dilihat pada gambar 3.3 berupa pipa *elbow* 90°.

(a)

Gambar 3.2 Rangkaian sistem perpipaan (a)*isometris view*,(b)pandangan atas

Keterangan:

- A. Pompa Sentrifugal
- B. Ball Valve
- C. Pipa
- D. Flowmeter
- E. Bak Air
- F. Penyangga
- G. Sistem Utama

Gambar 3.3 Sistem utama yang akan di analisa (elbow 90°)

Aliran fluida yang melewati sistem utama dialirkan dengan pompa air sentrifugal dengan spesifikasi pompa sebagai berikut.

Gambar 3.4 Spesifikasi Pompa Air Sentifugal

3.2.3.2 Perancangan Mekanisme DVA

Pada penelitian ini mekanisme yang dirancang merupakan *vibration absorber* untuk meredam getaran berlebih arah vertikal dan horizontal pada salah satu komponen sistem utama berupa pipa *elbow* 90° .DVA yang digunakan model beam dan massa seperti pada gambar 3.5.

Gambar 3.5 Desain DVA untuk getaran arah x dan y

3.2.3.3 Variasi Pengujian

Pada penelitian ini dianalisa respon reduksi getaran terhadap variasi peletakan DVA dan variasi kecepatan aliran fluida pada pipa *elbow* 90°. DVA dirancang dapat meredam getaran ke arah translasi sumbu x(horizontal) dan y(vertikal). Variasi peletakkan DVA dapat dilihat pada gambar 3.6 dibawah.

Gambar 3.6 Posisi Pemasangan DVA pada sistem utama pada (a)*inlet*,(b)*bend*,(c)*output*

Setiap variasi peletakkan DVA berjarak 40 mm dari titik *bend*, ke arah y(*input*), ke arah x(*output*) dan pada titik *bend*. Untuk variasi kecepatan aliran fluida yang melewati sistem utama sebesar 0,3 m/s; 0,5 m/s; 0,7 m/s. Untuk variasi rasio massa DVA 1/10,1/20,1/30 massa sistem utama.

3.2.4 Model Dinamis dan Persamaan Gerak

Berdasarkan rancangan sistem utama dan DVA yang telah dibuat, dilakukan pemodelan sistem dinamis untuk sistem utama tanpa DVA dan sistem utama setelah penambahan DVA.

3.2.4.1 Model Dinamis dan Persamaan Gerak Sistem Utama (Pipa *Elbow*) Tanpa Penambahan DVA

Rancangan sistem untuk sistem utama tanpa adanya penambahan DVA dapat dilihat pada gambar 3.3 (a) dan (b). Pada gambar 3.7 dibawah ini merupakan model dinamis dari sistem utama tanpa penambahan DVA dengan arah gerak translasi ke arah sumbu x dan y.

Gambar 3.7 Model dinamis sistem utama tanpa penambahan DVA

Keterangan :

- M1 : Massa utama
- F_x : Gaya eksitasi pada sistem utama sumbu x
- Fy : Gaya eksitasi pada sistem utama sumbu y
- k_{1x} : Konstanta pegas dari massa utama arah x
- k_{1y} : Konstanta pegas dari massa utama arah y
- $x_{1(t)}$: Perpindahan massa utama arah x
- $y_{1(t)}$: Perpindahan massa utama arah y

Berdasarkan model dinamis yang telah diketahui, dibuat *free body diagram* (FBD) dari massa utama sehingga dapat diketahui persamaan gerak translasi dari sistem utama tanpa penambahan DVA sebagai berikut:

Gambar 3.8 *Free body diagram* sistem utama tanpa penambahan DVA

Keterangan :

F_x : Gaya eksitasi pada sistem utama sumbu x

Fy : Gaya eksitasi pada sistem utama sumbu y

Fk1x : Gaya pegas dari massa utama arah x

Fk_{1y} : Gaya pegas dari massa utama arah y

 $x_{1(t)}$: Perpindahan massa utama arah x

 $y_{1(t)}$: Perpindahan massa utama arah y

Dimana besarnya masing-masing gaya yaitu:

$$Fk_{1x} = k_1 x_1$$
$$Fk_{1y} = k_1 y_1$$

Berdasarkan *free body diagram* gambar 3.8, didapatkan persamaan gerak translasi terhadap sumbu x dan sumbu y pada massa utama (m_1) sebagai berikut:

Persamaan gerak translasi massa utama (m1) terhadap sumbu x:

$$\begin{aligned} & \leftarrow \Sigma F = m_1 \ddot{x}_1 \\ & f_x - F k_{1x} = m_1 \ddot{x}_1 \\ & m_1 \ddot{x}_1 + k_1 x_1 = f_x \end{aligned} \tag{3.1}$$

Persamaan gerak translasi massa utama (m1) terhadap sumbu y:

$$+ \uparrow \Sigma F = m_1 \ddot{y}_1 f_y - F k_{1y} = m_1 \ddot{y}_1 m_1 \ddot{y}_1 + k_1 y_1 = f_y$$
(3.2)

Persamaan masing-masing massa dapat digabungkan menggunakan matriks, sehingga didapat persamaan gerak sistem utama tanpa DVA berupa matriks sebagai berikut:

$$\begin{pmatrix} m_1 & 0\\ 0 & m_1 \end{pmatrix} \begin{cases} \ddot{x}\\ \ddot{y} \end{cases} + \begin{pmatrix} k_1 & 0\\ 0 & k_1 \end{pmatrix} \begin{cases} x_1\\ y_1 \end{cases} = \begin{pmatrix} f_x\\ f_y \end{pmatrix}$$
(3.3)

Dimana :

$$x = x \sin(\omega t + \emptyset)$$

$$y = y \sin(\omega t + \emptyset)$$

$$\ddot{x} = -\omega^2 x \sin(\omega t + \emptyset)$$

$$\ddot{y} = -\omega^2 y \sin(\omega t + \emptyset)$$

Sehingga didapatkan frekuensi natural dengan analisa fundamental, dimana nilai dari [C] dan [f] = 0. Maka matrix 3.3 menjadi berikut ini :

$$\begin{bmatrix} \begin{pmatrix} -m_1\omega^2 & 0\\ 0 & -m_1\omega^2 \end{pmatrix} + \begin{pmatrix} k_1 & 0\\ 0 & k_1 \end{pmatrix} \end{bmatrix} \begin{cases} x\sin[\omega t + \emptyset] \\ y\sin[\omega t + \emptyset] \end{cases} \\ = \begin{cases} 0\\ 0 \end{cases}$$

$$\begin{pmatrix} k_1 - m_1 \omega^2 & 0 \\ 0 & k_1 - m_1 \omega^2 \end{pmatrix} \begin{cases} x \sin[\omega t + \emptyset] \\ y \sin[\omega t + \emptyset] \end{cases} = \begin{cases} 0 \\ 0 \end{cases}$$

$$det \begin{vmatrix} k_1 - m_1 \omega^2 & 0 \\ 0 & k_1 - m_1 \omega^2 \end{vmatrix} = 0$$

$$k_1^2 \pm 2k_1 m_1 \omega^2 + m_1^2 \omega^4 = 0$$

$$\lambda = \omega^2$$

$$k_1^2 - 2k_1 m_1 \lambda + m_1^2 \lambda^2 = 0$$

$$\lambda_{1,2} = \pm \frac{k_1}{m_1}$$
$$\omega_{1,2} = \sqrt{\frac{k_1}{m_1}}$$

3.2.4.2 Model Dinamis dan Persamaan Gerak Sistem Utama dengan Posisi Penambahan DVA berada di *Input* dari Sistem Utama (Pipa *Elbow*)

Rancangan sistem untuk sistem utama dengan penamabahan DVA dapat dilihat pada gambar 3.6 (a). Pada gambar 3.9 merupakan model dinamis dari sistem utama dan penambahan DVA dengan arah gerak translasi ke arah sumbu x dan y serta posisi peletakan DVA berada pada *input* dari sistem utama (Pipa *elbow*).

Gambar 3.9 Model dinamis sistem utama dengan penambahan DVA yang berada pada *input* dari sistem utama

Keterangan : M₁ : Massa utama

- M_2 : Massa DVA
- M_3 : Massa DVA
- F_x : Gaya eksitasi pada sistem utama sumbu x
- Fy : Gaya eksitasi pada sistem utama sumbu y
- k_{1x} : Konstanta pegas dari massa utama arah x
- k_{1y} : Konstanta pegasdari massa utama arah y
- k_{2y} : Konstanta pegas dari DVA arah y
- k_{3y} : Konstanta pegas dari DVA arah y
- $x_{1(t)}$: Perpindahan massa utama arah x
- $y_{1(t)}$: Perpindahan massa utama arah y
- $y_{2(t)}$: Perpindahan DVA arah y
- $y_{3(t)}$: Perpindahan DVA arah y

Berdasarkan model dinamis yang telah diketahui, dibuat *free body diagram* (FBD) dari massa utama dengan penambahan DVA berada pada *input* dari sistem utama (Pipa *elbow*), sehingga dapat diketahui persamaan gerak translasi x dan y dari massa utama dengan penambahan DVA sebagai berikut :

1. *Free body diagram* dari massa utama(M₁)

Gambar 3.10 *Free body diagram* sistem utama dengan penambahan DVA yang berada pada *input* dari sistem utama

Keterangan :

 M_1 : Massa utama

- F_x : Gaya eksitasi pada sistem utama sumbu x
- F_y : Gaya eksitasi pada sistem utama sumbu y
- Fk_{1x} : Gaya pegas dari massa utama arah x

Fk_{1y} : Gaya pegas dari massa utama arah y

 Fk_{2y} : Gaya pegas dari DVA (M_2) arah y

- Fk_{3y} : Gaya pegas dari DVA (M₃) arah y
- $x_{1(t)}$: Perpindahan massa utama arah x
- $y_{1(t)}$: Perpindahan massa utama arah y
- $y_{2(t)}$: Perpindahan DVA arah y
- $y_{3(t)}$: Perpindahan DVA arah y

Dimana besarnya masing-masing gaya yaitu:

$$Fk_{1x} = k_1 x_1 Fk_{1y} = k_1 y_1 Fk_{2y} = k_2 (y_1 - y_2) Fk_{3y} = k_3 (y_1 - y_3)$$

Berdasarkan *free body diagram* gambar 3.10, didapatkan persamaan gerak translasi terhadap sumbu x dan sumbu y pada massa utama (m_1) sebagai berikut:

Persamaan gerak translasi massa utama (m₁) terhadap sumbu x: $\begin{array}{l} \leftarrow \Sigma F = m_1 \ddot{x}_1 \\ f_x - Fk_{1x} = m_1 \ddot{x}_1 \\ m_1 \ddot{x}_1 + k_1 x_1 = f_x \end{array}$ (3.4) Persamaan gerak translasi massa utama (m₁) terhadap sumbu y: $+ \uparrow \Sigma F = m_1 \ddot{y}_1 \\ f_y - Fk_{1y} - Fk_{2y} - Fk_{3y} = m_1 \ddot{y}_1 \\ m_1 \ddot{y}_1 + k_1 y_1 + k_2 (y_1 - y_2) + k_3 (y_1 - y_3) = f_y \\ m_1 \ddot{y}_1 + k_1 y_1 + k_2 y_1 - k_2 y_2 + k_3 y_1 - k_3 y_3 = f_y \\ m_1 \ddot{y}_1 + (k_1 + k_2 + k_3) y_1 - k_2 y_2 - k_3 y_3 = f_y \end{array}$ (3.5) 2. *Free body diagram* dari massa DVA (M₂)

Gambar 3.11 Free body diagram massa DVA (M₂)

Keterangan :

 $M_2 \ : Massa \, DVA$

 Fk_{2y} : Gaya pegas dari DVA (M_2) arah y

 $y_{1(t)}$: Perpindahan massa utama arah y

 $y_{2(t)}$: Perpindahan DVA arah y

Dimana besarnya masing-masing gaya yaitu:

$$Fk_{2y} = k_2(y_1 - y_2)$$

Berdasarkan *free body diagram* gambar 3.11, didapatkan persamaan gerak translasi terhadap sumbu y pada massa DVA (m₂) sebagai berikut:

Persamaan gerak translasi massa DVA (m₂) terhadap sumbu y:

+
$$\uparrow \Sigma F = m_2 \ddot{y}_2$$

 $Fk_{2y} = m_2 \ddot{y}_2$
 $m_2 \ddot{y}_2 - k_2 (y_1 - y_2) = 0$
 $m_2 \ddot{y}_2 + k_2 y_2 - k_2 y_1 = 0$
3. Free body diagram dari massa DVA (M₃)
(3.6)

Gambar 3.12 Free body diagram massa DVA (M₃)

Keterangan :

M₃ : Massa DVA

Fk_{3y}: Gaya pegas dari DVA (M₃) arah y

 $y_{1(t)}$: Perpindahan massa utama arah y

 $y_{3(t)}$: Perpindahan DVA arah y

Dimana besarnya masing-masing gaya yaitu:

$$Fk_{3y} = k_3(y_1 - y_3)$$

Berdasarkan *free body diagram* gambar 3.12, didapatkan persamaan gerak translasi terhadap sumbu y pada massa DVA (m₃) sebagai berikut:

Persamaan gerak translasi massa DVA (m3) terhadap sumbu y:

$$+ \uparrow \Sigma F = m_3 \ddot{y}_3 F k_{3y} = m_3 \ddot{y}_3 m_3 \ddot{y}_3 - k_3 (y_1 - y_3) = 0 m_3 \ddot{y}_3 - k_3 y_1 + k_3 y_3 = 0$$
(3.7)

Persamaan masing-masing massa dapat digabungkan menggunakan matriks, sehingga didapat persamaan gerak sistem utama dengan penambahan DVA berada pada *input* dari sistem

utama (Pipa elbow) berupa matriks sebagai berikut:

$$\begin{pmatrix} m_1 & 0 & 0 & 0 \\ 0 & m_1 & 0 & 0 \\ 0 & 0 & m_2 & 0 \\ 0 & 0 & 0 & m_3 \end{pmatrix} \begin{pmatrix} \ddot{x}_1 \\ \ddot{y}_1 \\ \ddot{y}_2 \\ \ddot{y}_3 \end{pmatrix}$$

$$+ \begin{pmatrix} k_1 & 0 & 0 & 0 \\ 0 & (k_1 + k_2 + k_3) & -k_2 & -k_3 \\ 0 & -k_2 & k_2 & 0 \\ 0 & -k_3 & 0 & k_3 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} f_x \\ f_y \\ 0 \\ 0 \end{pmatrix}$$

$$(3.8)$$

3.2.4.3 Model Dinamis dan Persamaan Gerak Sistem Utama dengan Posisi Penambahan DVA berada di *Bend* dari Sistem Utama (Pipa *Elbow*)

Rancangan sistem untuk sistem utama dengan penamabahan DVA dapat dilihat pada gambar 3.6 (b). Pada gambar 3.13 merupakan model dinamis dari sistem utama dengan penambahan DVA berada pada *bend* dari sistem utama yang nantinya di proyeksikan terhadap sumbu x dan y.

Gambar 3.13 Model dinamis sistem utama dengan penambahan DVA yang berada pada *bend* dari sistem utama
- M_1 : Massa utama
- $M_2 \hspace{0.1 cm}: Massa \hspace{0.1 cm} DVA$
- M_3 : Massa DVA
- F_x : Gaya eksitasi pada sistem utama sumbu x
- F_y : Gaya eksitasi pada sistem utama sumbu y
- $k_{1x}\;\;$: Konstanta pegas dari massa utama arah x
- k_{1y} : Konstanta pegasdari massa utama arah y
- k₂ : Konstanta pegas dari DVA
- $x_{1(t)}$: Perpindahan massa utama arah x
- $y_{1(t)} \ : Perpindahan \ massa \ utama \ arah \ y$

Dimana perpindahan DVA di proyeksikan ke arah sumbu x dan y, sehingga perpindahan dan kosntanta kekakuan pegas dari DVA dapat didefinisikan sebagi berikut :

- x_2 : Perpindahan DVA arah x sebesar cos 45°
- x_3 : Perpindahan DVA arah x sebesar cos 45°
- y_2 : Perpindahan DVA arah y sebesar sin 45°
- y_3 : Perpindahan DVA arah y sebesar sin 45°
- k_{2x} : Konstanta pegas dari DVA arah x sebesar cos 45°
- k_{3x} : Konstanta pegas dari DVA arah x sebesar cos 45°
- k_{2y} : Konstanta pegas dari DVA arah y sebesar sin 45°
- k_{3y} : Konstanta pegas dari DVA arah y sebesar sin 45°

Berdasarkan model dinamis yang telah diketahui, dibuat *free* body diagram (FBD) dari massa utama dengan penambahan DVA berada pada *bend* dari sistem utama (Pipa *elbow*), sehingga dapat diketahui persamaan gerak translasi x dan y dari massa utama dengan penambahan DVA sebagai berikut :

1. Free body diagram dari massa utama (M₁)

Gambar 3.14 Free body diagram sistem utama dengan penambahan DVA

- M₁ : Massa utama
- M₂ : Massa DVA
- M₃ : Massa DVA
- F_x : Gaya eksitasi pada sistem utama sumbu x
- F_y : Gaya eksitasi pada sistem utama sumbu y
- $k_{1x}\;$: Konstanta pegas dari massa utama arah x
- k_{1y} : Konstanta pegasdari massa utama arah y
- k₂ : Konstanta pegas dari DVA
- $x_{1(t)}$: Perpindahan massa utama arah x
- $y_{1(t)}$: Perpindahan massa utama arah y
- x_2 : Perpindahan DVA arah x sebesar cos 45°
- x_3 : Perpindahan DVA arah x sebesar cos 45°
- y_2 : Perpindahan DVA arah y sebesar sin 45°
- y₃ : Perpindahan DVA arah y sebesar sin 45°
- k_{2x} : Konstanta pegas dari DVA arah x sebesar cos 45°
- k_{3x} : Konstanta pegas dari DVA arah x sebesar cos 45°
- k_{2v} : Konstanta pegas dari DVA arah y sebesar sin 45°
- k_{3y} : Konstanta pegas dari DVA arah y sebesar sin 45°

Dimana besarnya masing-masing gaya yaitu:

$$Fk_{1x} = k_1 x_1 Fk_{1y} = k_1 y_1 Fk_{2x} = k_2 (x_1 + \Theta_x x_2) Fk_{2y} = k_2 (y_1 - \Theta_y y_2) Fk_{3x} = k_3 (x_1 - \Theta_x x_3) Fk_{3y} = k_3 (y_1 + \Theta_y y_3)$$

Berdasarkan *free body diagram* gambar 3.14, didapatkan persamaan gerak translasi terhadap sumbu x dan sumbu y pada massa utama (m_1) sebagai berikut:

Persamaan gerak translasi massa utama (m₁) terhadap sumbu x:

$$\begin{array}{l} \leftarrow \Sigma F = m_1 \ddot{x}_1 \\ f_x - Fk_{1x} - Fk_{2x} - Fk_{3x} = m_1 \ddot{x}_1 \\ m_1 \ddot{x}_1 + k_1 x_1 + k_2 (\Theta_x x_2 + x_1) + k_3 (x_1 - \Theta_x x_3) = f_x \\ m_1 \ddot{x}_1 + k_1 x_1 + k_2 x_1 + (k_2 \Theta_x) x_2 + k_3 x_1 - (k_3 \Theta_x) x_3 \\ = f_x \\ m_1 \ddot{x}_1 + (k_1 + k_2 + k_3) x_1 + (k_2 \Theta_x) x_2 - (k_3 \Theta_x) x_3 \\ = f_x \end{array}$$
(3.9)

$$\begin{array}{l} = f_x \\ persamaan gerak translasi massa utama (m_1) terhadap sumbu y: \\ + \uparrow \Sigma F = m_1 \ddot{y}_1 \\ f_y - Fk_{1y} - Fk_{2y} - Fk_{3y} = m_1 \ddot{y}_1 \\ m_1 \ddot{y}_1 + k_1 y_1 + k_2 (y_1 - \Theta_y y_2) + k_3 (y_1 + \Theta_y y_3) \\ = f_y \\ m_1 \ddot{y}_1 + k_1 y_1 + k_2 y_1 - (k_2 \Theta_y) y_2 + k_3 y_1 \end{array}$$

$$+ (k_3 \Theta_y) y_3 = f_y m_1 \ddot{y}_1 + (k_1 + k_2 + k_3) y_1 - (k_2 \Theta_y) y_2 + (k_3 \Theta_y) y_3$$
(3.10)
$$= f_y$$

2. *Free body diagram* dari massa DVA (M₂)

Gambar 3.15 Free body diagram massa DVA (M2) arah sumbu

Gambar 3.16 *Free body diagram* massa DVA (M2) arah sumbu y

- M_2 : Massa DVA
- Fk_{2x}: Gaya pegas dari DVA (M₃) arah x
- Fk_{2y}: Gaya pegas dari DVA (M₂) arah y
- Θ_x : sudut kemiringan DVA (cos 45°)
- $\Theta_{\rm y}$: sudut kemiringan DVA (sin 45°)
- $x_{1(t)}$: Perpindahan massa utama arah x
- $x_{2(t)}$: Perpindahan DVA arah x
- $y_{1(t)}$: Perpindahan massa utama arah y
- $y_{2(t)}$: Perpindahan DVA arah y

Dimana besarnya masing-masing gaya yaitu:

$$Fk_{2x} = k_2(x_1 + \Theta_x x_2)$$

$$Fk_{2y} = k_2(y_1 - \Theta_y y_2)$$

Berdasarkan *free body diagram* gambar 3.15 dan 3.16, didapatkan persamaan gerak translasi terhadap sumbu x dan y pada massa DVA (m₂) sebagai berikut:

Persamaan gerak translasi massa DVA (m₂) terhadap sumbu x:

$$\begin{split} & \leftarrow \Sigma F = m_2 \ddot{x}_2 \\ & F k_{2x} = m_2 \ddot{x}_2 \\ & m_2 \ddot{x}_2 - k_2 (x_1 + \Theta_x x_2) = 0 \\ & m_2 \ddot{x}_2 - (k_2 \Theta_x) x_2 - k_2 x_1 = 0 \end{split}$$
(3.11)

Persamaan gerak translasi massa DVA (m₂) terhadap sumbu y: $+\uparrow \Sigma F = m_2 \ddot{y}_2$ $Fk_{2y} = m_2 \ddot{y}_2$ $m_2 \ddot{y}_2 - k_2 (y_1 - \Theta_y y_2) = 0$ $m_2 \ddot{y}_2 + (k_2 \Theta_y) y_2 - k_2 y_1 = 0$ (3.12)

3. Free body diagram dari massa DVA (M₃)

Gambar 3.17 *Free body diagram* massa DVA (M3) arah sumbu x

Gambar 3.18 *Free body diagram* massa DVA (M3) arah sumbu y

 M_3 : Massa DVA

 Θ_x : sudut kemiringan DVA (cos 45°)

 Θ_y : sudut kemiringan DVA (sin 45°)

Fk_{3x}: Gaya pegas dari DVA (M₃) arah x

Fk_{3y}: Gaya pegas dari DVA (M₂) arah y

- $x_{1(t)}$: Perpindahan massa utama arah x
- $x_{3(t)}$: Perpindahan DVA arah x
- $y_{1(t)}$: Perpindahan massa utama arah y
- $y_{3(t)}$: Perpindahan DVA arah y

Dimana besarnya masing-masing gaya yaitu:

$$Fk_{3x} = k_3(x_1 - \Theta_x x_3)$$

$$Fk_{3y} = k_3(y_1 + \Theta_y y_3)$$

Berdasarkan *free body diagram* gambar 3.17 dan 3.18, didapatkan persamaan gerak translasi terhadap sumbu x dan y pada massa DVA (m_3) sebagai berikut:

Persamaan gerak translasi massa DVA (m₃) terhadap sumbu x:

$$\begin{aligned} & \leftarrow_{+} \Sigma F = m_{3} \dot{x}_{3} \\ & F k_{3x} = m_{3} \ddot{x}_{3} \\ & m_{3} \ddot{x}_{3} - k_{3} (x_{1} - \Theta_{x} x_{3}) = 0 \\ & m_{3} \ddot{x}_{3} + (k_{3} \Theta_{x}) x_{3} - k_{3} x_{1} = 0 \end{aligned}$$
(3.13)

Persamaan gerak translasi massa DVA (m₃) terhadap sumbu v:

$$+\uparrow \Sigma F = m_{3} \ddot{y}_{3} F k_{3y} = m_{3} \ddot{y}_{3} m_{3} \ddot{y}_{3} - k_{3} (y_{1} + \Theta_{y} y_{3}) = 0 m_{3} \ddot{y}_{3} - (k_{3} \Theta_{y}) y_{3} - k_{3} y_{1} = 0$$
(3.14)

Persamaan masing-masing massa dapat digabungkan menggunakan matriks, sehingga didapat persamaan gerak sistem utama dengan penambahan DVA berada pada *bend* dari sistem utama (Pipa *elbow*) berupa matriks sebagai berikut:

$$\begin{pmatrix} m_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & m_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & m_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_1 & 0 & 0 \\ 0 & 0 & 0 & 0 & m_2 & 0 \\ 0 & 0 & 0 & 0 & 0 & m_3 \end{pmatrix} \begin{pmatrix} \vec{x}_1 \\ \vec{x}_2 \\ \vec{x}_3 \\ \vec{y}_1 \\ \vec{y}_2 \\ \vec{y}_3 \end{pmatrix} + \\ \begin{pmatrix} (k_1 + k_2 + k_3) & k_2\theta_x & -k_3\theta_x & 0 & 0 & 0 \\ -k_2 & -k_2\theta_x & 0 & 0 & 0 & 0 \\ -k_3 & 0 & k_3\theta_x & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & (k_1 + k_2 + k_3) & -k_2\theta_y & k_3\theta_y \\ 0 & 0 & 0 & 0 & -k_2 & k_2\theta_y & 0 \\ 0 & 0 & 0 & 0 & -k_3 & 0 & -k_3\theta_y \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} = \\ \begin{pmatrix} f_x \\ 0 \\ 0 \\ f_y \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} m_{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & m_{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & m_{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & m_{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & m_{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & m_{3} \end{pmatrix} \begin{pmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \\ \ddot{y}_{3} \\ \ddot{y}_{1} \\ \ddot{y}_{2} \\ \ddot{y}_{3} \end{pmatrix} + \\ \begin{pmatrix} (k_{1} + k_{2} + k_{3}) & k_{2}cos 45^{\circ} & -k_{3}cos 45^{\circ} & 0 & 0 & 0 \\ -k_{2} & -k_{2}cos 45^{\circ} & -k_{3}cos 45^{\circ} & 0 & 0 & 0 \\ -k_{3} & 0 & 0 & (k_{1} + k_{2} + k_{3}) & -k_{2}sin 45^{\circ} & k_{3}sin 45^{\circ} \\ 0 & 0 & 0 & 0 & -k_{2} & k_{2}sin 45^{\circ} & 0 \\ 0 & 0 & 0 & 0 & -k_{3} & 0 & -k_{3}sin 45^{\circ} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ y_{1} \\ y_{2} \\ y_{3} \end{pmatrix} = \\ \begin{pmatrix} f_{x} \\ 0 \\ 0 \\ f_{y} \\ 0 \\ 0 \end{pmatrix}$$
 (3.15)

3.2.4.4 Model Dinamis dan Persamaan Gerak Sistem Utama dengan Posisi Penambahan DVA berada di *Output* dari Sistem Utama (Pipa *Elbow*)

Rancangan sistem untuk sistem utama dengan penamabahan DVA dapat dilihat pada gambar 3.5 (c). Pada gambar 3.19 merupakan model dinamis dari sistem utama dan penambahan DVA dengan arah gerak translasi ke arah sumbu x dan y serta posisi peletakan DVA berada pada *output* dari sistem utama (Pipa *elbow*).

Gambar 3.19 Model dinamis sistem utama dengan penambahan DVA yang berada pada *output* dari sistem utama

- M_1 : Massa utama
- M_2 : Massa DVA
- M₃ : Massa DVA
- F_x : Gaya eksitasi pada sistem utama sumbu x
- F_y : Gaya eksitasi pada sistem utama sumbu y
- k_{1x} : Konstanta pegas dari massa utama arah x
- k_{1y} : Konstanta pegasdari massa utama arah y
- k_{2x} : Konstanta pegas dari DVA arah x
- k_{3x} : Konstanta pegas dari DVA arah x
- $x_{1(t)}$: Perpindahan massa utama arah x
- $x_{2(t)}$: Perpindahan DVA arah x
- $x_{3(t)}$: Perpindahan DVA arah x
- $y_{1(t)}$: Perpindahan massa utama arah y

Berdasarkan model dinamis yang telah diketahui, dibuat *free body diagram* (FBD) dari massa utama dengan penambahan DVA berada pada *output* dari sistem utama (Pipa *elbow*), sehingga dapat diketahui persamaan gerak translasi x dan y dari massa utama dengan penambahan DVA sebagai berikut :

1. *Free body diagram* dari massa utama (M_1)

Gambar 3.20 *Free body diagram* sistem utama dengan penambahan DVA yang berada pada *output* dari sistem utama

- M_1 : Massa utama
- F_x : Gaya eksitasi pada sistem utama sumbu x
- $F_y \quad : Gaya \ eksitasi \ pada \ sistem \ utama \ sumbu \ y$
- Fk_{1x} : Gaya pegas dari massa utama arah x
- Fk_{1y} : Gaya pegas dari massa utama arah y
- Fk_{2x} : Gaya pegas dari DVA (M_2) arah x
- Fk_{3x} : Gaya pegas dari DVA (M₃) arah x
- $x_{1(t)}$: Perpindahan massa utama arah x
- $x_{2(t)}$: Perpindahan DVA arah x
- $x_{3(t)}$: Perpindahan DVA arah x
- y_{1(t)}: Perpindahan massa utama arah y

Dimana besarnya masing-masing gaya yaitu:

$$Fk_{1x} = k_1 x_1 Fk_{1y} = k_1 y_1 Fk_{2x} = k_2 (x_1 - x_2) Fk_{3x} = k_3 (x_1 - x_3)$$

Berdasarkan *free body diagram* gambar 3.20, didapatkan persamaan gerak translasi terhadap sumbu x dan sumbu y pada massa utama (m_1) sebagai berikut:

Persamaan gerak translasi massa utama (m1) terhadap sumbu x:

$$\begin{array}{l} \leftarrow \Sigma F = m_1 \ddot{x}_1 \\ f_x - Fk_{1x} - Fk_{2x} - Fk_{3x} = m_1 \ddot{x}_1 \\ m_1 \ddot{x}_1 + (k_1 + k_2 + k_3)x_1 - k_2 x_2 - k_3 x_3 = f_x \\ \end{array}$$
(3.16)
Persamaan gerak translasi massa utama (m₁) terhadap sumbu y:
$$+ \uparrow \Sigma F = m_1 \ddot{y}_1 \\ f_y - Fk_{1y} = m_1 \ddot{y}_1 \\ m_1 \ddot{y}_1 + k_1 y_1 = f_y \end{aligned}$$
(3.17)

2. *Free body diagram* dari massa DVA (M₂)

Gambar 3.21 Free body diagram massa DVA (M2)

 M_2 : Massa DVA

 Fk_{2x} : Gaya pegas dari DVA (M_2) arah x

 $x_{1(t)}$: Perpindahan massa utama arah x

 $x_{2(t)}$: Perpindahan DVA arah x

Dimana besarnya masing-masing gaya yaitu:

$$Fk_{2x} = k_2(x_1 - x_2)$$

Berdasarkan *free body diagram* gambar 3.21, didapatkan persamaan gerak translasi terhadap sumbu x pada massa DVA (m₂) sebagai berikut:

Persamaan gerak translasi massa DVA (m₂) terhadap sumbu x:

$$\begin{array}{l} \leftarrow \Sigma F = m_2 \ddot{x}_2 \\ F k_{2x} = m_2 \ddot{x}_2 \\ m_2 \ddot{x}_2 - k_2 (x_1 - x_2) = 0 \\ m_2 \ddot{x}_2 + k_2 x_2 - k_2 x_1 = 0 \end{array} \tag{3.18}$$

3. *Free body diagram* dari massa DVA (M₃)

Gambar 3.22 Free body diagram massa DVA (M3)

M₃ : Massa DVA

 Fk_{3x} : Gaya pegas dari DVA (M_3) arah x

 $x_{1(t)}$: Perpindahan massa utama arah x

 $x_{3(t)}$: Perpindahan DVA arah x

Dimana besarnya masing-masing gaya yaitu:

$$Fk_{3x} = k_3(x_1 - x_3)$$

Berdasarkan *free body diagram* gambar 3.22, didapatkan persamaan gerak translasi terhadap sumbu x pada massa DVA (m_3) sebagai berikut:

Persamaan gerak translasi massa DVA (m₃) terhadap sumbu x:

$$\begin{aligned} & \leftarrow \Sigma F = m_3 \ddot{x}_3 \\ F k_{3x} = m_3 \ddot{x}_3 \\ m_3 \ddot{x}_3 - k_3 (x_1 - x_3) = 0 \\ m_3 \ddot{x}_3 - k_3 x_1 + k_3 x_3 = 0 \end{aligned}$$
(3.19)

Persamaan masing-masing massa dapat digabungkan menggunakan matriks, sehingga didapat persamaan gerak sistem utama dengan penambahan DVA berada pada *output* dari sistem utama (Pipa *elbow*) berupa matriks sebagai berikut:

$$\begin{pmatrix} m_{1} & 0 & 0 & 0 \\ 0 & m_{2} & 0 & 0 \\ 0 & 0 & m_{3} & 0 \\ 0 & 0 & 0 & m_{1} \end{pmatrix} \begin{pmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \\ \ddot{x}_{3} \\ \ddot{y}_{1} \end{pmatrix}$$

$$+ \begin{pmatrix} (k_{1} + k_{2} + k_{3}) & -k_{2} & -k_{3} & 0 \\ -k_{2} & k_{2} & 0 & 0 \\ -k_{3} & 0 & k_{3} & 0 \\ 0 & 0 & 0 & k_{1} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ y_{1} \end{pmatrix}$$

$$= \begin{pmatrix} f_{x} \\ 0 \\ 0 \\ f_{y} \end{pmatrix}$$

$$(3.20)$$

3.2.5 Rancang Bangun

Pada subbab rancang bangun ini dibahas mengenai komponen-komponen penyusun dari *Dynamic Vibration Absorber* (DVA) yang telah dirancang. Berikut merupakan penjelasan terkait material komponen DVA yang digunakan:

1. Massa DVA

Massa DVA direncanakan berbentuk ring karet. Ring karet tersebut disusun tegak lurus terhadap *beam* yang menempel pada pipa *elbow* 90°. *Ring* dan *beam* memiliki massa 16 gram untuk rasio massa 1/10, massa 8 gram untuk rasio massa 1/20, dan massa 5,3 gram untuk rasio massa 1/30. Gambar 3.23 berikut merupakan rancangan massa yang digunakan sebagai salah satu komponen DVA.

2. Pegas DVA

Pegas DVA *beam* dibuat dari material *Polylactic acid*(PLA). Gambar 3.24 berikut merupakan rancangan pegas yang digunakan sebagai salah satu komponen DVA.

Gambar 3.23 Desain massa ring untuk rancang bangun DVA

Gambar 3.24 Desain beam untuk rancang bangun DVA

3.2.6 Perencanaan Parameter

Langkah selanjutnya yang perlu dilakukan pada penelitian ini yaitu penentuan parameter-parameter terkait penelitian. Parameter digunakan untuk mengetahui respon reduksi getaran pada pipa *elbow* 90°. Parameter yang dimaksud meliputi parameter sistem utama dan sistem *absorber* (DVA). Berikut merupakan parameter yang digunakan pada penelitian ini.

3.2.6.1 Sistem utama

Komponen sistem utama yang dianalisa untuk menentukan massa DVA adalah pipa *elbow* 90°, karena DVA hanya diletakkan pada benda kerja untuk meredam adanya getaran di pipa *elbow* 90°. Getaran ini disebabkan karena ada fluida berupa air yang mengalir

melewati pipa *elbow* 90°. Penelitian ini diambil pada kondisi suhu kamar. Berikut merupakan spesifikasi pipa *elbow* 90° dan fluida berupa air yang digunakan pada penilitian ini:

Tuber of T Dimensi Tipu					
Parameter	Nilai				
Jenis Pipa	PVC Elbow 90°				
Merk Pipa	Rucika				
Tipe Pipa	AW				
Diameter Dalam Pipa	Ø 32,5				
Ketebalan Pipa	4 min				

Tabel 3. 1 Dimensi Pipa

Tabel 3. 2 Properties Pipa

Parameter	Nilai		
Elastic modules	3000 N/mm ² (3 Gpa)		
Poisson's ratio	0,410		
Density	1400 kg/m^3		

Tabel 3. 3 Properties Fluida (Venard, 1975)

Parameter	Nilai		
Jenis Fluida	Air		
Density	1000 kg/m ³		
Dynamic viscosity	1,002 x 10 ⁻³ kg/m.s		
Kinematic viscocity	1,003 x 10 ⁻⁶ m ² /s		

3.2.6.1.1 Massa Sistem Utama

Massa sistem utama terdiri dari massa pipa dan massa air. Dimana untuk massa pipa dan massa *clamp* dilakukan dengan *menimbang* menggunakan timbangan neraca dan massa air dilakukan dengan melakukan perhitungan sebagai berikut:

a. Massa pipa

Untuk mendapatkan massa pipa dilakukan dengan menimbang pipa menggunakan timbangan neraca. Dari hasil menimbang tersebut didapatkan berat dari maassa pipa yaitu sebesar 73,5 gram dan di konversikan kedalam kilogram, sehingga nilai dari masa pipa yaitu sebesar 0,0735 kilogram.

Gambar 3.25 Massa Pipa Elbow 90°

b. Massa air

Untuk mendapatkan massa air dilakukan perhitungan sebagai berikut ini.

$$M_{fluid} = v \times \rho \tag{3.21}$$

Dimana untuk nilai dari ρ air sebesar 1000 kg/m³ dan untuk nilai dari v didapatkan dari perhitungan sebagai berikut

$$v = A \times L \tag{3.22}$$

$$v = \left(\frac{1}{4} \times \pi \times D_{I}^{2} \times SR\right) + 2\left(\frac{1}{4} \times \pi \times D_{i}^{2} \times L\right)$$

$$v = \left(\frac{1}{4} \times \pi \times (0,0325m)^2 \times 0,0254m\right) + 2\left(\frac{1}{4} \times \pi \times (0,0325m)^2 \times 0,04m\right)$$

$$v = (2,107 \times 10^{-5})m^3 + (6,636 \times 10^{-5})m^3 = 8,743 \times 10^{-5}m^3$$

Setelah mendaptkan nilai v, maka nilai v di subtitusikan kedalam persamaan 3.23 sehingga menjadi .

$$M_1 = M_{pipa} + M_{air} \tag{3.23}$$

 $M_1 = 0,0735 kg + 0,087 kg = 0,16 kilogram$

3.2.6.1.2 Konstanta Kekakuan Sistem Utama

Berdasarkan model dinamis yang telah dibuat terdapat konstanta kekakuan, dimana perhitungan konstanta kekakuan tersebut digunakan untuk sistem utama berupa pipa *elbow* dan

DVA. Pada proses getaran pada perpipaan,benda kerja mengalami defleksi yang berbeda akibat dari gaya eksitasi dari pergerakan air. FBD pada benda kerja dimodelkan seperti pada gambar 3.26, kemudian di Analisa gaya dan momen sehingga dapat diketahui nilai gaya reaksi dari benda kerja.

Gambar 3.26 Free body diagram benda kerja

• Gaya-gaya pada sumbu X

$$\vec{+} \Sigma F_x = 0$$

$$A_x = 0 \tag{3.24}$$

• Gaya-gaya pada sumbu Y

 $+\uparrow \Sigma F_y = 0$ $A_y = -F \tag{3.25}$

• Momen pada titik A

 $+ \Sigma M_{A} = 0$ $M_{A} + F \times L = 0$ $M_{A} = -F \times L \qquad (3.26)$

Berdasarkan *free body diagram* pada gambar 3.26, dibuat potongan untuk menganalisa defleksi pada benda kerja yang ditunjukkan oleh gambar 3.27. Pada potongan yang telah dibuat dilakukan analisa gaya dan momen, sehingga dapat diketahui diagram gaya dan momen seperti pada gambar 3.30(a) dan 3.30(b).

Gambar 3.27 Potongan benda kerja ($0 \le X \le I$)

• Gaya-gaya pada sumbu Y

$$+\uparrow \Sigma F_y = 0$$

 $A_y - v = 0$
 $A_y = v$ (3.27)
• Momen untuk $(0 \le x \le l)$
 $+ \frown \Sigma M = 0$
 $M_A - A_y \cdot x = 0$
 $M_A = A_y \cdot x$
 $M_A = -F \cdot x$ (3.28)

Gambar 3.28(a)Diagram gaya dan (b)Diagram momen

Berdasarkan kondisi pada diagram momen yang telah dibuat,dilakukan perhitungan defleksi pada potongan dengan menggunakan metode *double integral* sebagai berikut : Dari gambar 3.28 (a) didapatkan *boundary condition* yaitu $\theta = dv/dx = 0$ pada x=L dan v=0 pada x=0, dengan *boundary condition* tersebut dapat digunakan untuk menyelesaikan persamaan berikut :

• Untuk $(0 \le X_1 \le l)$

$$EI v \frac{d^2 v}{dx^2} = M(x)$$

$$EI v \frac{d^2 v}{dx^2} = -F.x$$

$$EI v \frac{dv}{dx} = -\frac{F}{2}.x^2 + C_1$$

$$EI v = -\frac{F}{6}.x^3 + C_1x + C_2$$
(3.29)

Mencari nilai C1 dan C2 : Untuk $\theta = dv/dx = 0$ pada x=L

$$EI \ v \frac{dv}{dx} = -\frac{F}{2} \cdot x^2 + C_1$$

$$0 = -\frac{F}{2} \cdot (l)^{2} + C_{1}$$

$$C_{1} = \frac{FL^{2}}{2}$$
(3.30)

Untuk v = 0 pada x=0:

$$EI v = -\frac{F}{6} \cdot x^{3} + C_{1}x + C_{2}$$
$$0 = -\frac{F}{6} \cdot 0 + C_{1} \cdot 0 + C_{2}$$
$$C_{2} = 0$$
(3.31)

Setelah didapatkan besarnya nilai C1 dan C2 lalu persamaan 3.30 dan 3.31 disubtitusikan ke dalam persamaan 3.29 untuk mencari besarnya defleksi maksimum yang berada pada x = L sebagai berikut :

$$EI v = -\frac{F}{6} \cdot x^{3} + C_{1}x + C_{2}$$

$$EI v = -\frac{F}{6} \cdot (L)^{3} + \frac{FL^{2}}{2} \cdot L + 0$$

$$EI v = -\frac{FL^{3}}{6} + \frac{FL^{3}}{2}$$

$$EI v = -\frac{FL^{3}}{6} + \frac{3FL^{3}}{6}$$

$$EI v = \frac{2FL^{3}}{6}$$

$$EI v = \frac{FL^{3}}{3}$$

$$v = \frac{FL^{3}}{3EI}$$

$$\Delta = \frac{FL^{3}}{3EI}$$
(3.32)

Sehingga persamaan 3.32 digunakan untuk mendapatkan pada titik maksimum yaitu pada belokan pipa *elbow*. Dimana persamaan untuk mencari nilai kekakuan ditunjukkan oleh persamaan 3.33 berikut ini

$$F = K . \Delta X$$

$$K = \frac{F}{\Delta X}$$

$$K = \frac{F}{\frac{FL^{3}}{3EI}}$$

$$K = \frac{3 EI}{L^{3}}$$
(3.33)

Dari persamaan 3.33 untuk mencari nilai kekakukan pada titik maksimum yaitu pada belokan pipa elbow, diperlukan beberapa parameter vang harus dipenuhi seperti modulus elastisitas, panjang dan inersia. Benda kerja memiliki modulus elastisitas sebesar 3000 N/mm². Panjang kosntanta kekakuan didapatkan dari *clamp* sampai ke titik bend dimana pada penelitian ini titik bend merupakan beban terpusat seperti ditunjukkan pada gambar 3.29 yang merupakan dimensi dari pipa elbow 90° dari clamp sampai titik bend, sedangkan untuk inersia diperlukan analisa momen inersia dengan menggunakan inersia 2 dimensi atau disebut juga dengan inersia bidang. Dimana inersia yang digunakan yaitu inersia lingkaran hollow seperti pada gambar 3.30, sehingga dapat diketahui nilai momen inersia menggunakan persamaan 3.34. Sehingga nilai dari konstanta kekakuan sistem utama sebesar 12245 N/m, dimana perhitunganya dapat dilihat pada persamaan 3.35 dibawah ini.

Gambar 3.29 Dimensi dari pipa elbow 90°

Gambar 3.30 Lingkaran hollow

• Momen Inersia

$$I = \frac{\pi}{64} (D^4 - d^4)$$
$$I = \frac{\pi}{64} (32,7^4 - 32,5^4)$$

$$I = 1360,56 \, mm^4 \tag{3.34}$$

Konstanta Kekakukan Sistem Utama

$$K = \frac{3 \times 3000 \frac{N}{mm^2} \times 1360,56 \, mm^4}{(100 \, mm)^3}$$
$$K = 12,245 \frac{N}{mm} = 12245 \frac{N}{m}$$
(3.35)

3.2.6.2 Frekuensi Natural Sistem Utama

Frekuensi natural sistem utama perlu diketahui untuk melihat besarnya respon respon redaman sistem utama saat kondisi beresonansi. Sistem utama pada penelitian adalah pipa *elbow* 90°. Penelitian ini bertujuan untuk meredam getaran pada kecepatan operasi pompa sebesar 50 Hz atau 314.16 rad/s. Untuk mengetahui besarnya frekuensi natural sistem utama maka digunakan persamaan (3.36) berikut.

Gambar 3.31 2 Bodediagram Sistem Utama 2 DOF

Dari gambar 3.31 *bodediagram* diatas dapat diketahui besarnya frekuensi natural sistem utama adalah sebesar 276.64

rad/s. Sedangkan penelitian ini dilakukan pada frekuensi operasi mesin yaitu 40 Hz atau 251.33 rad/s dimana besarnya frekuensi operasi mesin tersebut mendekati frekuensi natural sistem utama.

3.2.6.3 Sistem Absorber DVA

Pada penelitian ini dibuat *Dynamic Vibration Absorber* (DVA) dengan nilai konstanta pegas setiap DVA telah disesuaikan dengan frekuensi natural sistem utama, kemudian divariasikan rasio massa DVA itu.

3.2.6.3.1 Massa DVA(M₂,M₃)

Dengan diketahui massa dari sistem utama sebesar 0,16 kg, maka dapat diketahui massa DVA dari rasio massa utama. Berdasarkan teori mengenai *vibration absorber* oleh S. Rao dalam bukunya "*Mechanical Vibration*", massa efektif *absorber* yang digunakan adalah 5% dari massa utama, dengan persamaan matematis sebagai berikut:

$$m_3 = \frac{1}{20}m_1 \tag{3.37}$$

Berdasarkan persamaan 3.37 diatas, maka dapat diketahui massa dari *absorber* yang efektif untuk massa benda kerja yang digunakan.

$$m_{3} = \frac{1}{20}m_{1}$$
$$m_{3} = \frac{1}{20}x0,16 \, kg$$
$$= 0,008 \, kg$$

Untuk variasi rasio massa DVA 1/30 dan 1/10 dari massa sistem utama adalah 5,3 gram dan 16 gram.

3.2.6.3.2 Konstanta DVA(K₂,K₃)

Berdasarkan frekuensi natural sistem utama yaitu 276.64 rad/s. untuk mendapatkan nilai dari konstanta kekakuan DVA

dapat dicari dengan menggunakan persamaan 3.38 berikut ini,sehingga didapatkan nilai konstanta kekakuan DVA sebesar 612,24 N/m atau 0,612 N/mm.

$$\omega = \sqrt{\frac{K_3}{m_3}} \tag{3.38}$$

3.2.6.3.3 **Dimensi DVA**

Untuk menentukan dimensi DVA dari konstanta kekakuan DVA bernilai 0,612 N/mm dibutuhkan parameter sebagai berikut. : 3500 N/mm² Modulus young PLA Lebar *beam* (b) : 20 mm Tebal *beam* (h) : 2 mm

Untuk Inersia beam digunakan persamaan 3.36 sebagai berikut.

$$I = \frac{b.h^3}{12}$$
(3.39)

Untuk mengetahui panjang beam(L) digunakan persamaan 3.33 sebagai berikut.

$$K = \frac{3 EI}{L^3} = \frac{3 E. b. h^3}{12 L^3}$$
$$0,612 = \frac{3.3500.20.2^3}{12 L^3}$$
$$L^3 = \frac{3.3500.20.2^3}{12.0,612} = 228758,1699 \text{ mm}$$
$$L = 61,16 \text{ mm} = 6,1 \text{ cm}$$

3.2.7 Flowchart Eksperimen

Terdapat urutan langkah-langkah dalam melakukan eksperimen pada penelitian tugas akhir ini. Langkah-langkah eksperimen tersebut ditunjukkan dengan flowchart pada gambar 3.32 berikut.

Gambar 3.32 Flowchart Sistematika Pelaksanaan Eksperimen

3.2.8 Skema Pengujian

Gambar 3.33 dan 3.34 menunjukkan skema pengujian untuk eksperimen pada penelitian tugas akhir ini. Pada eksperimen ini, probe yang terhubung dengan oscilloscope diletakkan pada bagian benda kerja.

(a)*inlet*,(b)*bend*,(c)*output* tampak atas

Keterangan :

C

A. Oscilloscope

B. Pipa elbow 90° C. Probe D. *Clamp* E. DVA

3.2.9 Pengambilan Data Eksperimen

Eksperimen pada penelitian ini dilakukan secara 2 tahap, yaitu eksperimen pada sistem utama tanpa DVA dan eksperimen pada sistem utama dengan DVA. Eksperimen ini memiliki 2 jenis variasi yaitu variasi kecepatan aliran fluida, variasi posisi DVA, variasi rasio massa DVA.

Respon reduksi getaran dari sistem utama dengan DVA dapat diketahui dari pembacaan hasil osilasi sistem pada *oscilloscope* yang dihubungkan dengan *probe* yang dipasangkan pada tumpuan pipa *elbow* 90°. Hasil yang didapatkan dari eksperimen nantinya dituliskan pada tabel 3.4 berikut.

Variasi Kecepatan Aliran Fluida (m/s)	Arah Getaran	Variasi Peletakan DVA	Rasio Massa DVA	Tanpa DVA $\left(\frac{m}{s^2}\right)$	Dengan DVA $(\frac{m}{s^2})$	Reduksi (%)
		input	1/30			
			1/20			
			1/10			
		bend	1/30			
	Sumbu y		1/20			
			1/10			
		output	1/30			
			1/20			
0,3 m/s			1/10			
			1/30			
		input	1/20			
			1/10			
	Sumbury	band	1/30			-
	Sumbu x	band	1/20			-
			1/10			
		output	1/30			
		output	1/10			
			1/30			
		input	1/20			
		mpat	1/10			
	Sumbu y		1/30			
		bend	1/20			
			1/10			
			1/30			
		output	1/20			
05 (1/10			
0,5 m/s			1/30			
		input	1/20			
			1/10			
	Sumbu x		1/30			
		band	1/20			
			1/10			
			1/30			
		output	1/20			
			1/10			
	Sumbu y	input	1/30			
			1/20			
			1/10			
			1/30			
		bend	1/20			
			1/10			
		output	1/30			
		output	1/10			
0,7 m/s			1/30			
		input	1/20			
	put		1/10			
			1/30			
	Sumbu x	band	1/20			
	Sumbury		1/10			
		output	1/30			
			1/20			
			1/10			

 Tabel 3. 4 Pengambilan Data Eksperimen

3.2.10 Analisa Data dan Pembahasan

Setelah diketahui data eksperimen yang telah dilakukan, maka dilakukan analisis dan pembahasan sesuai dasar teori yang ada. Dari analisis data dan pembahasan yang dilakukan, dapat diketahui variabel-variabel yang mempengaruhi keluaran yaitu reduksi respon getaran pada pipa *elbow* 90°. Pembahasan dan penjelasan analisa tersebut digunakan sebagai acuan untuk menarik kesimpulan dari penelitian ini.

3.2.11 Kesimpulan

Dari hasil eksperimen dan analisa data yang telah dilakukan, maka dapat diketahui kesimpulan dari penelitian ini. Kesimpulan yang ditulis merupakan pokok bahasan dan menjawab rumusan masalah yang telah dituliskan pada Bab I sehingga tujuan dari penelitian dapat tercapai. Kemudian dibuat saran untuk penelitian selanjutnya agar mendapatkan hasil yang lebih baik. Halaman ini sengaja dikosongkan

BAB IV ANALISA DATA DAN PEMBAHASAN

4.1 Peralatan dan Pelaksanaan Eksperimen

Penelitian ini menggunakan metode eksperimen vang dilakukan pada sistem perpipaan dengan sistem utama berupa pipa elbow 90° yang dialirkan fluida berupa air dari pompa sentrifugal. Aliran air diatur dengan ball valve pada kecepatan tertentu. Terdapat beberapa peralatan yang digunakan untuk mendapatkan data pada penelitian ini yang ditunjukkan pada gambar 4.1 berikut.

(a)

(b)

(c)

Gambar 4.1 Alat Eksperimen (a) Oscilloscope, (b) Acc power supply, (c) Kabel Penghubung Acc power supply dengan Oscilloscope, (d) Probe Accelerometer dan kabel penghubung dengan Acc power supply dan (e) flashdisk

Oscilloscope merupakan alat ukur yang digunakan untuk membaca sinyal listrik maupun frekuensi atau memproyeksikan bentuk sinyal listrik agar dapat dilihat, dipelajari dari sensor dan data dari Oscilloscope disimpan ke flashdisk. Acc power supply berfungsi untuk mengubah tegangan AC menjadi tegangan DC

yang dihubungkan dengan *Oscilloscope*. Sedangkan *Probe accelerometer* berfungsi sebagai sensor pendeteksi respon getaran sistem utama yang dihubungkan dengan *Acc power supply*.

4.1.1 Sistem Utama

Sistem utama yang digunakan adalah berupa pipa *elbow* 90° yang dipasang horizontal dengan kedua ujungnya dipasang *clamp*. Pipa *elbow* 90° pada penelitian ini terbuat dari bahan PVC merk Rucika tipe AW dengan ukuran diameter 1 inch. Gambar 4.3 berikut merupakan komponen sistem utama yang dianalisa pada penelitian ini.

(a) (b) Gambar 4.2 Sistem Utama (a)tampak isometris dan (b)tampak atas

4.1.2 Dynamic Mass Vibration Absorber (DVA)

Pada penelitian ini telah dibuat *Dynamic Vibration Absorber* (DVA) atas pegas berupa *beam*, massa pemberat berupa *ring* karet pada rasio massa DVA 1/20 dan 1/30 dari massa sistem utama dan massa pemberat berupa koin sebesar 3,1 gram untuk rasio massa DVA 1/10 dari massa utama. Pegas DVA bermaterial *Polylactic acid*(PLA) dengan konstanta pegas 3500 N/m dan dimensi 61 mm x 20 mm x 2 mm, *clamp* bermaterial *Polylactic acid*(PLA) untuk memasangkan *beam* DVA dengan sistem utama. Gambar 4.4 dibawah ini merupakan gambar komponen penyusun DVA dan gambar DVA secara keseluruhan dengan menggunakan ring dan

koin sebagai pemberat pada rasio massa DVA 1/10 dari massa sistem utama.

(a)

(c)

(e) (d) (f) Gambar 4.3 Komponen DVA (a) massa pemberat berupa ring karet dan koin,(b)beam,(c)clamp,(d)rasio massa DVA 1/30 dari massa utama,(e) rasio massa DVA 1/20 dari massa utama,(f) rasio massa DVA 1/10 dari massa utama

Gambar 4.4 Pelaksanaan Eksperimen (a)instalasi alat, pipa elbow 90° tanpa DVA (b)tampak isometris,(c) tampak atas

Gambar 4.4 diatas merupakan pelaksanaan eksperimen pada sistem perpipaan dengan sistem utama berupa pipa *elbow* 90° merk Rucika tipe AW. Alat pengujian dipasang seperti gambar 4.4(a) dimana *Oscilloscope* terhubung dengan *power supply* yang juga terhubung dengan *probe. Probe accelerometer* hanya diletakkan pada *clamp* besi pada sebelum dan sesudah pipa *elbow* 90° untuk menganalisa getaran di sistem utama ke arah horizontal dan vertikal. Eksperimen dimulai dengan menyalakan *pump* dan *Oscilloscope*.

Terdapat 2 perlakuan yang diterapkan pada penelitian ini yaitu sistem utama tanpa DVA dan sistem utama dengan DVA. Pada sistem utama tanpa DVA diterapkan variasi kecepatan fluida untuk melihat besarnya respon percepatan getaran pada setiap variasi kecepatan fluida. Sedangkan untuk sistem utama dengan DVA diterapkan variasi kecepatan fluida,rasio massa DVA dan posisi peletakkan DVA sehingga dapat diketahui reduksi percepatan getarannya pada setiap variasi.

Gambar 4.5 Peletakan DVA posisi (a)bend,(b)input,(c)output

Pada eksperimen ini aliran fluida yang melewati pipa *elbow* 90° diatur pada kecepatan 0.3 m/s, 0.5 m/s, 0.7 m/s dengan variasi peletakan posisi DVA yaitu pada *input, output*, dan *bend* seperti gambar 4.5. Selain itu juga digunakan variasi rasio massa DVA yaitu 1/10, 1/20, dan 1/30 dari massa pipa *elbow* 90° yang direpresentasikan dengan jumlah *ring* karet dan koin sebagai pemberat DVA.

4.2 Pengambilan dan Pengolahan Data Eksperimen

Penelitian ini dilakukan ketika ada aliran fluida berupa air melewati pipa elbow 90° pada kecepatan tertentu. Eksperimen ini bertujuan untuk mengetahui besarnya respon percepatan getaran pada pipa elbow 90° sebelum dan sesudah ditambahkan Dynamic Vibration Absorber (DVA). Eksperimen ini hanya menganalisa getaran translasi vertikal dan horizontal pada pipa elbow 90° sehingga kedua *probe* dipasang pada *clamp* sesudah dan sebelum pipa elbow 90° dengan arah vertikal pada huruf A dan horizontal pada huruf B pada gambar 4.4(c). Pengambilan data dengan cara menekan save pada Oscilloscope untuk setiap variasi diambil sebanyak 3 kali dengan kondisi stabil. Untuk pengambilan data yang pertama pada sistem utama tanpa DVA dengan variasi kecepatan aliran fluida dari 0,3 m/s; 0,5 m/s: dan 0,7 m/s yang diatur dengan *ball valve*. Langkah selanjutnya pada sistem utama memakai DVA dengan variasi rasio massa DVA dan posisi peletakan DVA pada setiap kecepatan aliran fluida. Variasi rasio

massa DVA yang digunakan adalah 1/30,1/20,1/10 dari massa sistem utama dan variasi posisi peletakan DVA yang digunakan pada posisi *input,bend,output*. Pada pengambilan data dengan DVA digunakan pada kecepatan aliran fluida dan posisi peletakan DVA tetap dengan memvariasikan rasio massa DVA, kemudian memvariasikan posisi peletakkan DVA dan rasio massa DVA pada kecepatan aliran fluida tetap, kemudian memvariasikan kecepatan aliran fluida dengan posisi peletakan DVA dan rasio massa DVA berubah. Pengambilan data dimulai pada posisi peletakan DVA posisi *Input*, rasio massa DVA 1/30 massa sistem utama, kecepatan aliran fluida 0,3 m/s dan diakhiri pada posisi peletakan DVA posisi *output*,rasio massa DVA 1/10 massa sistem utama, kecepatan aliran fluida 0,7 m/s. Dari ke 3 data yang didapatkan, dipilih 1 data yang sesuai teori untuk diolah.

Respon getaran yang diinginkan pada eksperimen ini adalah respon percepatan getaran translasi arah translasi vertikal dan horizontal pada pipa *elbow* 90°. Namun, data yang terbaca pada *oscilloscope* berupa data waktu dan *voltase*. Oleh karena itu, data hasil eksperimen harus dikonversi mejadi respon percepatan. Persamaan 4.1 berikut merupakan persamaan yang digunakan untuk mengkonversi data hasil eksperimen berupa *voltase* menjadi respon percepatan translasi.

Respon =
$$G \frac{g}{10 \text{ mV} \times \text{pembesaran}} = G \frac{9.81 \text{ m/s}^2}{10 \text{ mV} \times \text{pembesaran}}$$
 (4.1)

Keterangan :

G : Data angka *excel* dikalikan skala pembacaan pada *oscilloscope* (mV)

pembesaran : Pembesaran pada oscilloscope

Untuk contoh, didapatkan data *excel* hasil pengukuran *oscilloscope* sebesar 0.0024. Kemudian diketahui juga skala pembacaan pada *oscilloscope* sebesar 10 mV dan menggunakan pembesaran 1x, maka hasil nilai responnya sebagai berikut.

Respon =
$$(0.0024 \times 10 \text{ mV}) \frac{9.81 \text{ m/s}^2}{10 \text{ mV} \times 1} = 0.023544 \text{ m/s}^2$$

Setelah diketahui respon percepatan getarannya, maka dapat dilakukan proses *filtering* dan *smoothing* dengan *software* MATLAB untuk menghilangkan *noise* yang terjadi selama pengujian. Grafik data yang sudah di *filtering* dan *smoothing* dengan *software* MATLAB akan dilampirkan. Dari data respon percepatan dapat diketahui nilai *Root Mean Square* (RMS) untuk masing-masing data hasil pengujian yang telah dilakukan. Respon yang didapat dibandingkan antara respon sistem utama sebelum penambahan DVA dan setelah penambahan DVA, sehingga reduksi respon getaran dapat diketahui dalam bentuk persen dengan menggunakan persamaan (4.2) berikut.

$$\text{Reduksi} = \frac{RMS_1 - RMS_2}{RMS_1} \times 100\%$$
(4.2)

Keterangan :

 RMS_1 : Nilai respon percepatan getaran sistem utama tanpa DVA (m/s^2)

 $RMS_2\,$: Nilai respon percepatan getaran sistem utama dengan DVA (m/s^2)

4.2.1 Data Sistem Utama Respon Getaran tanpa DVA

Eksperimen sistem utama tanpa DVA ini dilakukan ketika ada aliran fluida berupa air melewati pipa *elbow* 90° pada kecepatan aliran 0.3 m/s, 0.5 m/s, 0.7 m/s.

Gambar 4.6 Hasil Pembacaan *Oscilloscope* Eksperimen Sistem Utama tanpa DVA dengan dengan kecepatan aliran (a) 0.3 m/s, (b) 0.5 m/s, (c) 0.7 m/s

Gambar 4.7 Hasil Filtering dan Smoothing Eksperimen Sistem Utama tanpa DVA dengan kecepatan aliran (a)0.3 m/s, (b)0.5 m/s, (c)0.7 m/s

Gambar 4.6 di atas merupakan data sistem utama tanpa DVA hasil pembacaan *oscilloscope* dengan variasi kecepatan aliran 0.3 m/s, 0.5 m/s, 0.7 m/s. Sedangkan gambar 4.7 merupakan hasil *filtering* dan *smoothing* sistem utam,a tanpa penambahan DVA dengan variasi variasi kecepatan aliran 0.3 m/s, 0.5 m/s, 0.7 m/s menggunakan MATLAB. Grafik warna merah menunjukan getaran translasi ke arah vertikal dan grafik warna biru menunjukan getaran translasi ke arah horizontal. Hasil *filtering* dan *smoothing* menunjukkan bahwa sistem berosilasi dan respon getarannya berupa respon percepatan terhadap waktu. Tabel 4.1 berikut menunjukkan besarnya nilai RMS pada sistem utama tanpa DVA.

 DVA

 Kecepatan aliran fluida (m/s)
 Percepatan Translasi Vertikal (m/s²)
 Percepatan Translasi Horizontal (m/s²)

 0.3
 0.0208
 0.0159

 0.5
 0.03
 0.0215

 0.7
 0.0318
 0.0309

 Tabel 4. 1 Nilai RMS Hasil Eksperimen Sistem Utama tanpa

 DVA

Dari tabel di atas nilai percepatan getaran tertinggi terjadi ketika kecepatan aliran 0,7 m/s dengan nilai 0.0318 m/s² ke arah vertikal dan 0.0309 m/s² ke arah horizontal. Sedangkan nilai terendah terjadi ketika kecepatan aliran 0,3 m/s dengan nilai 0.0208 m/s² ke arah vertikal dan 0.0159 m/s² ke arah horizontal.

4.2.2 Data Respon Getaran Sistem Utama dengan DVA

Pada sub bab ini adalah data RMS dan Reduksi dari setiap variasi yang sudah dibuat menjadi data di tabel. Input yang diberikan pada penelitian ini adalah rasio massa DVA, variasi kecepatan aliran fluida, dan variasi posisi peletakan DVA terhadap sistem utama. Output yang didapatkan dari penelitian ini merupakan perbandingan dan reduksi getaran pada setiap variasi. Data hasil percobaan pada penelitian ini diperoleh dengan menggunakan oscilloscope yang dihubungkan dengan 2 probe accelerometer yang diletakkan pada *clamp* sebelum dan sesudah sistem utama. Probe 1 dan Probe 2 digunakan untuk mengamati respon getaran ke arah translasi vertikal dan horizontal dalam bentuk percepatan sehingga memperoleh nilai RMS percepatan pada setiap variasi. Data yang diperoleh dari percobaan telah diolah menggunakan software Matlab sehingga mendapat nilai RMS pada setiap variasi. Setelah dilakukan beberapa variasi percobaan, maka diperoleh data keseluruhan yang dapat dilihat pada tabel dibawah ini.

Variasi Kecepatan Aliran Fluida (m/s)	Arah Getaran	Variasi Peletakan DVA	Rasio Massa DVA	Tanpa DVA $\left(\frac{m}{s^2}\right)$	Dengan DVA $\left(\frac{m}{s^2}\right)$	Reduksi (%)
			1/30 0.0	0.0202	2.88	
		input	1/20		0.0189	9.13
			1/10		0.0164	21.15
			1/30		0.0158	24.04
	Sumbu y	bend	1/20	0.0208	0.0144	30.77
	,		1/10		0.0142	31.73
			1/30		0.0162	22.12
		output	1/20		0.0162	22.12
			1/10		0.0148	28.85
0,3 m/s			1/30		0.012	24.53
		input	1/20		0.0105	33.96
			1/10		0.0136	14.47
			1/30		0.0112	29.56
	Sumbu x	band	1/20	0.0159	0.0099	37.74
			1/10		0.007	55.97
			1/30		0.0135	15.09
		output	1/20		0.0129	18.87
			1/10		0.0113	28.93
			1/30		0.0248	17.33
		input	1/20		0.0245	18.33
			1/10	0.03	0.0209	30.33
			1/30		0.0229	23.67
	Sumbu y	bend	1/20	0.03	0.0221	26.33
	-		1/10		0.0208	30.67
			1/30		0.0251	16.33
		output	1/20		0.0282	6
0.5 /			1/10		0.027	10
0,5 m/s			1/30	0.0215	0.0191	11.16
		input	1/20		0.012	44.19
			1/10		0.0128	40.47
			1/30		0.0191	11.16
	Sumbu x	band	1/20		0.0109	49.3
			1/10		0.0095	55.81
		output	1/30		0.021	2.33
			1/20		0.0282	33.49
			1/10		0.027	40.93
			1/30		0.0304	4.4
		input	1/20		0.0294	7.55
			1/10		0.0286	10.06
			1/30		0.0303	4.72
	Sumbu y	bend	1/20	0.0318	0.0289	9.12
			1/10		0.0265	16.67
			1/30		0.0314	1.26
		output	1/20		0.0296	6.92
0.7 m/s			1/10		0.0307	3.46
5,7 1173			1/30		0.027	12.62
		input	1/20	0.0309	0.0171	44.66
			1/10		0.0135	56.31
		band	1/30		0.0253	18.12
	Sumbu x		1/20		0.0144	53.4
			1/10		0.0135	56.31
		output	1/30		0.0296	4.21
			1/20		0.0151	51.13
			1/10		0.0137	55.66

Tabel 4. 2 Data Hasil Eksperimen

4.3 Analisa dan Pembahasan Respon Getaran Sistem Utama Tanpa dan dengan DVA

Pada sub bab ini akan dibahas mengenai respon getaran sistem utama sebelum dan setelah diberi DVA dan dioperasikan sebesar 40 Hz atau 251.33 rad/s yang dimana mendekati frekuensi natural sistem utama sebesar 276.64 rad/s. Input yang diberikan pada penelitian ini adalah rasio massa DVA, variasi kecepatan aliran fluida, dan variasi posisi peletakan DVA terhadap sistem utama. Output yang didapatkan dari penelitian ini merupakan perbandingan dan reduksi getaran pada setiap variasi. Hasil setelah diberi DVA yaitu reduksi getaran maksimal pada sistem utama. Pada sub bab ini ditunjukkan perbandingan respon getaran sebelum diberi DVA dan setelah diberi DVA. Data hasil percobaan pada penelitian ini diperoleh dengan menggunakan oscilloscope yang dihubungkan dengan 2 probe accelerometer yang diletakkan pada clamp sebelum dan sesudah sistem utama. Probe 1 dan Probe 2 digunakan untuk mengamati respon getaran ke arah translasi vertikal dan horizontal dalam bentuk percepatan sehingga memperoleh nilai RMS percepatan pada setiap variasi. Data yang diperoleh dari percobaan telah diolah menggunakan software Matlab sehingga mendapat nilai RMS pada setiap variasi. Analisa respon getaran pada setiap variasi dibahas pada sub bab berikutnya.

4.3.1 Analisa dan Pembahasan Respon Getaran Sistem Utama Tanpa DVA

Eksperimen sistem utama tanpa DVA ini dilakukan ketika ada aliran fluida berupa air melewati pipa *elbow* 90° pada kecepatan aliran 0.3 m/s, 0.5 m/s, 0.7 m/s. Pada sistem utama tanpa DVA diterapkan variasi kecepatan aliran fluida untuk mengetahui besarnya getaran pada setiap variasi. Gambar 4.8 dibawah ini merupakan grafik RMS sistem utama tanpa *Dynamic Vibration Absorber* (DVA).

Gambar 4.8 Grafik RMS Sistem Utama Tanpa Penambahan DVA

Dari gambar 4.8 diatas dapat diketahui bahwa nilai percepatan getaran translasi vertikal dan horizontal sistem utama berbanding lurus dengan variasi kecepatan aliran fluida, yaitu semakin besar kecepatan aliran fluida maka semakin besar pula respon percepatan getaran pada pipa *elbow* 90°. Pada kecepatan aliran 0,7 m/s dapat memiliki respon percepatan terbesar karena gaya dorong yang diberikan dan terjadi *head loss* yang lebih besar daripada variasi kecepatan aliran lainnya. Apabila *head loss* besar maka *pressure drop* akan besar juga menurut persamaan Bernoulli. Untuk hubungan *pressure* dengan respon percepatan ditunjukan persamaan sebagai berikut.

$$P = \frac{F}{A} = \frac{m.\ddot{X}}{A} \tag{4.3}$$

Keterangan:

- $\mathbf{P} = \mathbf{Tekanan} (\mathbf{Pa})$
- $\mathbf{F} = \mathbf{Gaya}\left(\mathbf{N}\right)$
- A = Luas Area (m^2)
- m = massa (kg)
- \ddot{X} = percepatan (m/s^s)

Dapat dilihat dari persamaan diatas bahwa nilai tekanan berbanding lurus dengan percepatan. Hal ini menunjukan bahwa semakin besar *head loss* maka semakin besar juga respon getarannya.

4.3.2 Analisa dan Pembahasan Respon Getaran dengan Variasi Rasio Massa DVA

Pada penelitian ini variasi rasio massa DVA yang digunakan adalah 1/30, 1/20, dan 1/10 dari massa utama. Massa DVA 1/10 sebesar 5.3 gram, massa DVA 1/20 sebesar 8 gram, dan massa DVA 1/30 sebesar 16 gram. Pada sub bab ini dibahas analisa respon getaran translasi sistem utama dengan variasi massa DVA terhadap variasi kecepatan aliran fluida. Untuk hasil yang diharapkan sesuai teori ditunjukan pada *bode diagram* yang telah dibuat menggunakan *software* MATLAB, Berikut merupakan *bode diagram* variasi massa DVA terhadap posisi peletakan DVA.

Gambar 4.9 Grafik bode diagram variasi rasio massa DVA terhadap posisi peletakan DVA pada posisi (a)*input* atau *output* dan (b)*bend*

Dari grafik bode diagram di atas dapat ditunjukan bahwa rasio massa DVA 1/10 dari massa sistem utama lebih meredam jika dioperasikan pada frekuensi opersi karena amplitudonya lebih rendah dari rasio massa DVA 1/20 dan 1/30 dari massa sistem utama. Untuk getaran ke arah translasi vertikal dan horizontal, *output* yang diperoleh dari hasil penelitian ini adalah respon percepatan (m/s^2). Respon ini lalu dibandingkan terhadap respon sistem utama sebelum diberi DVA, sehingga diperoleh nilai persentase reduksi getaran.

4.3.2.1 Analisa dan Pembahasan Respon Getaran Translasi Variasi Massa DVA Terhadap Posisi Peletakan DVA Pada Posisi *Input*

Data yang diperoleh untuk variasi rasio massa DVA terhadap posisi peletakan DVA pada posisi *input* dari hasil percobaan adalah sebagai berikut.

Koconatan	Decisi	Dacia Massa	R	MS	Reduksi	
Reception	POSISI	Rasio Massa	Vertikal	Horizontal	Vertikal	Horizontal
0.3 m/s		Without Dva	0.0208	0.0159		
0.3 m/s	Input	1/30	0.0202	0.012	2.88%	24.53%
0.3 m/s	Input	1/20	0.0189	0.0105	9.13%	33.96%
0.3 m/s	Input	1/10	0.0164	0.0136	21.15%	14.47%
0.5 m/s		Without Dva	0.03	0.0215		
0.5 m/s	Input	1/30	0.0248	0.0191	17.33%	11.16%
0.5 m/s	Input	1/20	0.0245	0.012	18.33%	44.19%
0.5 m/s	Input	1/10	0.0209	0.0128	30.33%	40.47%
0.7 m/s		Without Dva	0.0318	0.0309		
0.7 m/s	Input	1/30	0.0304	0.027	4.40%	12.62%
0.7 m/s	Input	1/20	0.0294	0.0171	7.55%	44.66%
0.7 m/s	Input	1/10	0.0286	0.0135	10.06%	56.31%

 Tabel 4. 3 Variasi Rasio Massa DVA terhadap posisi peletakan

 DVA pada input

Pada data diatas dapat dilihat bahwa, nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.3 m/s adalah sebesar 0.0164 m/s² dengan reduksi getaran sebesar 21.15% dengan rasio massa DVA 1/10 massa sistem utama. Untuk nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.5 m/s adalah sebesar 0.0209 m/s² dengan reduksi getaran sebesar 30.33% dengan rasio massa DVA 1/10 massa sistem utama. Untuk nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.7 m/s adalah sebesar 0.0286 m/s² dengan reduksi getaran sebesar 10.06% dengan rasio massa DVA 1/10 massa sistem utama.

Dibawah ini merupakan gambar grafik perbandingan RMS percepatan dan reduksi antara ketiga variasi rasio massa DVA dengan variasi kecepatan aliran terhadap peletakan posisi DVA pada posisi *input*.

Gambar 4.10 Grafik Perbandingan RMS pada DVA posisi *Input* terhadap variasi rasio massa DVA

Gambar 4.11 Grafik Reduksi pada DVA posisi *Input* terhadap variasi rasio massa DVA

Berdasarkan grafik diatas, dapat dilihat bahwa *trendline* grafik menunjukkan kenaikan nilai reduksi getaran ke arah vertikal pada setiap perubahan variasi rasio massa di setiap variasi kecepatan. Persentase nilai reduksi respon getaran pada variasi rasio massa DVA 1/10 relatif lebih besar dibandingkan dengan variasi rasio massa DVA 1/20 dan 1/30 pada arah vertikal. Data juga menampilkan penurunan nilai RMS percepatan terbesar pada variasi rasio massa DVA 1/10 dari rasio massa 1/20 dan 1/30 ke arah translasi vertikal. Namun untuk gerakan translasi ke arah horizontal pada kecepatan 0,3 m/s dan 0,5 m/s mengalami reduksi getaran terbesar dengan rasio massa DVA 1/20. Pada gerakan translasi ke arah horizontal tidak terjadi kenaikan *trendline*, hal ini dikarenakan pengambilan data pada *clamp* arah horizontal lebih terasa getarannya.

Dengan kata lain, untuk nilai massa DVA yang lebih besar, RMS respon getaran translasi yang dihasilkan lebih kecil dan massa DVA yang terpasang pada posisi *Input* dapat bergerak translasi ke arah vertikal sehingga peredaman yang dihasilkan lebih baik. Oleh karena itu maka persentase peredaman untuk variasi dengan menggunakan rasio massa DVA 1/10 lebih baik dibandingkan dengan rasio massa DVA 1/20 dan 1/30 pada getaran ke arah translasi. Hal ini sesuai dengan teori yang ditunjukkan *bode diagram* dimana rasio massa DVA 1/10 lebih rendah amplitudonya daripada rasio massa DVA 1/20 dan 1/30 pada frekuensi operasi.

4.3.2.2 Analisa dan Pembahasan Respon Getaran Translasi Variasi Massa DVA Terhadap Posisi Peletakan DVA Pada Posisi *Bend*

Data yang diperoleh untuk variasi rasio massa DVA terhadap posisi peletakan DVA pada posisi *bend* dari hasil percobaan adalah sebagai berikut.

2 (11 puda 2011a							
Decici	Dacia Massa	RI	٧S	Reduksi			
POSISI	Rasio iviassa	Vertikal	Horizontal	Vertikal	Horizontal		
	Without Dva	0.0208	0.0159				
Bend	1/30	0.0158	0.0112	24.04%	29.56%		
Bend	1/20	0.0144	0.0099	30.77%	37.74%		
Bend	1/10	0.0142	0.007	31.73%	55.97%		
	Without Dva	0.03	0.0215				
Bend	1/30	0.0229	0.0191	23.67%	11.16%		
Bend	1/20	0.0221	0.0109	26.33%	49.30%		
Bend	1/10	0.0208	0.0095	30.67%	55.81%		
	Without Dva	0.0318	0.0309				
Bend	1/30	0.0303	0.0253	4.72%	18.12%		
Bend	1/20	0.0289	0.0144	9.12%	53.40%		
Bend	1/10	0.0265	0.0135	16.67%	56.31%		
	Posisi Bend Bend Bend Bend Bend Bend Bend Bend	PosisiRasio MassaWithout DvaBend1/30Bend1/20Bend1/10Without DvaBend1/30Bend1/20Bend1/10Without DvaBend1/10Without DvaBend1/10Bend1/30Bend1/20Bend1/20Bend1/20Bend1/10	Posisi Rasio Massa Ri Without Dva 0.0208 0.0158 Bend 1/30 0.0158 Bend 1/20 0.0144 Bend 1/10 0.0142 Without Dva 0.03 Bend 1/30 0.0229 Bend 1/20 0.0221 Bend 1/10 0.0208 Without Dva 0.0318 Bend 1/30 0.0303 Bend 1/20 0.0228 Bend 1/10 0.0303 Bend 1/20 0.0303 Bend 1/20 0.0289 Bend 1/20 0.0289 Bend 1/10 0.0265	Posisi Rasio Massa RMS Vertikal Horizontal Without Dva 0.0208 0.0159 Bend 1/30 0.0158 0.0112 Bend 1/20 0.0144 0.0099 Bend 1/10 0.0142 0.007 Without Dva 0.03 0.0215 Bend 1/30 0.0229 0.0191 Bend 1/20 0.0208 0.0095 Bend 1/10 0.0208 0.0095 Bend 1/10 0.0208 0.0095 Bend 1/10 0.0318 0.0309 Bend 1/30 0.0303 0.0253 Bend 1/20 0.0289 0.0144 Bend 1/10 0.0265 0.0135	Posisi Rasio Massa RMS Red Without Dva 0.0208 0.0159 Vertikal Without Dva 0.0208 0.0112 24.04% Bend 1/30 0.0158 0.0112 24.04% Bend 1/20 0.0144 0.0099 30.77% Bend 1/10 0.0142 0.007 31.73% Without Dva 0.03 0.0215 0.0191 23.67% Bend 1/20 0.0221 0.0109 26.33% Bend 1/10 0.0208 0.0095 30.67% Without Dva 0.0318 0.0309 0.0253 4.72% Bend 1/30 0.0303 0.0253 4.72% Bend 1/20 0.0289 0.0144 9.12% Bend 1/20 0.0289 0.0144 9.12% Bend 1/10 0.0265 0.0135 16.67%		

 Tabel 4. 4 Variasi Rasio Massa DVA terhadap posisi peletakan

 DVA pada Bend

Pada data diatas dapat dilihat bahwa, nilai RMS terkecil ke arah horizontal pada kecepatan aliran 0.3 m/s adalah sebesar 0.007 m/s² dengan reduksi getaran sebesar 55.97% dengan rasio massa DVA 1/10 massa sistem utama. Untuk nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.3 m/s adalah sebesar 0.0142 m/s² dengan reduksi getaran sebesar 31.73% dengan rasio massa DVA 1/10 massa sistem utama. Pada kecepatan aliran 0.5 m/s memiliki nilai RMS terkecil ke arah horizontal sebesar 0.0095 m/s² dengan reduksi getaran sebesar 55.81% dengan rasio massa DVA 1/10 massa sistem utama. Untuk nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.5 m/s adalah sebesar 0.0208 m/s² dengan reduksi getaran sebesar 30.67% dengan rasio massa DVA 1/10 massa sistem utama. Pada kecepatan aliran 0.7 m/s memiliki nilai RMS terkecil ke arah horizontal sebesar 0.0135 m/s² dengan reduksi getaran sebesar 56.31% dengan rasio massa DVA 1/10 massa sistem utama. Untuk nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.7 m/s adalah sebesar 0.0265 m/s² dengan reduksi getaran sebesar 16.67% dengan rasio massa DVA 1/10 massa sistem utama.

Dibawah ini merupakan gambar grafik perbandingan RMS percepatan dan reduksi antara ketiga variasi rasio massa DVA dengan variasi kecepatan aliran terhadap peletakan posisi DVA pada posisi *bend*.

Gambar 4.12 Grafik Perbandingan RMS pada DVA posisi *Bend* terhadap variasi rasio massa DVA

Gambar 4.13 Grafik Reduksi pada DVA posisi *Bend* terhadap variasi rasio massa DVA

Berdasarkan grafik diatas, dapat dilihat bahwa *trendline* grafik menunjukkan kenaikan nilai reduksi getaran ke arah vertikal dan arah horizontal pada setiap perubahan variasi rasio massa di

setiap variasi kecepatan. Persentase nilai reduksi respon getaran pada variasi rasio massa DVA 1/10 relatif lebih besar dibandingkan dengan variasi rasio massa DVA 1/20 dan 1/30 pada arah vertikal dan arah horizontal. Data juga menampilkan penurunan nilai RMS percepatan terbesar pada variasi rasio massa DVA 1/10 dari rasio massa 1/20 dan 1/30 ke arah translasi vertikal dan arah horizontal.

Dengan kata lain, untuk nilai massa DVA yang lebih besar, RMS respon getaran translasi yang dihasilkan lebih kecil dan massa DVA yang terpasang pada posisi *Bend* dapat bergerak translasi ke arah vertikal dan horizontal sehingga peredaman yang dihasilkan lebih baik. Oleh karena itu maka persentase peredaman untuk variasi dengan menggunakan rasio massa DVA 1/10 lebih baik dibandingkan dengan rasio massa DVA 1/20 dan 1/30 pada getaran ke arah translasi. Hal ini sesuai dengan teori yang ditunjukkan *bode diagram* dimana rasio massa DVA 1/20 dan 1/30 pada frekuensi operasi.

4.3.2.3 Analisa dan Pembahasan Respon Getaran Translasi Variasi Massa DVA Terhadap Posisi Peletakan DVA Pada Posisi *Output*

Data yang diperoleh untuk variasi rasio massa DVA terhadap posisi peletakan DVA pada posisi *output* dari hasil percobaan adalah sebagai berikut.

Kecepatan	Posisi	Dacia Massa	RMS		Reduksi	
		Kasio Massa	Vertikal	Horizontal	Vertikal	Horizontal
0.3 m/s		Without Dva	0.0208	0.0159		
0.3 m/s	Output	1/30	0.0162	0.0135	22.12%	15.09%
0.3 m/s	Output	1/20	0.0162	0.0129	22.12%	18.87%
0.3 m/s	Output	1/10	0.0148	0.0113	28.85%	28.93%
0.5 m/s		Without Dva	0.03	0.0215		
0.5 m/s	Output	1/30	0.0251	0.021	16.33%	2.33%
0.5 m/s	Output	1/20	0.0282	0.0143	6.00%	33.49%
0.5 m/s	Output	1/10	0.027	0.0127	10.00%	40.93%
0.7 m/s		Without Dva	0.0318	0.0309		
0.7 m/s	Output	1/30	0.0314	0.0296	1.26%	4.21%
0.7 m/s	Output	1/20	0.0296	0.0151	6.92%	51.13%
0.7 m/s	Output	1/10	0.0307	0.0137	3.46%	55.66%

 Tabel 4. 5 Variasi Rasio Massa DVA terhadap posisi peletakan

 DVA pada Output

Pada data diatas dapat dilihat bahwa, nilai RMS terkecil ke arah horizontal pada kecepatan aliran 0.3 m/s adalah sebesar 0.0113 m/s² dengan reduksi getaran sebesar 28.93% dengan rasio massa DVA 1/10 massa sistem utama. Pada kecepatan aliran 0.5 m/s memiliki nilai RMS terkecil ke arah horizontal sebesar 0.0127 m/s² dengan reduksi getaran sebesar 40.93% dengan rasio massa DVA 1/10 massa sistem utama. Pada kecepatan aliran 0.7 m/s memiliki nilai RMS terkecil ke arah horizontal sebesar 0.0137 m/s² dengan reduksi getaran sebesar 55.66% dengan rasio massa DVA 1/10 massa sistem utama.

Dibawah ini merupakan gambar grafik perbandingan RMS percepatan dan reduksi antara ketiga variasi rasio massa DVA dengan variasi kecepatan aliran terhadap peletakan posisi DVA pada posisi *output*.

Gambar 4.14 Grafik Perbandingan pada DVA posisi *Output* terhadap variasi rasio massa DVA

Gambar 4.15 Grafik Reduksi pada DVA posisi *Output* terhadap variasi rasio massa DVA

Berdasarkan grafik diatas, dapat dilihat bahwa *trendline* grafik menunjukkan kenaikan nilai reduksi getaran ke arah horizontal pada setiap perubahan variasi rasio massa di setiap variasi kecepatan. Persentase nilai reduksi respon getaran pada

variasi rasio massa DVA 1/10 relatif lebih besar dibandingkan dengan variasi rasio massa DVA 1/20 dan 1/30 pada arah horizontal. Data juga menampilkan penurunan nilai RMS percepatan terbesar pada variasi rasio massa DVA 1/10 dari rasio massa 1/20 dan 1/30 ke arah translasi horizontal.

Dengan kata lain, untuk nilai massa DVA yang lebih besar, RMS respon getaran translasi yang dihasilkan lebih kecil dan massa DVA yang terpasang pada posisi *Output* dapat bergerak translasi ke arah horizontal sehingga peredaman yang dihasilkan lebih baik. Oleh karena itu maka persentase peredaman untuk variasi dengan menggunakan rasio massa DVA 1/10 lebih baik dibandingkan dengan rasio massa DVA 1/20 dan 1/30 pada getaran ke arah translasi. Hal ini sesuai dengan teori yang ditunjukkan *bode diagram* dimana rasio massa DVA 1/10 lebih rendah amplitudonya daripada rasio massa DVA 1/20 dan 1/30 pada frekuensi operasi.

4.3.3 Analisa dan Pembahasan Respon Getaran dengan Variasi Peletakan Posisi DVA

Pada penelitian ini, variasi posisi DVA dapat meredam sistem utama pada posisi yang optimal. Variasi posisi yang digunakan pada penelitian ini adalah peletakkan DVA berjarak 40 mm dari titik *bend*, ke arah y(*input*), ke arah x(*output*) dan pada titik *bend*. Untuk hasil yang diharapkan sesuai teori ditunjukan pada *bode diagram* yang telah dibuat menggunakan *software* MATLAB, Berikut merupakan *bode diagram* variasi peletakan posisi DVA terhadap rasio massa DVA.

Gambar 4.16 Grafik bode diagram peletakan posisi DVA terhadap rasio massa DVA

Dari grafik bode diagram di atas dapat ditunjukan peletakan posisi DVA lebih meredam pada posisi *bend* karena memiliki amplitudo lebih rendah dari posisi di *input* atau *output* jika dioperasikan pada frekuensi opersi. Untuk getaran ke arah translasi vertikal dan horizontal, *output* yang diperoleh dari hasil penelitian ini adalah respon percepatan (m/s²). Respon ini lalu dibandingkan terhadap respon sistem utama sebelum diberi DVA, sehingga diperoleh nilai persentase reduksi getaran.

4.3.3.1 Analisa dan Pembahasan Respon Getaran Translasi Peletakan Posisi DVA Terhadap Rasio Massa DVA 1/30 Dari Massa Utama

Data yang diperoleh untuk variasi peletakkan posisi DVA terhadap rasio massa DVA 1/30 dari massa utama dari hasil percobaan adalah sebagai berikut.

DVA 1/50 Dan Massa Otama								
Kacapatan	Docici	Pacio Massa	R	MS	Reduksi			
Reception		Rasio Iviassa	Vertikal	Horizontal	Vertikal	Horizontal		
0.3 m/s		Without Dva	0.0208	0.0159				
0.3 m/s	Input	1/30	0.0202	0.012	2.88%	24.53%		
0.3 m/s	Bend	1/30	0.0158	0.0112	24.04%	29.56%		
0.3 m/s	Output	1/30	0.0162	0.0135	22.12%	15.09%		
0.5 m/s		Without Dva	0.03	0.0215				
0.5 m/s	Input	1/30	0.0248	0.0191	17.33%	11.16%		
0.5 m/s	Bend	1/30	0.0229	0.0191	23.67%	11.16%		
0.5 m/s	Output	1/30	0.0251	0.021	16.33%	2.33%		
0.7 m/s		Without Dva	0.0318	0.0309				
0.7 m/s	Input	1/30	0.0304	0.027	4.40%	12.62%		
0.7 m/s	Bend	1/30	0.0303	0.0253	4.72%	18.12%		
0.7 m/s	Output	1/30	0.0314	0.0296	1.26%	4.21%		

Tabel 4. 6 Variasi Peletakan Posisi DVA terhadap Rasio MassaDVA 1/30 Dari Massa Utama

Pada data diatas dapat dilihat bahwa, nilai RMS terkecil ke arah horizontal pada kecepatan aliran 0.3 m/s adalah sebesar 0.0112 m/s² dengan reduksi getaran sebesar 29.56% pada peletakan posisi DVA pada posisi bend. Untuk nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.3 m/s adalah sebesar 0.0158 m/s² dengan reduksi getaran sebesar 24.04% pada peletakan posisi DVA pada posisi bend. Pada kecepatan aliran 0.5 m/s memiliki nilai RMS terkecil ke arah horizontal sebesar 0.0191 m/s² dengan reduksi getaran sebesar 11.16% pada peletakan posisi DVA pada posisi bend dan input. Untuk nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.5 m/s adalah sebesar 0.0229 m/s² dengan reduksi getaran sebesar 23.67% pada peletakan posisi DVA pada posisi bend. Pada kecepatan aliran 0.7 m/s memiliki nilai RMS terkecil ke arah horizontal sebesar 0.0253 m/s² dengan reduksi getaran sebesar 18.12% pada peletakan posisi DVA pada posisi bend. Untuk nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.7 m/s adalah sebesar 0.0303 m/s² dengan reduksi getaran sebesar 4.72% pada peletakan posisi DVA pada posisi bend.

Dibawah ini merupakan gambar grafik perbandingan RMS percepatan dan reduksi antara variasi peletakkan posisi DVA

dengan variasi kecepatan aliran terhadap rasio massa DVA 1/30 dari massa utama.

Gambar 4. 17 Grafik Perbandingan RMS pada rasio massa DVA 1/30 massa utama terhadap variasi posisi DVA

Gambar 4. 18 Grafik Reduksi pada rasio massa DVA 1/30 massa utama terhadap variasi posisi DVA

Berdasarkan grafik diatas, dapat dilihat bahwa *trendline* grafik menunjukkan kenaikan nilai reduksi getaran translasi pada posisi peletakan DVA pada posisi *bend* di setiap variasi kecepatan.

Persentase nilai reduksi respon getaran pada posisi peletakan DVA pada posisi *bend* relatif lebih besar dibandingkan dengan posisi peletakan DVA pada posisi *input* dan *output* ke arah horizontal dan vertikal. Data juga menampilkan penurunan nilai RMS percepatan terbesar pada posisi peletakan DVA pada posisi *bend* dari posisi *input* dan *output* ke arah translasi horizontal dan vertikal.

Dengan kata lain, untuk posisi peletakan DVA pada posisi *bend*, RMS respon getaran translasi yang dihasilkan lebih kecil dan massa DVA yang terpasang dapat bergerak translasi ke arah vertikal dan horizontal sehingga peredaman yang dihasilkan lebih baik. Oleh karena itu maka persentase peredaman untuk variasi posisi peletakan DVA pada posisi *bend* lebih baik dibandingkan posisi peletakan DVA pada posisi *input* dan *output* pada getaran ke arah translasi. Hal ini sesuai dengan teori yang ditunjukkan *bode diagram* dimana variasi posisi peletakan DVA pada posisi peletakan DVA pada posisi *bend* lebih rendah amplitudonya daripada posisi peletakan DVA pada posisi *input* dan *output* pada frekuensi operasi.

4.3.3.2 Analisa dan Pembahasan Respon Getaran Translasi Peletakan Posisi DVA Terhadap Rasio Massa DVA 1/20 Dari Massa Utama

Data yang diperoleh untuk variasi peletakkan posisi DVA terhadap rasio massa DVA 1/20 dari massa utama dari hasil percobaan adalah sebagai berikut.

D VII 1/20 Dall Massa Otalia							
Kacanatan	Decici		RI	MS	Reduksi		
кесератап	POSISI	Rasio Massa	Vertikal	Horizontal	Vertikal	Horizontal	
0.3 m/s		Without Dva	0.0208	0.0159			
0.3 m/s	Input	1/20	0.0189	0.0105	9.13%	33.96%	
0.3 m/s	Bend	1/20	0.0144	0.0099	30.77%	37.74%	
0.3 m/s	Output	1/20	0.0162	0.0129	22.12%	18.87%	
0.5 m/s		Without Dva	0.03	0.0215			
0.5 m/s	Input	1/20	0.0245	0.012	18.33%	44.19%	
0.5 m/s	Bend	1/20	0.0221	0.0109	26.33%	49.30%	
0.5 m/s	Output	1/20	0.0282	0.0143	6.00%	33.49%	
0.7 m/s		Without Dva	0.0318	0.0309			
0.7 m/s	Input	1/20	0.0294	0.0171	7.55%	44.66%	
0.7 m/s	Bend	1/20	0.0289	0.0144	9.12%	53.40%	
0.7 m/s	Output	1/20	0.0296	0.0151	6.92%	51.13%	

Tabel 4. 7 Variasi Peletakan Posisi DVA terhadap Rasio MassaDVA 1/20 Dari Massa Utama

Pada data diatas dapat dilihat bahwa, nilai RMS terkecil ke arah horizontal pada kecepatan aliran 0.3 m/s adalah sebesar 0.0099 m/s² dengan reduksi getaran sebesar 37.74% pada peletakan posisi DVA pada posisi bend. Untuk nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.3 m/s adalah sebesar 0.0144 m/s² dengan reduksi getaran sebesar 30.77% pada peletakan posisi DVA pada posisi bend. Pada kecepatan aliran 0.5 m/s memiliki nilai RMS terkecil ke arah horizontal sebesar 0.0109 m/s² dengan reduksi getaran sebesar 49.30% pada peletakan posisi DVA pada posisi bend. Untuk nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.5 m/s adalah sebesar 0.0221 m/s² dengan reduksi getaran sebesar 26.33% pada peletakan posisi DVA pada posisi bend. Pada kecepatan aliran 0.7 m/s memiliki nilai RMS terkecil ke arah horizontal sebesar 0.0144 m/s² dengan reduksi getaran sebesar 53.40% pada peletakan posisi DVA pada posisi bend. Untuk nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.7 m/s adalah sebesar 0.0289 m/s² dengan reduksi getaran sebesar 9.12% pada peletakan posisi DVA pada posisi bend.

Dibawah ini merupakan gambar grafik perbandingan RMS percepatan dan reduksi antara variasi peletakkan posisi DVA dengan variasi kecepatan aliran terhadap rasio massa DVA 1/20 dari massa utama.

Gambar 4.19 Grafik Perbandingan RMS pada rasio massa DVA 1/20 massa utama terhadap variasi posisi DVA

Gambar 4.20 Grafik Reduksi pada rasio massa DVA 1/20 massa utama terhadap variasi posisi DVA

Berdasarkan grafik diatas, dapat dilihat bahwa *trendline* grafik menunjukkan kenaikan nilai reduksi getaran translasi pada posisi peletakan DVA pada posisi *bend* di setiap variasi kecepatan. Persentase nilai reduksi respon getaran pada posisi peletakan DVA pada posisi *bend* relatif lebih besar dibandingkan dengan posisi peletakan DVA pada posisi *input* dan *output* ke arah horizontal dan vertikal. Data juga menampilkan penurunan nilai RMS percepatan terbesar pada posisi peletakan DVA pada posisi *bend* dari posisi *input* dan *output* ke arah translasi horizontal dan vertikal.

Dengan kata lain, untuk posisi peletakan DVA pada posisi *bend*, RMS respon getaran translasi yang dihasilkan lebih kecil dan massa DVA yang terpasang dapat bergerak translasi ke arah vertikal dan horizontal sehingga peredaman yang dihasilkan lebih baik. Oleh karena itu maka persentase peredaman untuk variasi posisi peletakan DVA pada posisi *bend* lebih baik dibandingkan posisi peletakan DVA pada posisi *input* dan *output* pada getaran ke arah translasi. Hal ini sesuai dengan teori yang ditunjukkan *bode diagram* dimana variasi posisi peletakan DVA pada posisi peletakan DVA pada posisi *bend* lebih rendah amplitudonya daripada posisi peletakan DVA pada posisi *input* dan *output* pada frekuensi operasi.

4.3.3.3 Analisa dan Pembahasan Respon Getaran Translasi Peletakan Posisi DVA Terhadap Rasio Massa DVA 1/10 Dari Massa Utama

Data yang diperoleh untuk variasi peletakkan posisi DVA terhadap rasio massa DVA 1/10 dari massa utama dari hasil percobaan adalah sebagai berikut.

Kacapatan	Posisi	Rasio Massa	RMS		Reduksi		
кесератап			Vertikal	Horizontal	Vertikal	Horizontal	
0.3 m/s		Without Dva	0.0208	0.0159			
0.3 m/s	Input	1/10	0.0164	0.0136	21.15%	14.47%	
0.3 m/s	Bend	1/10	0.0142	0.007	31.73%	55.97%	
0.3 m/s	Output	1/10	0.0148	0.0113	28.85%	28.93%	
0.5 m/s		Without Dva	0.03	0.0215			
0.5 m/s	Input	1/10	0.0209	0.0128	30.33%	40.47%	
0.5 m/s	Bend	1/10	0.0208	0.0095	30.67%	55.81%	
0.5 m/s	Output	1/10	0.027	0.0127	10.00%	40.93%	
0.7 m/s		Without Dva	0.0318	0.0309			
0.7 m/s	Input	1/10	0.0286	0.0135	10.06%	56.31%	
0.7 m/s	Bend	1/10	0.0265	0.0135	16.67%	56.31%	
0.7 m/s	Output	1/10	0.0307	0.0137	3.46%	55.66%	

Tabel 4. 8 Variasi Peletakan Posisi DVA terhadap Rasio MassaDVA 1/10 Dari Massa Utama

Pada data diatas dapat dilihat bahwa, nilai RMS terkecil ke arah horizontal pada kecepatan aliran 0.3 m/s adalah sebesar 0.007 m/s² dengan reduksi getaran sebesar 55.97% pada peletakan posisi DVA pada posisi bend. Untuk nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.3 m/s adalah sebesar 0.0142 m/s² dengan reduksi getaran sebesar 31.73% pada peletakan posisi DVA pada posisi bend. Pada kecepatan aliran 0.5 m/s memiliki nilai RMS terkecil ke arah horizontal sebesar 0.0095 m/s² dengan reduksi getaran sebesar 55.81% pada peletakan posisi DVA pada posisi bend. Untuk nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.5 m/s adalah sebesar 0.0208 m/s² dengan reduksi getaran sebesar 30.67% pada peletakan posisi DVA pada posisi bend. Pada kecepatan aliran 0.7 m/s memiliki nilai RMS terkecil ke arah horizontal sebesar 0.0135 m/s² dengan reduksi getaran sebesar 56.31% pada peletakan posisi DVA pada posisi bend dan input. Untuk nilai RMS terkecil ke arah vertikal pada kecepatan aliran 0.7 m/s adalah sebesar 0.0265 m/s² dengan reduksi getaran sebesar 16.67% pada peletakan posisi DVA pada posisi bend.

Dibawah ini merupakan gambar grafik perbandingan RMS percepatan dan reduksi antara variasi peletakkan posisi DVA dengan variasi kecepatan aliran terhadap rasio massa DVA 1/10 dari massa utama.

Gambar 4.21 Grafik Perbandingan RMS pada rasio massa DVA 1/10 massa utama terhadap variasi posisi DVA

Gambar 4.22 Grafik Reduksi pada rasio massa DVA 1/10 massa utama terhadap variasi posisi DVA

Berdasarkan grafik diatas, dapat dilihat bahwa *trendline* grafik menunjukkan kenaikan nilai reduksi getaran translasi pada posisi peletakan DVA pada posisi *bend* di setiap variasi kecepatan. Persentase nilai reduksi respon getaran pada posisi peletakan DVA pada posisi *bend* relatif lebih besar dibandingkan dengan posisi

peletakan DVA pada posisi *input* dan *output* ke arah horizontal dan vertikal. Data juga menampilkan penurunan nilai RMS percepatan terbesar pada posisi peletakan DVA pada posisi *bend* dari posisi *input* dan *output* ke arah translasi horizontal dan vertikal.

Dengan kata lain, untuk posisi peletakan DVA pada posisi *bend*, RMS respon getaran translasi yang dihasilkan lebih kecil dan massa DVA yang terpasang dapat bergerak translasi ke arah vertikal dan horizontal sehingga peredaman yang dihasilkan lebih baik. Oleh karena itu maka persentase peredaman untuk variasi posisi peletakan DVA pada posisi *bend* lebih baik dibandingkan posisi peletakan DVA pada posisi *input* dan *output* pada getaran ke arah translasi. Hal ini sesuai dengan teori yang ditunjukkan *bode diagram* dimana variasi posisi peletakan DVA pada posisi peletakan DVA pada posisi *bend* lebih rendah amplitudonya daripada posisi peletakan DVA pada posisi *input* dan *output* pada frekuensi operasi.

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berikut ini merupakan kesimpulan penelitian yang diperoleh berdasarkan eksperimen yang telah dilakukan:

- 1. Telah dirancang sebuah sistem *Dynamic Vibration Absorber* (DVA) tipe *beam* yang terdiri dari sebuah pegas bermaterial *Polylactic acid*(PLA) dengan nilai konstanta pegas 612,24 N/m, massa pemberat berupa *ring* karet pada rasio massa DVA 1/20 dan 1/30 dari massa sistem utama dan massa pemberat berupa koin sebesar 3,1 gram untuk rasio massa DVA 1/10 dari massa utama, *clamp* bermaterial *Polylactic acid*(PLA) untuk memasangkan *beam* DVA dengan sistem utama. DVA memiliki gerakan secara translasi ke arah vertikal dan horizontal tergantung pemasangan.
- 2. Semakin besar kecepatan aliran fluida maka getaran yang dihasilkan semakin besar. Hal ini menunjukkan bahwa pada kecepatan aliran fluida terbesar memiliki gaya dorong dan *head loss* yang besar.
- 3. Posisi peletakan DVA berpengaruh pada respon percepatan yang dihasilkan pada pipa jenis *elbow* 90°. Posisi peletakan DVA pada posisi *bend* lebih meredam dari posisi peletakan DVA pada *input* dan *output* karena dapat meredam 2 arah translasi yaitu arah horizontal dan vertikal.
- 4. Penambahan massa peredam 1/10 dari massa pipa elbow 90° yang direpresentasikan dengan koin mampu meredam secara efektif sebesar 55,97% getaran ke arah vertikal dan 31,73% getaran ke arah horizontal pada kecepatan aliran 0,3 m/s. Sehingga dapat disimpulkan semakin besar rasio massa DVA digunakan maka respon percepatan sistem utama akan semakin kecil. Dengan kata lain peredaman

getaran ke arah translasi semakin baik, demikian sebaliknya.

- 5. Respon getaran translasi ke arah vertikal dan horizontal lebih kecil dengan menggunakan DVA daripada tanpa menggunakan DVA pada sistem utama berupa pipa jenis *elbow* 90°.
- 6. Reduksi getaran translasi terbesar adalah pada kecepatan aliran 0,3 m/s sebesar 55,97% getaran ke arah vertikal dan 31,73% getaran ke arah horizontal. Untuk reduksi getaran terkecil adalah pada kecepatan aliran 0,7 m/s sebesar 1,26% getaran ke arah vertikal dan 4,21% getaran ke arah horizontal.

5.2 Saran

Adapun saran dari penelitian yang telah dilakukan dengan metode eksperimen adalah sebagai berikut:

- 1. Sebaiknya pemasangan DVA pada sistem utama harus tidak ada kelonggaran agar data akurat.
- 2. Sebaiknya pengambilan data dilakukan dalam keadaan stabil dan tidak panas agar data yang didapatkan akurat.
- 3. Sebaiknya diperiksa ulang pemasangan kabel penghubung dari *oscilloscope* ke *power supply* dan dari *power supply* ke *probe* supaya data yang didapatkan akurat.
- 4. Sebaiknya *probe* tidak diletakkan di *clamp* agar bisa dibedakan peredaman getaran akibat pengaruh DVA dan *clamp*.

DAFTAR PUSTAKA

- [1] Chang Liu, Jie Ni, Jie Wen & Xueyuan Peng, 2018. Design and Validation of Adjustable Dynamic Vibration Absorber for Piping Vibration Suppression in Skid Mounted Compressor Unit. International Compressor Engineering Conference, pp. 11-1
- [2] Keshtkar H & Jafari A A, 2017. Vibration Analysis of a Turbulent Fluid Passing Inside an Elbow Shaped Pipe Section. Journal of Applied Mechanical Engineering, Volume 1, pp. 19-21.
- [3] Kurniawan Ricky B, 2017. Studi Eksperimen dan Analisa Reduksi Respon Getaran Translasi dan Rotasi dengan Menggunakan Dynamic Vibration Absorber (DVA) Model Beam. Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember, Surabaya.
- [4] Pritchard J P, 2011. Fox and McDonald's Introduction to Fluid Mechanics. New Jersey: John Wiley & Sons
- [5] Rao Singeresu S, 2011. *Mechanical Vibration Fifth Edition*. Upper Saddle River: Pearson Education Inc.
- [6] S M Khot, Pallavi Khaire & Abhishek S Naik, 2017. Expiremental and Simulation Study of Flow Induced Vibration Through Straight Pipes. International Conference on Nascent Technologies in the Engineering Field, pp. 1-6.
- [7] Tim Wavin Bv, 2010. Panduan Teknik & Katalog Produk Wavin Aplikasi Pipa Air Bersih dan Buangan, JAKARTA: PT.Wavin Duta Jaya.

[8] Udeotok Etim S, 2018. *Internal Fluid Flow Induced Vibration of Pipes. Journal of Mechanical Design and Vibration, Vol. 6, No. 1, 1-8*

LAMPIRAN (a) (b) (c)

Gambar 1 Hasil *filtering* dan *smoothing* eksperimen kecepatan aliran 0,3 m/s dengan rasio massa DVA 1/10 pada posisi peletakan (a)*bend*, (b)*input*, (c)*output*

Gambar 2 Hasil *filtering* dan *smoothing* eksperimen kecepatan aliran 0,5 m/s dengan rasio massa DVA 1/10 pada posisi peletakan (a)*bend*, (b)*input*, (c)*output*

Gambar 3 Hasil *filtering* dan *smoothing* eksperimen kecepatan aliran 0,7 m/s dengan rasio massa DVA 1/10 pada posisi peletakan (a)*bend*, (b)*input*, (c)*output*

Gambar 4 Hasil *filtering* dan *smoothing* eksperimen kecepatan aliran 0,3 m/s dengan rasio massa DVA 1/20 pada posisi peletakan (a)*bend*, (b)*input*, (c)*output*

Gambar 5 Hasil *filtering* dan *smoothing* eksperimen kecepatan aliran 0,5 m/s dengan rasio massa DVA 1/20 pada posisi peletakan (a)*bend*, (b)*input*, (c)*output*

Gambar 6 Hasil *filtering* dan *smoothing* eksperimen kecepatan aliran 0,7 m/s dengan rasio massa DVA 1/20 pada posisi peletakan (a)*bend*, (b)*input*, (c)*output*

Gambar 7 Hasil *filtering* dan *smoothing* eksperimen kecepatan aliran 0,3 m/s dengan rasio massa DVA 1/30 pada posisi peletakan (a)*bend*, (b)*input*, (c)*output*

Gambar 8 Hasil *filtering* dan *smoothing* eksperimen kecepatan aliran 0,5 m/s dengan rasio massa DVA 1/30 pada posisi peletakan (a)*bend*, (b)*input*, (c)*output*

Gambar 9 Hasil *filtering* dan *smoothing* eksperimen kecepatan aliran 0,7 m/s dengan rasio massa DVA 1/30 pada posisi peletakan (a)*bend*, (b)*input*, (c)*output*

Halaman ini sengaja dikosongkan
BIODATA PENULIS

Freidy Zakaria Al Hamra atau biasa dipanggil Freidy lahir di Malang, 17 Januari 1997. Penulis telah menempuh pendidikan formal di TK Aba 8 pada tahun 2001-2003, SDN Sukun 3 pada tahun 2003-2009, SMP Negeri 3 Malang pada tahun 2012-2015. Setelah lulus dari SMA Negeri 3 Malang, Penulis mengikuti SNMPTN dan diterima di Departemen Teknik Mesin FTI-ITS Surabaya pada tahun 2015 dan

terdaftar dengan NRP 02111540000068.

Penulis aktif dalam kegiatan akademik maupun non akademik selama perkuliahan. Penulis pernah menjadi asisten praktikum Mekanika Getaran, asisten praktikum Mekanika Fluida II, koordinator praktikum Mekanika Getaran dan koordinator laboraturiom di laboratorium Vibrasi dan Sistem Dinamis. Selain itu, untuk mengisi kegiatan non akademik pada tahun ke-2 perkuliahan, penulis aktif menjadi staf Divisi Organisasi LBMM(Lembaga Bengkel Mahasiswa Mesin) pada periode 2016/2017. Pada tahun tersebut, penulis juga aktif dalam kepanitiaan berbagai kegiatan seperti Mechanical City 2016, LKMM PRA-TD XIV FTI ITS. Kemudian pada tahun ke-3 perkuliahan pernah menjabat sebagai kepala biro inventaris LBMM. Dan pada tahun ke-4 perkuliahan, penulis fokus menjalani akademik dan penelitian mengenai mekanisme peredam getaran dan masuk sebagai anggota Laboratorium Vibrasi dan Sistem Dinamis. Semua informasi dan masukan terkait tugas akhir ini. menghubungi penulis melalui email dapat fzakaria.alhamra@gmail.com.

Halaman ini sengaja dikosongkan