

TUGAS AKHIR - VM180629

SIMULASI PENDINGINAN CEPAT STROBERI MENGGUNAKAN REFRIGERAN R-22 DAN R-134A UNTUK PENGAWETAN BEKU KERING DENGAN APLIKASI COOLPACK DAN ASPEN PLUS

FIRMAN AMINUDIN NRP 10211600000032

Dosen Pembimbing 1 Ir. Denny M. E. Soedjono, M.T. NIP 19570331 198803 1 001

Dosen Pembimbing 2 M. Lukman Hakim, S.T., M.T. NIP 1994201911070

DEPARTEMEN TEKNIK MESIN INDUSTRI FAKULTAS VOKASI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019

TUGAS AKHIR - VM180629

SIMULASI PENDINGINAN CEPAT STROBERI MENGGUNAKAN REFRIGERAN R-22 DAN R-134A UNTUK PENGAWETAN BEKU KERING DENGAN APLIKASI COOLPACK DAN ASPEN PLUS

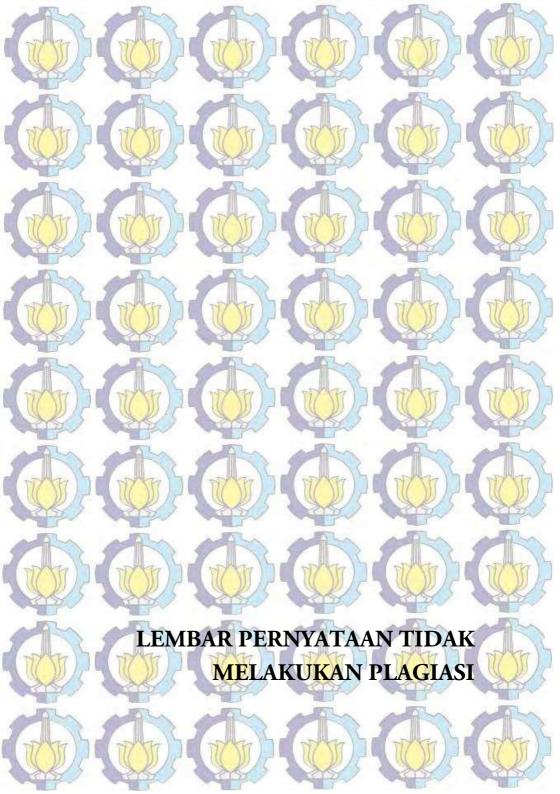
FIRMAN AMINUDIN NRP 1021160000032

Dosen Pembimbing 1 Ir. Denny M. E. Soedjono, M.T. NIP 19570331 198803 1 001

Dosen Pembimbing 2 M. Lukman Hakim, S.T., M.T. NIP 1994201911070

DEPARTEMEN TEKNIK MESIN INDUSTRI Fakultas Vokasi Institut Teknologi Sepuluh Nopember Surabaya 2019

FINAL PROJECT - VM180629


SIMULATION OF FAST-FREEZING STRAWBERRY WITH R-22 AND R-134A REFRIGERANT FOR FREEZE DRYING USING COOLPACK AND ASPEN PLUS APLICATION

FIRMAN AMINUDIN NRP 1021160000032

Counselor Lecturer 1 Ir. Denny M. E. Soedjono, M.T. NIP 19570331 198803 1 001

Counselor Lecturer 2 M. Lukman Hakim, S.T., M.T. NIP 1994201911070

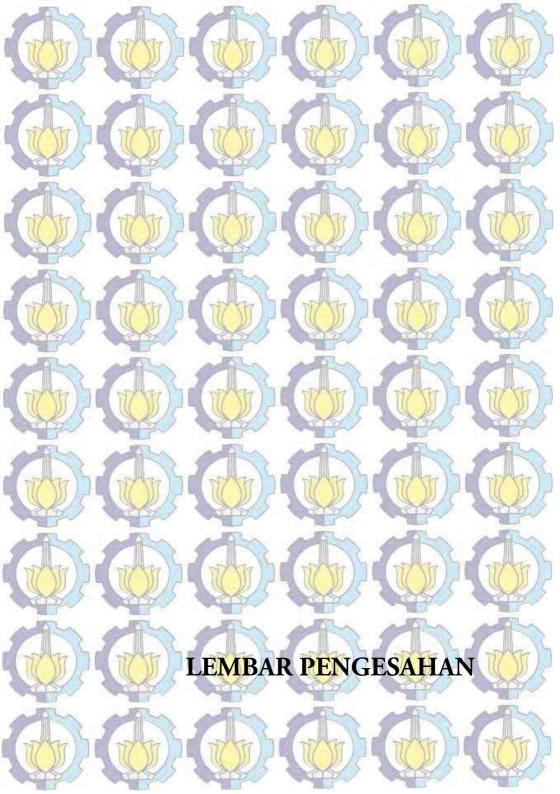
INDUSTRIAL MECHANICAL ENGINEERING DEPARTEMENT Faculty of Vocation Institut Teknologi Sepuluh Nopember Surabaya 2019

PERNYATAAN TIDAK MELAUKAN PLAGIAT

Saya yang bertanda tangan di bawah ini:

Nama : Firman Aminudin NRP : 10211600000032

Program Studi : Diploma III Teknik Mesin


Departemen : Teknik Mesin Industri

Vakultas : Vokasi

Menyatakan dengan sesungguhnya bahwa tugas akhir (TA) yang saya tulis ini benar-benar tulisan saya dan bukan merupakan hasil plagiat. Apabila di kemudian hari terbukti dapat dibuktikan TA ini hasil plagiasi, maka saya bersedia menerima sanksi atas perbuatan tersebut sesuai dengan ketentuan yang berlaku di Departemen Teknik Mesin Industri, Fakultas Vokasi – ITS.

Surabaya, 30 Desember 2019 Penulis

> <u>Firman Aminudin</u> NRP 10211600000032

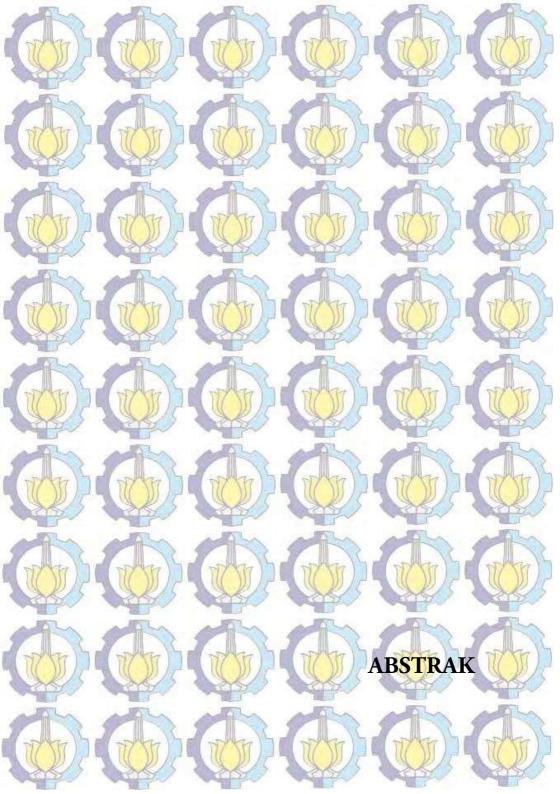
SIMULASI PENDINGINAN CEPAT STROBERI MENGGUNAKAN REFRIGERANT R-22 DAN R-134A UNTUK PENGAWETAN BEKU KERING DENGAN APLIKASI COOLPACK DAN ASPEN PLUS

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Ahli Madya Departemen Teknik Mesin Industri Fakultas Vokasi Institut Teknologi Sepuluh Nopember SURABAYA

Oleh:

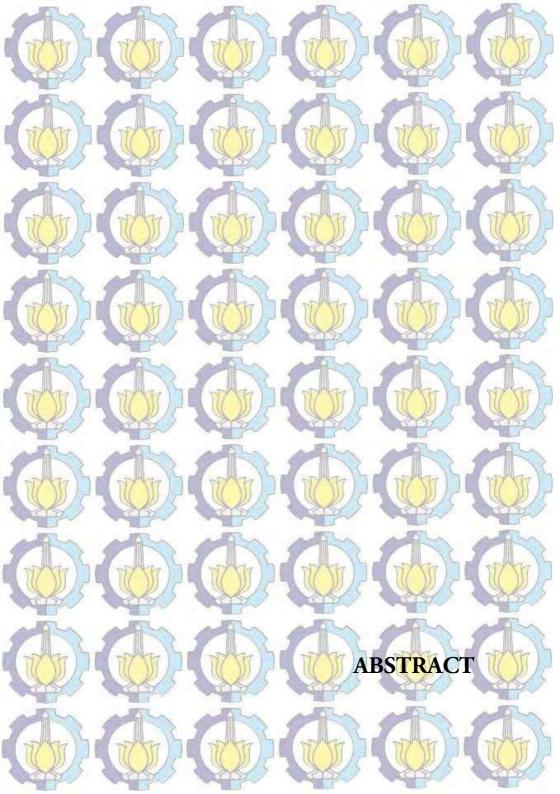
FIRMAN AMINUDIN


NRP. 10211600000032

Disetujui oleh pembimbing Tugas Akhir:

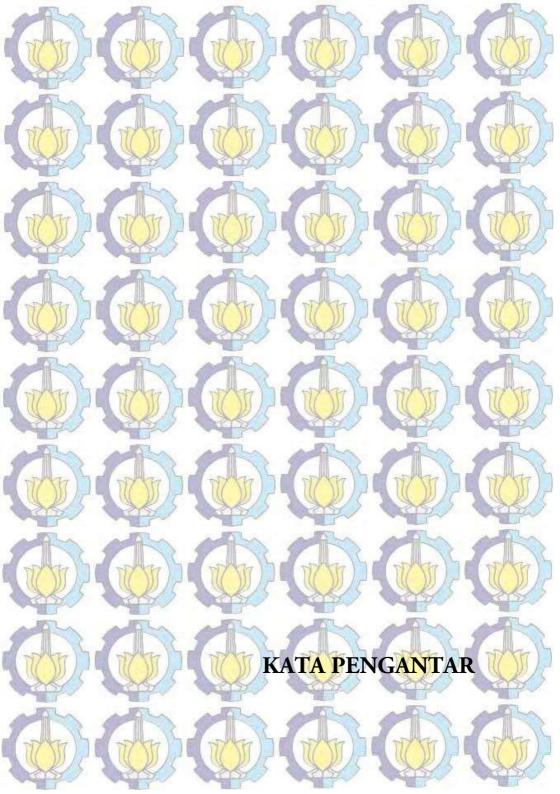
Pembimbing

Pembim


SURABAYA JANUARI 2020

ABSTRAK

Penelitian ini bertujuan untuk membuat simulasi dari sistem pendinginan cepat yang akan digunakan dalam proses pengawetan beku kering untuk stroberi dan mencari nilai performa dari sistem pendinginan cepat. Metode penelitian yang digunakan adalah simulasi analisis, yaitu melakukan simulasi menggunakan aplikasi Coolpack dan aplikasi ASPEN PLUS V11. Selanjutnya dari hasil percobaan tersebut didapatkan data yang akan dilakukan analisa perhitungan-perhitungan. Sampel yang akan digunakan dalam proses percobaan adalah refrigeran jenis R-22 dan R-134a. Hasil dari simulasi yang dilakukan refrigeran yang paling cocok digunakan di pendinginan cepat dari desain yang sudah dibuat adalah R-22. Dengan tekanan pada evaporator sebesar 0,8 bar dan tekanan pada kondensor sebesar 16 bar, nilai coeficient of performance yang dicapai sebesar 1,7. Dengan desain freezer yang telah dibuat bisa menampung maksimal 28 kilogram stroberi. Kapasitas refrigerasi yang dibutuhkan untuk mendinginkan stroberi sebesar 940 Watt. Sehingga daya kompresor yang dibutuhkan untuk desain freezer yang akan dibuat sebesar 544 Watt.


Kata kunci : stroberi, pengeringan beku, pendingin, coeficient of performance

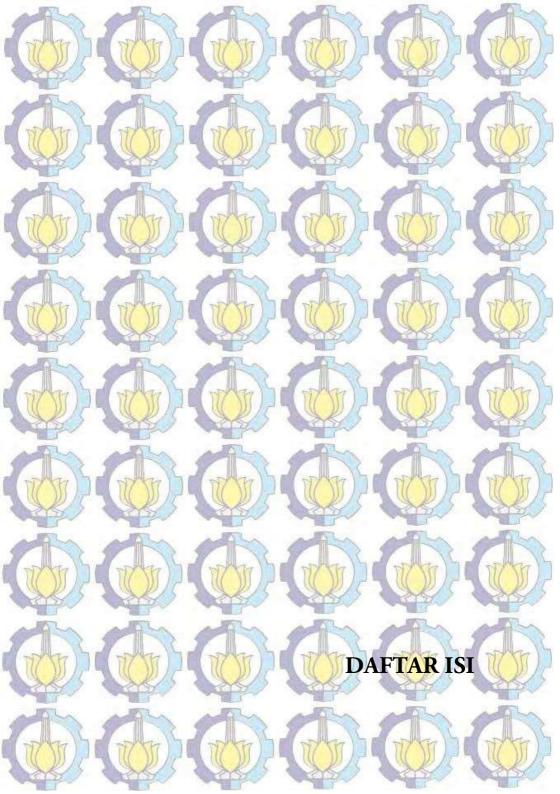
ABSTRACT

This study aims to design a simulation of quick freezing system that will be used in the freeze drying to strawberries and to find the performance value of quick freezing system. The research method used is experimental simulation, which is conducting an experiment using Coolpack and ASPEN PLUS V11 application. Furthermore, the results of these experiments to be analyzed in the form of calculations. The sample to be used in experient is refrigerant R-22 and R-134a. Results of the analysis conducted, suitable refrigerant used for the quick freezing system from design that has been made is R-22. With pressure of evaporator 0,8 bar and pressure of condenser 16 bar, the value from coefficient of performance that achieved is 1,7. With quick freezing system design that has been made can accommodate a maximum of 28 kilograms of strawberries. The refrigeration capacity needed to quick freezing system the strawberries is 940 Watt. So that compressor power needed for the quick freezing system design is 544 Watt.

Keywords: strawberry, freeze drying, freezer, coeficient of performance

KATA PENGANTAR

AlhamdulillahiRobbil'Alamin, Segala Puji dan syukur dipanjatkan kehadirat Tuhan Yang Maha Esa yang telah melimpahkan rahmat,hidayah, serta inayahnya sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul "Simulasi Pendinginan Cepat Sroberi Menggunakan Refrigeran R-22 dan R-134a untuk Pengawetan Beku Kering dengan Aplikasi *Coolpack* dan ASPEN PLUS" dapat terselesaikan. Tugas Akhir ini merupakan salah satu syarat untuk memperoleh gelar Ahli Madya Teknik pada program diploma Departemen Teknik Mesin Industri Fakultas Vokasi Institut Teknologi Sepuluh Nopember. Penelitian ini tidak akan dapat selesai tanpa bantuan dari semua pihak. Peneliti ucapkan terima kasih untuk itu. Terima kasih:

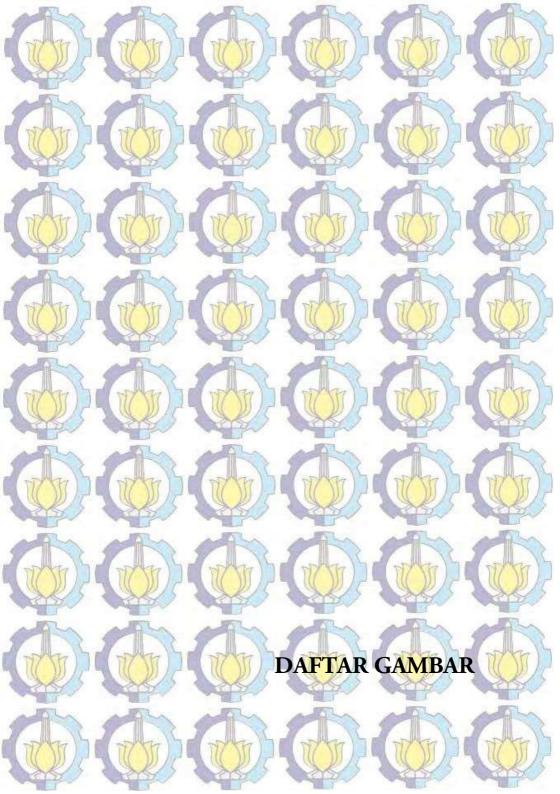

- 1. Tuhan Yang Maha Esa atas keadaan ini.
- 2. Keluarga saya yang selalu memberi dukungan terhadap kelancaran pengerjaan Tugas Akhir ini.
- 3. Bapak Ir. Denny M. E. Soedjono, M.T. dan bapak M. Lukman Hakim, S.T., M.T. selaku dosen pembimbing atas bimbingan, kritik dan saran yang diberikan dalam penelitian ini.
- 4. Seluruh bapak dan ibu dosen Teknik Mesin Industri FV ITS dan seluruh ITS dalam bimbingannya.
- 5. Miftahulkhair Putera selaku partner dalam penelitian Tugas Akhir ini.
- 6. Semua teman teman yang tidak bisa disebutkan satu per satu yang bersedia membantu dalam mengerjakan Tugas Akhir penulis.

Penelitian ini tentunya tidaklah sempurna. Terdapat banyak hal yang bisa dikembangkan baik dalam proses penelitian maupun dalam penulisan laporan. Oleh karena itu, kritik dan saran dari semua pihak sangat dibutuhkan agar penelitian ini lebih baik. Akhir kata penulis berdoa agar segala bantuan yang diberikan mendapat balasan dan rahmat dari Allah SWT. Dan semoga hasil dari laporan tugas akhir ini dapat bermanfaat sebagaimana yang diharapkan. Amin

Surabaya, 30 Desember 2019

Penulis

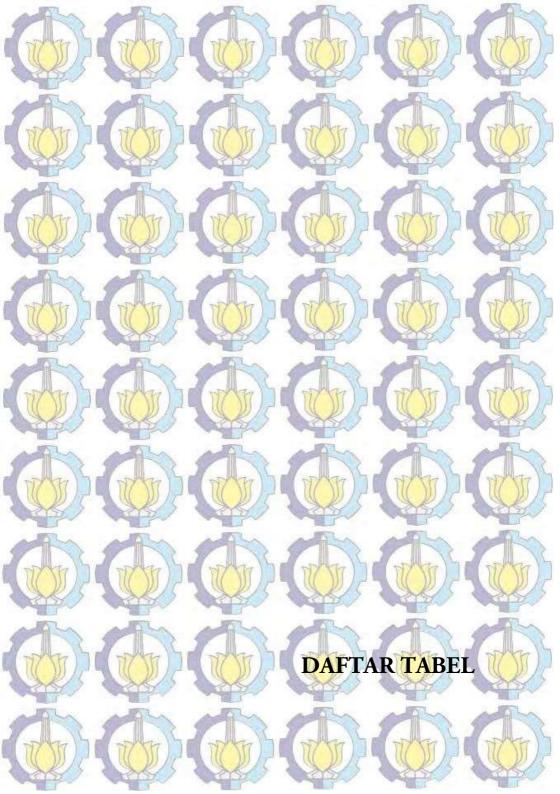
Firman Aminudin


DAFTAR ISI

HALAMAN JUDUL	i
PERNYATAAN TIDAK MELAKUKAN PLAGIAT	iii
LEMBAR PENGERAHAN	iv
ABSTRAK	v
KATA PENGANTAR	vii
DAFTAR ISI	ix
DAFTAR GAMBAR	xiii
DAFTAR TABEL	XV
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Batasan Masalah	3
1.4 Tujuan Penelitian	3
1.5 Manfaat Penelitian	4
1.6 Sistematika Penulisan	4
BAB II DASAR TEORI	7
2.1 Tinjauan Pustaka	7
2.2 Fase Penyubliman Air	8
2.3 Refrigeran	9
2.4 Siklus Kompresi Uap	
2.5 Sifat Termal dari Buah	14
2.6 Prinsip Pengeringan Beku	15
2.6.1 Proses Freezing	15
2.6.2 Proses Drying	17
2.7 Perhitungan Siklus Kompresi Uap	19
2.7.1 Representasi Siklus Kompresi Uap pada	
Diagram p-h (Tekanan-Enthalpy)	20

2.8 Efek dari Perubahan Tekanan Evaporator	23
2.9 Efek dari Perubahan Tekanan Kondensor	23
2.10 Efek dari Suction Vapour Superheat	24
2.11 Efek dari Liquid Subcooling	26
BAB III METODOLOGI PERCOBAAN	27
3.1 Tahap Penelitian	27
3.2 Diagram Alir Penelitian	27
3.3 Penjelasan Diagram Alir	29
3.3.1 Tinjauan Pustaka	29
3.3.2 Pembuatan Desain Bentuk Freezer	29
3.3.3 Penentuan Refrigeran	32
3.3.4 Menentukan Variasi Nilai Tekanan di Titik 1	
dan 3	38
3.3.5 Pengambilan Data	39
3.3.6 Perbandingan Data antara Coolpack dengan	
ASPEN PLUS	40
3.3.7 Pemilihan Refrigeran Terbaik dan perhitungan	
Daya kopresor	40
3.3.8 Penyusunan Laporan	40
3.4 Prosedur Pengambilan Data di Coolpack	40
3.5 Prosedur Pengambilan data di ASPEN PLUS V11	44
BAB IV HASIL DAN PERHITUNGAN	49
4.1 Desain Freezer	49
4.2 Hasil Data CoolPack	50
4.3 Pengolahan Data CoolPack	53
4.4 Perhitungan Nilai Daya Kompresi	56
4.5 Pengecekan Realisasi Menggunakan Mach Number	64
4.6 Pengolahan Data ASPEN PLUS	66

BAB V PENUTUP	69
5.1 Kesimpulan	69
5.2 Saran	69
DAFTAR PUSTAKA	
LAMPIRAN	
BIODATA PENULIS	


Halaman ini sengaja dikosongkan.

DAFTAR GAMBAR

Gambar 2.1 Diagram P-T fase air melihatkan kondisi	
penyubliman	8
Gambar 2.2 Siklus kompresi uap	12
Gambar 2.3 Siklus kompresi uap pada p-h diagram	14
Gambar 2.4 Diagram P-T fase air melihatkan kondisi	
penyubliman	16
Gambar 2.5 Pompa Vakum	17
Gambar 2.6 ice collector (pengumpul es)	18
Gambar 2.7 Efek dari perubahan tekanan evaporator 2	23
Gambar 2.8 Efek dari perubahan tekanan kondensor 2	24
Gambar 2.9 Efek dari suction vapour superheat	24
Gambar 2.10 Efek dari liquid subcooling	26
Gambar 3.1 Diagram Alir Penelitian Tugas Akhir	28
Gambar 3.2 Desain ukuran freezer	30
Gambar 3.3 Diagram P-h dari saturation dan standard vapor	
compression	36
Gambar 3.4 (A) Siklus kompresi uap dan (B) P-h diagram	
dari siklus kompresi uap	38
Gambar 3.5 Tampilan layar "Refrigeration utilities"	41
Gambar 3.6 Tampilan set properties pada diagram log(p)-h	41
Gambar 3.7 Tampilan diagram log(p)-h	42
Gambar 3.8 Tampilan "cycle input"	42
Gambar 3.9 Informasi berupa data dari siklus kompresi uap	43
Gambar 3.10 Informasi nilai tiap titik siklus kompresi uap.	44
Gambar 3.11 Tampilan properties dari ASPEN PLUS	44
Gambar 3.12 Tampilan simulation dan siklus kompresi uap	45
Gambar 3.13 Tampilan Results dari ASPEN PLUS	47
Gambar 4.1 Grafik daya kompresi dari R-22	61
Gambar 4.2 Grafik daya kompresi dari R-134a	61

Gambar 4.3 Grafik *Coefficient of Performance* dari R-22... 62 Gambar 4.4 Grafik *Coefficient of Performance* dari R-134a 63

DAFTAR TABEL

Tabel 1.1 Luas Panen, Produksi, dan Hasil Per Hektar
Stroberi Tahun 2018 1
Tabel 2.1 Klasifikasi keamanan refrigeran sesuai
ANSI/ASHRAE Standard 3411
Tabel 2.2 Kadar air dalam buah (Canet, 1998) 14
Tabel 3.1 Daftar refrigeran yang tidak memenuhi batasan
temperatur
Tabel 3.2 Pemilihan refrigeran yang sesuai
Tabel 4.1 Batas tekanan kondisi 1 dan 3 refrigeran yang
digunakan 50
Tabel 4.2 Hasil data coolpack dari R-22
Tabel 4.3 Hasil data coolpack dari R-134a 52
Tabel 4.4 Hasil perhitungan efek refrigerasi dan kerja
kompresi R-22
Tabel 4.5 Hasil perhitungan efek refrigerasi dan kerja
kompresi R-134a 55
Tabel 4.6 Hasil perhitungan daya kompresi dan Coeficient of
Performance
Tabel 4.7 Interpolasi nilai density R-22 pada temperatur
-45°C
Tabel 4.8 Interpolasi nilai density R-22 pada temperatur
40°C

Halaman ini sengaja dikosongkan.

BAB I PENDAHULUAN

1.1 Latar Belakang

Di zaman saat ini, pemanfaatan teknologi telah menyebar ke berbagai aspek kehidupan manusia, salah satunya teknologi dalam pengawetan bahan makanan. Buah dan Sayur merupakan bahan makanan yang hanya bertahan dalam waktu yang singkat. Hal ini disebabkan oleh aktivitas mikroba didalam buah atau sayur, yang dapat mengurangi mutu buah atau sayur.

Stroberi adalah salah satu dari buah semusim yang juga dibudidayakan di Indonesia. Sayangnya, menurut data Statistik Tanaman Sayuran dan Buah-buahan Semusim Indonesia tahun 2018, stroberi memiliki jumlah luas panen dan jumlah produksi belum habis lebih banyak dibandingkan jumlah luas panen dan produksi yang sudah habis. Hal ini menyebabkan produksi stroberi tahun 2018 mengalami penurunan jumlah produksi sebesar 30,13% dibandingkan dengan produksi tahun 2017. (Dikutip dari katalog "Statistik Tanaman Sayuran dan Buah-buahan Semusim Indonesia 2018")

Tabel 1.1 Luas Panen, Produksi, dan Hasil Per Hektar Stroberi Tahun 2018

Provinsi	Luas Panen Habis	Luas Panen Belum Habis	Produksi Habis	Produksi belum Habis	Hasil Per Hektare
	На	На	Ton	Ton	Ton/Ha
Sumatera Utara	29	8	53	181	6,32

Sumatera Barat	48	5	61	229	5,47
Jawa Barat	147	130	1698	4598	22,73
Jawa Tengah	24	11	17	244	7,46
Jawa Timur	38	13	48	337	7,55
Bali	12	31	21	564	13,60
NTB	19	0	167	45	11,16
Sulawesi Selatan	46	17	46	222	4,25
Total	363	215	2111	6420	14,76

Sumber : Statistik Tanaman Sayuran dan Buah-buahan Semusim Indonesia 2018

Salah satu teknologi yang berkembang untuk mengatasi masalah tersebut dengan menggunakan *Freeze Dryer*. Alat ini menggunakan metode *freeze drying* (pengeringan beku). Metode pengenringan beku telah banyak digunakan di industri makanan agar dapat mengawetkan buah atau sayur.

Dalam pendinginan beku, ada tiga proses yang dilalui oleh buah atau sayur : *pre-freezing* (pendinginan awal), pemvakuman udara, dan sublimasi. Dalam penelitian ini, kita hanya fokus pada proses *pre-freezing*.

1.2 Rumusan Masalah

Dalam penyusunan tugas akhir ini, rumusan masalah yang akan dibahas adalah :

1. Refrigerant mana yang paling optimal digunakan dalam proses pendinginan cepat dari pengeringan beku?

- 2. Bagaimana desain dari sistem pendinginan yang akan digunakan?
- 3. Bagaimana nilai performa dari sistem pendinginan yang akan digunakan?

1.3 Batasan Masalah

Dalam penyusunan tugas akhir ini, batasan masalah yang diberikan untuk lebih memfokuskan laporan tugas akhir adalah:

- 1. Hanya fokus ke sistem pendinginan dari sistem pengeringan beku.
- 2. Kondisi yang digunakan dalam kondisi ideal.
- 3. Menggunakan sistem pendinginan satu tingkat.
- 4. Kompresor bekerja secara isentropik.
- 5. Pendinginan pada kondensor menggunakan udara dengan temperatur 35°.
- 6. Suhu pendinginan untuk proses *freezing* dari pengeringan beku sebesar -40°C.
- 7. Tekanan yang keluar melewati alat expansi lebih besar dari 0,1 bar.
- 8. Refrigeran yang digunakan adalah R22 dan R134a
- 9. Aplikasi yang digunakan dalam simulasi adalah *Coolpack* dan ASPEN PLUS
- 10. Refrigeran yang digunakan dalam kelompok keamanan dari *ASHARE Standard 34* pada A1 dan A2.

1.4 Tujuan Penelitian

Dengan mengacu latar belakang dan rumusan masalah diatas maka tujuan dari penulisan tugas akhir ini adalah :

- 1. Dapat menentukan refrigeran mana yang paling optimal untuk sistem pendinginan awal dari pengeringan beku.
- Menghasilkan desain dari sistem pendinginan yang akan digunakan untuk proses pendinginan awal dari pengeringan beku.
- 3. Mengetahui performa yang dihasilkan dari desain alat pendinginan yang akan digunakan untuk proses pendinginan awal dari pengeringan beku.

1.5 Manfaat Penelitian

Dari penelitian tugas akhir ini diharapkan dapat memberikan manfaat utnuk mengetahui dan mampu membuat desain sistem pendinginan cepat untuk buah stroberi yang selanjutnya akan digunakan dalam proses pengawetan beku kering.

1.6 Sistematika Penulisan

Adapun sistematika penulisan tugas akhir ini adalah sebagai berikut:

BAB I PENDAHULUAN

Pada Bab I menjelaskan tentang latar belakang, perumusan masalah, tujuan penelitian, manfaat penelitian, dan sistematika penulisan.

BAB II DASAR TEORI

Pada Bab II menjelaskan teori – teori yang menunjang pelaksanaan penelitian.

BAB III METODOLOGI PERCOBAAN

Pada Bab III menjelaskan metodologi penelitian, diagram langkah penelitian, spesifikasi, dan langkah proses pengujian-pengujian yang dilakukan mulai dari persiapan sampai kesimpulan.

BAB IV ANALISA PERCOBAAN

Pada Bab IV Bab ini berisi mengenai uraian penjelasan untuk masalah perhitungannya. Serta hasil dari percobaan yang dilakukan beserta penbandingan dari kedua aplikasi yang digunakan.

BAB V PENUTUP

Pada Bab V ini berisikan kesimpulan yang diperoleh berdasarkan hasil penelitian dan saran dari penelitian.

Halaman ini sengaja dikosongkan.

BAB II DASAR TEORI

2.1 Tinjauan Pustaka

Dalam penyusunan tugas akhir ini dilakukan kajian pustaka dari beberapa penelitian-penelitian terdahulu mengenai freeze drying food sebagai bahan refrensi. Penelitian-penelitian tersebut diantaranya:

1. Iwaniw, D.C., Mittal (1990)

Untuk pemeliharaan kualitas tekstur dalam pengeringan beku stroberi, tempertur tinggi dapat diterapkan bersama dengan pemanasan yang sangat rendah, untuk mencegah kehancuran dan keruntuhan sel

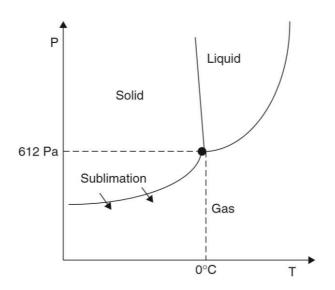
2. Hammami, C., Rene', F. (1997)

Mereka menemukan bahwa warna stroberi sangat tergantung pada suhu proses, tetapi tidak ada efek signifikan dari temperatur pelat pemanas yang menyusut.

3. Pääkkönen, K., Mattila, M. (1991)

Telah menemukan bahwa, selama pengeringan beku, struktur, warna dan aroma stroberi tetap tidak berubah, tetapi pemprosesan temperatur rendah meningkatkan kualitas sensorik dari buah-buahan kering

4. Gerschenson, L.N., Batholomai, G.B., Chirife, J. (1981)


Ketebalan produk adalah Faktor optimasi penting dalam proses ini karena pengurangannya akan mengurangi waktu pengeringan beku, mencegah keruntuhan yang merupakan fenomena temperaturwaktu

5. Roos, Y. (1987)

Menunjukkan stroberi itu rentan terhadap kondisi temperatur yang relatif tinggi. Di penelitian ini, stroberi beku-kering pada temperatur 20 °C memiliki kualitas lebih tinggi daripada mereka yang pada temperatur 60 °C, yang sedikit berbeda dalam penampilan dan rasanya.

2.2 Fase Penyubliman Air

Sublimasi adalah proses perubahan dari padat ke gas tanpa melewati proses pencairan. Sublimasi terjadi pada kisaran temperature dan tekanan, tergantung dengan zat yang ditanyakan.

Gambar 2.1 Diagram P-T fase air melihatkan kondisi penyubliman

(Food Process Engineering and Technology, Zeki Berk)

Fase diagram p-t air di gambar 2.1 menunjukkan sublimasi dari fase beku ke fase gas air berlaku jika tekanan dan temperatur harus lebih rendah dari nilai titik triple point air, yaitu lebih rendah dari 611.73 Pa dan 0.0098 °C.

Secara teoritis, pengeringan beku bisa terjadi pada tekanan atmosfer, asalkan tekanan parsial uap air sangat rendah, yaitu udaranya sangat kering (Karel,1975). Pengeringan beku pada atmosferik yang terjadi di alam, misalnya ketika salju menghilang tanpa meleleh dalam cuaca dingin dan kering. Namun dalam praktiknya, pengeringan beku dilakukan keluar pada tekanan total yang sangat rendah (biasanya 10 hingga 50 Pa). Pada tekanan rendah seperti itu, air uap memiliki volume spesifik yang sangat besar. Untuk menghapus volume sebesar itu uap dalam keadaan gas, pompa vakum harus memiliki perpindahan besar yang tidak realistis kapasitas. Untuk mengatasi masalah ini, uapnya terkondensasi sebagai kristal es dipermukaan kondensor disimpan pada suhu yang sangat rendah (biasanya - 40 ° C atau kurang).

Pengeringan beku terjadi dalam dua tahap (Pikal et al., 1990; Oetjen, 1999). Tahap pertama pengeringan sublimasi di mana sublimasi air beku (kristal es) terjadi. Biasanya, sebagian besar air dalam makanan dihilangkan pada tahap ini. Tahap kedua adalah pengeringan desorpsi selama sebagian besar air teradsorpsi pada padatan matriks dihapus. Biasanya, pengeringan beku dilakukan sampai kadar uap airnya mencapai 1-3%.

2.3 Refrigeran

Refrigeran atau zat pendingin atau bahan pendingin adalah suatu zat atau campuran, biasanya berupa cairan, yang digunakan dalam proses dimana dengan menyerap panas di satu

tempat dan membuangnya di tempat lain pada siklus pendinginan. Refrigeran adalah zat yang menguap dari cairan ke gas, hal ini dilakukan pada suhu dan tekanan rendah. Refrigeran mengeluarkan panas laten ketika kondensasi dari gas ke cairan pada suhu tinggi. Fluorokarbon jenis refrigeran yang biasa digunakan pada abad ke-20, terutama klorofluorokarbon, tetapi dikarenakan adanya efek penipisan ozon pada fluorokarbon maka pelaranganya pun sedikit demi sedikit di buat.

Sifat yang diinginkan dari refrigerant yang baik untuk penggunaan komersial adalah :

- 1. Rendah titik didihnya
- 2. Aman dan tidak beracun
- 3. Mudah dicairkan dan temperatur dan tekanan sedang
- 4. Nilai panas latent tinggi
- 5. Beroperasi pada tekanan positif
- 6. Tidak diperngaruhi oleh kelembapan
- 7. Mudah bercampur dengan oli
- 8. Tidak menimbulkan karat pada sistem

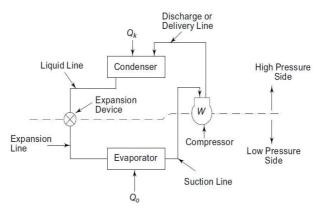
Pilihan pendingin untuk aplikasi tertentu diatur terutama oleh kapasitas pendinginan (sangat kecil, kecil, sedang atau besar), dan temperatur refrigerannya yang diperlukan, seperti untuk pendingin udara (5 ° C), lemari es (–10 hingga 2 ° C), *cool-storage* (–25 ° C), pengawetan beku kering (–40 ° C), dan lain – lain.

Menurut standar ANSI/ASHRAE no. 34, refrigeran diklasifikasikan menjadi kelompok keamanan (*safety*) dengan penamaan dua hingga 3 alfabet dan numerik (misal: B1, A2L). Huruf alfabet menunjukkan tingkat keracunan sementara angka menunjukkan sifat mudah atau sulit terbakar. Tingkat keracunan dikelompokkan menjadi dua, yaitu tingkat keracunan tinggi dengan simbol B dan tingkat keracunan

rendah dengan simbol A. Klasifikasi tingkat mudah terbakar dikelompokkan menjadi 4 kelompok, yaitu :

- 1 artinya api tidak merambat ke refrigeran
- 2L artinya perambatan api pada refrigeran rendah
- 2 artinya api bisa merambat pada refrigeran
- 3 artinya api mudah merambat pada refrigeran Sehingga menurut tingkat keamanannya, refrigeran dapat dikelompokkan pada tabel 2.1 beserta contoh refrigerannya.

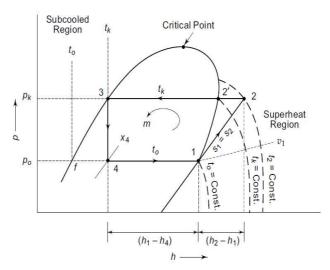
Tabel 2.1 Klasifikasi Keamanan Refrigerants sesuai *ANSI/ASHRAE Standard 34*


Flamibility	Higher Flamibility	A3 R-290 R-1270 R-600 R-600a	В3
	Lower	A2 R-152a	B2
	Flamibility	A2L	B2L R-717
	No Flamibility	A1 R-12 R-22 R-134a	B1
		Lower	Higher
		Toxicity Tox	Toxicity icity

Menteri Perindustrian dan Perdagangan Republik Indonesia telah melakukan upaya mengurangi pemanasan global dengan membatasi penggunaan refrigeran yang dapat merusak ozon. Pelarangan penggunaan refrigeran yang bisa merusak ozon sudah berlaku penuh sejak tahun 2005. Refrigeran yang termasuk dalam kategori merusak ozon sesuai

dengan Keputusan Menteri Perindustrian dan Perdagangan RI nomor 110/MPP/Kep/1998 diantaranya :

- 1. CFC-11 (R11)
- 2. CFC-12 (R12)
- 3. CFC-113 (R113)
- 4. CFC-114 (R114)
- 5. CFC-115 (R115)
- 6. CFC-13 (R13)
- 7. CFC-112 (R112)
- 8. CFC-111 (R111)
- 9. CFC-217 (R217)
- 10. CFC-216 (R216)
- 11. CFC-215 (R215)
- 12. CFC-214 (R214)
- 13. CFC-213 (R213)
- 14. CFC-212 (R212)
- 15. CFC-211 (R211)
- 16. R-502


2.4 Siklus Kompresi Uap

Gambar 2.2 Siklus kompresi uap (Refrigeration and Air-Conditioning, C P Arora)

Pada siklus kompresi uap terdiri dari beberapa proses yaitu:

- Kompresi: uap jenuh pada tekanan P₁ (gambar 2.3 titik kondisi 1) dikompresi menjadi tekanan P₂ (gambar 2.3 titik kondisi 2). Idealnya, diasumsikan kompresi bekerja secara isentropik. Kerja input disuplai dari kompresor
- 2. Kondensasi: uap yang terkompresi didinginkan sampai benar-benar terkondensasi sebagai cairan jenuh (gambar 2.3 titik kondisi 3). Idealnya, pendinginan diasumsikan terjadi pada tekanan konstan. Panas yang dikeluarkan dari uap yang terkondensasi ditransfer ke media pendingin seperti udara atau air. Secara fisik, langkah ini berlangsung pada kondensor.
- Ekspansi: tekanan cairan dilepaskan melalui throttling (misal. katup ekspansi), turun ke tekanan P₁ (gambar 2.3 titik kondisi 4). Proses throttling seharusnya isentalpi, tidak melibatkan pertukaran energi. Titik kondisi 4 mewakili campuran saturated vapor dan saturated liquid.
- 4. Evaporasi: panas ditransfer ke campuran cairan-uap sampai semua cairan diuapkan (kembali ke titik kondisi 1). Hal ini adalah langkah siklus yang bermanfaat pada siklus kompresi uap. Secara fisik, langkah ini terjadi pada penukar panas dikenal sebagai evaporator.

Gambar 2.3 Siklus kompresi uap pada p-h diagram (Refrigeration and Air-Conditioning, C P Arora)

2.5 Sifat Termal dari Buah

Sifat termal dari buah didominasi oleh kadar air yang terkandung dalam buah. Kalor spesifik dan kalor laten dari makanan dihitung berdasarkan kadar air dari kandungan buah. Kadar air ditentukan dengan metode *microwave oven* dengan sampel buah dipotong 20 gram (Canet, 1988).

Tabel 2.2 Kadar air dalam buah (Canet, 1998).

Buah (sampel buah potongan 20	Kadar air (Konversi dari
gram)	metode <i>microwave oven</i>)
Apel	87,4%
Pir	85,19%
Stroberi	90,76%
Pisang	72,1%
Alpukat	61,61%

Kalor spesifik dari buah dapat dinyatakan dalam rumus Siebel sebagai berikut :

$$C_{p,segar} = 3,35a + 0,84 \left(\frac{kJ}{kg. ^{\circ}C}\right)$$

$$C_{p,beku} = 1,26a + 0,84 \left(\frac{kJ}{kg. ^{\circ}C}\right)$$

Dimana $C_{p,segar}$ dan $C_{p,beku}$ adalah kalor sensibel dari buah sebelum dan sesudah pembekuan. Nilai a adalah fraksi dari kadar air (misal, apel = 0,87). Rumus Siebel dibuat berdasarkan kalor spesifik air dan es pada temperatur 0°C. Hasilnya rumus kalor sensibel sebelum dan sesudah pembekuan memiliki nilai kadar air (kondisi cair maupun beku) a=1 sehingga nilai kalor sensibelnya sebesar 4,19 kJ/kg.°C dan 2,1 kJ/kg.°C. Rumus Siebel memberikan nilai kalor sensibel pada 0°C tetapi rumus ini dapat digunakan dengan nilai temperatur yang lebih luas dengan akurasi yang masih wajar.

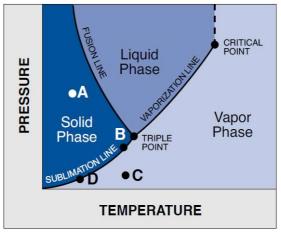
Kalor laten dari buah ketika pembekuan atau pencairan juga bergantung pada nilai kadar air dan dinyatakan sebagai berikut:

$$H_{laten} = 334a \left(\frac{kJ}{kg}\right)$$

Dimana nilai *a* adalah fraksi dari kadar air. Rumus ini juga dibuat berdasarkan kalor laten air ketika pembekuan atau pencairan sebesar 334 kJ/kg dalam kondisi atmosfer.

2.6 Prinsip Pengeringan Beku

Proses pengeringan beku terdiri dari dua tahap:


Freezing dan drying.

2.6.1 Proses Freezing

Metode *Freezing* (pembekuan) adalah penurunan temperatur sampai pada temperatur beku pada produknya, dikarena pengeringan beku

merubahan keadaan dari fase padat ke fase gas, maka material yang ingin di pengeringan beku harus memadai temperatur pembekuannya. Temperatur pembekuan dari produknya mempengaruhi keberhasilan dalam proses pengeringan beku ini.

Pendinginan yang cepat menghasilkan kristal es kecil, berguna dalam struktur pengawetan untuk diperiksa secara mikroskopis, tetapi menghasilkan produk yang lebih sulit untuk di pengering beku. Pendinginan yang lebih lambat menghasilkan kristal es yang lebih besar dan mempermudah proses pengeringan beku.

Gambar 2.4 Diagram P-T fase air melihatkan kondisi penyubliman

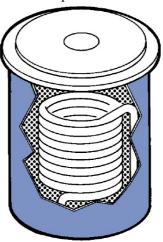
(A Guide to Freeze Drying for the Laboratory, Labconco)

Pada gambar 2.4 titik A menunjukkan sangatlah penting dalam pengeringan beku untuk melakukan *freezing* (pembekuan) pada produk di bawah temperatur bekunya yaitu pada titik B pada gambar 2.4 sebelum memulai proses pengeringan

beku. Sekecil apapun material yang tidak terbekukan akan membuat material yang kurang stabil pada strukturnya.

2.6.2 Proses Drying

Setelah fase beku, kondisinya harus dirubah melalui sublimasi, dan menghasilkan produk kering, secara structural. Proses pengeringan beku ini membutuhkan kehati – hatian kontrol terhadap 2 parameter yaitu temperatur dan tekanan. Tingkat sublimasi es dari produk beku tergantung pada perbedaan tekanan uap produk dibandingkan dengan uap tekanan dari *ice collector* (pengumpul es).


Pompa vakum adalah komponen penting dari sistem pengeringan beku. Pada gambar 2.4 pompa vakum digunakan untuk menurunkan tekanan (titik B) lingkungan di sekitar produk menuju ke Titik C.

Gambar 2.5 Pompa Vakum

(A Guide to Freeze Drying for the Laboratory, Labconco)

Molekul pada produk berpindah dari tekanan tinggi ke tekanan rendah. Pada gambar 2.4 dikarena titik C terkait dengan titik D maka temperatur pada produk harus lebih tinggi daripada temperatur pada *ice collector* (pengumpul es) agar mendorong molekul air dari produk.

Gambar 2.6 *ice collector* (pengumpul es)
(A Guide to Freeze Drying for the Laboratory,
Labconco)

Setelah proses *drying* (pengeringan) dilakukan pemanasan dengan temperatur 50 °C, setelah itu produk akan memiliki kelembapan kurang dari 5%, hal ini akan membuat produk akan tahan lebih lama dikarenakan mikroba yang didalam produk tidak mengurai dengan dengan cepat dan mengakibatkan umur produknya menjadi panjang.

2.7 Perhitungan Siklus Kompresi Uap

Skema siklus kompresi uap ditunjukkan pada gambar 2.2, terdiri dari kompresor, kondensor, katup ekspansi untuk mengatur tekanan dan evaporator. Pada siklus kompresi uap sisi high pressure terdapat di kompressor pada discharge line atau delivery line dan kondensor pada liquid line. Untuk expansion line, evaporator, suction line dan compressor-suction membentuk tekanan rendah di siklus. Dapat ditunjukkan di sini bahwa, dalam siklus yang sebenarnya tidak seperti di gambar 2.2, perangkat ekspansi terletak sedekat mungkin dengan evaporator untuk meminimalkan kenaikan panas di jalur ekspansi suhu rendah. Berikut adalah proses perhitungan termodinamika:

Process 1-2 Isentropic compression:

$$s_2 = s_1, Q = 0.$$

Kerja kompressor

$$w = -\int v dp$$

= $-\int dh$
= $-(h_2 - h_1)$

Process 2-3 Desuperheating and condensation:

 $P_k = konstan.$

Kalor yang dilepas

$$q_k = h_2 - h_3$$

Process 3-4 Isenthalpic expansion:

$$h_3 = h_4$$

$$= h_{f_4} + x_4 (h_1 - h_{f_4})$$

$$x_4 = \frac{h_3 - h_{f_4}}{h_1 - h_{f_4}}$$

Process 4-1 Evaporation: Po = konstan.

Effek refrigerasi,

$$q_o = h_1 - h_4$$

Keterangan:

s = entropi

w = kerja kompressor

h = entalphi

h_f = entalphi kondisi liquid
 P_k = tekanan pada kondensor

 q_k = kalor yang dilepas pada kondesor

q_o = efek refrigerasi

x = perbandingan uap dan cair

Q = perpindahan kalor

2.7.1 Representasi Siklus Kompresi Uap pada Diagram p-h (Tekanan-Enthalpy)

Perlu diketahui bahwa dua proses siklus pada berada pada tekanan konstan dan entalpi konstan. Oleh karena itu, dirasa sesuai untuk merepresentasikan siklus kompresi uap dengan diagram tekanan-entalpi (p-h) seperti yang ditunjukkan pada gambar 2.3. Karena itu, meskipun proses keempat adalah proses isentropik, diagram p-h masih ditemukan sesuai dikarena *work* yang didapat dipengaruhi oleh peningkatan entalpi.

Temperatur kondensasi (t_k) dan temperatur evaporator (t_o) , dipengaruhi oleh tekanan jenuh p_k dan p_o , atau bisa disebut juga saturated discharge temperature dan saturated suction temperature. Namun, actual discharge temperature dari kompresor adalah t_2 .

Gambar 2.3 juga menunjukkan garis-garis temperatur konstan di dalam daerah *subcool* dan daerah *superheated* bersama dengan garis volume konstan. Perlu diketahui bahwa garis temperatur konstan pada *subcool liquid* dan daerah *expansion line* memiliki garis yang vertikal seperti entalpi pada fase cair dan pada gas ideal memiliki persamaan dari temperatur dan tidak tergantung pada tekanan.

Perhitungan lebih lanjut dari siklus dapat dilakukan sebagai berikut:

a. Kalor yang dilepas,

$$q_k = q_o + w$$
$$= h_2 + h_3$$

b. COP untuk pendinginan,

$$E_{c} = \frac{h_{1} - h_{4}}{h_{2} - h_{1}}$$

c. COP untuk pemanasan,

$$E_{h} = \frac{h_{1} - h_{4}}{h_{2} - h_{1}}$$

d. Laju aliran refrigeran,

$$\dot{m} = rac{kapasitas refrigerasi}{effek refrigerasi per satuan massa}$$

$$= rac{\dot{Q}_0}{q_0}$$

e. Daya yang dibutuhkan,

$$\dot{W} = \dot{m}W$$
$$= \dot{m}(h_2 - h_1)$$

f. Kalor yang dilepas persatuan waktu,

$$\dot{Q}_k = \dot{m}q_k \\
= \dot{m}(h_2 - h_3)$$

Keterangan:

= Kalor yang dilepas

q_o = efek refrigerasi

 \dot{Q}_k = Kalor yang dilepas persatuan waktu

 \dot{Q}_{o} = Kapasitas refrigerasi

h = entalphi

w = kerja kompressor

coefficient of performance (COP) pendinginan

 $E_h = coefficient of performance (COP) pemanasan$

 \dot{m} = laju aliran refrigerasi

 \dot{W} = Daya kompressor

Untuk mencari nilai dari temperatur *isentropic* discharge dapat dicari menggunakan tiga metode yaitu :

- a. Menggunakan grafik p-h diagram dengan menggambarkan garis *isentropic* dari titik 1 ke P_k = garis tekanan konstan pada kondensor secara berulang sampai t_2 di dapat dengan ketentuan s_1 = s_2 .
- b. Menggunakan perhitungan dari saturation properties dan specific heat of vapour.

$$s_1 = s_2 = s'_2 + C_p \ln \frac{T_2}{T'_2}$$

dimana,

$$s'_2 = s_{g_2} \operatorname{dan} T'_2 = T_k$$

Keterangan:

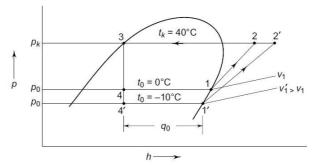
 s_1 = entropi pada *suction line*

 s_2 = entropi pada *discharge line*

s'₂ = entropi tipe gas pada *liquid line*

C_p = Constant pressure specific heat of saturated vapour refrigerant

 T_2 = temperatur pada discharge line

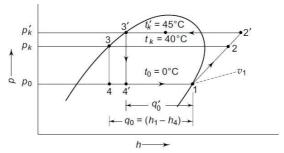

T'₂ = temperatur pada *liquid line*

c. Menggunakan tabel *superheat* dan interpolasi untuk tingkat superheat (T₂ - T'₂) dan menyesuaikan dengan perbedaan entropi (S₂ - S'₂) yang diketahui.

2.8 Efek dari Perubahan Tekanan Evaporator

Pertimbangkan siklus saturasi sederhana 1-2-3-4 dengan R-134a sebagai zat pendingin seperti yang ditunjukkan pada Gambar 2.6 dengan terjadinya penurunan tekanan pada evaporator menghasilkan :

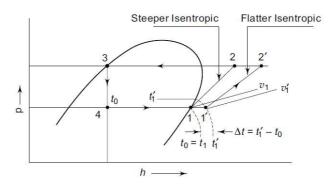
- 1. Terjadi penurunan pada efek refrigerasi.
- 2. Meningkatnya kerja kompressor dikarenakan naiknya rasio tekanan.
- 3. Meningkatnya nilai entropy dari $s_1 = s_2$ ke $s_{1'} = s_{2'}$.
- 4. Terjadi penurunan temperatur pada evaporator.



Gambar 2.7 Efek dari perubahan tekanan evaporator (Refrigeration and Air-Conditioning, C P Arora)

2.9 Efek dari Perubahan Tekanan Kondensor

Peningkatan tekanan kondensor pada gambar 2.8, juga menghasilkan nilai yang tidak jauh berbeda dengan perubahan tekanan pada evaporator seperti :


- 1. Penurunan nilai efek refrigerasi
- 2. Temperatur pada kondensor meningkat
- 3. Kenaikkan kerja spesifik

Gambar 2.8 Efek dari perubahan tekanan kondensor (Refrigeration and Air-Conditioning, C P Arora)

2.10 Efek dari Suction Vapour Superheat

Superheating pada saat di suction line disarankan dalam pelaksanaanya, di karena memastikan penguapan cairan yang keluar dari evaporator sebelum memasuki kompresor. Sebagian besar sistem pendingin dan AC, tingkat kepanasan berfungsi sebagai sarana untuk mengatur kapasitas pada katup ekspansi. Itu juga telah terlihat bahwa untuk beberapa refrigeran seperti R-134a, Isobutane, dan lain-lain, maksimum COP diperoleh dengan superheating dari suction vapour.

Gambar 2.9 Efek dari *suction vapour superheat* (Refrigeration and Air-Conditioning, C P Arora)

Dapat dilihat dari Gambar 2.9, bahwa efek dari superheating pada fase uap berasal dari $t_1 = t_0$ ke t'_1 adalah sebagai berikut:

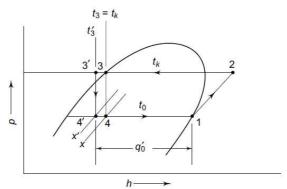
- a. Meningkatnya volume spesifik pada *suction vapour* dari v₁ ke v'₁.
- b. Meningkatnya efek refrigerasi dari (h₁ h₄) ke (h'₁ h₄).
- c. Meningkatnya kerja spesifik dari $(h_2 h_1)$ ke $(h'_2 h'_1)$.

Perlu diketahui nilai pada $(h'_2 - h'_1)$ lebih besar dari $(h_2 - h_1)$. Ini dikarenakan temperatur awal t'_1 lebih besar daripada t_1 dan nilai *work* nya, walaupun rasio tekanannya sama pada satu garis, sebagai contoh menggunakan gas ideal sebagai permisalanya

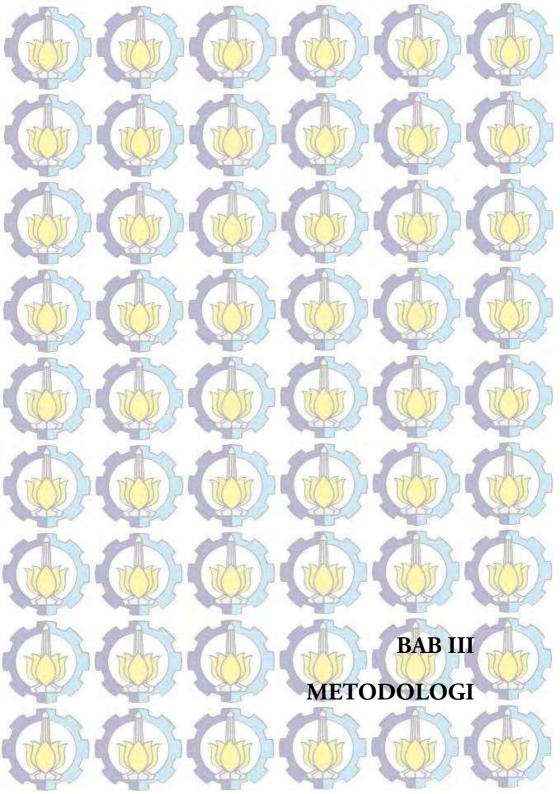
$$w = \frac{\gamma RT_1}{\gamma - 1} \left[\frac{p_2}{p_1}^{\frac{\gamma - 1}{\gamma}} - 1 \right] = f\left(T_1, \frac{p_2}{p_1}, \gamma\right)$$

Pada persamaan ini diketahui temperatur awal adalah T_1 , rasio tekanan adalah $\frac{p_2}{p_1}$ dan exponen adalah γ . Demikian kita melihat adanya kenaikan pada temperatur awal. Itu sebabnya garis isentropik pada p-h diagram menjadi lebih rata pada suhu yang lebih tinggi dikarenakan semakin jauh dari garis *saturated vapour*.

Peningkatan pada volume spesifik dapat mengurangi kapasitas refrigerasi. Sebaliknya, peningkatan efek refrigerasi akan meningkatkan kapasitas refrigerasi. Keuntungan dari efek *superheating* secara teori menurunkan kapasitas di sistem ammonia dan meningkatkan pada sistem Freon 12. Perbandingan kapasitas menggunakan *superheating* Q'₀ dan tanpa *superheating* bisa ditulis sebagai berikut,


$$\frac{Q'_0}{Q_0} = \frac{h'_1 - h_4}{h_1 - h_4} \cdot \frac{v_1}{v'_1}$$

Demikian pula, untuk kerja persatuan refrigerasi dapat dilihat bahwa ada dua pengaruh kontradiktif yaitu, peningkatan efek refrigerasi menurunkan laju aliran massa yang dibutuhkan dan juga *work* dan kenaikan *specific work* dikarenakan kenaikan temperatur pada *suction temperature*. Jadinya kerja persatuan refrigerasi bisa meningkat atau menurun tergantung dari jenis refrigeran dan juga dari temperatur yang dioperasikan


2.11 Efek dari Liquid Subcooling

Disarankan untuk mengurangi temperature pencairan refrigeran beberapa derajat pada saat akan masuk kondensor, dibeberapa kondensor dibuat *subcooling* diantara kondensor dan katup ekspansi. Efek dari *subcooling* pada fase cair terlihat dari $t_3 = t_k$ ke t_3 pada gambar 2.10. Akan terlihat bahwa *subcooling* mengurangi efek *flashing* cairan pada katup expansi dan meningkatkan efek refrigerasi.

Secara umum, fungsi kondensor serta subcooler bisa dikombinasikan dalam kondensor itu sendiri dengan sedikit memperbesar ukuran kondensor.

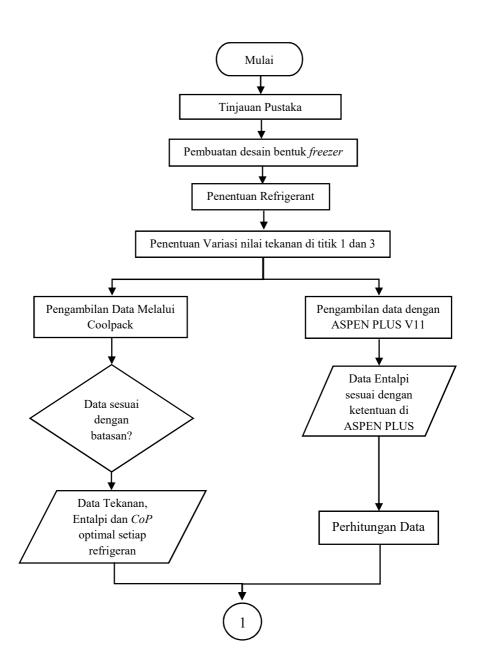
Gambar 2.10 Efek dari *liquid subcooling* (Refrigeration and Air-Conditioning, C P Arora)

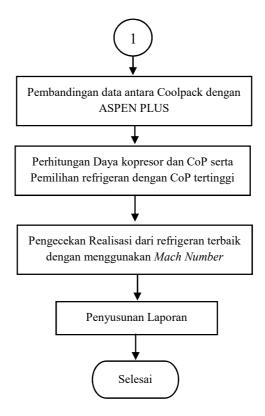
BAB III METODOLOGI PERCOBAAN

3.1 Tahap Penelitian

Pada tahap penelitian tugas akhir ini membahas mengenai "Desain Pendinginan *Strawberry* " dengan beberapa tahanapn yang dilakukan, yaitu :

Tahap pertama meninjau permasalahan yang ada pada lingkungan dengan mencari solusi untuk menyelesaikan permasalahan tersebut dengan disiplin ilmu yang telah dipahami, lalu dari permasalahan tersebut dirumuskan menjadi rumusan masalah, kemudian dari rumusan masalah dapat ditentukan tujuan dan maanfaat yang akan didapatkan dari hasil penelitian.


Tahap kedua yaitu dengan latar belakang, rumusan masalah, tujuan dan manfaat dari penelitian tersebut, diperlukan materi penunjang penelitian maka dilakukan studi pustaka dari berbagai sumber, baik dari buku maupun dari hasil penelitian sebelumnya.


Tahap ketiga melakukan pengambilan data yang diperlukan. Berdasarkan hasil penelitian, data yang dibutuhkan berupa temperatur pendinginan, temperatur udara, variasi tekanan evaporator dan variasi tekanan kondensor.

Tahap keempat adalah mengolah data yang telah didapat. Data tersebut digunakan untuk mencari nilai *Coefficient of Performance* pendinginan dan mengetahui refrigerant mana yang paling bagus digunakan.

3.2 Diagram Alir Penelitian

Berikut ini adalah diagram alir penelitian yang telah dilakukan:

Gambar 3.1 Diagram Alir Penelitian Tugas Akhir

3.3 Penjelasan Diagram Alir

Berikut penjelasan dari diagram alir proses penyelesaian tugas akhir di sub bab sebelumnya

3.3.1 Tinjauan Pustaka

Langkah pertama yang harus dilakukan adalah tinjauan pustaka mengenai topik yang telah dipilih guna menunjang dasar teori yang nantinya akan digunakan dalam pengerjaan serta perhitungan. Studi literatur ini diperoleh dari berbagai sumber antara lain buku, jurnal ilmiah, tugas akhir yang berkaitan dan media sosial internet.

3.3.2 Pembuatan Desain Bentuk Freezer

Langkah kedua adalah membuat desain bentuk dari *freezer* untuk stroberi. Gambar dari *freezer* bisa dilihat pada gambar 3.2

Gambar 3.2 Desain freezer

Berikut merupakan detail desain dari *freezer* berupa dimensi, yaitu :

1. Dimensi luar freezer

a. Panjang : 630 mmb. Lebar : 600 mmc. Tinggi : 850 mm

2. Dimensi dalam freezer

a. Panjang : 600 mmb. Lebar : 570 mmc. Tinggi : 840 mm

Dari desain diatas, diharapkan *freezer* dapat menampung 7 keranjang buah dengan ukuran 40x20x30 cm. Setiap keranjangnya diperkirakan mampu menampung stroberi sebanyak 4 kg. Sehingga total maksimal stroberi yang bisa masuk dalam keranjang sebanyak 28 kg. Temperatur awal

stroberi yang akan dilakukan proses *freezing* memiliki temperatur kamar (diperkirakan sekitar 25°C). Waktu pendinginan stroberi yang diperlukan adalah 4 jam.

Dari desain freezer yang dibuat, diharapkan mendapat nilai kapasitas refrigerasi dan daya kompresi yang dibutuhkan. Kapasitas refrigerasi yang dibutuhkan oleh freezer dapat dicari melalui jumlah kalor yang dibutuhkan untuk mendinginkan stroberi. Sebelum mencari kalor yang dibutuhkan, dibutuhkan nilai kalor sensibel dan kalor laten dari stroberi.

$$\begin{split} \dot{Q} &= \Sigma Q_{laten} + \Sigma Q_{sensibel} \\ \dot{Q} &= \frac{Q_{laten} + Q_{cair} + Q_{beku}}{t} \end{split}$$

Untuk mencari nilai kalor sensibel dari stroberi, dibutuhkan nilai massa stroberi, kalor spesifik stroberi, penurunan temperatur dan waktu pendinginan. Kalor sensibel yang dicari dibagi menjadi kalor dengan temperatur awal stroberi menuju ke titik beku air dan dari temperatur beku hingga ke temperatur yang diinginkan. Sehingga dijabarkan sebagai berikut:

$$\begin{aligned} Q_{cair} &= m \cdot c_{p,segar} \cdot \Delta T_{cair-bek} \\ Q_{beku} &= m \cdot c_{p,beku} \cdot \Delta T_{pembekuan} \end{aligned}$$

Sementara nilai kalor laten yang dibutuhkan untuk proses pembekuan stroberi dijabarkan sebagai berikut :

$$Q_{latent} = m . H_{latent}$$

Berikut nilai kalor spesifik $(c_{p,segar}, c_{p,beku})$ dan kalor jenis laten (H_{latent}) dari buah stroberi dengan kadar air a=0.9 adalah sebagai berikut :

$$C_{p,segar} = 3,35a + 0,84 \left(\frac{kJ}{kg.°C}\right)$$

$$C_{p,segar} = (3,35.0,9) + 0,84 \left(\frac{kJ}{kg.°C}\right)$$

$$C_{p,segar} = 3,855 \left(\frac{kJ}{kg.°C}\right)$$

$$C_{p,beku} = 1,26a + 0,84 \left(\frac{kJ}{kg.°C}\right)$$

$$C_{p,beku} = (1,26.0,9) + 0,84 \left(\frac{kJ}{kg.°C}\right)$$

$$C_{p,beku} = 1,974 \left(\frac{kJ}{kg.°C}\right)$$

$$H_{latent} = 334a \left(\frac{kJ}{kg}\right)$$

$$H_{latent} = 334.0,9 \left(\frac{kJ}{kg}\right)$$

$$H_{latent} = 300,6 \left(\frac{kJ}{kg}\right)$$

3.3.3 Penentuan Refrigeran

Langkah ketiga adalah penentuan refrigeran yang akan digunakan. Berikut adalah daftar refrigeran murni yang ada di aplikasi *CoolPack*. Diantaranya:

- 1. R11
- 3. R12
- 4. R13

- 5. R14
- 6. R21
- 7. R22
- 8. R23
- 9. R113
- 10. R114
- 11. R123
- 12. R134a
- 13. R152a
- 14. RC318
- 15. R717/NH3
- 16. R1270/Propena
- 17. R290/Propana
- 18. R50 /metana
- 19. R1150/Etena
- 20. R170/Etana
- 21. R600/Butana
- 22. R600a/Isobutana

Untuk menentukan refrigeran yang akan digunakan, hal yang perlu dilakukan sebelumnya adalah menentukan parameter dari pemilihan refrigeran. Diantaranya temperatur kondensor, temperatur evaporator, faktor *safety* serta faktor ketersediaan dari refrigeran yang akan digunakan.

Batas temperatur pada tugas akhir ini didasarkan pada kebutuhan, yaitu temperatur pendinginan untuk proses pendinginan awal dari pembekuan kering sebesar -40C. Agar efek refrigeransi dari refrigeran bisa mengalir ke udara didalam *freezer*, maka temperatur evaporator harus lebih dingin dibandingkan temperatur ruangan *freezer*. Diasumsikan temperatur evaporator yang digunakan sebesar -45°C. Artinya refrigeran yang digunakan harus memiliki suhu minimal dibawah -45°C agar refrigeran bisa mencapai suhu tersebut.

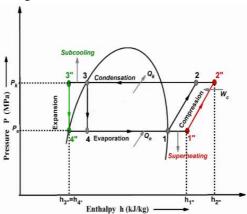
Selanjutnya, untuk temperatur kondensor disesuaikan dengan temperatur udara bebas karena proses pendinginan refrigeran di kondensor menggunakan media pendingin udara. Menurut BMKG, temperatur maksimal di kota Surabaya sebesar 35°C. Agar kalor dari refrigeran yang ada pada kondensor bisa mengalir ke udara bebas, maka temperatur kondensor harus lebih besar dibandingkan temperatur udara. Diasumsikan temperatur kondensor yang digunakan sebesar 40°C.

Refrigeran pada tabel 4.1 adalah refrigeran yang tidak memenuhi batasan temperatur. Pada R-113 dan RC318 tidak memenuhi syarat temperatur minimal yang harus mencapai - 45°C. R-13, R-23, R-1150 dan R-170 tidak memenhi syarat temperatur kritikal yang harus mencapai 40°C. Serta R-14 dan R-50 tidak memenuhi kedua syarat temperatur kondensor maupun temperatur evaporator.

Tabel 3.1 Daftar Refrigeran yang tidak memenuhi batasan temperatur

Refrigerant	Minimal Temperatur	Temperatur kritikal	
	°C	°C	
R-13	-181	28,8	
R-14	-184,9	-45,7	
R-23	-100	25,9	
R-113	-35	214,1	
RC318	-41,4	115,3	
R-50 /metana	-182,20	-82,59	
R-1150/Etena	-169	9	
R-170/Etana	-183	32,73	

Selanjutnya, refrigeran yang digunakan haruslah aman. Jika refrigeran itu beracun dan bisa merusak kesehatan manusia, maka akan berbahaya jika terjadi kebocoran. *Maintenance* yang akan dilakukan juga lebih sulit karena memerlukan penanganan khusus pada refrigeran tersebut. Jika refrigeran itu mudah terbakar, maka akan berbahaya jika terjadi ledakan dari refrigeran itu dan membahayakan keselamatan pengguna. Maka dari itu faktor keamanan juga menjadi perhatian dalam membuat desain *freezer*. Standar keamanan dari refrigeran sesuai dengan *ASHRAE Standard 34*. Refrigeran yang tidak sesuai dengan faktor keamanan diantarana R-290, R-1270, R-600, R-600a dan R-717. Kelima refrigeran ini memiliki tingkat *flamibility* atau *toxicity* yang tinggi sehingga berbahaya bagi penggunanya.


Refrigeran jenis R-11, R-12, R-113 dan R-114 termasuk refrigeran yang sudah dilarang beredar berdasarkan Keputusan Menteri Perindustrian dan Perdagangan RI nomor 110/MPP/Kep/1998. Sehingga R-11, R-12, R-113, dan R-114 sudah tidak beredar di pasaran. Selain itu, refrigeran R-152a sangat sulit dicari di pasaran Indonesia. R-152a.

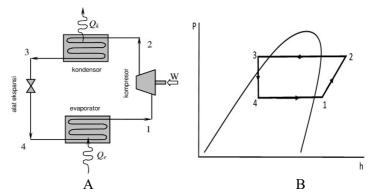
Adapun faktor lain yang sesuai dengan batasan masalah adalah tekanan masuk dan keluar evaporator (pada kondisi temperatur -45°C) harus diatas 0,1 bar. Menurut tabel *saturation* dari R-123, pada temperatur -45°C memiliki tekanan pada kondisi *saturation* sebesar 0,027 bar. R-21 juga memiliki tekanan pada kondisi *saturation* sebesar 0,069 bar. Sehingga refrigeran jenis R-123 dan R-21 tidak bisa digunakan dalam penelitian ini.

Setelah menentukan temperatur kondensor dan evaporator, selanjutnya kita tentukan batas tekanan evaporator dan tekanan kondensor melalui *saturation table* dari masing-

masing refrigeran. Untuk melihat *saturation table*, bisa dicek menggunakan aplikasi *Coolpack*.

Kita bisa lihat pada *saturation table* berapa tekanan pada temperatur -45°C dan 40°C. Jika dilihat dari gambar 3.2, nilai tekanan pada temperatur -45°C ada di titik 1 sementara nilai tekanan pada temperatur 40°C ada di titik 3. Sementara kita ingin titik 3 berada pada kondisi subcooling dan titik 1 berada pada kondisi superheating. Karena hanya variabel tekanan yang dapat divariasikan, maka tekanan di titik 3 harus lebih tinggi dibandingkan tekanan titik 3 pada keadaan *saturated*, sementara tekanan di titik 1 harus lebih rendah dibandingkan tekanan di titik 1 pada keadaan *saturated*. Sehingga didapatkan titik 1" dan titik 3" pada gambar 3.3.

Gambar 3.3 Diagram P-h dari saturation dan standard vapor compression


Dengan adanya faktor-faktor pemilihan refrigeran yang sudah dijelaskan sebelumnya, dibuatlah tabel 3.2 tentang pemilihan refrigeran. Hasilnya refrigeran yang bisa digunakan adalah R-22 dan R-134a.

Tabel 3.2 Pemilihan Refrigeran yang sesuai

D C:	Bisa/	Y 7
Refrigeran	Tidak	Keterangan
R-11	Х	Sudah dilarang (PerMen perindustrian no
- K 11	Λ	110/MPP/Kep/1998)
R-12	x	Sudah dilarang (PerMen perindustrian no
		110/MPP/Kep/1998) Temperatur kritis tidak bisa mencapai
R-13	X	40°C
R-14	x	Temperatur minimal dan kritis tidak sesuai
R-21	X	Tekanan di evaporator terlalu kecil
R-22	v	Bisa digunakan
R-23	Х	Temperatur kritis tidak bisa mencapai 40°C
R-113	X	Temperatur minimal tidak bisa mencapai - 45°C
R-114	X	Sudah dilarang (PerMen perindustrian no 110/MPP/Kep/1998)
R-123	X	Tekanan di evaporator terlalu kecil
R-134a	v	Bisa digunakan
R-152a	X	Sulit dicari dalam pasar Indonesia
RC318	X	Temperatur minimal tidak bisa mencapai - 45°C
R-717	X	Masuk kategori High Toxicity
R-1270	X	Masuk kategori High Flamibility
R-290	X	Masuk kategori High Flamibility
R-50	X	Temperatur minimal dan kritis tidak sesua
R-1150	X	Temperatur kritis tidak bisa mencapai 40°C
R-170	X	Temperatur kritis tidak bisa mencapai 40°C
R-600	X	Masuk kategori High Flamibility
R-600a	X	Masuk kategori High Flamibility

3.3.4 Menentukan Variasi Nilai Tekanan di Titik 1 dan 3

Sebelum melakukan pengambilan data pada aplikasi *Coolpack*, perlu dibuat variasi nilai tekanan terlebih dahulu mengingat temperatur kondensor dan evaporator sudah ditetapkan.

Gambar 3.4 (A) Siklus kompresi uap dan (B) P-h diagram dari siklus kompresi uap

Dilihat dari siklus kompresi uap pada gambar 3.4, temperatur yang sudah ditetapkan adalah temperatur minimal evaporator sebesar -45°C dan temperatur minimal kondensor sebesar 40°C. Selanjutnya melalui P-h diagram dari siklus kompresi uap, perlu menentukan nilai di setiap titik-titik kondisi.

Untuk menentukan titik 1 dibutuhkan nilai temperatur dan tekanan. Temperatur yang diinginkan sebesar -45°C sementara tekanan pada titik 1 akan divariasikan. Tetapi titik 1 harus berada pada kondisi *superheated* agar refrigeran yang akan masuk ke kompresor berada pada kondisi uap jenuh. Maka nilai tekanan pada titik 1 harus lebih kecil dibandingkan tekanan *saturation* refrigeran pada temperatur -45°C.

Untuk menentukan titik 3 dibutuhkan nilai temperatur dan tekanan. Temperatur yang diinginkan sebesar 40°C sementara tekanan pada titik 3 akan divariasikan. Titik 3 harus berada pada kondisi *subcool* sehingga refrigeran yang masuk ke alat expansi dalam kondisi cair. Maka tekanan pada titik 3 harus lebih besar dibandingkan dengan tekanan *saturation* refrigeran pada temperatur 40°C.

Dengan didapatkannya titik 1 dan titik 3, kita bisa menentukan titik 2 dan titik 4. Titik 2 diambil dari perpotongan antara garis entropi konstan dari titik 1 dengan garis tekanan konstan pada titik 3. Dan titik 4 diambil dari perpotongan antara garis entalpi konstan dari titik 3 dan garis tekanan konstan dari titik 1. Dengan didapatkannya data pada setiap titik dari P-h diagram siklus kompresi uap, selanjutnya data tersebut bisa diinput menggunakan aplikasi *CoolPack*.

3.3.5 Pengambilan Data

Langkah kelima adalah pengambilan data dari dua aplikasi, yaitu *CoolPack* dan ASPEN PLUS V11. Data yang didapat dari *CoolPack* berupa nilai entropi di titik 1 dan nilai entalpi pada semua titik kondisi (titik 1 sampai titik 4). Kemudian dari data tersebut, didapatkan nilai efek refrigeransi (qo), kerja kompresi (w) dan *coefficient of performance* (CoP). Didapatkanlah performa terbaik dari tiap refrigeran yang sudah dipilih dengan memilih nilai CoP tertinggi dari setiap refrigeran.

Selanjutnya data refrigeran terbaik tadi akan diinput dalam aplikasi ASPEN PLUS. Input data yang digunakan adalah temperatur kondensor, temperatur evaporator, tekanan pada kondisi 1 serta tekanan pada kondisi 3 dari sistem kompresi uap. Setelah itu didapatkan nilai entalpi dari semua titik kondisi dan didapatkanlah nilai CoP dari setiap refrigeran dari aplikasi ASPEN PLUS.

3.3.6 Perbandingan Data antara Coolpack dengan ASPEN PLUS

Langkah keenam adalah pembandingan data anatara data dari *Coolpack* dengan data dari ASPEN PLUS. Kemudian dari kedua data ini dipilih refrigeran mana yang mempunyai nilai *CoP* tertinggi diantara data di *Coolpack* dengan data dari ASPEN PLUS.

3.3.7 Perhitungan Daya kopresor, CoP, dan Pemilihan Refrigeran Terbaik

Langkah ketujuh adalah pemilihan refrigeran dengan performa yang terbaik. Setelah itu dari data refrigeran terbaik itu didapatkan nilai Daya kompresor yang dibutuhkan.

3.3.8 Pengecekan Realisasi dari Refrigeran Terbaik dengan menggunakan Mach Number

Langkah kedelapan adalah melakukan pengecekan apakah hasil refrigeran yang sudah dipilih melalui perhitungan dapat direalisasikan dalam sistem pendinginan. Untuk mengetahuinya, dilakukan perhitungan *mach number* dengan perbandingan antara kecepatan fluida masuk dan keluar kompresor dengan kecepatan suara di udara bebas.

$$M = \frac{v}{c}$$

Keterangan:

M = Mach number

v = kecepatan fluida yang masuk ke dalam kompresor

c = kecepatan suara di udara

Kecepatan fluida dapat dicari menggunakan rumus laju aliran massa. Untuk luas aliran disesuaikan dengan diameter pipa yang akan digunakan. Freezer memiliki diamter *suction* kompresor sebesar 3/8 inchi (0,9525 cm) dan diameter *discharge* sebesar 1/4 inchi (0,635 cm).

$$\dot{m} = \rho. v. A$$

$$\dot{m} = \rho. v. \frac{1}{4} \pi d^{2}$$

Nilai kecepatan suara di udara adalah sebagai berikut :

$$c = \sqrt{k.R.T}$$

Keterangan:

k = konstanta *boltzman*, pada udara sebesar 1,4

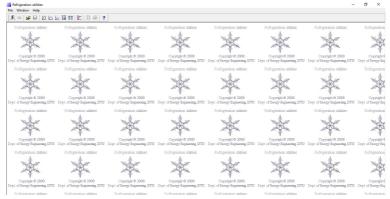
R = konstanta gas universal, sebesar 287 Nm/(kg.K)

T = temperatur

Dengan temberatur udara bebas sebesar 35°C (308 K), maka nilai kecepatan suara di udara adalah sebagai berikut :

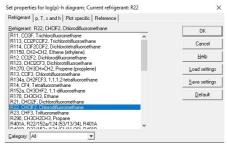
$$c = \sqrt{k.R.T}$$

$$c = \sqrt{1,4.287 \frac{N.m}{kg.s^2}.308 K.\frac{kg.m}{N.s^2}}$$

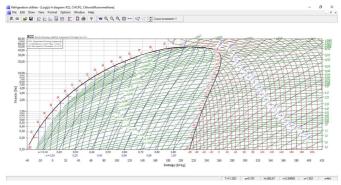

$$c = 351.8 m/s$$

3.3.9 Penyusunan Laporan

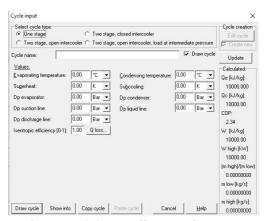
Setelah semua rangkaian penelitian, pengambilan data, dan perhitungan telah dilakukan, proses terakhir adalah menyusun keseluruhan kegiatan tersebut dalam bentuk laporan lengkap dengan teori penunjang dan kesimpulan yang didapat dari penelitian tugas akhir ini.


3.4 Prosedur Pengambilan Data di Coolpack

- 1. Siapkan data temperatur dan tekanan yang akan diinput dalam aplikasi *Coolpack*
- 2. Buka aplikasi *CoolPack* lalu pilih "*Refrigeration Utilities*". Lalu akan muncul tampilan pada gambar 3.5.


Gambar 3.5 Tampilan layar "Refrigeration utilities"

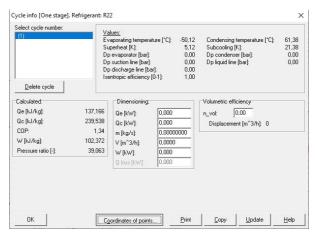
3. Pilih "log(p)-h diagram" pada ikon bagian atas dengan gambar 1/2, lalu muncul tampilan pada gambar 3.6 dan pilih refrigeran yang akan digunakan.


Gambar 3.6 Tampilan set properties pada diagram log(p)-h

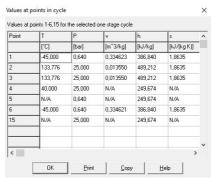
4. Atur nilai p, T, s dan h yang akan ditampilkan pada tab "*p, T, s and h*". Kemudian pada tab "*reference*", gunakan pilihan *Default*. Setelah selesai klik OK dan muncul tampilan diagram log(p)-h.

Gambar 3.7 Tampilan diagram log(p)-h

5. Pilih "cycles" pada bagian ikon di bagian atas dengan gambar 🕏, kemudian muncul layar "cycle input" seperti pada gambar 3.8.

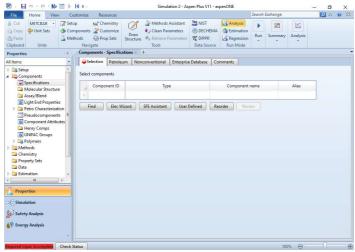

Gambar 3.8 Tampilan "cycle input"

6. Ganti satuan pada "superheat" dan "subcooling" dengan °C (celcius) dan ganti satuan pada "evaporating temperature" dan "condensing temperature" dengan bar.

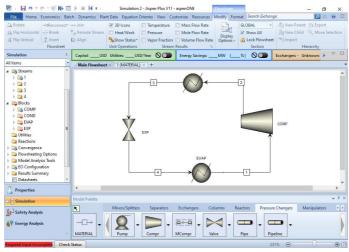

- 7. Masukan nilai temperatur evaporator pada "superheat" dan temperatur kondensor pada "subcooling"
- 8. Masukan nilai tekanan tekanan evaporator pada "evaporating temperature" dan tekanan kondensor pada "condensing temperature"
- 9. Klik "draw cycle". Siklus kompresi uap akan digambarkan secara otomatis pada diagram log(p)-h.
- 10. Untuk melihat hasil data dari siklus kompresi uap, pilih "show info" pada ikon bagian atas dengan gambar

 dan muncul tampilan seperti pada gambar

 3.9. Untuk melihat hasil data pada setiap titik dari siklus kompresi uap, klik "coordinates of points..." sehingga muncul seperti pada gambar 3.10.

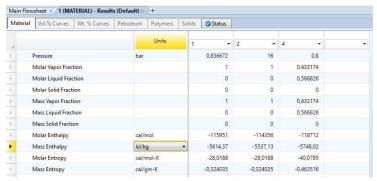

Gambar 3.9 Informasi berupa data dari siklus kompresi uap

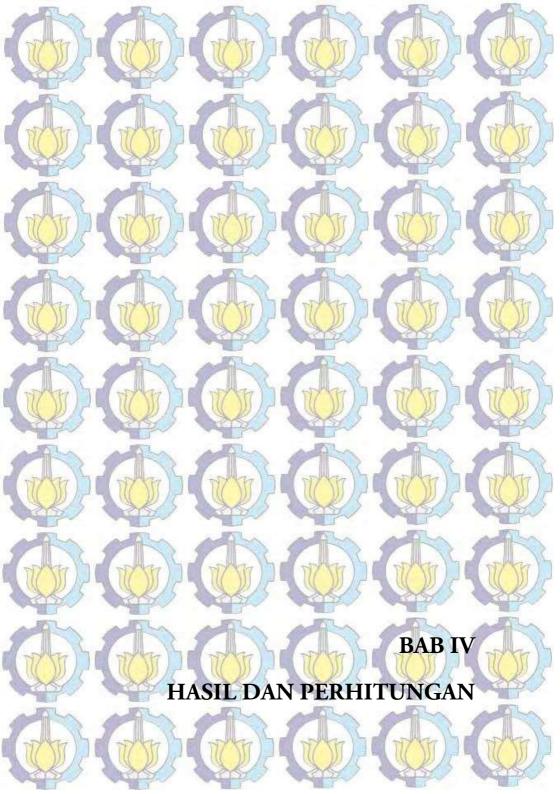
Gambar 3.10 Informasi nilai tiap titik siklus kompresi uap


3.5 Prosedur Pengambilan data di ASPEN PLUS V11

- Siapkan data temperatur dan tekanan yang akan diinput pada aplikasi ASPEN PLUS V11
- 2. Buka ASPEN PLUS V11, pilih "New" lalu pilih "Blank simulation". Selanjutnya akan muncul tampilan properties seperti pada gambar 3.11.

Gambar 3.11 Tampilan properties dari ASPEN PLUS


- 3. Pada *Components > Specification*, pilih refrigeran yang akan digunakan dengan klik find dan cari refrigeran tersebut. Klik "*Add to selected compound*".
- 4. Klik *methods*, lalu pada *Base Method* pilih "*PENG-ROB*". Pengisian pada *properties* telah selesai dan kita bisa masuk ke bagian *simulation*. Tampilan pada bagian simulation bisa dilihat pada gambar 3.10.
- 5. Buatlah siklus kompresi uap satu tingkat dengan menggunakan *model palette* yg ada di bagian bawah. Gunakan *Heater* pada bagian *Exchangers* untuk membuat evaporator dan kondensor. Kemudian gunakan *compressor* dan *valve* (yang nantinya sebagai expansion device) pada Pressure Changers. Untuk membuat garis aliran gunakan *MATERIAL*. Berilah nama pada masing-masing aliran dan komponen untuk mempermudah seperti pada gambar 3.12.


Gambar 3.12 Tampilan simulation dan siklus kompresi uap

- 6. Pilih *Streams* > "1", pada "*flash type*" pilih temperatur dan *pressure*. Kemudian masukkan data temperatur sesuai dengan data temperatur keluar dari evaporator. Dan pada *pressure* masukan nilai tekanan pada titik 1 (P1) dari data refrigeran.
- 7. Pada *total flow basis* pilih *Mass*, kemudian pada *total flow rate* tulis 1 dengan satuan kg/s. Kemudian pada tab *composition*, pilih opsi *Mass-Frac*. Masukkan nilai 1 pada komponen yang sudah dipilih.
- 8. Pilih pada *Blocks* > COMP, pada tipe pilih *isentropic*. Selanjutkan pada *outlet specification* pilih *Discharge pressure* dan masukkan data tekanan pada titik 3 (P3).
- 9. Selanjutnya pilih *Blocks* > COND. Pada *flash type*, pilih *temperature* dan *pressure-drop correlation parameter*. Pada *temperature* Masukkan data temperatur kondensor dari data refrigeran dan di *pressure-drop correlation parameter* masukkan nilai 0.
- 10. Pilih *Blocks* > EVAP, gunakan *flash type* yang sama dengan bagian kondensor. Pada *temperature* Masukkan data temperatur evaporator dari data refrigeran dan di *pressure-drop correlation* parameter masukkan nilai 0.
- 11. Pilih pada *Blocks* > EXP, pada *outlet pressure* masukkan data tekanan dari P₁ dari data refrigeran.
- 12. Semua data telah dimasukkan. Pada tab *Home* di bagian atas klik "*Run*". Kemudian tunggu hingga prosesnya selesai.
- 13. Untuk pengambilan hasil data dari ASPEN PLUS, klik pada *Steams* > 1 > *Results*. Ubah satuan dari *Mass Enthalpy* menjadi KJ/kg. Kita juga bisa

membandingkan data di kondisi lainnya seperti kondisi 2 dan 4 seperti pada gambar 3.13.

Gambar 3.13 Tampilan Results dari ASPEN PLUS

BAB IV HASIL DAN PERHITUNGAN

4.1 Perhitungan Cooling Load Desain Freezer

Dari desain *freezer* yang dibuat didapatkan nilai *cooling load* yang dibutuhkan.

$$\dot{Q_{CL}} = \frac{Q_{laten} + Q_{cair} + Q_{beku}}{t}$$

Keterangan:

 $\dot{Q_{CL}}$ = cooling load (kW)

 Q_{laten} = Kalor Laten (kJ)

 Q_{cair} = Kalor sensibel diatas titik beku air (kJ) Q_{beku} = Kalor sensibel dibawah titik beku air (kJ)

t = waktu(s)

Langkah selanjutnya menghitung nilai kalo laten dan kalor sensibel yang dibutuhkan.

$$\begin{split} Q_{laten} &= m \cdot H_{latent} \\ &= 28 \, kg \cdot 300.6 \left(\frac{kJ}{kg}\right) \\ &= 8.416.8 \, \text{kJ} \\ Q_{cair} &= m \cdot c_{p,segar} \cdot \Delta T_{cair} \\ &= 28 \, kg \cdot 3.855 \left(\frac{kJ}{kg \cdot ^{\circ}\text{C}}\right) \cdot (25 - 0)^{\circ}\text{C} \\ &= 2.698.5 \, kJ \\ &= m \cdot c_{p,beku} \cdot \Delta T_{pembekuan} \\ Q_{beku} &= 28 \, kg \cdot 1, \left(\frac{kJ}{kg \cdot ^{\circ}\text{C}}\right) \cdot \left(0 - (-45)\right)^{\circ}\text{C} \\ &= 2.487.24 \, kJ \end{split}$$

 Q_{laten} = Kalor Laten (kJ)

 Q_{cair} = Kalor sensibel diatas titik beku air (kJ) Q_{beku} = Kalor sensibel dibawah titik beku air (kJ)

m = massa total stroberi (kg)

 H_{latent} = Kalor jenis laten

 $c_{p,segar}$ = Kalor jenis stroberi segar $c_{p,beku}$ = Kalor jenis stroberi beku

 ΔT_{cair} = Perubahan temperatur stroberi awal

menuju titik beku

 $\Delta T_{pembekuan}$ = Perubahan temperatur stroberi dari titik beku menuju temperatur pendinginan

Sehingga, nilai kapasitas refrigerasi yang diperlukan untuk mendinginkan 28 kilogram stroberi dengan waktu 4 jam dijabarkan sebagai berikut :

$$\begin{split} \dot{Q_{CL}} &= \frac{Q_{laten} + Q_{cair} + Q_{beku}}{t} \\ \dot{Q_{CL}} &= \frac{8.416,8 \ kJ + 2.698,5 \ kJ + 2.487,24 \ kJ}{4.3600 \ s} \\ \dot{Q_{CL}} &= 0,94 \ kW \end{split}$$

4.2 Hasil Data CoolPack

Tabel 4.1 Batas tekanan kondisi 1 dan 3 refrigeran yang digunakan

Refrigerant	Tekanan kondisi 1 max (bar)	Tekanan kondisi 3min (bar)
R-134a	0,396	10,164
R-22	0,827	15,335

Variasi tekanan yang dibuat pada titik 1 akan diambil 2 sampai 3 nilai tekanan pada titik 1 dengan interval nilai tekanan sebanyak 0,1 bar. Sementara variasi tekanan yang dibuat pada titik 3 akan diambil 5 nilai tekanan dengan interval nilai tekanan sebanyak 2 bar. Dari tabel diatas, berikut adalah data tekanan yang akan dipilih untuk pengambilan data.

- R-22
 - o P₁ = {0,6 bar; 0,7 bar; 0,8 bar}
 - \circ P₃ = {16 bar, 18 bar, 20 bar, 22 bar, 24 bar}
- R-134a
 - \circ P₁ = {0,2 bar; 0,3 bar}
 - $P_3 = \{11 \text{ bar}, 13 \text{ bar}, 15 \text{ bar}, 17 \text{ bar}, 19 \text{ bar}\}$

Keterangan:

 P_1 = Tekanan pada titik kondisi 1 (Bar)

 P_3 = Tekanan pada titik kondisi 3 (Bar)

Dari hasil pengujian data di *Coolpack* didapatkan data berupa nilai entropi di titik 1 dan nilai entalpi di semua titik.

Berikut adalah hasil pengambilan data dari aplikasi *Coolpack* pada R-22.

p1	p 3	hı	S1	h2	$h_3 = h_4$
(bar)	(bar)	(kJ/kg)	(kJ/kg.C)	(kJ/kg)	(kJ/kg)
	16	231,556	1,0453	321,47	94,273
	18	231,556	1,0453	325,381	94,273
0,6	20	231,556	1,0453	328,914	94,273
	22	231,556	1,0453	332,136	94,273
	24	231,556	1,0453	335,098	94,273
0,7	16	231,265	1,0295	315,49	94,273

	18	231,265	1,0295	319,294	94,273
	20	231,265	1,0295	322,73	94,273
	22	231,265	1,0295	325,862	94,273
	24	231,265	1,0295	328,742	94,273
	16	230,971	1,0158	310,351	94,273
	18	230,971	1,0158	314,062	94,273
0,8	20	230,971	1,0158	317,412	94,273
	22	230,971	1,0158	320,467	94,273
	24	230,971	1,0158	323,275	94,273

 P_1 = Tekanan pada titik kondisi 1

P₃ = Tekanan pada titik kondisi 3

 s_1 = Entropi pada titik kondisi 1

h₁ = Entalpi pada titik kondisi 1

h₂ = Entalpi pada titik kondisi 2

h₃ = Entalpi pada titik kondisi 3

h₄ = Entalpi pada titik kondisi 4

Berikut adalah hasil pengambilan data dari aplikasi *Coolpack* pada R-134a.

Tabel 4.3 Hasil Data Coolpack dari R-134a

p1	р3	hı	S1	h2	$h_3 = h_4$
(bar)	(bar)	(kJ/kg)	(kJ/kg.C)	(kJ/kg)	(kJ/kg)
	11	220,687	1,0222	309,161	106,189
	13	220,687	1,0222	313,292	106,189
0,2	15	220,687	1,0222	316,827	106,189
	17	220,687	1,0222	319,91	106,189
	19	220,687	1,0222	322,64	106,189

	11	220,201	0,9875	297,19	106,189
	13	220,201	0,9875	301,098	106,189
0,3	15	220,201	0,9875	304,435	106,189
	17	220,201	0,9875	307,34	106,189
	19	220,201	0,9875	309,907	106,189

 P_1 = Tekanan pada titik kondisi 1 (keluar evaporator)

 P_3 = Tekanan pada titik kondisi 3 (keluar kondensor

 s_1 = Entropi pada titik kondisi 1 (keluar evaporator)

h₁ = Entalpi pada titik kondisi 1 (keluar evaporator)

h₂ = Entalpi pada titik kondisi 2 (masuk kondensor)

h₃ = Entalpi pada titik kondisi 3 (keluar kondensor)

h₄ = Entalpi pada titik kondisi 4 (masuk evaporator)

4.3 Pengolahan Data CoolPack

Untuk menghitung nilai *CoP*, dibutuhkan nilai efek refrigerasi (qo) dan kerja spesifik (w) yang didapatkan dari nilai entalpi. Berikut adalah contoh perhitungan pada refrigeran jenis R22 dengan p1 sebesar 0,6 bar dan p3 sebesar 16.

$$q_o = h_1 - h_4$$

 $q_o = 231,556 \frac{\text{kJ}}{\text{kg}} - 94,273 \frac{\text{kJ}}{\text{kg}}$
 $q_o = 137,283 \frac{kJ}{kg}$

$$w = h_2 - h_1$$

 $w = 309,161 \frac{\text{kJ}}{\text{kg}} - 320,053 \frac{\text{kJ}}{\text{kg}}$

$$w = 89,914 \frac{kJ}{kg}$$

$$CoP = \frac{q_o}{w}$$

$$CoP = \frac{137,283 \frac{kJ}{kg}}{89,914 \frac{kJ}{kg}}$$

$$CoP = 1.53$$

 $q_o = Efek refrigeransi$

w = Kerja spesifik

CoP = Coefficient of Performance

Dari perhitungan diatas kemudian dilanjutkan dengan data pada variasi tekanan dan refigeran yang lain. Hasilnya didapatkan nilai efek refigerasi, kerja spesifik dan *coeficient of performance*. Berikut adalah hasil perhitungan dari efek refrigerasi, kerja spesifik dan *coeficient of performance* dari data R-22 sebagai berikut.

Tabel 4.4 Hasil perhitungan efek refrigerasi dan kerja kompresi R-22

p1 (bar)	p3 (bar)	qo (kJ/kg)	w (kJ/kg)
	16	137,283	89,914
	18	137,283	93,826
0,6	20	137,283	97,358
	22	137,283	100,58
	24	137,283	103,542
0.7	16	136,991	84,225
0,7	18	136,991	88,03

	20	136,991	91,465
	22	136,991	94,597
	24	136,991	97,478
	16	136,698	79,38
	18	136,698	83,091
0,8	20	136,698	86,441
	22	136,698	89,496
	24	136,698	92,303

p1 = Tekanan pada kondisi 1 (keluar evaporator)

p3 = Tekanan pada kondisi 3 (keluar kondensor)

q_o = Efek refrigeransi

w = Kerja spesifik

Berikut adalah hasil perhitungan dari efek refrigerasi, kerja spesifik dan *coeficient of performance* dari data R-134a sebagai berikut.

Tabel 4.5 Hasil perhitungan efek refrigerasi dan kerja kompresi R-134a

p1 (bar)	p3 (bar)	qo (kJ/kg)	w (kJ/kg)
	11	114,498	88,474
	13	114,498	92,605
0,2	15	114,498	96,14
	17	114,498	99,223
	19	114,498	101,953
	11	114,012	76,988
	13	114,012	80,896
0,3	15	114,012	84,234
	17	114,012	87,139
	19	114,012	89,706

p1 = Tekanan pada kondisi 1 (keluar evaporator)

p3 = Tekanan pada kondisi 3 (keluar kondensor)

q_o = Efek refrigeransi

w = Kerja spesifik

4.4 Perhitungan Nilai *Coefficient of Performance* dan Daya Kompresi

Daya kompresi dipengaruhi oleh nilai laju aliran massa dan entalpi dari refrigeran yang bekerja pada kompresor. Sehingga dijabarkan dengan rumus berikut :

$$\dot{W} = \dot{m}(h_2 - h_1)$$

Keterangan:

 \dot{W} = Daya kompresi (kW)

 \dot{m} = Laju aliran massa $\left(\frac{kg}{s}\right)$

 h_1 = entalpi masuk kompresor $\left(\frac{kJ}{kg}\right)$

 h_2 = entalpi keluar kompresor $\left(\frac{kJ}{kg}\right)$

Untuk mencari nilai laju aliran massa yang dibutuhkan, dapat dengan menggunakan hukum 1 termodinamika dan membandingkan antara cooling load dari freezer dengan kapasitas refrigerasi dari sistem pendingin hasil simulasi. Laju aliran massa yang dibutuhkan berbeda pada tiap refrigeran. Setelah mendapatkan nilai laju aliran massa, selanjutnya didapatkan nilai daya kompresor. Setelah didapatkan nilai daya kompresi dan kapasitas refrigerasi, selanjutnya dapat dicari nilai Coefficient of Performance yang sebenarnya.

Berikut contoh perhitungan laju aliran massa dan dilanjutkan dengan nilai daya kompresi yang dibutuhkan dari R22 dan R134a.

• R22

$$p_{1} = 0.8 \, bar$$

$$p_{3} = 16 \, bar$$

$$h_{1} = 230.971 \frac{\text{kJ}}{\text{kg}}$$

$$h_{2} = 310.351 \frac{\text{kJ}}{\text{kg}}$$

$$h_{4} = 94.273 \frac{\text{kJ}}{\text{kg}}$$

1. Mencari laju aliran massa:

$$\dot{Q} = \dot{Q}_{CL}
\dot{m} \cdot q_o = \dot{Q}_{CL}
\dot{m} \cdot 136,698 \frac{kJ}{kg} = 0,94 kW
\dot{m} = \frac{0,94}{136,698} \frac{kW \cdot kg}{kJ}
\dot{m} = 5,04 \times 10^{-3} \frac{kg}{s}$$

2. Mencari Daya kompresor:

$$\dot{W} = \dot{m}(h_2 - h_1)$$
 $\dot{W} = 5.04 \times 10^{-3} \frac{kg}{s} .79.38 \frac{kJ}{kg}$
 $\dot{W} = 0.546 \, kW$

3. Mencari Nilai CoP:

$$CoP = \frac{\dot{Q}}{\dot{W}}$$

$$CoP = \frac{0.94 \, kW}{0.546 \, kW}$$

$$CoP = 1.722$$

$$\dot{Q}_{CL} = Cooling Load$$

$$\dot{Q}$$
 = Kapasitas refrigerasi

$$\dot{m}$$
 = Laju aliran massa

$$q_o$$
 = efek refrigerasi

$$\dot{W}$$
 = Daya kompresi

$$\dot{m}$$
 = Laju aliran massa

$$h_1$$
 = entalpi pada kondisi 1 (masuk kompresor)

$$h_2$$
 = entalpi pada kondisi 2 (keluar kompresor)

R134a

$$p_1 = 0.3 \ bar$$

$$p_3 = 11 \, bar$$

$$h_1 = 220,201 \frac{\text{kJ}}{\text{kg}}$$

$$h_2 = 297,19 \frac{\text{kJ}}{\text{kg}}$$

$$h_4 = 106,189 \frac{\text{kJ}}{\text{kg}}$$

1. Mencari laju aliran massa:

$$\dot{Q} = \dot{Q}_{CL}
\dot{m} \cdot q_o = \dot{Q}_{CL}$$

$$\dot{m} . 114,012 \frac{kJ}{kg} = 0,94 \ kW$$

$$\dot{m} = \frac{0.94}{114,012} \frac{kW.kg}{kJ}$$

$$\dot{m} = 8,24 \times 10^{-3} \frac{kg}{s}$$

2. Mencari Daya kompresor:

$$\begin{split} \dot{W} &= \dot{m}(h_2 - h_1) \\ \dot{W} &= 8,24 \times 10^{-3} \frac{kg}{s} \cdot 76,988 \frac{kJ}{kg} \\ \dot{W} &= 0,635 \; kW \end{split}$$

3. Mencari Nilai CoP:

$$CoP = \frac{\dot{Q}}{\dot{W}}$$

$$CoP = \frac{0,94}{0,635}$$

$$CoP = 1,481$$

Keterangan:

 \dot{Q}_{CL} = Cooling Load

 \dot{Q} = Kapasitas refrigerasi

 \dot{m} = Laju aliran massa

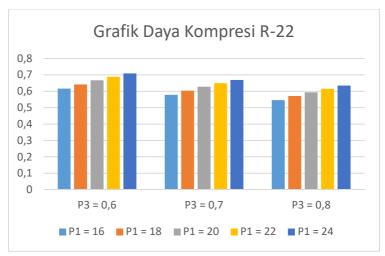
 q_o = efek refrigerasi

 \dot{W} = Daya kompresi

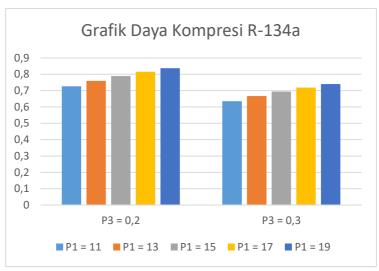
 \dot{m} = Laju aliran massa

 h_1 = entalpi pada kondisi 1 (masuk kompresor)

 h_2 = entalpi pada kondisi 2 (keluar kompresor)

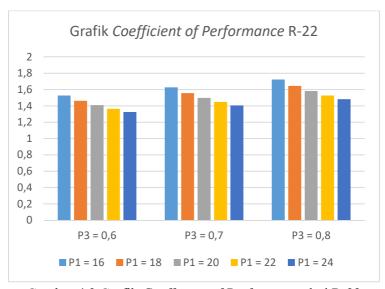

CoP = *Coefficient of Performance*

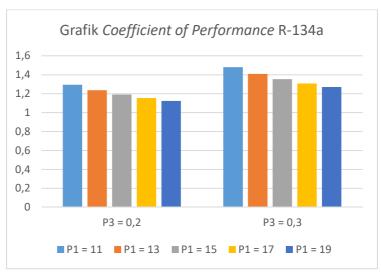
Selanjutnya perhitungan di atas dilanjutkan pada seluruh percobaan yang dilakukan pada aplikasi *Coolpack*. Nilai kapasitas refrigerasi yang dibutuhkan sama dengan nilai *cooling load* dari pendinginan stroberi yang dibutuhkan. Sehingga nilai kapasitas refrigerasi dari setiap percobaan sama, yaitu sebesar 0,94 kW. Hasil semua perhitungan dari percobaan dengan R-22 dan R-134a ditunjukan pada tabel berikut.


Tabel 4.6. Hasil Perhitungan Daya Kompresi dan *Coeficient of Performance*

Refrigeran	p 1	р3	ṁ	Ŵ	СоР
Kenigeran	(bar)	(bar)	(kg/s)	(kW)	COI
		16	0,00685	0,616	1,527
		18	0,00685	0,642	1,463
	0,6	20	0,00685	0,667	1,410
		22	0,00685	0,689	1,365
		24	0,00685	0,709	1,326
		16	0,00686	0,578	1,627
R-22		18	0,00686	0,604	1,556
K-22	0,7	20	0,00686	0,628	1,498
		22	0,00686	0,649	1,448
		24	0,00686	0,669	1,405
	0,8	16	0,00688	0,546	1,722
		18	0,00688	0,571	1,645
		20	0,00688	0,594	1,581
		22	0,00688	0,615	1,527
		24	0,00688	0,635	1,481
		11	0,00821	0,726	1,294
		13	0,00821	0,760	1,236
	0,2	15	0,00821	0,789	1,191
		17	0,00821	0,815	1,154
D 124a		19	0,00821	0,837	1,123
R-134a		11	0,00824	0,635	1,481
		13	0,00824	0,667	1,409
	0,3	15	0,00824	0,694	1,354
		17	0,00824	0,718	1,308
		19	0,00824	0,740	1,271

Berikut adalah grafik dari nilai daya kompresi yang dibutuhkan pada refrigeran R-22 dan R-134a.


Gambar 4.1 Grafik daya kompresi dari R-22


Gambar 4.2 Grafik daya kompresi R-134a

Dari grafik diatas, jika nilai tekanan masuk dan keluar kompresor naik, maka nilai daya kompresi juga naik. Hal ini berlaku untuk semua refrigeran, baik R-22 maupun R-134a. Hal ini dikarenakan semakin tinggi tekanan masuk atau keluar kompresor yang dibutuhkan, maka kompresor harus bekerja lebih kuat lagi. Nilai daya kompresor ini akan mempengaruhi *Coeficient of Performance*.

Berikut adalah grafik dari nilai *Coefficient of Performance* dari refrigeran R-22 dan R-134a.

Gambar 4.3 Grafik Coefficient of Performance dari R-22

Gambar 4.4 Grafik Coefficient of Performance dari R-134a

Coeficient of Performance dipengaruhi oleh kapasitas refrigerasi dan daya kompresor. Nilai kapasitas refrigerasi dari tiap percobaan sama karena harus disesuaikan dengan cooling load dari pendinginan cepat stroberi. Sementara daya kompresor berubah sesuai dengan gambar 4.1 dan gambar 4.2. Semakin turun daya kompresor yang dibutuhkan, nilai CoP akan semakin naik. Maka dari itu untuk mendapatkan nilai CoP yang maksimal dari percobaan, dibutuhkan nilai daya kompresi minimal.

Dari hasil perhitungan, didapatkan nilai *CoP* terbaik dari masing-masing refrigeran. Pada R-22, didapatkan nilai *CoP* terbaik sebesar 1,722 dengan daya kompresi sebesar 0,546 kW. Tekanan keluar evaporator sebesar 0,8 bar dan tekanan keluar kondensor sebesar 16 bar. Sementara pada R134a, didapatkan nilai *CoP* terbaik sebesar 1,481 dengan daya kompresi sebesar 0,635. Tekanan keluar evaporator sebesar 0,3 bar dan tekanan keluar kondensor sebesar 11 bar.

4.5 Pengecekan Realisasi Menggunakan Mach Number

Refrigeran terbaik dari hasil simulasi adalah R-22 dengan laju aliran massa sebesar $5.04 \times 10^{-3} \frac{kg}{s}$. Nilai massa jenis masuk dan keluar kompresor dapat dilihat pada lampiran 4 dengan menggunakan interpolasi agar ditemukan niliat massa jenis pada temperatur -45°C dan 40°C. Hasil interpolasinya adalah sebagai berikut.

Tabel 4.7 Interpolasi nilai density R-22 pada temperatur -45°C

Temperatur	Temperatur	Density	Density
(°F)	(°C)	(lb/ft^3)	(kg/m^3)
-50	-45,56	0,2374	3,801
-49	-45	0,2438	3,905
-45	-40	0,2692	4,312

Tabel 4.8 Interpolasi nilai density R-22 pada temperatur 40°C

	•		
Temperatur	Temperatur	Density	Density
(°F)	(°C)	(lb/ft³)	(kg/m^3)
105	40,56	4,193	67,165
104	40	4,134	66,22
100	37,78	3,897	62,424

Untuk mencari nilai *mach number* dilakukan proses perhitungan sebagai berikut :

• Suction kompresor

$$\dot{m} = \rho_{S-R22}.V.A$$

$$V = \frac{\dot{m}}{\rho_{S-R22}.A}$$

$$= \frac{\dot{m}}{\rho_{R-22}.\left(\frac{1}{4}.\pi.d^2\right)}$$

$$= \frac{5,04 \times 10^{-3} \frac{kg}{s}}{3,905 \frac{kg}{m^3} \cdot \left(\frac{1}{4} \cdot \pi \cdot \left(\frac{3}{8} inch \cdot \frac{0.0254m}{1 inch}\right)^2\right)}$$

$$= 18,11 \frac{m}{s}$$

$$M = \frac{V}{c}$$

$$= \frac{18,11 \frac{m}{s}}{351,8 \frac{m}{s}}$$

$$= 0,0514$$

• Discharge kompresor

$$\begin{split} \dot{m} &= \rho_{d-R22}.V.A \\ V &= \frac{\dot{m}}{\rho_{d-R22}.A} \\ &= \frac{\dot{m}}{\rho_{d-R22}.\left(\frac{1}{4}.\pi.d^2\right)} \\ &= \frac{5,04 \times 10^{-3} \frac{kg}{s}}{66,22 \frac{kg}{m^3}.\left(\frac{1}{4}.\pi.\left(\frac{1}{8}inch.\frac{0.0254m}{1inch}\right)^2\right)} \\ &= 30,2 \frac{m}{s} \\ M &= \frac{V}{c} \\ &= \frac{30,2 \frac{m}{s}}{351,8 \frac{m}{s}} \end{split}$$

= 0.085

Keterangan:

 \dot{m} = Temperatur pada kondisi 1 (keluar evaporator)

 ρ_{s-R22} = massa jenis R-22 masuk kompresor

 ρ_{d-R22} = massa jenis R-22 keluar kompresor

V = Kecepatan aliran refrigeran dalam pipa

A = luar pipa

d = diameter pipa

c = kecepatan suara di udara dengan T = 35°C

Nilai *mach number* dari *suction* kompresor sebesar 0,0514, sementara *mach number* dari *discharge* kompresor sebesar 0,085. Dikarenakan nilai mach number pada pipa kurang dari 0,3 maka kecepatan aliran pada pipa tidak terjadi compressible flow dan refrigerant yang digunakan bisa direalisasikan. Selain itu suara kerja dari kompresor masih dalam batas subsonik (M < 0,3) , yang artinya masih dalam batas aman pendengaran manusia.

4.6 Pengolahan Data ASPEN PLUS

Setelah didapatkan data nilai CoP terbaik dari refrigeran terbaik yang dipilih (R-22), data tersebut diinput ke aplikasi ASPEN PLUS. Beberapa data yang diinput sebagai berikut :

 \circ T1 = -45°C

 \circ T3 = 40°C

o P1 = 0.8 bar

 \circ P3 = 16 bar

Keterangan:

 T_1 = Temperatur pada kondisi 1 (keluar evaporator)

T₃ = Temperatur pada kondisi 3 (keluar kondensor)

P₁ = Tekanan pada kondisi 1 (keluar evaporator)

P₃ = Tekanan pada kondisi 3 (keluar kondensor)

Setelah data diatas diinput ke aplikasi ASPEN PLUS, didapatkan data sebagai berikut :

 $q_0 = h_1 - h_4$

Dari data diatas bisa dihitung nilai efek refrigerasi dan kerja spesifik dari tiap-tiap refrigeran. Dari kedua nilai itu selanjutnya dapat dihitung nilai *coeficient of performance* dari refigeran itu. Berikut perhitungannya:

$$q_{o} = -5614.3 \frac{\text{kJ}}{\text{kg}} - (-5748.02) \frac{\text{kJ}}{\text{kg}}$$

$$q_{o} = 133.71 \frac{kJ}{kg}$$

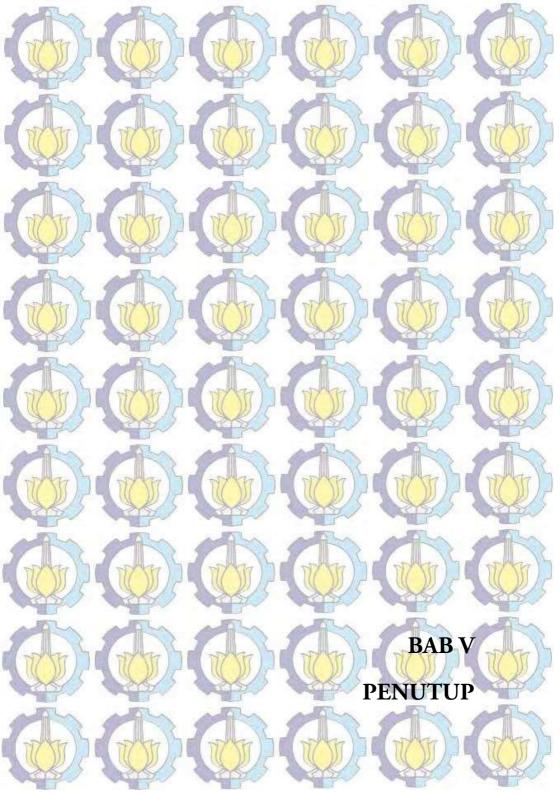
$$w = h_{2} - h_{1}$$

$$w = -5535.48 \frac{\text{kJ}}{\text{kg}} - (-5614.3) \frac{\text{kJ}}{\text{kg}}$$

$$w = 78.82 \frac{kJ}{kg}$$

$$CoP = \frac{q_{o}}{w}$$

$$CoP = \frac{133,71 \frac{kJ}{kg}}{78,82 \frac{kJ}{kg}}$$


$$CoP = 1,7$$

 $q_o \hspace{0.5cm} = Efek \hspace{0.1cm} refrigeransi$

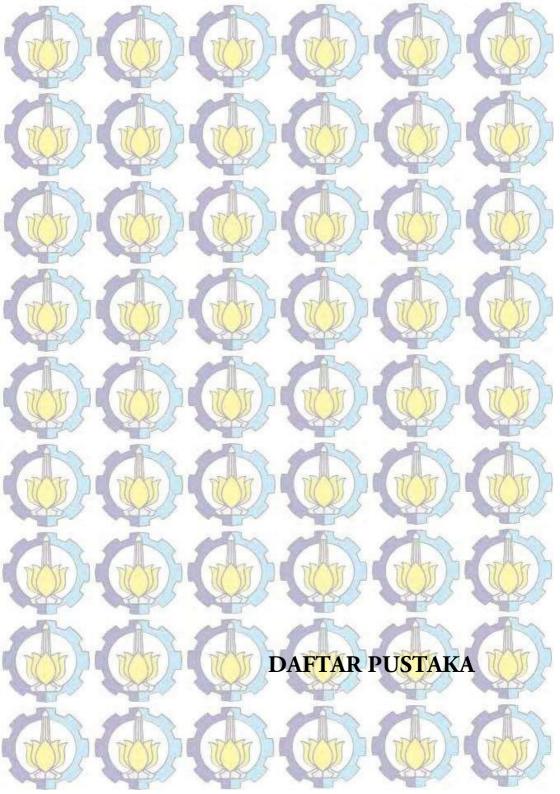
w = Kerja spesifik

CoP = Coefficient of Performance

Dari hasil perhitungan data ASPEN PLUS yang telah dilakukan, hasil rangkaian sistem pendinginan dengan menggunakan R-22 memiliki nilai CoP tertinggi sebesar 1,7 dengan nilai efek refrigerasi sebesar 133,71 kJ/kg dan kerja spesifik sebesar 78,82 kJ/kg.

BAB V PENUTUP

5.1 Kesimpulan


Dari hasil analisa dan perhitungan yang telah dilakukan dapat diambil beberapa kesimpulan sebagai berikut:

- 1. Dengan desain alat pendinginan yang dibuat dapat menampung stroberi sebanyak 28 kg dan memiliki *cooling load* sebesar 0.94 kW.
- 2. R-22 memiliki performa terbaik pada tekanan *superheated* sebesar 0,8 bar dan *subcool* sebesar 16 bar. Sementara R-134a memiliki performa terbaik pada tekanan *superheated* sebesar 0,3 bar dan tekanan *subcool* sebesar 11 bar.
- 3. R-22 memiliki performa terbaik dari R-134a dan dapat digunakan dalam sistem pendinginan cepat stroberi.
- 4. Berdasarkan hasil perhitungan setelah dilakukan simulasi menggunakan *coolpack* dan ASPEN PLUS Dengan menggunakan R-22 sebagai refrigerannya, daya kompresi yang dibutuhkan sebesar 0,554 kW. *Coeficient of performance* dari alat pendinginan cepat yang dicapai sebesar 1,7.

5.2 Saran

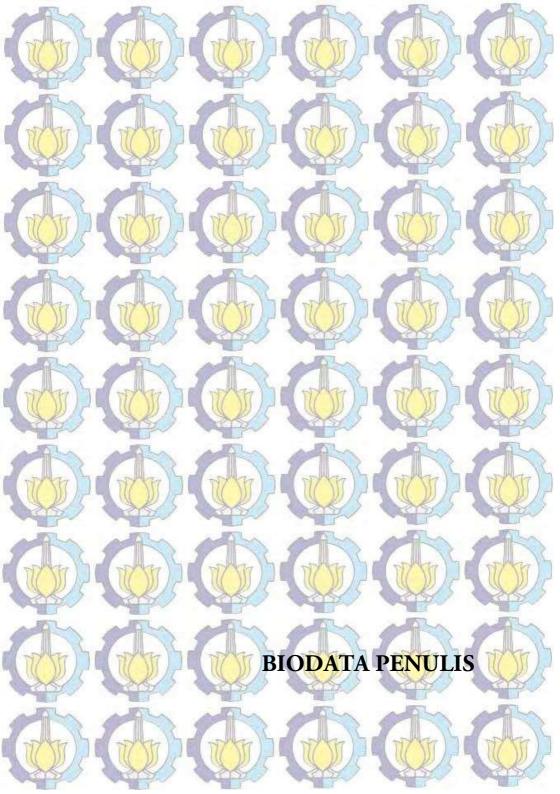
Salah satu aplikasi yang digunakan dalam penelitian ini adalah *CoolPack*. Aplikasi *Coolpack* memang cukup mudah digunakan bagi mahasiswa dan memiliki data yang memenuhi dengan kebutuhan seperti tabel *saturation*, tabel *superheated* atau *subcool*, diagram P-h, diagram T-s, . Aplikasi ini juga tidak berbayar dan bisa diunduh langsung melalui web yang sudah

disediakan. Namun, aplikasi *Coolpack* juga kurang *update* sehingga tidak semua refrigeran ada di aplikasi ini, misalnya R-32 yang masih baru dan mulai banyak digunakan pada era sekarang.

DAFTAR PUSTAKA

Shishehgarha, F., J. Makhlouf., dan C. Ratti. 2002." *Freeze-Drying Characteristics of Strawberries*". Canada: Department of Soil and Agri-food Engineering, and Department of Food Science and Nutrition, Laval University Ste-Foy

Berk, Zeki. 2009." Food Process Engineering and Technology". Israel: Department of Biotechnology and Food Engineering TECHNION, Israel Institute of Technology

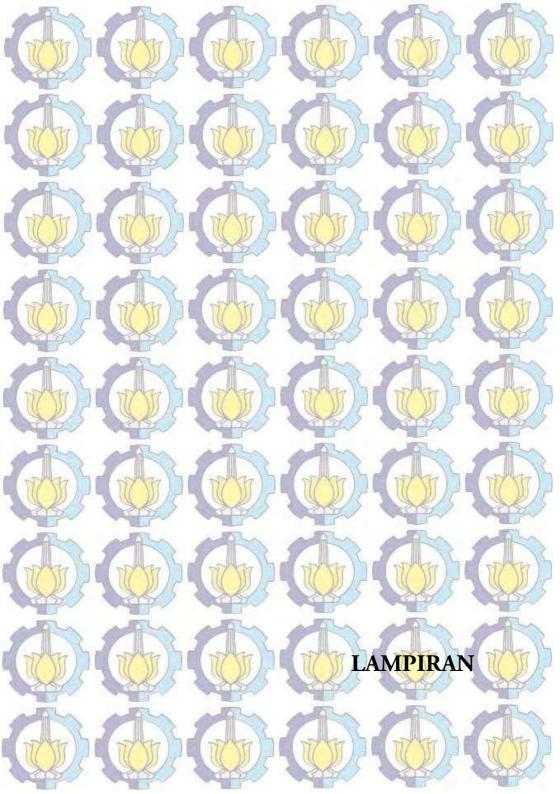

Arora, C.P. *Refrigeration and Air Conditioning* Third Edition. New Delhi: Tata McGraw-Hill Publishing Company Limited, (1984).

Miller, Mark R., Rex Miller. 2012." *Air Conditioning and refrigeration Second*". United State of America: State University of New York dan The University of Texas

Cengel, Yunus A., Afshin J. Ghajar. 2015." *Heat and Mass Transfer Fifth Edition*". United State of America: University of Nevada dan Oklahoma State University

Labconco Corporation., " A Guide To Freeze Drying for the Laboratory". United State of America: Kansas City

National Refrigerants, Inc. 2016. "Refrigerant Reference Guide Sixth Edition". United State of America: Philadelphia


BIODATA PENULIS

Penulis merupakan anak kedua dari dua bersaudara yang lahir pada tanggal 15 Februari 1998 di Surabaya, Jawa Timur. Pendidikan formal yang pernah ditempuh meliputi SD Negeri Percobaan Surabaya, SMP Negeri 22 Surabaya dan SMA Negeri 15 Surabaya. Setelah itu pada tahun 2016 penulis meneruskan pendidikan pada tingkat perguruan tinggi di Departemen Teknik Mesin Industri, Fakultas Vokasi – Institut Teknologi Sepuluh

Nopember Surabaya.

Selama menempuh perkuliahan di Departemen Teknik Mesin Industri penulis aktif mengikuti kegiatan organisasi maupun kepanitiaan di kampus. Antara lain menjadi Anggota Fasilitator Perlengkapan Gerigi ITS 2017, kepala biro Kesejahteraan Mahasiswa AKESMA HMDM 2017/2018. Panitia Malam Bina Iman dan Taqwa 2017 dan Ketua divisi perlengkapan dalam event SEC 1.0 HMDM 2018. Penulis juga mengikuti pelatihan di fakultas yaitu Pelatihan LKMM Pra-TD FTI ITS serta pelatihan yang diadakan HMDM antara lain : Pelatihan Karya Tulis Ilmiah (PKTI) dan LKMM TD FV ITS. Bagi pembaca yang ingin lebih mengenal penulis dan ingin berdiskusi lebih dapat menghubungi luas lagi E-mail: firmanamin123@gmail.com.

Tabel *Properties* Tekanan dan Temperatur Refrigeran (Menurut Aplikasi *CoolPack*)

Refrigeran	Temperatur Minimal	Temperatur Kritikal	Tekanan pada -45C	Tekanan pada 40C	
•	С	С	bar	bar	
R11	-70	198,01	0,037	1,735	
R12	-90	112	0,504	9,6	
R13	-181	28,8	5,08	N/A	
R14	-184,9	-45,7	N/A	N/A	
R21	-135	178,5	0,069	N/A	
R22	-150	96	0,827	15,335	
R23	-100	25,9	5,877	N/A	
R50	-182,2	-82,59	N/A	N/A	
R113	-35	214,1	N/A	0,784	
R114	-94	145,7	0,098	3,372	
R123	-60	183,68	0,027	1,55	
R134a	-103,3	101,1	0,396	10,164	
R152a	-118,59	98	0,4	9,119	
R170	-183	32,73	6,629	N/A	
R290	-130	96,67	0,882	13,659	
RC318	-41,4	115,3	N/A	4,954	
R600	-138,29	150,8	0,127	3,751	
R600a	-159,6	135,59	0,221	5,359	
R717	-77,66	132,35	0,545	15,549	
R1150	-169	9	12,458	N/A	
R1270	-185	91,75	1,146	16,488	

T °C	p Bar	v _I dm³/kg	V _g m³/kg	h _i kJ/kg	h _g kJ/kg	R kJ/kg	s _I kJ/(kg K)	s _g kJ/(kg K)
-60,00	0,375	0,6821	0,53724	134,75	379,12	244,38	0,7324	1,8789
-59,00	0,397	0,6833	0,50962	135,76	379,61	243,85	0,7372	1,8758
-58,00	0,420	0,6846	0,48369	136,77	380,09	243,32	0,7419	1,8728
-57,00	0,444	0,6859	0,45933	137,78	380,58	242,79	0,7465	1,8698
-56,00 -55,00	0,469 0,495	0,6872 0,6885	0,43643 0,41489	138,80 139,81	381,06 381,54	242,26 241,72	0,7512 0,7559	1,8669 1,8640
-54,00	0,522	0,6899	0,41469	140,84	382,02	241,72	0,7539	1,8611
-53,00	0,551	0,6912	0,37554	141,86	382,50	240,64	0,7652	1,8583
-52,00	0,580	0,6925	0,35755	142,88	382,98	240,09	0,7699	1,8555
-51,00	0,611	0,6939	0,34060	143,91	383,45	239,54	0,7745	1,8528
-50,00	0,644	0,6952	0,32461	144,94	383,93	238,99	0,7791	1,8501
-49,00	0,678	0,6966	0,30951	145,98	384,40	238,43	0,7837	1,8474
-48,00 47,00	0,713	0,6980	0,29526	147,01	384,88	237,86	0,7883	1,8448
-47,00 -46,00	0,749 0,787	0,6994 0,7008	0,28180 0,26907	148,05 149,09	385,35 385,82	237,30 236,73	0,7929 0,7975	1,8422 1,8397
-45,00 -45,00	0,827	0,7022	0,25703	150,14	386,29	236,15	0,8021	1,8372
-44,00	0,868	0,7036	0,24564	151,19	386,76	235,57	0,8066	1,8347
-43,00	0,911	0,7050	0,23485	152,24	387,23	234,99	0,8112	1,8322
-42,00	0,955	0,7064	0,22464	153,29	387,69	234,40	0,8157	1,8298
-41,00	1,002	0,7079	0,21496	154,34	388,16	233,81	0,8203	1,8275
-40,00	1,049	0,7093	0,20578	155,40	388,62	233,22	0,8248	1,8251
-39,00 -38,00	1,099 1,151	0,7108 0,7123	0,19707 0,18881	156,46 157,52	389,08 389,54	232,62 232,01	0,8293 0,8339	1,8228 1,8205
-37,00	1,131	0,7123	0,18096	157,52	390,00	232,01	0,8384	1,8203
-36,00	1,259	0,7153	0,17351	159,66	390,45	230,79	0,8429	1,8161
-35,00	1,317	0,7168	0,16642	160,73	390,91	230,18	0,8474	1,8139
-34,00	1,376	0,7183	0,15969	161,80	391,36	229,55	0,8518	1,8117
-33,00	1,438	0,7198	0,15329	162,88	391,81	228,93	0,8563	1,8096
-32,00	1,501	0,7214	0,14719	163,96	392,26	228,30	0,8608	1,8075
-31,00	1,567	0,7229	0,14139	165,04	392,70	227,66	0,8652	1,8054
-30,00 -29,00	1,635 1,705	0,7245 0,7261	0,13586 0,13060	166,13 167,22	393,15 393,59	227,02 226,37	0,8697 0,8741	1,8034 1,8013
-28,00	1,778	0,7277	0,13558	168,31	394,03	225,72	0,8786	1,7993
-27,00	1,853	0,7293	0,12080	169,40	394,47	225,07	0,8830	1,7974
-26,00	1,930	0,7309	0,11623	170,50	394,91	224,41	0,8874	1,7954
-25,00	2,010	0,7325	0,11187	171,60	395,34	223,74	0,8918	1,7935
-24,00	2,092	0,7342	0,10772	172,70	395,77	223,07	0,8963	1,7916
-23,00	2,177	0,7358	0,10374	173,80	396,20	222,40	0,9007	1,7897
-22,00 -21,00	2,265 2,355	0,7375 0,7392	0,09995 0,09632	174,91 176,02	396,63 397,05	221,72 221,03	0,9050 0,9094	1,7879 1,7860
-21,00	2,333	0,7392	0,09032	170,02	397,03	220,34	0,9094	1,7842
-19,00	2,544	0,7426	0,08954	178,25	397,90	219,65	0,9182	1,7824
-18,00	2,643	0,7443	0,08637	179,37	398,31	218,95	0,9226	1,7807
-17,00	2,745	0,7461	0,08333	180,49	398,73	218,24	0,9269	1,7789
-16,00	2,849	0,7478	0,08042	181,61	399,14	217,53	0,9313	1,7772
-15,00	2,957	0,7496	0,07763	182,74	399,55	216,81	0,9356	1,7755
-14,00	3,068	0,7514	0,07497	183,87	399,96	216,09	0,9399	1,7738
-13,00 -12,00	3,182 3,299	0,7532 0,7550	0,07241 0,06996	185,00 186,14	400,37 400,77	215,36 214,63	0,9443 0,9486	1,7721 1,7705
-12,00 -11,00	3,419	0,7569	0,06760	187,28	400,77	213,89	0,9529	1,7688
-10,00	3,543	0,7587	0,06535	188,42	401,56	213,14	0,9572	1,7672
-9,00	3,670	0,7606	0,06318	189,57	401,96	212,39	0,9615	1,7656
-8,00	3,801	0,7625	0,06110	190,71	402,35	211,64	0,9658	1,7640
- 7,00	3,935	0,7644	0,05911	191,86	402,74	210,87	0,9701	1,7624
-6,00	4,072	0,7663	0,05719	193,02	403,12	210,11	0,9744	1,7609
- 5,00	4,213	0,7683	0,05534	194,17	403,51	209,33	0,9787	1,7593
-4,00 -3,00	4,358 4,507	0,7703 0,7722	0,05357 0,05187	195,33 196,50	403,88 404,26	208,55 207,77	0,9830 0,9872	1,7578 1,7563
-3,00 -2,00	4,659	0,7742	0,05023	190,56	404,20	206,97	0,9072	1,7548
-1,00	4,816	0,7763	0,04866	198,83	405,00	206,17	0,9957	1,7533

°C	p Bar	v _I dm³/kg	v _g m³/kg	h _i kJ/kg	h _g kJ/kg	R kJ/kg	s _I kJ/(kg K)	s _g kJ/(kg K)
0,00	4,976	0,7783	0,04714	200,00	405,37	205,37	1,0000	1,7519
1,00	5,140	0,7804	0,04568	201,17	405,73	204,56	1,0042	1,7504
2,00	5,308	0,7825	0,04427	202,35	406,09	203,74	1,0085	1,7490
3,00	5,481	0,7846	0,04292	203,53	406,45	202,92	1,0127	1,7475
4,00	5,657	0,7867	0,04162	204,72	406,80	202,09	1,0169	1,7461
5,00	5,838	0,7889	0,04036	205,90	407,15	201,25	1,0212	1,7447
6,00	6,023	0,7910	0,03915	207,09	407,50	200,41	1,0254	1,7433
7,00	6,212	0,7932	0,03798	208,29	407,84	199,55	1,0296	1,7419
8,00	6,406	0,7955	0,03685	209,48	408,18	198,70	1,0338	1,7405
9,00	6,604	0,7977	0,03576	210,68	408,51	197,83	1,0380	1,7392
10,00	6,807	0,8000	0,03472	211,88	408,84	196,96	1,0422	1,7378
11,00	7,014	0,8023	0,03370	213,09	409,17	196,08	1,0464	1,7365
12,00	7,226	0,8046	0,03273	214,30	409,49	195,19	1,0506	1,7351
13,00	7,443	0,8070	0,03179	215,49	409,81	194,32	1,0547	1,7338
14,00 15,00	7,665 7,891	0,8094 0,8118	0,03087 0,02999	216,70 217,92	410,13 410,44	193,42 192,52	1,0589 1,0631	1,7325 1,7312
16,00	8,123	0,8118	0,02999	217,92	410,44	192,32	1,0672	1,7312
17,00	8,359	0,8142	0,02832	220,37	410,75	190,68	1,0072	1,7286
18,00	8,601	0,8192	0,02052	221,60	411,35	189,74	1,0714	1,7273
19,00	8,847	0,8217	0,02675	222,83	411,64	188,81	1,0797	1,7260
20,00	9,099	0,8243	0,02601	224,07	411,93	187,86	1,0839	1,7247
21,00	9,356	0,8269	0,02529	225,31	412,21	186,90	1,0880	1,7234
22,00	9,619	0,8295	0,02459	226,56	412,49	185,94	1,0922	1,7221
23,00	9,887	0,8322	0,02391	227,80	412,77	184,96	1,0963	1,7209
24,00	10,160	0,8349	0,02326	229,05	413,03	183,98	1,1005	1,7196
25,00	10,439	0,8376	0,02263	230,31	413,30	182,99	1,1046	1,7183
26,00	10,723	0,8404	0,02201	231,57	413,56	181,99	1,1087	1,7171
27,00	11,014	0,8432	0,02142	232,83	413,81	180,98	1,1129	1,7158
28,00	11,309	0,8461	0,02084	234,10	414,06	179,96	1,1170	1,7146
29,00	11,611	0,8490	0,02029	235,37	414,30	178,93	1,1211	1,7133
30,00	11,919	0,8519	0,01974	236,65	414,54	177,89	1,1253	1,7121
31,00	12,232	0,8549	0,01922	237,93	414,77	176,84	1,1294	1,7108
32,00	12,552	0,8579	0,01871	239,22	415,00	175,78	1,1335	1,7096
33,00	12,878	0,8610	0,01822	240,51	415,22	174,71	1,1377	1,7083
34,00	13,210	0,8641	0,01774	241,80	415,43	173,63	1,1418	1,7071
35,00	13,548	0,8673	0,01727	243,10	415,64	172,54	1,1459	1,7058
36,00	13,892	0,8705	0,01682	244,41	415,84	171,43	1,1500	1,7046
37,00 38,00	14,243 14,601	0,8738 0,8771	0,01638 0,01595	245,71 247,03	416,03 416,22	170,32 169,19	1,1542 1,1583	1,7033 1,7021
39,00	14,965	0,8805	0,01554	248,35	416,40	168,05	1,1624	1,7021
40,00	15,335	0,8839	0,01514	249,67	416,57	166,90	1,1666	1,6995
41,00	15,712	0,8874	0,01475	251,00	416,74	165,73	1,1707	1,6983
42,00	16,097	0,8909	0,01437	252,34	416,89	164,55	1,1748	1,6970
43,00	16,487	0,8946	0,01400	253,68	417,04	163,36	1,1790	1,6957
44,00	16,885	0,8983	0,01364	255,03	417,18	162,15	1,1831	1,6944
45,00	17,290	0,9020	0,01329	256,38	417,32	160,93	1,1873	1,6931
46,00	17,702	0,9058	0,01295	257,74	417,44	159,70	1,1914	1,6918
47,00	18,121	0,9097	0,01261	259,11	417,56	158,45	1,1956	1,6905
48,00	18,548	0,9137	0,01229	260,49	417,66	157,18	1,1998	1,6892
49,00	18,982	0,9178	0,01198	261,87	417,76	155,90	1,2039	1,6878
50,00	19,423	0,9219	0,01167	263,25	417,85	154,60	1,2081	1,6865

Copyright © 1999 Dep. of Energy Engineering, DTU M.J. Skovrup & H.J.H Knudsen

R-22

R-22

Composition: 100% chlorodifluoromethane (CHCIF₂)

Applications:

Medium and low temperature commercial and industrial refrigeration; residential and commercial air conditioning

Performance: Industry standard choice for AC until 2010

Lubricant:

Compatible with mineral oil, alkylbenzene and polyolester

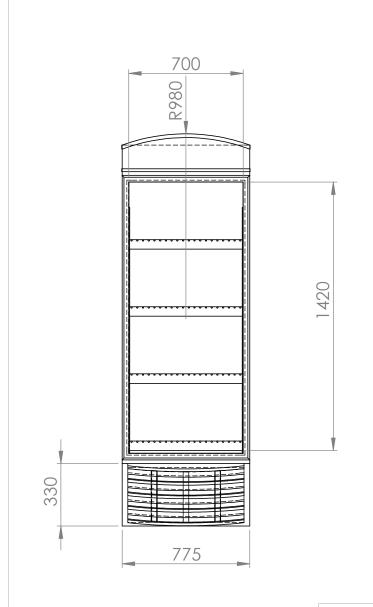
Retrofitting:

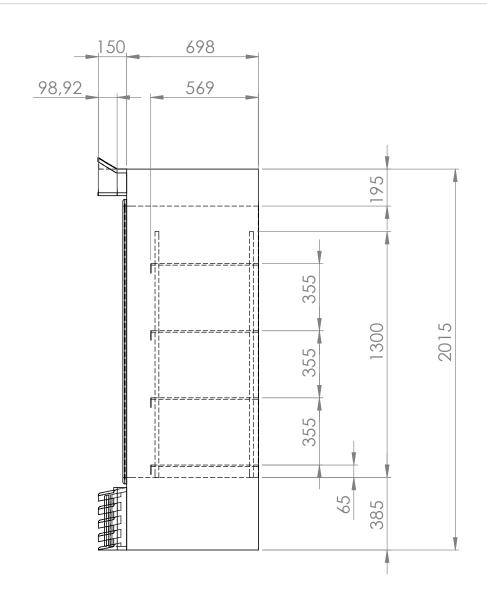
Consult the comments on Pages 9 and 10
 See Section II, pages 92-98 for detailed discussion

National [PHYSICAL PROPERTIES OF REFRIGERANTS] R-22 Environmental Classification HCFC Molecular Weight 86.5 Boiling Point (1atm, °F) -41.5 Critical Pressure (psia) 723.7 Critical Temperature (°F) 205.1 Critical Density (lb./ft^3) 32.7 Liquid Density (70°F, lb./ft^3) 75.3 Vapor Density (bp.lb./ft^3) 0.294 Heat of Vaporization (bp, BTU/lb.) 100.5 Specific Heat Liquid (70 °F, BTU/lb. °F) 0.2967 Specific Heat Vapor (1atm, 70 °F, BTU/lb. °F) 0.1573 Ozone Depletion Potential (CFC 11 = 1.0) 0.05 Global Warming Potential (CO2 = 1.0) 1810 ASHRAE Standard 34 Safety Rating Α1

[PRESSURE-TEMP CHART]

-40 0.5 -35 2.6 -30 4.9 -25 7.4 -20 10.1 -15 13.2 -10 16.5 -5 20.1 0 24.0 5 28.2 10 32.8 15 37.7 20 43.0 25 48.8 30 54.9 35 61.5 40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337	TEMP. (°F)	R-22 psig
-30	-40	0.5
-25 7.4 -20 10.1 -15 13.2 -10 16.5 -5 20.1 0 24.0 5 28.2 10 32.8 15 37.7 20 43.0 25 48.8 30 54.9 35 61.5 40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337 144 35	-35	2.6
-20 10.1 -15 13.2 -10 16.5 -5 20.1 0 24.0 5 28.2 10 32.8 15 37.7 20 43.0 25 48.8 30 54.9 35 61.5 40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 1100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337	-30	4.9
-15 13.2 -10 16.5 -5 20.1 0 24.0 5 28.2 10 32.8 15 37.7 20 43.0 25 48.8 30 54.9 35 61.5 40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337	-25	7.4
-10 16.5 -5 20.1 0 24.0 5 28.2 10 32.8 15 37.7 20 43.0 25 48.8 30 54.9 35 61.5 40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337	-20	10.1
-5 20.1 0 24.0 5 28.2 10 32.8 15 37.7 20 43.0 25 48.8 30 54.9 35 61.5 40 68.5 40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337	-15	13.2
0 24.0 5 28.2 10 32.8 15 37.7 20 43.0 25 48.8 30 54.9 35 61.5 40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337 145 359	-10	16.5
5 28.2 10 32.8 15 37.7 20 43.0 25 48.8 30 54.9 35 61.5 40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337 145 359	- 5	20.1
10 32.8 15 37.7 20 43.0 25 48.8 30 54.9 35 61.5 40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337	0	24.0
15 37.7 20 43.0 25 48.8 30 54.9 35 61.5 40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337	5	28.2
20 43.0 25 48.8 30 54.9 35 61.5 40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337 145 359	10	32.8
25 48.8 30 54.9 35 61.5 40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337	15	37.7
30 54.9 35 61.5 40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337	20	43.0
35 61.5 40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337	25	48.8
40 68.5 45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337	30	54.9
45 76.0 50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337 145 359	35	61.5
50 84.0 55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337 145 359	40	68.5
55 92.6 60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337 145 359	45	76.0
60 102 65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337 145 359	50	84.0
65 111 70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337	55	92.6
70 121 75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337	60	102
75 132 80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337	65	111
80 144 85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337 145 359	70	
85 156 90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337 145 359	75	132
90 168 95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337 145 359	80	144
95 182 100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337 145 359	85	156
100 196 105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337 145 359	90	168
105 211 110 226 115 243 120 260 125 278 130 297 135 317 140 337 145 359	95	182
110 226 115 243 120 260 125 278 130 297 135 317 140 337 145 359	100	
115 243 120 260 125 278 130 297 135 317 140 337 145 359	105	
120 260 125 278 130 297 135 317 140 337 145 359		226
125 278 130 297 135 317 140 337 145 359	115	243
130 297 135 317 140 337 145 359		260
135 317 140 337 145 359		
140 337 145 359		
145 359		
150 382		
	150	382


	[AVAILABLE IN SIZES]					
REFRIGERANT	Туре	Size				
		30 l b.				
		50 l b.				
R-22	Cylinder	125 lb.				
		1000 l b.				
		1750 l b.				


6th Edition 2016 Refrigerant Reference Guide 17

Thermodynamic Properties of R-22

TEMP. (°F)	Pressure Liquid (psia)	Density Liquid (lb/ft^3)	Density Vapor (lb/ft^3)	Entha l py Liquid (Btu/ l b)	Entha l py Vapor (Btu/ l b)	Entropy Liquid (Btu/R-lb)	Entropy Vapor (Btu/R-lb)
- 60	8.8	89.82	0.1827	-5.189	98.09	-0.01264	0.2458
- 55	10.2	89.33	0.2087	-3.897	98.66	-0.00943	0.2440
- 50	11.7	88.83	0.2374	-2.602	99.22	-0.00626	0.2423
- 45	13.4	88.33	0.2692	-1.303	99.79	-0.00311	0.2407
-40	15.3	87.82	0.3042	0.000	100.3	0.00000	0.2391
-35	17.3	87.32	0.3427	1.308	100.9	0.00309	0.2376
- 30	19.6	86.80	0.3849	2.620	101.4	0.00615	0.2361
- 25	22.1	86.29	0.4310	3.937	102.0	0.00918	0.2348
- 20	24.9	85.76	0.4813	5.260	102.5	0.01220	0.2334
- 15	27.9	85.24	0.5360	6.588	103.0	0.01519	0.2321
-10	31.2	84.71	0.5955	7.923	103.6	0.01815	0.2309
-5	34.8	84.17	0.6600	9.263	104.1	0.02110	0.2296
0	38.7	83.63	0.7299	10.61	104.6	0.02403	0.2285
5	43.0	83.08	0.8054	11.96	105.1	0.02694	0.2273
10	47.5	82.52	0.8868	13.33	105.6	0.02983	0.2263
15	52.5	81.96	0.9746	14.69	106.1	0.03270	0.2252
20	57.8	81.39	1.069	16.07	106.5	0.03556	0.2242
25	63.5	80.82	1.171	17.46	107.0	0.03841	0.2231
30	69.7	80.24	1.280	18.85	107.4	0.04124	0.2222
35	76.2	79.65	1.396	20.25	107.9	0.04406	0.2212
40	83.3	79.05	1.522	21.66	108.3	0.04686	0.2203
45	90.8	78.44	1.656	23.08	108.7	0.04966	0.2194
50	98.8	77.83	1.799	24.51	109.1	0.05244	0.2185
55	107.3	77.20	1.952	25.96	109.5	0.05522	0.2176
60	116.3	76.57	2.116	27.41	109.9	0.05798	0.2167
65	125.9	75.92	2.291	28.87	110.3	0.06074	0.2159
70	136.1	75.27	2.478	30.35	110.6	0.06350	0.2150
75	146.9	74.60	2.678	31.84	110.9	0.06625	0.2142
80	158.3	73.92	2.891	33.34	111.2	0.06899	0.2133
85	170.4	73.23	3.118	34.86	111.5	0.07173	0.2125
90	183.1	72.52	3.361	36.39	111.8	0.07447	0.2117
95	196.5	71.80	3.620	37.94	112.0	0.07721	0.2108
100	210.6	71.06	3.897	39.50	112.3	0.07996	0.2100
105	225.5	70.30	4.193	41.08	112.5	0.08270	0.2091
110	241.1	69.52	4.510	42.69	112.7	0.08545	0.2083
115	257.5	68.72	4.849	44.31	112.8	0.08821	0.2074
120	274.7	67.90	5.213	45.95	112.9	0.09098	0.2065
125	292.7	67.05	5.604	47.62	113.0	0.09376	0.2056
130	311.6	66.18	6.024	49.32	113.0	0.09656	0.2046
135	331.4	65.27	6.477	51.04	113.0	0.09937	0.2036
140	352.1	64.32	6.966	52.80	113.0	0.1022	0.2026
145	373.7	63.34	7.497	54.59	112.9	0.1051	0.2015
150	396.4	62.31	8.075	56.42	112.8	0.1080	0.2004
155	420.0	61.22	8.706	58.31	112.5	0.1110	0.1992
160	444.7	60.07	9.400	60.24	112.2	0.1140	0.1979

	Skala : 1:20	Digambar : Firman Aminudin	Keterangan:		
	Satuan Ukuran : mm	NRP: 10211600000032			
		Tanggal: 12-01-2020	Diperiksa:		
DEPARTEMEN TEKNIK MESIN INDUSTRI, FV-ITS			FREEZER		A4