

TUGAS DESAIN PABRIK KIMIA – TK 184703

PRA DESAIN PABRIK PURIFIKASI BIOGAS DARI POME MENJADI *BIO-METHANE* DAN PCC

Oleh:

NUNGKI WIDYA SAVITRI NRP. 02211746000034 SYAMSUL MU'ARIF SUBEKHI NRP. 02211746000040

Dosen Pembimbing:

Prof. Dr. Ir. Sugeng Winardi, M.Eng. NIP. 1952 09 16 1980 03 1002 Dr. Kusdianto, S.T., M.Sc.Eng. NIP. 1976 12 29 2009 12 1001

DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI DAN REKAYASA SISTEM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2020

LEMBAR PENGESAHAN

"Tugas Desain Pabrik Kimia Purifikasi Biogas dari POME menjadi Bio-Methane dan PCC"

Diajukan untuk memenuhi salah satu syarat memperoleh gelar Sarjana Teknik Kimia pada Program Studi S-1 Departemen Teknik Kimia Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya.

Oleh:

Nungki Widya Savitri

02211746000034

Syamsul Mu'arif Subekhi

02211746000040

Disetujui Oleh Tim Penguji Tugas Pra Desain Pabrik:

1. Prof. Dr. Ir. Sugeng Winardi, M.Eng

(Pembimbing I)

(Pembimbing II)

2. Dr. Kusdianto, S.T., M.Sc. Eng

3. Dr. Siti Machmudah, S.T., M.Eng

4. Ir. Nuniek Handrianie, M.T

(Penguji II)

5. Prof. Dr. Ir. M. Rachimoellah, Dipl. EST

(Penguji III)

(Penguji I)

TEKNIK

INTISARI

Krisis energi belakangan ini menjadi isu global yang cukup mengkhawatirkan di mata dunia terutama Indonesia. Hal ini didorong oleh kenyataan bahwa kebutuhan energi semakin lama semakin bertambah. Di sisi lain, sumber energi yang tersedia saat ini jumlahnya semakin berkurang. Pemanfaatan energi *nonrenewable* yang sudah marak, bila diteruskan bisa mengurangi jumlah energi yang tersedia di alam. Sumber daya energi konvensional seperti BBM (Bahan Bakar Minyak dan Gas Bumi) tidak lagi dapat dianggap sebagai solusi jangka panjang untuk memenuhi kebutuhan energi di Indonesia

Tingginya permintaan energi di dunia industri dan juga di sektor domestik, dan masalah polusi yang diakibatkan karena meluasnya penggunaan bahan bakar fosil membuatnya semakin penting untuk mengembangkan sumber energi terbarukan. Sumber energi terbarukan ini diharapkan menjadi solusi energi jangka panjang dengan dampak lingkungan yang lebih kecil daripada energi konvensional.

Energi biogas adalah energi hasil konversi dari limbah manusia atau limbah organik lainnya yang dapat membentuk gas metana. Biogas ini dapat dijadikan sebagai energi alternatif karena proses pembuatan dan pemeliharaan pada pembangkit biogas yang sederhana dan energi yang dihasilkan bersahabat dengan lingkungan. Listrik dari pembangkit biogas dapat dimanfaatkan ke *gas engine* untuk keperluan pabrik sehingga mengurangi biaya bahan bakar dan dapat mengoptimalkan limbah pabrik.

Sumber energi biogas yang potensial untuk dimanfaatkan adalah POME, Limbah produksi cair dari tandan buah kelapa sawit. Pada proses industri kelapa sawit ini, setiap 1 ton tandan buah segar kelapa sawit menghasilkan limbah cair kelapa sawit sebesar 60%. yang biasa disebut POME. *Organic load* dari limbah ini dapat bervariasi dari 20 hingga 120 gram COD (2.000 – 12.000 mg) per liter. Oleh karena masih tingginya konsentrasi zat organik,

air limbah tersebut membiliki nutrisi besar dan energi potensial yang bisa digunakan untuk pembangkit energi.

Biogas banyak mengandung pengotor sehingga mempengaruhi karateristik dari biogas tersebut. Jika biogas dibersihkan dari pengotor secara baik akan memiliki karakteristik yang sama dengan gas alam. Komponen pengotor berupa air (H₂O) dan karbondioksida (CO₂) dan beberapa partikulat harus dihilangkan agar biogas dapat digunakan pada *gas engine*.

Karbondioksida memiliki presentase terbesar di antara pengotor-pengotor lain di dalam biogas. Karbondioksida dalam kandungan biogas merupakan penghambat atau menurunkan kadar CH₄ sehingga nilai kalor dari biometana juga menurun. Hal ini menyebabkan daya yang dihasilkan dari biometana juga rendah. Di sisi lain, karbondioksida ini dapat dimanfaatkan untuk pembuatan PCC (Precipitated Calcium Carbonate). Serbuk PCC dapat dimanfaatkan dalam berbagai bidang, seperti: kesehatan, makanan, dan industri. Pada bidang industri, serbuk CaCO3 dimanfaatkan dalam pembuatan kertas, plastik, mantel, tinta, cat, dan pipa polimer. Serbuk CaCO3 dengan kualitas khusus dikembangkan sebagai bahan campuran kosmetik, bahan bioaktif, hingga suplemen nutrisi. PCC dapat dibuat dengan berbagai macam metode, salah satunya metode karbonasi. Metode karbonasi yaitu kalsium oksida yang telah dikalsinasi dilarutkan dalam air (slaking process) membentuk Ca(OH)₂, selanjutnya dialiri gas CO₂ sampai pH mendekati netral membentuk endapan yaitu PCC.

Lokasi pabrik harus dekat dengan sumber bahan baku, sehingga proses operasi dapat terjaga kelangsungannya. Selain itu, dapat mengurangi biaya transportasi dan penyimpanan. Bahan utama pabrik ini adalah limbah POME, sehingga lokasi pabrik harus dekat dengan industri kelapa sawit. Pabrik kelapa sawit integrasi berbasis pabrik kelapa sawit didirikan di Jambi yaitu PT. PN VI Pinang Tinggi yang berlokasi di Desa Sungai Bahar Tengah Kabupaten Muara Jambi, Sumatera Utara. Sehingga, lokasi pabrik biomethane dan PCC juga di daerah yang sama. Bahan baku yang diambil dari Pabrik CPO PKO yaitu 36 ton limbah POME per jam.

Hasil produksi berupa gas metana dapat dijual ke Pabrik Energi sebagai bahan bakar *gas engine*. Selain itu, produk samping berupa pupuk organik cair (POC) dan kompos hasil dari pengolahan limbah dapat dijual kepada petani sekitar karena penduduk Kabupaten Labuhan Batu mayoritas bekerja di bidang pertanian.

Proses pembuatan *biomethane* dari limbah POME ada tiga tahap, yaitu tahap pre-treatment, tahap persiapan starter, dan tahap digester. Tahap *pre-treatment* ini dimaksudkan untuk menetralkan kondisi keasaman dari POME. POME masuk tangki pre-treatment (M-110) dengan nilai pH 4,18. POME dinetralkan dengan cara menambahkan Ca(OH)₂.

Tahap kedua adalah tahap persiapan starter. Substrat dari tangki *pre-treatment* (M-110) dialirkan dengan pompa (L-121). Tangki starter disini berfungsi sebagai tempat adaptasi dari mikroorganisme sebelum masuk ke digester (M-210). Substrat yang masuk dalam tangki starter kemudian dicampur dengan kotoran sapi sebagai sumber nutrisi mikroorganisme, ditambahkan urea sebagai sumber N, dan DAP sebagai sumber P. Waktu tinggal pada tangki starter adalah 5 hari. Reaksi yang terjadi pada tahap pembuatan starter ini adalah pembentukan sel-sel mikroorganisme dan terjadi tahap hidrolisa, asetogenik/asidogenik metanogenik sehingga hasil dari tangki starter ini berupa mikroorganisme pada kondisi fase log dan dialirkan dengan pompa menuju digester.

Tahap ketiga adalah digester, POME yang telah diencerkan dan dinetralkan dari tangki pre-treatment (M-110) dan substrat dari tangki starter (M-120) dialirkan menuju digester (M-210). Proses di dalam tangki ini terjadi selama 18 hari dengan suhu operasi *mesophilic* sekitar 30°C. Kemudian gas yang terbentuk tersebut ditampung di *baffer tank* (F-221), setelah itu gas dialirkan menuju *bubble coloumn* (R-220). Sedangkan aliran *effluent* dari digester menuju *clarifier* (H-310) dengan menggunakan pompa *effluent* (L-311). Dalam *clarifier*, air limbah dan substratnya dipisahkan. Kemudian memisahkan air dan cake dengan *screw press* (H-320). Substrat (padatan) yang dihasilkan kemudian

digunakan sebagai pupuk kompos. Sedangkan *overflow* dari *screw press* dapat digunakan sebagai pupuk organik cair.

Biogas selanjutnya dialirkan ke bubble coloumn untuk memasuki proses pemurnian. Pada tahap ini gas asam yang dihilangkan adalah CO₂ sebagai produk samping dari reaksi pembentukan biogas. Gas CO₂ harus dihilangkan karena bersifat korosif terhadap logam. Proses pemurnian gas metana dilakukan dengan mereaksikan Gas CO₂ dengan susu kapur dari slaker tank (M-130) sehingga menghasilkan Precipitated Calcium Carbonate (PCC). Biogas dari bubble coloumn harus dimurnikan dari kandungan – kandungan gas lainnya seperti air dan hidrogen sulfida. Biogas akan dialirkan melalui water trap (H-361) untuk menghilangkan kandungan air pada biogas, kemudian biogas dialirkan menuju adsorber (D-360) untuk menghilangkan kadar hidrogen sulfida di dalam biogas sebelum dikompres (G-371)menggunakan compressor dan di didingankan menggunakan *cooler* (E-371). Setelah itu biogas disimpan dalam Storage Biomethane (F-370). Sedangkan PCC yang terbentuk pada dasar bubble column (R-220) dialirkan menuju clarifier (H-330). Kemudian PCC dipisahkan deri kandungan air nya, sedangkan padatannya dialirkan menuju plate and frame filter press (H-340). Setelah itu partikel PCC dikeringkan menggunakan rotary dryer (B-350).

Untuk dapat mendirikan pabrik Purifikasi Biogas dari Limbah POME menjadi *Bio-Methane* dan *Precipitated Calcium Carbonat* (PCC) diperlukan total modal investasi sebesar Rp 234.583.391.842 dengan estimasi hasil penjualan Rp 459.176.313.132 per tahun. Dari perhitungan analisa ekonomi didapat *internal rate of return* (IRR) sebesar 25,85%, *pay out time* (POT) 4,012 tahun dan *break even point* (BEP) sebesar 34,96%. Ditinjau dari aspek teknis dan ekonomis, pabrik ini layak untuk dilanjutkan ke tahap perencanaan.

KATA PENGANTAR

Puji dan syukur penulis panjatkan kepada Tuhan yang Maha Esa karena atas rahmat-Nya penyusunan "TUGAS DESAIN PABRIK KIMIA PURIFIKASI BIOGAS DARI POME MENJADI *BIO-METHANE* DAN PCC" ini dapat kami selesaikan.

Laporan tugas desain pabrik kimia ini ditulis sebagai salah satu persyaratan mahasiswa Jurusan Teknik Kimia ITS guna memperoleh gelar sarjana. Tugas desain pabrik kimia ini kami susun berdasarkan aplikasi ilmu pengetahuan yang kami dapatkan selama masa perkuliahan, khususnya di Laboratorium Mekanika Fluida dan Pencampuran Teknik Kimia FTI-ITS. Selama penyusunan laporan ini, kami banyak sekali mendapat bimbingan, dorongan, serta bantuan dari banyak pihak. Untuk itu, kami ingin mengucapkan terima kasih yang sebesar-besarnya kepada:

Penulis mengucapkan terima kasih kepada pihak-pihak yang telah membantu dalam penyusunan laporan tugas pra desain pabrik ini, terutama kepada:

- Bapak Prof. Dr. Ir. Sugeng Winardi, M.Eng selaku Dosen Pembimbing I dan Kepala Laboratorium Mekanika Fluida dan Pencampuran atas bimbingan dan saran yang telah diberikan.
- 2. Bapak Dr. Kusdianto, S.T., M.Sc. Eng selaku Dosen Pembimbing II atas bimbingan dan saran yang telah diberikan.
- 3. Kedua orang tua dan keluarga kami yang memberikan segalanya.
- 4. Teman-teman Mixing Crew di Laboratorium Mekanika Fluida dan Pencampuran atas doa, semangat, perhatian dan kasih sayang selama ini.

Penulis menyadari bahwa laporan pra desain pabrik ini masih memiliki banyak kekurangan. Oleh karena itu kritik dan saran dari para pembaca sangat penulis harapkan sebagai upaya peningkatan kualitas dari laporan ini.

Surabaya,10 Januari 2019 Penyusun

DAFTAR ISI

	AMAN JUDUL	
LEM	BAR PENGESAHAN	
	SARI	
KAT	A PENGANTAR	v
	ΓAR ISI	
DAF'	TAR GAMBAR	ix
DAF'	TAR TABEL	x
BAB	I PENDAHULUAN	1
	I.1 Latar Belakang	1
	I.2 Produksi Bahan Baku	6
	I.3 Aspek Pemasaran	9
	I.4 Prospek	9
	I.5 Penggunaan Produk	12
	I.6 Konsumsi	13
BAB	II BASIS DESAIN DATA	15
	II.1 Lokasi Pabrik	
	II.2 Kapasitas Pabrik	16
	II.3 Kualitas Bahan Baku dan Produk	17
BAB	III SELEKSI DAN URAIAN PROSES	25
	III.1. Macam-macam Proses	
	III.2 Seleksi Proses	42
	III.3 Uraian Proses	49
	IV_NERACA MASSA DAN NERACA ENERGI	
BAB	V SPESIFIKASI ALAT	87

BAB	VI ANALISA EKONOMI	110
	VI.1 Struktur Organisasi	111
	VI.2 Sistem Utilitas	117
	VI.3 Harga Peralatan	119
	VI.4 Analisa Ekonomi	119
BAB	VII KESIMPULAN	121
DAF	TAR PUSTAKA	122

DAFTAR GAMBAR

Gambar I. 1Peta Persebaran Perkebunan Kelapa Sawit di	
Indonesia	8
Gambar I. 2 Perkembangan Volume dan Nilai Ekspor Minyak	
Sawit 2013 – 2017	10
Gambar III. 1 Skema Proses Pembuatan Biogas	
Secara Umum	26
Gambar III. 2 Proses Pembuatan PCC dengan Metode Double	
Decomposition	38
Gambar III. 3 Proses pembuatan PCC dengan	
Metode Karbonasi	39
Gambar III. 4 Pembuatan PCC pada Plant Dhaka	41
Gambar VI. 1 Bagan Struktur Organisasi Perusahaan 1	16

DAFTAR TABEL

Tabel I. 1 Karakteristik POME	3
Tabel I. 2 Komposisi Biogas Secara Umum	4
Tabel I. 3 Karakteristik Palm Oil Effluent (POME)	6
Tabel III. 1 Kelebihan dan Kekurangan Beberapa Metode d	alam
Pengolahan POME	25
Tabel III. 2 Jenis-Jenis Enzim Hidrolytic	
Tabel III. 3 Perbedaan open digester system dan closed dig	ester
system	
Tabel III. 4 Perbandingan Metode Pengolahan	
Secara Anaerobik	43
Tabel III. 5 Keuntungan dan Kerugian Metode Pengolahan	
Limbah Anaerobik	
Tabel III. 6 Perbandingan Tipe Proses Batch dan Continue.	
Tabel III. 7 Perbandingan Suhu Digester	
Tabel III. 8 Perbandingan Proses Pembuatan PCC	46
Tabel III. 9 Perbandingan Jenis Solid-Liquid Separator	
Tabel III. 10 Perbandingan Jenis Dryer	
Tabel IV. 1 Komposisi Feed POME	53
Tabel IV. 2 Neraca Massa Kolam POME	54
Tabel IV. 3 Neraca Massa Tangki Netralisasi	55
Tabel IV. 4 Neraca Massa Tangki Starter	
Tabel IV. 5 Neraca Massa Biodigester	
Tabel IV. 6 Neraca Massa Clarifier	66
Tabel IV. 7 Neraca Massa Screw Press	68
Tabel IV. 8 Neraca Massa Slacker Tank	69
Tabel IV. 9 Neraca Massa Screener	71
Tabel IV. 10 Neraca Massa Bubble Column	72
Tabel IV. 11 Neraca Massa Settler	74
Tabel IV. 12 Neraca Massa Plate and Frame Filter Press	75
Tabel IV. 13 Neraca Massa Rotary Dryer	76
Tabel IV. 14 Neraca Massa Cyclone	
Tabel IV. 15 Neraca Massa Water Trap	77
Tabel IV. 16 Neraca Massa Adsorber	78

Tabel IV. 17 Neraca Energi Kolam POME	79
Tabel IV. 18 Neraca Energi Tangki Netralisasi	79
Tabel IV. 19 Neraca Energi Tangki Netralisasi	79
Tabel IV. 20 Neraca Energi Tangki Netralisasi	80
Tabel IV. 21 Neraca Energi Clarifier	80
Tabel IV. 22 Neraca Energi Clarifier	81
Tabel IV. 23 Neraca Energi Slacker Tank	81
Tabel IV. 24 Neraca Energi Screener	81
Tabel IV. 25 Neraca Energi Bubble Column	82
Tabel IV. 26 Neraca Energi Tangki Settler	
Tabel IV. 27 Neraca Energi Bubble Column	83
Tabel IV. 28 Neraca Energi Rotary Dryer	
Tabel IV. 29 Neraca Energi Cyclone	
Tabel IV. 30 Neraca Energi Adsorber	
Tabel IV. 31 Neraca Energi Compressor	
Tabel IV. 32 Neraca Energi Compressor	
Tabel IV. 33 Neraca Energi Compressor	
Tabel V. 1 Spesifikasi Kolam POME (F-111)	
Tabel V. 2 Spesifikasi Pre-Treatment Pump (L-111)	
Tabel V. 3 Spesifikasi Pre Treatment Tank (M-110)	
Tabel V. 4 Spesifikasi Pre Treatment Tank (M-110)	89
Tabel V. 5 Spesifikasi Gudang Penyimpanan	
Cow Dung (F-121)	
Tabel V. 6 Spesifikasi Belt Conveyor Slurry (J-121)	
Tabel V. 7 Spesifikasi Gudang Penyimpanan Urea (F-122)	
Tabel V. 8 Spesifikasi Belt Conveyor Urea (J-122)	
Tabel V. 9 Spesifikasi Gudang Penyimpanan DAP (F-123)	
Tabel V. 10 Spesifikasi Belt Conveyor DAP (J-123)	
Tabel V. 11 Spesifikasi Starter Tank (M-120)	
Tabel V. 12 Spesifikasi Digester Pump (L-211)	
Tabel V. 13 Spesifikasi Digester Pump (L-212)	
Tabel V. 14 Spesifikasi Digester (M-210)	
Tabel V. 15 Spesifikasi Waste Pump (L-311)	
Tabel V. 16 Spesifikasi Clarifier (H-310)	
Tabel V. 17 Spesifikasi Screw Press (H-320)	97

Tabel V. 18 Spesifikasi Baffer Tank (F-221)	97
Tabel V. 19 Spesifikasi Blower (G-221)	98
Tabel V. 20 Spesifikasi Belt Conveyor CaO (J-131)	99
Tabel V. 21 Spesifikasi Lime Slaker (M-130)	99
Tabel V. 22 Spesifikasi Screener (H-221)	100
Tabel V. 23 Spesifikasi Bubble Column Pump (L-221)	101
Tabel V. 24 Spesifikasi Bubble Column (R-220)	101
Tabel V. 25 Spesifikasi Clarifier (H-330)	102
Tabel V. 26 Spesifikasi Pompa Filter Press (L-331)	102
Tabel V. 27 Spesifikasi Plate and Frame (H-340)	103
Tabel V. 28 Spesifikasi Cake Storage Tank (F-341)	103
Tabel V. 29 Spesifikasi Screw Conveyor (J-341)	104
Tabel V. 30 Spesifikasi Rotary Dryer (B-350)	104
Tabel V. 31 Spesifikasi Heater (E-351)	104
Tabel V. 32 Spesifikasi Screw Conveyor (J-351)	106
Tabel V. 33 Spesifikasi Gudang Penyimpanan PCC (F-351)	106
Tabel V. 34 Spesifikasi Blower (G-361)	106
Tabel V. 35 Spesifikasi Adsorber (D-360)	107
Tabel V. 36 Spesifikasi Compressor (G-371)	108
Tabel V. 37 Spesifikasi Cooler (E-371)	108
Tabel V. 38 Spesifikasi Bio-Methane Storage Tank (F-370)	109

BAB I PENDAHULUAN

I.1 Latar Belakang

Energi merupakan kebutuhan dasar hidup manusia dan peranan penting dalam menggerakkan memegang perekonomian bangsa. Aktivitas manusia yang semakin berkembang dari masa ke masa, memaksa negara – negara di dunia untuk terus menggali sumber potensi energi terbarukan yang ramah lingkungan sehingga dapat menggantikan ketergantungan terhadap konsumsi bahan baku fosil. Energi terbarukan (renewable energy) adalah energi yang dapat diperoleh dari alam seperti matahari, angin, air dan panas bumi. Teknologi energi yang terbarukan ini meliputi energi berbasis biomassa, geothermal, hydropower, ocean energy, solar energy dan wind energy.

Indonesia merupakan salah satu negara produsen minyak tertua di dunia, menurut Rencana Strategis (Renstra) Kementerian ESDM 2015-2019 Indonesia lebih banyak memproduksi minyak dibandingkan menemukan cadangan minyak dengan Reverse to *Production Ratio* sebesar 55%. Kebutuhan BBM di Indonesia pada tahun 2013 tercatat 1,3 juta barrel per day (bpd) dengan kapasitas kilang minyak Indonesia sebesar 1,167 juta bpd dan hanya dapat menghasilkan produksi BBM sebesar 650 ribu bpd, sehingga diperlukan impor bbm 600 ribu bpd dengan nilai lebih dari Rp. 1 triliun per hari. Pemanfaatan biogas merupakan bagian dari energi terbarukan yang menjadi program pemerintah dalam rangka meningkatkan akses energi bagi masyarakat melalui pemanfaatan Energi Baru dan Energi Terbarukan (EBT) khususnya bioenergy. Hal tersebut tertera pada Kebijakan Energi Nasional No.79 Tahun 2014 yang menargetkan kontribusi EBT mencapai 23% dari total bauran energi nasional pada tahun 2025. Dari target bauran energi sebesar 23% tersebut, bioenergy diharapkan untuk berkontribusi sebesar 9,7% atau 23 MTOE (Metric Ton Oil Equivalent) dengan rincian sebesar 13.8 juta KiloLiter Biofuels, 8.4 juta ton biomassa dan 489,8 juta m³ biogas.

Biogas merupakan gas yang mudah terbakar (*flammable*) yang dihasilkan dari proses fermentasi (pembusukan) bahan – bahan organik oleh bakteri anaerob. Biogas merupakan salah satu sumber energi terbarukan karena keberadaan bahan baku yang akan terus ada selama kehidupan berlangsung. Bahan baku biogas didapatkan dari bahan – bahan material organik seperti kotoran ternak, sampah organik, dan limbah – limbah biomassa dari industri. Indonesia saat ini merupakan produsen minyak kelapa sawit terbesar di dunia tercatat pada tahun 2011 tedapat sekitar 608 pabrik pengolahan kelapa sawit. Sedangkan menurut Data dan Sistem Informasi Kementerian Pertanian luas lahan perkebunan kelapa sawit di Indonesia mencapai 12,3 juta hektar pada tahun 2017, dan jumlahnya akan terus meningkat dengan laju pertumbuhan 10,31% per tahun.

Pengolahan tandan buah segar (TBS) kelapa sawit untuk diproduksi menjadi minyak kelapa sawit mengasilkan beberapa limbah padatan cair dan gas. Limbah padat yang keluar dari pengolahan kelapa sawit (PKS) meliputi 23% tandan kosong (tankos) 0,5% abu yang berasal dari boiler 13,5% serat sawit dan 5,5% cangkang sawit. Limbah dalam bentuk padatan yang dihasilkan PKS umumnya tidak memerlukan penanganan yang rumit. Limbah padat serat, cangkang dan tankos dapat digunakan sebagai bahan bakar, abudari boiler dapat diaplikasikan langsung sebagai sumber pupuk kalium, tankos juga dapat digunakan sebagai pupuk dengan cara menjadikan mulsa dan pengomposan. Sedangkan limbah yang menjadi perhatian dari hasil pengolahan di PKS adalah limbah cair atau yang biasa dikenal dengan palm oil mill effluent (POME). POME adalah air buangan yang dihasilkan oleh PKS yang berasal dari kondensat rebusan, air hidrosiklon, dan sludge separator. Sumber POME berasal dari sumber pengolahan yang terdiri dari 60% stasiun klarifikasi air hydrocyclone (claybath), 36% stasiun rebusan dan 4% berasal dari stasiun inti. POME yang dihasilkan pada umumnya bersuhu 60 - 80°C dan bersifat asam dengan pH berkisar 3,3 – 4,6, kental, berwarna kecokelatan dengan kandungan padatan, minyak dan lemak dan memiliki kandungan COD dan BOD yang tinggi seperti dijelaskan pada tabel I.1 (Winrock International, 2015)

Tabel I. 1 Karakteristik POME

Parameter	Unit	POME Tanp Rentang*	a Diolah Rata-rata	Baku Mutu Se Sungai**	suai Peraturan Aplikasi Lahar
BOD	mg/l	8.200-35.000	21.280	100	5.000
COD	mg/l	15.103-65.100	34.740	350	
TSS	mg/l	1.330-50.700	31.170	250	
Amonia (NH ₃ -N)	mg/l	12–126	41	50***	
Minyak dan Lemak	mg/l	190-14.720	3.075	25	
рН		3,3–4,6	4	6–9	6–9
Maksimal POME yang dihasilkan	m³/ton CPO			2,5	

^{*} Sumber: Pedoman Pengelolaan Limbah Industri Sawit, Departemen Pertanian 2006, Permen LH Nomor 3 Tahun 2010

Berdasarkan Tabel I.1 *fresh* POME hasil pengolahan limbah mengandung BOD dan COD yang tinggi di atas baku mutu lingkungan menurut Peraturan Kementerian Lingkungan Hidup Nomor 3 Tahun 2010, maka dari itu limbah cair yang keluar dari pengolahan kelapa sawit perlu diolah terlebih dahulu sebelum dibuang ke lingkungan. Selain sebagai syarat baku mutu pembuangan limbah ke lingkungan, limbah cair kelapa sawit (POME) mengandung karbohidrat dan asam lemak yang jika difermentasi menggunakan bakteri anaerob sebagian besar akan menghasilkan gas metana, karbondioksida dan gas – gas lainnya. Gas metana hasil pengolahan POME disebut sebagai *Bio-Methane* yang dapat dibakar langsung sebagai bahan bakar ataupun dapat digunakan sebagai *gas engine* untuk pembangkit listrik dan bahan bakar kendaraan. Selain itu, hasil samping dari pengolahan POME menghasilkan pupuk cair dan pupuk kompos.

Biogas terbentuk secara alami ketika POME teruraikan pada kondisi anaerob. Tanpa pengendalian, biogas merupakan kontributor utama bagi perubahan iklim global. Pada umumnya biogas terdiri dari 50-75% metana (CH₄) 25-45% karbon dioksida (CO₂) dan gas lainnya seperti dijelaskan pada tabel I.2

^{**} Sumber: Keputusan Meneg LH No. 51/1995, Lampiran B.IV

^{***} Total Nitrogen = Nitrogen Organik + Total Amonia + NO3 + NO2

Tabel I. 2 Komposisi Biogas Secara Umum

Komponen	Komposisi (%)
Metana (CH ₄)	50-75
Karbon dioksida (CO ₂)	25-45
Nitrogen (N ₂)	0-0,3
Hidrogen (H ₂)	1-5
Hidrogen Sulfida (H ₂ S)	1-5
Oksigen (O ₂)	0,1-0,5

Jika pengolahan POME tidak terkendali, metana yang terdapat di dalam biogas akan terlepas langsung ke atmosfer sebagai gas rumah kaca dan mempunyai efek 21 kali lebih besar dibandingkan dengan CO₂. Industri kelapa sawit yang semakin berkembang menuntut adanya praktik pertanian dan industri yang berkelanjutan dan lebih baik dalam penanganan limbah. Penangkapan metana dan pengubahan biogas menjadi energi menawarkan salah satu alternarif bagi PKS untuk mengurangi dampak lingkungan sekaligus mengasilkan energi terbarukan.

Namun biogas memiliki kandungan pengotor yang dapat mengurangi pemanfaatan dari biogas itu sendiri, komponen pengotor itu berupa hidrogen sulfida (H₂S), karbon dioksida (CO₂) dan air. Karbon dioksida memiliki presentasi tersbesar di antara pengotor lainnya di dalam biogas. Karbon dioksida akan menghambat dan menurunkan kadar metana sehingga nilai kalor dari bio-metana yang dihasilkan akan menurun. Energi dari biogas bergantung pada konsenterasi metana pada biogas. Semakin tinggi kandungan metana maka semakin besar kandungan energi (nilai kalor) pada biogas. Nilai energi dalam 1 m³ biogas setara dengan 6 kwh energi listrik, 0,62 liter minyak tanah, 0,52 liter minyak solar atau minyak diesel, 0,46 kg elpiji, 3,5 kg kayu bakar, dan 0,8 liter bensin. Campuran biogas akan mudah terbakar jika mengandung gas metan lebih dari 50%. Ketika gas dibakar, api yang terbentuk berwarna biru seperti api yang dihasilkan dari gas elpiji dan energi panas yang dihasilkan berkisar antara 5200 – 5900 kcal/m³ gas, atau sama halnya dengan memanaskan 65 – 73 liter air dari suhu 20°C sampai mendidih atau menyalakan lampu dengan daya 50 – 100 watt selama 3 – 8 jam (Pertiwiningrum, 2015).

Jika diproses dengan baik biogas memiliki potensi yang sangat besar dalam bidang energi terbarukan. Karena biogas sebagian besar terdiri dari metana, maka biogas dapat menggantikan gas alam untuk berbagai aplikasi antara lain, pemanasan melalui pembakaran, bahan bakar mesin, bahan bakar kendaraan pengganti BBM dan dapat didistribusikan untuk pemanfaatan di sektor rumah tangga.

Karbon dioksida yang didapatkan dari proses pemurnian biogas dapat dimanfaatkan kembali untuk pembuatan precipitated calcium carbonat (PCC). Serbuk PCC dapat dimanfaatkan dalam berbagai bidang seperti kesehatan, makanan, dan dalam sektor industri sebagai bahan pembuat kertas, plastic, mantel, tinta, cat dan pipa polimer. Serbuk PCC dengan kualitas khusus dapat digunakan sebagai bahan campuran kosmetik, bahan bioaktif, maupun suplemen nutrisi. PCC adalah produk pengolahan batu kapur yang memiliki rumus kimia CaCO3 yang memiliki keistimewaan dibandingkan batu kapur pada umumnya seperti ukuran partikel yang kecil (skla mikro) dan homogen. Dengan keistimewaan karakteristik tersebut pemanfaatan PCC dalam bidang industri dapat lebih luas. PCC dapat disentisis menggunakan beberapa macam metode antara lain motede solvay, karbonasi dan metode dengan menggunakan soda kaustik. Pada metode karbonasi kalsium oksida (CaO) dihidrasi (slacking) dengan air pada temperatur 30 – 50°C untuk menghasilkan *slurry* Ca(OH)₂. Kemudian *slurry* diumpankan pada reaktor 3 fasa tangki berpengaduk untuk direaksikan dengan gas CO2 sampai pH mendekati netral dan terebentuk endapan PCC (Anggraini, 2016).

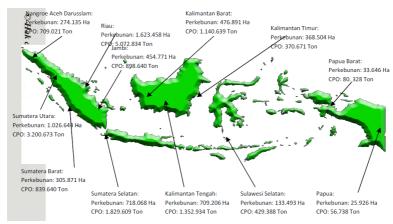
Limbah cair (POME) hasil dari pengolahan minyak kelapa sawit memiliki kadar metana yang tinggi jika dibiarkan begitu saja, dan tidak memungkinkan untuk pembuangan langsung ke lingkungan melalui sungai karena POME memiliki kadar COD dan BOD yang tinggi. Jika diproses dengan baik biogas hasil dari pengolahan POME akan memberikan manfaat yang cukup besar

sebagai potensi energi terbarukan, hal itulah yang mendasari pembuatan tugas pra desain pabrik dengan judul "Pra Desain Pabrik Purifikasi Biogas dari POME menjadi *Bio-Methane* dan PCC".

I.2 Produksi Bahan Baku

Bahan baku yang digunakan dalam pabrik purifikasi biogas ini adalah limbah cair (POME) hasil samping dari pengolahan minyak kelapa sawit. POME memiliki konsenterasi partikel organik berupa karbohidrat, protein, lemak serta mineral yang cukup tinggi. POME bersifat non-toksik karena tidak ada penambahan bahan kimia selama proses pemurnian minyak sawit. POME memiliki karakteristik seperti pada tabel I.3.

Tabel I. 3Karakteristik Palm Oil Effluent (POME) (Yoshimassa, 2009) (Alam, 2012)


Variabel	Satuan	POME			
pН	4,7				
Suhu (°C)	50				
TS	Mg/L	42600			
VS	Mg/L	37600			
SS	Mg/L	17750			
BOD	Mg/L	38000			
COD	Mg/L	53000			
TOD	Mg/L	50438			
Minyak dan oli	Mg/L	1700			
Komponen	Persen berat (%)				
Karbohidrat	35,550				
Lemak	16,960				
N2	26,390				
S	0,007				
K	4,858				
Na	0,051				
Ca	0,896				
Mg	0,4	.95			

P	7,803	
H_2O	6,990	

Parameter yang menggambarkan karakteristik limbah terdiri dari sifat fisik, kimia dan biologi. Karakteristik limbah bedasarkan sifat fisik meliputi suhu, kekeruhan, bau, dan rasa, bedasarkan sifat kimia meliputi kandungan bahan organic, protein, BOD, chemical oxygen demand (COD), sedangkan berdasarkan sifat biologi meliputi kandungan bakteri pathogen dalam air limbah. Bedasarkan Keputusan Menteri Negara Lingkungan Hidup ada 6 (enam) parameter utama yang dijadikan acuan baku mutu limbah meliputi :

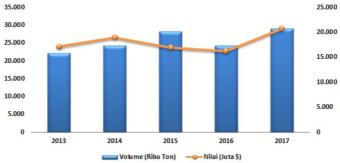
- a. Tingkat keasaman (pH), ditetapkannya parameter pH bertujuan agar mikroorganisme dan biota yang terdapat pada penerima tidak terganggu, bahkan diharapkan dengan pH yang alkalis dapat menaikkan pH badan penerima.
- b. BOD, kebutuhan oksigen hayati yang diperlukan untuk merombak bahan organic. Semakin tinggi nilai BOD air limbah, maka daya saingnya dengan mikroorganisme atau biota yang terdapat pada bahan penerima akan semakin tinggi.
- c. COD, kelarutan oksigen kimiawi adalah oksigen yang diperlukan untuk merombak bahan organic dan anorganik, oleh sebab itu nilai COD lebih besar dari BOD.
- d. Total supended solid (TSS), menggambarkan padatan melayang dalam cairan limbah. Pengaruh TSS lebih nyata pada kehidupan biota dibandingkan dengan total solid. Semakin tinggi TSS, maka bahan organik membutuhkan oksigen untuk perombakan yang lebih tinggi.
- e. Kandungan total nitrogen, semakin tinggi kandungan total nitrogen dalam cairan limbah, maka akan menyebabkan keracunan pada biota.
- f. Kandungan oil and grease, dapat mempengaruhi aktifitas mikroba dan merupakan pelapis permukaan cairan limbah sehingga menghambat proses oksidasi pada saat kondisi aerobic.

Menurut Tamsi, dkk (2014) setiap pengolahan 1 ton TBS akan menghasilkan limbah padat berupa tandan kosong sawit (TKS) sebanyak 200-250 kg dan limbah cair pabrik kelapa sawit atau palm oil mill effluent (POME) sebanyak 650 liter. Seiring dengan meningkatnya lahan perkebunan kelapa sawit di Indonesia jumlah produksi POME juga terus meningkat. Gambar I.1 memperlihatkan persebaran perkebunan kelapa sawit di Indonesia. Berdasarkan Pusat Data dan Informasi Departemen Perindustrian. dapat disimpulkan bahwa daerah dengan produksi kelapa sawit terbanyak adalah pulau Sumatera. Oleh karena itu pembuatan pabrik Purifikasi Biogas dari Limbah POME menjadi Bio-Methane dan Precipitated Calcium Carbonat (PCC) terletak di daerah Jambi. Pemilihan lokasi tersebut dikarenakan pabrik utama pengolahan Kelapa Sawit, pemasok utama limbah POME, berada di Jambi yaitu PT. PN VI Pinang Tinggi yang berlokasi di Desa Sungai Bahar Tengah Kabupaten Muara Jambi, Sumatera Utara. Dengan kapasitas produksi sebesar 60 ton/jam menghasilkan limbah POME sebesar 36 ton/jam (Marolop, 2017). Sehingga pabrik kelapa sawit tersebut menjadi refrensi dalam pembangunan Pabrik Biogas.

Gambar I. 1Peta Persebaran Perkebunan Kelapa Sawit di Indonesia(<u>www.kemenperin.go.id</u>)

I.3 Aspek Pemasaran

Teknologi biogas mulai diperkenalkan di Indonesia pada tahun 1970-an. Pada awalnya teknik pengolahan limbah dengan instalasi biogas dikembangkan di wilayah pedesaan, tetapi saat ini teknologi ini sudah mulai diterapkan di wilayah perkotaan. Pada tahun 1981, pengembangan instalasi biogas di Indonesia dikembangkan melalui Proyek Pengembangan Biogas dengan dukungan dana dari Food and Agriculture Organization (FAO) dengan dibangun contoh instalasi biogas di beberapa provinsi. Mulai tahun 2000-an telah dikembangkan reaktor biogas skala kecil (rumah tangga) dengan konstruksi sederhana yang terbuat dari plastik secara siap pasang dan dengan harga yang relatif murah (Pertiwiningrum, 2015).


Biogas yang dihasilkan dari proses fermentasi limbah cair pabrik kelapa sawit dapat menggantikan penggunaan bahan bakar minyak sebagai bahan utama penghasil listrik. Selama ini, pemanfaatan biogas yang diproduksi di Indonesia sebagian besar dikonsumsi sebagai bahan bakar minyak oleh sektor rumah tangga. Maka apabila pabrik dibangun, biogas dapat dikonversi menjadi sumber energi terbarukan yang selanjutnya dapat dimanfaatkan sebagai *gas engine* untuk pembangkit listrik maunpun pengganti BBM untuk transportasi. Selain itu produk samping yang dihasilkan berupa PCC, pupuk cair dan kompos dapat dijual ke masyarakat.

I.4 Prospek

Kelapa sawit merupakan salah satu komoditas hasil perkebunan yang mempunyai peran cukup penting dalam kegiatan perekonomian di Indonesia. Kelapa sawit juga merupakan salah satu komoditas ekspor Indonesia yang cukup penting sebagai penghasil devisa negara selain minyak dan gas. Indonesia merupakan negara produsen dan eksportir kelapa sawit terbesar di dunia. Selain peluang ekspor yang semakin terbuka, pasar minyak sawit dan minyak inti sawit di dalam negeri masih cukup besar. Pasar potensial yang akan menyerap pemasaran minyak sawit (CPO) dan minyak inti sawit (PKO) adalah industri

fraksinasi/ranifasi (terutama industri minyak goreng), lemak khusus (cocoa butter substitute), margarine/shortening, oleochemical, dan sabun mandi. Hal tersebut menjadikan Indonesia sebagai prospek pengolahan minyak sawit yang akan menghasilkan limbah cair (POME) yang dapat diproses kembali menghasilkan biogas.

Total ekspor minyak kelapa sawit empat tahun terakhir cenderung mengalami peningkatan, kecuali pada tahun 2016 yang mengalami penurunan. Peningkatan tersebut berkisar antara 9,44 sampai dengan 16,06 persen per tahun, sedangkan pada tahun 2016 mengalami penurunan sebesar 13,96 persen. Selanjutnya, pada tahun 2017 total volume ekspor kembali mengalami peningkatan sebesar 19,45 persen. Pada tahun 2013 total volume ekspor mencapai 22,22 juta ton dengan total nilai sebesar US\$ 17,14 milyar, meningkat menjadi 29,07 juta ton pada tahun 2017 dengan total nilai sebesar US\$ 20,72 milyar, perkembangan ekspor minyak kelapa sawit di Indonesia dapat dilihat pada Gambar I.2 (Statistik Kelapa Sawit Indonesia, 2017)

Gambar I. 2 Perkembangan Volume dan Nilai Ekspor Minyak Sawit 2013 – 2017

Potensi produksi biogas dari seluruh limbah cair tersebut kurang lebih adalah sebesar 1.075 juta m³. Nilai kalor (*heating value*) biogas rata-rata berkisar anatara 4.700-6.000 kkal/m³ (20-24 MJ/m³). Dengan kata lain, Indonesia memiliki potensi besar untuk memanfaatkan produk produk samping pabrik CPO sebagai

sumber energi terbarukan. Biogas yang diproduksi diasumsikan memiliki *heating value* yang setara dengan gas alam yaitu sebesar 1020 Btu/scf. Harga jual gas alam adalah \$8,7 /MMBtu. Selain itu prospek penggunaan biogas sebagai sumber energi listrik adalah biogas mampu mendukung energi bagi industri rumah tangga dan industri kecil menengah. Biogas juga menjadi sumber energi alternative menggantikan bahan bakar fosil yang semakin berkurang sumbernya.

Sementara itu, Kebutuhan PCC di pasaran dunia umumnya dan di Indonesia khususnya terus meningkat. Produsen PCC di Indonesia antara lain PT Bumi Kencana Murni Chemical Industry, PT Light Calsindo Raya, dan Minerals Technologies Incorporated (MTI). Data statistik impor dan ekspor PCC pada Bulan Januari-Desember Tahun 2016 diperlihatkan pada tabel berikut ini.

Tabel I. 4 Data Impor dan Ekspor PCC Tahun 2016 (Badan Pusat Statistik, 2017)

Bulan	Januari	Februari	Maret	April	Mei	Juni	Juli
Impor	1.123.248	924.468	1.398.278	745.691	1.177.000	857.738	331.192
Ekspor	1.044.888	266.270	419.000	44.000	44.000	-	-

Bulan	Agustus	September	Oktober	November	Desember	Total
Impor	979.001	1.167.321	1.069.310	1.172.204	1.580.387	12.525.838
Ekspor	304.000	295.270	285.300	344.325	225.000	3.272.053

Dari data pada Tabel I.4 menunjukkan jumlah impor PCC yang signifikan dibandingkan dengan jumlah ekspor PCC. Hal ini menunjukkan bahwa produksi PCC perlu ditingkatkan untuk memenuhi kebutuhan di Indonesia, dengan memanfaatkan produk samping yang berupa gas CO₂ dari hasil pemurnian gas *biomethane*. Sedangkan bahan baku pembuatan PCC yang berupa kapur tohor (CaO) diperoleh dari CV. Aikes Tanjung Mandiri yang berlokasi di Kecamatan Pangandaran, Provinsi Jambi, Sumatera Selatan.

I.5 Penggunaan Produk

Dalam perkembangannya, biogas dapat dimanfaatkan untuk berbagai keperluan diantaranya:

- 1. Biogas dapat digunakan sebagai bahan bakar untuk memanaskan boiler. Panas yang dihasilkan digunakan untuk menghasilkan uap dalam proses di industri.
- 2. Biogas juga digunakan pada unit *Combined Heat Power* (CHP). Unit CHP digunakan untuk menghasilkan listrik dan panas untuk *anaerobic digester*. Contohnya pemanasan *digester* dan sterilisasi *digestate* dapat dilakukan dengan panas tersebut.
- 3. Biogas dapat digunakan sebagai bahan bakar kendaraan, tetapi harus melalui pengolahan yang lebih lanjut untuk menghasilkan biogas yang berkualitas tinggi.
- 4. Metana yang terkandung dalam biogas juga dapat digunakan sebagai bahan bakar untuk *fuel cells*, yang akan memproduksi energi dalam bentuk listrik dan proses.
- 5. Limbah *digester* biogas baik yang padat maupun yang cair dapat dimanfaatkan sebagai pupuk organik.
 - a. Limbah padat sangat baik untuk pupuk karena pemprosesan pupuk lebih sempurna dari pada pupuk kendang yang ditumpuk di udara terbuka.
 - b. Pupuk hasil *digester* ini selain mengandung unsur hara yang tinggi juga dapat berfungsi memperbaiki struktur tanah.
- 6. *Digester* memiliki kandungan nutrisi (nitrogen, fosfor, dan kalium) yang tinggi sehingga sering digunakan sebagai pupuk untuk memperoleh peroduk berkualitas tinggi, dengan nilai *digestate* dapat diproses menjadi kompos.
- 7. CO₂ hasil purifikasi dari unit *stripper* dapat dimanfaatkan sebagai solvent proses superkritik pada pabrik CPO, sebagai sumber nutrisi untuk budidaya alga merah, sebagai bahan aditif DMC (dimetil karbonat) untuk meningkatkan nilai oktan premium.

Sedangkan PCC banyak digunakan dalam industri sebagai berikut:

- 1. Pada industri kertas sebagai filler dan coating.
- 2. Pada industri plastik sebagai *filler* untuk meningkatkan kualitas fisik seperti modulus, resistansi terhadap panas, dan kekerasan.
- 3. Pada industri cat dan pelapisan, digunakan sebagai *filler/extender*.
- 4. Pada industri makanan dan farmasi, antara lain digunakan sebagai antasid, suplemen kalsium pada makanan, abbrasive mild pada pasta gigi

L6 Konsumsi

Tingkat pemenuhan listrik merupakan salah satu factor suatu negara diilai pertumbuhan ekonominya. Saat ini negara Indonesia termasuk negara berkembang, dimana penyediaan listrik bukan merupakan pemenuhan kebutuhan riil seluruhnya tetapi lebih berfokus pada pemerataan listrik ke masyarakat. PT. PLN tidak hanya memproduksi listrik sendiri tetapi juga membei listrik dari pembangkait listrik swasta atau koperasi untuk memenuhi kebutuhan listrik nasional.

Dinas Perancangan Sistem PT. PLN dan TIM Energi BPPT, mneganalisa bahwa selama kurun waktu 2003-2020 ratarata kebutuhan listrik di Indonesia tumbuh sebesar 6,5% per tahun dengan pertumbuhan listrik di sektor komersial yang tertinggi, yaitu sekitar 7,3% per tahun dan disusul oleh sektor rumah tangga dengan pertumbuhan kebutuhan listrik sebesar 6,9% per tahun. Hal tersebut sangat beralasan, mengingat untuk meningkatkan perekonomian di Indonesia, pemerintah meningkatkan pertumbuhan sektor pariwisata yang selanjutnya mempengaruhi sektor komersial. Untuk sektor rumah tangga laju pertumbuhan kebutuhan listrik yang tinggi dipicu oleh rasio elektrifikasi dari berbagai daerah yang masih relatif rendah, karena sampai tahun 2003 masih ada beberapa wilayah di Indonesia yang belum memiliki jaringan listrik terutama di daerah yang tidak dilewati listrik PLN. Produksi biogas dalam jumlah besar akan sangat menguntungkan karena dapat dikonversimenjadi listrik. Konversi listrik sebesar 2,14 kWh/m³ biogas.

Tabel I. 5 Volume Penjualan Gas Alam Melalui Saluran Pipa Menurut Jenis Pelanggan (MMSCF), 2010-2015 (Badan Pusat Statistik.2015)

			111,=010)			
Jenis Pelanggan	2010	2011	2012	2013	2014	2015
Rumah Tangga	641.94	635.24	618.05	596.34	611.82	714.91
Komersial	5067.32	7028.82	7570.18	6851.29	7 472.94	8131.57
Industri	196356.46	227759.28	272832.32	295618.59	337106.04	314646.22
Pembangkit Listrik	9872.29	10295.15	18 715.84	14831.76	18475.89	35332.88
SPBE/SPBG	1036.79	1005.26	819.75	1237.47	2388.25	2359.36
Jumlah	212974.81	246723.76	300556.13	319135.44	366054.94	361184.95

BAB II BASIS DESAIN DATA

II.1 Lokasi Pabrik

Penentuan lokasi pabrik sangat menentukan kemajuan dan kelangsungan industri, baik pada masa sekarang maupun masa yang akan dating karena hal ini berpengaruh terhadap faktor produksi dan distribusi dari pabrik yang didirikan. Pemilihan lokasi pabrik harus memberikan suatu perhitungan biaya produksi dan distribusi yang minimal serta mempertimbangan aspek sosial masyarakat dari sekitar lokasi pabrik. Dalam pemilihan lokasi pabrik biogas terdapat pertimbangan yang perlu diperhatikan yaitu ketersediaan bahan baku yang berupa limbah cair hasil pengolahan pabrik kelapa sawit. Selain berdasarkan ketersediaan bahan baku utama yang berupa limbah cair hasil pengolahan pabrik kelapa sawit, pemilihan lokasi pabrik dipengaruhi beberapa indikator lainnya.

Pabrik pengolahan limbah cair (POME) akan didirikan berdekatan dengan PT. PN VI Pinang Tinggi yang merupakan pabrik pengolahan kelapa sawit yang merupakan pemasok utama bahan baku POME. PT. PN VI Pinang Tinggi yang berlokasi di Desa Sungai Bahar Tengah Kabupaten Muaro Jambi, Sumatera Utara yang merupakan salah satu sentra pengembangan kelapa sawit nasional di Indonesia. Selain berdasarkan ketersediaan bahan baku utama yang berupa limbah cair hasil pengolahan pabrik kelapa sawit, pemilihan lokasi pabrik dipengaruhi beberapa indikator lainnya. PT PN VI Pinang Tinggi terletak di Provinsi Sumatera Selatan dan berdekatan dengan kota besar di Pulau Sumatera yaitu Kota Padang dan Palembang yang akan memudahkan distribusi penjualan produk. Pertimbangan dalam pemilihan lokasi pabrik ini adalah:

1. Bahan Baku

Pabrik pengolahan biogas akan didirikan di sekitar area PT. PN VI Pinang Tinggi sehingga memudahkan distribusi bahan baku POME.

2. Lokasi

PT. PN VI Pinang Tinggi terletak di Provinsi Sumatera Selatan yang berdeketan dengan kota Padang dan Palembang sehingga akan memudahkan distribusi penjualan produk ke kota – kota besar di Pulau Sumatera.

3. Tenaga Kerja

Menurut Badan Pusat Statistik Provinsi Jambi, Kabupaten Muaro Jambi merupakan kabupaten dengan tingkat pengangguran tertinggi kedua di Provinsi Jambi setelah Kota Jambi. Maka dengan didirikannya pabrik ini diharapkan dapat mengurangi angka pengangguran di Kabupaten Muaro Jambi.

II.2 Kapasitas Pabrik

Menurut data Dinas Lingkungan Hidup Provinsi Jambi pada tahun 2016 PT. PN VI Pinang Tinggi mengolah tandan buah segar sebanyak 60 ton/jam. Satu ton tandan buah segar dapat menghasilkan 600 kg limbah cair (POME) (Marolop, 2017). Sehingga limbah cair yang dihasilkan oleh PT. PN VI Pinang Tinggi dengan kapasitas pengolahan tandan buah segar 60 ton/jam adalah sebesar 36 ton/jam. Maka kapasitas produksi "Pabrik Purifikasi Biogas dari POME menjadi *Bio-Methane* dan PCC" menggunakan basis data sebagai berikut:

Waktu Operasi : 330 hari kerja/tahunWaktu Kerja : 24 jam/hari

• Limbah POME terolah : 285.120 ton/tahun

II.3 Kualitas Bahan Baku dan Produk

II.3.1 Bahan Baku

II.3.1.1 Limbah Cair Kelapa Sawit (POME)

POME digunakan sebagai bahan baku utama pembuatan biogas. Karakteristik dari bahan baku POME yang digunakan adalah sebagai berikut:

•	pН	=4,7
•	Suhu (°C)	= 50
•	COD (mg/L)	= 53.000
•	Karbohidrat (%)	= 33,550
•	Lemak (%)	= 16,960
•	Nitrogen (%)	= 26,390
•	Sulfur (%)	= 0,007
•	Kalium (%)	=4,858
•	Natrium (%)	= 0.051
•	Kalsium (%)	=0,896
•	Magnesium (%) = 0,495	;
•	Posfor (%)	= 7,803
•	Air	= 6,990

II.3.1.2 Kotoran Sapi

Kotoran sapi digunakan sebagai *starter* mikroorganisme pada *anaerobic digester*. Mikroorganisme akan berkembangbiak di dalam *anaerobic digester* sehingga pemberian *starter* kotoran sapi hanya digunakan pada saat *start up*. Mikroorganisme yang terdapat di dalam kotoran sapi adalah sebagai berikut:

1. Bakteri Hidrolitik

Kelompok bakteri anaerobik memecah molekul organik komplek (protein, selulose dan lignin) menjadi molekul monomer yang terlarut seperti asam amino, glukosa, asam lemak dan gliserol. Molekul monomer ini dapat langsung dimanfaatkan oleh kelompok bakteri berikutnya. Contoh bakteri hidrolitik adalah bakteri genus *Bacillus sp.* Walaupun demikian proses penguraian

anaerobik sangat lambat dan menjadi terbatas dalam penguraian limbah sellulolitik yang mengandung lignin.

2. Bakteri Asidogenik Fermentatif

Bakteri asidogenik (pembuat asam) seperti *Clostridium* merubah gula, asam amino dan asam lemak menjadi asam organik (seperti asam asetat, asam propionat, asam laktat, atau asam formiat), alkohol dan keton (seperti etanol, metanol, gliserol, aseton), asetat, CO₂ dan H₂. Asetat adalah produk utama dalam fermentasi karbohidrat. Hasil dari fermentasi ini bervariasi tergantung jenis bakteri dan kondisi kultur seperti temperatur, pH dan potensial redoks.

3. Bakteri Asetogenik

Bakteri asetogenik (bakteri yang memproduksi asam asetat dan H_2) seperti asam propionat, asam butirat) dan dan alkohol menjadi asetat, hidrogen dan karbondioksida yang digunakan oleh bakteri pembentuk metana (metanogen). Kelompok ini membutuhkan ikatan hidrogen rendah untuk merubah asam lemak; dan oleh karenya diperlukan monitoring hidrogen yang ketat.

4. Bakteri Metanogen

Bakteri metanogen terbentuk secara alami didalam sedimen yang dalam atau dalam pencernaan herbivora. Kelompok ini dapat berupa kelompok bakteri gram positif dan gram negatif dengan variasi yang banyak dalam bentuk. Mikroorganisme metanogen tumbuh secara lambat dalam air limbah dan waktu tumbuh berkisar 3 hari pada suhu 35°C sampai dengan 50 hari pada suhu 10°C.

II.3.1.3 Diamonium Phospat (DAP)

Diamonium Phospat merupakan nutrisi yang diberikan kepada mikroorganisme untuk berkembangbiak. Karakteristik Diamonium Phosfat yang digunakan adalah sebagai berikut:

- $Melting\ Point\ (^{\circ}C)$ = 155
- Spesific Gravity (g/mL) = 1,619

- Larut dalam pelarut air namun tidak larut dalam pelarut alcohol dan *acetone*
- Tidak mudah terbakar

(chemspider.com)

Komposisi:

- P_2O_5 (%) = 46
- N(%) = 18
- *Moisture* (%) = 0.2
- Water insoluble matter (%) = 35.8

(alibaba.com)

II.3.1.4 Urea

Selain diamonium phospat, untuk memenuhi kebutuhan nutrisi mikroorganisme ditambahkan Urea sebagai sumber nutrient dengan spesifikasi sebagai berikut:

- *Specific gravity* (mg/L) = 1,335
- Melting point ($^{\circ}$ C) = 132,7
- Berbentuk kristal putih dan tidak berbau
- Tidak mudah terbakar
- Larut dalam air, alkohol dan benzene
- Terurai sebelum titik didih
- Sedikit larut dalam eter dan tidak larut dalam klorofom

(chemspider.com)

Komposisi:

- Nitrogen (%) = 46
- Biuret (%) = 0.5
 - Moisture (%) = 0,5 (www.pusri.org)

II.3.1.5 Calcium Dihydroxide, Ca(OH)₂

Calcium dihydroxide, Ca(OH)₂ digunakan untuk menaikkan pH POME atau bisa dikatakan sebagai agen penetralisasi, sebagai absorber dalam pemurnian biogas. Spesifikasi calcium hydroxide yang digunakan adalah sebagai berikut

- Melting point ($^{\circ}$ C) = 580
- Specific gravity (g/mL) = 2.24
- Berbentuk serbuk putih dan tidak bewarna
- Larut dalam air, gliserol dan asam. Tidak larut dalam alcohol
- Bersifat stabil dan *incompatible* dengan asam kuat (*chemspider.com*)

II.3.1.6 Kapur Tohor (CaO)

Kapur tohor, CaO digunakan sebagai bahan baku produk pada proses pembuatan *Precipitated Calcium Carbonate*. Spesifikasi kapur tohor yang digunakan adalah sebagai berikut:

- Berat Molekul (g/mol) = 56
- Titik Leleh (°C) = 2572 Komposisi
- CaO (%) = 92,43
- MgO (%) = 1,17
- SiO_2 (%) = 1,26
- C(%) = 5,1
- S(%) = 0.04

II.3.1.7 Air (H_2O)

Air, H₂O digunakan sebagai bahan baku produk pada proses pembuatan *Precipitated Calcium Carbonate* sebagai pelarut untuk melarutkan CaO menjadi Ca(OH)₂.

- Rumus kimia $= H_2O$
- Berat molekul (g/mol) = 18,015
- Temperatur kritis ($^{\circ}$ C) = 374,2
- Tekanan kritis (psia) = 3207,977
- Titik leleh pada 1 atm ($^{\circ}$ C) = 0
- Titik didih pada 1 atm ($^{\circ}$ C) = 100
- Densitas (kmol/m3) = $55,58 (0^{\circ}\text{C dan 1 atm})$

• Δ Hf° (Kcal/Kmol) = -57757,54

• ΔGf° (Kcal/Kmol) = -54597,62

(www.lsbu.ac.uk, www.chemicalland21.com; ChemCAD 5.2)

II.3.1.8 Karbondioksida (CO₂)

Karbondioksida, CO₂ digunakan sebagai bahan baku produk pada proses pembuatan *Precipitated Calcium Carbonate*. Spesifikasi karbondioksida yang digunakan adalah sebagai berikut:

Berat molekul (g/mol) = 44

• Temperatur kritis ($^{\circ}$ C) = 31,05

• Tekanan kritis (atm) = 72,84999

Titik didih pada 1 atm ($^{\circ}$ C) = -78,48

• Titik lebur pada 1 atm ($^{\circ}$ C) = -56,57

• Densitas (g/L) = 1,976 (0°C dan 1 atm)

ΔHf° (Kcal/Kmol) = -98.83357
 ΔGf° (Kcal/Kmol) = -92.19802

(www.chemicalland21.com; ChemCAD 5.2)

II.3.2 Spesifikasi Produk

II.3.2.1 Gas Metana (CH₄)

Pabrik purifikasi biogas ini akan menghasilkan gas metana dengan karakteristik sebagai berikut:

Sifat fisika dari gas CH₄

• Berat molekul = 16,042

• Titik didih pada 14,7 psia (760 mm) = -161,49°C

• Titik beku pada 14,7 psia (760 mm) = -182,48°C

• Kelarutan dalam air = 35 mg/L

• Tekanan kritis = 45.802 atm

• Specific gravity = 0.415

Sifat kimia dari gas metana:

- Tidak berbau dan berwarna
- Tidak larut dalam air
- Tidak beracun

• Eksplosif pada konsentrasi 10-15%

II.3.2.2 Pupuk Organik Padat dan Cair

Produk samping dari pabrik purifikasi biogas ini adalah pupuk padat dan pupuk cair yang merupakan *effluent* dari *anaerobic digester*.

Tabel II. 1 Standar Parameter Teknis Pupuk Padat Organik

NO.	PARAMETER	SATUAN	STANDAR MUTU			
			Granu	Granul/Pelet		Remah/Curah
	PARAMETER		Murni	Diperkaya mikroba	Murni	Diperkaya mikroba
1.	C – organik	%	min15	min15	min15	Min15
2.	C / N rasio		15 – 25	15 – 25	15 – 25	15 – 25
3.	Bahan ikutan (plastik,kaca, kerikil)	%	maks 2	maks 2	maks 2	maks 2
4.	Kadar Air*)	%	8-20	10 – 25	15 – 25	15 - 25
5.	Logam berat: As Hg Pb Cd	ppm ppm ppm ppm	maks 10 maks 1 maks 50 maks 2	maks 10 maks 1 maks 50 maks 2	maks 10 maks1 maks 50 maks 2	maks 10 maks 1 maks 50 maks 2
6.	pH	.+0	4-9	4-9	4-9	4-9
7.	Hara makro (N + P ₂ O ₅ + K ₂ O)	%	mîn 4			
8.	Mikroba kontaminan: - E.coli, - Salmonella sp	MPN/g MPN/g	maks 10 ² maks 10 ²	maks 10 ²	maks 10 ² maks 10 ²	maks 10 ² maks 10 ²
9.	Mikroba fungsional: - Penambat N - Pelarut P	cfu/g cfu/g	e e	min 10 ³	-	min 10 ³ min 10 ³
10.	Ukuran butiran 2-5 mm	%	min 80	min 80	-	326
11.	Hara mikro : - Fe total atau - Fe tersedia - Mn - Zn	ppm ppm ppm ppm	maks 9000 maks 500 maks 5000 maks 5000			
12	Unsur lain : - La - Ce	ppm ppm	0	0	0	0

(Sumber: Permentan No.70 tahun 2011)

Tabel II. 2 Standar Parameter Teknis Pupuk Padat Organik

NO.	PARAMETER	SATUAN	STANDAR MUTU
1.	C – organik	%	min 6
2.	Bahan ikutan : (plastik,kaca, kerikil)	%	maks 2
3.	Logam berat: - As	ppm	maks 2,5
	- Hg	ppm	maks 0,25
	- Pb	ppm	maks 12,5
	- Cd	ppm	maks 0,5
4.	pH		4-9
5.	Hara makro:		
	- N	%	3 - 6
	. P ₂ O ₅	%	3 - 6
	- K ₂ O	%	3-6
6.	Mikroba kontaminan: - E.coli, - Salmonella sp	MPN/ml MPN/ml	maks 10 ² maks 10 ²
7.	Hara mikro :		Transit a Transit
	- Fe total atau	ppm	90 - 900
	- Fe tersedia	ppm	5 - 50
	- Mn	ppm	250 - 5000
	- Cu	ppm	250 - 5000
	- Zn	ppm	250 - 5000
	- B	ppm	125 – 2500
	- Co	ppm	5 – 20
	- Mo	ppm	2-10
8.	Unsur lain :		
	- La	ppm	0
	- Ce	ppm	0

(Sumber: Permentan No.70 tahun 2011)

II.3.2.3 PCC (Precipitated Calcium Carbonate) (CaCO₃

- Berat molekul (g/mol) = 100
- = 825Titik Lebur (°C)
- Bulk Density (g/cm³) = 0,55-0,65
- Cp pada 25° C (kal/mol) = 19,568
- ΔHf° (Kcal/Kmol) = 288.46= 269,79
- ΔGf° (Kcal/Kmol)
- Kelarutan dalam air (mol/L) = 0,00015 (pada 25°) Komposisi
- CaCO₃ (%) = 99
- =0,2• MgO (%)
- SiO₂ (%) = 0,1
- Al₂O₃ (%) = 0,1
- Fe₂O₃ (%) = 0,1
- Air (%) = 0.5

BAB III SELEKSI DAN URAIAN PROSES

Saat ini metode alternatif yang tersedia untuk pengolahan limbah POME adalah :

Pengolahan secara anaerobic, pengolahan secara aerobic, system pengolahan membrane dan metode evaporasi (penguapan). Keuntungan dan kerugian dari berbagai metode pengolahan tersebut dapat dilihat dari **Tabel III.1**

Tabel III. 1 Kelebihan dan Kekurangan Beberapa Metode dalam Pengolahan POME

Metode Pengolahan	Kelebihan	Kekurangan	Referensi
Membran	Air hasil pengolahan memiliki kualitas yang baik, tidak membutuhkan ruang yang luas, dapat mendisinfeksi air yang diolah	Mahal dibandingkan dengan metode pengolahan lainnya, waktu hidup membrane pendek	[Ahmad et al. 2006] [Metcalf et al. 2003]
Anaerobik	Energi yang dibutuhkan rendah (tidak membutuhkan aerasi), biaya murah, hasil samping yang berupa lumpur dapat digunakan untuk aplikasi lahan (pupuk)	Waktu retensi yang lama, butuh area yang luas untuk digester konvensional, <i>start-up</i> lambat (granulasi reaktor)	[Metcalf et. Al 1997] [Borja et al. 2006]
Evaporasi	Konsentrat padat dari proses dapat dimanfaatkan sebagai feed dalam industri pupuk	Konsumsi energi yang besar	[MA et. Al 1997]
Aerobik	Waktu retensi lebih efektif dalam menangani limbah beracun	Butuh energi yang besar (perlu aerasi), tingkat patogen inaktivasi lebih rendah di lumpur aerobic dibandingkan lumpur anaerobic sehingga tidak cocok diaplikasikan pada lahan (sebagai pupuk)	[Jr et al. 1999] [doble et al. 2005]

kebutuhan Bedasarkan energi, pengolahan anaerobic memiliki keuntungan yang lebih besar dibanding metode lainnya karena tidak membutuhkan energi untuk aerasi. Jelas bahwa pengolahan anaerobic memiliki keunggulan yang lebih baik dibandingkan lainnya dari segi capital cost. Kekurangan pengolahan secara anaerobic adalah waktu retensi yang lama dan start-up yang lambat. Namun, kekurangan tersebut dapat diatasi. Untuk masalah waktu retensi yang lama dapat dipersingkat dengan menggunakan bioreactor anaerob yang memiliki waktu retensi yang kecil. Untuk start-up yang lambat dapat disingkat dengan menggunakan pasir lumbur benih, memanfaatkan lumpur benih dari proses yang sama atau mempertahankan suhu dan pH yang cocok untuk pertumbuhan bakteri.

(Abdurrahman, 2013)

Selama proses produksi biogas, rantai polimer yang kompleks dan panjang harus dipecah menjadi bentuk yang lebih sederhana yaitu metana dan karbondioksida. Keseluruhan proses ini bergantung pada jumlah mikroorganisme, di mana mikroorganisme tersebut mendegradasi komponen organik dalam kondisi anaerob. Dalam produksi biogas, diperlukan dua persyaratan penting yaitu adanya *nutrient* pada media dan adanya mikroorganisme yang diperlukan dalam proses anaerob. Proses produksi biogas dalam keadaan anaerob dapat dibagi menjadi empat fase yaitu:

Gambar III. 1 Skema Proses Pembuatan Biogas Secara Umum (Sumber : *Peiris*, 2016)

1. Hidrolisis

Dalam proses anaerob, pertama-tama terjadi hidrolisis. Rantai polimer organik yang panjang akan dipecah menjadi molekul yang lebih sederhana seperti glukosa, asam amino, dan asam lemak. Produk samping dari proses adalah hidrogen dan asetat yang akan digunakan pada proses anaerob.

(Muzenda, 2014)

Selama proses hidrolisis, kebanyakan mikroorganisme mengeluarkan beberapa tipe enzim ekstraseluler untuk memecah berbagai tipe senyawa organik. Dikarenakan efek dari enzim, senyawa organik yang kompleks dan berantai panjang dipecah menjadi senyawa yang sederhana. Senyawa sederhana ini dengan mudah dapat diserap oleh sel mikrobial sebagai kebutuhan nutrisi dan sumber energi. Beberapa mikroorganisme berperan dalam pemecahan dari setiap tipe komponen organik. Contohnya adalah mikoorganisme yang mengeluarkan enzim untuk memecah beberapa tipe gula yang dikategorikan sebagai *saccharolytic*. Begitu pula mikroorganisme yang memecah beberapa tipe protein yang disebut sebagai *proteolyric* (Schnürer and Jarvis, 2010). Beberapa jenis enzim, yang digunakan untuk hidrolisis dapat dilihat pada **Tabel III.2**.

Tabel III. 2 Jenis-Jenis Enzim Hidrolytic

Enzim	Substrat	Produk		
Proteinase	Proteins	Amino acids		
Cellulase	Cellulose	Cellobiose and glucose		
Hemicellulase	Hemicellulose	Sugars (glucose, xylose, mannose and arabinose)		
Amylase	Starch	Glucose		
Lipase	Fats	Fatty acids and glycerol		
Pectinase	Pectin	Sugars (galactose, arabinose, polygalactic and uronic acid)		

Laju dekomposisi hidrolisis dipengaruhi oleh substrat alami. Contohnya adalah perubahan selulosa dan hemiselulosa biasanya membutuhkan waktu lebih lama dari pada protein dengan proses yang sama.

2. Acidogenesis

Acidogenesis atau fermentasi adalah proses kedua pada proses anaerob yang di dalamnya terdapat reaksi-reaksi jika dibandingkan dengan proses hidrolisis. Jumlah dari reaksi-reaksi yang akan terajdi bergantung pada tipe organisme yang digunakan dan tipe substrat yang ada. Kebanyakan dari tipe organisme yang ada berperan aktif pada tahap ini dibandingkan pada tahap lain selama proses anaerob. Selama proses fermentasi, kebanyakan organisme yang aktif adalah organisme yang sama saat proses hidrolisis berlangsung. Tetapi beberapa organisme tambahan akan muncul pada medium seperti *Enterobacterium*, *Bacteriodes*, *Acetobacterium* dan *Eubacterium*.

Substrat pada tahap sebelumnya yaitu tahap hidrolisis, digunakan untuk difermentasi oleh mikroorganisme sehingga terdegradasi lebih lanjut. Tetapi asam lemak yang dihasilkan pada tahap sebelumnya tidak didegradasi dengan mikroorganisme dan akan tetap ada pada medium hingga terjadi proses okesidasi selanjutnya.

(Schnürer and Jarvis 2010)

Selama tahap acidogenesis, produk dari tahap hidrolisis akan diubah menjadi beberapa produk seperti *organic acids* (acetic, propionic acid, butyric acid, succinic acid, lactic acid), alcohols, ammonia (from amino acids), carbon dioxide dan hydrogen (Schnürer and Jarvis 2010) dan hydrogen sulphide (Muzenda 2014). Tipe dari senyawa yang terbentuk bergantuk dari substrat yang digunakan pada tahap hidrolisis, kondisi lingkungan proses, dan tipe organisme yang digunakan. Tetapi, senyawa organik yang terbentuk sangat banyak dan tidak sesuai untuk proses produksi methane.

(Muzenda 2014)

3. Acetogenesis

Selama proses *acetogenesis*, produk yang dibentuk selama tahap acidogenesis dipecah menjad bentuk yang lebih sederhana dengan reaksi oksidasi pada kondisi anaerob. Ini adalah proses

yang krusial untuk produksi akhir biogas dikarenakan bergantung pada aktivitas mikrooganisme pada setiap tahap. Selama tahap acetogenesis, proton digunakan sebagai penerima electron akhir dan proses ini menghasilkan gas hidrogen. Formasi gas hidrogen hanya akan muncul jika konsentrasi gas hydrogen secara konstan dijaga pada kondisi minimumnya. Jika formasi hidrogen tidak terlepas secara kontinyu dari digester, tahap acetogenesis (anaerobic oxidation) dapat berhenti dikarenakan mikroorganisme tidak mendapatkan energi yang cukup untuk tumbuh

(Schnürer and Jarvis 2010)

Selama proses akhir dari tahap anaerob, mikroorganisme akan mengonsumsi hydrogen dan membentuk methane. Reaksi ini muncul secara konstan dan karena itu level gas hydrogen pada digester akan terjaga rendah. Tahap ini akan memicu oksidasi anaerob (actogenesis) pada tahap ketiga dan tahap akhir pada proses anaerob yang saling berhubungan satu sama lain. Hubungan ini disebut dengan syntrophy dan perpindahan hidrogen disebut "Inter-species Hydrogen Transfer" (IHT). didefinisikan sebagai perpindahan dari gas hidrogen antara spesies. Substrat untuk acetogenesis mengandung beberapa asam lemak, alkohol, dan beberapa tipe asam amino dan aromatis. Aromatis adalah kombinasi dari struktur cincin seperti asam benzoate, fenol atau beberapa tipe asam amino. Dalam tahap acetognesis, terdapat pembentukan gas hydrogen, acetate, carbon dioxide, dan energi (panas).

(Muzenda, 2014)

Syntrophomonas, Syntrophus, Clostridium, dan Syntrobacter adalah contoh dari mikoorganisme yang dapat melakukan berbagai oksidasi anaerob di syntrophy dengan organisme yang menggunakan gas hydrogen. Mikroorganisme ini disebut dengan acetogens.

(Schnürer and Jarvis, 2010)

4. Metanogenesis

Pembentukan *methane* atau methanogenesis merupakan tahap terakhir dari proses anaerob. Selama tahap ini, methane dan

karbon dioksida diproduksi dengan beberapa proses pembuatan methane oleh beberapa mikroorganisme tertentu yang disebut dengan methanogen. Substrat untuk mikroorganisme ini adalah gas hydrogen, karbon dioksida dan asetat, yang diproduksi selama tahap acerogenesis. Selain itu substrat yang dapat digunakan untuk melakukan produksi methane adalah *methyl amines*, *some alcohols*, and *formates*. Pada tahap ini, berbagai macam tipe mikroorganisme secara aktif merubah substrat pada tahap sebelumnya (acitogenesis) menjadi biogas dan mikroorganisme yang mendominasi pada proses ini disebut *acetotrophic methanogens*, di mana mikroorganisme tersebut mengkonsumsi asetat sebagai substrat. Selama proses pemecahan molekul terjadi, asetat dipecah menjadi dua bagian seperti reaksi berikut:

$$CH_3COOH \rightarrow CH_4 + CO_2$$

Salah satu atom karbon digunakan untuk membentuk methane dan yang lainnya untuk membentuk karbondioksida. Oleh karena itu mikroorganisme *acetotrophic methanogens* bisa disebut juga dengan *acetate-splitting methanogens*. Asetat merupakan 70% dari *feed* yang ada untuk pembentukan biogas pada tank.

(Schnürer and Jarvis 2010)

Mikroorganisme *hydrogenotroph* merupakan jenis *methanogen* yang penting dimana substrat primer pada produksi *methane* adalah hidrogen dan karbodioksida. Reaksi yang terjadi adalah sebagai berikut:

$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$

Hanya dua jenis *methanogen* yang diketahui dapat memecah asetat yaitu *Methanosaeta* and *Methanosarcina*, meskipun terdapat beberapa tipe methanogens yang memecah gas hydrogen yaitu *Methanobacterium*, *Methanococcus*, *Methanogenium* dan *Methanobrevibacter*. *Methanogen* berbeda dengan organisme lain pada proses pembuatan biogas. Secara umum *methanogen* adalah bagian dari jenis mikroorganisme yang disebut *Archaea*. *Archaea* adalah jenis yang berbeda dari organisme yang telah ditemukan seperti bakteri (prokariot) dan fungi (eukariot). *Methanogen* sangat sensitif pada berbagai kondisi yang tidak ideal pada substrat seperti

perubahan pH atau adanya kandungan senyawa beracun yaitu logam berat atau polutan organik. Oleh karena itu, sangat penting untuk organisme-organisme tersebut dalam kondisi anaerob karena dapat mempengaruhi keseluruhan proses secara serius

Faktor-faktor yang mempengaruhi proses anaerobic anatara lain:

1. Temperatur

Biasanya, digester anaerobic dirancang untuk beroperasi pada kondisi mesofilik (20°C-45°C) atau termofilik (45°C-60°C). Semakin tinggi suhu, produksi biogas semakin tinggi, tetapi ketika suhu tinggi dapat menyebabkan proses metabolisme menurun. Produksi biogas terbaik ketika suhu digester 32°C -40°C.

2. pH

Fermentasi biogas optimum pH netral antara 6,8-7,2. Saat pH kurang dari 4 atau lebih dari 9 proses akan terhambat atau bahkan berhenti untuk memproduksi gas karena efek toksik pada populasi metanogen.

3. Volatile Solid

Konsentrasi padatan dari *influent* ke biodigester dapat mempengaruhi tingkat fermentasi. *Organic Loading Rate* (OLR) didefinisikan sebagai jumlah volatile padatan per unit volume biodigester aktif per hari. Nilai OLR adalah antara 0,2 dan 2kg VS/m³/hari. Ini mengansumsikan bahwa total padatan (TS) adalah 17% dari berat segar *manure* dan bahwa *volatile solid* (VS) adalah 77%.

4. Konsentrasi mikroorganisme metanogen

Produksi biogas tidak mungkin tanpa jumlah bakteri anaero yang cukup. Dalam kotoran segar, konsentrasi tersebut rendah. Inokulasi kotoran segar dapat meningkatkan produksi gas hingga 30% dan itu sangat penting dalam digester, nutrisi utama yang dibutuhkan oleh mikroorganisme yang terlibat dalam biodigestion anaerobik adalah karbon, nitrogen, dan garam anorganik.

5. Rasio C/N

Rasio karbon / nitrogen (C/N) mengungkapkan hubunan antara jumlah karbon dan nitrogen yang ada dalam bahan organik.

Setiap bahan yang berbeda memiliki rasio C/N. Rasio C/N yang ideal untuk biodigestion anaerobic adalah antara 20:1 dan 30:1. Jika rasio C/N lebih tinggi dari kisaran tersebut, produksi biogas akan rendah. Hal ini dikarenakan nitrogen akan dikonsumsi cepat oleh bakteri metanogen untuk memenuhi kebutuhan protein dan tidak akan lagi bereaksi dengan karbon yang tersisa dalam materi. 6. Pengadukan

Pengadukan sangat penting dalam pengolahan air limbah yang kaya organik. Dengan kata lain, dapat meningkatkan proses anaerobik dengan mencegah stratifikasi substrat, mencegah pembentukan kerak, memastikan sisa partikel padat tersuspensi, mentransfer panas seluruh digester, mengurangi ukuran partikel selama proses pencernaan dan melepaskan biogas dari konten digester. Pengadukan digunakan untuk mencegah pembentukan endapan dan meningkatkan jontak antara mikroorganisme dan substrat.

(Sunil, 2012)

III.1. Macam-macam Proses

III.1.1 Proses Pembentukan Biogas

Macam-macam proses pengolahan limbah POME menjadi biogas secara anaerobic adalah sebagai berikut :

III.1.1.1 Proses Netralisasi

Limbah POME bersifat asam, sehingga perlu dilakukan treatment sebelum diolah menjadi biogas. Untuk mengoptimalkan pertumbuhan mikroorganisme pada pengolahan limbah secara biologi, pH perlu dijaga pada kondisi pH netral. Limbah cair kelapa sawit (POME) memiliki pH 4,7 sehingga perlu dilakukan netralisasi untuk menaikkan pH nya menjasi netral (sekitar 7). Pemilihan bahan/reagen untuk proses netralisasi banyak ditentukan oleh biaya dan praktisnya.

III.1.1.2 Proses Fermentasi

III.1.1.2.1 Pengolahan dengan Kolam Anaerobik

Kolam pengolahan anaerobik adalah metode pengolahan limbah cair kelapa sawit yang paling sering digunakan, sekitar 85% pabrik minyak kelapa sawit memakai metode ini. Jumlah kolam

pengolahan bervariasi sesuai dengan kapasitas pabrik. Kolam anaerobik terdiri dari de-oiling tank, kolam asidifikasi, kolam anaerobik, dan kolam aerobik. Ukuran kolam anaerobic tergantung pada kapasitas pabrik kelapa sawit dan juga lahan yang tersedia. Kolam anaerobik memiliki retention time yang paling lama, yaitu 20-200 hari. Kolam anaerobik memiliki emisi gas metan yang tinggi yaitu sekitar 54,4%. Kolam anaerobik umumnya memiliki kedalaman 2-5m. Pada kolam inilah air limbah mulai diolah dibawah kondisi anaerobik oleh berbagai jenis mikroorganisme anaerobic. Mikroorganisme anaerobik mengubah senyawa anaerob dalam air limbah menjadi gas CO₂, H₂S, dan CH₄ yang aan menguap ke udara, semenatara berbagai padatandalam air limbah akan mengalami sedimentasi dan terkumpul di dasar kolam sebagai lumpur. Kolam anaerobik dapat menerima masukan beban anaerob dalam jumlah yang sangat besar (biasanya > 300 mg/l BOD atau setara dengan 3000 kg/Ha/hari untuk kolam kedalaman 3 m).

(Abdurrahman, 2013)

III.1.1.2.2 Pengolahan dengan Anerobic Filtration

Anaerobic filter telah diterapkan untuk menangani berbagai jenis limbah termasuk pengolahan air limbah kedelai, wine anggur, lindi, air limbah kota, pembuatan bir air limbah, air limbah obat, dan air gula bir.

Anaerobic filter dipilih untuk pengolahan air limbah karena (a) efisiensi removal substrat tinggi (b) membutuhkan volume reactor kecil yang beroperasi pada waktu didrolik pendek (HRT), (c) kemampuan untuk mempertahankan konsentrasi tinggi dari biomassa dalam kontak dengan air limbah tanpa mempengaruhi efisiensi, dan (d) toleransi terhadap beban kejut. Selain itu, biaya investasi dan operasionalnya lebih murah dan jumlah padatan tersuspensi dalam limbah kecil.

Namun, *clogging* (penyumbatan pada filter) adalah masalah utama dalam operasi *anaerobic filtration* yang dioperasikan secara terus menerus dalam pengolahan air limbah. Secara umum, anaerobic filtration mampu mengolah air limbah untuk mendapatkan kulaitas limbah cair yang baik dengan

mengurangi 70% COD dan menghasilkan gas dengan komposisi metana lebih dari 50%.

Dalam pengolahan POME, efisiensi pengurangan COD tertinggi adlah 94% dengan komposisi metana 63% pada OLR dari 4,5 kg COD / $\rm m^3$ / hari, sedangkan COD *removal* secara umum efisiensinya mencapai 90% dengan komposisi gas metana rata-rata 60%.

(Abdurrahman, 2013)

III.1.1.2.3 Pengolahan dengan Fluidized Bed Reactor

Reactor *fluidized bed* memiliki beberapa keunggulan yang membuat reactor ini sangat berguna untu pengolahan limbah yang mempunyai COD dan BOD tinggi. Reaktor ini memiliki luas permukaan yang sangat besar untuk beasar untuk biomassa yang memungkinkan untuk pengolahan limbah OLR tinggi dan HRT pendek selama operasi. Selain itu, fluidized bed memiliki kemungkinan masalah channeling yang rendah. Kecepatan alir ke atas yang tinggi dari POME harus dipertahankan dalam reactor fluidized bed agar memungkinkan terjadinya ekspansi sari material bed. Kemudian, biomassa akan tumbuh pada bahan pendukung dalam material bed. Beberapa penelitian dan penerapan telah dilakukan pada penerapan *fluidized bed* untuk mengolah air limbah untuk mengolah air limbah pengolahan minyak, limbah indusri tekstil, limbah anggur, limbah es krim, limbah dari rumah pemotongan hewan, limbah farmasi dan limbah cair kelapa sawit (POME). Fluidized bed dapat mengilangkan sedikitnya 65% dan hingga ebih dari 90% COD.

Dalam pengolahan POME, *fluidized bed* lebih baik daripada pengolahan dengan anaerobic filter karena kemampuannya yang dapat menangani limbah dengan OLR yang tinggi dan lebih baik dalam produksi gas metana. Waktu retensi yang lebih singkat (6 jam) juga menjadi keunggulan dibanding dengan pengolahan POME dengan anaerobic filter

(Abdurrahman, 2013)

III.1.1.2.4 Pengolahan dengan Up-flow Anaerobic Sludge Blanket (UASB) Reactor

UASB berguna untuk mengolah minyak tipe limbah pabrik. Prinsip dasar dari operasi reakor UASB adalah *sludge* yang akan diolah meiliki tingkat pengendapan yang baik. Sejauh ini, penggunaan UASB telah diterapkan dalam pengolahan limbah sampah domestik,limbah pemotongan hewan,limbah es krim, limbah cair kelapa sawit (POME), limbah farmasi, dan limbah kopi instan. UASB memiliki desain yang sederhana dimana *sludge* dari material organik yang didegradasi dan biomassa akan mengendap direaktor. Materi organic dari limbah yang berkontak dengan *sludge* akan diolah dengan *granule* biomassa.

Pengolahan POME dengan UASB telah terbukti sukses dengan efisiensi pengukuran COD hingga 98,4% dengan OLR sebesar 10,63 kg COD/m3 day. Pegolahan denga reactor UASB memiliki keunggulan karena kemampunnya untuk mengolah limba dengan kandungan suspended solid tinggi, dan produksi metana yang tinggi. Namun, reaktor ini memiliki waktu start-up yang lama. Penelitian yang telah dilakukan membuktikan bahwa UASB yag diisikan dengan granulated sludge dapat mencapai performa yang lebih tinggi dengan waktu singkat.

(Abdurrahman, 2013)

III.1.1.2.5 Pengolahan dengan *Up-flow Anaerobic Sludge Fixed-Film (UASFF) Reactor*

UASFF adalah gabungan antara UASB reactor dan *anaerobic* filter. UASFF menggabungkan keunggulan dari kedua reactor dan meminimalkan kekurangan masing masing reactor. Penelitian yang telah dilakukan, membuktikan bahwa reactor UASFF lebih efisien dibandingkan dengan UASB dan *anaerobic* filter. Masalah clogging juga tidak pernah dilaporkan dalam pengoperasian reaktor ini. Reaktor ini umumnya dapat mengolah OLR yang tinggi jika dibandingkan dengan UASB dan *anaerobic* filter.

Reaktor UASFF dapat mencapai efisiensi pengurangan COD sebesar 70%. Produksi metana dari reactor ini juga memuaskan. Dalam pengolahan POME didapatkan bahwa internal

packing dan recycle ratio yang tinggi dapat berpengaruh dalam performa reactor UASFF.

(Abdurrahman, 2013)

III.1.1.2.6 Pengolahan dengan Continuous Stirred Tank Reactor (CSTR)

CSTR adalah tangki digester yang diberi *mixer* (pengaduk). Agitator ini berfungsi untuk memperluas kontak area dengan biomassa sehingga dapat meningkatkan produksi gas. Dalam pengolahn POME dengan CSTR, telah diaplikasikan oleh pabrik Kock Seng, Johor, Malaysia dan inilah satu-satunya reactor yang beroperasi secara kontinyu sejak tahun 1980. Aplikasi lain dari CSTR dalam pengolahan limbah antara lain adalah limbah pabrik selai dan pabrik *coke*.

Reactor Kock Seng mempunyai efisiensi pengurangan COD sebesar 83%. Untuk komposisi metana ditemukan sebesar 62,5% untuk pengolahan POME, dan 22,5-76,9% untuk pengolahan limbah harian. Jenis CSTR lainnya mengindikasikan efisiensi pengurangan COD sebesar 93,6%-97,7% Perbedaan ini dapat disebabkan karena perbedaan kondisi operasi.

(Abdurrahman, 2013)

III.1.1.2.7 Pengolahan dengan Anaerobic Digester

Pengolahan dengan teknik ini dilaksanakan ketika lahan yang tersedia kecil, tidak mencukupi untuk pembuatan kolam anaerobik. Anaerobik digester memiliki *retention time* selama 20 hari, dengan emisi metana sebesar 30%, lebih kecil daripada kolam anaerobik. Komposisi metana yang kecil ini disebabkan karena adanya transfer oksigen yang terjadi saat feed dimasukkan kedalam tangki. *Anaerobic digester* dapat dilengkapi dengan *mixer* (pengaduk). Pengadukan dalam tangki digester dapat meningatkan proses *digestion* yang disebabkan karena bakteri akan lebih sering berkontak dengan feed.

(Abdurrahman, 2013)

III.1.1.3 Proses Purifikasi

Pemurnian biogas disini dimaksudkan sebagai upaya untuk menghilangkan unsur-unsur penghambat (impuritis) yang

terkandung dalam biogas. Gas CO₂ dalam biogas perlu dihilangkan karena gas tersebut dapat dapat mengganggu proses Pembakaran atau mengurangi nilai kalor pembakaran biogas. Pada tahap ini gas yang dihilangkan adalah CO₂ sebagai produk samping dari reaksi pembentukan biogas. CO₂ bersifat korosif terhadap logam dan dapat menyebabkan korosi sehingga perlu dihilangkan karena biogas akan digunakan sebagai bahan bakar *gas engine*. Ada beberapa metode pemurnian biogas (CO₂ removal), antara lain: absorbsi fisika, absorbsi kimia, adsorpsi, pemisahan dengan membran, cryogenic dan konversi kimia menjadi senyawa lain. Pada pabrik ini, pemurnian biogas dilakukan dengan mereaksikan CO₂ dengan susu kapur sehingga menghasilkan produk berupa *Precipitated Calcium Carbonate* (PCC).

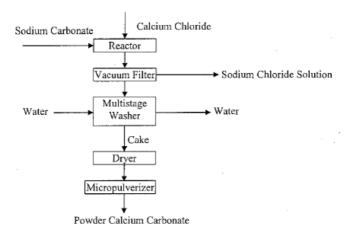
III.1.2 Proses Pembentukan PCC

Precipitated Calcium Carbonate (PCC) adalah senyawa kimia yang memiliki rumus CaCO₃. Akan tetapi PCC memiliki struktur kristal yang berbeda yang biasa disebut dengan kalsit. Benruk lain adalah struktur struktur yang biasa disebut dengan aragonite, yang lebih sedikit ditemukan. Secara umum, PCC diproduksi dengan 3 cara yaitu *Carbonation Method, Calcium Chloride-Sodium Carbonate Double Decomposition Method, dan Lime-Soda Method.*

III.1.2.1. Jenis Proses

Precipitated Calcium Carbonate (PCC) dapat dihasilkan melalui beberapa proses sebagai berikut:

- 1. Proses Calcium Chloride-Sodium Carbonate Double Decomposition (Calcium Chloride Process)
- 2. Proses Lime-Soda
- 3. Proses Karbonasi


III.1.2.1.1 Calcium Chloride-Sodium Carbonate Double Decomposition Method

Pada tahun 1997, produksi PCC secara signifikan meningkat dengan manufaktur *synthetic soda ash*. Larutan soda ash bereaksi dengan larutan kalsium klorida murni menghasilkan

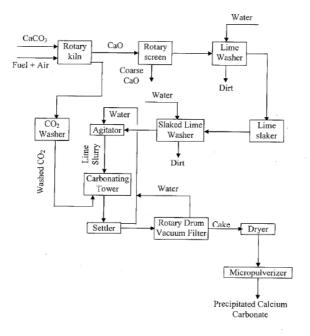
kalsium karbonat dan sodium klorida sebagai produk samping. Reaksi yang terjadi adalah sebagai berikut :

 $Na_2CO_3 + CaCl_2 \rightarrow CaCO_3 + 2NaCl$

Blok diagram dapat dilihat Gambar III.2

Gambar III. 2 Proses Pembuatan PCC dengan Metode Double Decomposition (Shahinoor, 2007)

Proses ini adalah yang paling sederhana dibanding tiga proses lainnya. Namun membutuhkan kalsium klorida dengan biaya rendah agar menarik secara ekonomi. Plant komersil berada di Solvay dengan fasilitas proses *synntethic ash*. Sodium chloride sulit untuk dicuci dari filter cake karbonat dan dihilangkan pada fasilitas waste treatment. Variabel dalam operasi prosesnya antara lain waktu, laju dan metode agitasi, konsentrasi, pH, dan temperature reaksi.


III.1.2.1.2 Lime-Soda

Proses Lime-Soda, disebut juga kausitasi, merupakan metode klasik untuk menghasilkan soda kaustik (soda hidroksida). Proses ini biasanya digunakan oleh pabrik alkali, dimana tujuan utamanya adalah me-recovery sodium hidroksida sedangkan precipitated calcium carbonate mentah hanya sebagai by-product. Pada proses ini, larutan sodium karbonat direaksikan dengan

kalsium hidroksida berlebih untuk menghasilkan sodium hidroksid cair dan *by-product* berupa *precipitated calcium carbonate* (PCC). Proses berlangsung pada suhu 30-60°C dengan konversi rata-rata < 90 %. Kualitas PCC yang dihasilkan dari proses ini kurang baik karena distribusi ukuran partikel PCC sangat beragam serta kandungan residu Ca(OH)₂ yang berlebih. Selain itu, pembuatan kaustik soda dengan metode ini mulai digantikan dengan metode elektrolisis.

$$Na_2CO_3 + Ca(OH)_2 \rightarrow 2NaOH + CaCO_3$$
 (Shahinoor, 2007)

III.1.2.1.3 Carbonation Method

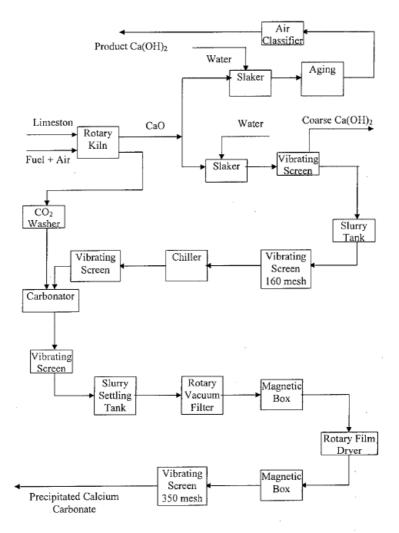
Gambar III. 3 Proses pembuatan PCC dengan Metode Karbonasi (Shahinoor, 2007)

Limestone dikalsinasi di dalam kiln untuk membentuk karbon dioksida dan quicklime. Secara umum, produk-produk ini

dipurifikasi secara terpisah sebelum digabungkan kembali. *Quicklime* dicampur dengan air sehingga menghasilkan *milk of lime* atau *dry hydrated lime* dimana keduanya adalah kalsium hidroksida. Ketika *dry hydrate* digunakan pada proses selanjutnya maka air akan ditabahkan untuk menghasilkan *milk of lime slurry*.

Pada proses karbonasi, karbon dioksida yang telah didinginkan dan dipurifikasi akan dilewatkan dalam bentuk gelembung melewati *milk of lime* pada reaktor yang disebut karbonator. Di akhir proses ini aka nada peengukur pH. Reaksi yang terjadi adalah sebagai berikut:

 $Kalsinasi \hspace{1cm} : CaCO_{3(s)} + \textit{heat} \rightarrow CaO_{(s)} + CO_{2(g)}$


Slaking: $CaO_{(s)} + H2O_{(l)} \rightarrow Ca(OH)_{2(s)}$

Karbonasi : $Ca(OH)_{2(s)} + CO_{2(g)} \rightarrow CaCO_{3(s)} + H_2O_{(l)}$

Produk karbonasi selanjutnya dapat lebih jauh dipurifikasi dengan menghilangkan zat pengotor yang tersisa pada milk of lime sebagai partikel kasar sebagai perbandingan untuk ukuran micrometer. Penyaringan ini juga digunakan untuk mengontrol ukuran maksimum dari produk. Pencucian filter cake tidak diperlukan dikarenakan air adalah satu-satunya produk samping dari karbonasi. Padatan filter cake secara umum mengandung CaCO3 sebanyak 25-60%, dipengaruhi pada ukuran partikel dari PCC. Pengeringan akhir menggunakan rotary film, tunnel, spray, atau flash dryer. Hasil yang kering biasanya tidak terintegrasi dalam micropulverizer Penggilingan material diangkut menuju storage bin yang besar untuk bulk loading atau packing dalam karung.

Beberapa kelas pelapisan dapat digunakan untuk aplikasi yang special. PCC dilapisi untuk meningkatkan flow properties, processing, dan physical properties dari produk akhir. Asam lemak, resins, dana gen basah digunakan sebagai material pelapisan sebelum atau sesudah pengeringan.

Crescent chemicals melakukan set up pada plant untuk produksi PCC di dekat Dhaka. Block diagram pada plant tersebut dapat dilihat pada **Gambar III.4**

Gambar III. 4 Pembuatan PCC pada Plant Dhaka (Shahinoor, 2007)

III.2 Seleksi Proses

III.2.1 Seleksi Proses Biogas

III.2.1.1 Pemilihan Bedasarkan Proses Netralisasi

Bedasarkan segi ekonomi, pada proses netralisasi limbah POME menggunakan Ca(OH)₂. Ca(OH)₂ sering digunakan untuk peningkatan pH larutan. Peningkatan pH optimum akan memacu proses pembusukan, sehingga meningkatkan efektivitas kerja mikroba dan meningkatkan produksi biogas

(caesarvery.com)

III.2.1.2 Pemilihan Bedasarkan Tipe Digester

Pada tahap ini dilakukan pemilihan metode untuk pengolaha limbah POME menjadi biogas. Perbandingan *open & closed digester* adalah sebagai berikut:

Tabel III. 3 Perbedaan open digester system dan closed digester system

	J	
Parameters	Open digester system	Closed anaerobic digester
COD removal efficiency (%)	81%	97%
HRT (days)	20	10
Methane utilization	Released to atmosphere	Recoverable
Methane yield (kg CH ₄ /kg COD removed)	0.11	0.2
Methane content (%)	36	55
	COD removal efficiency (%) HRT (days) Methane utilization Methane yield (kg CH ₄ /kg COD removed)	COD removal efficiency (%) HRT (days) 20 Methane utilization Released to atmosphere Methane yield (kg CH ₄ /kg COD removed)

(Sulaiman, 2007)

Di samping itu kelemahan dari system terbuka adalah sebagai berikut :

- 1. Kotoran (*sludge*) yang dikeluarkan adalah sebesar 100mg/L atau 100ppm
- 2. Butuh area produksi yang sangat luas
- 3. Emisi biogas tinggi yakni sebesar 20m/m³

Dari uraian diatas dapat disimpulkan bahwa *closed digester system* atau *anaerobic digestion* merupakan metode yang paling menguntungkan untuk pengolahan limbah POME menjadi biogas. Lebih lanjut lagi biaya operasi bisa turun dari pemanfaatan biogas untuk energi panas atau listrik di pabrik kelapa sawit skala kecil. Metode ini juga bias diterapkan untuk pembuangan (disposal) limbah dengan kualitas yang baik dengan harga yang murah.

III.2.1.3 Pemilihan Bedasarkan Proses Pengolahan Anaerobik Berikut adalah perbandingan antara beberapa metode pengolahan secara anaerobik:

Tabel III. 4 Perbandingan Metode Pengolahan Secara Anaerobik

Metode Pengolahan	Operating OLR	Hydraulic Retention	Methane composition	COD removal
Anaerobik	(Kg	Time (days)	(%)	efficiency
	COD/m³/day)			(%)
Anaerobic	1,40	40,0	54,4	97,8
pond				
Anaerobic	4,50	15,00	63,0	94,0
filtration				
Fluidized Bed	40,00	0,25	N/A	78,0
UASB	10,63	4,00	54,2	98,4
UASFF	11,58	3,00	71,9	97,0
CSTR	3,33	18.00	62.5	80.0

(Abdurrahman, 2013)

Berikut adalah perbandingan keuntungan dan kerugian beberapa metode pengolahan secara anaerobic :

Tabel III. 5 Keuntungan dan Kerugian Metode Pengolahan Limbah Anaerobik

Metode	Keuntungan	Kerugian
Pengolahan		_
Anaerobik		
Kolam Anaerobik		
Anaerobic Filtration	- Volume reactor yang dibutuhkan kecil	- Ketika OLR tinggi, dapat menjadi clogging

	Mammadulai afflyant 1	Diaya manduluma tirre-i
	- Memproduksi effluent dengan	- Biaya pendukung tinggi
	kualitas yang tinggi	- Tidak cocok untuk
	- Hydraulic retention times pendek	limbah yang memiliki
	- Dapat mentolerir feed dalam	Total Suspended Solid
	jumlah besar yang dimasukkan	yang tinggi
	secara tiba-tiba	
Fluidized Bed	- Memiliki luas permukan yang	- Membutuhkan energy
	sangat besar untuk biomassa yang	yang besar untuk
	memungkinkan untuk pengolahan	fluidization bed
	limbah dengan OLR tinggi dan	- Biaya mahal
	HRT pendek	 Tidak cocok untuk
	- Masalah channeling rendah	limbah yang memiliki
	- Proses pencampuran sangat baik	suspended solid yang
	dalam kondisi apapun	tinggi
UASFF	- Organic Loading Rate lebih	- OLR rendah ketika
- 7	besar daripada anaerobic filtration	mengolah limbah yang
	- Tidak ada masalah clogging	mengandung Total
	- Penyimpanan biogas lebih besar	Suspended Solid tinggi
	- Operasi lebih stabil	Buspenaea Bona iniggi
	- Dapat mentolerir masukan yang	
	tiba-tiba	
UASB	- Sesuai untuk pengolahan limbah	- Performa reactor
CADD	yang mengandung suspended	tergantung pada
	solid yang tinggi	kecepatan pengendapan
	- Kualitas effluent yang tinggi	sludge
	, , ,	C
	- Tidak ada media lain yang dibutuhkan	- Foaming dan
	dibutunkan	pengapungan sludge pada
		OLR yang tinggi
		- Waktu start up cukup
		lama jika tidak memakai
		sludge yang susah
CSTR	- Dalam proses pencampuran,	- Produksi gas akan
	kontak antara limbah dan	kurang efisien saat
	biomassa lebih efektif	volume masukan dalam
	- Produksi gas lebih besar	reactor besar
	daripada conventional method	- Penyimpanan biomass
	(kolam anaerobik)	sedikit
		(11.1 1 20.10)

(Abdurrahman, 2013)

Melihat dari aspek ekonomi dan kebutuhan maka anaerobic biodigester dengan tipe CSTR dirasa cukup memberikan keuntungan. Agitasi juga berpengaruh terhadap produksi biogas, dimana pemberian agitasi yang berpengaruh lebih baik pada peningkatan laju produksi biogas dibandingkan tanpa agitasi. Hal ini terjadi karena dengan agitasi substrat akan homogen, inokulum kontak langsung dengan substrat dan merata,

sehingga proses perombakan lebih efektif. Barford (1983) menyatakan bahwa agitasi dapat meningkatkan intensitas kontak antar organisme dan substrat, dibandingkan tanpa agitasi. Pengadukan dimaksudkan agar kontak antara limbah segar dan bakteri perombak lebih baik, dan menghindari padatan terbang atau mengendap, yang akan mengurangi keefektifan digester dan menimbulkan 'plugging' gas dan lumpur Edwi, 2007)

Side entering adalah mixer yang masuk ke tangki atau vessel dari samping. Side entering digunakan untuk tangki yang besar karena alirannya dapat mencapai semua bagian dari tangki. Mixer sering dipasang dekat dengan bagian bawah untuk menjamin pencampuran dari isi tangki bahkan sampai di level liquid paling rendah. Pengadukan dalam tangki digester meningkatkan proses digestion yang disebabkan bakteri akan lebih sering berkontak dengan feed sehingga akan membuat daerah anaerob yang semakin besar. Keuntungan lainnya adalah biaya awal yang rendah dan tidak ada pemasangan bantalan diatas tangki. Penurunan kecepatannya sederhana karena kecepatan operasinya lebih tinggi daripada kebanyakan turbine mixer. Side entering agitator digunakan untuk *blending* zat cair yang viskositasnya rendah pada tangki yang besar, dimana ini tidak dapat digunakan untuk agitator konvensional yang didukung dari atas tangki. Sehingga dari beberapa penggunaan reactor anarobik diatas, penggunaan biodigester tipe side entering mixer dipilih.

III.2.1.4 Pemilihan Bedasarkan Tipe Proses

Berikut ini merupakan perbandingan pemilihan *anaerobic digestion* berdasarkan tipe proses:

Tabel III. 6 Perbandingan Tipe Proses Batch dan Continue

1 400 01 1220 0 1 010 united light 1 1 p 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
Parameter	Tipe Batch	Tipe Kontinyu					
Teknis	Proses pembentukan biogas yang lebih teratur (loading, digesting, settling, dan unloading). Tidak membutuhkan teknologi tinggi.	 Proses pembentukan biogas yang tidak teratur karena memerlukan tangki buffer dan post-treatment. Membutuhkan teknologi yang tinggi. 					
Biologis	 Organic loading rate tinggi. Yield biogas tinggi. 	Organic loading rate rendah.					

3.	Waktu fermentasi cepat.	2.	Yield biogas rendah
		3.	Waktu fermentasi lambat.

Berdasarkan perbandingan kedua tipe digester diatas, maka dipilih *batch digester*. Pemilihan digester ini dengan pertimbangan kita menginginkan yield biogas yang banyak dan waktu fermentasi yang cepat sehingga dipilih *batch digester* ini.

III.2.1.5 Pemilihan Berdasarkan Suhu Digester

Berikut ini merupakan perbandingan pemilihan *anaerobic* digestion berdasarkan suhu digester:

Tabel III. 7 Perbandingan Suhu Digester

	Fermentasi						
Kondisi Suhu on Time (day) Kondisi On					Kualitas Biogas	Yield Biogas	
Mesophilic	30 – 42	15-30	Memerluk an panas	Tidak stabil	Tinggi	Tinggi	
Thermophilic	43 – 55	15	Tidak memerluk an panas	Stabil	Rendah	Rendah	

(Biogas From Waste & Renewable Energy, 2005)

Dari dua perbandingan kondisi digester tersebut maka kondisi *mesophilic* untuk dikontrol dalam pengoperasiannya dan lebih baik kualitas biogasnya dibandingkan *thermophilic*. Sehingga kondisi suhu *mesophilic* dipilih sebagai kondisi suhu dalam *digester*.

III.2.2 Seleksi Proses PCC

III.2.2.1 Pemilihan Solid-Liquid Separator

Dari tiga proses pembuatan PCC, perbandingan proses dapat dilihat pada tabel berikut:

Tabel III. 8 Perbandingan Proses Pembuatan PCC

1 W O I 1220 O I Greathant gan I 10000 I Ome datam I 0 0							
Pembanding	Proses Double Decomposition	Proses Lime Soda	Proses Karbonasi				
Temperatur Reaksi	65°C	55°C	30-60°C				
Tekanan Operasi	atmosferis	Atmosferis atau bertekanan	Atmosferis atau 2-10 atm				
Konversi	80%	<90%	95%				
Profit Kasar	2,94x10 ⁻⁵ US\$	1,675x10 ⁻⁵ US\$	5,326x10 ⁻⁵ US\$				
Bahan Baku	CaCl ₂	Na ₂ CO ₃	CaCO ₃				

Sehingga untuk pembuatan PCC proses yang dipilih adalah karbonasi.

Dibandingkan dengan dua proses lainnya, karbonasi memiliki beberapa kelebihan yaitu:

- 1. Bahan baku murah dan banyak terdapat di Indonesia.
- 2. Produk yang dihasilkan memiliki kemurnian tinggi.
- 3. Diantara ketiga proses, memiliki profit yang jauh lebih besar.

III.2.2.2 Pemilihan Solid-Liquid Separator

Dalam proses pemisahan produk PCC dengan liquid, terdapat beberapa metode yang digunakan seperti pada **Tabel III.9** berikut:

Tabel III. 9 Perbandingan Jenis Solid-Liquid Separator

		idiligali Jellis k		
Jenis Separator	Liquid in	Konsentrasi	Ukuran	Biaya
	Solid	Padatan Feed	Partikel	
	Product			
Vacuum drum	Baik	Tinggi -	Sedang	Sedang –
filter		Sedang		Tinggi
Disc filter	Baik	Sedang	Halus	Sedang –
				Tinggi
Thickener	Buruk	Sedang	Sedang	Sangat
				rendah –
				Sedang
Clarifier	Buruk	Rendah	Halus	Sangat
				rendah –
				Sedang
Plate and	Baik	Rendah –	Halus	Sedang
Frame Filter		Sedang		
Press				
Centrifugation	Buruk	Rendah –	Halus	Tinggi
disc		Sedang		
Centrifugation	Sedang	Sedang –	Sedang –	Sedang –
solid bowl		Tinggi	Halus	Tinggi
Cyclones	Buruk –	Rendah –	Sedang -	Rendah –
	Sedang	Sedang	Halus	Sedang
Strainer	Buruk	Tinggi	Kasar	Sangat
				Rendah
Ultrafiltration	Sedang	Rendah	Sangat	Sangat
			Halus	Tinggi

Bedasarkan perbandingan di atas, jenis separator yang digunakan adalah Clarifier Strainer, dan Plate and Frame Filter Press, hal itu dikarenakan beberapa hal berikut yaitu:

- 1. Clarifier digunakan terlebih dahulu untuk mengurangi konsentrasi liquid yang masih sangat tinggi dengan biaya yang sangat rendah.
- 2. Kemudian digunakan Plate and Frame Filter Press, karena konsentrasi liquid pada produk rendah sehingga menghasilkan kualitas produk yang baik serta konsentrasi padatan sudah lebih tinggi dari sebelumnya.
- 3. Kemudian digunakan Strainer karena biaya yang rendah dan tidak rumit dalam pemisahan solid

III.2.2.3 Pemilihan Dryer

Perbandingan antara berbagai jenis dryer yang dapat diaplikasikan pada pengeringan PCC dapat dilihat pada **Tabel III.10**

Tabel III. 10 Perbandingan Jenis Dryer

Jenis Dryer	Kebutuhan Energi, 10 ⁹ MJ/y	Drying Efficiency,	Fase	Ukuran Partikel	Moisture Content
Conveyor	1.9	40-90	Solid	Intermediate to large	Moderate to high
Drum	2.4	85	Liquid	Intermediate to large	ı
Fluidized Bed	23	40-80	Solid	Small	Moderate to high
Rotary (indirect)	53	78-90	Solid	Small	Moderate to high
Spray	9.5	50	Liquid	-	-
Vacuum tray	<1	60	Solid	Small	Moderate to high
Microwave to dielectric	<1	60	Solid	Small	Low

(Fellow, 1988)

Bedasarkan perbandingan pada **Tabel III.10**, jenis dryer yang digunakan adalah rotary dryer (indirect), hal itu dikarenakan beberapa hal berikut yaitu :

- 1. Efisiensi yang tinggi mencapa hingga 90%
- 2. Fase dari *feed* yang masuk berupa solid dengan moisture content yang tinggi (mencapai sekitar 95%) serta ukuran partikel yang kecil.

III.3 Uraian Proses

III.3.1 Pabrik Biogas

Proses produksi biogas dari proses fermentasi anaerobik secara umum melalui 3 tahapan pokok proses, yakni:

- 1. Tahap persiapan bahan baku meliputi proses pengenceran dan netralisasi
- 2. Tahap fermentasi anaerobik
- 3. Tahap pemurnian gas

Berikut adalah penjelasan yang lebih lengkap tentang proses tersebut:

III.3.1.1 Tahapan Pre-treatment

Tahap pre-treatment ini dimaksudkan untuk menetralkan kondisi keasaman dari POME. POME masuk tangki pre-treatment (M-110) dengan *rate* 29,58 m³ per dengan pH 4,17. Kemudian POME ini akan dinetralkan dengan cara menambahkan larutan Ca(OH)₂. POME dinetralkan dengan pH 7. Setelah itu, POME yang sudah dinetralkan dialirkan menuju tangki starter (M-120) dan digester (M-210) menggunakan bantuan pompa (L-121) dan pompa (L-211).

III.3.1.2 Tahap Starter

Substrat dari tangki pre-treatment (M-110) dialirkan dengan pompa (L-121). Tangki starter disini berfungsi sebagai tempat adaptasi dari mikroorganisme sebelum masuk ke digester (M-210). Tangki starter beroperasi pada suhu 35.2°C dengan tekanan 1 atm dalam kondisi *anaerobic*.

Substrat yang masuk dalam tangki starter kemudian dicampur dengan *liquid manure* (*mix culture mikroorganisme*) untuk nutrisi mikroorganisme, ditambahkan urea sebagai sumber N, dan DAP sebagai sumber P. Waktu tinggal pada tangki starter adalah 5 hari, sehingga mikroorganisme berada pada fase log saat dimasukkan ke dalam *digester*.

Reaksi yang terjadi pada tahap pembuatan starter ini adalah pembentukan sel-sel mikroorganisme dan terjadi tahap hidrolisa, asetogenik/asidogenik serta metanogenik sehingga hasil dari tangki starter ini berupa mikroorganisme pada kondisi fase log dan dialirkan dengan pompa menuju digester.

III.3.1.3 Tahap Digester

POME dari tangki pre-treatment (M-110) dan substrat dari tangki starter (M-120) dialirkan menuju digester (M-210). Untuk mencegah terbentuknya buih yang dapat menggangu proses fermentasi di dalam tangki digester maka dilakukan pengadukan. Proses di dalam tangki ini terjadi selama 18 hari dengan suhu operasi *mesophilic* 35.2°C dengan tekanan 1 atm dalam kondisi *anaerobic*. Sedangkan pH operasi dijaga dalam kondisi netral. Apabila pH dalam tangki mengalami penurunan, maka ditambahkan larutan Ca(OH)₂.

Kemudian gas yang terbentuk dari proses tersebut dikurangi kadar air nya dengan menggunakan water trap (H-222), lalu dialirkan menuju *compressor* (G-221) sebelum memasuki *bubble coloumn* (R-220). Sedangkan aliran *effluent* dari digester menuju *clarifier* (H-310) dengan menggunakan pompa *effluent* (L-311). Dalam *clarifier*, air limbah dan substratnya dipisahkan. Substrat (padatan) yang dihasilkan kemudian digunakan sebagai pupuk kompos. Sedangkan *overflow* dari *clarifier* dapat digunakan sebagai pupuk organik cair.

III.3.2 Pabrik PCC

III.3.2.1 Slaking

Kalsium oksida digunakan sebagai feed dengan kemurnian 92%. Kalsium oksida kalsinasi kemudian dihidrasi (*slaking*) dengan air pada temperatur 30°C untuk menghasilkan *slurry* Ca(OH)₂ pada reaktor slaker (M-130). Perbandingan air dan padatan CaO adalah 1:431 massa. CaO yang terlarut memudahkan terjadinya pembentukan Ca(OH)₂. Reaksi yang terjadi:

 $CaO_{(s)} + H2O_{(l)} \rightarrow Ca(OH)_{2(s)} \quad \Delta H \ (35^{\circ}C) = -65.47 kJ/mol$ Larutan yang terbentuk terdiri dari kalsium hidroksida larut, ion kalsium (Ca^{2+}) dan ion hidroksida (OH^{-})

III.3.2.2 Karbonasi

Larutan $Ca(OH)_2$ dari tahap slaking kemudian diumpankan pada bubble column (R-220). Sebelum itu, Larutan

Ca(OH)₂ dipisahkan dari partikelnya dengan menggunakan Screener (H-221), setelah itu Larutan Ca(OH)₂ dinaikkan suhunya hingga menjadi 40° dengan menggunakan Heater (E-221) sebelum masuk Bubble Kolom. Kolom ini mengontakkan CO₂ yang berasal dari aliran biogas. Di dalam reaktor ini kalsium hidroksida direaksikan dengan gas karbon dioksida.

$$Ca(OH)_{2(s)} + CO_{2(g)} \rightarrow CaCO_{3(s)} + H2O_{(l)} \Delta H (45^{\circ}C) = -112.48 kj/mol$$

Suhu larutan saat memasuki Bubble Column (R-220) adalah 40° C dengan tekanan 1 atm. Sedangkan biogas bersuhu 40° C dengan tekanan 2 atm. Tinggi bubble column yang digunakan adalah 17 meter. Pada kondisi ini waktu tinggal adalah 30 menit. Bubble Column dilengkapi dengan sparger untuk memperkecil ukuran gas CO_2 dan memperluas permukaan kontak.

Aliran yang digunakan adalah *counter current* dengan produk CaCO₃ akan mengalir kebawah dan di pompa ke clarifier (H-330). Gas yang keluar telah mengandung 97% massa metana yang bersih dari CO₂. Gas yang keluar mengandung 1% CO₂ dialirkan menuju adsorber (D-370) untuk dihilangkan kadar airnya. Sebelum itu, tekanan dari biogas dinaikkan menjadi 10 atm dengan menggunakan *Compressor* (G-371) dan suhu keluaran *Compressor* diturunkan menjadi 40° dengan menggunakan *Cooler* (H-371). Setelah kadar airnya berkurang. Biogas yang terpurifikasi menjadi *biomethane* ditampung dalam Tangki penampung *biomethane* (F-380)

III.3.2.3 Pemurnian

Tahap pemurnian melibatkan Clarifier (H-330) yang berfungsi untuk meningkatkan kepekatan, *Plate and Frame Filter Press* (H-340) yang berfungsi untuk mengurangi kandungan liquid, dan *Rotary Dryer* (B-360) untuk mengeringkan padatan. Air overflow dari Clarifier dialirkan ke aliran limbah sedangkan filtratenya mengandung 86% massa solid dialirkan ke *Plate and Frame Filter Press* menggunakan pompa (L-331).

Setelah di press dengan *Plate and Frame Filter*, kandungan air pada padatan PCC menurun drastis. Diperlukan 6

batch dalam 1 hari dengan waktu 4 jam per cycle pada *Plate and Frame Filter Press*. Aliran filtrate dari alat ini diolah ke *Waste Treatment*. Sedangkan *cake* yang terbentuk dibawa ke *Rotary Dryer* (B-360) dengan menggunakan *Screw Conveyor* (J-351).

Sebelum memasuki *Rotary Dryer*, suhu padatan cake PCC adalah 40,3°C. Udara kering digunakan untuk mengambil kandungan air pada *cake*. Udara yang dibutuhkan adalah 153,35 Kg dengan memanaskan udara hingga 120°C. Setelah berkontak, PCC yang keluar menjadi bersuhu 42°C. Sedangkan udara keluar bersuhu 41.3°C. PCC yang menjadi produk memiliki kemurnian 99,8%

BAB IV NERACA MASSA DAN NERACA ENERGI

IV.1 Neraca Massa

Perhitungan neraca massa merupakan prinsip dasar dalam perancangan desain sebuah pabrik. Dari neraca massa dapat ditentukan kapasitas produksi, kebutuhan bahan baku menggunakan perhitungan manual dengan *Microsoft Excel*. Perhitungan neraca massa menggunakan neraca massa komponen dan neraca massa *overall*. Dalam perhitungan ini berlaku teori hukum Kekekalan Massa dengan asumsi aliran *steady state*. Maka rumus yang digunakan:

$$\binom{Aliran\ massa}{masuk\ dalam\ sistem} - \binom{Aliran\ massa}{keluar\ dalam\ sistem} = \binom{Akumulasi\ massa}{dalam\ sistem}$$

Neraca massa Pabrik Biogas dan PCC dari Limbah Kelapa Sawit

dihitung dengan data sebagai berikut:

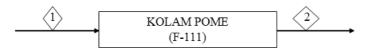
Basis : 1 jam operasi

Waktu Operasi : 330 Hari/tahun (1 hari = 24 jam)

Jumlah POME : 285.120 ton/tahun

Komposisi Limbah Cair Kelapa Sawit (POME)

Data komposisi feed disajikan dalam tabel III.1 di bawah ini:

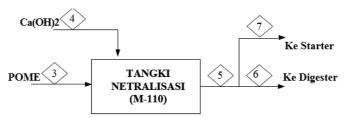

Tabel IV. 1 Komposisi Feed POME

No	Komponen	BM	Fraksi Massa	Massa (kg)
1	Karbohidrat	1620000	0,3555	12798
2	Lemak	806	0,1696	6105,6
3	Surfur	32	0,0001	2,52
4	Nitrogen	14	0,0026	93,6
5	Kalium	39	0,0486	1748,88
6	Natrium	23	0,0005	18,36

7	Kalsium	40	0,0090	322,56
8	Magnesium	24	0,0050	178,2
9	Posfor	31	0,0780	2809,08
10	Air	18	0,3312	11923,2
TOTAL		1	36000	

(Alam, 2012)

1. Kolam POME (F-111)



Tabel IV. 2 Neraca Massa Kolam POME

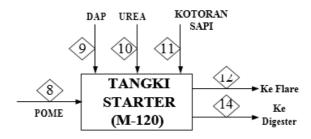
		MASUK	REA	KSI	KELUAR	
No	Komponen	Aliran <1>	Konsumsi	Generasi	Aliran <2>	
	_	Kg				
1	Karbohidrat	12798,000	0	0	12798,000	
2	Lemak	6105,600	0	0	6105,600	
3	Sulfur	2,520	2,520	0	0,000	
4	Nitrogen	93,600	0	0	93,600	
5	Kalium	1748,880	0	0	1748,880	
6	Natrium	18,360	0	0	18,360	
7	Kalsium	322,560	0	0	322,560	
8	Magnesium	178,200	0	0	178,200	
9	Posfor	2809,080	0	0	2809,080	
10	Air	11923,200	1,418	0	11921,783	
11	Asam Sulfat	0	0	7,718	7,718	
	Total	36000	3,938	7,718	36003,780	

Massa masuk (Kg)		Massa Keluar (Kg)	
Aliran <1>	36000	Aliran <2>	36003,780
Generasi	7,718	Konsumsi	3,938
Total	36007,718	Total	36007,718

2. Tangki Netralisasi (M-110)

Tabel IV. 3 Neraca Massa Tangki Netralisasi

		MA	SUK
No	Komponen	Aliran <3>	Aliran <4>
		F	ζg
1	Karbohidrat	12798,0	0
2	Lemak	6105,60	0
3	Sulfur	0	0
4	Nitrogen	93,60	0
5	Kalium	1748,88	0
6	Natrium	18,36	0
7	Kalsium	322,56	0
8	Magnesium	178,20	0
9	Posfor	2809,08	0
10	Air	11921,8	0
11	Asam Sulfat	7,72	0
12	Kalsium Hidroksida	0,00	32,762
13	Kalsium Sulfat	0,00	0
TOTAL		36003,8	32,762


		REA	AKSI
No	Komponen	Konsumsi	Generasi
		ŀ	Κg
1	Karbohidrat	0	0
2	Lemak	0	0
3	Sulfur	0	0
4	Nitrogen	0	0
5	Kalium	0	0
6	Natrium	0	0
7	Kalsium	0	0
8	Magnesium	0	0
9	Posfor	0	0
10	Air	0	2,835
11	Asam Sulfat	7,718	0
12	Kalsium Hidroksida	32,037	0,725
13	Kalsium Sulfat	0	10,721
	TOTAL	39,755	14,28

	Komponen	KELUAR		
No			Aliran <15>	
			I	
		Kg		
1	Karbohidrat	11944,80	853,200	
2	Lemak	5698,560	407,040	
3	Sulfur	0	0	
4	Nitrogen	87,360	6,240	

TOTAL		33610,33	2400,738
13	Kalsium Sulfat	10,006	0,715
12	Kalsium Hidroksida	1,353	0,097
11	Asam Sulfat	0	0
10	Air	11129,64	794,975
9	Posfor	2621,808	187,272
8	Magnesium	166,320	11,880
7	Kalsium	301,056	21,504
6	Natrium	17,136	1,224
5	Kalium	1632,288	116,592

Massa masuk (Kg)		Massa Keluar (Kg)	
Aliran <3>	36004	Aliran <6>	33610,331
Aliran <4>	33	Aliran<15>	2400,738
Generasi	14	Konsumsi	39,755
Total	36050,823	Total	36050,823

3. Starter (M-120)

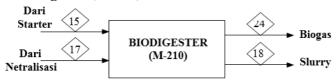
Tabel IV. 4 Neraca Massa Tangki Starter

	Tabel IV. 4 Ivel	MASUK		
No	Komponen	Aliran <8>	Aliran <9> <10> <11>	
			Kg	
1	Karbohidrat	853,200	0	
2	Lemak	407,040	0	
3	Sulfur	0	0	
4	Nitrogen	6,240	0	
5	Kalium	116,592	0	
6	Natrium	1,224	0	
7	Kalsium	21,504	0	
8	Magnesium	11,880	0	
9	Posfor	187,272	0	
10	Air	794,975	0	
11	Asam Sulfat	0	0	
12	Kalsium Hidroksida	0,097	0	
13	Kalsium Sulfat	0,715	0	
14	DAP (Aliran 9)	0	29,520	
15	Urea (Aliran 10)	0	98,400	
16	Slurry (Aliran 11)	0	1072	
17	Asam Asetat	0	0	
18	Gliserol	0	0	
19	Hidrogen Sulfida	0	0	

20	Kalsium Oksida	0	0
21	Amonium Hidroksida	0	0
22	Karbon Dioksida	0	0
23	Monoamonium Posfat	0	0
24	Metana	0	0
25	Asam Palmitat	0	0
26	Air (Gas)	0	0
	TOTAL	2400,832	1200,016

		RE	AKSI
No	Komponen	Aliran <8>	Aliran <9> <10> <11>
			Kg
1	Karbohidrat	767,880	0
2	Lemak	366,336	0
3	Sulfur	0	0
4	Nitrogen	0	0
5	Kalium	0	0
6	Natrium	0	0
7	Kalsium	0	0
8	Magnesium	0	0
9	Posfor	0	0
10	Air	27,765	9,545
11	Asam Sulfat	0	0

TOT	AL	1226,037	1497,500
26	Air (Gas)	0	0
25	Asam Palmitat	0	0
24	Metana	0	445,789
23	Monoamonium Posfat	0	12,859
22	Karbon Dioksida	0	842,094
21	Amonium Hidroksida	0	23,047
20	Kalsium Oksida	0	0,040
19	Hidrogen Sulfida	0	0,024
18	Gliserol	0	41,815
17	Asam Asetat	0	122,287
16	Slurry (Aliran 11)	0	0
15	Urea (Aliran 10)	49,200	0
14	DAP (Aliran 9)	14,760	0
13	Kalsium Sulfat	0,097	0
12	Kalsium Hidroksida	0	0


		KELUAR	
		Aliran	Aliran
No	Komponen	<12>	<14>
110	Komponen		Kg
1	Karbohidrat	0	85,320
2	Lemak	0	40,704
3	Sulfur	0	0
4	Nitrogen	0	6,240
5	Kalium	0	116,592

	TOTAL	2400,832	2556,978
26	Air (Gas)	27,332	0
25	Asam Palmitat	0	0
24	Metana	445,789	0
23	Monoamonium Posfat	0	12,859
22	Karbon Dioksida	842,493	0
21	Amonium Hidroksida	0	23,047
20	Kalsium Oksida	0	0,040
19	Hidrogen Sulfida	0,024	0
18	Gliserol	0	41,815
17	Asam Asetat	0	122,287
16	Slurry (Aliran 11)	0	1072,096
15	Urea (Aliran 10)	0	49,200
14	DAP (Aliran 9)	0	14,760
13	Kalsium Sulfat	0	0,618
12	Kalsium Hidroksida	0	0,097
11	Asam Sulfat	0	0
10	Air	0	749,423
9	Posfor	0	187,272
8	Magnesium	0	11,880
7	Kalsium	0	21,504
6	Natrium	0	1,224

Massa masuk (Kg)		Massa Keluar (Kg)	
Aliran <8>	2400,832	Aliran <12>	1315,239
Aliran <9> <10>	1200,016	Aliran	2556,978

<11>		<14>	
Generasi	1497,500	Konsumsi	1226,037
Total	5098,254	Total	5098,254

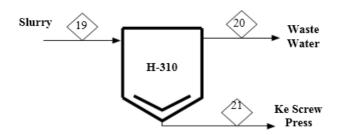
4. Biodigester (M-210)

Tabel IV. 5 Neraca Massa Biodigester

	Tabel IV. 3 N		ASUK
No	Komponen	Aliran <15>	Aliran <17>
			Kg
1	Karbohidrat	85,320	11944,80
2	Lemak	40,704	5698,560
3	Sulfur	0	0
4	Nitrogen	6,240	87,360
5	Kalium	116,592	1632,288
6	Natrium	1,224	17,136
7	Kalsium	21,504	301,056
8	Magnesium	11,880	166,320
9	Posfor	187,272	2621,808
10	Air	749,423	11129,64
11	Asam Sulfat	0	0
12	Kalsium Hidroksida	0,097	1,353
13	Kalsium Sulfat	1	10,006

14	DAP (Aliran 9)	14,760	0
15	Urea (Aliran 10)	49,200	0
16	Slurry (Aliran 11)	1072,096	0
17	Asam Asetat	122,287	0
18	Gliserol	41,815	0
19	Hidrogen Sulfida	0	0
20	Kalsium Oksida	0,040	0
21	Amonium Hidroksida	23,047	0
22	Karbon Dioksida	0	0
23	Monoamonium Posfat	12,859	0
24	Metana	0	0
25	Asam Palmitat	0	0
26	Air (Gas)	0	0
	TOTAL	2556,978	33610,33

		REAKSI	
No	Komponen	Konsumsi	Generasi
		K	Κg
1	Karbohidrat	10827,1	0
2	Lemak	5165,34	0
3	Sulfur	0	0
4	Nitrogen	0	0
5	Kalium	0	0


6 Natrium 0 7 Kalsium 0 8 Magnesium 0 9 Posfor 0 10 Air 356,507 13 11 Asam Sulfat 0 Kalsium 0 0 12 Hidroksida 0 13 Kalsium Sulfat 0,618 14 DAP (Aliran 9) 7,380	0 0 0 0 84,58 0 0 0
8 Magnesium 0 9 Posfor 0 10 Air 356,507 13 11 Asam Sulfat 0 Kalsium 0 Hidroksida 0 13 Kalsium Sulfat 0,618	0 0 34,58 0 0
9 Posfor 0 10 Air 356,507 13 11 Asam Sulfat 0 Kalsium 12 Hidroksida 0 13 Kalsium Sulfat 0,618	0 34,58 0 0
10 Air 356,507 13 11 Asam Sulfat 0 Kalsium 0 0 Hidroksida 0 0 13 Kalsium Sulfat 0,618	34,58 0 0
11 Asam Sulfat 0 Kalsium 12 Hidroksida 0 13 Kalsium Sulfat 0,618	0 0
12 Kalsium Hidroksida 0 13 Kalsium Sulfat 0,618	0
12 Hidroksida 0 13 Kalsium Sulfat 0,618	0
0,010	_
14 DAP (Aliran 9) 7,380	0
1.	
15 Urea (Aliran 10) 24,600	0
16 Slurry (Aliran 11) 0	0
17 Asam Asetat 0 172	24,575
18 Gliserol 0 58	9,592
19 Hidrogen Sulfida 0 0	,154
	,254
Amonium 0 11 Hidroksida	1,523
22 Karbon Dioksida 0 11	382,3
Postat Postat	,430
24 Metana 0 6	,430
25 Asam Palmitat 0 6	5286
26 Air (Gas) 0	0
TOTAL 16381,6 20	

		KE	LUAR
No	Komponen	Aliran	Aliran
110	Komponen	<18>	<24>
			Kg
1	Karbohidrat	0	1203
2	Lemak	0	574
3	Sulfur	0	0
4	Nitrogen	0	94
5	Kalium	0	1749
6	Natrium	0	18
7	Kalsium	0	323
8	Magnesium	0	178
9	Posfor	0	2809
10	Air	0	11272
11	Asam Sulfat	0	0
12	Kalsium Hidroksida	0	1
13	Kalsium Sulfat	0	10
14	DAP (Aliran 9)	0	7
15	Urea (Aliran 10)	0	25
16	Slurry (Aliran 11)	0	1072
17	Asam Asetat	0	1847
18	Gliserol	0	631
19	Hidrogen Sulfida	0	0
20	Kalsium Oksida	0	35
21	Amonium Hidroksida	11382,35	0
22	Karbon Dioksida	0	19,289
23	Monoamonium	6285,624	0

	Posfat		
24	Metana	385,141	0
25	Asam Palmitat	0	0
26	Air (Gas)	0	35
	TOTAL	18053,272	21867

Massa masuk (K	(g)	Massa Keluar	(Kg)
Aliran <15>	2556,978	Aliran <18>	18053,272
Aliran <17>	33610,331	Aliran<24>	21867,576
Generasi	20135,090	Konsumsi	16381,550
Total	56302,398	Total	56302,398

5. Clarifier (H-310)

Tabel IV. 6 Neraca Massa Clarifier

		MASUK	KELUAR	
No	Komponen	Aliran<19>	Aliran <20>	Aliran< 21>
		Kg		1
1	Karbohidrat	1203,012	0	1203,02
2	Lemak	573,926	0	573,926
3	Sulfur	0	0	0
4	Nitrogen	93,600	93,600	0

5	Kalium	1748,880	1748,880	0
6	Natrium	18,360	18,360	0
7	Kalsium	322,560	322,560	0
8	Magnesium	178,200	178,200	0
9	Posfor	2809,080	2809,080	0
10	Air	11272,003	8488,937	2783,065
11	Asam Sulfat	0	0	0
12	Kalsium Hidroksida	1,450	0	1,450
13	Kalsium Sulfat	10,007	10,007	0
14	DAP	7,380	0	7,380
15	Urea	24,600	0	24,600
16	Slurry	1072,096	0	1072,096
17	Asam Asetat	1846,862	0	1846,862
18	Gliserol	631,407	0	631,407
19	Hidrogen Sulfida	0	0	0,0
20	Kalsium Oksida	0,294	0	0,294
21	Amonium Hidroksida	34,570	0	34,570
22	Karbon Dioksida	0	0	0
23	Monoamonium Posfat	19,289	0	19,289
	TOTAL	21867,576	13669,64	8197,92

Massa masuk (Kg)	Massa Keluar	(Kg)
Aliran<19>	21867,576	Aliran<20>	13669,624
		Aliran<21>	8197,952
Total	21867,576	Total	21867,576

6. Screw Press (H-320)

Tabel IV. 7 Neraca Massa Screw Press

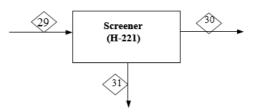
		MASUK	KELUAR			
No	Komponen	Aliran <21>	Aliran <22>	Aliran <23>		
	Kg					
1	Karbohidrat	1203,012	481,205	721,807		
2	Lemak	573,926	229,571	344,356		
3	Sulfur	0	0	0		
4	Nitrogen	0	0	0		
5	Kalium	0	0	0		
6	Natrium	0	0	0		
7	Kalsium	0	0	0		
8	Magnesium	0	0	0		
9	Posfor	0	0	0		
10	Air	2783,065	1669,839	1113,226		
11	Asam Sulfat	0	0	0		
12	Kalsium Hidroksida	1,450	0,580	0,870		
13	Kalsium Sulfat	0	0	0		
14	DAP	7,380	2,952	4		
15	Urea	24,600	9,840	15		
16	Slurry	1072,096	428,838	643,258		

17	Asam Asetat	1846,862	738,745	1108,117
18	Gliserol	631,407	252,563	378,844
19	Hidrogen Sulfida	0	0	0
20	Kalsium Oksida	0,294	0,118	0,176
21	Amonium Hidroksida	34,570	13,828	20,742
22	Karbon Dioksida	0	0	0
23	Monoamonium Posfat	19,289	7,715	11,573
	TOTAL	8197,952	3835,794	4362,158

Massa masuk (Kg)		Massa Keluar (Kg)	
Aliran<21>	8197,952	Aliran<22>	3835,794
		Aliran<23>	4362,158
Total	8197,952	Total	8197,952

7. Slacker Tank (M-130)

Tabel IV. 8 Neraca Massa Slacker Tank

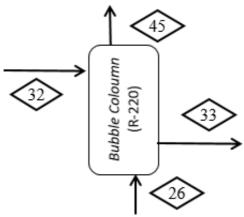

		MASUK	
No	Komponen	Aliran <27>	Aliran <28>
		K	Zg
1	CaO	15210,962	0

2	MgO	192,540	0
3	SiO_2	207,350	0
4	C	839,275	0
5	S	6,253	0
6	H_2O	0	13112,898
7	Ca(OH) ₂	0	0
TOTA	L	16456,381	13112,898

		RE	KELUAR	
No	Komponen	Generas i	Konsumsi	Aliran <29>
			Kg	
1	CaO	0	15210,962	0
2	MgO	0	0	192,540
3	SiO2	0	0	207,350
4	С	0	0	839,275
5	S	0	0	6,253
6	H2O	0	4889,238	8223,660
7	Ca(OH ₂	20100,19	0	20100,199
	TOTAL	20100,19	20100,199	29569,279

Massa masuk (Kg)		Massa Keluar (Kg)	
Aliran<27>	16456,381	Aliran<29>	29569,279
Aliran<28>	13112,898	Konsumsi	20100,199
Generasi	20100,199		
Total	49669,478	Total	49669,478

8. Screener (H-221)



Tabel IV. 9 Neraca Massa Screener

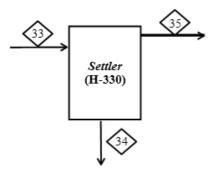
		MASUK	KEL	UAR
No	Komponen	Aliran<29>	Aliran<30>	Aliran<31>
			Kg	
1	CaO	0	0	0
2	MgO	192,540	0	192,540
3	SiO ₂	207,350	0	207,350
4	С	839,275	0	839,275
5	S	6,253	0	6
6	H ₂ O	8223,660	8223,660	0
7	Ca(OH) ₂	20100,199	20100,199	0
,	ΓΟΤΑL	29569,279	28323,860	1245,419

Massa masuk (Kg)		Massa Keluar (Kg)	
Aliran<29> 29569,279		Aliran<30>	28323,860
		Aliran<31>	1245,419
Total	29569,279	Total	29569,279

9. Bubble Column (R-220)

Tabel IV. 10 Neraca Massa Bubble Column

		MASUK		
No	Vamnanan	Aliran<26>	Aliran <32>	
110	Komponen	Kg		
1	H_2S	0,154	0	
2	CO_2	11382,35	0	
3	CH ₄	6285,624	0	
4	$H_2O(g)$	385,141	0	
5	H_2O	0	8223,660	
6	Ca(OH) ₂	0	20100,19	
7	CaCO ₃ (PCC)	0	0	
	TOTAL	18053,2	28323,8	

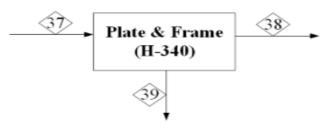

		REAKSI		
No	Vomnonon	Konsumsi	Generasi	
No	Komponen	Kg		
1	H_2S	0	0	
2	CO ₂	11353,89	0	
3	CH ₄	0	0	

4	$H_2O(g)$	0	0
5	H_2O	0	4644,776
6	Ca(OH) ₂	19095,18	0
7	CaCO ₃ (PCC)	0	25804,31
	TOTAL	30449,08	30449,08

		KELUAR		
		Aliran	Aliran	
No	Komponen	<33>	<45>	
		Kg		
1	H_2S	0	0,154	
2	CO_2	0	28,456	
3	CH ₄	0	6285,62	
4	$H_2O(g)$	0	385,141	
5	H ₂ O	12868,43	0	
6	Ca(OH) ₂	1005,010	0	
7	CaCO ₃ (PCC)	25804,31	0	
	TOTAL	39677,75	6699,37	

Massa masuk (Kg)		Massa Keluar (Kg)	
Aliran<26>	18053,272	Aliran<33>	39677,756
Aliran<32>	28323,860	Aliran<45>	6699,375
Generasi	30449,086	Konsumsi	30449,086
Total	76826,217	Total	76826,217

10. Settler (H-330)

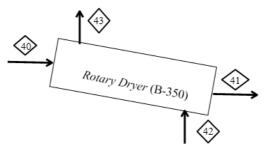


Tabel IV. 11 Neraca Massa Settler

		MASUK	KELUAR		
No	Komponen	Aliran<33>	Aliran<34>	Aliran<35>	
		Kg			
1	H2O	12868,436	12827,951	40,485	
2	Ca(OH)2	1005,010	1001,570	3,440	
3	PCC	25804,310	25715,976	88,334	
,	TOTAL	39677,756	39545,497	132,259	

Massa masuk (Kg)		Massa Keluar (Kg)	
Aliran<33> 39677,756 Aliran<34> 395		39545,497	
·		Aliran<35>	132,259
Total	39677,756	Total	39677,756

11. Plate and Frame Filter Press (H-340)

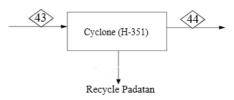


Tabel IV. 12 Neraca Massa Plate and Frame Filter Press

		MASUK KELUAR		UAR	
No	Komponen	Aliran<36>	Aliran<37> Aliran<		
		Kg			
1	H2O	12827,951	12186,553	641,398	
2	Ca(OH)2	1001,570	951,491	50,078	
3	PCC	25715,976 0 25715,99		25715,976	
	TOTAL	39545,497 13138,044 26407,4		26407,452	

Massa masuk (Kg)		Massa Keluar (Kg)	
Aliran<36> 39545,497		Aliran<37>	13138,044
		Aliran<38>	26407,452
Total	39545,497	Total	39545,497

12. *Rotary Dryer* (B-350)

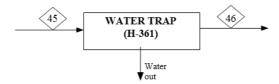

75

Tabel IV. 13 Neraca Massa Rotary Dryer

		MAS	SUK	KEL	UAR
No	Komponen	Aliran <40>	Aliran <42>	Aliran <41>	Aliran <43>
1,0	2201111	1207		Kg	1101
1	H2O	641,398	0	3,116	638,282
2	Ca(OH) ₂	50,078	0	45,071	5,008
3	CaCO3	25715,	0	23144,	2571,
3	(PCC)	976	U	379	598
4	N2	0	13870,445	0	13870,445
5	O2	0	177,826	0	177,826
6	CO2	0	3734,350	0	3734,350
7	ΓΟΤΑL	26407,452	17782,621	23192,565	20997,509

Massa masuk (Kg)		Massa Keluar (Kg)	
Aliran<40>	26407,452	Aliran<41>	23192,565
Aliran<42>	17782,621	Aliran<43>	20997,509
Total	44190,074	Total	44190,074

13. Cyclone (H-351)

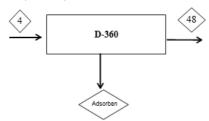

Tabel IV. 14 Neraca Massa Cyclone

		MASUK KELUAR		LUAR
No Komponen		Aliran<43>	Padatan	Aliran<44>
110	Komponen	Kg		
1	H ₂ O	638,282	0	638,282
2	Ca(OH)2	5,008	5,008	0
3	CaCO3(PCC)	2571,598	2571,598	0

4	N2	13870,445	0	13870,445
5	O2	177,826	0	177,826
6	CO ₂	3734,350	0	3734,350
	TOTAL	17263,158	2576,605	14686,553

Massa ma	Massa masuk (Kg)		ar (Kg)
Aliran<43>	17263,158	Aliran<44>	14686,553
·		Padatan	2576,605
Total	17263,158	Total	17263,158

14. Water Trap (H-361)

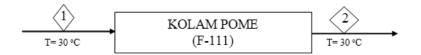


Tabel IV. 15 Neraca Massa Water Trap

		MASUK KELUAR		LUAR
No	Komponon	Aliran<45>	Water Out	Aliran<46>
110	Komponen	Kg		
1	H_2S	0,154	0	0,154
2	CO_2	28,456	0	28,456
3	CH ₄	6285,624	0	6285,624
4	$H_2O(g)$	385,141	346,627	38,514
,	TOTAL	6699,375	346,627	6352,748

Massa mas	Massa masuk (Kg)		luar (Kg)
Aliran<45>	6699,375	Aliran<46>	6352,748
		Water Out	346,627
Total	6699,375	Total	6699,375

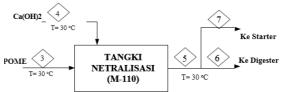
15. Adsorber (D-370)


Tabel IV. 16 Neraca Massa Adsorber

		MASUK	KEI	LUAR
No	Vamnanan	Aliran<47>	Terserap	Aliran<48>
No	Komponen	Kg		
1	H_2S	0,154	0,124	0,031
2	CO_2	28,456	0	28,456
3	CH ₄	6285,624	0	6285,624
4	$H_2O(g)$	38,514	0	38,514
,	TOTAL	6352,748	0,124	6352,625

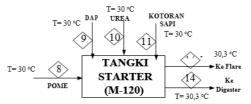
Massa masuk (Kg)		Massa Kelı	uar (Kg)
Aliran<47>	6352,748	Aliran<48>	6352,625
		Terserap	0,124
Total	6352,748	Total	6352,748

IV.1 NERACA ENERGI


1. Kolam POME (F-111

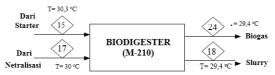
Tabel IV. 17 Neraca Energi Kolam POME

	Energi Aliran	Energi	Energi Aliran	Energi
No	Masuk	(kJ/jam)	Keluar	(kJ/jam)
1	$\Sigma \Delta Hin$	11.485.285,34	$\Sigma \Delta H_{out}$	11.534.665,45
2			$\Sigma\Delta Hr$	-49.380,11
	TOTAL	11.485.285,34		11.485.285,34


2. Tangki Netralisasi (M-110)

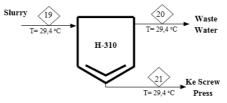
Tabel IV. 18 Neraca Energi Tangki Netralisasi

	Tuber 1 (10 1 (cruca Energy Tangki 1 (c)) attisast			Circuscist
	Energi Aliran	Energi	Energi Aliran	Energi
No	Masuk	(kJ/jam)	Keluar	(kJ/jam)
1	$\Sigma \Delta H_{in}$	11.536.313,347	$\Sigma \Delta H_{out}$	11.550.299,809
2			$\Sigma \Delta Hr$	-13.986,464
	TOTAL	11.536.313,347		11.536.313,345


3. Starter (M-120)

Tabel IV. 19 Neraca Energi Tangki Netralisasi

	TOTAL	776.401,00		776.401,00
2			$\Sigma\Delta Hr$	-109.365,45
1	$\Sigma \Delta H_{in}$	776.401,00	$\Sigma \Delta H_{out}$	885.766,44
No	Masuk	(kJ/jam)	Keluar	(kJ/jam)
	Energi Aliran	Energi	Energi Aliran	Energi
			<u> </u>	


4. Biodigester (M-210)

Tabel IV. 20 Neraca Energi Tangki Netralisasi

I	Energi Alira	n F	Energi Alira	n
No	Masuk	Energi (kJ/jam)	Keluar	Energi (kJ/jam)
1	$\Sigma \Delta H_{in}$	11.560.303,106	$\Sigma \Delta H_{out}$	10.987.660,455
2			$\Sigma\Delta Hr$	572.642,651
	TOTAL	11.560.303,106		11.560.303,106


5. Clarifier (H-310)

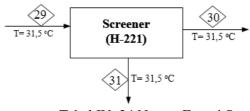
Tabel IV. 21 Neraca Energi Clarifier

	Energi Aliran	Energi	Energi Aliran	Energi
No	Masuk	(kJ/jam)	Keluar	(kJ/jam)
1	ΣΔΗin	9.753.042,307	ΣΔHout	9.753.042,307
	TOTAL	9.753.042,307		9.753.042,307

6. Screw Press (H-320)

Tabel IV. 22 Neraca Energi Clarifier

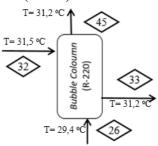
1 $\Sigma \Delta H_{in}$ 2.274.785,662		2.274.785,
	$\Sigma \Delta H_{out}$	661
		2.274.785,
No Masuk (kJ/jam)	Keluar	(kJ/jam)
Energi Aliran Energi	Energi Aliran	Energi


7. Slacker Tank (M-130)

Tabel IV. 23 Neraca Energi Slacker Tank

No	Energi Aliran Masuk	Energi (kJ/jam)	Energi Aliran Keluar	Energi (kJ/jam)
 1	$\Sigma \Delta Hin$	336.053,579	$\Sigma \Delta H_{out}$	401.763,579
2			$\Sigma\Delta Hr$	-65.710,000
	TOTAL	336.053,579		336.053,579

8. *Screener* (H-221)



Tabel IV. 24 Neraca Energi Screener

	Energi	Energi	Energi Aliran	Energi
No	Aliran	(kJ/jam)	Keluar	(kJ/jam)

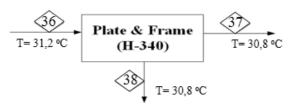
	Masuk			
1	$\Sigma \Delta H_{in}$	401.763,579	$\Sigma \Delta H_{out}$	401.763,579
	TOTAL	401.763,579		401.763,579

9. Bubble Column (R-220)

Tabel IV. 25 Neraca Energi Bubble Column

	1 to 2 1 1 to 1 to 1 to 1 to 1 to 1 to 1				
	Energi Aliran	Energi	Energi Aliran	Energi	
No	Masuk	(kJ/jam)	Keluar	(kJ/jam)	
1	ΣΔHin	1.631.056,92	ΣΔH _{out}	1.743.667,92	
2			$\Sigma\Delta Hr$	-112.611,00	
	TOTAL	1.631.056,92		1.631.056,92	

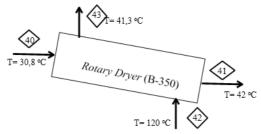
10. Settler (H-330)



Tabel IV. 26 Neraca Energi Tangki Settler

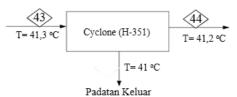
	Energi Aliran	Energi	Energi Aliran	Energi
No	Masuk	(kJ/jam)	Keluar	(kJ/jam)

1	ΣΔΗin	482.336,95	ΣΔH _{out}	482.336,95
	TOTAL	482.336,95		482.336,95


11. Plate and Frame Filter Press (H-340)

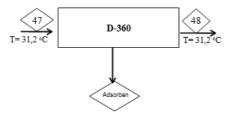
Tabel IV. 27 Neraca Energi Bubble Column

	Energi Aliran	Energi	Energi Aliran	Energi
No	Masuk	(kJ/jam)	Keluar	(kJ/jam)
1	$\Sigma \Delta Hin$	480.779,720	$\Sigma \Delta H_{out}$	456.740,735
2			$\Sigma \Delta Hr$	24.038,986
	TOTAL	480.779,72		480.779,72


12. *Rotary Dryer* (B-350)

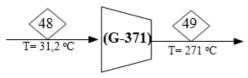
Tabel IV. 28 Neraca Energi Rotary Dryer

N.T.	Energi Aliran	Energi (kJ/jam)	Energi Aliran	Energi (kJ/jam)
No	Masuk		Keluar	
1	$\Sigma \Delta H_{in}$	2.934.520,198	$\Sigma \Delta H_{out}$	2.934.520,198
	TOTAL	2.934.520,198		2.934.520,198


13. Cyclone (H-351)

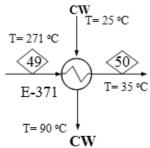
Tabel IV. 29 Neraca Energi Cyclone

	Energi Aliran	Energi	Energi Aliran	Energi
No	Masuk	(kJ/jam)	Keluar	(kJ/jam)
1	$\Sigma \Delta Hin$	505.667,504	$\Sigma \Delta H_{out}$	505.667,504
	TOTAL	505.667,504		505.667,504


14. Adsorber (D-370)

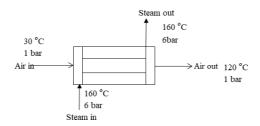
Tabel IV. 30 Neraca Energi Adsorber

	Energi Aliran	Energi	Energi Aliran	Energi
No	Masuk	(kJ/jam)	Keluar	(kJ/jam)
1	$\Sigma \Delta H_{in}$	814.264,80	$\Sigma \Delta H_{out}$	814.264,80
	TOTAL	814.264,80		814.264,80


15. *Compressor* (G-371)

Tabel IV. 31 Neraca Energi Compressor

	Energi Aliran	Energi (kJ/jam)	Energi Aliran	Energi
No	Masuk	Energi (kJ/jaiii)	Keluar	(kJ/jam)
1	ΣΔΗin	814.178,074	$\Sigma \Delta H_{out}$	37.032.016,987
2	W	36.217.838,913		
	TOTAL	37.032.016,987		37.032.016,987


16. *Cooler* (E-371)

Tabel IV. 32 Neraca Energi Compressor

	Energi Aliran	Energi	Energi Aliran	Energi
No	Masuk	(kJ/jam)	Keluar	(kJ/jam)
1	ΣΔHin	37.032.016,987	ΣΔHout	1.287.042,262
2	ΣΔHin Water	82.153,498	ΣΔH _{out} Water	35.827.128,222
	TOTAL	37.114.170,485		37.114.170,485

17. Heater (E-361)

Tabel IV. 33 Neraca Energi Compressor

	TOTAL	65.345.509,258		65.345.509,258
1	$\Sigma \Delta H_{in}$	65.345.509,258	$\Sigma \Delta H_{out}$	65.345.509,258
No	Masuk	(kJ/jam)	Keluar	(kJ/jam)
	Energi Aliran	Energi	Energi Aliran	Energi

BAB V SPESIFIKASI ALAT

V.1 Daftar dan Harga Peralatan

1. Kolam Penampung POME(F-111)

Tabel V. 1 Spesifikasi Kolam POME (F-111)

Spesifikasi	Keterangan
No. Kode	F-111
Fungsi	Menyimpan POME untuk <i>fresh feed</i> sebelum masuk ke Tangki Netralisasi
Tipe	Kolam terbuka berbentuk balok
Konstruksi	Beton
Kapasitas	$602 ext{ m}^3$
Jumlah	3 unit
Panjang	16,9 m
Lebar	8,44 m
Tinggi	4,22 m
Diameter Nozzle	2,38 m

2. Pre-Treatment Pump (L-111)

Tabel V. 2 Spesifikasi *Pre-Treatment Pump* (L-111)

Spesifikasi	Keterangan	
No. Kode	L-111	
Fungsi	Mempompa POME dari kolam ke tangki	
1 ungsi	pre-treatment	
Tipe	Centrifugal pump	
Konstruksi	Cast iron	
Kapasitas	36000 kg/jam	
Jumlah	1 unit	
Pipa	Pipa 5 in sch 40	
Power	1,76 Hp	

3. Pre-treatment Tank (M-110)

Tabel V. 3 Spesifikasi *Pre Treatment Tank* (M-110)

Spesifikasi	Keterangan	
No. Kode	M-110	
Fungsi	Menetralkan pH POME dengan penambahan Ca(OH) ²	
Tipe	Silinder tegak dengan tutup atas dan tutup bawah berbentuk conical	
Konstruksi	Carbon steel /SA-283 grade C	
Kapasitas	$784,19 \text{ ft}^3 = 22 \text{ m}^3$	
Jumlah	1 unit	
Diameter (OD)	2,74 m	
Diameter(ID)	2,73 m	
Tinggi (shell)	4,10 m	
Tinggi (tutup atas)	0,37 m	
Tinggi (tutup bawah)	0,37 m	
Tebal (shell)	¹⁄₄ in	
Tebal (tutup atas)	½ in	
Tebal (tutup bawah)	½ in	
Nozzle Aliran Utam	a	
Diameter (OD)	5,6 in	
Jenis Pipa	Pipa 4 in sch 40	
Nozzle Aliran Ca(OH) ²		
Diameter (OD)	0,7 in	
Jenis Pipa	Pipa 3/8 in sch 40	
Nozzle Aliran POM	E	
Diameter (OD)	5,6 in	

Jenis Pipa	Pipa 5 in sch 40
Pengaduk	
Jenis	Three Blade Propeller
Jumlah	2 unit
Diameter	0,68 m
Lebar blade (W)	0,14 m
Panjang blade (L)	017 m
Lebar baffle (J)	0,23 m
Power	7,76 hp

4. Starter Pump (L-121)

Tabel V. 4 Spesifikasi *Pre Treatment Tank (M-110)*

Spesifikasi	Keterangan	
No. Kode	L-121	
	Memompa POME hasil pengenceran dari	
Fungsi	tangki <i>pre-treatment</i>	
	menuju tangki starter	
Tipe	Centrifugal pump	
Konstruksi	Cast iron	
Kapasitas	2401,0 kg/jam	
Jumlah	1 unit	
Pipa	Pipa 1 ¼ in sch 40	
Power	0,46 Hp	
Head	6,49 m	

5. Gudang Penyimpanan Cow Dung (F-121)

Tabel V. 5 Spesifikasi Gudang Penyimpanan *Cow Dung (F-121)*

Spesifikasi	Keterangan	
No. Kode	F-121	
Fungsi	Menyimpan Cow Dung	
Tipe	Bangunan Balok	

Konstruksi	Batu bata dan Semen
Kapasitas	45102 ft ³
Jumlah	1 unit
Panjang	7,52 m
Lebar	3,76 m
Tinggi	5,64 m

6. Belt Conveyor Slurry (J-121)

Tabel V. 6 Spesifikasi *Belt Conveyor Slurry* (J-121)

Spesifikasi	Keterangan
No. Kode	J-121
Fungsi	Memindahakan Slurry
Kapasitas Max	32 ton/jam
Kemiringan	15 °
Kecepatan normal conveying (u)	3 ft/s
Best plies minimum	3 buah
Ukuran lump maksimum	3 in
Lebar belt	36 cm
Tinggi skirt plate	18 cm
Power	0,24 Hp

7. Gudang Penyimpanan Urea (F-122)

Tabel V. 7 Spesifikasi Gudang Penyimpanan Urea (F-122)

Spesifikasi	Keterangan
No. Kode	F-122
Fungsi	Menyimpan Urea
Tipe	Bangunan Balok
Konstruksi	Batu bata dan Semen

Kapasitas	4703 ft ³
Jumlah	1 unit
Panjang	3,540 m
Lebar	1,77 m
Tinggi	2,66 m

8. Belt Conveyor Urea (J-122)

Tabel V. 8 Spesifikasi *Belt Conveyor Urea* (J-122)

Spesifikasi	Keterangan
No. Kode	J-122
Fungsi	Memindahakan Urea
Kapasitas Max	32 ton/jam
Kemiringan	15 °
Kecepatan normal conveying (u)	3 ft/s
Best plies minimum	3 buah
Ukuran lump maksimum	3 in
Lebar belt	36 cm
Tinggi skirt plate	18 cm
Power	0,24 Hp

9. Gudang Penyimpanan DAP (F-123)

Tabel V. 9 Spesifikasi Gudang Penyimpanan DAP (F-123)

Spesifikasi	Keterangan
No. Kode	F-123
Fungsi	Menyimpan DAP
Tipe	Bangunan Balok
Konstruksi	Batu bata dan Semen
Kapasitas	1398,3 ft ³
Jumlah	1 unit

Panjang	2,36 m
Lebar	1,18 m
Tinggi	1,77 m

10. Belt Conveyor DAP (J-123)

Tabel V. 10 Spesifikasi *Belt Conveyor* DAP (J-123)

Spesifikasi	Keterangan
No. Kode	J-122
Fungsi	Memindahakan Urea
Kapasitas Max	32 ton/jam
Kemiringan	15 °
Kecepatan normal conveying (u)	3 ft/s
Best plies minimum	3 buah
Ukuran lump maksimum	3 in
Lebar belt	36 cm
Tinggi skirt plate	18 cm
Power	0,24 Hp

11. Starter Tank (M-120)

Tabel V. 11 Spesifikasi Starter Tank (M-120)

Spesifikasi	Keterangan
No. Kode	M-120
Fungsi	Tempat penambahan nutrisi dan pembentukan tahap awal biogas
Tipe	Tangki berpengaduk dengan tutup atas berbentuk conical dan tutup bawah berbentuk <i>flat-bottomed</i> pada pondasi
Konstruksi	Carbon steel /SA-283 grade C

Kapasitas	$8393,2 \text{ ft}^3 = 238 \text{ m}^3$	
Jumlah	2 unit	
Diameter (OD)	8,84 m	
Diameter(ID)	8,81 m	
Tinggi (shell)	3,5 m	
Tinggi (tutup atas)	1,18 m	
Tebal (shell)	½ in	
Tebal (tutup atas)	1 5/8 in	
Nozzle Substrat		
Diameter (OD)	1,32 in	
Jenis Pipa	Pipa 1 in sch 40	
Nozzle Aliran Manu	re	
Diameter (OD)	0,84 in	
Jenis Pipa	Pipa 1/2 in sch 40	
Nozzle Aliran DAP		
Diameter (OD)	0,84 in	
Jenis Pipa	Pipa 1/2 in sch 40	
Nozzle Aliran Urea		
Diameter (OD)	0,84 in	
Jenis Pipa	Pipa 1/2 in sch 40	
Nozzle Biogas		
Diameter (OD)	2,88 in	
Jenis Pipa	Pipa 2 ½ in sch 40	
Nozzle Liquid Kelua	Nozzle Liquid Keluar	
Diameter (OD)	1,32 in	
Jenis Pipa	Pipa 1 in sch 40	
Pengaduk		
Jenis	High Efficiency three-blade impeller	
Jumlah	1 unit	
Diameter	7,2 ft	

Lebar blade (W)	1,45 ft
Panjang blade (L)	1,81 ft
Lebar baffle (J)	2,41 ft
Power	60 hp

12. Digester Pump (L-211)

Tabel V. 12 Spesifikasi *Digester Pump* (L-211)

Spesifikasi	Keterangan
No. Kode	L-211
	Memompa POME hasil pengenceran dari
Fungsi	tangki pre-treatment
	menuju tangki digester
Tipe	Centrifugal pump
Konstruksi	Cast iron
Kapasitas	33614 kg/jam
Jumlah	1 unit
Pipa	Pipa 5 in sch 40
Power	3,21 Hp
Head	13,5 m

13 Digester Pump (L-212)

Tabel V. 13 Spesifikasi *Digester Pump* (L-212)

Spesifikasi	Keterangan
No. Kode	L-212
Fungsi	Memompa POME hasil pengenceran dari tangki starter menuju tangki digester
Tipe	Centrifugal pump
Konstruksi	Cast iron
Kapasitas	2247 kg/jam
Jumlah	1 unit
Pipa	Pipa 1 1/4 in sch 40
Power	0,66 Hp

Head	10,5 m
------	--------

14. Digester (M-210)

Tabel V. 14 Spesifikasi *Digester* (M-210)

Spesifikasi	Keterangan	
No. Kode	M-210	
Fungsi	Tempat terjadinya reaksi utama	
	pembentukan biogas	
	Tangki berpengaduk dengan tutup atas	
Tipe	berbentuk conical	
	dan tutup bawah berbentuk flat-bottomed	
77 . 1	pada pondasi	
Konstruksi	Carbon steel /SA-283 grade C	
Kapasitas	$337211,7 \text{ ft}^3 = 238 \text{ m}^3$	
Jumlah	2 unit	
Diameter (OD)	26,8 m	
Diameter(ID)	26,7 m	
Tinggi (shell)	10,7 m	
Tinggi (tutup atas)	4,51 m	
Tebal (shell)	2 ½ in	
Tebal (tutup atas)	7 52/93 in	
Nozzle Substrat		
Diameter (OD)	3,50 in	
Jenis Pipa	Pipa 3 in sch 40	
Nozzle Liquid Masuk		
Diameter (OD)	1,32 in	
Jenis Pipa	Pipa 1 in sch 40	
Nozzle Liquid Kelua	ar	
Diameter (OD)	2,88 in	
Jenis Pipa	Pipa 2 1/2 in sch 40	
Nozzle Biogas		

Diameter (OD)	28,0 in
Jenis Pipa	Pipa 28 in sch 40
Pengaduk	
Jenis	High Efficiency three-blade impeller
Jumlah	1 unit
Diameter	8,8 ft
Lebar blade (W)	1,75 ft
Panjang blade (L)	2,19 ft
Lebar baffle (J)	2,92 ft
Power	542,45 hp

15. Waste Pump (L-311)

Tabel V. 15 Spesifikasi Waste Pump (L-311)

2 00 02 (V 20	
Spesifikasi	Keterangan
No. Kode	L-311
Fungsi	Mempompa limbah effluent digester menuju clarifier
Tipe	Centrifugal pump
Konstruksi	Cast iron
Kapasitas	17780,16 kg/jam
Jumlah	1 unit
Pipa	Pipa 3 1/2 in sch 40
Power	0,18 Hp
Head	3,53 m

16. *Clarifier* (H-310)

Tabel V. 16 Spesifikasi *Clarifier* (H-310)

Spesifikasi	Keterangan
No. Kode	H-310
Fungsi	Memisahkan air serta bahan inorganik
Tipe	Sludfe Recirculation

Konstruksi	Carbon Steel SA 302
Kapasitas	34,575 m ³
Jumlah	1 unit
Tinggi	3,71 m
Diameter	4,45
Waktu tinggal	120 menit
Suhu	35 ℃
Tekanan	1,2 atm

17. Screw Press (H-320)

Tabel V. 17 Spesifikasi *Screw Press* (H-320)

Spesifikasi	Keterangan
No. Kode	H-320
Fungsi	Memisahkan air dari sludge
Tipe	Speichim Screw Press
Kapasitas	18165,3 kg/jam
Jumlah	1 unit
Lebar	1,50 m
Diameter	0,52 m
Diameter Screw	0,31 m
Panjang	0,0258
Power	180,13 Kw

18. Baffer Tank (F-221)

Tabel V. 18 Spesifikasi Baffer Tank (F-221)

1 33	
Spesifikasi	Keterangan
No. Kode	F-221
Fungsi	Tempat terjadinya reaksi utama pembentukan biogas
Tipe	Tangki berpengaduk dengan tutup atas berbentuk Standardished head

	dan tutup bawah berbentuk flat-		
	bottomed pada pondasi		
Konstruksi	Carbon steel /SA-283 grade C		
Kapasitas	$362168,4 \text{ ft}^3 = 10256 \text{ m}^3$		
Jumlah	1 unit		
Diameter (OD)	29,9 m		
Diameter(ID)	29,8 m		
Tinggi (shell)	11,9 m		
Tinggi (tutup atas)	5,04 m		
Tebal (shell)	1 1/8 in		
Tebal (tutup atas)	3 3/4 in		
Nozzle Biogas Masu	Nozzle Biogas Masuk		
Diameter (OD)	28,0 in		
Jenis Pipa	Pipa 28 in sch 40		
Nozzle Biogas Masuk			
Diameter (OD)	28,0 in		
Jenis Pipa	Pipa 28 in sch 40		
Nozzle Biogas Keluar			
Diameter (OD)	28,0 in		
Jenis Pipa	Pipa 28 in sch 40		

19. Blower (G-221)

Tabel V. 19 Spesifikasi *Blower* (G-221)

Spesifikasi	Keterangan
No. Kode	G-221
Fungsi	Memindahkan Biogas
Tipe	Centrifugal blower
Kapasitas	18049,62 kg/jam
Jumlah	1 unit
P _{suction}	1 bar
P _{discharge}	1,2 bar

Bahan	Cast Iron
Power	18 hp

20. Belt Conveyor CaO (J-131)

Tabel V. 20 Spesifikasi Belt Conveyor CaO (J-131)

Spesifikasi	Keterangan
No. Kode	J-131
Fungsi	Memindahakan Slurry
Kapasitas Max	32 ton/jam
Kemiringan	15 °
Kecepatan normal conveying (u)	3,33 ft/s
Best plies minimum	3 buah
Ukuran lump maksimum	3 in
Lebar belt	36 cm
Tinggi skirt plate	18 cm
Power	0,48 Hp

21. *Lime Slaker* (M-130)

Tabel V. 21 Spesifikasi *Lime Slaker* (M-130)

Spesifikasi	Keterangan
No. Kode	M-130
	Mereaksi Kalsium Oksida (CaO) dengan
Fungsi	H ₂ O menghasilkan kalsium hidroksida
	atau Ca(OH) ₂
	Tangki dome dengan tutup atas berbentuk
Tipe	conical dan tutup bawah berbentuk flat-
	bottomed pada pondasi
Konstruksi	Carbon steel SA-283 grade C
Kapasitas	$3,84 \text{ m}^3$

Jumlah	3 unit
Diameter (OD)	1,52 m
Diameter(ID)	1,51 m
Tinggi (shell)	2,3 m
Tinggi (tutup atas)	0,20 m
Tebal (shell)	3/16 in
Tebal (tutup atas)	5/16 in
Nozzle Substrat	
Diameter (OD)	2,38 in
Jenis Pipa	Pipa 2 in sch 40
Pengaduk	
Jenis	High Efficiency three-blade impeller
Jumlah	2 unit
Diameter	2,5 ft
Lebar blade (W)	0,50 ft
Panjang blade (L)	0,62 ft
Lebar baffle (J)	0,41 ft
Power	1,52 hp

22. Screener (H-221)

Tabel V. 22 Spesifikasi Screener (H-221)

Spesifikasi	Keterangan
No. Kode	H-221
Fungsi	Memisahkan CaO dan impuritis dari
	Ca(OH) ₂ keluaran M-130.
Tipe	Model SY-40C
Nominal size	18049,62 kg/jam
Jumlah	80A
Pressure drop	0,00672 Mpa
Filtration area	$0,57 \text{ m}^2$

23. Bubble Column Pump (L-221)

Tabel V. 23 Spesifikasi Bubble Column Pump (L-221)

Spesifikasi	Keterangan
No. Kode	L-221
Fungsi	Mengalirkan larutan Ca(OH) ₂ ke <i>Bubble Column</i>
Tipe	Centrifugal pump
Konstruksi	Cast iron
Kapasitas	28309,0 kg/jam
Jumlah	1 unit
Pipa	Pipa 4 in sch 40
Power	1,65 Hp
Head	10,6 m

24 Bubble Column (R-220)

Tabel V. 24 Spesifikasi Bubble Column (R-220)

Spesifikasi	Keterangan
No. Kode	R-220
Fungsi	Sebagai tempat mereaksikan Ca(OH) ₂ dengan gas CO ₂ untuk menghasilkan precipitated calcium carbonate (PCC)
Tipe	Bubble reactor
Konstruksi	High Alloy Steel SA-240 gade M Type 316
Tekanan Desain	25,29 Psi
Jumlah	1 unit
Diameter shell (D)	18,9 ft
Tinggi shell (H)	56,7 ft
Tebal shell(ts)	½ in
Tebal head (th)	5/8 in

25. Clarifier (H-330)

Tabel V. 25 Spesifikasi *Clarifier* (H-330)

Spesifikasi	Keterangan
No. Kode	H-330
Fungei	Mengendapkan PCC dan
Fungsi	memisahkannya dengan air
Tipe	Slude Recirculation
Konstruksi	Carbon Steel
Kapasitas	39657 kg/jam
Jumlah	1 unit
Diameter	5,86 m
Tinggi	4,88 m
Power	0,43 hp
Waktu Tinggal	2,00 jam

26. Pompa Filter Press (L-331)

Tabel V. 26 Spesifikasi *Pompa Filter Press* (L-331)

Spesifikasi	Keterangan
No. Kode	L-331
Fungsi	Mempompa limbah effluent digester menuju clarifier
Tipe	Centrifugal pump
Konstruksi	Cast iron
Kapasitas	39525 kg/jam
Jumlah	1 unit
Pipa	Pipa 5 in sch 40
Power	0,41 Hp
Head	3,56 m

27. Plate and Frame (H-340)

Tabel V. 27 Spesifikasi Plate and Frame (H-340)

Spesifikasi	Keterangan
No. Kode	H-350
Fungsi	Memisahkan cake PCC dengan filtrat
Tipe	Horizontal plate & frame
Konstruksi	Cast iron
Jumlah cake /	105590 kg
siklus	103370 kg
Jumlah	3 unit
Waktu tinggal	4 jam
Luas filter	$3,7 m^2$
Jumlah Frame	68 buah
Jumlah Plate	67 buah

28. Cake Storage Tank (F-341)

Tabel V. 28 Spesifikasi *Cake Storage Tank* (F-341)

Spesifikasi	Keterangan
No. Kode	F-341
Fungsi	Tempat penyimpanan PCC sementara sebelum masuk <i>rotary Dryer</i>
Tipe	Strorage berbentuk dome dengan tutup atas berbentuk <i>conical</i> dan tutup bawah berbentuk <i>flat-bottomed</i> pada pondasi
Konstruksi	Carbon steel /SA-283 grade C
Kapasitas	$784,19 \text{ ft}^3 = 22 \text{ m}^3$
Jumlah	1 unit
Diameter (OD)	3,66 m
Diameter(ID)	3,64 m
Tinggi (shell)	5,50 m
Tinggi (tutup atas)	0,49 m
Tebal (shell)	¹⁄4 in

Tebal (tutup atas)	5/8 in
--------------------	--------

29. Screw Conveyor (J-341)

Tabel V. 29 Spesifikasi Screw Conveyor (J-341)

Spesifikasi	Keterangan
No. Kode	J-341
Fungsi	Memindahkan PCC ke Rotary Dryer
Tipe Bearing	Sealmaster Bearing
Konstruksi	III E
Rotasi Screw	31,97 rpm
Power Dibutuhkan	1,29 hp
Jumlah	1 unit

30. *Rotary Dryer* (B-350)

Tabel V. 30 Spesifikasi *Rotary Dryer* (B-350)

Spesifikasi	Keterangan
No. Kode	B-350
Fungsi	Mengeringkan PCC setelah dari Plate and Frame Filter Press
Tipe	Direct Continous Rotary Dryer
Konstruksi	Carbon Steel
Kapasitas	58187,9 lb/jam
Panjang	18,90 m
Diameter	3,55
Putaran	14,000 rpm
Kemiringan	2,29 °
Waktu Tinggal	1,054 jam

31. Heater (E-351)

Tabel V. 31 Spesifikasi *Heater* (E-351)

Spesifikasi	Keterangan
No. Kode	E-351

Fungsi	Menaikan suhu udara pengering <i>rotary</i> dryer
Tipe	1-2 Shell and Tube Heat Exchanger
Konstruksi	Carbon Steel SA-129 A
Suhu Masuk	
Sales Gas	160 °C
MCR	30 °C
Suhu Keluar	
Sales Gas	160 ℃
MCR	120 °C
Shell Side (Sales)	
Diameter Dalam	15,25 in
Baffle Space	12,2 in
Passes	4
ΔΡ	0,0504 psi
Tube Side (MCR)	
Diameter Luar	1,5 in
Jumlah Tube	32
BWG	18
Pitch	1,875 in
a"	0,3925 ft²/ft
a'	1,54 in ²
Passes	4
ΔΡ	1,78 psi
Rd	0,0057178 hr.ft ² .°F/Btu
Luas Area	287,31 ft ²
Jumlah Alat	4 unit

32. Screw Conveyor (J-351)

Tabel V. 32 Spesifikasi Screw Conveyor (J-351)

Spesifikasi	Keterangan
No. Kode	J-351
Fungsi	Memindahkan PCC dari Rotary Dryer ke Storage
Tipe Bearing	Sealmaster Bearing
Konstruksi	III E
Rotasi Screw	31,199 rpm
Power Dibutuhkan	1,260 hp
Jumlah	1 unit

33. Gudang Penyimpanan PCC (F-351)

Tabel V. 33 Spesifikasi Gudang Penyimpanan PCC (F-351)

Spesifikasi	Keterangan
No. Kode	F-351
Fungsi	Menyimpan PCC
Tipe	Bangunan Balok
Konstruksi	Batu bata dan Semen
Kapasitas	1230975,648 ft ³
Jumlah	1 unit
Panjang	22,649 m
Lebar	11,325 m
Tinggi	16,987 m

34. Blower (G-361)

Tabel V. 34 Spesifikasi Blower (G-361)

Spesifikasi	Keterangan
No. Kode	G-361
Fungsi	Mengairkan Biogas menuju Adsorber
Tipe	Centrifugal blower

Kapasitas	6701,70 kg/jam
Jumlah	1 unit
P _{suction}	1 bar
P _{discharge}	1,3 bar
Bahan	Cast Iron
Power	7,00 hp

35.Adsorber (D-360)

Tabel V. 35 Spesifikasi Adsorber (D-360)

Spesifikasi	Keterangan
No. Kode	D-360
Fungsi	Menghilangkan kandungan hidrogen sulfida yang terkandung pada aliran gas metana dengan menggunakan bijih besi.
Tipe	Silinder packing dengan tutup atas dan bawah berbentuk dish head.
Material	SA 167 type 304 grade 3
Jumlah	2 unit
Jenis Sambunga	Double welded butt
OD	2,44 m
ID	2,33 m
H bed	3,88 m
Tinggi Shell	4,66 m
Tebal Shell	0,02 m
Tebal tutup atas	0,02 m
Straight flange (sf)	0,08 m
Tinggi tutup atas	0,56 m
Tinggi tutup bawah	0,56m
Tebal tutup bawah	0,02 m
Tinggi tangki total	5,77 m

36.*Compressor* (G-371)

Tabel V. 36 Spesifikasi Compressor (G-371)

Spesifikasi	Keterangan
No. Kode	G-371
Fungsi	Menaikan tekanan biogas menuju Absorber
Tipe	Centrifugal compressor
Kapasitas	6332,3 kg/jam
Jumlah	2 unit
P _{suction}	1 atm
P _{discharge}	10 atm
Bahan	Cast Iron
Power	201,6 hp
Mechanical Efisiensi	95 %
Ratio	3,16 Stage

37. Cooler (E-371)

Tabel V. 37 Spesifikasi *Cooler* (E-371)

Spesifikasi	Keterangan
No. Kode	E-371
Fungsi	Menurunkan suhu udara biogas
Tipe	1-2 Shell and Tube Heat Exchanger
Konstruksi	Carbon Steel SA-129 A
Suhu Masuk	
Sales Gas	274 °C
MCR	25 °C
Suhu Keluar	
Sales Gas	30 °C
MCR	90 ℃

Shell Side (Sales)	
Diameter Dalam	33 in
Baffle Space	26,4 in
Passes	2
ΔΡ	0,3682 psi
Tube Side (MCR)	
Diameter Luar	0,75 in
Jumlah Tube	830
BWG	18
Pitch	1 in
a"	0,1963 ft²/ft
a'	0,334 in ²
Passes	2
ΔΡ	0,8235 psi
Rd	0,0104498 hr.ft².ºF/Btu
Luas Area	3509,84 ft ²
Jumlah Alat	4 unit

38. Bio-Methane Storage Tank (F-370)

Tabel V. 38 Spesifikasi *Bio-Methane Storage Tank* (F-370)

Spesifikasi	Keterangan
No. Kode	F-370
Fungsi	Menyimpan bio-methane yang dihasilkan
Tipe	Sperical Storage
Konstruksi	PVC bag pondasi beton
Kapasitas	96454,5 ft ³
Jumlah	1 unit
Diameter Tangki(OD)	17,635 m
Tebal	1,75 m

BAB VI ANALISA EKONOMI

Analisa ekonomi merupakan salah satu parameter apakah suatu pabrik tersebut layak didirikan atau tidak. Untuk menentukan kelayakan suatu pabrik secara ekonomi, diperlukan perhitungan bahan baku yang dibutuhkan dan produk yang dihasilkan berdasarkan neraca massa yang telah tercantum di Bab 4. Harga peralatan untuk proses berdasarkan spesifikasi peralatan yang dibutuhkan seperti yang tercantum dalam appendiks C dihitung berdasarkan pada neraca massa dan energi. Selain yang telah disebutkan di atas, juga diperlukan analisa biaya yang diperlukan untuk beroperasi dan utilitas, jumlah dan gaji karyawan serta pengadaan lahan untuk pabrik. Faktor-faktor yang perlu ditinjau antara lain:

- Laju Pengembalian Modal (*Rate of Return*)
- Lama Pengembalian Modal (Pay Out Period)
- Titik Impas (*Break Even Point / BEP*)

 Dalam meninjau faktor di atas perlu dilakukan penaksiran beberapa aspek, yaitu:
 - a. Penaksiran Modal Industri (*Total Capital Investment / TCI*)
 - Modal Tetap (Fixed Capital Investment / FCI)
 - Modal Kerja (Working Capital Investment / WCI)
 - b. Penentuan Biaya Produksi Total (*Total Production Cost / TPC*)
 - Biaya Fabrikasi (Manufacturing Cost/MC)
 - Biaya Plant Overhead (Plant Overhead Cost / POC)
 - Biaya Pengeluaran Umum (*General Expenses / GE*)
 - c. Total Pendapatan

VI.1 Struktur Organisasi

VI.1.1 Umum

Bentuk Perusahaan : PT (Perseroan Terbatas)

Status Perusahaan : PMDN (Swasta)

Lapangan Usaha : Pabrik Biogas dan PCC

Lokasi : Kabupaten Labuhan Batu, Provinsi

Sumatera utara

Kapasitas Produksi : 50.072 ton biogas per tahun

183.589 ton PCC per tahun

Pada awal berdiri, suatu perusahaan maupun bentuk organisasi lainnya pasti memiliki tujuan organisasi. Proses pengorganisasian (*organization process*) merupakan suatu upaya pembagian langkah-langkah (aktivitas) dalam membentuk pekerjaan yang harus dilakukan demi tercapainya tujuan organisasi. Pembagian secara cepat dan tepat yang diterapkan kepada seluruh karyawan perusahaan akan menghasilkan suatu mekanisme sebagai pengkoordinasi setiap aktivitas-altivitas perusahaan yang telah ditetapkan sebelumnya. Salah satu hasil dari proses ini adalah struktur organisasi. Secara fisik, struktur organisasi suatu perusahaan dapat dinyatakan dalam bentuk gambaran grafik atau bagan yang memperlihatkan hubungan unitunit organisasi dan garis-garis wewenang yang ada.

VI.1.2 Bentuk Perusahaan

Pabrik Biogas dari POME adalah perusahaan swasta nasional direncanakan berbentuk Perseroan Terbatas (PT). Perseroan Terbatas merupakan suatu persekutuan yang menjalankan perusahaan dengan modal usaha yang terbagi beberapa saham, dimana tiap sekutu (disebut juga persero) turut mengambil bagian sebanyak satu atau lebih saham. Dasar-dasar kepemilikan bentuk perusahaan ini sebagai berikut:

1. Terbatasnya tanggung jawab Perseroan Terbatas sebagai badan hukum dan tanggung jawab pemegang saham. Tiap

- pemegang saham mungkin hanya menderita kerugian sebesar jumlah uang yang ditanamnya.
- 2. Pemilik dan pengusaha adalah terpisah satu sama lain. Pemilik Perseroan Terbatas adalah para pemegang saham, sedangkan pengurus adalah jajaran Direksi. Pelaksanaan suatu Perseroan Terbatas diberikan kepada orang-orang yang sanggup untuk melaksanakan tugas itu. Dengan demikian, kemampuan perusahaan untuk mendapatkan keuntungan semakin besar. Tanggung jawab pemegang saham terbatas oleh pemimpin perusahaan.
- 3. Mudah mendapatkan modal, yaitu dengan memperoleh modal dari bank dan penjualan saham-saham, dengan membagi modal atas jumlah saham-saham. Perseroan Terbatas dapat menarik modal dari banyak uang.
- 4. Kehidupan Perseroan Terbatas lebih terjamin. Ini berarti suatu Perseroan terbatas mempunyai potensi hidup yang lebih permanen dari bentuk perusahaan lainnya. Meninggalkan seorang pemilik saham, seorang direksi, seorang anggota komisaris, atau pegawai/karyawan tidak begitu mempengaruhi jalannya suatu perusahaan.
- 5. Adanya efisiensi jalannya suatu perusahaan. Tiap bagian dalam Perseroan Terbatas dipegang oleh orang ahli di bidangnya dan mempunyai tugas jelas sehingga ada dorongan untuk mengerjakan dengan sebaik-baiknya.
- 6. Kekayaan perusahaan terpisah dari kekayaan pemegang saham.

VI.1.3 Struktur Organisasi

Gerak majunya sistem perindustrian menuntut adanya keterpaduan antara sistem organisasi kerja dengan sistem manajemen. Hal ini berkaitan dengan kebijaksanaan/pengaturan dalam mencapai hasil yang baik dan efektif. Hal ini perlu didukung oleh adanya organisasi yang mantap.

Struktur organisasi merupakan tatanan kerangka kerja dalam menjalankan semua aktifitas perusahaan. Struktur menjadi

pedoman bagi pimpinan dalam mengatur posisi karyawan sesuai dengan kemampuan, pengalaman, dan kecakapannya. Struktur organisasi perusahaa, menunjukkan bagaimana perusahaan dikelola, yaitu bagaimana pendelegasian kekuasaan dan tingkat pengawasannya.

Sistem organisasi perusahaan asalah sistem garis dan staf. Dalam hal ini, pimpinan pabrik atau pimpinan perusahaan dipegang oleh direktur utama yang bertanggung jawab langsung pada dewan komisaris. Anggota-anggota dewan komisaris ini merupakan wakil-wakil dari para pemegang saham. Alasan pemilihan dan penggunaan sistem tersebut adalah sebagai berikut:

- 1. Bentuk organisasi mudah dipahami dan dilaksanakan karena sederhana
- 2. Sering digunakan dalam perusahaan yang berproduksi secara massal
- 3. Biasanya digunakan oleh organisasi yang cukup besar dengan produksi kontinyu
- 4. Terdapat kesatuan dalam pelaksanaan dan perintah, sehingga mempermudah pemeliharaan disipilin dan tanggung jawab kerja lebih baik
- 5. Pengambilan keputusan dapat dilaksanakan secara cepat karena komunikasi menjadi lebih mudah
- 6. Masing-masing kepala bagian atau kepala manager secara langsung bertanggung jawab atas suatu aktivitas yang diperlukan untuk mencapai tujuan perusahaan
- 7. Pimpinan tertinggi pabtik atau perusahaan dipegang oleh seorang direktur utama yang bertanggung jawab kepada dewan komisaris. Anggota dewan komisaris merupakan wakil-wakil daripada pemegang saham

VI.1.4 Pembagian Tugas dan Tanggung Jawab

1. Pemegang Saham

Pemegang saham adalah pemilik perusahaan yang mempunyai kekuasaan dalam perusahaan, sesuai jumlah yang dimiliki dan tergantung besarnya penyertaan modal saham yang dimilikinya. Sedangkan kekayaan pribadi dari pemegang saham tidak dipertanggung-jawabkan sebagai jaminan atas hutang-piutang perusahaan. Pemegang saham harus menanamkan saham-sahamnya paling sedikit satu tahun dan dapat diperpanjang. Kekuasaan yang tertinggi terletak pada pemegang saham, dan merekalah yang memilih dewan komisaris melalui Rapat Umum Pemegang Saham (RUPS) serta menentukan gaji direktur tersebut. Tugas dan wewenang pemegang saham adalah:

- Memilih, mengangkat, dan memberhentikan Dewan Komisaris yang dilaksanakan dalam rapat tahunan
- Menetapkan gaji direktur
- Meminta pertanggung-jawaban kepada Dewan Komisaris
- Mengadakan Rapat Umum sedikitnya satu kali dalam setahun

2. Dewan Komisaris

Dewan Komisaris adalah wakil dari pemegang saham. Semua keputusan ditentukan oleh rapat persero. Komisaris diangkat sesuai ketentuan perjanjian dan diberhentikan setiap waktu RUPS, jika ia bertindak bertentangan dengan kepentingan perseroan. Ketua Dewan Komisaris adalah pemegang saham yang mempunyai modal mayoritas dan dipilih dari RUPS. Tugas dan wewenang Dewan Komisaris adalah :

- Memilih dan memutuskan siapa yang menjabat sebagai direktur utama dan menetapkan kebijakan perusahaan (Organizing)
- Mengawasi kinerja direktur agar tidak merugikan perusahaan (*Controlling*)
- Mengawasi kinerja hasil yang diperoleh perusahaan (Analizing)
- Menyetujui ataupun menolak rancangan kerja yang diajukan direktur (*Planning*)
- Memberikan nasehat pada direktur utama bila ingin mengadakan perubahan dalam perusahaan (*Staffing*)
- Mengadakan rapat berkala atau pertemuan (*Doing*)
- Menentukan besarnya devident (Directing)

3. Direktur Utama

Direktur utama adalah pemegang kepengurusan perusahaan, merupakan pimpinan perusahaan yang bertanggung jawab langsung pada dewan komisaris. Tugas dan wewenang Direktur Utama adalah :

- Menetapkan strategi perusahaan, merumuskan rencana dan cara pelaksanaannya
- Memberikan instruksi kepada bawahan untuk melaksanakan tugasnya
- Bertanggung jawab kepada Dewan Komisaris mengenai segala pelaksanaan dari anggaran belanja dan pendapatan perusahaan
- Mengatur dan mengawasi keuangan perusahaan
- Mengangkat dan memberhentikan pegawai atau karyawan
- Bertanggung jawab atas kelancaran perusahaan

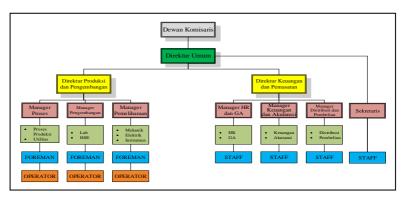
4. Direktur

Direktur bertanggung jawab kepada Direktur Utama. Direktur bertugas untuk mengarahkan dan menyelenggarakan kegiatan sesuai bidang yang dibawahinya. Selain itu, direktur juga harus berkoordinasi dengan Direktur lain agar tercipta keselarasan dalam pekerjaan. Dalam pabrik Biogas dari POME ini terdapat dua direktur yaitu direktur produksi dan pengembangan serta direktur keuangan dan pemasaran. Tugas dan wewenang Manager adalah:

- Mengkoordinasikan aktivitas baik intra & antar bidang yang dibawahinya
- Melaksanakan kebijaksanaan Direktur Utama
- Menjabarkan kebijaksanaan dan langkah yang diambil Direktur Utama

5. Manager

Manager bertanggung jawab kepada Direktur Utama. Selain sebagai pengontrol aktivitas departemen yang dibawahinya, juga harus berkoordinasi dengan Manager lain agar tercipta keselarasan dalam pekerjaan. Dalam pabrik Biogas dari POME ini terdapat tiga manager yaitu, manager produksi, manager keuangan


dan pemasaran dan manager SDM. Tugas dan wewenang Manager adalah :

- Mengkoordinasikan aktivitas baik intra & antar departemen yang dibawahinya
- Mempertinggi efektivitas dan efisiensi kerja seluruh karyawannya
- Melaksanakan kebijaksanaan Direktur
- Menjabarkan kebijaksanaan dan langkah yang diambil Direktur

6. Kepala Bagian

Bertanggung jawab kepada manager. Tugas dan wewenang Kepala Bagian adalah :

- Membantu Manager dalam perencanaan dan pelaksanaan aktivitas di tiap seksi
- Memberi pengawasan dan pengarahan terhadap supervisor di bawahnya
- Memberikan saran-pertimbangan, melaksanakan tugas yang diberikan Manager
- Membantu Manager dalam mempersiapkan dan menyusun laporan

Gambar VI. 1 Bagan Struktur Organisasi Perusahaan

VI.2 Sistem Utilitas

Utilitas merupakan suatu sarana penunjang suatu industri, karena utilitas merupakan penunjang proses utama dan memegang peranan penting dalam pelaksanaan operasi dan proses. Sistem utilitas pabrik juga sebagai sarana penunjang agar proses produksi pabrik dapat berjalan sesuai target produksi. Sarana utilitas pada Pabrik *Biomethane* dan PCC dari POME ini meliputi:

VI.2.1 Unit Pengolahan Air

Kebutuhan air untuk pabrik diambil dari air sungai, dimana sebelum digunakan air sungai perlu diolah lebih dulu, agar tidak mengandung zat-zat pengotor, dan zat-zat lainnya yang tidak layak untuk kelancaran operasi. Air pada pabrik Biogas ini digunakan untuk kepentingan :

- Air Sanitasi, meliputi laboratorium dan karyawan. Untuk unit penghasil air sanitasi diperlukan peralatan sebagai berikut: pompa air sungai, bak pra sedimentasi, bak koagulasi dan flokulasi, tangki tawas, tangki Ca(OH)₂, bak pengendap, bak penampung, pompa sand filter, tangki sand filter, bak penampung air bersih, bak penampung air sanitasi, tangki desinfektan, dan pompa air untuk sanitasi.
- Air proses, meliputi: air proses dan air pendingin.
 Pada unit pengolahan air ini, peralatan yang digunakan meliputi: pompa air boiler, bak pendingin, kation-anion exchanger.

Pada umumnya, air sanitasi harus memenuhi syarat kualitas sebagai berikut :

- a. Bebas dari zat penyebab korosi, seperti asam dan oksigen terlarut
- Bebas dari zat penyebab kerak yang disebabkan oleh kesadahan dan suhu tinggi, biasanya berupa garamgaram kalsium, magnesium, dan silikat
- c. Bebas dari zat penyebab timbulnya buih/busa, sperti zat organik, anorganik, dan minyak
- d. Kandungan logam dan pengotor seminimal mungkin

- e. Syarat fisik : di bawah suhu udara ambien, jernih, tidak berasa, tidak berbau
- f. Syarat kimia : tidak mengandung logam berat dan tidak beracun
- g. Syarat bakteriologis : tidak mengandung kuman dan bakteri patogen

VI.2.2 Unit Pembangkit Tenaga Listrik

Kebutuhan listrik yang diperlukan untuk Pabrik Biogas dari POME ini diambil dari PLN dan generator sebagai penghasil tenaga listrik. Distribusi listrik pada pabrik sebagai berikut :

- Untuk proses produksi diambil dari PLN dan generator jika sewaktu-waktu ada gangguan listrik dari PLN
- Untuk penerangan pabrik dan kantor diambil dari generator.

VI.2.3 Unit Pendingin

Unit penyediaan air bertugas untuk memenuhi kebutuhan air ditinjau dari segi panas. Penggunaan air sebagai media pendingin pada alat perpindahan panas dikarenakan faktor berikut .

- Air dapat menyerap jumlah panas yang tinggi per satuan volume
- Air merupakan materi yang mudah didapat dan relatif murah
- Tidak mudah mengembang atau menyusut dengan adanya perubahan suhu
- Mudah dikendalikan dan dikerjakan
- Tidak mudah terdekomposisi
 Syarat air pendingin adalah tidak boleh mengandung :
- *Hardness* : yang memberikan efek pada pembentukan kerak
- Besi : penyebab korosi
- Silika : penyebab kerak
- Minyak : dapat menyebabkan turunya *heat transfer*

Pada air pendingin ditambahkan zat kimia yang bersifat menghilangkan kerak, lumut, jamur, dan korosi.

VI.3 Harga Peralatan

Harga peralatan cenderung naik tiap tahun, maka untuk menentukan harga peralatan di tahun ini, harga tersebut ditaksir dari harga tahun-tahun sebelumnya berdasarkan indeks harga. Perhitungan harga peralatan dapat dilihat pada appendiks D.

VI.4 Analisa Ekonomi

Analisa ekonomi dimaksudkan untuk mengetahui suatu pabrik yang direncanakan layak didirikan atau tidak. Pada pra desain Pabrik Biogas dari POME ini dilakukan evaluasi atau studi kelayakan dan penilaian investasi.

Faktor yang perlu ditinjau untuk memutuskan hal ini adalah:

- 1. Potensial Ekonomi (*Economic Potential / EP*)
- 2. Laju Pengembalian Modal (Internal Rate of Return / IRR)
- 3. Waktu Pengembalian Modal (*Minimum Pay Out Time / POT*)
- 4. Titik Impas (*Break Even Point / BEP*)

VI.4.1 Potensial Ekonomi (EP)

Potensial ekonomi didefinisikan sebagai

```
EP = (Nilai Produk) – (Biaya Bahan Baku)

= Rp 459.176.313.132 - Rp 205.193.204.920

= Rp 253.983.108.212
```

Dari perhitungan di atas, maka pabrik ini memiliki potensi ekonomi yang cukup besar sehingga layak untuk didirikan.

VI.4.2 Laju Pengembalian Modal (IRR)

Dari hasil perhitungan pada Appendiks D, didapatkan harga i = 25,85%. Harga i yang diperoleh lebih besar dari nilai bunga pinjaman modal sehingga pabrik ini layak didirikan.

VI.4.3 Waktu Pengembalian Modal (POT)

Dari perhitungan yang dilakukan pada Appendiks D didapatkan bahwa waktu pengembalian modal minimum adalah 4,012 tahun.

VI.4.4 Titik Impas (BEP)

Analisa titik impas digunakan untuk mengetahui besarnya kapasitas produksi dimana biaya produksi total sama dengan hasil penjualan. Biaya tetap (FC) dan biaya variable (VC), biaya semi variable (SVC) dan biaya total tidak dipengaruhi oleh kapasitas produksi. Dari perhitungan yang dilakukan pada Appendiks D didapatkan bahwa Titik Impas (BEP) = 34,96%

BAB VII KESIMPULAN

Berdasarkan uraian pada bab-bab terdahulu maka dapat diambil kesimpulan dari analisa studi kelayakan pada Pra Desain Pabrik Purifikasi Biogas dari POME menjadi *Bio-Methane* dan PCC ini. Studi kelayakan yang dimaksud meliputi studi kelayakan secara teknis maupun secara ekonomis. Secara singkat, evaluasi tersebut dapat disajikan sebagai berikut:

1. Secara Teknis

Pabrik *Biomethane* dan PCC dari POME Pabrik Bioethanol dapat didirikan di Desa Sungai Bahar Tengah Kabupaten Muara Jambi, Sumatera Utara, dengan kapasitas 285.120 ton POME/tahun yang akan menghasilkan 73.720.498 m³ Biogas/tahun dan 183.589 ton PCC/tahun.

2. Secara Ekonomis

Berdasarkan analisa ekonomi dengan metode *Discounted Cash Flow* terhadap faktor ekonomi pra desain pabrik ini, maka diperoleh hasil sebagai berikut :

- a. Laju Pengembalian Modal (*Internal Rate of Return*/IRR) sebesar 25,85% per tahun, dimana lebih besar dari suku bunga bank yang sebesar 12,5% per tahun.
- b. Waktu Pengembalian Modal (*Pay Out Time*/POT) adalah 4.012 tahun.
- c. Titik Impas (*Break Even Point*/BEP) sebesar 34.96%.

Ditinjau dari aspek teknis dan ekonomis yang telah dijabarkan tersebut maka dapat disimpulkan bahwa Pra Desain Pabrik Purifikasi Biogas dari POME menjadi *Bio-Methane* dan PCC ini layak untuk didirikan.

DAFTAR PUSTAKA

- Alam, A. S. 2012. *Palm Oil Mill Effluent: A Waste Or A Raw Material*. Journal Of Applied Sciences Research, 466-473.
- Anggraini, Bella. 2016. *Pembuatan PCC dari Limbah Cangkang Sotong dengan Variasi Konsentrasi Penambahan HNO*₃. Palembang. Politeknik Negeri Sriwijaya.
- Sources, Part A: Recovery, Utilization, And Environmental Effects, 31:14, 1280- 1293. Beil, Michael, And Wiebke Beyrich. 2013. Biogas Upgrading To Bimethane. In The Biogas Handbook, By Arthur Wellinger, Jerry Murphy And David Baxter, 342-377. Woodhead Publishing Limited.
- Brownell, L.e. and Young, E, H., 1959. *Process Equipment Design*. New Delhi: Wiley Eastern Limited.
- Geankoplis, Christie John. 2003. Transport Processes and Separation Process Principles (Includes Unit Operation), 4th Edition. USA: PearsonEducation Inc.
- Huang, Guan, et all. 2015. Synthesis and Characterization of Fe₂O₃ for H₂S Removal at Low Temperature. DOI: 10.1021/acs.iecr.5b01 398.
- Kajian Supply Demand Energy 2012. Pusat Data dan Informasi Energi dan Sumber Daya Mineral Kementrian Energi dan Sumber Daya Mineral.
- Kern, Donald. 1950. *Process Heat Transfer*. New York: McGraw-Hill Book Company.
- Kusnarjo. 2010. *Desain Alat Industri Kimia*. Surabaya: ITS Press.
- Lovane, P., Nanna, F., Ding, Y., Bikson, B., Molino, A., 2014. Experimental Test With Polymeric Membrane For The Biogas Purification From CO2 And H2S. Fuel 135 352—358

- Mc Cabe, W.L., Julian Smith, Peter Hariot. 1993. *Unit Operation of Chemical Engineering 6th edition*. Singapore: Mc Graw Hill, Inc.
- Peraturan Menteri Pertanian Nomor 70/Permentan/Sr.140/10/2011 Tentang Pupuk Organik, Pupuk Hayati Dan Pembenah Tanah
- Perry, H. Robert. 1997. *Chemical Engineering Handbook* 7th *Edition*. New York: McGraw-Hill.
- Peters, Max S. and Timmerhaus, Klaus D.,1991 *Plant Design and Economic For Chemical Engineering 4-ed*, International Edition. Singapore: McGraw-Hill Book Co Singapore.
- Peterson, Anneli. 2013. Biogas Cleaning. In The Biogas Handbook, By Arthur Wellinger, Jerry Murphy And David Baxter, 329-341. Woodhead Publishing Limited.
- Rahayu, Ade, dkk. 2015. *Buku Panduan Konversi POME menjadi Biogas*. USAID Winrock International: Jakarta.
- Said, Sudirman. 2015. *Renstra KESDM*. Jakarta. Kementerian Energi dan Sumber Daya Mineral.
- Seborg, Edgar, Mellichamp, Doyle. 1990. *Process Dynamics* and Control 3th Edition. Amerika: United States of Amerika.
- Ulrich, Dael D. 1984. A Guide To Chemical Engineering Process Desain And Economics New York: John Wiley.
- Van Ness, S. 1967. Introduction to Chemical Engineering Thermodynamics, 4th Edition.
- Singapore : International Edition, McGraw-Hill Inc.

RIWAYAT HIDUP PENULIS

Nungki Widya Savitri lahir di Jakarta, 23 September 1996. Penulis merupakan anak pertama dari dua bersaudara. Penulis menempuh pendidikan formal sejak tahun 2002 di SDN Cakung Barat 01 Pagi, SMPN 193 Jakarta, SMAN 54 Jakarta, dan D3

Teknik Kimia Universitas Sebelas Maret. Saat ini penulis sedang menempuh pendidikan tahap sarjana di Departemen Teknik Kimia, Fakultas Teknologi Industri dan Rekayasa Sistem, Institut Teknologi Sepuluh Nopember sejak tahun 2018. Penulis melaksanakan kerja praktik di PT. Pertamina (Persero) RU IV Cilacap. Tugas akhir yang merupakan syarat kelulusan jenjang sarjana ditempuh penulis di Laboratorium Mekanika Fluida yang terdiri dari Tugas Pra Desain Pabrik dan Tugas Penelitian yang berjudul "Pengaruh Rasio *Carrier Gas* terhadap Performa Aktivitas Fotokatalitik ZnO-Ag dengan Metode *Spray Pyrolysis*" di bawah bimbingan Dr. Kusdianto, S.T., M.Sc.Eng dan Prof. Dr. Ir. Sugeng Winardi, M.Eng. Apabila terdapat kritik dan saran mengenai penelitian tersebut maka pembaca dapat menghubungi penulis via e-mail nungkiwidyas@gmail.com

RIWAYAT HIDUP PENULIS

Syamsul Mu'arif Subekhi lahir di Cilacap, 25 Desember 1996. Penulis merupakan anak kedua dari dua bersaudara. Penulis menempuh pendidikan formal sejak tahun 2002 di SD Al-Irsyad 01

Cilacap, SMPN 2 Cilacap, SMAN 1 Cilacap, dan D3 Teknik Kimia Universitas Sebelas Maret. Saat ini penulis sedang menempuh pendidikan tahap sarjana di Departemen Teknik Kimia, Fakultas Teknologi Industri dan Rekayasa Sistem, Institut Teknologi Sepuluh Nopember sejak tahun 2018. Penulis melaksanakan kerja praktik di PT. Pertamina (Persero) RU IV Cilacap. Tugas akhir yang merupakan syarat kelulusan jenjang sarjana ditempuh penulis di Laboratorium Mekanika Fluida yang terdiri dari Tugas Pra Desain Pabrik dan Tugas Penelitian yang berjudul "Pengaruh Rasio Carrier Gas terhadap Performa Aktivitas Fotokatalitik ZnO-Ag dengan Metode Spray Pyrolysis" di bawah bimbingan Dr. Kusdianto, S.T., M.Sc.Eng dan Prof. Dr. Ir. Sugeng Winardi, M.Eng. Apabila terdapat kritik dan saran mengenai penelitian tersebut maka pembaca dapat menghubungi penulis via e-mail syamsulxiiipa@gmail.com