

BACHELOR THESIS & COLLOQUIUM – ME 141502

CONTROLLING AND MONITORING BASED ON ARDUINO UNO ON IMPRESSED CURRENT CATHODIC PROTECTION FOR HULL

Allysha Prista Augustiana NRP. 04211641000046

SUPERVISOR Juniarko Prananda, S.T., M.T. Achmad Baidowi, S.T., M.T.

DOUBLE DEGREE PROGRAM DEPARTMENT OF MARINE ENGINEERING FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019

BACHELOR THESIS & COLLOQUIUM – ME 141502

PENGENDALIAN DAN PEMANTAUANAN PADA *IMPRESSED CURRENT CATHODIC PROTECTION* UNTUK LAMBUNG KAPAL MENGGUNAKAN ARDUINO UNO

Allysha Prista Augustiana NRP. 04211641000046

SUPERVISOR Juniarko Prananda, S.T., M.T. Achmad Baidowi, S.T., M.T.

DOUBLE DEGREE PROGRAM DEPARTMENT OF MARINE ENGINEERING FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019

APPROVAL FORM

CONTROLLING AND MONITORING BASED ON ARDUINO UNO ON IMPRESSED CURRENT CATHODIC PROTECTION FOR HULL

BACHELOR THESIS

Submitted in fulfilment of the requirement for the degree of Bachelor in Engineering

at

Marine Electrical and Automation System (MEAS) Laboratory Bachelor Program Department of Marine Engineering Faculty of Marine Technology Institut Teknologi Sepuluh Nopember

Prepared by: ALLYSHA PRISTA AUGUSTIANA NRP. 04211641000046

Approved by Supervisors :

Juniarko Prananda, S.T., M.T. NIP.199006052015041001

Achmad Baidowi, S.T., M.T. . NIP.

"This Page Intentionally Left Blank"

APPROVAL FORM

CONTROLLING AND MONITORING BASED ON ARDUINO UNO ON IMPRESSED CURRENT CATHODIC PROTECTION FOR HULL

BACHELOR THESIS

Submitted in fulfilment of the requirement for the degree of Bachelor in Engineering

at

Marine Electrical and Automation System (MEAS) Laboratory Bachelor Program Department of Marine Engineering Faculty of Marine Technology Institut Teknologi Sepuluh Nopember

> Prepared by: ALLYSHA PRISTA AUGUSTIANA NRP. 04211641000046

Approved by : ANN PENDIDIAN DAN BUAN DOLOGI SEPULUN BUAN STERNOLOGI KER Head of Departement of Marine Engineering KEMENTER DEPARTEMEN TEKNIK SIST Beny Cahyono, S.T., M.T., Ph.D. NIP.197903192008011008

"This Page Intentionally Left Blank"

DECLARATION OF HONOR

I hereby who signed below declare that:

This bachelor thesis has written and developed independently without my plagiarism act, and confirm consciously that all data, concepts, design, references, and material in this report own by Marine Electrical and Automation Sytem in Department of Marine Engineering ITS which are the product of research study and reserve the right to use for further research study and its development.

Name	: Allysha Prista Augustiana		
NRP	: 04211641000046		
Bachelor Thesis Title : Controlling and Monitoring Based on Arduino			
	Uno on Impressed Current Cathodic Protection		
	For Hull.		
Departement	: Double Degree Program Marine Engineering		

If there is plagiarism act in the future, I will fully responsible and receive the penalty given by ITS according to the regulation applied.

Surabaya, January 2020

Allysha Prista Augustiana

PREFACE

Author would like to praise and thanks Allah SWT for giving the knowledge, strength, and wisdom in order to complete this studies and bachelor thesis. In expectation, the result of this bachelor thesis would be a beneficial aspect both for the author knowledge and surroundings that are involves in this aspect. Author would give the warmest regards and appreciation for those who had helped and contributed highly by guiding and providing knowledge in the completion of this bachelor thesis.

- 1. Author's beloved family, who always pray for the best of their eldest son and brother, giving the support and love during the process of this bachelor thesis
- 2. Beny Cahyono, ST., M.T., Ph.D. as the Head of Marine Engineering Department, Marine Technology Faculty of Institut Teknologi Sepuluh Nopember
- 3. Juniarko Prananda S.T., M.T., Ph.D and Achmad Baidowi, S.T., M.T. as the supervisor who guide and enlightened with knowledge, motivation, and encouragement since the beginning of this bachelor thesis
- 4. Ir. Sardono Sarwito, M.Sc., as the Head of MEAS Laboratory. Ir. Agoes Ahmad Masroeri, M.Eng, D.Eng, Indra Ranu Kusuma, S.T., M.Sc., Dr. Eddy Setyo Koenhardono, S.T., M.Sc. as the lecture of MEAS Laboratory
- 5. Ir. Dwi Priyanta, MSE as author's supervisor lecturer
- 6. Aulya Fadilla Racham as author's support system
- 7. Dennis Chaniago, Amal Mulya, Jody Muhammad and all stakeholders that has been involved in discussion and interviews
- 8. All of MEAS Laboratory members, Double Degree Class of 2016, Voyage 2016 who has giving a full support since the beginning of this college
- 9. Viorel Herniza, Hadrian DJ, Eko Novianto, and Johanna Kusuma as author beloved best friend

Author realize that there is no such a perfect writing, and author is expecting with inputs and suggestion for this research. In expectation, this study would become a beneficial matter, not only for the author but for the benefit of others as well.

Surabaya, 2020

Author

CONTROLLING AND MONITORING BASED ON ARDUINO UNO ON IMPRESSED CURRENT CATHODIC PROTECTION FOR HULL

Name : Allysha Prista Augustiana

NRP : 04211641000046

Department : Marine Engineering

Supervisor 1 : Juniarko Prananda, S.T., M.T.

Supervisor 2 : Achmad Baidowi, S.T., M.T.

ABSTRACT

Impressed Current Cathodic Protection (ICCP) is a cathodic protection method that works by sending controlled DC currents to submerged surfaces with the help of zinc electrodes and metal oxide combined anodes. The application of excess current to the ICCP technology and protective coating will cause inefficiency on generators and cause an electro-endomosis process that triggers the damage of the protective coating layer so that the application of ICCP technology with an excess current will tend to be detrimental. Therefore, it is necessary to install a controlling and monitoring system at ICCP to regulate the amount of current released by ICCP so that the use of ICCP can be more efficient. This controlling and monitoring system consists of several components such as sensors, microcontroller, actuators, and software.

Water sensor will detect water level. Then the water sensor will send a signal in the form of data to the Arduino microcontroller. Then Arduino will send commands to the transistor to control the current coming from the power supply, as needed. Then to find out the amount of current that will enter the anode, a current sensor is needed.

In this study, it was found that the simulation with Arduino Uno conducted was able to control the output of the ICCP current to make efficient use of generators on ships. Based on the calculations performed, the value of current requirements obtained at full load conditions is 162 Amperes, at half load conditions is 115 Amperes, and at ballast load conditions is 87 Amperes.

Keyword: Corrosion, ICCP, Controlling, Monitoring

PENGENDALIAN DAN PEMANTAUANAN PADA *IMPRESSED* CURRENT CATHODIC PROTECTION UNTUK LAMBUNG KAPAL MENGGUNAKAN ARDUINO UNO

Nama: Allysha Prista AugustianaNRP: 04211641000046Departemen : Teknik Sistem PerkapalanPembimbing1: Juniarko Prananda, S.T., M.T.Pembimbing : Achmad Baidowi, S.T., M.T.

ABSTRAK

Impressed Current Cathodic Protection (ICCP) adalah metode perlindungan katodik dengan mengirimkan arus DC yang terkontrol ke permukaan yang terendam air laut dengan bantuan elektroda berupa zinc dan anoda gabungan oksida logam. Arus yang berlebih pada ICCP akan mengurangi efisisensi penggunaan generator dan dapat menyebabkan proses elektro-endomosis yang dapat memicu kerusakan lapisan pelindung yang akan merugikan. Oleh karena itu, diperlukan pemasangan sistem pengendalian dan pemantauan pada ICCP sehingga penggunaannya akan lebih efisien. Sistem pengendalian dan pemantauan terdiri dari serangkaian komponen seperti sensor, mikrokontroler, aktuator, dan perangkat lunak.

Ketinggian air dideteksi dengan sensor air. Sensor air akan mengirimkan sinyal dalam bentuk data ke mikrokontroller Arduino. Lalu Arduino akan mengirimkan perintah ke transistor untuk mengatur arus dari sumber tenaga sesuai yang dibutuhkan. Sensor arus akan digunakan untuk mengetahui jumlah arus yang akan memasuki anoda.

Pada penelitian ini, didapatkan bahwa simulasi dengan Arduino Uno yang dilakukan mampu mengkontrol keluaran arus ICCP untuk mengefisiensi penggunaan generator pada kapal. Berdasarkan kalkulasi yang dilakukan, didapatkan nilai kebutuhan arus pada kondisi full load sebesar 162 Ampere, dan pada kondisi half load sebesar 150 Ampere.

Kata kunci: Corrosion, ICCP, Controlling, Monitoring

ABS	TRACTix
INTROD	<i>UCTION1</i>
1.1. Ba	ckground Overview1
1.1.	Formulation of Problems1
1.2.	Research Limitations1
1.3.	Research Objectives1
1.4.	Research Benefits1
CHAPTE	<i>R II</i>
LITERAT	<i>TURE STUDY</i>
2.1.	Corrosion
2.2.	Corrosion Rate
2.3.	Cathodic Protection
2.3.1	Sacrificial Anode Cathodic Protection (SACP)
2.3.2	2. Impressed Current Cathodic Protection (ICCP)
2.3.2.1	Components of ICCP
2.4.	Current Protection Needs
2.5.	Sacrificial Anode Needs9
2.6.	Microcontroller
2.6.1.	Arduino11
2.7.	Sensor
2.7.1.	Water Sensor12
2.7.2.	Current Sensor
2.8.	Actuator
2.8.1.	MOSFET
2.12.	Android17
CHAPTE	R III
METHO	DOLOGY
3.1.	Methodology Flow Chart19
3.2.	Formulation of Problem20
3.3. Li	terature Study

Table of Contents

3.4.	Data Collection	20
3.5.	Calculation of Current Needs for Each Load Cases	20
3.6.	Calculation of Amount of Anode Required	20
3.7.	Device Selection	21
3.8.	Making Wiring Diagram	25
3.9.	Simulation Model Making	25
3.10.	Current Protection Match	26
3.11.	Conclusion	26
CHAPTE	R IV	27
RESULT	AND DISCUSSION	27
4.1 Ca	lculation of the Corrosion Rate	27
4.1.	l Wetted Surface Area	27
4.1.2	2 Assumptions of the Corroded Mass	29
4.1.	3 Corrosion Rate	30
4.2 Ca	lculation of Current Needs	32
4.2.	l Cathode Surface Area	33
4.2.2	2 Coating Breakdown Factor	34
4.2.	3 Current Demand	35
4.3 An	ode Required Calculation	37
4.3.	l Anode Utilization Factor	37
4.3.2	2 Anode Calculation	38
4.4 Ov	erview of the Controller System	40
4.5 Ex	pected Response	42
4.6 Sh i	p's Model Data	42
4.7 Ele	ectronic System Design	42
4.7.	Tools and Materials	42
4.7.2	2 Electric Component Layout	47
CHAPTE	<i>RV</i>	58
CONCLU	ISION AND SUGGESTION	58
5.1. Co	onclusion	58
5.2. Su	ggestion	58
BIBLIOC	GRAPHY	59

TABLE OF FIGURE

Figure 2.1 Corrosion Mechanism	4
Figure 2.2 Sacrifical Anode	5
Figure 2.3 Impressed Current Cathodic Protection	6
Figure 2.4 Arduino Uno	. 11
Figure 2.5 Water Sensor	. 12
Figure 2.6 Current Sensor	. 13
Figure 2.7 MOSFET	. 13
Figure 2.8 MOSFET Block Diagram	. 14
Figure 2.9 Ground Step Down	. 15
Figure 2.10 Ground Step Down Block Diagram	. 15
Figure 2.11 Bluetooth HC-05	. 16
Figure 2.12 Power Supply	. 16
Figure 2.13 Battery	. 17
Figure 2.14 Android	. 17
Figure 2.15 Ardutooth	. 18
Figure 3.1 Lines Plan	.24
Figure 3.2 Arduino Uno	.25
Figure 3.3 Water Level Sensor	.25
Figure 3.4 MOSFET	.26
Figure 3.5 Batteries	.26
Figure 3.6 Jumper Wire	27
Figure 3.7 Current Sensor	.27
Figure 3.8 Ground Step Down	.28
Figure 3.9 LED	.28
Figure 4.1 Maxsurf Calculation for Ballast Load	.30
Figure 4.2 Maxsurf Calculation for Half Load	.31
Figure 4.3 Maxsurf Calculation for Half Load	.31
Figure 4.4 CC Marine Zinc Anode Catalog	.41
Figure 4.5 System's Block Diagram	45
Figure 4.6 Current Sensor Datasheet	48
Figure 4.7 MOSFET Datasheet	.49
Figure 4.8 Battery	.49
Figure 4.9 Battery Datasheet	50
Figure 4.10 Bluetooth HC-05	50
Figure 4.11 Bluetooth HC-05 Datasheet	51
Figure 4.12 Wiring Diagram	52
Figure 4.13 Electric Component Installation	53
Figure 4.14 Water Level Sensor Installation	53
Figure 4.15 LED and Power Supply Installation	53
Figure 4.16 Simulation Position	57
Figure 4.17 Test Pool5	58
Figure 4.18 Controlling Simulation at Ballast Load5	58
Figure 4.19 Monitoring Simulation at Ballast Load5	;9

Figure 4.20 Controlling Simulation at Half Load	59
Figure 4.21 Monitoring Simulation at Half Load	60
Figure 4.22 Controlling Simulation at Full Load	60
Figure 4.23 Monitoring Simulation at Full Load	61
Figure 4.24 Controlling Result at Ballast Load	61
Figure 4.25 Controlling Result at Half Load	62
Figure 4.26 Controlling Result at Full Load	62

LIST OF TABLE

Table 2.5.1 Closed-circuit potential of anode for Al and Zn	9
Table 2.6.1 Electrochemical Efficiency.	9
Table 3.7.1 Ship data	21
Table 4.1.1.1 Wetted Surface Area for Ballast Load	27
Table 4.1.1.2 Wetted Surface Area for Half Load	28
Table 4.1.1.3 Wetted Surface Area for Full Load	29
Table 4.1.1.4 Wetted Surface Area for Ballast Load (Scaled)	29
Table 4.1.1.5 Wetted Surface Area for Half Load (Scaled)	29
Table 4.1.1.6 Wetted Surface Area for Full Load (Scaled)	29
Table 4.1.2.1 Data Reference of Corroded Mass	30
Table 4.2.2.1 DNV Coating Categories	34
Table 4.2.2.2 Coating System for Cargo Tanks	35
Table 4.3.1.1 Anode Utilization Factor	37
Table 4.4.1 Components of The Arduino-based ICCP Flow Control System	41
Table 4.6.1 Ship Model Data	42
Table 4.7.1.1 Pin Arduino Uno	43
Table 4.7.1.2 Water Sensor Spesification	43

CHAPTER I

INTRODUCTION

1.1. Background Overview

The Indonesian archipelago is a country that has a tropical climate and has a wide sea scapes, with a high level of humility, the corrosion process is something that cannot be avoided. By most people, corrosion is also referred to as rust, corrosion is a destructive symptom that affects almost all metals. Although iron is not the first metal used by humans, it can't be denied that it is the most widely used metal.

Corrosion is the process of decay or degradation of metals (degradation of metal quality). Corrosion originates from the process of releasing electrons from metals in electrolyte solution. One of the biggest sources of damage to marine vessels is corrosion due to sea water. This is because the main ingredient in shipbuilding is iron / steel However, iron and steel have very reactive properties that are vulnerable to seawater.

When viewed in terms of construction on the ship plate, the hull plate is the most vulnerable to corrosion, this is because the surface of the hull plate, especially those below the water line are always submerged in sea water. Corrosion to the hull plate can cause the decline in the hull plated rigidity, reduce the speed of the ship, and reduce the safety and security of cargo and passenger loads. To avoid greater losses due to seawater corrosion, the hull plates need to be given protection from periodic corrosion attacks. In an effort to prevent corrosion on ships, there are several types of methods used, namely by giving a coating (coating), and doing cathodic protection. Cathodic protection methods include *Sacrificial Anode Cathodic Protection* (SACP) and *Impressed Current Cathodic Protection* (ICCP).

Protection of the hull against corrosion using the cathodic protection method is principally an electrochemical cell for controlling corrosion by concentrating the reaction of oxygen to galvanic cells and suppressing corrosion of the cathode in the same cell. In cathodic protection, the metal to be protected is made into a cathode and oxidation reactions occur at the anode. There are two types of cathodic protection, namely Sacrificial Anode Cathodic Protection (SACP) and Impressed Current Cathodic Protection (ICCP).

Impressed Current Cathodic Protection (ICCP) is a cathodic protection method that works by sending a controlled DC current to a submerged surface with the help of a zinc electrode and a combined metal oxide anode. Electric current flow will continue to be monitored by the ICCP system in order to help prevent corrosion before it occurs.

At the present time, several ships have been using Impressed Current Cathodic Protection (ICCP) system, especially LNG and Container vessels In its use to prevent corrosion of the hull, ICCP requires a controlling system to control the large currents that must be released by the ICCP. Because when a ship floats, the loads carried may vary. There are times when the ship does not carry any cargo at all, there are times when the ship only carries half-full cargo, there are times when the ship carries full cargo, etc. In those cases, the draft on the ship will differ in each situation. Because of these conditions, the area of the hull that must be protected for each condition will require different amount of current.

When the ballast tank is not in full condition, it is possible to apply excessive current to the ICCP. In some literature it is mentioned that the application of overcurrent to ICCP and protectivecoating technology will cause an electro-endoosmosis process that triggers damage to the protective coating layer so as to cause corrosion between the protective coating layer and steel. This will make the application of ICCP technology with excessive flow does not provide the proper benefits, and tends to harm instead.

Therefore, it is necessary to install a controlling system in the ICCP, this controlling system serves to regulate the amount of current released by the ICCP to prevent corrosion in the hull according to their needs. So that with this controlling system, the amount of current released will be more efficient and saves generator usage on ships.

1.1. Formulation of Problems

Formulation of problems that will be analysed in this thesis are

- 1. What level of protrction that ICCP need to protect by the system in each load case.
- 2. How can the design of an Arduino-based ICCP flow control & monitor system make efficient the use of ICCP in preventing hull corrosion ?

1.2. Research Limitations

Limitation problems or scope of this research are as follows :

- 1. Part of the ship to be analyzed is the immersed hull.
- 2. Calculation of ship's wetted surface area is divided only into 3 load cases.
- 3. Sea water is assumed to be in no waves condition.

1.3. Research Objectives

The objectives to be achieved in this research are as follows :

- 1. To determine the value of voltage and current required on the DC rectifier to slow down the corrosion in each load cases
- 2. To find out how to design of an Arduino-based ICCP flow control and monitor system can make efficient the use of ICCP in preventing hull corrosion

1.4. Research Benefits

The benefits of this research are expected to be as follows :

1. Provide recommendations using Arduino Uno-based controlling system so that using ICCP technology to prevent corrosion in the hull of the ship can run efficiently and effectively.

CHAPTER II

LITERATURE STUDY

2.1. Corrosion

Corrosion is the process of metal degradation due to reaction with a corrosion environment. Corrosion can also be interpreted as damage to metals because metals react chemically or electrochemically with their environment. Electrochemical reactions cause displacement of electrons which are the result of redox reactions. Corrosion process that occurs in materials made of metal is caused by the flow of electricity from the anode (negative electrode) to the cathode (positive electrode). The flow of current causes loss of metal in the part where the current is released into the environment (oxidation). The process occurs if there are substances that are electrolyte that can conduct electricity. Corrosion is a complex phenomenon that does not only occur with metal and non-metal materials [6].

There are four main components that can cause corrosion. If one of them is absent, corrosion cannot occur [9]. The components are

a. Anode

Anode is a component that releases electrons. Anode is a place of oxidation reaction. With the potential difference, it can cause an electric current. Electric current will flow from a high potential to a lower potential, while electrons flow in the opposite direction to the electric current. The anode has a more negative electron potential compared to the cathode, so electrons at the anode flow through metallic contact to the cathode.

b. Cathode

The cathode is a component that receives electrons. The cathode is where reduction reaction occurs. The cathode receives electrons from the anode so that a cathodic reaction occurs on the surface of the cathode. Electrons will be on the surface of the cathode so that they will react with positive ions from the electrolyte.

c. Electrolyte

Electrolytes are the environment where cathode and anode are exposed. The function of electrolyte solution is to work as an electrical conducting medium. Electrolyte ions will help delivering free electrons released from the oxide reaction in the anode region to the reduction reaction in the cathode region.

d. Metallic Connection

Metallic connection is the place where electrons flow. By making a contact between the anode and the cathode, the electrons will flow from the anode to the cathode. Therefore, a metallic connection is needed to move electrons, because electrons cannot flow in the electrolyte.

Figure 2.1 Corrosion Mechanism

2.2. Corrosion Rate

Corrosion is the process of electrochemical reactions. The speed of a chemical reaction or the amount of current that flows will affect the rate of corrosion. Corrosion rate is directly proportional to the amount of current flowing in the electrochemical corrosion cell. To calculate the corrosion rate can be done by two methods. The first method is the weight gain loss method. The weight gain loss is generally considered to be a loss of mass of plate. This method is done by observing the difference in initial mass before corrosion testing with final mass after corrosion testing. This method can be calculated by using the following equation [7]:

$$CR = \frac{K \cdot m}{A \cdot t \cdot \rho} (mpy/mmpy)$$
[2.1]

Electrochemical method is a method of measuring the rate of corrosion by measuring the potential difference of an object, so that the corrosion rate is obtained. This method can estimate the rate of corrosion in a long time. This method has the advantage, in which we can know the rate of corrosion directly when being measured, and the measurement does not take a long process. Corrosion rate measurement by electrochemical method with polarization and corrosion potential can be calculated by using a formula based on Faraday's Law, as follows [2]:

$$CR = \frac{a \cdot i}{n \cdot D} mmpy \qquad [2.2]$$

2.3. Cathodic Protection

Cathodic protection is a technique used to control rust or corrosion on metal surfaces by making the metal surface a cathode of an electrochemical cell. Generally cathodic protection is a process of controlling the corrosion rate that is resulted from cathodic polarization of corroded metal surfaces.

Cathodic protection is widely used to control corrosion in oil pipelines, ship hulls, offshore drilling rigs, gas pipes, and underground water pipes. Cathodic protection can be done in two ways, namely by using sacrificial anodes (Sacrificial Anode) and forced currents (Impressed Current).

Protected Stouchure (State) (S

2.3.1. Sacrificial Anode Cathodic Protection (SACP)

Figure 2.2 Sacrificial Anode

Sacrifical Anode is a cathodic protection that use a more reactive metal (anode) which is then connected to the metal that is to be protected. Types of metals commonly used in this protection are active metals such as zinc (zinc) or special Aluminium which has a greater positive current than the metal. The difference in voltage causes the attraction of negative free electrons that are greater than the attraction of ions on the metal. This results in more reactive metals that will be damaged by corrosion and other metals will be protected from corrosion [6]. The most commonly used sacrificial anode is zinc, allumunium, and magnesium. The three anodes have different characteristics in protecting the cathode metal. These three metals are widely used in seawater. The material has a potential that is negative enough to be a sacrificial anode that protects steel from an electrolyte solution (seawater). According to the composition of these metals when used as anode is very important, the composition must meet the following property procedures :

- 1. Has sufficient negative potential to ensure cathodic protection in special environments
- 2. Its ability to carry on corrosion during use and not forming a passive or protective layer on the surface
- 3. High anode efficiency

2.3.2. Impressed Current Cathodic Protection (ICCP)

Figure 2.3 Impressed Current Cathodic Protection

ICCP is done by changing the AC current from the generator into a DC current using a rectifier. This cathodic protection works by sending a controlled DC current to a surface that is submerged in water with the aid of a zinc electrode and a combined metal oxide anode. Electric current flow will continue to be monitored by the ICCP system in order to help prevent corrosion before it occurs.

When cathodic is on a coated surface, the potential on the surface will decrease. The object is electrically connected to the object that is electrically connected to the rectifier system, so that it can shut the electricity network. The advantage of the impressed current cathodic protection is in its usage of galvanic cathodic which is cathodic protection current is better compared to other protection materials. Anode used as protection will get current from ICCP so that anode used in protection will tend to have a longer active period.

Principally, the impressed current cathodic protection system is the same as the sacrificial anode, only the demand for electron current is supplied from outside the system which is from the anode that is connected to a DC current source. [6].

2.3.2.1 Components of ICCP

Impressed Current Cathodic Protection system consists of 4 main components. Basically, these components are the same as the components in a sacrificial anode cathodic protection system. Principally, this protection system is only manipulating the natural processes that occur in metals when it is in contact with the environment that can cause corrosion, so that the system can control corrosion. The four main components of impressed current cathodic protection system are;

a. Anode

Anode used here is usually inert and has a high resistance to corrosion. The shape and size are various, it can be in the form of wire, tube, plate, bar, and plate. The ideal criteria for anodes according to Shreir and Hayfield are those that have low consumption rates, low polarization rates, high electrical conductivity, ease of installation, are physically strong, so they are not easily damaged, resistant to abrasion and erosion, easily formed, and low costs.

b. Cathode

Cathode component referred to here is the metal that is to be protected. The metal is made to act as a cathode so that the potential is in an immune area that is resistant to corrosion. In the impressed current cathodic protection system/ICCP, the metal which is made into a cathode is called a working electrode. Cathode can be made from materials such as iron, steel or alloy metal.

c. Electrolytes

Electrolytes here act as electrical lines which are the medium to transfer electron. Due to the ion contents, electrolytes become corrosive. Electrolytes are contained in the soil with a certain depth and sea water, so that when a metal without protection is in the environment then the metal will be corroded.

d. Current Source

A DC current source is a direct current power source (Direct Current), which is usually in the form of transformer-rectifier. This equipment uses alternating current / AC (Alternating Current) as its main source of electricity and converts it into direct current, so this equipment is widely used as an energy source (Power Supply) in providing DC voltage and current. To complete the electrical circuit in the ICCP system, the positive terminal power supply is connected to the anode while the negative terminal is connected to the cathode, so the DC current will flow from the power supply to the anode through the electrolyte until it reaches the cathode and finally back to the power supply.

2.4. Current Protection Needs

Before calculating the need for sacrificial anodes, protection currents are required. The data required in the calculation of hull protection using a sacrificial anode are; The size of the hull plate area to be protected, the seawater resistivity using the reference to DNV RPB 401 concerning the resistivity at which the water temperature, the lifetime of protection needs on large objects for such as the hull will require a detailed cathodic protection design with the design concept of cathodic protection. Before doing cathodic protection, protection current is needed. Calculation of the need for current protection refers to the DNV-RP-B401 rules regarding the design of cathodic protection. [2].

$$Ic = Ac \cdot fc \cdot ic \qquad [2.3]$$

If the area in the area to be protected (Ac) is multiplied by the current density design (ic), and the coating breakdown factor (fc), then the current request (Ic) will be obtained. While the area to be protected can be obtained using the formula :

$$Ac = (2T+B) \times Lbp \times p \qquad [2.4]$$

The data required in the calculation of hull protection using a sacrificial anode are; The size of the hull plate area to be protected, seawater resistivity using the reference to DNV RPB 401 concerning resistivity where the water temperature, protection life, coating breakdown factor (Subsea Engineering Handbook), and current density. To calculate the need for protection current obtained from Ohm's law

$$Ic = N \cdot I_a = \frac{N(E_c \circ - E_a \circ)}{R_a} = \frac{N \cdot \Delta E^\circ}{R_a}$$
[2.5]

To calculate the need for current out of the sacrificial anode, the formula of the ohm law is used [2]. Where the potential protection design is reduced the closed-circuit design potential is divided by the anode resistance

$$Is = \frac{E^{\circ} c - E^{\circ} a}{R_a}$$
[2.6]

Anode closed circuit potential is based on the potential closed-circuit table of anode for Al and Zn based on sacrificial anode [2].

Macam Material Anoda	Lingkungan	Sirkuit Tertutup Anoda Potensial
Al	Air Laut Endapan	-1,05 -0,95
Zn	Air Laut Endapan	-1,00 -0,95

Tabel 2.5.1 Closed-circuit potential of anode for Al and Zn [2].

2.5. Sacrificial Anode Needs

After obtaining the amount of protection current needs, the calculation of the sacrificial anode needs to be done on the ship by calculating the weight needs of the sacrificial anode using the following equation [1].

$$M = \frac{Ic.T.8760}{\mu.\varepsilon}$$
[2.7]

Whereas the need for protection current (Ic) is multiplied by the protection life (T) which refers to the BKI regulation, then divided by the sacrificial anode use factor (μ) and electrochemical efficiency (ϵ). Electrochemical efficiency is based on the electrochemical efficiency table of the sacrificial anode used in calculating the required sacrificial anode weight [4].

Tabel 2.6.1 Electrochemical Efficiency [4]

Elemen	Electrochemical Efficiency (Ah/kg)	
Al	2000	
Zn	700	

But according to the Biro Klasifikasi Indonesia in Regulation for the Corrosion Protection and Coating, the most recommended anode to be used on ships is the zinc sacrificial anode [4].

Elemen	KI- Zn1	KI- Zn1	
AI	0,100 - 0,500	≤ 0,0100	
Cd	0,025 - 0,070	\leq 0,0040	
Cu	$\leq 0,005$	\leq 0,0050	
Fe	$\leq 0,005$	≤ 0,0014	
Pb	\leq 0,006	\leq 0,0060	
Zn	> 99,22	≤99,880	
Potential (T=20°C)	-1,03 Volt Ag/AgCl/See	-1,03 Volt Ag/AgCl/See	
Qg (T=20°C)	780 Ah/kg	780 Ah/kg	
Efficiency (T=20°C)	95%	95%	

Tabel 2.6.2 Zinc sacrificial anode on seawater media applications [4].

2.6. Microcontroller

Microcontroller is a chip which functions as an electronic circuit controller and generally can store programs in it. Microcontroller is a chip that functions as an electronic circuit controller and generally can store programs in general consisting of CPU (Central Processing Unit), memory, certain I/O and supporting units such as Analog-to-Digital Converter (ADC) that has been integrated in it. The main advantage of the microcontroller is the availability of RAM and supporting I/O equipment so that the size of the microcontroller board is very concise. Almost all equipment related to our activities all have a microcontroller, for example: Mobile Phone which used for communication, LCD screens, cars, motorcycles, digital cameras and many other equipment.

Basically, a microcontroller is a device that integrates a number of components of a microprocessor system into a single microchip. There are three main components of a microcontroller, including: CPU processor, memory and input/output (I/O).

2.6.1. Arduino

Arduino is an open source microcontroller. The hardware on the microcontroller is programmed using a wiring-based programming language based on syntax and library. To facilitate the development of its applications, Arduino microcontrollers use Integrated Development (IDE) based processing [2]. Arduino can be paired with various types of actuators and other sensors, such as mechanical sensors, ultrasonic sensors, heat sensors, light sensors, Ethernet Shield, Led Display, and others (Ade Pramono, 2012). Arduino Uno can load all the components needed to support a microcontroller. Arduino Uno can work only by connecting to a computer via USB or by providing DC voltage from a battery or AC to DC adapter.

Figure 2.4 Arduino Uno

2.7. Sensor

Sensor is a device that has an important role in an automatic control system. The quantities of the control system such as electric quantities, physical quantities, and so on. To use electric quantities in a control system, usually quantities that are not electric quantities will first be converted into an electrical signal through a device called a transducer. The sensor is a tool that serves to detect symptoms or signals that come from the changes in energy. Examples include electrical energy, physical energy, chemical energy, mechanical energy, and others.

Generally, sensors are divided into 3 types based on their function and usage, which are ;

a. Mechanical Sensor

Mechanical sensor is a type of sensor that detects changes in mechanical motion, such as displacement or shift in position, pressure, flow, level, position of straight and circular motion, and so on. Examples of mechanical sensors are strain guage, LVDT, proximit, potentiometer, load cell, bourdon tube, etc.

b. Optical Sensor

Optical sensor is a sensor that detects changes in light found in the light source, refractive light that affects objects or rooms, and reflected light. Examples of optical sensors are photo cell, photo transistor, photo diode, photo voltaic, photo multiplier, optical pyrometer, etc.

c. Thermal Sensor

Thermal sensor is a sensor that is used to detect those related to the symptoms of temperature changes in a certain dimension of space or an object space. Examples of thermal sensors are bimetallic, thermistor, thermocouple, RTD, infrared pyrometer, hygrometer, etc.

2.7.1. Water Sensor

Figure 2.5 Water Sensor

Water sensor brick is designed for water detection, which can be widely used in sensing rainfall, water level, and even liquid leakage. Connecting a water sensor to an Arduino is a great way to detect a leak, spill, flood, rain, etc. It can be used to detect the presence, the level, the volume and/or the absence of water. While this could be used to remind you to water your plants, there is a better Grove sensor for that. The sensor has an array of exposed traces, which read LOW when water is detected.

2.7.2. Current Sensor

Figure 2.6 Current Sensor

Current Sensor can measure high or low side DC current, the bus voltage, and have it automatically calculate the power. It can do so over impressive voltage, current, and temperature ranges with better than 1% accuracy, all while delivering the data in an easy to use format over I2C.

Works great with any microcontroller that is CircuitPython or Arduino compatible as well as single board computers such as the Raspberry Pi. It is compatible with 3V or 5V logic and can measure bus voltages up to +36VDC. Not for use with AC voltages.

2.8. Actuator

Actuator is a moving device. Actuator is the output part that converts supply energy into work energy which will then be utilized. The output signal will be controlled by the control system, then the actuator will be responsible for the control signal through the final control element. The other type of output section is used to indicate the control status of the system or actuator (Dentha, 2013). An actuator is a device that converts electrical signals into mechanical motion. Actuators are usually used as a continuation of the process data output generated by the controller [8].

2.8.1. MOSFET

Figure 2.7 MOSFET

MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is a semiconductor device that is widely used as a switch and as a signal amplifier on electronic devices. MOSFET is the core of an IC (integrated circuit) that is designed and fabricated with a single chip because of its very small size. MOSFET has four terminal gates including Source (S), Gate (G), and Drain (D). (Rahmadi, 2014). MOSFETs work electronically varying along the path of the charge carrier (electron or hole). Electric charges enter through the Channels at the Source and exit through the Drain. The width of the channel is controlled by the voltage at the electrode which is called the Gate or gate that is located between the Source and Drain. it is isolated from channels near the very thin layer of metal oxide. MOS capacity is the main part component of MOSFET.

MOSFET functions to control Voltage and Current through between Source and Drain. This component is almost entirely as a switch. MOSFET work depends on the MOS capacity. MOS capacity is a major part of MOSFET. Semiconductor surface in the oxide layer below which lies between the source terminal and the drain. This can be reversed from p-type to n-type by applying positive or negative gate voltages, respectively. When we apply a positive gate voltage, the hole under the oxide layer with disgusting force and load is pushed down with the substrate.

MOSFET Block Diagram

2.9. Ground Step Down

Figure 2.9 Ground Step Down

LM2596 stepdown module is a module that has LM2596 IC as it's main component. LM2596 IC is an integrated circuit that functions as a Step-Down DC converter with a current rating of 3A. There are several variants of this IC series which can be grouped into 2 types. The first one is the adjustable version, whose output voltage can be regulated. The other one is fixed voltage output version whose output voltage is fixed.

Figure 2.10 Ground Step Down Block Diagram

2.10. Bluetooth HC-05

Figure 2.11 Bluetooth HC-05

HC-05 module is an easy to use Bluetooth SPP (Serial Port Protocol) module, designed for transparent wireless serial connection setup. HC-05 Bluetooth Module can be used in a Master or Slave configuration, making it a great solution for wireless communication. This serial port bluetooth module is fully qualified Bluetooth V2.0+EDR (Enhanced Data Rate)3Mbps Modulation with complete 2.4GHz radio transceiver and baseband. It uses CSR Bluecore 04-External single chip Bluetooth system with CMOS technology and with AFH (Adaptive Frequency Hopping Feature) [10].

2.11. Power Supply

Figure 2.12 Power Supply

Almost all electronic circuit require a regular DC voltage source to operate. This supply can be done directly by the battery, but more generally the power supply is obtained from a standard AC source which is the converted to a DC voltage.

2.11.1. Battery

Figure 2.13 Battery

(Battery) are energy source that can convert the stored chemical energy into electrical energy that can be used like electronic devices. The battery consists of a cathode, anode, and electrolyte. The output electric current from the battery is direct current (DC). Batteries consist of 2 main type. The first one is primary batteries that can only be used once (single use battery). The second one is secondary batteries that can be recharged (rechargeable batteries).

2.12. Android

Figure 2.14 Android

Android is an operating system for Linux-based mobile devices which includes an operating system, middleware, and applications. There are two types of distributors on the Android operating system. The first one comes with full support from Google or Google Mail Services (GSM) and the other one is free without direct support from Google which also known as Open Handset Distribution (OHD). Android is an open source operating system so it can be distributed and used by any vendor. At present there are already many smartphone vendors producing Android-based smartphones, such as Samsung, Sony, Oppo, Vivo, LG, and many more. Android applications are developed in the Java programming language using the Android software development kit (SDK). The SDK consists of a set of development tools, including a debugger, software library, QEMU-based handset emulator, documentation, sample code, and tutorials. Officially supported by the Eclipse Integrated Development Environment (IDE), which uses the Android Development Tools (ADT) plugin. Other development tools available include the Native Development Kit for applications or extensions in C or C ++, Google App Inventor, a visual environment for novice programmers, and various cross-platform mobile web application frameworks.

2.13 ArduTooth

ф 🗈	* 😻 🔋 📶 85% 🖬 20:49	Ψ 🖳	\$ 18 7 .4 85% 20:49
\leftarrow ArduTooth		ArduTooth	5
Sensor 1:	1234	HC-05	
Sensor 2:	1234.0		
Sensor 3:	1234 hPa		
Sensor 4:	500 ml/s		
Sensor 5:	302		
Sensor 6:	-		
		Disk year of	havaired Davison
			and been get radations

Figure 2.15 Ardutooth

Ardutooth is an application on Android, which functions as an Arduino monitor. This application is written for visualing measurement data from a microcontroller via Bluetooth. Before starting this application, the Bluetooth device has to be coupled to the smartphone. In the special case of the HC-05 the default PinCode for coupling process is 1234 or 0000.

CHAPTER III

METHODOLOGY

3.1. Methodology Flow Chart

3.2. Formulation of Problem

The first step is to identify the problem that will be examined, and then formulate the problem to be used as an object of research. The problem that will be raised in this thesis is how to install the controlling system design and ICCP current monitoring with Arduino Uno-based microcontroller to make efficient use of electricity in ship generators.

3.3. Literature Study

The purpose of a literature review is to summarize the basic theories and supporting information that will be discussed and then become the basis of this research. This literature review is carried out by summarizing reference sources related to this research. This literature review is obtained from books, journals, papers, and others.

3.4. Data Collection

This stage is carried out in parallel with the literature review. This stage is the process of collecting data and technical information related to the problem object that serves as a basis for research. Data collected at this stage include ship's lines plan, immersed surface area of the hull (Wetted Surface Area) which vary on each load case, and calculation of corrosion rate on ship.

3.5. Calculation of Current Needs for Each Load Cases

After getting the corrosion rate calculation data on the ship, the next step is to calculate the need of protection current for Impressed Current Cathodic Protection (ICCP). In this study there is a problem limitation for calculating the surface area of submerged vessels which is only divided into 3 load cases. Therefore, the calculation of protection current requirements is only limited when the condition of the ship is full, the condition of the ship is in a half load, and the condition of the ship is empty.

3.6. Calculation of Amount of Anode Required

After getting the results of the calculation of current requirements in each load case. Furthermore, the number of anode requirements in the ICCP protection system is calculated by calculating the anode weight requirements on the ship. After the weight of the anode is obtained, it is then divided by the weight of each anode. Next is to get the number of sacrificial anode needs on ship, which will then be added by 20% as a critical place factor.
3.7. Device Selection

Electronic devices selection serves to determine what electronic components will be used in the manufacture of controlling and monitoring system designs for ICCP, along with their types. The electronic devices include, the selection of sensor types, the selection of devices as tools for controlling, the choice of software and electronic devices for monitoring, as well as the selection of actuators to drive the design of controlling and monitoring systems at ICCP.

The estimated tools and materials that will be used in this thesis include:

a. FSO Vessel Prototype

The vessel prototype that will be used as dynamic positioning system model and will be tested is FSO type vessel. Following is ship's dimensions that will be used

Parameter	Real Ship
LPP	171 m
LOA	172,25 m
Breadth	32,2 m
Depth	18,8 m
Draft (Full Load)	12,1 m
Half Load	10,082 m
Ballast Load	7,147 m
Deadweight	45,789 ton

Table 3.7.1 Ship Data

Figure 3.1 Lines Plan

b. Microcontroller Arduino

Figure 3.2 Arduino Uno

In this final project, Arduino Uno microcontroller is used. Arduino is a microcontroller that serves to detect and receive data from the reading of the Water Level sensor. Then Arduino will process the data and send commands to the SCR Transistor to regulate the current that will be issued by the ICCP power source (Generator).

c. Water Sensor

Figure 3.3 Water Sensor

In this final project the sensor used is the water level sensor. Water Level Sensor is a sensor that is cheap and easy to use. This sensor consists of a number of lines arranged in parallel to determine the height of the water surface. The conversion value of water level to the analog signal generated can be directly read on the Arduino board d. MOSFET

Figure 3.4 MOSFET

MOSFET has four terminal gates including source (S), Gate (G), Drain (D), and Body (B). MOSFET work electronically varying along the path of the charge carrier (electron or hole). MOSFET has functions to control voltage and current through between source and drain. This component is almost entirely as a switch.

In this final project the SCR acts as a drive system and is used to control the output current of the Power Supply in accordance with the appropriate amount ordered by the control system (Arduino).

e. Batteries

Figure 3.5 Batteries In this final project. The power supply that will be used is Batteries. With batteries, there is no need to connect the power

source cord to the terminal to be able to active our electronic devices so it can be easily carried.

f. Jumper Wire

Figure 3.6 Jumper Wire Jumper wire is used to connect components as electric current conductor.

g. Current Sensor

Figure 3.7 Current Sensor

In this final project, the current sensor is used to receive data signals sent from the water sensor. The current sensor is used to detect the current requirements needed in each load case.

h. Ground Step Down

Figure 3.8 Ground Step Down

In this final project, the ground step down serves to reduce the voltage from the power supply from 12 Volts to 5V. Because to turn on Arduino only requires a voltage of 5V.

i. LED

Figure 3.9 LED

LED are used as a marker of the amount of current released in each load case. The greater current needed, the more light levels will be brighter. Vice versa.

3.8. Making Wiring Diagram

Making wiring diagrams is done to make a simple working picture/diagram illustrating the wiring and maintenance circuit on electronic equipment using symbols in simplified form. Wiring diagrams can be likened to a map showing the function of electronic equipment and its constituent components which are connected as an electronic circuit. Wiring diagrams also function as indicators of current flow in electronic circuits.

3.9. Simulation Model Making

There are several ways that can be done to design, analyze, and operate a system. One of them can be done by making a model of the system. The model can be defined as a logical description of how a system works. By making a simulation model of a system, analyzing can be done more easily.

The simulation process for controlling design and monitoring at ICCP is carried out using software for Arduino Uno. Software simulation is done by inputting the flow of protection needs on ship in each load case, to see whether the mathematical calculations are appropriate or not.

3.10. Current Protection Match

After going through the software simulation stage, the protection current will be obtained according to the extent of the WSA that will be protected in each load case. If it is suitable, it will proceed to the next stage. If the protection current is not suitable or fails; it will return to the wiring stage. Did an error occur in the process of making the wiring diagram design, so that the current could not protect the entire hull that was immersed.

3.11. Conclusion

The final step of research for this final project is to draw conclusions from the entire process that has been carried out, along with providing answers to some existing problems. Then proceed with giving recommendation based on the results of this study, which will then be used as a basis for further research, both directly related to this thesis and data and methodology that will be used as reference materials.

CHAPTER IV

RESULT AND DISCUSSION

4.1 Calculation of the Corrosion Rate

4.1.1 Wetted Surface Area

Before calculating the corrosion rate, it is necessary to find the wetted surface area in each load case. To find the area in each load case, Maxsurf application can be used by entering the DWT in each load case.

							- 53	Meanarement	Value	Inta	
							1.1	Department	1,603		
								2 Voune (decision)	11210.015	875	
								2 UNITARODOD	12,904		
								a list Landa	101.000		
								E East day sylams on UI	12177		
		and the second second				and the second		T. Illefel ires	1021-268		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				ANTINY N		8 Mer cett anna	134.678		
						and the second se		9 Walest Area	8813708	#2	
								15 Pranatic coeff (Cal	3.001		
		MS.				ED 00		11 Block coeff: (Cb)	0.795		
						1000		12 Har Sect area over? (Cir)	2,993		
								13 Tiategi area coeff. (Cwg)	8.929		
								14 LCS leigh	123 265	fan 1	
								15 LOF length	116.134	ðúm z	
Paralel mithody								15 1.05 %	115767	from z	
								111155	111764	hang	
								10,002,00			
Aft midbody limit 0		Forward midbody limit	lam.	-1				18 12	1.621		
Aft midbody limit	n	Forward midbody limit	0m					18 K2 19 K0 fvit	8.621	n 10	
Aft midbody limit	n	Forward midbody limit	[0m					12 K2 13 K0 feet 22 EM	8.623 8.008 6.628	11 11 11	
Aft midbody limit 0	n]	Forward midbody limit	0m					12 K2 15 K0 fue 21 EM 31 EM,	8.623 8.008 4.625 126.768	10 10 10 11	
Aft midbody lmit 0	n	Forward midbody limit	0m	T FIAI	Search			12 K2 13 K2 19 K0 fut 21 BM 21 BM, 22 GRI comdet	8.623 8.005 6.625 13.045 13.245	8 5 7 7	
Aft midbody limit 0 Search For: Block Coefficient	n	Forward midbody limit	0m 96.76	X DWL	Search			15 K2 15 K2 28 K0 for 29 But, 20 But, 20 Gill connected 23 Gill	8.623 8.008 4.628 13.243 13.243 13.5.402	11 12 12 12 12 12 12 12 12 12 12 12 12 1	
Aft midbody limit 0 iearch For: Block Coefficient	n 0.795	Forward midbody limi	0m 96.76	% DWL	Scarch			1 Li 12 15 K2 19 K0 fue 20 EM 21 EM 22 Gil corrected 23 Gil corrected 23 Gil kin	8.621 8.000 4.628 13.640 13.243 13.5.402 13.243	11 11 11 11 11 11 11 11 11 11 11 11 11	
Aft midbody lmit 0 Search For: Block Coefficient Phanatic Coefficient	n 0.795	Forward midbody limi	0m 96.76 100.73	1 DWL	Scarch			11 10 10 12 42 13 40 fee 23 fee 24 60 res 25 fee 20 60 res 20 7 res	8.623 8.000 6.628 13.243 13.243 13.5.402 13.243 13.5.402	11 17 17 17 17 17 17 17 17 17 17 17 17 1	
Aft midbody limit isearch For:) Block Coefficient) Phanatic Coefficient) Ministry Jaco Coefficient	n 0.795	Forward midbody limi	0 m 96.76 100.73	% DWL % DWL	Search			11 10 14 A2 12 A2 A2 A2 13 A2 B34, A2 13 B34, A2 B34, 12 B34, B3 A24 13 A34, B3 A34, 14 A2 A34, B3 15 A34, B3 A34,	8.622 8.000 6.628 13.243 13.243 13.5.402 13.243 13.5.402 13.5.402	8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
Aft midbody limit 0 Search For: Block Coefficient Phanatic Coefficient Midship Area Coefficient	n 0.795 0.801 0.993	Forward midbody limi	0 m 96.76 100.73 0	1 DWL 1 DWL Degrees	Search			11 12 42 12 42 13 13 40 14 23 84 14 23 64 14 23 64 14 23 64 14 24 64 14 25 44 14 25 44 14 25 44 14 25 44 14 27 MTc 174	8.622 8.000 6.628 13.243 13.243 13.5.402 13.243 13.5.402 13.243 13.5.402 13.796	n n n n n tanet tanet tanet	
Aft midbody limit 0 Search For: Block Coefficient Officient Midship Area Coefficient Widship Area Coefficient	0.795 0.901 0.993 0.92	Forward midbody limi	0 m 96.76 100.73 0	1 DWL 1 DWL 2 DWL Degrees	Search			11 Los * 14 K2 19 K2 Note 20 Stat 30 Stat, 21 GRI connotet 22 GRI connotet 23 GRI, 23 KA1 23 Stat, 23 Stat	8.622 8.000 8.629 13.243 13.243 13.243 13.243 13.243 13.243 13.243 13.243 13.243 13.243 13.243 13.243 13.243	n n n n n n tavec tavec tavec	
Aft midbody limit 0 Search For: Dillock Coefficient Prinnstic Coefficient Midship Area Coefficient Waterplane Area Coefficient	n 0.795 0.801 0.993 0.92	Forward midbody limit	0 m 96.76 100.73 0	1 DWL 1 DWL 2 DWL Degrees	Search			11 Line * 12 R2 13 K0 Not 20 Entry 21 Galance 22 Galance 23 Galance 24 Kin 24 Kin 25 Sunt 26 Sunt 27 Sunt 28 Kin 28 Kin 29 Kin 29 Kin 20 Sunt 20 Sun	8.422 0.000 4.429 12.543 13.5402 13.5402 13.5402 13.5402 18.796 81.964 85.964	m m m m m m m m m tavec bone bone	
Aft midloody limit 0 Search For: Block Coefficient Phanatic Coefficient Midship Area Coefficient Waterplane Area Coefficient	n 0.795 0.001 0.993 0.92	Forward midbody limi	0m 96.76 100.73 0	% DWL % DWL % DWL Degrees	Search			11 2 2 12 22 20 544 13 40 544 14 60 544 14 60 54 15 644 15 644 15 644 15 644 15 644 15 644 16 745 10 745 10 745 5404 10 10 55 540 10 55 55 55 55	8.423 8.000 4.428 12.443 13.243 14.24	n n n n n n turec tone tone	
Aft midbody limit 0 Search For: Block Coefficient Prinnetic Coefficient Midding Area Coefficient Waterplane Area Coefficient Scale To:	0.795 0.801 0.993 0.92	Forward midbody limit	0m 96.76 100.73 0	% DWL % DWL Degrees	Search			11 List ** 12 K2 12 K2 13 K3 K4 13 K4 13 K4 14 K	8423 8 000 8428 10,5 100 12,243 13,5 402 13,243 13,5 402 13,243 13,5 402 13,243 13,5 402 13,243 13,5 402 13,5 402 13,243 13,5 402 13,5 402 14,5 402 14,5 402 14,5 402 14,5 402 14,5 402 14,5 402 14,5 402 14,5 402 14,5 402 15,5 402 1	n n n n n n n turrec turre turre	5 (Bank "N
At mitbody limit 0 Search For Block Coefficient Materia Coefficient Waterplane Area Coefficient Waterplane Area Coefficient Scale To: 2006pacement 115956:	n 0.795 0.001 0.993 0.92 Be	Forward midbody limit	0m 96.76 100.73 0	1. DWL 2. DWL Degrees Degrees	Search	3		1 1 22 3 1 24 22 4 24 25 4 25 84 25 84 25 84 25 84 25 84 25 84 26 84 27 94 28 84 28 84 29 94 29 94 29 94 20 94	8423 0,000 4429 13,540 13,243 13,540 13,740 81,964 81,964 2505,524 2505,524	n m m m m m m m m m m m m m m m m m m m	1.04gm*3
Alt midbody limit 0 Search For: Dillock Coefficient Midding Area Coefficient Waterplane Area Coefficient Scale To: Displacement 115561 Displacement 115561	n 0.795 0.001 0.993 0.92	Forward midbody limit	0m 96.76 100.73 0	X DWL X DWL Degrees	Search	3		10.7 10.7 10.10 10.00 10.10 10.00 10.10 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	8423 2000 4429 13243 13243 13243 13243 13243 13243 13243 135402 18796 81064 2551324	n n n n burnet bore brea brea	ADigm"B
At middody limit 0 Bearch For: Black Coefficient Middinip Area Coefficient Waterplane Area Coefficient Waterplane Area Coefficient Waterplane Area Coefficient Deplacement. 115961 Length on DWL 103.885	n 0.795 0.001 0.993 0.92 m Dee	Forward midbody limit LCB at of FP LCF at of FP LCF at of PP Topside Flare ani on DWL 19.177 m nereod Depth 7.147 m	0m 96.76 100.73 0	1. DWL 3. DWL Degrees Denaty (water)	Search	3		11 12 12 12 13 12 14 12 15 14 12 14 12 14 13 14 13 14 13 14 14 14 15 14 16 125 16 125 125 125 125 125 125 125 125 125 125 125	8423 2 000 4425 13 243 13 243 13 5402 13 243 13 5402 13 243 13 540 8 564 2561 304	n n n n n n n n n n n n n n n n n n n	504gin "3 Rec

Figure 4.1 Maxsurf Calculation for Ballast Load

Draft	7,147	m
Displacement Full Load	55,453	ton
DWT	45,789	ton
Displacement (Ballast Load)	11,5968	ton
Wetted Area	3021,25	m^2

rametric Transformation						×	1 god hand in	Gentini I			
								Descretant	Maker	finite .	
							-	and and designs	VIEW		10
							11 Junpa	Reality	3,973		
							2 1000	(0404040)	21/02/090		
							1 0.000	rincengra	12,992		
						COM 10 17	4 mmen	iee depin	18982		
							13 196 14	ogen	148.000		
	2000						6 088N	TEX EXERTS AN VIL	17.054		
1							TINEE		6613/020		
							1 11W 5	10. 8768	213.132		
	COMMENCE OF COMPANY			Sector Sector Sector	Contraction of March	- Br	12 Viates	1.479	3042 242	17 A	
-ARA						FF	12 Pigita	ac cowff (c.p)	8.001	-	
							11 8000	20411 (UE)	8.185		
							12 1000.5	A COLORED TO A COL	3,990		
							10 1000	A BIOD CARLES FOR	2000		
NAMES OF A DESCRIPTION OF							15 1.00 1	rep.	01.01	April .	
Parallel midbady							46 1 10 1		87.040	Page 1	
T : evens massed							121/23		63.000	ALC: N	
fill with web total		Conversion and the second second	0				1210		7.785		
At massey and		Torvero inclosely link	- m				19,60 %		1000		
							201641	_	8.518		
earch For							21 BML		118-857		
and the second second	12.222		Incruss.	1000000	Search		22 GH #	tradied .	13,753		
) Block Coefficient	0.795	LCB aft of FP	67.48	% DWL			23 011		158.087		
	(the second sec						26 100		13.793		
Prismatic Coefficient	0.801	LCF eff of FP	71.45	% DWL			25 KML		198.002		
							28 Immen	H49 (TPQ) -	37,408	innet.	
7 Midship Area Coefficient	0.993	Tooside Bare	0	Degrees			ar ute		254.405	\$077H	
Transfer Lead Greeners in			100				25 RJ at	they + Git Diap and 1	7218745	tore.	
Waterplane Area Coefficient	0.92						Denaity Iwa	e) 1025tone's '3			
anda Tar							St. dentte	1.025 trave in "3	-34 Metica	a sate (105 Bk	. 6'44
	100		-	-	1						C. (2)
Displacement 32559 t	Bear	an DWL 27.054 m		Density (water)	1.025 tonne/r	m~3					
Length on DWL 146 558	m Imme	rsed Depth 10.082 m					VOS	0=			Fecelolate
Terration and the Local		CONTRACT CONTRACTO		100	DK	Cancel	Select The				Date
					0.0		(ame) 4				1000

Figure 4.2 Maxsurf Calculation for Half Load

Table 4 1 1 2	Wetted	Surface	Area	Half	Load
1 auto T.1.1.2	w cucu	Surface	nica	man	LUau

Draft	10,082 m
Displacement Full Load	32,5585 ton
Wetted Area	6013,056 m ²

							Measurement	Usian	lints	
						11	Tissianenert	55,453		
							Volume (depleced)	54103 453	115	
						1 5	Draft Articlehga	12.106		
						4	Immensed depth	12.108		
10		1				7	WL Length	114.430		
						6	Beam max avdanta an WL	32,206		
						-0 2	Kiefed Area	3560 888	612	
De California de					(indiana)	8	Max sect eres	388 746	11/2	
1 Theoreman							tilaterpi. Area	5179(697	44.5	
	3-1				1112-2-20	_в 1	Prismatic coeff. (Cp)	1000		
							Man Real area malf (Ca)	8,128		
							Watersi, and coaff (Cent	1 127		
						1	103 kmb	85.745	From a	
						1	LOF length	78.825	homa	
0 11 1 1						1	LC8 %	48.155	forma	
Parallel midbody						1	105%	45.192	from z	
At midhodu lant. Du		Economic established a limit	0m			1	1 13	6.324		
Aft midbody limit. 0 n		Forward midbody limit	Om			141	83 80 fuit	6.324 3.000		
Aft midbody limit 0 n		Forward midbody limit	Om			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 K3 8 K0 flair 8 SM	6.304 3.906 7.7%	* *	
Aft midbody limit 0 r.	<u> </u>	Forward midbody limit	Om			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E KD KD fair E 641 E 641 E 641	6.304 3.000 7.716 211.376 14.808	*	
At midbody limit. Or arch For:	0.796	Forward midbody limit	0m	Sea	rch	120 120 120 120	KB KD flat BMI BMI, DRI convicted	6.304 3.000 7.716 211.876 14.898 218.853		
Aft midbody limit Dr arch For: Block Coefficient	0.796	Forward micbody limit	0m	DWL	rch	2 [2] [2] [2] [2] [2] [2] [2] [2] [2] [2	63 K0 fuiz Skit Skit Cill convoled Cill K0	6.304 3.000 7.716 211.876 14.099 216.253 14.359		
Aft midbody limit Dr arch For: Block Coefficient Prismatic Coefficient	0.796	Forward micbody limit	0 m 48.87 %	DWL Sea	rch	1=[#]#[#]#[#]#[#]#	K3 K3 K0 faat Son Son	6384 3400 7,716 211,876 14,899 216,253 14,929 216,253		
Aft midbody limit Dr arch For: Block Coefficient Prismatic Coefficient	0.796	Forward midbody limit LCB aft of FP	0m 48.87 % 52.83 %	DWL Sea	rch	1 프 [파] 20 [24] 24 [24] 24 [24] 24	K3 K0 fue 5 Ski 2 Gill corrected 2 Gill 2 Gill 4 Kki 5 Kki 5 Kki 5 Marcerson (TPc)	6304 3.000 7.716 211.376 14.009 216.253 14.359 216.253 53.952	8 8 9 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
At midbody limit () arch For: Block Coefficient Prismatic Coefficient Midship Area Coefficient	0.796	Forward micbody limit	0m 48.87 % 52.83 % 0 D	DWL Sea DWL ecrees	rch	[[1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2	#3 #3 #43 #44 #44	6 304 8 500 7,716 211,876 14 809 216,253 14 859 216,253 53 852 767,765	n n n n n n s s s s s s s s s s s	
Alt midbody limit Or arch For: Block Coefficient Prismatic Coefficient Midship Area Coefficient	0.796	Forward midbody limit	0m 48.87 % 52.83 % 0 D	DWL DWL egrees	rch	tation at a lot lot lot lot at a lot	X3 X3 X3 Rule X4 BML 2 Silic connected 3 Silic connected 4 Silic connected 3 Silic connected 3 Silic connected 4 Silic connected 4 Silic connected 5 Silic connected 5 Silic connected <	6 304 3 500 7,716 211,876 14,899 216,253 14,859 216,253 53,852 707,765 13645,276	n n n n n imet brox torox	
At midbody limit or arch For: Block Coefficient Prismatic Coefficient Midship Area Coefficient Waterplane Area Coefficient	0.796 0.802 0.903 0.922	Forward micbody limit	0m 48.87 % 52.83 % 0 D	DWL DWL egrees	rch	teal for that for the test bottom test and test test test test test test test tes	N3 N3 That N3 That Sur Sur Sur Sur Yang Sur Yang Sur Yang	6 304 3 808 7.746 211 876 14 899 216 253 51 892 707 785 13845 276	n n n n n n n n n n n t r n t r n n n n	
Aft midbody limit In arch For: Block Coefficient Prismatic Coefficient Midship Area Coefficient Waterplane Area Coefficient	0.796 0.802 0.993 0.922	Forward micbody limit	0m 48.87 % 52.83 % 0 D	DWL DWL egrees	rch	80. 1811년 1812년 1812	103 N3 Thur 103 Thur 564 1041 544 1042 544 1042 544 1042 544 1042 544 1042 544 1042 544 1042 550 cm+tr 12 1045 544 1045 50444	6 304 3 000 7 796 211 376 14 399 216 255 14 399 216 255 53 952 707 765 13645 276	n n n n n smet smet	
Aft midbody limit or arch For: Block Coefficient Prismatic Coefficient Midship Area Coefficient Waterplane Area Coefficient	0.796	Forward micbody limit	0m (48.87 % 52.83 % 0 D	DWL DWL egrees	ich.	 Sector Market Market Market Market M Arket Market Market Arket Market M Arket Market Ma	10 10 10 10 10 10 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10	6 304 3 000 7 796 211 376 14 399 215 253 14 399 215 253 53 952 707 765 13845 276	n n n n n smet Jana Jana	· foods **
Aft midbody linit Or arch For: Block Coefficient Prismetic Coefficient Midship Area Coefficient Waterplane Area Coefficient ale To:	0.796 0.802 0.993 0.992 0.922	Forward micbody limit LCB aft of FP LCF aft of FP Topside Flare	0m (48.87 % 52.83 % 0 D	DWL DWL egrees	rch	33 21년 11년 11년 11년 11년 11년 11년 11년 11년 11년	0 0.0 10 fair 644 644 644 644 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 648 1000 648 1000	6 304 3 009 7.716 211 376 74 399 216 376 74 399 218 325 53 392 767 765 13545 276	n n n n n n n n n s s s s treet tre t treet treet treet treet treet treet treet tre	ilige")
Aft midbody linit or arch For: Block Coefficient Primatic Coefficient Midship Area Coefficient Watesplane Area Coefficient Watesplane Area Coefficient Status Coefficient	0.796 0.802 0.903 0.922	Forward micbody limit LCB aft of FP CF aft of FP Topside Flare	0m 48.87 % 52.83 % 0 D Denst	DWL DWL egrees (water) 1.025 to	nch inne/m~3	(프) 또(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	D D So flate Soft Soft	6 304 3 006 7.716 211 376 74 396 214 396 214 399 214 395 214 395 214 395 717 765 13545 276	n n n n n n n n n n n n n n n n n n n	ilige")
Aft midbody linit Or arch For: Block Coefficient Middlyp Area Coefficient Waterplane Area Coefficient Waterplane Area Coefficient fe To: Displacement <u>55427</u> t Unit are DIM	0.796 0.802 0.903 0.922	Forward micbody limit LCB aft of FP LCF aft of FP Topside Flare non DWL 32.2 m	0 m 48.87 % 52.83 % 0 D Densty	DW/L DW/L egrees	nch nne/m^3	6 8년18년18년18년18년 1111 11111 11111 11111 11111 11111 1111	0 0 0.01 State 0.02 0.02 0.02	6 394 3 000 7 716 211 371 14 396 216 253 14 399 216 253 53 395 707 785 13545 276	n n n n n tomet tomet torne torne	iligin D Rec

Figure 4.3 Maxsurf Calculation for Full Load

	Juliace Alea I ull Load
Draft	12,100 m
Displacement Full Load	55,453 ton
DWT	45,789 ton
Wetted Area	8560,689 m ²

Table 4.1.1.3 Wetted Surface Area Full Load

After getting the wetted surface area in each load case, the results of these areas are then scaled to be applicable in the ship modeling system. For the scale used in this thesis is 1: 175.

Table 4.1.1.4 Wetted Surface Area Ballast Load (Scaled)

Draft	0,715	m
Displacement Full Load	5,5453	ton
DWT	4,5789	ton
Displacement (Ballast Lo	1,15968	ton
Wetted Area	302,125	<i>m</i> ²

Table 4.1.1.5 Wetted Surface Area Half Load (Scaled)

Draft	1,008 m
Displacement Full Load	3,25585 ton
Wetted Area	601,3056 m ²

Table 4.1.1.6 Wetted Surface Area Full Load (Scaled)

Draft	1,210 m
Displacement Full Load	5,5453 ton
DWT	4,5789 ton
Wetted Area	856,0689 m ²

4.1.2 Assumptions of the Corroded Mass

Caused by the data of the mass that is corroded every year is not available, an assumption is made for the corroded steel plate mass. Assumptions are made by referring to the corroded mass data of other ships of the same type. Then from these data the average annual reduction in the mass of the steel plate can be known (in percent).

STRAKE		2	F'STRAK	E													Max.	
PLATE	No. or	Org. Thk. mm	rg. Forward Reading					Aft Reading					Mean Dimin.		Allow.			
			Thk.	Thk.	Gau	iged	Diminu	tion P	Dimin	ution S	Cau	Cauged		ution P	Dimin	ation \$	96	
	Letter		P	S	mm	%	mm	96	P	s	mm	96	mm	%	P	S	mm.	
7th	F1		-				•	•		· •)			•	-	•	-		
6th	F2					÷	1.62	+	1.2				•	1.0		- 2	1.02	
Sth	F3-1	18.0	17.8	17.8	0.2	1.1	0.2	1.1	17.8	17.7	0.2	1.1	0.3	1.7	1.1	1.4	4.5	
4th	F4	18.0	17.8	17.6	0.2	1.1	0,4	2.2	17,9	17.7	0.1	0.6	0.3	1.7	0.8	1.9	4.5	
3rd	F5	18.0	18.0	17.4	0.0	0.0	0.6	3.3	17.9	17.8	0.1	0.6	0.2	1.1	0.3	2.2	4.5	
2nd	F6	18.0	18.0	17.8	0.0	0.0	0.2	1.1	17.7	18.0	0.3	1.7	0,0	0.0	0.8	0.6	4.5	
1st Fwd	F7	18.0	17.8	17.7	0.2	1.1	0.3	1.7	17.9	17.6	0.1	0.6	0.4	2.2	0.8	1.9	4.5	
Amidship	FB	18.0	17.8	17.7	0.2	1.1	0.3	1.7	17.8	17.6	0.2	1.1	0.4	2.2	1.1	1.9	4.5	
1st Aft	F9	18.0	17.9	17.8	0.1	0.6	0.2	1.1	17.9	17.8	0.1	0.6	0.2	1.1	0.6	1.1	4.5	
2nd	F10	-						•		•			÷2		-	-	•	
3rd	F11	(1.00	 A 	+						•	•		•	•		
4th	F12	1.4		- Sk - 1		i i i	1.042	- 2		- 22		1.12		19 - E	•	÷	- 32	
5th	F13	•			+	+			· · ·			1.14	•			•	1 .	
6th	F14										-		- 20			-		
7th	F15						1.000		1.2	1.043	(A)	16 - C			1.00			

Table 4.1.2.1 Data Reference of the Corroded Mass

Referred to corroded mass data belonging to other ships, the average annual reduction in the mass of the steel plate can be assumed to be 2.5%. Then the corroded mass is assumed for 3 years according to the age of corrosion protection that refers to BKI [4].

- 1. Initial plate weight (55,453 45,789) ton = 9,664 ton = 9.664.000 gram
- Assumptions of Corroded mass = 9.664.000 gram x 2.5 % = 241.600 gram/ year 1
- 3. 9.664.000 gram 241.600 = 9.442.400 x 2.5 % = 235.560 gram / year 2
- 4. $9.442.400 235.560 = 9.206.850 \times 2.5\% = 229.671 \text{ gram} / \text{year}$

Then the result of the assumption of the difference in plate weight for 3 years based on the original area of the ship is 706,831 grams. As for the calculation of the difference in plate weight assumptions, the scale is as follows:

- 1. Initial plate weight = 55.222,8571 gram
- 2. Assumptions of Corroded mass = 55.222 gram x 2.5 % = 1380,57 gram/ year 1
- 3. 55.222 gram 1380,57 = 53.842,28 x 2.5 % = 1346 gram / year 2
- 4. 53.842,28 gram 1346 gram = 52.496,22 x 2.5% = 1312,4 gram / year 3

Then the result of the assumptions of the difference in plate weight for 3 years based on scaled area of the ship is 4.039 grams.

4.1.3 Corrosion Rate

The rate of corrosion in corrosion prevention must be taken into account to estimate the time of anode replacement. Corrosion rate can be expressed by the rate of loss of metal in units of volume and units per year in surface area. To calculate the corrosion rate of a ship, it can be stated as follows [7].

$$CR = \frac{K \times W}{A \times D \times T}$$

- CR = Corrosion Rate
- K = Constanta = 87.600
- W = Difference of initial and final weight
- A = Wetted Surface Area
- D = steel plate density
- T = age of protection

Based on the formula above the corrosion rate can be calculated as follows:

a. Ballast Load Condition

К	87600
w	706831 gram
A	3021250 cm ²
т	26280 hour
D	7,85 gram /cm ²

 $CR = \frac{K \times W}{A \times D \times T}$ $CR = \frac{8700 \times 706831 gram}{3021250 \ cm^2 \times 7,85 \ gram \ /cm^2 \times 26280 \ h}$

CR=0,09934317 mm/ year

b. Half Load Condition

К	87600	
w	706831	gram
A	6013056	cm ²
Т	26280	hour
D	7,85	gram /cm ²

 $CR = \frac{K \times W}{A \times D \times T}$ 8700×706831gram $CR = \frac{8700 \times 706831 gram}{6013056 cm^2 \times 7,85 \ gram \ /cm^2 \times 26280 \ h}$

CR=0,04991481 mm/year

c. Full Load

к	87600	
W	706831	gram
A	8560689	cm ²
Т	26280	hour
D	7,85	gram /cm ²

CR=0,03506033 mm/year

d. Ballast Load Condition (Scaled)

К	87600
W	4039,03429 gram
A	17264,2857 cm ²
т	26280 hour
D	7,85 gram /cm ²

 $CR = \frac{K \times W}{A \times D \times T}$ 8700×706831gram
7.95 gram /cm² 3021250 cm²×7,85 gram /cm²×26280 h

CR=0,09934 mm/year

e. Half Load Condition (Scaled)

к	87600
W	4039,03429 gram
A	34360,32 cm ²
т	26280 hour
D	7,85 aram /cm ²

 $CR = \frac{K \times W}{A \times D \times T}$ 8700×706831gram
8700×706831gram

 $CR = \frac{6013056 cm^2 \times 7,85 \ gram \ /cm^2 \times 26280 \ h}{cm^2 \times 26280 \ h}$ CR=0,04991481 mm/year

f. Full Load Condition (Scaled)

	К	87600
	W	4039,03429 gram
	A	48918,2229 cm ²
	Т	26280 hour
	D	7,85 gram /cm ²
$CR = \frac{K \times W}{K \times W}$		
$A \times D \times T$	8700×706831	gram
CK-8560689	cm²×7,85 gram	$1/cm^2 \times 26280 h$

CR=0,03506033 mm/year

4.2 Calculation of Current Needs

The data needed to calculate the need of current protection is; cathode surface area, coating breakdown factor and average current density. The average current density is 0.100/m2 [5].

4.2.1 Cathode Surface Area

To get the cathode surface area, it can be calculated using the following formula [5].

Ac= {
$$(2T)+B$$
} x Lpp x ρ

T =Ship's draft B = Ship's breathLpp = Length per pendicular ρ = efficiency factor based on ship's type

a. Ballast Load

Т	7,147 m
В	32,2 m
Lpp	171 m
ρ	0,7

Ac =
$$[(2T)+B) \times Lpp \times \rho$$

$$Ac = [(2 \times 7, 147) + 32, 2) \times 171 \times 0, 7$$

- $Ac = 5565,3318 m^2$
- b. Half Load

Т	10,082 m
В	32,2 m
Lpp	171 m
ρ	0,7
$\Lambda_{0} = \left[\left(2T \right) \right] $	() y I nn y o

$$Ac = [(21)+B) \times Lpp \times \rho$$

$$Ac = \begin{bmatrix} (2 \times 10,082) + 32,2 \\ 32,2 \end{bmatrix} \times 171 \times 0,7$$

 $Ac = 6267,9708 m^2$

c. Full Load

Т	12,1 m	
В	32,2 m	
Lpp	171 m	
ρ	0,7	

Ac = $[(2T)+B) \times Lpp \times \rho$ Ac = $[(2x + 12 + 1)+32 + 2) \times 171 \times 0.7$

Ac =
$$[(2 \times 12, 1)+32, 2) \times 171 \times 0, 7$$

Ac = (751.08 m^2)

$$Ac = 6751,08 m^{\circ}$$

d. Ballast Load (Scaled)

Т	0,7147 m
В	3,22 m
Lpp	17,1 m
ρ	0,7

Ac = [(2T)+B) x Lpp x
$$\rho$$

Ac = [(2 x 0,7147)+3,22) x 17,1x 0,7
Ac = 55,653318 m^2

e. Half Load (Scaled)

т	1,0082 m
В	3,22 m
Lpp	17,1 m
ρ	0,7

Ac =
$$[(2T)+B) \times Lpp \times \rho$$

Ac = $[(2 \times 1 \ 0.082)+3 \ 22) \times 17.1 \times 17.1 \times 10082$

Ac = [
$$(2 \times 1,0082)+3,22$$
) x 17,1 x 0,7
Ac = $62,679708 m^2$

f. Full Load (Scaled)

Т	1,21 m	
В	3,22 m	
Lpp	17,1 m	
ρ	0,7	

Ac = [(2T)+B) x Lpp x
$$\rho$$

Ac = [(2 x 1,21)+3,22) x 17,1 x 0,7
Ac = 67,5108 m^2

4.2.2 Coating Breakdown Factor

The coating breakdown factor is a function of coating properties, operation parameters and time. The coating breakdown factor describes the extent of current density reduction due to the application of a coating. As a simple engineering, coating breakdown factor can be expressed as :

$$\hat{c} = (K_1 + K_2) \times t$$

Where t (years) is the coating lifetime and K_1 and K_2 are constants that are dependent on coating properties and the environment. Four paint coating categories have been defined for practical use based on the coating properties in DNV [1].

Table 4.2.2.1 DNV Coating Categories

Depth (m)	Coating Cat	Coating Category			
	1	Ш	Ш	IV	
	$k_1 = 0.1$	$k_1 = 0.05$	$k_1 = 0.02$	$k_1 = 0.02$	
k ₂	k2	k2	k2		
0-30	0.1	0.03	0.015	0.012	
>30	0.05	0.02	0.012	0.012	

To determine the coating category for FSO vessels, references from ISO 8501-1 to assume the largest minimum DFT are used.

Surface Preparation	Coating System	Minimum DFT	Number of stripe coats
ISO 8501-1	Epoxy primer	100 microns	2
Sa 2½	Epoxy undercoat	100 microns	
	Epoxy finish	100 microns	
ISO 8501-1	Epoxy phenolic primer	100 microns	2
Sa 2½	Epoxy phenolic undercoat	100 microns	
Set	Epoxy phenolic finish	100 microns	
ISO 8501-1	Epoxy isocyanate primer	90 microns	2
Sa 2½	Epoxy isocyanate undercoat	90 microns	
2000.00 400.011	Epoxy isocyanate finish	90 microns	
ISO 8501-1 Sa 2½	Zinc silicate	80 microns	1
ISO 8501-1	Cyclosilicon epoxy	150 microns	1-2
Sa 2½	Cyclosilicon epoxy	150 microns	

Table 4.2.2.2 Coating System for Cargo Tanks

Based on refrence , coating category for FSO is coating category II (Depth $< 30 {\rm m}$). So the calculation for coating breakdown of FSO can be expressed as :

K1	0,05
K2	0,03

fc = (0.05 + 0.03) x 3 fc = 0.24

4.2.3 Current Demand

To calculate the current demand, to provide adequate polarizing capacity and to maintain cathodic protection during the design life, the individual surface areas, of each CP unit shall be calculated according to subdivision of CP project and multiplied by the relevant design current density and the coating coating breakdown factor [1]. Current demand can be expressed as :

$$Ic = Ac . ic . fc$$

The following are the results of the calculation of the need for protection current in each load case :

a. Ballast Load

ic	0,1	A/m^2	
Ac	5565,3318	m^2	
fc	0,24		

 $Ic = ic \cdot Ac \cdot fc$

 $Ic = 0.1 \times 5565,3318 \times 0.24$

Ic = 87,067963 Ampere

b. Half Load

ic	0,1	A/m^2
Ac	6267,9708	m^2
fc	0,24	

Ic =	ic	•	Ac	fc	

 $Ic = 0,1 \ge 6267,9708 \ge 0,24$

Ic = 115,431299 Ampere

c. Full Load

ic	0,1	A/m^2
Ac	6751,08	m ²
fc	0,24	

 $Ic = ic \cdot Ac \cdot fc$

- $Ic = 0.1 \times 6751,08 \times 0.24$
- Ic = 162,02592 Ampere
- d. Ballast Load (Scaled)

ic	0,1	A/m^2
Ac	55,653318	m^2
fc	0,24	

Ic = ic . Ac . fc Ic = 0,1 x 55,653318 x 0,24 Ic = 0,8706796 Ampere

e. Half Load (Scaled)

ic	0,1	A/m^2
Ac	62,679708	m^2
fc	0,24	

Ic = ic . Ac . fc Ic = 0,1 x 62,679708 x 0,24 Ic = 1,154313 Ampere

f. Full Load (Scaled)

ic	0,1	A/m^2
Ac	67,5108	m^2
fc	0,24	

Ic = ic . Ac . fcIc = 0,1 x 67,5108 x 0,24Ic = 1,6202592 Ampere

4.3 Anode Required Calculation

4.3.1 Anode Utilization Factor

The anode utilization factor indicates the fraction of anode material that is assumed to provide cathodic protecting current. Performance becomes unpredictable when the anode is consumed beyond a mass indicated by the utilization factor. The utilization factor of an anode is dependent on the detailed anode design, in particular dimensions and location of anode cores.

Table 4.3.1.1 Anode Utilization Factor

Anode Type	Anode Utilization Factor
Long 1) slender stand-off	0.90
Long 1) flush-mounted	0.85
Short 2) flush-mounted	0.80
Bracelet, half-shell type	0.80
Bracelet, segmented type	0.75

The type of anode used in this system is the Zinc Bolt on Bar anode of the Marine CC brand with a flush-mounted type with an anode weight of 12.8 kg. Zinc anode has an electrochemical efficiency of 700 Ah / kg.

Figure 4.4 CC Marine Zinc Anode Catalog

4.3.2 Anode Calculation

The next step is to determine the total required mass of the sacrificial anodes. The total net anode mass required to maintain cathodic protection throughout the design life is to be calculated from current demand for each unit of the protection object

$$M = \frac{Ic \times Tf \times 8760}{\mu \times \varepsilon}$$

Ic = Current Demand

Tf = Coating life time

 μ = Anode Utilization Factor

 ϵ = Anode Electrical Capacity

```
a. Ballast Load
```

	lc	133,568
	Т	3
	μ	0,85
	Т	700
$_{M}$ _ 133,567 A ×	$3 yrs \times 87$	760
M _a – 0,85	× 700	
M_a = 5899,43878 kg		

Anada Doguirad	460,89365	461
Anode Required	553,07239	553

In accordance with the calculation results of the sacrificial anode requirements above, it is obtained that the number of sacrificial anodes installed on the plate area below the waterline on the ship during ballast conditions amounted to 461 pieces with an additional 20% as a critical

factor. So that the number of anodes needed during ballast conditions is 553 anodes.

b. Half Load

lc	150,431299
т	3
μ	0,85
3	700

M _ 150,43	$31299 A \times 3 yrs$	× 8760	
$M_a =$	0,85 × 700		
$M_a = 6644, 25$	5974 kg		
	Apodo Poquirod	519,08279	519
	Anode Required	622,89935	623

In accordance with the calculation results of the sacrificial anode requirements above, it is obtained that the number of sacrificial anodes installed on the plate area below the waterline on the ship during half load conditions amounted to 519 pieces with an additional 20% as a critical factor. So that the number of anodes needed during ballast conditions is 623 anodes.

c. Full Load

lc	162,02592
Т	3
μ	0,85
3	700

$$M_{a} = \frac{162,02592 \ A \times 3 \ yrs \times 8760}{0,85 \times 700}$$
$$M_{a} = 7156,37173 \ \text{kg}$$
Anode Required 559,09154 559
670,90985 671

In accordance with the calculation results of the sacrificial anode requirements above, it is obtained that the number of sacrificial anodes installed on the plate area below the waterline on the ship during full load conditions amounted to 559 pieces with an additional 20% as a critical factor. So that the number of anodes needed during ballast conditions is 671 anodes.

d. Ballast Load (Scaled)

lc	0,8706796
т	3
μ	0,85
Т	700

0,87	06796A × 3 yrs >	× 8760	
$M_a =$	0,85 × 700		
$M_a = 0,192$	63474 kg		
	Anodo Poquirod	38,456237	39
	Anoue Required	46,147484	47

e. Half Load (Scaled)

Ic	1,154313
Т	3
μ	0,85
ε	700

$$M_{a} = \frac{1,154313 A \times 3 yrs \times 8760}{0,85 \times 700}$$

$$M_{a} = 0,21695542 \text{ kg}$$
Anode Required 50,983774
61,180529

f. Full Load (Scaled)

lc	1,6202592
Т	3
μ	0,85
3	700

51

62

$$M_a = \frac{1,6202592 \, A \, \times \, 3 \, yrs \, \times \, 8760}{0,85 \, \times \, 700}$$

$$M_a = 0,23367744 \text{ kg}$$

Anodo Poquirod	71,563717	72
Anoue Required	85,876461	86

4.4 Overview of the Controller System

The following are the components of the Arduino-based ICCP flow control system that will be used in this final project ;

Tabel 4.4.1 Components of the Arduino-based ICCP flow control system

Sub System	Component
Model :	Ship Model with length 60cm

Sensor :	
Sensor for Water Level	Water Level Sensor
Sensor for Current Needs	Current Sensor AdaFruit INA269
Control System :	Microcontroller Arduino UNO
Actuator :	MOSFET IRF540
Power Supply :	Battery 1.5 volt (8pcs)

Water sensor will detect water level. Different water levels will cause the area of the hull to be immersed differently, thus causing the need for the protection current issued by the different power supply. Then the water sensor will send a signal in the form of data to the Arduino microcontroller. Then Arduino will send commands to the transistor to divide the current coming from the power supply, as needed. Then to find out the amount of current that will enter the anode, a current sensor is needed.

Figure 4.5 System's Block Diagram

4.5 Expected Response

In this final project, the model will be tested in a pond by being given a different volume of water so that it gives different variations in water level. With the different water levels at the time of testing, the expected system response is;

- Able to detect the existing water level, then after the water level is detected the data will be processed by a microcontroller and produce a PWM value in the form of output current needs at that water level.
- This controller system is able to control current requirements based on three different conditions

4.6 Ship's Model Data

The ship model that will be used as an Arduino-based controlling and monitoring model and will be tested is the type of work boat. The following dimensions of the ship to be used

Parameter	Real Ship	Ship's Model
LPP	171 m	60 cm
LOA	172,25 m	
Breadth	32,2 m	
Depth	18,8 m	
Draft (Full Load)	12,1 m	1,210 m
Half Load	10,082 m	1,008 m
Ballast Load	7,147 m	0,715 m
Deadweight	45,789 ton	

Table 4.6.1 Ship's Model Data

4.7 Electronic System Design

4.7.1 Tools and Materials

a. Microcontroller Arduino

In this final project, Arduino Uno microcontroller is used. Arduino is a microcontroller that serves to detect and receive data from the reading of the Water Level sensor. Then Arduino will process the data and send commands to the SCR Transistor to regulate the current that will be issued by the ICCP power source (Generator).

Pin	Connection	
Ground Parallel	Ground Water Level 1	
	Ground Water Level 2	
	Ground Water Level 3	
	Ground MOSFET IRF 540	
	Ground Step Down	
	Ground INA260 Current Sensor	
	Ground Bluetooth Module (HC-05)	
VCC	VCC Water Level 1	
	VCC Water Level 2	
	VCC Water Level 3	
	VCC INA260 Current Sensor	
	VCC Bluetooth Module (HC-05)	
Vin	Output (+) Step Down	
Digital Pin 0	Pin TX Bluetooth Module	
Digital Pin 1	Pin RX Bluetooth Module	
Digital Pin 3	Pin Gate MOSFET IRF540	
Digital Pin 5	Pin Signal Water Level 1	
Digital Pin 6	Pin Signal Water Level 2	
Digital Pin 7	Pin Signal Water Level 3	
Pin i2c SCL	Pin SCL INA260 Current Sensor	
Pin i2c SDA	Pin SDA INA260 Current Sensor	

Table 4.7.1.1 Pin Arduino

b. Water Level Sensor

In this final project the sensor used is the water level sensor. Water Level Sensor is a sensor that is cheap and easy to use. This sensor consists of a number of lines arranged in parallel to determine the height of the water surface. The conversion value of water level to the analog signal generated can be directly read on the Arduino board

 Table 4.7.1.2 Water Sensor Specs

Туре	Analog	
Voltage	DC 3-5V	
Current	20mA	
Dimension	62mmx20mmx8mm	
Weight	3,5kg	

c. Current Sensor

Figure 4.6 Current Sensor Datasheet

To read the required current output, a current sensor is needed. The current sensor used in this final project is Adafruit brand type INA260. After the water sensor reads the water level, the water sensor will send a signal to the current sensor. The current sensor will read current requirements needed then current sensor will send signal to Microcontroller Arduino Uno.

d. MOSFET

In this final project the MOSFET acts as a drive system and it used to control the output current of the Power Supply in accordance with the appropriate amount ordered by the control system (Arduino).

Specifications

Hardware features

- · Typical -80dBm sensitivity.
- · Up to +4dBm RFtransmit power.
- · Low Power 1.8V Operation, 3.3 to 5 V I/O.
- · PIO control.
- · UART interface with programmable baud rate.
- With integrated antenna.
- · With edge connector.

Software features

· Save default Baud rate: 9600, Data bits:8, Stop bit:1, Parity:No parity.

 PIO9 and PIO8 can be connected to red and blue led separately. When master and slave are paired, red and blue led blinks 1time/2s in interval, while disconnected only blue led blinks 2times/s.

- · Auto-connect to the last device on power as default.
- · Permit pairing device to connect as default.
- · Auto-pairing PINCODE:"1234" as default.

· Auto-reconnect in 30 min when disconnected as a result of beyond the range of connection.

Figure 4.7 MOSFET Datasheet

e. Battery

Figure 4.8 Battery

In this final project, the power supply used is a 1.5 Volt Alkaline battery. The battery has a function as a DC current source.

Page 1 of 2

Figure 4.9 Battery Datasheet

ns but may or may not match the battery size on this data sheet.

J. Bluetooth

Figure 4.10 Bluetooth HC-05

In this final project, Bluetooth that will be used is Bluetooth type HC-05 which is commonly used for Arduino. This Bluetooth has a function for sending a signals to Bluetooth on smartphones. So that controlling data can be monitored via smartphone.

Specifications

Hardware features

- · Typical -80dBm sensitivity.
- · Up to +4dBm RF transmit power.
- · Low Power 1.8V Operation, 3.3 to 5 V I/O.
- · PIO control.
- · UART interface with programmable baud rate.
- · With integrated antenna.
- · With edge connector.

Software features

· Save default Baud rate: 9600, Data bits:8, Stop bit:1, Parity:No parity.

 PIO9 and PIO8 can be connected to red and blue led separately. When master and slave are paired, red and blue led blinks 1time/2s in interval, while disconnected only blue led blinks 2times/s.

- · Auto-connect to the last device on power as default.
- · Permit pairing device to connect as default.
- · Auto-pairing PINCODE:"1234" as default.

 $^{\circ}\,$ Auto-reconnect in 30 min when disconnected as a result of beyond the range of connection.

Figure 4.11 Bluetooth HC-05 Datasheet

J. ArduTooth

In this final project the application used to monitor the current output on ICCP is Ardutooth. This application is written for visualing measurement data from a microcontroller via Bluetooth.

4.7.2 Electric Component Layout

Figure 4.12 Wiring Diagram

4.8 Electric Component Instalation

In this final project, the components are installed on a ship model with length of 60 cm

Figure 4.13 Electric Component Installation

Figure 4.14 Water Level Sensor Installation

Figure 4.15 LED and Power Supply Installation

4.9 Microcontroller Programming

This is the following steps of the programming code for Arduino Unobased ICCP controlling system

#include <Adafruit_INA260.h>
(The program will use the Adafruit INA206 current sensor)

Adafruit_INA260 ina260 = Adafruit_INA260();

(create objects to access the current sensor)

#define sen1 5

(define pin 5 as the first sensor, at Full Load condition)
#define sen2 6
(define pin 6 as the second sensor, at Half Load condition)
#define sen3 7
(define pin 7 as the third sensor, at Ballast Load condition)
#define pwm_out 3
(define pin pwm as a gate voltage regulator MOSFET)

int kp = 2;

(constant p for controller PD)
int kd = 0;
(constant d for controller PD)

void setup() {
(Data or Commands to be procced by Arduino)
Serial.begin(9600);

pinMode(sen1, INPUT); (Set mode pin first sensor as input) pinMode(sen2, INPUT); (Set mode pin second sensor as input) pinMode(sen3, INPUT); (Set mode pin third as input)

pinMode(pwm_out, OUTPUT);
(Set mode pin PWM Output as output)

```
if (!ina260.begin()) {
// Serial.println("Couldn't find INA260 chip");
  while (1);
(If no current sensor is found, the process stops, and the program cannot be run)
 }
// Serial.println("Found INA260 chip");
}
int pwm = 0;
(Initialization of pwm which will be issued according to the desired current)
int arus = 600:
(initialization of the desired current)
int error = 0;
(variable initialization to hold the error, between the set point and the original
value)
int last_error = 0;
(variable initialization to hold the last error to be used as a derivative)
int out = 0:
(the final pwm initialization to be issued)
void loop() {
 int current = ina260.readCurrent();
(accommodating current value to 'current' variable)
 int power = ina260.readPower();
(accommodating power value to 'power' variable)
 bool isSen1 = digitalRead(sen1);
(accommodating the first sensor to 'isSen1' variable)
 bool isSen2 = digitalRead(sen2);
(accommodating the second sensor to 'isSen2' variable)
 bool isSen3 = digitalRead(sen3);
(accommodating the third sensor to 'isSen3' variable)
 if(isSen1){
  arus = 1600; // miliAmper
(if the first sensor is detected, the current sensor will send a signal to Arduino to
instruct the actuator to control the output current, at 1600 mA)
  goto skip;
 }
```

(if the first sensor is not detected, the sensor will continue to detect the next sensor)

if(isSen2){

arus = 1150; // miliAmper

(if the second sensor is detected, the current sensor will send a signal to Arduino to instruct the actuator to control the output current, at 1150 mA)

goto skip; } (if the second sensor is not detected, the sensor will continue to detect the next sensor) if(isSen3){ arus = 870; // miliAmper (if the third sensor is detected, the current sensor will send a signal to Arduino to instruct the actuator to control the output current, at 870 mA) goto skip; } (if the third sensor is not detected, the sensor will continue to detect the next sensor) arus = 0; // miliAmper skip; (if there is no sensor detected, the output of current become 0 mA) error = arus - current; (accommodate the difference between the desired current value and the actual current value) out = kp*error + kd*(error-last error); (accomodate the pwm out value obtained from th PD controller) last_error = error; (accommodate the current error value to be used as a derivative controller for the next loop) pwm += map(out, -2000, 2000, -20, 20); (scale to 100:1 to minimize changes in pwm out and add them to the previous pwm out valuer) if(pwm > 255) pwm = 255; (limit the maximum value of pwm output to 255) if(pwm < 0) pwm = 0; (limit the minimum value of pwm output to 0) analogWrite(pwm out, pwm); (issuing the value of pwm output) // Serial.println(); Serial.print(isSen1); Serial.print(','); (order to display the first sensor data result into the monitor) Serial.print(isSen2); Serial.print(',');

(order to display the second sensor data result into the Monitor)

Serial.print(isSen3);

Serial.print(',');

(order to display the third sensor data result into the Monitor)

Serial.print(current); Serial.print(" mA,");

(commanding the monitor to display the amount data of output current, according to the detected sensors. The data displayed in the form of number.)

Serial.print(power);

Serial.print(" mW;");

(commanding the monitor to display the amount data of output powert, according to the detected sensors. The data displayed in the form of number.)

delay(500);

}

(commanding the digital signal to enter the trigger to not turn on for 500 microseconds)

Figure 4.16 Simulation Position

Figure 4.17 Test Pool

The DC current source on the ship comes from batteries with voltage of 12 Volts. The LED light used as a reference or current marker has been flowed from the battery. The level of light brightness is also a reference to the amount of current released based on the ship's weight conditions.

The simulation is carried out when the ship is in 3 conditions. The first condition is when the ship does not carry cargo or ballast load. The second condition is when the ship carries a half load of cargo. The third condition is when the ship carries a full load of cargo.

Figure 4.18 Controlling Simulation at Ballast Load Condition

Figure 4.19 Monitoring Simulation at Ballast Load Condition

The first simulation is done when the condition of the ship does not carry a load / ballast load. The water level sensor that will read in this

condition is the sensor located at the very bottom of the ship's hull. When the sensor is exposed to water, the sensor will send data signals in the form of binary numbers to Arduino. Then Arduino will process the data and send a command in the form of data on the amount of output current needed under these conditions to the current sensor.

Figure 4.20 Controlling Simulation at Half Load Condition

Figure 4.21 Monitoring Simulation at Half Load Condition

Then the second test is done at half load condition. The water level sensor that will read in this condition is the sensor in the middle of the ship's hull.

Figure 4.22 Controlling Simulation at Half Load Condition

Figure 4.23 Monitoring Simulation at Full Load Condition

Then the third test is done at half load condition. The water level sensor that will read in this condition is the sensor located at the very top of the hull.

4.10 Result

Full Load:	0
Half Load:	0
Ballast Load:	1
Current:	876 mA
Power:	6210 mW

Figure 4.24 Controlling Result at Ballast Load

In Ballast Load conditions, sensors that are detected and read are sensors located at the bottom of the ship's hull. The amount of output current in this condition is around 870 mA. This condition is the smallest current output of all conditions, so the LED light in this condition becomes dim.

← HC-05	© 🌣
Full Load:	0
Half Load:	1
Ballast Load:	0
Current:	1146 mA
Power:	10140 mW

Figure 4.25 Controlling Result at Half Load

In the Half Load condition the sensor that is detected and reads is a sensor that is in the middle of the ship's hull. The amount of output current in this condition ranges from approximately 1154 mA
← HC-05	0 🗘
Full Load:	1
Half Load:	1
Ballast Load:	1
Current:	1606 mA
Power:	9520 mW

Figure 4.26 Controlling Result at Full Load

In Full Load condition all water sensors are detected. However, the only sensor read is the sensor that is at the top / the first sensor. The amount of output current in this condition ranges from approximately 1610 mA. This condition is the brightest current output of all conditions, so that the LED light in this condition becomes the brightest.

CHAPTER V

CONCLUSION AND SUGGESTION

5.1. Conclusion

Based on the research that has been done in this thesis, it can be concluded that:

- The amount of current requirements needed in real ship conditions is; the Full Load condition is 162 Amperes, the Half Load condition is 115.43 Amperes, and the Ballast Load condition is 87.56 Amperes. Whereas the current needs on a model ship that has been scaled are; at Full Load 1.62 Amperes, at Half Load 1.154 Amperes, and at Ballast Load 0.87 Amperes. The greater the area of the hull that is immersed, the greater the current requirements needed. Conversely, if the area of the immersed hull is smaller, then the current needed will be less.
- 2. With this controlling system, over current for the ICCP will not be happen. So that this system can make the use of generators on ships more efficient. In addition, this system can also prevent the electroendosmosis process that often occurs in ICCP because the current released will be in accordance with the extent of the hull being immersed. In that way, this system can prevent damage to the coating due to electroendosmosis.

5.2. Suggestion

Suggestion from the author based on the research that has been done in this thesis, as follows.

1. In further research, technical development can be carried out to have an economic impact, things that can be done include: Calculation of the life time of the Arduino Uno-based ICCP controlling system compared to the usual ICCP system, and the economic analysis of the Arduino Uno-based ICCP controlling system

BIBLIOGRAPHY

[1] DNV. Recommended Practice RP B401. 1993. *Cathodic Protection Design, Det Norke* Veritas Industry AS, Hovik, 1993.

[2] Fontana, M.G. 1986. *Corrosion Engine-ering*. New York: Mc Graw-Hill Book Company.

[3] Margeli, Michael. 2011. Arduino Cookbook. USA : O'Reilly Media, Inc.

[4] PT. Biro Klasifikasi Indonesia, 2004, *Regulator for the Corrosion and Coating System*, Edition 2004, BKI, Jakarta .

[5] Sunarto, Deni Septian. 2015. *Analisa Kebutuhan Anoda Korban Seng Pada Plat Bottom Kapal di PT. Indonesia Marina Shipyard*. Jurnal Keilmuan dan Terapan Teknik, Program Studi Teknik Mesin, Fakultas Teknik, Universitas Gresik. Volume 04.

[6] Tri Karyono, Budianto, Reza Gadis Pamungkas. 2017. *Analisa Teknik Pencegahan Korosi Pada Lambung Kapal Dengan Variasi Sistem Pencegahan ICCP Dibandingkan Dengan SACP*

[7] Trethewey, K.R. 1991. Korosi untuk Mahasiswa dan Rekayasawan, Terjemahan Alex Tri Kantjono Widodo. Jakarta: PT. Gramedia Pustaka Utama.

[8] Wawalumaja, Rudy. 2013. *Sensor, Transduser dan Aktuator. Jurnal.* Jurnal. Jurusan Teknik Industri, Universitas Kristen Maranatha, Bandung.

[9] Deddy Irwanto, Yuslan Basir, Muhni Pamuji. 2013. *Studi Korosi Pada Pipa Menggunakan Metode Impressed Current di Petrochina International Jambi.*

[10] Akhmad Zainuri, Unggul Wibawa, Eka Maulana. 2015. *Implementasi* Bluetooth HC-05 untuk Memperbarui Informasi Pada Perangkat Running Text Berbasis Android

AUTHOR BIOGRAPHY

Allysha Prista Augustiana was born in Jakarta, August 14^{th} 1998, and the firstborn of two siblings from Nur Primawira and Riesta Rachmantini. Grew up in Jakarta, Allysha completed her high school from SMA Taruna Nusantara Magelang (2013-2016). Author then continue her education in Double Degree Program of Marine Engineering Departement, Institut Teknologi Sepuluh Nopember, Surabaya with Hoschule Wismar, Germany. During the study, author has been actively involved in some organization. She was active in Himasiskal FTK-ITS as External Relation Staff (2017-2018) and Head of Media and Information Department (2019). She was also

active in Marine Icon as the Decoration and Documentation Committee (2017) and External Funding Committee (2018). Author has done her internship two times; (1) *PT Daya Radar Utama Shipyard* in Lampung, (2) *SKK Migas* in Jakarta. During the research of the bachelor thesis, author was taking a part as a member of Marine Electrical and Automation System (MEAS) Laboratory.

ATTACHMENT

WETTED SURFACE AREA

Ballast Load

28

Prezentin Invendementer Prezentin Invendement

Draft	7,147 m	
Displacement Full Load	55,453 ton	
DWT	45,789 ton	
Displacement (Ballast Load)	11,5968 ton	
Wetted Area	3021,25 m ²	

- 600				
				P
		MS		19
Death at the t				
Peoplel midsody Jill midsody	Freuerl	and address of the second	-	
Parallel radiocity At relationly limit 0 n	Forwards	nicibody limit [0 m		
Parallel netbooky At neidbooky lenti En	Forwards	nickody Inti 🛛 n		Search
Parallel middoody Alt niddoody lenit [Em Search For O Block Conflicient	0.795	nickedylinit (0 m LCB aft of FP (5745	S DWL	Search
Parallel reducely At neitbody limit [in Search For Glock Conflicent Provide Conflicent	0.795 Ferward	nobody left 0 m LCB aft of FP 67.45 LCF aft of FP 71.45	S. DWL	Search
Paralel midloody At nistbody limit At nistbody limit Tr Bearch For: Bock Coefficient Preventio Coefficient Matrixp Area Coefficient		Includy limit 0 m LCB aft of FP 57.45 LCF aft of FP 71.45 Spatial Rate 0	S. DWL S. DWL Degrees	Search
Annual methody At methody lent At methody lent En	Forward 0.759 1 0.801 L 0.933 L 0.32 T	neckody best 0 m LCB aft of FP 57.45 LCF aft of FP 77.45 Speede Rase 0	S. DWL S. DWL Degrees	Search
Annual reducely Att network Att network Att network Search For Book Confluent Brownic Confluent Manap Area Confluent Wasspace Area Confluent Toola Te	Forward 0.759 1 0.807 L 0.993 L 0.32 T	nnobloody limit (0 m LCB aft of FP CF aft of FP Tradition Rame (0	S. DWL S. DWL Degrees	Sweth
Atministration Atministrative Atministrative Atministrative Benedit France Benedit Coefficient Manaplane Area Coefficient Waterplane Area Coefficient Solde Ta Decklocement 1255581	0.755 1 0.007 0 0.007 0 0.000 0 0.0000 0 0.00000000	nickody Inst 0 m LCB at of FP 57.45 LC5 at of FP 71.45 liquide Rans 0	S. DWL S. DWL Depres	Search

Draft	10,084 m
Displacement Full Load	32,5585 ton
Wetted Area	6013,056 m ²

Half Load

Parameter Transformation

These							
							Ť
Familiel retobooly Aft metbool	lint 0.4		Forward methody limit	0.0	F		
Search For		0.796	ICB at at EP	48.87	l s nw	Search	
Prevalic Coefficie	-	0.802	LEE what FF	52.83	SOWL		
Midship Alea Coel	ficient	0.993	Topside Rem	0	Degrees		
Waterplane Area	Software	0.922]				
Scale To:							

Draft	12,100 m
Displacement Full Load	55,453 ton
DWT	45,789 ton
Wetted Area	8560,689 m ²

Full Load

×

	600	training and	Value	Units	
	Declocer	NE:	05463	1	
2	Volate pt	(permit	04120.008	87.0	
	Owner	Saligne .	12.105		
4	lorested.	depth.	12 100		
r	WL Lords	1. T	174,428		
t.	Court vian	airlands on WC	12,200		
2	Webed of	**	1181 108	843	
	tites and: alles		205 748	872	
8.	Waterpl 4	ues .	\$179.002	e/2	
70	Printerio	coaft (Es)	3.002		
	Book cas	9. (Cb)	3,795		
Ť	than Redl.	ains cont day	0.803		
	Wennit a	TRACK PRACE ART	8.922		
14	LCD level	Concept to the second	85 743	Berry .	
14	LCF HEAD	1	73,829	from z	
16	108 %		43155	Ponz	
37	1.00 %		48.192	For 2	
-10	10		0.004		
16	KD NH		5.000		
55	Gan.		7.712		
	1944		291.878	-	
	CIMI CRIVE	(Det)	11.050		
	OWL		248,255		
26	ICE8		14 000		
ż	104		218,253		
36	interaction.	(TDei.	#3.807	manale	
	UTT'S		TEC. THE	for ite	
20	All of 1de	g + SMIDIAE BITTI	13045.278	And the l	
he	aty bester)	1.025 torine (r/1)			
4	(mailing	1531074193	Bit. Meter a	na wefer (7.0	25.0 kg/m ² 10
100		0.4			ReculmAste

CORROSION RATE

		W> Asum	ption diminution	2,5 % / yeai
CD = V + W	Berat Plat Awal	Displace	ment - DWT	
CR = K X W		9,664	ton	
Dimana		9664000	gram	
Dimana :				
CR = Laju korosi (mm/th)	Corrosion Asumption	year 1	241600 §	gram
W = Massa yang terkorosi (gram)		year 2	235560	gram
A = Luas tercelup (cm ^{$-$})		year 3	229671	, gram
T = Waktu (iam)		total	706831 g	gram
$D = Densitas (gram/cm^3)$				

К	87600	
W	706831 gram	
A	3021250 _{cm²}	
Т	26280 hour	
D	7.85	Densitas nlat haia

 $CR = \frac{K \times W}{A \times D \times T}$ $8700 \times 706831 gram$

 $CR = \frac{0.767.7711}{3021250 \ cm^2 \times 7.85 \ gram \ /cm^2 \times 26280 \ h}$

0,09934317 mm/ year

Half Load

Ballast Load

К	87600	
W	706831 gram	
A	6013056 _{cm²}	
Т	26280 hour	
D	7,85 aram / cm ²	Densitas plat baja
	о ,	

 $\mathsf{CR} = \frac{K \times W}{A \times D \times T}$

CR= <u>8700×706831gram</u> <u>6013056cm²×7,85gram/cm²×26280h</u>

0,04991481 mm/ year

Full Load

 $\mathsf{CR} = \frac{K \times W}{A \times D \times T}$

8700×706831gram

 $CR = \frac{0.767.772}{8560689 \ cm^2 \times 7,85 \ gram \ /cm^2 \times 26280 \ h}$

0,03506033 mm/ year

CURRENT PROTECTON NEEDS

Cathode Surface Area

Kebutuhan arus proteksi :

Ic = Ac x fc x ic (Ampere)

Dimana :

Ac = Luas plat lambung kapal yang diproteksi dengan paduan zink (m2) Ac = {(2T)+B} x Lpp x ρ ...(m²)

Ballas	t Load
T 7,147 m B 32,2 m Lpp 171 m ρ 0,7	
Ac = $[(2T)+B) \times Lpp \times p$ Ac = $[(2 \times 7,147)+32,2) \times 171 \times 0,7$ Ac 5565,3318 m^2	
Half	Load
T 10,084 m B 32,2 m Lpp 171 m ρ 0,7	
Ac = $[(2T)+B) \times Lpp \times p$ Ac = $[(2 \times 10,082)+32,2) \times 171 \times 0,7$ Ac 6268,4496 m^2	
Half	Load
$\begin{array}{c c} T & 12,1 m \\ \hline B & 32,2 m \\ \hline Lpp & 171 m \\ \hline \rho & 0,7 \end{array}$ $Ac = [(2T)+B) \times Lpp \times \rho$ $Ac = [(2 \times 10,082)+32,2) \times 171 \times 0,7$ $Ac & 6751,08 m^2$	
6.4.2 The coating breakdown factor is a function of coating properties, operational parameters and time. As a simple engineering approach, f_c can be expressed as: $f_c = a + b \cdot t$ where t (years) is the coating lifetime and a and b are constants that are dependent on coating properties and the environment. Guidance note: The effect of marine growth is highest in the upper 30 meters where wave forces may further contribute to coating degradation. Another factor is periodic cleaning of marine growth in this zone.	kdown Factor The coating breakdown factor describes the extent of current density reduction due to the application of a coating. The value fc = 0 means the coating is 100% electrically insulating, whereas a value of fc = 1 implies that the coating cannot provide any protection. The coating breakdown factor is a function of coating properties, operational parameters and time. The coating breakdown factor fc can be described as follows: (17.11) where t is the coating lifetime, and k1 and k2 are constants that are dependent on the coating properties. Four paint coating categories have been defined for practical use based on the
 6.4.3 Owner should preferably specify constants a and b for calculation of coating breakdown factors based on his own practical experience of specific coating systems in a particular environment. When Owner has not specified any such data, the default values in Table 10-4 of Annex A shall be used. The coating breakdown factors as established in Annex A are based on considerations addressed in 5.8.3. 6.4.4 Once a and b are defined, mean and final coating break- 	coating properties in DNV [9]: Category I: one layer of primer coat, about 50-µm nominal dry film thickness (DFT); Category II: one layer of primer coat, plus minimum one layer of intermediate top coat, 150- to 250-µm nominal DFT; Category III: one layer of primer coat, plus minimum two layers of intermediate/top coats, minimum 300-µm nominal DFT; Category IV: one layer of primer coat, plus minimum three layers of intermediate top coats, minimum 450-µm nominal DFT. The constants k1 and k2 used for calculating the coating breakdown factors

down factors, f_{cm} and f_{cf} , respectively, to be used for CP de- are given in Table sign purposes are to be calculated by introducing the CP design life, t_f (yrs):

$$f_{cm} = a + b \cdot \frac{t_f}{2}$$
$$f_{cf} = a + b \cdot t_f$$

For certain protection objects, with large uncoated surfaces, the initial coating breakdown factor, $f_{ci} = a$, may be applied to calculate the initial current demand to include coated surfaces.

SOURCE = DNV-RP-B401

Table 1: Coating Systems for Cargo Tanks

Surface Preparation	face Preparation Coating System		Number of stripe coats		
ISO 8501-1 Sa 2%	Epoxy primer Epoxy undercoat Epoxy finish	100 microns 100 microns 100 microns	2		
ISO 8501-1 Sa 2%	ISO 8501-1 Epoxy phenolic primer Sa 2% Epoxy phenolic undercoat Epoxy phenolic finish		S0 8501-1 Epoxy phenolic primer 100 microns Sa 2½ Epoxy phenolic undercoat 100 microns Epoxy phenolic finish 100 microns		2
ISO 8501-1 Epoxy isocyanate primer Sa 2% Epoxy isocyanate underce Epoxy isocyanate finish		90 microns 90 microns 90 microns	2		
ISO 8501-1 Zinc silicate Sa 2½		80 microns	1		
ISO 8501-1 Sa 2½	Cyclosificon epoxy Cyclosificon epoxy	150 microns 150 microns	1-2		

ISO 8501-1, Preparation of Steel Substrates Before Application of Paints and Related Products-Visual Assessment of Surface Cleantiness

quate polarizing capacity (6.3.1-6.3.4) and to maintain cathodic protection during the design life (6.3.5), the individual surface areas, A_c (m²), of each CP unit shall be calculated ac-cording to (7.2) and multiplied by the relevant design current density, i_c (A/m²), and the coating breakdown factor, f_c , if applicable:

$$\mathbf{I}_{c} = \mathbf{A}_{c} \cdot \mathbf{i}_{c} \cdot \frac{\mathbf{f}_{c}}{\mathbf{f}_{c}} \tag{1}$$

ic and fc are then to be selected according to (6.3) and (6.4), respectively.

		Ballast Load
ic Ac fc Ic	0,1 <i>A/m</i> ² 5565,3318 <i>m</i> ² 0,24 87,56 Ampere	
		Half Load
ic Ac fc Ic	0,1 <i>A/m</i> ² 6268,4496 <i>m</i> ² 0,24 115,44 Ampere	
		Full Load
ic Ac fc	$\begin{array}{ccc} 0,1 & A/m^2 \\ 6751,08 & m^2 \\ 0.24 \end{array}$	

162,02592 Ampere IC.

Table 17.3	Constants (k	and kg for	Calculation of	Paint C	oating Breakde	win Factors [10]
------------	--------------	------------	----------------	---------	----------------	------------------

Depth (m)	Coating Ca	tegory		
	1	н	m	IV
	$k_1 = 0.1$	$k_1 = 0.05$	$k_1 = 0.02$	$k_1 = 0.02$
	k2	k2	k2	k2
0-30	0.1	0.03	0.015	0.012
>30	0.05	0.02	0.012	0.012

Based on refrence ,coating category for FSO is coating category II (Depth < 30m Κ1 0,05

KI	0,05		400		
К2	0,03	1. PRINCIPAL PARTICUL	LARS		
		Length	(LPP)	171.00	m
$Fc = (K_1 + K_1)$	K_2) × t	"	(L)	172.25	m
Fc = (0.05 +	0.03) x 3	Breadth (mld)	(B)	32.20	m
0,24		Depth (mid)	(D)	18.80	m
		Draft (mld)	(d)	12.10	m
		Deadweight.	(D/W)	45,789	ŧ

Current Demand

ANODE REQUIRED

Anode Utilization Factor

15.4.6 Anode Utilization Factor

The anode utilization factor indicates the fraction of anode material that is assumed to provide cathodic protection current. Performance becomes unpredictable when the anode is consumed beyond a mass indicated by the utilization factor. The utilization factor of an anode is dependent on the detailed anode design, in particular dimensions and location of anode cores. Table 15.3 gives the anode utilization factor for different types of anodes (DNV, 1993).

Table 15.5. Design utilization factors for different types of anodes.

Anode Type	Anode Utilization Factor
Long 1) slender stand-off	0.90
Long 1) flush-mounted	0.85
Short 2) flush-mounted	0.80
Bracelet, half-shell type	0.80
Bracelet, segmented type	0.75

6.8 Anode Utilization Factor

6.8.1 The anode utilisation factor, u, is the fraction of anode material of an anode with a specific design that may be utilised for calculation of the net anode mass required to sustain protection throughout the design life of a CP system (see 7.7.1). When an anode is consumed to its utilisation factor, the polarizing capacity (as determined by the anode current output) becomes unpredictable due to loss of support of anode material, or rapid increase of anode resistance due to other factors (see 7.9)

6.8.2 The utilisation factor is dependent on the anode design, particularly its dimensions and the location of anode cores (7.10.4). Unless otherwise agreed, the anode utilisation factors in Table 10-8 of Annex A shall be used for design calculations.

SOURCE = DNV-RP-B401

Elemen	Electrochemical Efficiency (Ah/kg)		
Al	2000		
Zn	700		

Tabel 2.6.1 Electrochemical Efficiency (BKI, 2004)

Anode Type long flush-mounted

0.85

7.7 Anode Mass Calculations

7.7.1 The total net anode mass, M_a (kg), required to maintain cathodic protection throughout the design life, t_f (yrs), is to be calculated from I_{cm} (A) for each unit of the protection object

Anode Mass Calculation

SOURCE = DNV-RP-B401

(including any current drain):

$$M_{a} = \frac{I_{cm} \cdot t_{f} \cdot 8760}{u \cdot \varepsilon}$$
(2)

In (2), 8760 refers to hours per year. u and ϵ (Ah /kg) are to be selected based on (6.8) and (6.5), respectively.

Ballast Load
Ic 87,56 T 3 μ 0,85 T 700
$M = \frac{133,567 \ A \times 3 \ yrs \times 8760}{0,85 \times 700}$
<i>M</i> _a 5899,439 kg
Anode Required460,893672461Anode553,072406553Anode dengan tambahan 20% faktor tempat kritis
Ballast Load
$ \begin{array}{c} c \\ T \\ T \\ \mu \\ \varepsilon \\ \varepsilon \\ M \\ = \frac{133,567 \ A \times 3 \ yrs \times 8760}{0,85 \times 700} \end{array} $
<i>M_a</i> 6644,767 kg
Anode Required519,122422519Anode622,946906623Anode dengan tambahan 20% faktor tempat kritis
Ballast Load
$ \begin{array}{c c} Ic & 162,02592 \\ \hline T & 3 \\ \mu & 0,85 \\ \hline \epsilon & 700 \end{array} $
$M = \frac{133,567 \ A \times 3 \ yrs \times 8760}{0,85 \times 700}$
<i>M_a</i> 7156,372 kg
Anode Required 559,091563 559 670,909875 671 Anode dengan tambahan 20% faktor tempat kritis

WETTED SURFACE AREA

Ballast Load

Draft	0,715 m	
Displacement Full Load	5,5453 ton	
DWT	4,5789 ton	
Displacement (Ballast Loa	1,15968 ton	
Wetted Area	302,125 m ²	2

Rissearannoce	1000	thete	
T Development	11027	T.	
2 State state and	1111EAB	1872	
2 Draft Lostships	12,080		
d Investorial sizes	7.647		
E W. Lerath	145,885		
Coart man actients on W.	18.577		
Viettad Area	3821,290	a-2 -	
# Max and shite	1.54 (004	112	
R Watered Area	1211.768	w'2	
30 Premete nov'l' (Ca)	0.004		
W Dieth coort (Lbi	8,795		
12 Has Sect everyopett som	1985		
"I Weldoox orse coaff (Dwp	8.000		
10 LC8 wight	122.268	TION 2	
TT LEF bright	116.138	From a	
10 128 %	115.707	From 2	
TICCEN	111,794	From p	
45 +20	255.8		
10 100 10.00	8.080		
20 Est:	4.632	-	
22 867.	138 (90)		
22 Oll metoird	11.243		
25 GHL	158,462	T	
24 1041	13.243		
25 PML	135.462	10	
III MINERAL (TRO-	12,194	Direct.	
27 1879-	91.088	14114	
25 PM at kieg - (30) Dearstor1	2081.554	for or	
Security (security [1,225, security 1]			
as another [105/service] 1	Sol. Mente of	0.890 miles o	lo's'll
409 (Bar			Scela
ingram (nga manana an			1000000000

Half Load

Measurement	Volum	Aletta	1.0
Energiacanii	12171	1	
Water in the second sec	11753-180	10781	
Dat Ansatz	12,090	6 M M	
inmanuel daph	15.162		
10. Large	140.35E		
Bearings extern of PD	37,664	91 C	
toathed along	AUTODA)	-102	
then more area	203.02		
Videnti Area	3549.643	1.42	
Prendic cadif. (Cy).	0.001		
direct sandt (CB)	0.786		
Hau Seul. eres wer'l (Col.	0.083		
Weiterpl. area careft 20wap	0.920		
LCS Ample	99.424	#miz	
CCT Mng/k	10.001	timiz	
123 %	. 47.540	Non 2	
1.52.34	63.586	Wein 2	
KD .	7,235	10.00	
100.648	3,000	30	
ess.	6.118		
ent.	115.087		
GMI contacted	15.783	- m	
Gm.	100.045		
KOA.	10.00	(F)	
etal.	194.542	10.00	
Inmension (75%)	27.488	laneation (
872	564.485	torne.	
Rol of Long - GAR Dep air (1	10:02.146	Soone .	
dy sealers [1.525 to read of "1			
denative 11.025 social es "J	- Sid Metric a		ikan'ii
0=			Notatin
int Bran			1 Dec

Draft	1,008 m
Displacement Full Load	3,25585 ton
Wetted Area	601,3056 m ²

France Trademates

Type matrix and DB: ** Image: State St

Draft	1,210	m
Displacement Full Load	5,5453	ton
DWT	4,5789	ton
Wetted Area	856,0689	m^2

	W> Asumption diminution 2,5 % / year		
$CR = K \times W$	Berat Plat Awal	Displacement - DWT	
A x D x T		0,9664 ton	

Full Load

 $\mathsf{CR} = \frac{K \times W}{A \times D \times T}$

CR= <u>8700×706831gram</u> <u>8560689 cm²×7,85 gram /cm²×26280 h</u>

0,03506 mm/ year

CURRENT PROTECTON NEEDS

Cathode Surface Area

Kebutuhan arus proteksi :

Ic = Ac x fc x ic (Ampere)

Dimana :

Ac = Luas plat lambung kapal yang diproteksi dengan paduan zink (m2) Ac = {(2T)+B} x Lpp x ρ ... (m^2)

Ballast Load

Half Load

Т	0,7147 m
В	3,22 m
Lpp	17,1 m
ρ	0,7

 $Ac = [(2T)+B) \times Lpp \times \rho$ Ac = [(2 x 7,147)+32,2) x 171 x 0,7 55,653318 m² Ac

1.0082 m 3.22 m В Lpp 171 m 07

Ac = [(2T)+B) x Lpp x ρ Ac = [(2 x 10,082)+32,2) x 171 x 0,7 Ac 62,679708 m²

Half Load

Т	1,21 m
В	3,22 m
Lpp	17,1 m
ρ	0,7

Ac = $[(2T)+B) \times Lpp \times \rho$ Ac = [(2 x 10,082)+32,2) x 171 x 0,7 Ac 67,5108 m²

Coating Breakdown Factor

properties, operational parameters and time. As a simple engi-reduction due to the application of a coating. The value fc = 0 means the neering approach, fc can be expressed as:

 $f_c = a + b \cdot t$

where t (years) is the coating lifetime and a and b are constants that are dependent on coating properties and the environment.

Guidance note:

The effect of marine growth is highest in the upper 30 meters where wave forces may further contribute to coating degradation. Another factor is periodic cleaning of marine growth in this zone.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

6.4.3 Owner should preferably specify constants a and b for calculation of coating breakdown factors based on his own practical experience of specific coating systems in a particular environment. When Owner has not specified any such data, the default values in Table 10-4 of Annex A shall be used. The coating breakdown factors as established in Annex A are based on considerations addressed in 5.8.3.

6.4.4 Once a and b are defined, mean and final coating breakdown factors, f_{cm} and f_{cf} , respectively, to be used for CP design purposes are to be calculated by introducing the CP design life, t_f (yrs):

 $f_{cm} = a + b \cdot \frac{t_f}{2}$

$$f_{cf} = a + b \cdot t_f$$

For certain protection objects, with large uncoated surfaces, the initial coating breakdown factor, $f_{ci} = a$, may be applied to calculate the initial current demand to include coated surfaces.

SOURCE = DNV-RP-B401

Table 1: Coating Systems for Cargo Tanks

6.4.2 The coating breakdown factor is a function of coating The coating breakdown factor describes the extent of current density coating is 100% electrically insulating, whereas a value of fc = 1 implies that the coating cannot provide any protection.

The coating breakdown factor is a function of coating properties, operational parameters and time. The coating breakdown factor fc can be described as follows:

(17.11)

where t is the coating lifetime, and k1 and k2 are constants that are dependent on the coating properties.

Four paint coating categories have been defined for practical use based on the coating properties in DNV [9]:

Category I: one layer of primer coat, about 50-µm nominal dry film thickness (DFT):

Category II: one layer of primer coat, plus minimum one layer of intermediate top coat, 150- to 250-µm nominal DFT;

Category III: one layer of primer coat, plus minimum two layers of

intermediate/top coats, minimum 300-µm nominal DFT; Category IV: one layer of primer coat, plus minimum three layers of

intermediate top coats, minimum 450-µm nominal DFT. The constants k1 and k2 used for calculating the coating breakdown factors

are given in Table

Table 17.3. Constants (k1 and k2) for Calculation of Paint Coating Breakdown Factors [10]

Depth (m)	Coating Category			
	1	н	III .	IV
	$k_1 = 0.1$	$k_1 = 0.05$	$k_1 = 0.02$	$k_1 = 0.02$
	k2	k2	k2	k2
0-30	0.1	0.03	0.015	0.012
8gt:30	0.05	0.02	0.012	0.012

Surface Preparation	Coaling System	Minimum DFT	Number of stripe coats
ISO 8501-1 Sa 2%	Epoxy primer Epoxy undercoat Epoxy finish	100 microns 100 microns 100 microns	2
ISO 8501-1 Sa 2%	Epoxy phenolic primer Epoxy phenolic undercoat Epoxy phenolic finish	108 microns 100 microns 100 microns	2
ISO 8501-1 Sa 2%	Epoxy isocyanate primer Epoxy isocyanate undercoat Epoxy isocyanate finish	90 microns 90 microns 90 microns	2
ISO 8501-1 Sa 2%	Zinc silicate	80 microns	1
ISO 8501-1 Sa 2%	Cyclosilican epoxy Cyclosilican epoxy	150 microns 150 microns	1-2

Based on ref	rence ,coating	g category for FSO is coating category II (Depth < 30m
K1	0,05	
К2	0,03	I. PHINCIPAL PARTICULARS

K2 0,03				
	Length	(LPP)	171.00	m
$Fc = (K_1 + K_2) \times t$		(L)	172.25	m
$F_{c} = (0.05 \pm 0.03) \times 3$	Breadth (mld)	(B)	32.20	m
0.24	Depth (mid)	(D)	18.80	m
0,24	Draft (mld)	(6)	12.10	m
	Deadweight	(D/W)	45,789	ŧ

150 8501-1, Preparation of Steel Substrates Before Application of Paints and Helated Products-Visual Asses Surface Cleaniness.

Current Demand

Current Demand quate polarizing capacity (6.3.1-6.3.4) and to maintain cathod-ic protection during the design life (6.3.5), the individual surface areas, A_c (m²), of each CP unit shall be calculated ac-cording to (7.2) and multiplied by the relevant design current density, i_c (A/m²), and the coating breakdown factor, f_c , if ap-plicable:

$$I_{c} = A_{c} \cdot i_{c} \cdot \frac{f_{c}}{f_{c}}$$
(1)

 i_{c} and f_{c} are then to be selected according to (6.3) and (6.4), respectively.

	Ballast Load	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
	Half Load	
ic 0,1 A/m² Ac 62,679708 m² fc 0,24 X lc 1,154313 Ampere		
	Full Load	

ic	0,1	A/m^2	
Ac	67,5108	m^2	
fc	0,24		v
lc	1,6102592	Ampere	^