

TUGAS AKHIR - MS184801

MODEL PENGANGKUTAN EKSPOR KENDARAAN : STUDI KASUS ASEAN

Christian Gilang Putra Nugraha NRP. 0441154 000 0046

Dosen Pembimbing
Dr.-Ing. Ir. Setyo Nugroho
Pratiwi Wuryaningrum, S.T., M.T.

DEPARTEMEN TEKNIK TRANSPORTASI LAUT FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2020

TUGAS AKHIR - MS 184801

MODEL PENGANGKUTAN EKSPOR KENDARAAN : STUDI KASUS ASEAN

Christian Gilang Putra Nugraha NRP. 0441154 000 0046

Dosen Pembimbing Dr.-Ing. Ir. Setyo Nugroho Pratiwi Wuryaningrum, S.T., M.T.

DEPARTEMEN TEKNIK TRANSPORTASI LAUT FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2020

FINAL PROJECT - MS 184801

VEHICLE EXPORT TRANSPORTATION MODEL : CASE STUDY ASEAN

Christian Gilang Putra Nugraha NRP. 0441154 000 0046

Supervisors
Dr.-Ing. Ir. Setyo Nugroho
Pratiwi Wuryaningrum, S.T., M.T.

DEPARTMENT OF MARINE TRANSPORTATION ENGINEERING FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2020

LEMBAR PENGESAHAN

MODEL PENGANGKUTAN EKSPOR KENDARAAN: STUDI KASUS ASEAN

TUGAS AKHIR

Diajukan Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik Pada Program S1 Departemen Teknik Transportasi Laut Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember

Oleh:

CHRISTIAN GILANG PUTRA NUGRAHA

NRP. 0441154 000 0046

Disetujui oleh Dosen Pembimbing Tugas Akhir:

Dosen Pembimbing I

Dosen Pembimbing II

Dr-Ing. Setyo Nugrono. Pratiwi Wuryaningrum, S.T., M.T.

NIP. 196510201996011001

NIP. 1992201912082

JANUARI 2019 SURABAYA,

LEMBAR REVISI

MODEL PENGANGKUTAN EKSPOR KENDARAAN: STUDI KASUS ASEAN

TUGAS AKHIR

Telah direvisi sesuai hasil sidang Ujian Tugas Akhir Tanggal 21 Januari 2019

Program S1 Departemen Teknik Transportasi Laut Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Oleh:

CHRISTIAN GILANG PUTRA NUGRAHA N.R.P 04411540000046

Disetujui oleh Tim Penguji Ujian Tugas Akhir:

1. Dr. Eng. I.G.N. Sumanta Buana, S.T., M.Eng

- 2. Achmad Mustakim, S.T., M.T., MBA....
- 3. Eka Wahyu Ardhi, S.T., M.T.

Disetujui oleh Dosen Pembimbing Tugas Akhir:

- 4. Dr.-Ing. Ir. Setyo Nugroho
- 5. Pratiwi Wuryaningrum, S.T.,M.T.

KATA PENGANTAR

Puji syukur kehadirat Tuhan Yesus Kristus yang telah memberikan berkat dan hikmat-Nya sehingga penulis dapat menyelesaikan penelitian yang berjudul "Model Pengangkutan Ekspor Kendaraan: Studi Kasus ASEAN" ini dapat terselesaikan dengan baik.

Pada kesempatan kali ini, perkenankan penulis untuk menyampaikan ucapan terima kasih kepada pihak-pihak yang telah membantu dalam menyelesaikan Tugas Akhir ini, untuk :

- 1. Tuhan Yesus Kristus karena selalu memberkati penulis sehingga penulis bisa sampai saat ini..
- 2. Keluarga besar tersayang yang tidak pernah berhenti untuk mendoakan, memberi semangat dan motivasi kepada penulis dalam menjalankan kuliahnya.
- 3. Dr.-Ing Ir. Setyo Nugroho., selaku dosen pembimbing I serta Pratiwi Wuryaningrum, S.T.,M.T selaku dosen pembimbing II yang dengan sabar telah meluangkan waktu memberikan bimbingan, ilmu dan arahan dalam menyelesaikan penelitian ini.
- 4. Dosen Departemen Teknik Transportasi Laut, atas bantuan dan arahan selama proses perkuliahan.
- 5. Teman teman BRIGANTINE, gereja dan teman teman lainnya yang telah mendukung dan membantu baik secara langsung maupun tidak langsung selama masa perkuliahan di Institut Teknologi Sepuluh Nopember,
- 6. Semua pihak yang telah membantu didalam penyelesaian Penelitian ini yang tidak dapat penulis sebutkan satu persatu.

Penulis sadar bahwa Tugas Akhir ini masih jauh dari kesempurnaan sehingga kritik dan saran yang bersifat membangun sangat diharapkan. Akhir kata semoga tulisan ini dapat bermanfaat bagi banyak pihak.

Surabaya, 30 Januari 2020

Penulis

MODEL PENGANGKUTAN EKSPOR KENDARAAN: STUDI KASUS ASEAN

Nama Mahasiswa : Christian Gilang Putra Nugraha

NRP : 04411540000046

Departemen / Fakultas : Teknik Transportasi Laut / Teknologi Kelautan

Dosen Pembimbing : 1. Dr.-Ing. Ir. Setyo Nugroho.

2. Pratiwi Wuryaningrum, S.T., M.T.

ABSTRAK

Perkembangan jumlah ekspor di sektor industri otomotif khususnya CBU (Completely Built Up) di Indonesia pada saat ini sedang meningkat dimana jumlah ekspor meningkat sebanyak 166% dari tahun 2015 untuk negara Malaysia, Singapura, Thailand, Filipina dan Vietnam. Dengan bertambahnya jumlah ekspor CBU sebanyak itu akan membuat bagaimana caranya untuk mengefektifkan jarak pengiriman CBU dan biaya pelayaran dari kapal. Saat ini pengiriman ekspor impor kendaaran menggunakan rute Singapore – Jakarta – Singapore – Laem Chabang – Bauan – Laem Chabang – Singapore dan Singapore – Port Kelang – Jakarta – Singapore – Port Kelang – Laem Chabang – Ho Chi Minh – Hai Phong – Laem Chabang – Singapore. Oleh karena itu, tugas akhir ini bertujuan untuk menganalisis rute yang paling optimum serta total biaya yang minimum. Rute dengan biaya minimum sebesar Rp2.391.889.959.894 per tahun adalah Jakarta – Port Klang – Singapura –Laem Chabang – Ho Chi Minh – Hai Phong – Bauan – Jakarta dengan menggunakan 5 kapal yaitu MV Tianjin Highway(5.036 unit), MV Grand Vision (5.060 unit), MV Metis Leader (6.153 unit), MV European Highway (5.064 unit) dan MV Canopus Leader (5.195 unit).

Kata Kunci : ekspor kendaraan, multiport, total biaya minimum, rute optimum, Completely Built Up

VEHICLE EXPORT TRANSPORTATION MODEL: CASE STUDY ASEAN

Author : Christian Gilang Putra Nugraha

ID No. : 04411540000046

Dept. / Faculty: Marine Transportation Engineering / Marine Technology

Supervisors : 1. Dr.-Ing. Ir. Setyo Nugroho.

2. Pratiwi Wuryaningrum, S.T., M.T.

ABSTRACT

The development of the number of export in automotive industry sector especially CBU (Completely Built Up) in Indonesia is currently increasing about 166% from 2015 for Malaysia, Singapore, Thailand, Philippines, and Vietnam. With the increasing number of export as much as that, it will make how to make it effective ways the distance to delivering CBU and minimum total cost of ship. At the moment, route for export import is rute Singapore – Jakarta – Singapore – Laem Chabang – Bauan – Laem Chabang – Singapore and Singapore – Port Kelang – Jakarta – Singapore – Port Kelang – Laem Chabang – Ho Chi Minh – Hai Phong - Laem Chabang – Singapore. Therefore, this final project aims to analyze the most optimum route and minimum total cost. The route with a minimum total cost of Rp2.391.889.959.894 per year is Jakarta –Port Klang – Singapura – Laem Chabang – Ho Chi Minh – Hai Phong – Bauan – Jakarta using 5 ships namely MV Tianjin Highway(5.036 units) , MV Grand Vision (5.060 units), MV Metis Leader (6.153 units), MV European Highway (5.064 units) and MV Canopus Leader (5.195 units).

Keywords: vehicle exports, multiport, minimum total cost, optimum route, Completely Built Up

DAFTAR ISI

LEMBA	AR PENGESAHANi
LEMBA	AR REVISIii
KATA I	PENGANTARiii
ABSTR	AKiv
ABSTR	ACTv
DAFTA	R ISIvi
DAFTA	R TABELix
DAFTA	R GAMBARxi
BAB 1	PENDAHULUAN1
1.1	Latar Belakang
1.2	Rumusan Masalah
1.3	Tujuan3
1.4	Manfaat
1.5	Hipotesis3
1.6	Batasan Masalah4
BAB 2	TINJAUAN PUSTAKA5
2.1	Jenis – Jenis Produksi Kendaraan
2.2	Kapal Car Carrier6
2.3	Pelabuhan Khusus
2.3	.1 Pelabuhan Khusus Kendaraan
2.4	Jenis Pola Operasi
2.4	.1 Pola Port to Port8
2.4	.2 Pola Multiport9
2.5	Biaya Transportasi Laut
2.5	.1 Biaya Modal (Capital Cost)11
2.5	.2 Biaya Operasional (Operational Costs)11
2.5	.3 Biaya Pelayaran (Voyage Cost)
2.6	Tipe Operasional Kapal
2.6	.1 Tramp (Irregular) Service14
2.6	.2 Liner Service14
2.7	Teori Optimasi

2.7	Teori Travelling Salesman Problem	17
2.8	Penelitian Terkait	18
BAB 3	METODOLOGI PENELITIAN	19
3.1	Diagram Alir	19
3.2	Tahapan Pengerjaan	20
3.3	Model Matematis	21
3.3	Perhitungan Biaya Bahan Bakar Mesin (BBM)	22
3.3	3.2 Perhitungan Biaya Air Tawar	24
3.3	3.3 Peramalan Nilai	25
3.3	3.4 Perhitungan dalam Model Optimasi	25
BAB 4	GAMBARAN UMUM	31
4.1	Perkembangan Industri Otomotif	31
4.1	.1 Indonesia	32
4.1	.2 Thailand	33
4.1	.3 Malaysia	34
4.1	.4 Filipina	34
4.1	.5 Vietnam	35
4.2	Rute Pengiriman Muatan Kendaraan Saat Ini	36
4.3	Kondisi Ekspor dan Impor Kendaraan CBU di Indonesia	37
4.4	Jenis Kendaraan Ekspor dan Unit Kendaraan	39
4.5	Pelabuhan yang Digunakan	40
4.5	5.1 Indonesia – Indonesia Kendaraan Terminal	40
4.5	5.2 Malaysia – Pelabuhan Klang	41
4.5	5.3 Thailand – Pelabuhan Laem Chabang	42
4.5	5.4 Vietnam – Pelabuhan Hai Phong dan Pelabuhan Ho Chi Minh	43
4.5	5.5 Filipina – Pelabuhan Bauan	43
4.5	5.6 Singapura – Pelabuhan Singapura	43
4.6	Spesifikasi Armada Kapal Car Carrier Internasional	44
4.6	5.1 MV Polaris Leader	44
4.6	5.2 MV Tianjin Highway	45
4.6		
4.6	5.4 MV Grand Vision	46
4 6	5.5 MV Canopus Leader	47

4.6	.6 MV European Highway	47
4.6	7 MV Metis Leader	48
4.7	Data Time Charter Hire	49
4.8	Proses Bongkar Muat Kendaraan	49
BAB 5	ANALISIS DAN PEMBAHASAN	53
5.1	Persiapan Data untuk Model	53
5.1	.1 Rute Jarak Pelayaran	53
5.1	.2 Perkiraan dan Peramalan Jumlah Muatan Ekspor Impor	54
5.1	.3 Biaya Sewa Kapal (TCH)	58
5.1	.4 Biaya Pelayaran (VC)	60
5.1	.5 Biaya Penanganan Muatan (CHC)	65
5.2	Pembuatan Model Optimasi	66
5.2	.1 Multiport 6 Titik	66
5.2	2 Multiport 5 Titik	71
5.2	.3 Multiport 6-5 Titik	74
5.3	Perhitungan Load Factor Kapal	76
5.4	Analisis Perbandingan Antar Model Optimasi	78
BAB 6	KESIMPULAN DAN SARAN	81
6.1	Kesimpulan	81
6.2	Saran	82
DAFTA	R PUSTAKA	85
LAMPII	RAN	87
Lamp	iran 1. Data - Data	88
Lamp	iran 2. Perhitungan Fuel Cost + Air Tawar + Port Cost	91
Lamp	iran 3. Perhitungan Muatan	105
Lamp	iran 4. Perhitungan Model Optimasi	110
RIODA'	TA PENIILIS	119

DAFTAR TABEL

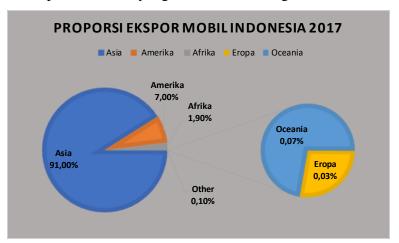
Tabel 3.1 Keterangan Variabel j	21
Tabel 3.2 Keterangan Variabel k	22
Tabel 3.3 Keterangan Variabel m	22
Tabel 3.4 Keterangan Variabel p	22
Tabel 3.5 Keterangan Variabel q	22
Tabel 3.6 Contoh Perubahan Variabel i ke Variabel m	26
Tabel 3.7 Konversi Variabel m ke Variabel k	26
Tabel 3.8 Contoh Perubahan Variabel m ke Variabel k	26
Tabel 4.1 Penjualan dan Peramalan Penjualaan Mobil di Asia tahun 2015-2021	31
Tabel 4.2 Fasilitas Dermaga PT. IKT	41
Tabel 4.3 Spesifikasi MV Polaris Leader	44
Tabel 4.4 Spesifikasi MV Tianjin Highway	45
Tabel 4.5 Spesifikasi MV Straits Challenger	46
Tabel 4.6 Spesifikasi MV Grand Vision	46
Tabel 4.7 Spesifikasi MV Canopus Leader	47
Tabel 4.8 Spesifikasi MV European Highway	48
Tabel 4.9 Spesifikasi MV Metis Leader	48
Tabel 5.1 Matriks Jarak Antar Titik	53
Tabel 5.2 Jumlah Unit Ekspor Indonesia ke Negara Tujuan Tahun 2015 – 2018 (Un	it)54
Tabel 5.3 Jumlah Unit Impor Indonesia dari Negara Asal Tahun 2015-2018 (Unit)	54
Tabel 5.4 Nilai Ekspor – Impor Kendaraan Antar Negara (Juta \$)	55
Tabel 5.5 Nilai Persentase Ekspor Impor Antar Negara	55
Tabel 5.6 Persentase Ekspor Indonesia Berdasarkan Data Jumlah Unit	56
Tabel 5.7 Persentase Setelah Dilakukan Perubahan Nilai	56
Tabel 5.8 Nilai Persentase Ekspor Impor Antar Negara Setelah Perubahan Nilai	56
Tabel 5.9 Jumlah Unit Ekspor Impor Antar Negara Tahun 2017 (Unit)	57
Tabel 5.10 Jumlah Unit Ekspor Impor Antar Negara Tahun 2025 (Unit)	58
Tabel 5.11 Proporsi Jumlah Muatan pada MV Polaris Leader Tahun 2025	58
Tabel 5.12 Biaya Sewa Kapal (€ per hari)	59
Tabel 5.13 Peramalan Biaya Sewa Kapal Tahun 2025 (Rp per hari)	59
Tabel 5.14 Daftar Peramalan Biaya Sewa Kapal pada Tahun 2025	59
Tabel 5.15 Konsumsi Bahan Bakar Mesin tiap Kapal	61

Tabel 5.16 Biaya Bahan Bakar Mesin Utama (a) dan Mesin Bantu (b) karena	Waktu
Pelayaran dan Biaya Bahan Bakar karena Waktu Pelabuhan (c)	62
Tabel 5.17 Biaya Air Tawar MV Polaris Leader (Rp / Trip)	63
Tabel 5.18 Tarif Pelabuhan di Indonesia (a) dan Malaysia (b)	63
Tabel 5.19 Waktu Bongkar dan Muat Kapal MV Polaris Leader (jam)	64
Tabel 5.20 Biaya Pelabuhan MV Polaris Leader	65
Tabel 5.21 Tarif Penanganan Muatan (Cargo Handling Cost) di Setiap Negara	65
Tabel 5.22 Jumlah Frekuensi Kapal yang Terpilih Berdasarkan Optimasi	69
Tabel 5.23 Jumlah Kapasitas Muatan yang Terbawa Oleh Kapal Optimasi	70
Tabel 5.24 Total Biaya Masing Masing Kapal dan <i>Pinalty Cost</i>	71
Tabel 5.25 Contoh Kombinasi Rute 5 Titik	71
Tabel 5.26 Rute 5 Titik yang Terpilih Berdasarkan Optimasi	72
Tabel 5.27 Pasangan Rute dan Kapal yang Terpilih	73
Tabel 5.28 Kapal dan Frekuensi yang Terpakai	73
Tabel 5.29 Total Biaya Masing – masing Kapal dan <i>Pinalty Cost</i>	74
Tabel 5.30 Pasangan Rute dan Kapal untuk Multiport 6-5 Titik	75
Tabel 5.31 Frekuensi Kapal yang Terpakai	76
Tabel 5.32 Proporsi Jumlah Muatan MV Tianjin Highway Tahun 2025 (Unit)	77
Tabel 5.33 Load Factor MV Tianjin Highway Roundtrip ke-3	78
Tabel 5.34 Total Biava Antar Model <i>Multiport</i> dan Eksisting	79

DAFTAR GAMBAR

Gambar 1.1 Proporsi Ekspor Mobil Indonesia Tahun 2017	1
Gambar 1.2 Arus Ekspor dan Impor Kendaraan di Indonesia	2
Gambar 1.3 Rute Ekspor Impor yang Ada Saat Ini	2
Gambar 2.1 Kapal <i>Pure Car Carrier</i>	7
Gambar 2.2 Pelabuhan Khusus Kendaraan	8
Gambar 2.3 Pola <i>Port to Port</i>	8
Gambar 2.4 Pola Operasi <i>Multiport Relay</i>	9
Gambar 2.5 Pola Operasi <i>Multiport Circle</i>	9
Gambar 3.1 Diagram Alir Penelitian	19
Gambar 4.1 Rute A Pengiriman Kendaraan ASEAN	36
Gambar 4.2 Rute B Pengiriman Kendaraan ASEAN	37
Gambar 4.3 Beberapa Negara Tujuan Ekspor Indonesia di ASEAN	38
Gambar 4.4 Ekspor Mobil Indonesia ke Negara Tujuan ASEAN 2015 - 2018	38
Gambar 4.5 Mobil CBU yang Diekspor oleh Indonesia	39
Gambar 4.6 Ukuran Mobil Toyota Fortuner	40
Gambar 4.7 Lokasi Indonesia Kendaraan Terminal	40
Gambar 4.8 Pelabuhan Klang Terminal Kendaraan	41
Gambar 4.9 Pelabuhan Laem Chabang Terminal Namyong (Kendaraan)	42
Gambar 4.10 Pelabuhan Bauan	43
Gambar 4.11 Mv Polaris Leader	44
Gambar 4.12 MV Tianjin Hgihway	45
Gambar 4.13 MV Straits Challenger	45
Gambar 4.14 MV Grand Vision	46
Gambar 4.15 MV Canopus Leader	47
Gambar 4.16 MV European Highway	47
Gambar 4.17 MV Metis Leader	48
Gambar 4.18 Rata - rata <i>Charter Rates</i> Kapal Tahun 2010-2015	49
Gambar 4.19 Diagram Proses Bongkar Muatan Kendaraan	50
Gambar 4.20 Diagram Proses Muat Muatan Kendaraan	51
Gambar 5.1 Model Solver untuk Optimasi rute	67
Gambar 5.2 Hasil Optimasi Rute Skenario Multiport 6 Titik	68
Gambar 5.3 Model Solver untuk Optimasi Frekuensi Armada Kapal	69

Gambar 5.4 Grafik Komposisi tiap Komponen untuk Model Multiport 6 Titik	70
Gambar 5.5 Tampilan Solver Rute untuk Multiport 5 Titik	72
Gambar 5.6 Rute 5 Titik yang Terpilih Berdasarkan Optimasi	73
Gambar 5.7 Grafik Komposisi tiap Komponen untuk Model Multiport 5 Titik	74
Gambar 5.8 Rute Multiport 6-5 Titik	75
Gambar 5.9 Grafik Komposisi tiap Komponen untuk Model Multiport 6-5 Titik	76
Gambar 5.10 Perbandingan Total Biaya Antar Model Multiport dan Eksisting	79

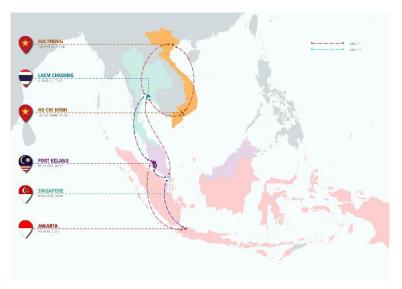

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Kegiatan ekspor impor merupakan kegiatan yang tidak dapat terpisahkan dari suatu daerah. Indonesia sendiri banyak melakukan kegiatan ekspor impor dengan negara lain, seperti Thailand, Jepang, dan Cina. Dengan melakukan hal tersebut dapat meningkatkan perekonomian dan kesejahteraan negara karena kebutuhan masyarakat bisa terpenuhi dengan adanya kegiatan impor dan perekonomian negara meningkat karena kegiatan impor.

Selain melakukan ekspor untuk pakaian jadi, komputer, teh dan lainnya, Indonesia juga melakukan kegiatan ekspor untuk muatan kendaraan. Dimana hampir di setiap benua Indonesia melakukan ekspor kendaraannya khususnya untuk mobil CBU. Pada tahun 2017, ekspor mobil Indonesia terbesar ada pada benua Asia sebesar 91% dari total pengiriman ekspor Indonesia yang mana senilai dengan 3,02 Miliar USD.


Gambar 1.1 Proporsi Ekspor Mobil Indonesia Tahun 2017

Untuk di ASEAN sendiri kegiatan ekspor kendaraan ini sudah dilakukan ke berbagai negara, seperti Thailand, Filipina, dan Vietnam. Jumlah yang dieksporpun tidak sedikit. Selama tahun 2015-2018, jumlah mobil utuh yang diekspor oleh Indonesia selalu meningkat setiap tahunnya. Rata rata peningkatan ekspornya pun mencapai 40% di setiap tahunnya. Dan pada tahun 2018, total dari ekspor Indonesia ke negara Asia Tenggara khususnya untuk Thailand, Filipina, Vietnam, Malaysia dan Singapura meningkat sebesar 166% dari tahun 2015 dengan jumlah ekspor 126.217 unit CBU.

Gambar 1.2 Arus Ekspor dan Impor Kendaraan di Indonesia

Dengan banyaknya jumlah ekspor Indonesia tersebut, pasti dibutuhkan transportasi laut untuk mengantarkan mobil yang diekspor oleh Indonesia agar sampai ke tujuan. Pengirimannya sendiri telah memiliki beberapa rute dimana rute rute tersebut langsung melewati negara tujuan ekspor Indonesia. Namun, dalam rute tersebut terdapat beberapa negara dimana dalam kapal sekali berlayar terlewati lebih dari satu kali dimana hal tersebut akan membuat biaya kapal akan menjadi lebih mahal karena *voyage cost* kapal dipengaruhi oleh biaya bahan bakar yang mana semakin jauh jarak yang ditempuh kapal akan semakin mahal dan juga biaya pelabuhan untuk negara tersebut akan bertambah.

Gambar 1.3 Rute Ekspor Impor yang Ada Saat Ini

Dengan adanya hal tersebut penulis ingin menganalisa bagaimana perkembangan ekspor Indonesia untuk negara negara di ASEAN khususnya Malaysia, Singapura,

Thailand, Filipina dan Vietnam untuk 5 tahun kedepan. Dan juga menganalisa total biaya yang diperoleh ketika rute pola operasi untuk tujuan negara ASEAN berubah menjadi multiport dimana negara yang terlewati tidak lebih dari satu kali dalam sekali berlayar untuk 5 tahun kedepan.

1.2 Rumusan Masalah

Berdasarkan uraian pada sub bab sebelumnya, perumusan masalah dalam Tugas Akhir ini dapat dirumuskan sebagai berikut :

- 1. Bagaimana kondisi eksisting ekspor otomotif Indonesia dan 5 tahun kedepan dari perkembangan ekspor otomotif di Indonesia?
- 2. Bagaimana rute dan armada kapal yang akan dipilih dalam pola operasi yang optimal di ASEAN?

1.3 Tujuan

Sesuai dengan rumusan masalah pada subbab sebelumnya, maka tujuan dalam penelitian dalam tugas akhir ini sebagai berikut:

- 1. Mengetahui kondisi eksisting ekspor otomotif Indonesia dan kondisi ekspor otomotif Indonesia untuk 5 tahun kedepan, dan.
- 2. Mengetahui rute dan armada kapal yang akan dipakai dalam pola operasi yang optimal di ASEAN.

1.4 Manfaat

Adapun manfaat yang ingin dicapai dari penelitian Tugas Akhir ini adalah sebagai berikut:

- 1. Mendapatkan kondisi tentang perkembangan industri otomotif di ASEAN.
- 2. Mendapatkan rute yang optimal untuk ekspor kendaraan dari Indonesia.
- 3. Mendapatkan armada kapal yang optimal untuk ekspor kendaraan dari Indonesia kedepannya..

1.5 Hipotesis

Dugaan awal dari Tugas Akhir ini adalah, sebagai berikut :

- 1. Rute dengan jumlah 6 titik akan lebih murah daripada tipe rute lainnya.
- 2. Jumlah kapal yang akan digunakan akan lebih sedikit daripada eksisting,
- 3. Jumlah ekspor dari Indonesia ke negara lain akan bertambah.

1.6 Batasan Masalah

Agar dalam melakukan penelitian dalam tugas akhir ini lebih fokus, dilakukan pembatasan :

- 1. Mendapatkan kondisi tentang perkembangan industri otomotif di ASEAN.
- 2. Pemilihan jumlah titik untuk rute yang akan digunakan adalah 6 titik, 5 titik dan kombinasi 6 dan 5 titik.
- 3. Muatan otomotif yang akan diekspor hanya berupa mobil dalam kondisi Completely Built-Up (CBU).
- 4. Kapal yang digunakan dalam optimasi merupakan kapal yang telah ada dan berlayar pada rute yang telah ada.

BAB 2

TINJAUAN PUSTAKA

Bab ini menjelasakan dasar teori yang sesuai dengan penelitian yang dibahas dan dikerjakan dalam tugas akhir. Terdapat gambaran terhadap penelitian atau bahasan yang telah dilakukan sebelumnya

2.1 Jenis – Jenis Produksi Kendaraan

Kendaraan merupakan alat transportasi yang digerakkan baik oleh mesin maupun makhluk hidup. Kendaraan biasanya merupakan buatan manusia seperti mobil, motor, kereta, kapal dan lainnya.

Dalam dunia otomotif terdapat terdapat tiga istilah yang digunakan untuk membedakan jenis produksi dari kendaraan yang akan dipasarkan di suatu negara. Istilah tersebut adalah:

- Completely Build Up (CBU)

tersebut.

- Completely Build Up atau sering dikenal dengan istilah CBU merupakan jenis kendaraan dimana seluruh komponennya berasal dari dari negara asal produsen. Sehingga ketika kendaraan tersebut diekspor ataupun diimpor, bentuk kendaraan tersebut sudah utuh dan siap untuk langsung dipakai. Di Indonesia sendiri memiliki pabrik dimana mereka memproduksi kendaraan dengan jenis CBU yang diekspor untuk ke luar negeri, seperti pabrik mobil yang ada di daerah Sunter dan Cikarang.
- Completely Knock Down (CKD)
 Completely Knock Down ini adalah jenis kendaraan yang didatangkan dari negara asal produsen dalam bentuk terurai dan dengan komponen yang lengkap. Kemudian kendaraan tersebut dirakit didalam negara konsumen
- Incompletely Knock Down (IKD)
 Sedangkan untuk Incompletely Knock Down hampir sama seperti CKD,
 namun ada beberapa komponen yang tidak disertakan dalam pengirimannya,
 karena dari negara konsumen sudah bisa untuk memproduksi komponen tersebut.

2.2 Kapal Car Carrier

Kapal khusus untuk pengangkutan kendaraan ini ada sejak tahun 1960-an, saat itu kapal tersebut disewa oleh Jerman untuk mengangkut kendaraan dari Amerika menuju ke Kanada. Selama tahun 1970-an, kegiatan ekspor dan impor untuk kendaraan semakin meningkat. Dan pada tahun tersebut K-Line Jepang membangun "Toyota Maru No.10" dimana merupaka kapal pertama jepang yang murni untuk mengangkut kendaraan. Saat ini, kapal tersebut adalah kapal yang berbentuk khas karena bentuknya seperti kotak. Kapal tersebut biasanya memliki *rampdoor* dibagian belakang dan samping untuk pemuatan ganda.

Kapal ini dirancang khusus untuk transportasi mobil yang efisien (*Pure Car Carrier*), atau berbagai mobil, truk, traktor dan bus. Akses muatan / pemindahan muatan dari pengangkut mobil biasa terdiri dari *rampdoor* buritan, *rampdoor* samping, *rampdoor* internal dengan penutup dan geladak yang dapat ditekuk. Kendaraan dapat dimuat langsung ke kapal dan melalui *rampdoor* internal ke berbagai geladak.

Ekspor mobil jangka Panjang pada awalnya ditangani oleh Bulk Carriers yang dilengkapi dengan platform mobil portabel atau engsel dan pemuatan / pengosongan yang dilakukan oleh *crane* atau *crane* kapal. Tetapi peningkatan besar dalam permintaan untuk pergerakan kendaraan global membuat desakan terhadap penciptaan kapal untuk pembawa mobil secara keseluruhan (PCC) yang mengeksploitasi sistem penanganan kargo ro-ro. Jenis kapal ini dikembangkan pada 1950-an oleh Wallenius Line, pelopor pengangkutan kendaraan melalui laut. RIGOLETTO dan TRAVIATA, keduanya dikirim pada tahun 1955, adalah kapal pertama yang dirancang khusus untuk mengangkut mobil dengan menambahkan deck tambahan. ANIARA adalah mobil pertama Wallenius Line yang membawa ro-ro. Disampaikan pada tahun 1963 itu menampilkan pintu busur untuk pertama kalinya. Tonase dengan kapasitas lebih dari 6000 mobil di 12 geladak muncul, bersama dengan desain mobil / truk pembawa (PCTC) murni yang menawarkan fleksibilitas angkutan barang untuk banyak jenis kendaraan: tidak hanya mobil tetapi truk, unit mobil knock-down, bus, kontainer, pertanian dan mesin konstruksi, dan kargo proyek berat. Keberhasilan jenis kapal baru ini dan pertumbuhan perdagangan yang mereka layani berutang banyak pada efisiensi instalasi akses / transfer ro-ro dalam operasi pemuatan, penyimpanan, dan pemakaian. Pakaian khas didasarkan pada ramp kuartal / pintu buritan; ramp / pintu samping dan geladak internal yang dapat digerakkan dan pemain utama dalam peralatan penanganan kargo adalah MacGREGOR dan TTS.

(sumber : marinetraffic.com)

Gambar 2.1 Kapal *Pure Car Carrier*

2.3 Pelabuhan Khusus

Pelabuhan khusus adalah pelabuhan yang penggunaannya khusus untuk kegiatan sektor perindustrian, pertambangan atau pertanian yang pembangunan dan pengoperasiannya dilakukan oleh instansi yang bersangkutan untuk bongkar-muat bahan baku dan hasil produksinya, yang tidak dapat ditampung oleh pelabuhan yang dibuka untuk umum.

Untuk pelaksanaan di pelabuhan khusus terdiri dari instansi-instansi dan unit-unit kerja yang tugasnya berkaitan dengan lalu lintas kapal dan barang sesuai dengan sifat pelabuhan khusus yang bersangkutan

Instansi dan unit kerja pelaksana di pelabuhan khusus adalah pelaksana pelabuhan khusus yang merupakan instansi pelaksana yang mengoperasikan pelabuhan khusus, unit-unit pelaksana teknis instansi pemerintah bidang perhubungan laut yaitu kesyahbandaran, navigasi dan lalu lintas angkutan laut dan instansi pemerintah lainnya. Pembangunan pelabuhan khusus dilakukan atas biaya instansi yang bersangkutan.

2.3.1 Pelabuhan Khusus Kendaraan

Pelabuhan khusus kendaraan adalah pelabuhan yang dikhususkan untuk melakukan kegiatan bongkar muat kendaraan. Pelabuhan khusus kendaraan ini tidak memiliki alat bongkar muat seperti di pelabuhan umum lainnya, contohnya *container crane* atau *conveyor belt*. Alat bongkar muat di pelabuhan disesuaikan dengan komoditi atau kapal yan g akan dilayani oleh pelabuhan tersebut. Dikarenakan pelabuhan khusus kendaraan ini melayani kapal Ro-ro atau *Pure Car Carrier* (PCC) yang dimana komoditi muatannya adalah kendaraan, maka alat bongkar muat kapal tersebut adalah *rampdoor*.

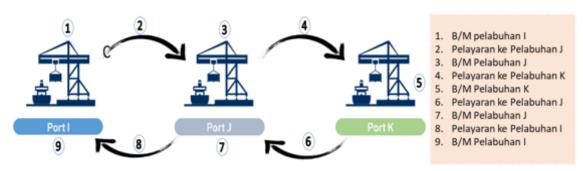
Gambar 2.2 Pelabuhan Khusus Kendaraan

2.4 Jenis Pola Operasi

Rute adalah sekumpulan node dan atau busur yang harus dilayani oleh suatu armada kendaraan. Tidak ada batasan kapan dan bagaimana urutan pelayanan entiti-entiti yang bersangkutan. Permasalahannya adalah untuk membentuk suatu biaya yang rendah, sekumpulan rute yang memungkinkan untuk masing-masing kendaraan. Sebuah rute adalah urutan dari lokasi mana kendaraan harus mengunjunginya. Terdapat dua pola yang digunakan dalam pengerjaan Tugas Akhir ini yaitu pola *port to port* dan pola *multiport*

2.4.1 Pola Port to Port

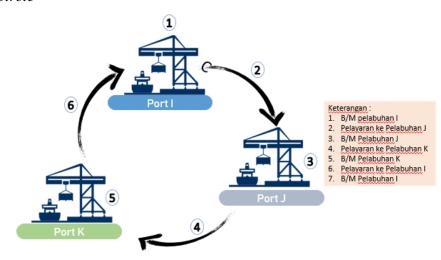
Pola *port to port* atau juga sering disebut dengan *direct call* adalah pelayanan langsung yang menghubungkan 2 (dua) pelabuhan dengan menggunakan 1 (satu) kapal. Kapal dari pelabuhan asal i dengan membawa sejumlah muatan menuju ke pelabuhan j. Setibanya di pelabuhan tujuan j, kapal melakukan kegiatan Bongkar dan Muat, dan kemudian kembali ke pelabuhan asal i. Pola *port to port* dapat diilustrasikan pada gambar berikut:



Gambar 2.3 Pola Port to Port

2.4.2 Pola Multiport

Pola multiport dapat diartikan sebagai layanan kapal yang menghubungkan 3 (tiga) pelabuhan atau lebih. Tipe *multiport* ada 2 (dua) yaitu *relay* dan *circle*.


1) Relay

Gambar 2.4 Pola Operasi Multiport Relay

Model *multiport* dengan tipe *relay* secara umum mirip dengan model *port to port* namun jumlah pelabuhan yang dikunjungi lebih dari 2 (dua). Kapal dari pelabuhan asal i dengan membawa sejumlah muatan menuju ke pelabuhan j dan pelabuhan k. Setibanya di pelabuhan j, kapal melakukan kegiatan Bongkar Muat (B/M). Setelah itu, kapal menuju pelabuhan k. Di sini kapal melakukan kegiatan Bongkar Muat (B/M) dan selanjutnya kapal kembali berlayar menuju pelabuhan j dan i dengan secara berurutan melalui proses dan menggunakan kapal yang sama.

2) Circle

Gambar 2.5 Pola Operasi Multiport Circle

Seperti model relay, model *multipor*t tipe *circle* juga mengunjungi sejumlah pelabuhan. Tetapi setelah tiba di pelabuhan terakhir (pelabuhan k), kapal langsung kembali ke pelabuhan asal (pelabuhan i).

2.5 Biaya Transportasi Laut

Terdapat teori biaya dalam ilmu transportasi laut. Teori biaya transportasi laut digunakan untuk menghitung besarnya biaya-biaya yang timbul akibat pengoperasian kapal desalinasi air laut. Pengoperasian kapal serta bangunan apung laut lainnya membutuhkan biaya yang biasa disebut dengan biaya berlayar kapal (*shipping cost*). (Wergeland W., 1997)

Biaya untuk menjalankan perusahaan pelayaran bergantung pada kombinasi tiga faktor. Pertama, kapal menetapkan kerangka biaya untuk melalui konsumsi bahan bakarnya, jumlah awak yang diperlukan untuk mengoperasikannya dan kondisi dari kapal untuk menentukan persyaratan perbaikan dan pemeliharaan. Kedua, inflasi terhadap biaya barang terutama biaya bahan bakar, perbekalan, gaji awak kapal, biaya perbaikan kapal, dan suku bunga. Ketiga, biaya bergantung pada bagaimana efisiensi pemilik dalam memanajemen perusahaan termasuk, biaya administratif dan efisiensi operasional. (*Maritime Economics*)

Jadi bisa dibilang, biaya tersebut meliputi biaya modal (*capital cost*), biaya operasional (*operational cost*), biaya pelayaran (*voyage cost*) dan biaya bongkar muat (*cargo handling cost*). Biaya-biaya ini perlu diklasifikasikan dan dihitung agar dapat memperkirakan tingkat kebutuhan pembiayaan kapal desalinasi air laut untuk kurun waktu tertentu (umur ekonomis kapal tersebut). Sehingga, total biaya dapat dirumuskan:

TC = CC + OC + VC + CHC Rumus **2.1** Keterangan:

TC : Total Cost

CC : Capital Cost

OC : Operational Cost

VC : Voyage Cost

CHC: Cargo Handling Cost

Beberapa kasus perencanaan transportasi menggunakan kapal sewa (*charter ship*), biaya modal (*capital cost*) dan biaya operasional (*operational cost*) diwakili oleh biaya sewa (*charter hire*). Sehingga, total biaya menjadi:

TC = TCH + VC + CHC......Rumus 2.2 Keterangan:

TC: Total Cost

TCH: Time Charter Hire

VC : Voyage Cost

CHC: Cargo Handling Cost

2.5.1 Biaya Modal (Capital Cost)

Capital cost adalah biaya yang dikeluarkan perusahaan pelayaran untuk pengadaan armada. Pengadaan kapal dapat dilakukan dengan beberapa cara, di antaranya adalah:

A. Bangunan baru

Pengadaan jenis ini adalah dengan membangun kapal baru yang dimulai dari nol. Biaya yang dikeluarkan akan sangat besar, namun kapal yang didapatkan juga baru. Karena membangun dari awal, maka dibutuhkan waktu yang lama untuk mengadakan. Capital cost untuk kapal yang dibeli atau dibangun menggunakan harga kapal. Biaya modal disertakan dalam kalkulasi biaya untuk menutup pembayaran bunga pinjaman dan pengembalian modal tergantung bagaimana pengadaan kapal tersebut. Pengembalian nilai capital ini direfleksikan sebagai pembayaran tahunan.

B. Kapal bekas

Pengadaan kapal bekas merupakan cara yang lebih cepat dilakukan untuk mengadakan armada. Pengadaan ini dilakukan dengan membeli kapal dari pihak lain yang sebelumnya sudah pernah dilakukan. Biaya yang dikeluarkan lebih sedikit, namun umur ekonomis kapal sudah berkurang dan sudah harus melakukan perawatan.

C. Sewa Kapal *Charter*

Sewa atau yang biasa disebut dengan charter merupakan salah satu cara dalam pengadaan armada kapal. Sewa kapal dilakukan dengan melakukan perjanjian sewa kapal (*charter party*) dengan pemilik kapal untuk menggunakan kapalnya dengan membayar biaya sewa sesuai dengan perjanjian.

2.5.2 Biaya Operasional (*Operational Costs*)

Biaya operasional adalah biaya-biaya tetap yang dikeluarkan sehari hari untuk membuat kapal selalu dalam keadaan siap berlaya. Faktor yang termasuk dalam biaya operasional ini adalah gaji anak buah kapal (ABK), perawatan dan perbaikan kapal, bahan makanan, minyak pelumas, asuransi dan administrasi. Rumus untuk biaya operasional adalah sebagai berikut:

OC : Operational Cost

MN: Maintenence

AD : Administration Cost

A. Maintenance and Repair Cost

Maintenance and repair cost merupakan biaya perawatan dan perbaikan yang mencakup semua kebutuhan untuk mempertahankan kondisi kapal agar sesuai dengan standart kebijakan perusahaan maupun persyaratan badan klasifikasi. Biaya ini terdiri dari 3 (tiga) kategori, yaitu:

• Survei klasifikasi

Kapal harus menjalani survei reguler dry docking tiap dua tahun dan special survey tiap empat tahun untuk mempertahankan kelas untuk tujuan asuransi.

Perawatan rutin

Perawatan rutin meliputi perawatan mesin induk dan mesin bantu, cat, bangunan atas dan pengedokan untuk memelihara lambung dari pertumbuhan biota laut yang bisa mengurangi efisiensi operasi kapal. Biaya perawatan ini cenderung bertambah seiring dengan bertambahnya umur kapal.

Perbaikan

Biaya perbaikan muncul karena adanya kerusakan kapal secara tiba-tiba dan harus segera diperbaiki.

B. Administration Cost

Biaya administrasi diantaranya adalah biaya pengurusan surat-surat kapal, biaya sertifikat dan pengurusannya, biaya pengurusan ijin kepelabuhan maupun fungsi administratif lainnya. Biaya ini juga disebut biaya overhead yang besarnya tergantung dari besar kecilnya perusahaan dan jumlah armada yang dimiliki.

2.5.3 Biaya Pelayaran (Voyage Cost)

Biaya pelayaran adalah biaya-biaya variabel yang dikeluarkan kapal untuk kebutuhan selama pelayaran. Komponen biaya pelayaran adalah bahan bakar untuk mesin induk dan mesin bantu, biaya pelabuhan, biaya pandu dan tunda. Rumus untuk biaya pelayaran adalah:

VC = FC + PC......Rumus 2.4 Keterangan:

VC : Voyage Cost

PC : Port Cost

FC: Fuel Cost

A. Port Cost

Pada saat kapal dipelabuhan, biaya-biaya yang dikeluarkan meliputi port dues dan

service charges. Port dues adalah biaya yang dikenakan atas penggunaan fasilitas

pelabuhan seperti dermaga, tambatan, kolam pelabuhan, dan infrastruktur lainnya

yang besarnya tergantung volume dan berat muatan, GRT dan NRT kapal. Service

charge meliputi jasa yang dipakai kapal selama dipelabuhan, yaitu jasa pandu dan

tunda, jasa labuh, dan jasa tambat.

Untuk menggunakan jasa bongkar muat, perusahaan pelayaran harus mengeluarkan

biaya bongkar muat agar muatannya bisa dipindahkan dari darat ke kapal dan

sebaliknya. Kegiatan yang dilakukan dalam bongkar muat terdiri dari stevedoring,

cargodoring, receiving/delivery.

Stevedoring adalah kegiatan membongkar barang dari kapal ke dermaga, atau

sebaliknya memuat dari dermaga ke kapal. Untuk mempercepat kegiatan

stevedoring umumnya digunakan alat bantu yaitu crane kapal (ship gear), mobile

crane, atau Gantry Crane. Cargodoring adalah kegiatan memindahkan barang dari

dermaga ke gudang/ lapangan penumpukan masih dalam areal pelabuhan.

Receiving/delivery adalah Kegiatan menerima barang dari luar ke dalam pelabuhan

(receiving) atau sebaliknya (Delivery).

B. Fuel Cost

Konsumsi bahan bakar kapal tergantung dari beberapa variabel seperti ukuran,

bentuk dan kondisi lambung, pelayaran bermuatan atau ballast, kecepatan, cuaca,

jenis dan kapasitas mesin induk dan motor bantu, jenis dan kualitas bahan bakar.

Biaya bahan bakar tergantung pada konsumsi harian bahan bakar selama berlayar

di laut dan di pelabuhan dan harga bahan bakar. Terdapat tiga jenis bahan bakar

yang dipakai, yaitu (HSD), (MDO), dan (MFO). Menurut Parson (2003), konsumsi

bahan bakar dihitung dengan menggunakan rumus pendekatan, yaitu:

WFO = SFR x MCR x Range x MarginRumus 2.5

Speed

Keterangan:

WFO: konsumsi bahan bakar/jam

SFR: Specific Fuel Rate

MCR: Maximum Continuous Rating of Main Engine

13

2.6 Tipe Operasional Kapal

Perusahaan jasa angkutan laut mengoperasikan kapal miliknya sendiri dan juga kapal yang disewa/*charter*. Ada dua sistem operasional kapal yaitu *tramp service* dan *liner service*.

2.6.1 Tramp (Irregular) Service

Merupakan bentuk operasi pelayanan yang tidak terjadwal yang pada awalnya disebabkan oleh beberapa faktor, antara lain :

- 1. Rute, karena rute yang dituju tidak dapat dilalui semua kapal.
- 2. Komersial, karena transaksi muatan yang dilakukan tidak menentu.

Adanya kemajuan teknologi, maka faktor alam tidak lagi menjadi hambatan. Namun faktor komersial lah yang menyebabkan pola operasional kapal ini tetap dibutuhkan. Banyaknya industri yang membutuhkan pengiriman barang dengan jarak yang jauh dan jumlah besar, serta tidak adanya perusahaan jasa angkutan laut yang melayani rute tersebut, membuat pola operasional ini menjadi pilihan. Volume dan keadaan barang yang akan dikapalkan menentukan jenis kontrak pengapalan, seperti, voyage charter dan time charter. Ciri pelayanan tramper, antara lain:

- 1. Frekuensi layanan tidak tetap
- 2. Barang yang diangkut dalam jumlah besar dan homogen
- 3. Ukuran kapal relatif besar dengan tipe khusus
- 4. Jarak angkut relatif jauh.

2.6.2 Liner Service

Angkutan laut dengan pola operasional *liner*, memiliki karakteristik yang berbeda dengan tramper. Pada pola ini, kapal memiliki rute yang tetap dengan melayani pelabuhan pelabuhan yang telah ditentukan dan terdapat jadwal yang tetap dan telah ditentukan mengenai perkiraan waktu keberangkatan/(ETD) dan perkiraan waktu tiba/(ETA). Pada pola angkutan ini, berapapun load factor-nya kapal akan berangkat pada saat waktunya untuk berangkat. Pola angkutan liner menawarkan ruang muat bagi siapa saja yang hendak mengirimkan barangnya. Ketepatan dalam pemenuhan jadwal yang telah ditentukan merupakan bagian penting dalam pola ini, karena kelalaian dalam hal ini akan mengakibatkan tingkat kepercayaan konsumen kepada perusahaan menurun dengan cepat. Sekarang ini perusahaan pelayaran dengan pola angkutan liner yang modern telah melakukan inovasi dengan melayani muatan secara multi moda. Selain itu perusahaan

juga terus berusaha untuk menekan biaya dengan melakukan efisiensi dan memperpendek lama waktu transit di pelabuhan, dengan demikian akan menstimulasi perkembangan perdagangan dan akhirnya akan menaikkan pangsa pasarnya. (Perdana, 2016) .

2.7 Teori Optimasi

Proses optimasi merupakan penerapan metode-metode ilmiah dalam masalah yang komplek dan suatu pengolahan sistem managen yang besar, baik menyangkut manusia, mesin, bahan dan uang dalam indutri, bisnis, pemerintahan dan pertahanan. Pendekatan ini menggabungkan dan menerapkan metode ilmiah yang sangat komplek dalam suatu pengolahan mangemen dengan menggunakan faktor-faktor produksi yang ada dan digunakan secara efisien dan efektif untuk membantu pengambilan keputusan dalam kebijakan perusahaan. (Taha, Operation Research, 1992)

Proses optimasi berkaitan dengan pengambilan keputusan secara ilmiah dan bagaimana membuat suatu model yang baik dalam merancang dan menjalankan sistem yang melalui alokasi sumber daya yang terbatas. Inti dari beberapa kesimpulan di atas adalah bagaimana proses pengambilan keputusan yang optimal dengan menggunakan alat analisis yang ada dan adanya keterbatasan sumber daya.

Beberapa metode dalam proses optimasi antara lain:

- Linear Programming
- Analisis Dualitas dan Post Optimal (Duality and Post-Optimal Analysis)
- Metode Transportasi (*Transportation Method*)
- Metode Jaringan Kerja (*Network Method*)
- Metode Simpleks (Simplex Method)

Dalam melakukan suatu proses optimasi, terdapat beberapa hal yang harus diperhatikan antara lan; variabel parameter, konstanta, batasan, dan fungsi objektif. Berbagai hal di atas nantinya berfungsi sebagai acuan dalam melakukan proses optimasi. Adapun penjelasannya adalah sebagai berikut:

- Variabel merupakan harga-harga yang akan dicari dalam proses optimasi.
- Parameter adalah harga yang tidak berubah besarnya selama satu kali proses optimasi karena adanya syarat-syarat tertentu. Atau dapat juga suatu variabel yang diberi harga. Data tersebut dapat diubah setelah satu kali proses untuk menyelidiki kemungkinan terdapatnya hasil yang lebih baik.

- Batasan adalah harga-harga atau nilai-nilai batas yang telah ditentukan baik oleh perencana, pemesan, peraturan, atau syarat-syarat yang lain.
- Fungsi objektif merupakan hubungan dari keseluruhan atau beberapa variabel serta parameter yang harganya akan dioptimalkan. Fungsi tersebut dapat berbentuk linear, non linear, atau gabungan dari keduanya dengan fungsi yang lain.

Secara umum, fungsi atau persamaan dari suatu optimasi dapat dituliskan seperti berikut:

$$Max \ atau \ Min \ (Z) = X + Y \rightarrow Fungsi \ Objektif$$

Subject to:

$$x_1 + x_2 \le a \tag{1}$$

$$x_2 \leq b \tag{2}$$

Linear Programming adalah suatu teknis matematika yang dirancang untuk membantu manajer dalam merencanakan dan membuat keputusan dalam mengalokasikan sumber daya yang terbatas untuk mencapai tujuan perusahaan. Tujuan perusahaan pada umumnya adalah memaksimalisasi keuntungan, namun karena terbatasnya sumber daya, maka dapat juga perusahaan meminimalkan biaya. Linear Programming memiliki empat ciri khusus, yaitu:

- Penyelesaian masalah mengarah pada pencapaian tujuan maksimisasi atau minimisasi.
- 2. Kendala yang ada membatasi tingkat pencapaian tujuan.
- 3. Ada beberapa alternatif penyelesaian.
- 4. Hubungan matematis bersifat linear.

Secara teknis, ada lima syarat tambahan dari permasalahan *linear programming* yang harus diperhatikan yang merupakan asumsi dasar, yaitu:

- 1. *Certainty* (kepastian). Maksudnya adalah fungsi tujuan dan fungsi kendala sudah diketahui dengan pasti dan tidak berubah selama periode Analisis.
- 2. *Proportionality* (proporsionalitas). Yaitu adanya proporsionalitas dalam fungsi tujuan dan fungsi kendala.
- 3. *Additivity* (penambahan). Artinya aktivitas total sama dengan penjumlahan aktivitas individu.
- 4. *Divisibility* (bisa dibagi-bagi). Maksudnya solusi tidak harus merupakan bilangan integer (bilangan bulat), tetapi bisa juga berupa pecahan.

5. *Non-negative variable* (variabel tidak negatif). Artinya bahwa semua nilai jawaban atau variabel tidak negatif.

Dalam menyelesaikan permasalahan dengan menggunakan Linear Programming, ada dua pendekatan yang bisa digunakan, yaitu metode grafik dan metode simpleks. Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana variabel keputusan sama dengan dua. Sedangkan metode simpleks bisa digunakan untuk menyelesaikan permasalahan dimana variabel keputusan dua atau lebih.

2.7 Teori Travelling Salesman Problem

Travelling Salesman Problem (TSP) dikemukakan pada tahun 1800 oleh matematikawan Irlandia, William Rowan Hamilton dan matematikawan Inggris, Thomas Penyngton. TSP dikenal sebagai suatu permasalahan optimasi yang bersifat klasik dimana tidak ada penyelesaian yang paling optimal selain mencoba seluruh kemungkinan penyelesaian yang ada. Permasalahan ini melibatkan seorang salesman yang harus melakukan kunjungan sekali pada semua kota dalam sebuah rute sebelum salesman kembali ke titik awal (depot), sehingga perjalanannya dikatakan sempurna (Era Madonna dkk, 2013).

Agus dan Wayan (2010) dalam jurnalnya menjelaskan bahwa penentuan rute perjalanan merupakan salah satu permasalahan yang sering dihadapi dalam kehidupan sehari-hari. Salah satu contoh yaitu rute manakah yang memiliki biaya paling murah untuk dilalui seorang salesman ketika harus mengunjungi sejumlah titik. Setiap titik tersebut harus dikunjungi tepat satu kali kemudian kembali lagi ke titik semula. Permasalahan tersebut dikenal sebagai Travelling Salesman Problem (TSP). Secara matematis, TSP dapat diformulasikan sebagai berikut:

Didefinisikan:

```
x_{ij} = \{ egin{aligned} 1, & \text{jika ada perjalanan } salesman \ \text{dari titik i menuju titik j} \\ 0, & \text{jika tidak ada perjalanan } salesman \ \text{dari titik i menuju titik j} \end{aligned}
```

 c_{ij} menyatakan jarak dari titik i menuju ke titik j

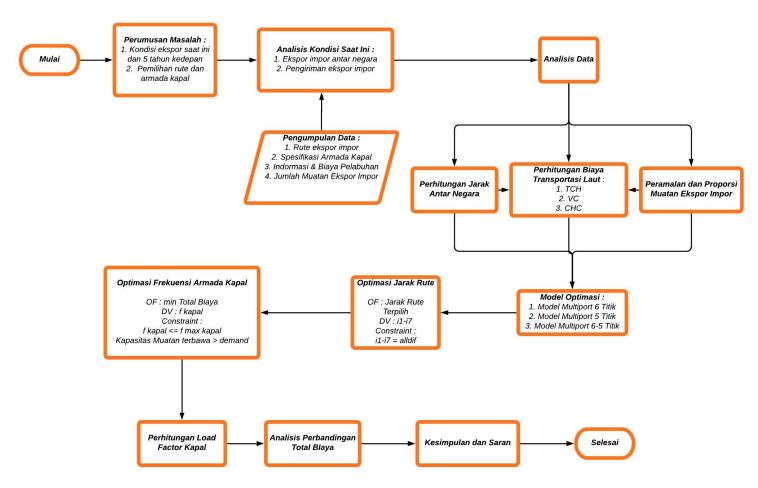
Fungsi Tujuan :
$$z = \min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

Dimana:

$$i = 1, 2, 3, ..., n$$

$$j = 1, 2, 3, ..., n$$

2.8 Penelitian Terkait


NAMA	JUDUL	HASIL
Iwan Perdana	Analisis	Tugas Akhir ini bertujuan mencari rute
Putra	Perbandingan	optimum pada angkutan peti kemas dengan
	Multiport Dan	biaya transport minimum dan semua permintaan
	Hub-Spoke pada	dapat terpenuhi menggunakan metode optimasi.
	Angkutan Peti	Terdapat lima pelabuhan yaitu Surabaya,
	Kemas Domestik	Makassar, Luwuk, Gorontalo, dan Ternate
		dengan lima alternatif alat angkut dengan
		variasi kapasitas yang berbeda. Persamaan
		dengan penelitian ini adalah penggunaan
		konsep Multiport.
Setya Adi	Analisis	Penelitian ini bertujuan untuk mencari moda
Wicaksana	Perbandingan	pengiriman kendaraan seperti apa yang lebih
	Antar Moda	optimum dari Jakarta — Surabaya. Moda yang
	Pengiriman	dibandingkan adalah kapal Roro, kapal peti
	Kendaraan : Studi	kemas dan kereta. Persamaan dengan penelitian
	Kasus Jakarta –	adalah pengiriman kendaaran dengan moda
	Surabaya	kapal Roro.
Bianca Prima	Analisis	Tugas akhir ini bertujuan untuk mengetahui
Adhitya	Perencanaan Pola	pola operasi tol laut yang optimum dengan
	Operasi Kapal Tol	melihat pada biaya pelayaran dan semua
	Laut : Studi Kasus	pemintaan terpenuhi dengan menggunakan
	Papua dan Maluku	metode optimasi. Persamaan dengan penelitian
		ini adalah penggunan konsep Multiport.

BAB 3 METODOLOGI PENELITIAN

Secara umum, metodologi dalam penelitian ini dapat digambarkan dalam diagram alir berikut ini.

3.1 Diagram Alir

Untuk memudahkan dalam proses pengerjaan tugas akhir, maka diperlukan diagram alir untuk mengilustrasikan proses kerja yang akan dilakukan.

Gambar 3.1 Diagram Alir Penelitian

3.2 Tahapan Pengerjaan

Metodologi penelitian adalah langkah-langkah dalam mengerjakan penelitian, salah satunya pada pengerjaan Tugas Akhir ini. Selanjutnya akan dijelaskan alur pengerjaan sesuai dengan diagram alir pengerjaan pada..... Secara umum tahapantahapan pengerjaan tugas akhir ini dibagi menjadi beberapa bagian anatara lain:

1. Tahap Identifikasi Masalah

Pada tahap ini dilakukan identifikasi mengenai permasalahan yang diangkat dalam tugas akhir ini. Permasalahan yang diangkat adalah mengenai pemilihan pola operasi yang paling optimal pada pengiriman ekspor kendaraan, dimana pola operasi tersebut menjadi salah satu faktor utama dalam menentukan biaya transportasi laut dan biaya satuan unit.

2. Tahapan Pengumpulan Data

Pada tahap ini dilakukan pengumpulan data yang diperlukan dalam proses pengerjaan tugas akhir, metode pengumpulan data yang digunakan adalah metode pengumpulan data secara langsung (primer) dan metode pengumpulan data secara tidak langsung (sekunder). Pengumpulan data ini dilakukan dengan mengambil data terkait dengan permasalahan dalam tugas akhir ini ke asosiasi kendaraan bermotor Indonesia (GAIKINDO) dan Indonesia Kendaraan Terminal.

3. Tahapan Pengelolaan Data

Pada tahap ini data yang telah dikumpulkan dari hasil studi lapangan dan juga hasil data sekunder yang diolah lebih lanjut sehingga dapat digunakan sebagai perhitungan untuk pengerjaan tugas akhir. Pengolahan data akan dilakukan dengan perhitungan dari biaya transportasi laut yang terdiri dari biaya sewa kapal, biaya pelabuhan, biaya bahan bakar, biaya air tawar, dan biaya penanganan muatan, kemudian perhitungan jarak antar titik, waktu pelayaran dan waktu pelabuhan serta jumlah muatan yang dibawa oleh kapal antar negara.

4. Tahap Pembuatan Model Optimisasi

Dalam penelitian ini dilakukan penentuan jarak rute dan jumlah frekuensi kapal dalam berlayar selama sau tahun dimana pola operasi yang dilakukan adalah pola operasi *multiport circle*. Pembuatan model tersebut dilakukan berdasarkan pengamatan peneliti ketika berada pelabuhann khusus kendaraan di Indonesia. Pada tahap pembuatan model optimasi ini menggunakan metode optimasi untuk jumlah frekuensi

kapal dan jarak rute. Penentuan jumlah frekuensi kapal ini terpilih dengan kriteria total biaya minimum.

5. Analisis dan Perbandingan

Pada tahap ini dilakukan perbandingan antara pola operasi *multiport* 6 titik, 5 titik dan kombinasi 6-5 titik. Perbandingan ini dilakukan dengan melihat total biaya masing masing pola operasi..

6. Kesimpulan dan Saran

Pada tahapan terakhir ini dilakukan penarikan kesimpulan dari hasil penelitian yang akan menjawab semua permasalahan pada penelitian ini dan juga penulisan saran dari pihak-pihak terkait sebagai suatu pertimbangan.

3.3 Model Matematis

Model matematis adalah suatu cara sederhana untuk menerjemahkan suatu masalah ke dalam bahasa matematiska dengan menggunakan persamaan, pertidaksamaan atau fungsi.

Dalam merencanakan pengiriman muatan. Dibutuhkan perencanaan terhadap moda angkutan dan rute yang akan dipilih dalam pola operasi pengiriman ekspor mobil, diharapkan rute dan armada yang terpilih sesuai dengan kriteria optimasi yang diharapkan yaitu berdasarkan biaya transportasi minimum. Dalam kasus pada penelitian ini, tujuan dari model ini adalah meminimalkan biaya pengiriman dengan pemilihan kapal berdasarkan jumlah frekuensi kapal dalam berlayar dimana tidak boleh melebihi maksimal jumlah dalam satu tahun tersebut dan juga pemilihan rute yang akan terlewati, dimana dalam satu kali kapal berlayar tidak melewati titik yang sama lebih dari satu kali sehingga waktu dalam satu kali berlayar menjadi lebih singkat dan memperbanyak jumlah frekuensi kapal berlayar dalam satu tahun.

Sebelum masuk ke model matematis, berikut merupakan variabel – variabel yang perlu diketahui dalam model matematis :

Tabel 3.1 Keterangan Variabel j

Variabel	Keterangan
j-1	Polaris Leader
j-2	Metis Leader
j-3	Grand Vision
j-4	European Highway
j-5	Straits Challenger
j-6	Canopus Leader
j-7	Tianjin Highway

Tabel 3.2 Keterangan Variabel k

Variabel	Keterangan
k-1	Jakarta
k-2	Singapura
k-3	Laem Chabang
k-4	Bauan
k-5	Port Klang
k-6	Ho Chi Minh
k-7	Hai Phong

Tabel 3.3 Keterangan Variabel m

Variabel	Keterangan
m-1	Indonesia
m-2	Singapura
m-3	Thailand
m-4	Filipina
m-5	Malaysia
m-6	Vietnam

Tabel 3.4 Keterangan Variabel p

Variabel	Keterangan
p-1	Negara asal terpilih ke 1
p-2	Negara asal terpilih ke 2
p-3	Negara asal terpilih ke 3
p-4	Negara asal terpilih ke 4
p-5	Negara asal terpilih ke 5
p-6	Negara asal terpilih ke 6

Tabel 3.5 Keterangan Variabel q

Variabel	Keterangan
q-1	Negara tujuan terpilih ke 1
q-2	Negara tujuan terpilih ke 2
q-3	Negara tujuan terpilih ke 3
q-4	Negara tujuan terpilih ke 4
q-5	Negara tujuan terpilih ke 5
g-6	Negara tujuan terpilih ke 6

Berikut merupakan model matematis yang digunakan dalam penelitian ini :

3.3.1 Perhitungan Biaya Bahan Bakar Mesin (BBM)

Dalam penelitian ini ada dua perhitungan biaya BBM, yaitu biaya BBM karena pengaruh waktu perjalanan dan biaya BBM karena pengaruh waktu pelabuhan. Tiap perhitungan biaya tersebut ada 2 jenis biaya yaitu biaya BBM mesin utama dan biaya BBM mesin pembantu. Berikut merupakan model matematis untuk biaya BBM:

1. Biaya BBM karena Waktu Perjalanan :

$$A_{j.k.l} = \frac{P_{ME,j} \times SFOC_{ME,j} \times ST_{k-l} \times pm}{1000 \times \rho m}$$
 Rumus 3.1

Dimana:

$$j = \{1,2,3,4,5,6,7\}$$

$$k = \{1,2,3,4,5,6,7\}$$

$$l = k$$

Keterangan:

 $A_{j,k,l}$ = Total Biaya BBM mesin utama kapal j karena Waktu Perjalanan dari kota awal k ke kota akhir l(Rp)

ME = Mesin Utama j = Kapal ke-j

P = Daya Mesin (kW)

SFOC = Konsumsi bahan bakar (g/kWh)

 ρm = Massa Jenis MFO (g/cm³)

 ST_{i-k} = Waktu Perjalanan dari k ke l (h)

k = Kota Awal l = Kota Akhir

l

= k

pm= Harga MFO (Rp/Liter)

Untuk perhitungan biaya BBM mesin bantu memiliki model sama seperti perhitungan mesin utama dengan mengganti daya mesin dan konsumsi bahan bakar mesin utama dengan milik mesin bantu, serta mengganti massa jenis dan harga MFO menjadi massa jenis HSD milik mesin bantu. Sehingga model matematisnya akan menjadi seperti berikut :

Keterangan:

 $B_{Sj,k,l}$ = Total Biaya BBM mesin bantu kapal j karena Waktu Perjalanan dari kota awal k ke kota akhir l(Rp)

AE = Mesin Bantu

 ρH = Massa Jenis HSD (g/cm³)

pH= Harga HSD (Rp/Liter)

Maka untuk total biaya BBM kapal j karena waktu perjalanan dari kota awal k ke kota akhir l menjadi :

$$FS_{i.k.l} = A_{i.k.l} + B_{i.k.l}$$

2. Biaya BBM karena Waktu Pelabuhan:

$$PTb_j = JM_{j.m.o.}/Q_o$$

$$PTm_{j} = JM_{j.m.o}/Q_{m}$$

$$FP_{m.o} = \frac{P_{AE.n} \times SFOC_{AE.j} \times (PT_{B.n} + PT_{M.o} + TT) \times p_{HSD}}{1000 \times \rho_{HSD}}$$
Rumus 3.3

Dimana:

 $j = \{1,2,3,4,5,6,7\}$

 $m = \{1,2,3,4,5,6\}$

o = m

Keterangan:

FP = Biaya BBM karena waktu pelabuhan (Rp)

PTb / PTm= Waktu bongkar / muat (h)

 $JM_{j.m.o}$ = Jumlah muatan dari negara m ke negara o dengan kapal ke-j

(Unit)

m =Negara asal

o = Negara tujuan

Q = Produktivitas Pelabuhan (Unit/h)

TT = Total waktu AT + IT (h)

Dalam perhitungan biaya BBM karena waktu pelabuhan, mesin yang bekerja hanya pada mesin bantu, sehingga dalam perhitungan hanya biaya bbm mesin bantu yang dihitung.

3.3.2 Perhitungan Biaya Air Tawar

Untuk menghitung biaya air tawar, menggunakan model matematis sebagai berikut :

```
AT = \frac{KAT \times ST_{k-l} \times JAK_{j} \times p_{AT}}{24 \times 1000}
Dimana :
j = \{1,2,3,4,5,6,7\}
k = \{1,2,3,4,5,6,7\}
l = k

Keterangan :
AT = \text{Biaya Air Tawar}
KAT = \text{Konsumsi air tawar (liter/orang.hari)}
```

3.3.3 Peramalan Nilai

 JAK_{i}

 p_{AT}

Dalam penetian terdapat perhitungan permalanan dimana hal tersebut dibutuhkan untuk model optimasi nanti. Untuk peramalan tersebut menggunakan rumus sebagai berikut :

= Jumlah Awak Kapal j (orang)

= Harga Air Tawar (Rp/ton)

x = Nilai variabel x berdasarkan nilai variabel y yang dicari
 a = Nilai perpotongan dari data

b = Nilai slope dari data

 y_r = Rata - rata jumlah unit / nilai ekspor impor yang diketahui

 x_r = Rata -rata tahun yang diketahui

 y_n = Jumlah unit / nilai ekspor impor ke-n

 x_n = Tahun ke - n

3.3.4 Perhitungan dalam Model Optimasi

Didalam penelitian ini terdapat 2 model optimasi yang dipakai, yang pertama adalah model untuk mencmukan rute yang terpendek dan model untuk mencari total biaya minimum dengan jumlah frekuensi dari rute yang telah didapat dari model sebelumnya. Dalam model kali ini, terdapat beberapa hal yang **perlu diperhatikan**. Hal tersebut adalah :

1. Variabel p merupakan variabel dimana urutan negara yang akan terpilih sebagai rute dalam model. Sehingga ketika p1 terpilih sebagai negara Indonesia, maka p1 akan terisi "Indonesia" dimana "Indonesia" merupakan anggota variabel dari m. Contoh:

Tabel 3.6 Contoh Perubahan Variabel i ke Variabel m

Variabel i	p-1	p-2	p-3
Nilai	Indonesia	Vietnam	Filipina
Variabel <i>m</i>	m-1	m-6	m-4

2. Dalam model terdapat konversi variabel dimana ketika dalam perhitungan tersebut dibutuhkan variabel lain, seperti ketika perhitungan FC_s dimana variabel yang dibutuhkan merupakan variabel k. Sehingga sebelumnya yang diketahui bahwa variabel yang diketahui adalah variabel p sama dengan variabel m, maka konversi tersebut akan menjadi seperti berikut :

Tabel 3.7 Konversi Variabel m ke Variabel k

Variabel Awal	Keterangan	Hasil Konversi Variabel	Keterangan
m-1	Indonesia	k-1	Jakarta
m-2	Singapura	k-2	Singapura
m-3	Thailand	k-3	Laem Chabang
m-4	Filipina	k-4	Bauan
m-5	Malaysia	k-5	Port Klang
m-6	Vietnam	k-6	Ho Chi Minh
111-0	Vietilalli	k-7	Hai Phong

Arti dari tabel tersebut adalah ketika terdapat variabel m1, Indonesia, maka akan berubah menjadi variabel k1, Jakarta. Disini terdapat perubahan variabel khusus terhadap m6, Vietnam, dimana variabel tersebut akan dikonversikan menjadi 2 variabel yaitu k6, Ho Chi Minh, dan k7, Hai Phong. Contoh berdasarkan Tabel 3.6:

Tabel 3.8 Contoh Perubahan Variabel m ke Variabel k

Variabel i	p-1	p-2		p-3
Nilai	Indonesia	Vietnam		Filipina
Variabel m	m-1	m-6		m-4
Variabel k	k-1	k-6 k-7		k-4
Keterangan	Jakarta	Ho Chi Minh	Hai Phong	Bauan

3. Karena terdapat perubahan variabel seperti pada nomor 3, maka dalam perhitungan dimana ketika m6 muncul terakhir seperti $A_{.j.m1-m6}$ (lihat pada

Tabel 3.8), maka nilai dari m6 tersebut adalah k6, Ho Chi Minh, menjadi $A_{.j.k1-k6}$. Dan jika m6 muncul diawal seperti $A_{.j.m6-m4}$, maka nilai m6 adalah k7, Hai Phong, menjadi $A_{.j.k7-k4}$.

4. Karena adanya kejadian seperti nomor 4 yang mengakibatkan perbedaan variabel pada k diakhir dan diawal, maka perlu dilakukan perhitungan pada $A_{.j.k6-k7}$ juga.

Untuk model optimasi jarak menggunakan model sebagai berikut :

Objective Function:

$$Min TJ = (\sum_{p=1}^{6} \sum_{q=1}^{6} J_{p,q} \times C_{p,q})$$
.....Rumus 3.8

Model matematis ini digunakan untuk mencari minimum total jarak dengan menghitung jumlah dari perkalian antara jarak dari kota asal p menuju ke kota tujuan q dengan keputusan dilewati atau tidaknya rute tersebut.

Decision Variable :

$$C_{p,q} egin{cases} 1, Jika kota asal p ke kota tujuan q terlewati \\ 0, Jika kota asal p ke kota tujuan q tidak terlewati \end{cases}$$

Disini yang menjadi $decision\ variable\$ nya adalah dimana rute dari kota asal p ke kota tujuan q terlewati atau tidaknya dengan angka 1 jika dilewati dan 0 jika tidak dilewati.

Constraint:

$$p \neq q$$

 $p > 0$, $p \in bilangan\ bulat$
 $q > 0$, $q \in bilangan\ bulat$
 $\sum_{p=1, p \neq q}^{6} C_{p,q} = 1$
 $\sum_{q=1, q \neq p}^{6} C_{p,q} = 1$

Untuk constraint (1) menunjukkan bahwa nilai indeks p tidak boleh sama dengan q. Constraint (2) dan (3) menunjukkan indeks p dan q harus lebih besar dari 0 dan anggota dari bilangan bulat. Sedangkan constraint (4) digunakan untuk membatasi dimana jumlah dari keputusan untuk ke tiap indeks q sama dengan 1, dan untuk constraint (5) untuk indeks p sama dengan 1.

Dimana:

$$p = \{1,2,3,4,5,6\}$$

$$q = \{1,2,3,4,5,6\}$$

Keterangan:

 $J_{p,q}$ = Jarak dari kota asal p ke kota q

 $C_{p,q}$ = Keputusan rute kota asal p ke kota tujuan q terlewati atau tidak

p = Kota Asal

q = Kota Tujuan

TJ = Total Jarak

Untuk model optimasi penentuan jumlah frekuensi yang akan terpakai menggunakan model sebagai berikut :

Objective Function:

$$\min z = \sum_{j=1}^{7} \sum_{p=1}^{6} \sum_{q=1}^{7} ((FS_{j,p,q} + FP_{j,p,q} + PC_{j,p,q} + AT_{j,p,q}) \times f_j + TCH_j) \times y_j$$
(Rumus 3.9)

Model matematis ini digunakan untuk mencari minimal total biaya dimana merupakan perkalian dan penjumlahan antara total biaya bahan bakar dari setiap kapal untuk rute asal p ke tujuan q, total biaya pelabuhan tiap kapal untuk rute asal p ke tujuan q, total biaya air tiap kapal untuk rute asal p ke tujuan q, frekuensi setiap kapal, biaya sewa tiap kapal dan keputusan kapal tersebut dipakai atau tidak.

Objective Function

 f_i

Untuk *objective function* nya sendiri adalah jumlah frekuensi dari kapal yang akan dipakai.

Constraint:

$$\begin{split} f_j &\leq f max_j \\ f_j &\begin{cases} f > 0, & y = 1 \\ f = 0, & y = 0 \end{cases}; \forall f_j \in bilangan \ bulat \\ \sum_{j=1}^7 JM_{j,p,q} \times f_j \geq TJM_{p,q} \end{split}$$

Untuk *constraint* (1) merupakan batasan dari *objective function* yaitu frekuensi kapal dimana tidak boleh lebih dari frekuensi maksimal dari kapal tersebut. *Constraint* (2) menunjukkan bahwa keputusan kapal tersebut dipakai atau tidak dengan melihat dari jumlah frekuensi kapal tersebut. Dan *constraint* (3) merupakan batasan dimana jumlah muatan yang dibawa minimal sama dengan total jumlah muatan yang seharusnya dibawa.

Dimana:

$$j$$
 = {1,2,3,4,5,6,7}
 p,q = m
 m = {Indonesia, Singapura, Thailand, Filipina, Malaysia, Vietnam}
 f = Bilangan bulat
 j = {1,2,3,4,5,6,7}

$$i = \{1,2,3,4,5,6,7\}$$

$$y = \{0,1\}$$

Keterangan:

Min z = Minimum total biaya (Rp/tahun)

 $FS_{j,p,q}$ = Biaya BBM kapal j karena pengaruh *sea time* dari negara asal p ke negara tujuan q (Rp/trip)

 $FP_{j,p,q}$ = Biaya BBM kapal j karena pengaruh *port time* dari negara asal p ke negara tujuan q (Rp/trip)

 $PC_{j,p,q}$ = Biaya Pelabuhan kapal j dari negara asal p ke negara tujuan q (Rp/trip)

 $AT_{j,p,q}$ = Biaya air tawar kapal j dari negara asal p ke negara tujuan q

 TCH_j = Biaya Sewa Kapal j (Rp)

 y_j = Keputusan kapal j terpakai atau tidak (1=iya, 0=tidak)

 f_j = Jumlah Frekuensi kapal j yang terpakai

 $JM_{j,p,q}$ = Jumlah muatan yang dibawa kapal j dari negara asal p ke negara tujuan q

 $TJM_{p,q}$ = Total jumlah muatan negara asal p ke negara tujuan q

BAB 4

GAMBARAN UMUM

Bab ini menjelaskan gambaran umum perkembangan industri otomotif di Indonesia dan ASEAN, penjelasan pelabuhan asal dan tujuan, kapal kapal yang biasanya melewati pelabuhan tersebut. Lalu, data ini akan diolah sebagai masukan dalam pembuatan model perhitungan.

4.1 Perkembangan Industri Otomotif

Tabel 4.1 Penjualan dan Peramalan Penjualaan Mobil di Asia tahun 2015-2021

000s/units	2015	2016	2017	2018	2019	2020	2021
China	24,590	28,030	28,879	28,080	27,400	28,300	29,200
Japan	5,047	4,970	5,234	5,272	5,234	5,248	5,213
India	3,484	3,669	4,013	4,340	4,285	4,314	4,345
South Korea	1,833	1,825	1,799	1,813	1,787	1,766	1,798
Indonesia	1,013	1,061	1,083	1,151	1,045	1,060	1,140
Thailand	800	769	872	1,042	992	964	982
Malaysia	668	580	577	599	582	605	617
Philippines	322	403	467	402	431	442	454
Taiwan	421	440	445	435	412	418	425
Vietnam	209	272	251	277	332	354	368
Singapore	75	107	116	94	86	94	106
Total	38,462	42,126	43,736	43,505	42,586	43,565	44,648

Sumber: https://www.asiamotorbusiness.com/

Asia menjadi salah satu wilayah kunci untuk pertumbuhan penjualan kendaraan global. Di kawasan ASEAN, akan menjadi pasar yang bahkan lebih kuat dengan proyeksi pertumbuhan 6,9% naik dari pertumbuhan 5,4% dari tahun 2017. Wilayah ASEAN memiliki beberapa peluang pertumbuhan yang menonjol dalam hal pasar penjualan yang lebih kecil, tetapi tingkat pertumbuhan di kawasan tradisional membuat kawasan tersebut lebih menarik. Kebijakan pemerintah di beberapa pasar juga mendorong penjualan dan menarik investasi untuk manufaktur. Tabel diatas ini dapat dikatakan bahwa penjualan regional pada tahun 2019 menurun sekitar 2% karena adanya pelemahan penjualan di China, Jepang dan India yang mencerminkan perlambatan pertumbuhan ekonomi global dan permintaan ekspor yang lesu. Pada tabel tersebut tahun 2015 – 2018 merupakan data aktual, dan pada tahun 2019 – 2021 merupakan peramalan data.

4.1.1 Indonesia

Sejak 2010, industri otomotif di Indonesia terus berkembang. Tren ini terkait dengan perkembangan ekonomi, yang memungkinkan kelas menengah untuk membeli mobil untuk pertama kalinya. Sejak 2013, pemerintah Indonesia telah menerapkan strategi promosi industri yang mencakup OEM (*Original Equipment Manufacturer*) dan pembuat suku cadang dengan bertujuan mencapai pertumbuhan melalui promosi mobil ramah lingkungan dan murah, atau dikenal sebagai mobil hijau berbiaya rendah atau LCGC (*Low Cost Green Car*).

Kebijakan LCGC berarti bahwa pemerintah memberikan pembebasan pajak atas pajak barang mewah 10 persen yang harus dibayar ketika membeli mobil jika kendaraan tidak memerlukan biaya lebih dari JPY 650.000 (sekitar Rp 85.000.000,00), dapat menempuh setidaknya 20 km per liter, dan kendaraan memiliki suku cadang lokal lebih dari 80 persen. Oleh karena itu, OEM Jepang telah memperkenalkan model yang memenuhi persyaratan LCGC ini; Daihatsu, Honda, dan Nissan telah membangun pabrik perakitan baru untuk produksi LCGC, oleh karena itu dapat dikatakan bahwa perusahaan-perusahaan Jepang berkontribusi besar terhadap pengembangan industri otomotif di Indonesia.

Kondisi dari industri otomotif di Indonesia itu bergantung pada kestabilan politik. Selain itu, kebijakan dari LCGC juga membuat perspektif terhadap industri otomotif lebih jelas. Namun, ada beberapa isu juga yang dapat mempengaruhi perkembangan dari industri otomotif tersebut. Pertama, tentang adanya peningkatan drastis untuk gaji. Di tahun 2014, gaji di Jakarta meningkat sebesar 60% dari tahun 2012. Dari perspektif jangka panjang, ini dapat meningkatkan jumlah orang yang mampu membeli mobil, tetapi kenaikan yang mendadak ini merupakan masalah besar bagi perusahaan.

Kedua, kesenjangan ekonomi di domestik. Perbedaan ekonomi antara Jakarta dan kota terbesar kedua di Indonesia yaitu Surabaya di satu sisi dan sisanya di Jawa serta Sumatera, Kalimantan, dan pulau lainnya masih besar. Jadi saat ini, pertumbuhan lebih lanjut dari penjualan mobil di luar Jawa tidak dapat diharapkan karena kesenjangan ini. Karena itu, hanya ketika kesenjangan ekonomi dijembatani, potensi pasar dari populasi yang besar di Indonesia dapat terwujud

Ketiga, infrastruktur jalan dan pelabuhan yang masih kurang. Dengan peningkatan jumlah kepemilikan mobil yang semakin cepat, infrastruktur di Jakarta khususnya tampak kurang memadai.Sehingga pabrik yang berlokasi di Jakarta

mengalami masalah dalam memenuhi jadwal secara tepat waktu karena kemacetan lalu lintas di Jakarta. Hal ini berdampak juga pada ekspor CBU dalam proses pengirimannya.

4.1.2 Thailand

Untuk waktu yang lama, Thailand telah bermain sebagai pemeran utama dalam industri otomotif di ASEAN. Pemerintah Thailand juga telah membuat industri mobil dan juga suku cadang sebagai pilar utama kebijakan industrialisasi mereka, yang tidak hanya memberikan dorongan kepada konsumen untuk membeli tetapi juga mendorong pertumbuhan ekspor dan menarik investasi dari OEM asing. Namun, pada tahun 2012 dan 2013 jumlah mobil yang diproduksi mengalami stagnansi. Alasannya karena kebijakan dalam negeri untuk mengembalikan lebih dari setengah pajak pembelian mobil yang berakhir pada akhir tahun 2012. Selanjutnya, CBU ekspor dari Thailand tergantung pada kondisi ekonomi di negara-negara mitra pengimpor dan jika permintaan dalam negeri tidak mengimbangi penurunan ekspor maka posisi sentral industri otomotif di Thailand dapat berubah menjadi lingkaran setan bagi perekonomian domestik. Sejak 2007, fase pertama kebijakan promosi mobil ramah lingkungan mulai mengurangi dampak lingkungan dari mobil di Thailand dan mempromosikan modernisasi industri. Fase kedua kebijakan ini dijadwalkan berakhir pada Maret 2014, di mana semua OEM diminta untuk memenuhi persyaratan. Namun, jika ada yang membandingkan persyaratan emisi pada fase dua dengan fase pertama, standar tersebut lebih ketat sehingga dikhawatirkan oleh para OEM akan menghasilkan biaya investasi yang lebih besar.

Selain itu, gejolak politik sejak akhir tahun 2013 melemahkan pandangan positif karena ada kekhawatiran bahwa ketegangan saat ini dapat berubah menjadi ketidakstabilan yang berkepanjangan, yang selanjutnya akan berdampak negatif pada komponen dan produksi mobil serta penjualan mobil.

Berbeda dengan perspektif negatif tersebut, tingkat produksi mobil dan komponen yang sangat maju di Thailand tidak boleh diabaikan karena itu adalah alasan utama mengapa OEM dan pemasok menganggap negara itu seperti Toyota dan Denso telah memindahkan kantor pusat Asia-Pasifik mereka dari Singapura ke Bangkok. Semakin banyak pembuat suku cadang terkemuka dan menengah juga telah membuka fasilitas Litbang di Thailand untuk mengembangkan dan merancang komponen untuk kawasan ASEAN dan negara-negara berkembang lainnya.

4.1.3 Malaysia

Malaysia memiliki kasus unik di ASEAN karena memproduksi mobil Jepang dibawah merek Proton sejak tahun 1983 dan Perodua tahun 1993. Sementara kedua produk tersebut lebih dikenal sebagai perusahaan nasional, teknologi dalam komponen utamanya disediakan oleh Daihatsu dan Mitsubishi. Dengan mempromosikan mobil nasional dengan cara ini, Malaysia telah mencapai tingkat penyebaran tinggi 369 mobil per 1.000 orang. Namun, pada paruh kedua tahun 2000, popularitas mobil nasional agak menurun dengan kehadiran OEM asing di Thailand dan Indonesia dan membuat produsen mobil nasional meninggalkan Malaysia. Lebih jauh, AFTA (ASEAN Free Trade Area) merupakan alasan utama mengapa mobil nasional mendapat tekanan; sementara Toyota dan Honda telah membangun pabrik mereka sendiri, Nissan, Mitsubishi, Suzuki, Mazda, dan Subaru mengandalkan distributor lokal dan perakitan CKD (Completely Knock Down). Sejak 2011, model German Volkswagen (VW) dirakit melalui CKD dan semiknocked-down (SKD) oleh mitra Malaysia, DRB-HICOM sementara Peugeot menggunakan Naza untuk merakit CKD sejak 2006, sehingga membuat Malaysia cenderung menjadi pusat produksi di ASEAN untuk merek ini. Dengan demikian, ketika OEM asing berkontribusi pada pengembangan industri di Malaysia dan pemerintah harus meliberalisasi karena tekanan dari ASEAN, tampaknya kebijakan mobil nasional secara bertahap digantikan. Pada bulan Januari, pemerintah Malaysia mendeklarasikan Kebijakan Otomotif Nasional '14, kebijakan mobil nasional barunya yang berisi lima item yang relevan. Pertama, Malaysia harus menjadi pusat untuk kendaraan ramah lingkungan (disebut Energy Efficient Vehicles; EEV). Kedua, produksi komponen bernilai tambah tinggi harus dipromosikan. Ketiga, ekspor otomotif harus dipromosikan. Keempat, hingga 2020, ekspor CBU harus mencapai 200.000 unit dan ekspor komponen harus mencapai 10 miliar Ringgit. Kelima, pajak akuisisi harus dikurangi di masa depan. Dan keenam, perusahaan pembuat mobil nasional dan perusahaan bumiputra harus dimasukkan.

4.1.4 Filipina

Pada tahun 2012, produksi mobil di Filipina menurun. Di sisi lain, penjualan domestik meningkat. Situasi ini terjadi karena OEM menggunakan AFTA untuk merelokasi produksi ke Thailand atau Indonesia dan mengekspor dari negara-negara ini. Basis produksi domestik yang tersisa dioperasikan oleh Toyota, Honda, Nissan, dan

Mitsubishi. Mitsubishi mengikuti Toyota dalam hal penjualan dan telah mengumumkan bahwa mereka akan membangun pabrik baru hingga 2015.

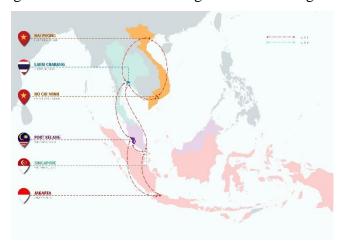
Salah satu alasan kenapa produksi mobil di Filipina menurun adalah aliansi Ford dan Mazda telah mengakhiri produksi di negara itu dengan memindahkan pangkalan ke Thailand. Sementara perusahaan tidak menjelaskan langkah tersebut. Jawaban dapat diperoleh dari penelitian oleh Rosellon & Medalla (2011) tentang rantai pasokan industri otomotif dan elektronik di Filipina. Wawancara dengan Ford 1 memberikan detail penting berikut: dibandingkan dengan Thailand, produksi di Filipina memiliki biaya US \$ 1.500-2.000 (sekitar Rp 21.000.000 - Rp 28.000.000) per unit. Oleh karena itu, pengalihan produksi ke Thailand dapat dipahami sebagai keputusan bisnis untuk mengurangi biaya. Selain itu, Ford menunjukkan bahwa pemasok di Filipina tidak dapat memproduksi komponen dengan kualitas yang diperlukan sehingga bagian-bagian tertentu harus diimpor, yang selanjutnya menambah biaya. Ini menunjukkan bahwa tingkat industri komponen mobil tidak mencukupi, yang sebagian disebabkan oleh tidak adanya kebijakan pendukung industri mobil yang jelas seperti yang ada di Thailand atau Indonesia.

Meskipun demikian, Filipina terus berfungsi sebagai sumber produksi suku cadang OEM (mis. Transmisi). Mitsubishi membuat produksi lokal sesuai kebijakan *Progressive Car Manufacturing Program* (PCMP) yang mengharuskan perusahaan memproduksi suku cadang di dalam negeri dengan mendirikan Asian Transmission Corporation mulai tahun 1960-an. Demikian pula, Toyota menjadikan Filipina bagian dari strategi ASEAN-nya dengan menjadikan negara itu pusat manufaktur transmisi. Nilai ekspor komponen di Filipina lebih tinggi daripada impor kendaraan. Namun, impor kendaraan meningkat, menyebabkan surplus perdagangan yang menyusut di sektor ini (Rosellon & Medalla 2011). Ketika tren berlanjut, Filipina mungkin tidak lagi dapat mempertahankan surplus perdagangan di sektor ini.

4.1.5 Vietnam

Produksi mobil di Vietnam hanya mencapai 67.000 unit pada tahun 2013 kebawah, namun industri ini pulih pada tahun 2013. Rakitan CBU di Vietnam hanya menggunakan beberapa bagian yang diproduksi di dalam negeri dengan komponen utama yang diimpor dari Thailand dan Indonesia serta sebagian kecil dari Jepang. Setelah perakitan, kendaraan ini terutama dijual di pasar Vietnam. Alasan impor sebagian besar

adalah karena industri komponen dalam negeri kurang berkembang dan sedikit adanya tanda-tanda pertumbuhan.


Seperti di Filipina, tidak adanya kebijakan pemerintah yang jelas terhadap industri ini bertentangan dengan pertimbangan OEM asing untuk mengatur produksi di Vietnam, yang semakin diperumit dengan prosedur persetujuan birokrasi yang panjang. Dengan demikian, industri otomotif Vietnam berada pada fase kritis dan kebijakan pemerintah yang konkrit diperlukan untuk memastikan kelangsungannya di masa depan.

4.2 Rute Pengiriman Muatan Kendaraan Saat Ini

Dalam pengiriman ekspor impor kendaraan di ASEAN saat ini sudah terdapat beberapa rute. Rute – rute tersebut hampir melewati seluruh negara yang dimana kegiatan ekspor Indonesia dilakukan. Negara negara tujuan ekspor terbesar di Indonesia sendiri adalah Malaysia, Singapore, Thailand, Vietnam, dan Filipina (Gaikindo).

Disini terdapat 2 (dua) jenis rute dimana rute tersebut hampir melewati keseluruhan negara yang menjadi tujuan ekspor Indonesia. Rute – rute yang digunakan ini merupakan rute yang dipakai juga oleh pihak perusahaan pelayaran "K" Line dan juga NYK Line. Rute tersebut adalah :

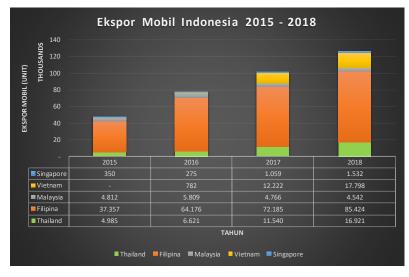
a. Singapore – Port Kelang – Jakarta – Singapore – Port Kelang – Laem Chabang – Ho Chi Minh – Hai Phong - Laem Chabang – Singapore, dan juga

Gambar 4.1 Rute A Pengiriman Kendaraan ASEAN

b. Singapore – Jakarta – Singapore – Laem Chabang – Bauan – Laem Chabang – Singapore.

Gambar 4.2 Rute B Pengiriman Kendaraan ASEAN

4.3 Kondisi Ekspor dan Impor Kendaraan CBU di Indonesia


Industri otomotif Indonesia menjadi pilar penting dalam sektor manufaktur negara karena banyak perusahaan CBU yang meningkatkan kapasitas produksinya untuk di ekspor. Indonesia memiliki industri manufaktur CBU terbesar kedua di Asia Tenggara dan di wilayah ASEAN setelah Thailand yang menguasai 50% produksi CBU. Selain itu, perkembangan industri otomotif di Indonesia bisa dikatakan hampir terus meningkat dari tahun ke tahun. Jumlah kendaraan yang diekspor pun juga terus meningkat.

Pada tahun 2017, Kementrian Perindustrian Indonesia menargetkan untuk ekspor setidaknya mencapai 20% dari produksi di Indonesia. Namun, kenyataanya rasio dari ekspor tersebut berkisar 19%. Untuk kapasitas industri otomotif Indonesia sendiri tidak menjadi masalah karena ada beberapa perusahaan yang berinvestasi dalam perluasan pabrik tahun tahun terakhir. Dalam ekspor Indonesia sendiri memiliki beberapa masalah dimana pengiriman mobil masih banyak yang menjangkau negara – negara berkembang seperti di kawasan Asia Tenggara, Amerika Selatan, Afrika serta Timur Tengah. Hal ini terjadi karena negara tersebut belum terlalu menetapkan standar tinggi dalam keselamatan dan emisi gas.

Gambar 4.3 Beberapa Negara Tujuan Ekspor Indonesia di ASEAN

Walaupun adanya halangan tersebut, ekspor Indonesia di ASEAN mengalami peningkatan yang cukup tinggi dimana hampir mencapai 40% setiap tahun untuk total ekspor Indonesia. Negara – negara yang dituju sendiri dalam kasus ini adalah Malaysia, Singapura, Thailand, Filipina dan Vietnam. Di tahun 2018 untuk ekspor Indonesia ke negara tersebut mencapai 126.217 unit yang mana pada tahun 2015 hanya mencapai 47.506 unit. Penyumbang terbesar dalam ekspor Indonesia yaitu negara Filipina dalam setiap tahunnya.

Gambar 4.4 Ekspor Mobil Indonesia ke Negara Tujuan ASEAN 2015 - 2018

Impor mobil di Indonesia sendiri menurut Jongkie Sugiarto, ketua GAIKINDO, mengatakan bahwa impor untuk mobil perlu dilakukan karena spesifikasi dan permintaan mobil tersebut masih rendah dan belum diproduksi di Indonesia. Ketika mobil tersebut sudah populer maka manufaktur lokal akan membangun produksi mobil tersebut dan membuatnya menjadi bisnis model yang menguntungkan dan menggantikan impor tersebut dengan produksi dari dalam negeri.

4.4 Jenis Kendaraan Ekspor dan Unit Kendaraan

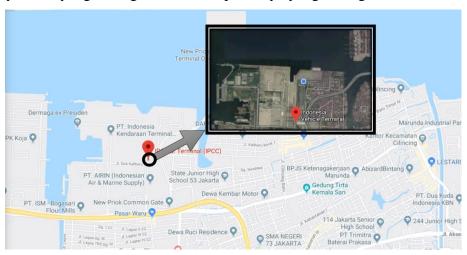
Di Indonesia, dalam kegiatan ekspor kendaraannya terdapat beberapa jenis seperti mobil CBU, mobil CKD, truk, alat berat dan lainnya. mobil CKD sendiri adalah jenis mobil yang didatangkan dari negara asal produsen dalam bentuk terurai dan dengan komponen yang lengkap. Kemudian kendaraan tersebut dirakit didalam negara konsumen tersebut.

Sedangkan untuk mobil CBU sendiri merupakan mobil dimana seluruh komponennya berasal dari dari negara asal produsen. Sehingga ketika mobil tersebut diekspor ataupun diimpor, bentuk kendaraan tersebut sudah utuh dan siap untuk langsung dipakai. Dan untuk di Indonesia sendiri memiliki pabrik dimana mereka memproduksi kendaraan dengan jenis CBU yang diekspor untuk ke luar negeri, seperti pabrik mobil yang ada di daerah Sunter dan Cikarang. Untuk ekspor sendiri merk mobil yang memiliki jumlah terbanyak adalah merek Toyota menurut statistik ekspor dari Indonesia Kendaraan Terminal.

Gambar 4.5 Mobil CBU yang Diekspor oleh Indonesia

(Sumber: cnnindonesia.com)

Untuk ukuran mobil CBU yang diekspor rata – rata memiliki ukuran seperti mobil merek Toyota Innova atau Fortuner dimana luas area mobil tersebut sekitar $8\ m^2$ per unitnya berdasarkan data dari Gaikindo di tahun 2018. Sehingga dalam penyebutan untuk jumlah unit mobil yang diekspor akan dibuat sama dimana $1\ mobil$ ekspor $=1\ unit$ kendaraan.


Gambar 4.6 Ukuran Mobil Toyota Fortuner

(sumber: oto.com)

4.5 Pelabuhan yang Digunakan

4.5.1 Indonesia – Indonesia Kendaraan Terminal

Indonesia Kendaraan Terminal atau IKT terletak di wilayah Pelabuhan Tanjung Priok tepatnya JL. Sindang Laut No. 101, RT. 006 RW.008, Kali Baru, RW.11, Kali Baru, Cilincing, Kota Jakarta Utara, Daerah Khusus Ibukota Jakarta. PT Indonesia Kendaraan Terminal terletak berseberangan dengan New Priok Container Terminal One (NPCT 1), dan bersebelahan dengan PT. Dok dan Perkapalan Kodja Bahari. Terminal ini mempunyai arus yang tenang dikarenakan posisinya yang strategis.

Gambar 4.7 Lokasi Indonesia Kendaraan Terminal

PT. Indonesia Kendaraan Terminal Tbk adalah terminal khusus kendaraan satusatunya di Indonesia. Kegiatan Ekspor dan Impor kendaraan Indonesia berpusat pada terminal ini. Hal ini membuat terminal khusus kendaraan ini mempunyai tingkat aktivitas yang cukup tinggi. PT. Indonesia Kendaraan Terminal khusus melayani kapal-kapal berjenis Ro-Ro dan Vihecle Vessel. Terminal ini mempunyai 2 dermaga, yaitu dermaga internasional dan dermaga domestik. Dermaga Internasional dikhususkan untuk melayani

kapal-kapal internasional atau kegiatan ekspor/impor kendaraan dari/ke Indonesia. Sedangkan dermaga domestik dikhususkan untuk melayani kapal-kapal domestik Indonesia. Berikut fasilitas dermaga yang dimiliki oleh PT. Indonesia Kendaraan Terminal:

Tabel 4.2 Fasilitas Dermaga PT. IKT

Dermaga	Panjang	Kedalaman
Dermaga Internasional	220 m	-12 m LWS
Dermaga Domestik	304 m	-12 m LWS

4.5.2 Malaysia – Pelabuhan Klang

Pelabuhan Klang adalah nama pelabuhan utama di Malaysia dan juga merupakan sebuah kota pelabuhan yang sibuk, ia terletak di daerah/distrik Klang di negara bagian Selangor. Pelabuhan ini melayani Lembah Klang, termasuk ibu kota federal Kuala Lumpur dan ibu kota administratif federal Putrajaya.

Pelabuhan Klang awalnya dikenal dengan nama Port Swettenhan diambil dari nama Residen Britania saat itu saat Pelabuhan Klang didirikan pada tahun 1893 yaitu Sir Frank Swettenham.

Gambar 4.8 Pelabuhan Klang Terminal Kendaraan

Dikembangkan oleh *Malayan Railway*, pelabuhan itu dinamai oleh Sir Frank Swettenham, penduduk Inggris Selangor (perwakilan) setelah tahun 1882, dan dimaksudkan untuk melayani Malaya bagia006E barat-tengah, menjadikan jalur kereta api independen dari Singapura dan Penang. Dalam waktu dua bulan sejak dibuka pada tahun 1901, pelabuhan ditutup karena adanya penyakit malaria. Perkembangan besar terjadi antara Perang Dunia I dan II, dan pada 1960-an dan 1970-an kedalaman kolam labuh dibangun dengan dermaga yang cocok untuk menangani kontainer serta kargo

konvensional. Pelabuhan ini berkaitan erat dengan pelabuhan-pelabuhan tambahan di pesisir barat. Pengembangan industri mencakup Kawasan Industri Pandamaran yang berada di dekatnya (lebih dari 20 perusahaan).

4.5.3 Thailand – Pelabuhan Laem Chabang

Laem Chabang berjarak sekitar 25 kilometer di utara Pattaya, dan selatan kota Chonburi. Pelabuhan ini adalah pelabuhan terbesar di Thailand. Pelabuhan ini menempati 2.572 hektar (1.041 ha) dan mampu menangani kapal terbesar.

Gambar 4.9 Pelabuhan Laem Chabang Terminal Namyong (Kendaraan)

Pengembangan pelabuhan secara kompleks dimulai pada tahun 1988 untuk mendorong pembangunan di luar Bangkok dan memanfaatkan kedekatannya dengan Teluk Thailand. Pelabuhan peti kemas selesai dibangun pada tahun 1991. Pada 2014 ia menangani 6,58 juta TEU, menjadikannya pelabuhan peti kemas tersibuk ke-22 di dunia. [4] Di FY2017 (1 Oktober 2016 - 30 September 2017) menangani 7,7 juta TEUs. Banyak pelayaran internasional yang mencapai Thailand melewati Laem Chabang. Ini adalah tempat panggilan untuk Princess Cruises dan Celebrity Cruises. Ini mengakomodasi 59 penumpang di FY2017.

Laem Chabang meliputi:

- Tujuh terminal kontainer
- Satu terminal multiguna
- Satu terminal ro-ro
- Satu terminal ro-ro penumpang
- Satu terminal kargo umum
- Satu terminal galangan kapal
- Mal pelabuhan yang bersebelahan

Otoritas Pelabuhan Thailand bertanggung jawab atas pelabuhan secara keseluruhan. Ini melibatkan kontraktor sektor swasta untuk mengelola berbagai operasi pelabuhan.

4.5.4 Vietnam – Pelabuhan Hai Phong dan Pelabuhan Ho Chi Minh

a. Pelabuhan Hai Phong

Pelabuhan Hai Phong merupakan pelabuhan yang memiliki *volume throughput* terbesar di Vietnam bagian Utara. Memiliki system peralatan modern dan infrastruktur aman yang memadai dan sesuai dengan moda transportasi dan perdagangan internasional.

b. Pelabuhan Ho Chi Minh

Pelabuhan Ho Chi Minh termasuk sebagai salah satu pelabuhan terbesar. Pelabuhan ini merupakan gerbang utama untuk negara tersebut, dan diketahui bahwa 67% *throughput* dari semua pelabuhan Vietnam berada di Ho Chi Minh.

4.5.5 Filipina – Pelabuhan Bauan

Terminal Bauan berjarak sekitar 120 kilometer selatan Manila dan sembilan kilometer barat Kota Batangas. Menghadapi Teluk Batangas, terminal berada dalam teluk alami, dan dilindungi dari kondisi cuaca buruk oleh beberapa pulau, yang terlihat jelas dari teluk. Terminal ini mendukung pergerakan kargo masuk dan keluar dari wilayah Cavite-Laguna-Batangas-Rizal-Quezon (CALABARAZON).

Sebagai pusat agroindustri, Bauan adalah kota yang terletak di provinsi Batangas. Batangas, pada gilirannya, adalah salah satu dari lima provinsi yang membentuk wilayah CALABARZON, pusat otomotif Filipina. Misalnya, pengiriman dari operasi Filipina pembuat mobil Jepang Mitsubishi dan Honda melewati pelabuhan Bauan.

Gambar 4.10 Pelabuhan Bauan

4.5.6 Singapura – Pelabuhan Singapura

Pelabuhan Singapura merupakan salah satu pelabuhan hub yang tersibuk di dunia. Pelabuhan tersebut berlokasi di ujung selatan Semenanjung Melayu, 30 km barat daya dari Pelabuhan Johor di Malaysia. Fasilitas yang ada di Pelabuhan Singapura pun menangani muatan peti kemas, muatan curah dan beberapa muatan khusus minyak, gas

alam, minyak bumi dan juga kendaraan yang mana merupakan pusat transhipment otomotif.

4.6 Spesifikasi Armada Kapal Car Carrier Internasional

Pemilihan kapal yang akan digunakan dalam penelitian ini dilhat berdasarkan kapal yang telah ada dan dipakai dalam rute pelayaran di ASEAN. Kapal – kapal yang akan digunakan adalah :

4.6.1 MV Polaris Leader

Gambar 4.11 My Polaris Leader

(Sumber: vesselfinder.com)

MV Polaris Leader merupakan salah satu kapal pembawa kendaraan murni (*Pure Car Carrier*) yang berlayar dengan menggunakan bendera Singapura. Kapal ini dioperasikan oleh salah satu perusahaan pelayaran yaitu NYK Line. Berikut merupakan beberapa informasi tentang MV Polaris Leader:

Tabel 4.3 Spesifikasi MV Polaris Leader

Nama Kapal	POLARIS LEADER
No. IMO	9372810
Gross Tonnage	51.917
DWT	17.406
Panjang (m)	179,9
Lebar (m)	32,2
Sarat (m)	21,6
Kapasitas (Unit)	5.195
Dibangun	23 Apr 2009
Jumlah Awak Kapal	25
Kecepatan (Knots)	21
Daya ME (Kw)	14.120
Daya AE (Kw x Unit)	3725 x 4

4.6.2 MV Tianjin Highway

Gambar 4.12 MV Tianjin Hgihway

(Sumber: vesselfinder.com)

MV Tianjin Highway merupakan salah satu kapal pembawa kendaraan murni (*Pure Car Carrier*) yang berlayar dengan menggunakan bendera Panama. Kapal ini dioperasikan oleh salah satu perusahaan pelayaran yaitu K LINE RORO BULK MGMT CO. Berikut merupakan beberapa informasi tentang MV Tianjin Highway:

Tabel 4.4 Spesifikasi MV Tianjin Highway

Nama Kapal	TIANJIN HIGHWAY
No. IMO	9294355
Gross Tonnage	48.927
DWT	15.461
Panjang (m)	180,0
Lebar (m)	32,2
Sarat (m)	21,4
Kapasitas (Unit)	5.036
Dibangun	08 Nov 2005
Jumlah Awak Kapal	25
Kecepatan (Knots)	23
Daya ME (Kw)	12.500
Daya AE (Kw x Unit)	3017 x 4

4.6.3 MV Straits Challenger

Gambar 4.13 MV Straits Challenger

(Sumber: vesselfinder.com)

MV Straits Challenger merupakan salah satu kapal pembawa kendaraan murni (*Pure Car Carrier*) yang berlayar dengan menggunakan bendera Malaysia. Kapal ini

dioperasikan oleh salah satu perusahaan pelayaran yaitu WILHELMSEN SHIP MGMT SDN BHD. Berikut merupakan beberapa informasi mengenai MV Straits Challenger:

Tabel 4.5 Spesifikasi MV Straits Challenger

Nama Kapal	STRAITS CHALLENGER
No. IMO	9186950
Gross Tonnage	51.204
DWT	17.297
Panjang (m)	179,9
Lebar (m)	32,2
Sarat (m)	21,6
Kapasitas (Unit)	4.368
Dibangun	05 Nov 1998
Jumlah Awak Kapal	23
Kecepatan (Knots)	21
Daya ME (Kw)	14.121
Daya AE (Kw x Unit)	4620 x 4

4.6.4 MV Grand Vision

Gambar 4.14 MV Grand Vision

(Sumber : shipspotting.com)

MV Grand Vision merupakan salah satu kapal pembawa kendaraan murni (*Pure Car Carrier*) yang berlayar dengan menggunakan bendera Malaysia. Kapal ini dioperasikan oleh salah satu perusahaan pelayaran yaitu WILHELMSEN SHIP MGMT SDN BHD. Berikut merupakan beberapa informasi mengenai MV Grand Vision:

Tabel 4.6 Spesifikasi MV Grand Vision

Nama Kapal	GRAND VISION
No. IMO	9082324
Gross Tonnage	47.077
DWT	14.226
Panjang (m)	180,0
Lebar (m)	32,2
Sarat (m)	21,4
Kapasitas (Unit)	5.060
Dibangun	10 Jan 1995
Jumlah Awak Kapal	25
Kecepatan (Knots)	23
Daya ME (Kw)	13.239
Daya AE (Kw x Unit)	3125 x 4

4.6.5 MV Canopus Leader

Gambar 4.15 MV Canopus Leader

(Sumber: marinetraffic.com)

MV Canopus Leader merupakan salah satu kapal pembawa kendaraan murni (*Pure Car Carrier*) yang berlayar dengan menggunakan bendera Singapura. Kapal ini dioperasikan oleh salah satu perusahaan pelayaran yaitu LAUREL SHIP MANAGEMENT PTE LTD. Berikut merupakan beberapa informasi mengenai MV Canopus Leader:

Tabel 4.7 Spesifikasi MV Canopus Leader

Nama Kapal	CANOPUS LEADER
No. IMO	9367607
Gross Tonnage	51.917
DWT	17.382
Panjang (m)	179,9
Lebar (m)	32,2
Sarat (m)	21,6
Kapasitas (Unit)	5.195
Dibangun	04 Dec 2008
Jumlah Awak Kapal	25
Kecepatan (Knots)	21
Daya ME (Kw)	14.120
Daya AE (Kw x Unit)	3725 x 4

4.6.6 MV European Highway

Gambar 4.16 MV European Highway

(Sumber : shipspotting.com)

MV European Highway merupakan salah satu kapal pembawa kendaraan murni (*Pure Car Carrier*) yang berlayar dengan menggunakan bendera Panama. Kapal ini

dioperasikan oleh salah satu perusahaan pelayaran yaitu K LINE RORO BULK SHIP MGMT CO. Berikut merupakan beberapa informasi mengenai MV European Highway :

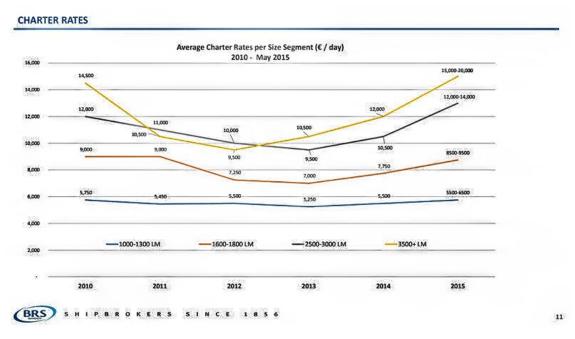
Tabel 4.8 Spesifikasi MV European Highway

Nama Kapal	EUROPEAN HIGHWAY
No. IMO	9206011
Gross Tonnage	48.039
DWT	15.075
Panjang (m)	180,0
Lebar (m)	32,2
Sarat (m)	21,4
Kapasitas (Unit)	5.064
Dibangun	06 Dec 1999
Jumlah Awak Kapal	25
Kecepatan (Knots)	23
Daya ME (Kw)	13.240
Daya AE (Kw x Unit)	2975 x 4

4.6.7 MV Metis Leader

Gambar 4.17 MV Metis Leader

(Sumber : vesselfinder.com)


MV Metis Leader merupakan salah satu kapal pembawa kendaraan murni (*Pure Car Carrier*) yang berlayar dengan menggunakan bendera Panama. Kapal ini dioperasikan oleh salah satu perusahaan pelayaran yaitu SHOEI KISEN KK. Berikut merupakan beberapa informasi mengenai MV Metis Leader :

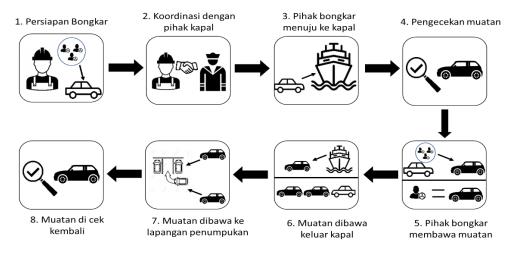
Tabel 4.9 Spesifikasi MV Metis Leader

Nama Kapal	METIS LEADER
No. IMO	9650743
Gross Tonnage	59.550
DWT	19.013
Panjang (m)	200,0
Lebar (m)	32,3
Sarat (m)	21,3
Kapasitas (Unit)	6.153
Dibangun	09 May 2013
Jumlah Awak Kapal	27
Kecepatan (Knots)	22
Daya ME (Kw)	13.260
Daya AE (Kw x Unit)	4275 x 4

4.7 Data Time Charter Hire

Dalam menghitung sewa kapal, biasanya terdapat beberapa standar dalam menggunakan biaya sewa kapal tersebut. Biaya standar tersebut biasanya digunakan peneliti-peneliti lain untuk menghitung sewa kapal sesuai dengan kapal yang mereka gunakan. Dalam penelitian ini, standar sewa kapal yang digunakan milik BRS Group, dimana BRS Group merupakan *shipbroker* yang berdiri tahun 1856. Berikut merupakan tabel sewa kapal :

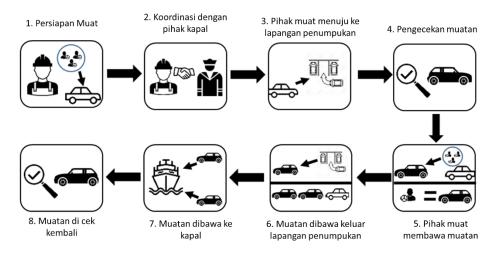
Gambar 4.18 Rata - rata Charter Rates Kapal Tahun 2010-2015


Gambar diatas menunjukkan rata-rata harga *Charter Rates* kapal pada tahun 2010-2015 dengan kapasitas rata-rata 1.300 unit, 1.800 unit, 3.000 unit dan 3.500 unit. Dengan menggunakan data tersebut, akan digunakan sebagai acuan dalam mencari biaya sewa kapal yang ada nanti.

4.8 Proses Bongkar Muat Kendaraan

Dalam penanganan muatan, tiap jenis muatan memiliki cara masing masing dalam penanganannya. Contohnya seperti muatan peti kemas dimana muatan peti kemas dilakukan bongkar muat dengan bantuan alat bongkar muat seperti *crane* peti kemas dan lainnya. Untuk muatan curah cair menggunakan alat bongkar muat pipa. Sedangkan untuk jenis muatan kendaraan sendiri sebenarnya tidak membutuhkan alat bongkar muat khusus. Untuk penanganannya sendiri menggunakan orang yang akan mengendarai muatan tersebut baik dari kapal sampai ke lapangan penumpukan ataupun sebaliknya.

Untuk tahapan dalam melakukan proses bongkar dilakukan seperti berikut :


- 1. Pihak bongkar melakukan persiapan dengan menyiapkan pengemudi yang akan melakukan kegiatan bongkar. Biasanya dalam satu kali kegiatan bongkar disiapkan sekitar 4-6 gang. Satu gang sendiri biasanya berisi sekitar 5-8 pengemudi. Dan untuk mengangkut pengemudi di setiap gang tersebut menggunakan mobil yang biasa disebut *Taxi Car*.
- 2. Pihak bongkar tersebut juga akan melakukan koordinasi dengan pihak kapal terkait rencana bongkar.
- 3. Setelah dilakukan koordinasi, lalu pihak bongkar melakukan prosesi bongkar muatan. Pengemudi tersebut akan menuju ke kapal yang siap dibongkar untuk mengambil muatan tersebut dengan menggunakan *Taxi Car*.
- 4. Sebelum pengemudi mengendarai muatan tersebut, akan ada pengecekan oleh petugas inspeksi untuk memastikan kondisi muatan.
- 5. Lalu, pengemudi yang berada didalam mobil akan mengendarai muatan tersebut sesuai urutan. Satu orang akan mengendarai satu mobil . Dalam melakukan bongkar tersebut, mobil mobil yang dibongkar harus berjalan dalam satu garis memanjang agar tidak terjadi kecelakaan. Dan dalam barisan belakang terdapat *Taxi car* dari pengemudi pengemudi tadi.
- 6. Mobil mobil yang dikendarai akan diletakkan di lapangan penumpukkan tersebut dan *Taxi Car* akan menjemput setiap pengemudi untuk kembali melakukan proses bongkar sampai muatan yang akan dibongkar habis.
- 7. Setelah selesai dilakukan peletakkan muatan, dilakukan pengecekan kembali oleh petugas inspeksi terhadap muatan tersebut.

Gambar 4.19 Diagram Proses Bongkar Muatan Kendaraan

Penjelasan untuk proses bongkar diatas merupakan proses bongkar yang dilakukan untuk pelabuhan di Indonesia. Untuk waktunya sendiri dalam proses bongkar ataupun muat berkisar 7 – 10 menit untuk sekali prosesnya. Lalu, untuk tahapan dalam proses muat hampir sama seperti proses bongkar. Tahapan – tahapan tersebut adalah:

- 1. Pihak muat akan melakukan koordinasi dengan pihak kapal tentang peletakkan muatan yang akan diletakkan didalam ruang muat kapal.
- 2. Setelah selesai dilakukan koordinasi, petugas inspeksi akan memeriksa kondisis muatan tersebut sebelum pengemudi atau pihak muat membawa muatan menuju ke kapal.
- 3. Selesai diperiksa, mobil akan dibawa menuju ke kapal untuk dilakukan muat. Kondisi dalam membawa mobil pun juga harus dalam satu garis memanjang dan mobil bagian belakang adalah *Taxi Car* yang akan membawa kembali pengemudi menuju kelapangan penumpukan.
- 4. Setelah selesai dimuat, akan dilakukan pengecekan kembali oleh petugas inspeksi.

Gambar 4.20 Diagram Proses Muat Muatan Kendaraan

BAB 5 ANALISIS DAN PEMBAHASAN

Bab ini akan menjelaskan analisis rute pola operasi pengiriman kendaraan ekspor dari Indonesia menuju ke negara-negara di ASEAN pada saat ini dengan rute operasi baru dengan melihat jumlah permintaan yang ada. Untuk perbandingan yang akan digunakan meliputi komponen biaya pada umumnya, seperti perbandingan biaya sewa kapal, biaya perjalanan dan biaya pelabuhan.

5.1 Persiapan Data untuk Model

Pada penelitian yang akan dilakukan adalah membandingkan rute operasi saat ini dengan rute operasi baru. Langkah persiapan data untuk model dalam penelitian ini meliputi analisis rute jarak antar wilayah, analisis perkiraan dan peramalan jumlah muatan, perhitungan biaya transportasi laut yang mana dalam penelitian ini menggunakan skema *time charter hire* yang mana biaya yang dihitung adalah biaya sewa kapal, biaya pelayaran dan biaya penanganan muatan.

5.1.1 Rute Jarak Pelayaran

Wilayah dalam pengerjaan penelitian ini adalah rute yang ada saat ini dan melihat kondisi permintaan tertinggi yang ada di ASEAN yaitu Indonesia, Singapura, Malaysia, Thailand, Vietnam dan Filipina. Enam titik ini merupakan titik yang sering dilewati oleh kapal kapal PCC yang berada di ASEAN. Berikut merupakan jarak dari antar titik yang ada:

Tabel 5.1 Matriks Jarak Antar Titik

	Jarak Pelayaran						
Asal/Tujuan	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan
Singapore	•	210	525	784	646	1.322	1.344
Port Kelang	210	-	700	994	856	1.532	1.554
Jakarta	525	700	-	1.244	1.032	1.668	1.531
Laem Chabang	784	994	1.244	-	634	1.327	1.408
Ho Chi Minh	646	856	1.032	634	1	803	897
Hai Phong	1.322	1.532	1.668	1.327	803	-	980
Bauan	1.344	1.544	1.531	1.408	897	980	-

Pada Tabel 5.1 dapat diketahui jarak antar titik dari titik asal menuju ke titik tujuan. Setelah diketahui jarak antar tiitk, selanjutnya menghitung jarak rute pelayaran yang ada saat ini. Ada 2 rute pelayaran yang ada saat ini, yaitu :

Singapore – Jakarta – Singapore – Laem Chabang – Bauan – Laem Chabang – Singapore

Rute ini memiliki total jarak sebesar 5.434 nm.

- Singapore Port Kelang Jakarta Singapore Port Kelang Laem Chabang
 - Ho Chi Minh Hai Phong Laem Chabang Singapore

Rute ini memiliki total jarak sebesar 6.187 nm

Dari kedua rute tersebut diketahui bahwa rute pertama memiliki jarak 5.434 nm dan rute kedua 6.187. Selain dari total jarak yang diketahui, ada hal lain yang dapat diketahui yaitu adanya titik yang dilewati lebih dari satu kali pada satu rute, selain titik awal dan titik akhir, yang membuat total jarak dari rute tersebut semakin panjang. Sehingga dalam penelitian ini juga dilakukan untuk membuat rute yang dilewati semakin sederhana dan optimum.

5.1.2 Perkiraan dan Peramalan Jumlah Muatan Ekspor Impor

Untuk menghitung perkiraan jumlah muatan, acuan yang digunakan ada 2, yang pertama adalah dengan data jumlah unit ekspor - Indonesia ke negara tujuan (Malaysia, Singapura, Thailand, Filipina, dan Vietnam) dan yang kedua menggunakan nilai dari ekspor - impor kendaraan antar negara. Kedua acuan tersebut menggunakan data tahun 2015 – tahun 2018 yang akan diproyeksikan sampai tahun 2025. Berikut merupakan data jumlah unit ekspor Indonesia ke negara tujuan di tahun 2015 – 2018 :

Tabel 5.2 Jumlah Unit Ekspor Indonesia ke Negara Tujuan Tahun 2015 – 2018 (Unit)

Tujuan/Tahun	2015	2016	2017	2018
Thailand	4.985	6.621	11.540	16.921
Filipina	37.357	64.176	72.185	85.424
Malaysia	4.812	5.809	4.766	4.542
Vietnam	-	782	12.222	17.798
Singapore	350	275	1.059	1.532
Jumlah	47.504	77.663	101.772	126.217

Tabel 5.3 Jumlah Unit Impor Indonesia dari Negara Asal Tahun 2015-2018 (Unit)

Asal / Tahun	2015	2016	2017	2018
Thailand	62.180	62.562	45.983	40.989
Filipina	258	162	22	-
Malaysia	3.955	3.539	1.849	1.346
Vietnam	-	-	-	-
Singapore	10.953	2.233	884	-
Jumlah	77.346	68.496	48.738	42.335

Berdasarkan Tabel 5.2 total unit ekspor Indonesia semakin meningkat tiap tahunnya, namun terdapat negara yang mengalami penurunan jumlah ekspor seperti Malaysia. Kedua, contoh data nilai ekspor – impor antar negara sebagai berikut :

Tabel 5.4 Nilai Ekspor – Impor Kendaraan Antar Negara (Juta \$)

Dari/ke	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	13,10	177,00	64,70	1.520,00	241	2.015,80
Singapore	6,17	-	17,00	18,00	0,58	0,31	42,06
Thailand	321,00	81,20	-	71,60	2.040,00	0	2.513,80
Malaysia	12,10	3,40	196,00	-	10,80	0	222,35
Filipina	0,15	0,11	0,63	1,18	-	0,39	2,46
Vietnam	-	0,04	0	-	1,44	-	1,48
Total	339,42	97,86	390,63	155,48	3.572,82	241,75	4.797,96

Berdasarkan Tabel 5.4 dapat dilihat bahwa nilai ekspor Indonesia ke Singapura pada tahun 2017 sebesar \$13,1 Juta, sedangkan ekspor Singapura ke Indonesia (impor Indonesia dari Singapura) pada tahun 2017 sebesar \$6,17 Juta.

Dengan didapatkannya data nilai ekspor – impor tersebut akan dicari berapa jumlah unit ekspor – impor antar negara, karena data yang masih diketahui untuk jumlah unit hanya ekspor – impor di Indonesia. Untuk mencari hal tersebut, maka hal pertama yang perlu dilakukan adalah mencari persentase dari seluruh nilai tersebut terhadap jumlah semua nilai, contoh :

- Nilai ekspor Singapore ke Thailand = \$17 Juta

- Total nilai ekspor impor = \$4.797,96 Juta

Persentase ekspor Singapore ke Thailand = $\frac{\$17 Juta}{\$4.797,96 Juta} \times 100\% =$

0,354%

Dengan cara seperti itu maka akan didapatkan seluruh persentase untuk nilai ekspor impor, dan hasil perhitungan persentase tersebut seperti berikut :

Tabel 5.5 Nilai Persentase Ekspor Impor Antar Negara

Dari/ke	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	0,273%	3,689%	1,348%	31,680%	5,023%	42,01%
Singapore	0,129%	-	0,354%	0,375%	0,012%	0,006%	0,88%
Thailand	6,690%	1,692%	-	1,492%	42,518%	0,000%	52,39%
Malaysia	0,252%	0,071%	4,085%	-	0,225%	0,001%	4,63%
Filipina	0,003%	0,002%	0,013%	0,025%	-	0,008%	0,05%
Vietnam	0,000%	0,001%	0,000%	0,000%	0,030%	-	0,03%
Total	7,07%	2,04%	8,14%	3,24%	74,47%	5,04%	100,00%

Setelah didapatkan nilai persentase, selanjutnya adalah menyamakan persentase dari kedua data yang ada dengan membuat acuan pada salah satu data. Pada hal ini peneliti menggunakan acuan dari total jumlah persentase pada ekspor Indonesia, yaitu

- 42,01%. Sehingga untuk mencari persentase berdasarkan jumlah unit ekspor yang telah diketahui, maka yang perlu dilakukan adalah :
 - Mencari persentase dari jumlah unit ekspor Indonesia ke negari lain dengan total jumlah ekspor Indonesia, contoh ekspor Indonesia ke Thailand = $\frac{11.540\,unit}{101.772\,unit} \times 100\% = 11,34\%$. Dengan cara tersebut maka akan didapatkan persentase sebagai berikut :

Tabel 5.6 Persentase Ekspor Indonesia Berdasarkan Data Jumlah Unit

Tujuan/Tahun	2017
Thailand	11,34%
Filipina	70,93%
Malaysia	4,68%
Vietnam	12,01%
Singapore	1,04%
Jumlah	100,00%

- Setelah didapatkan persentase tersebut, selanjutnya mencari persentase berdasarkan total persentase ekspor Indonesia pada Tabel 5.5, contoh perhitungan untuk ekspor ke Thailand sebagai berikut : $\frac{11,34\%}{100\%} \times 42,01\% = 4,76\%$. Berikut merupakan tabel hasil dari perhitungan ini :

Tabel 5.7 Persentase Setelah Dilakukan Perubahan Nilai

Tujuan/Tahun	2017
Thailand	4,76%
Filipina	29,80%
Malaysia	1,97%
Vietnam	5,05%
Singapore	0,44%
Jumlah	42,01%

- Kemudian, nilai dari Tabel 5.7 dimasukkan untuk merubah nilai pada Tabel 5.5 sehingga menjadi :

Tabel 5.8 Nilai Persentase Ekspor Impor Antar Negara Setelah Perubahan Nilai

Dari/ke	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	0,437%	4,764%	1,968%	29,800%	5,046%	42,01%
Singapore	0,129%	-	0,354%	0,375%	0,012%	0,006%	0,88%
Thailand	6,690%	1,692%	-	1,492%	42,518%	0,000%	52,39%
Malaysia	0,252%	0,071%	4,085%	-	0,225%	0,001%	4,63%
Filipina	0,003%	0,002%	0,013%	0,025%	-	0,008%	0,05%
Vietnam	0,000%	0,001%	0,000%	0,000%	0,030%	-	0,03%
Total	7,07%	2,20%	9,22%	3,86%	72,58%	5,06%	100,00%

- Setelah mendapatkan nilai di tabel Tabel 5.8 , maka akan dicari jumlah unit ekspor – impor yang belum diketahui. Jika ingin mencari ekspor Thailand (TH) ke Singapura (SG), maka dilakukan cara = $\frac{Persentase\ ekspor\ TH-SG}{Persentase\ Ekspor\ ID-SG} \times Jumlah\ Ekspor\ ID-SG$. Jika mencari ekspor Singapura ke Thailand = $\frac{Persentase\ ekspor\ SG-TH}{Persentase\ Ekspor\ ID-TH} \times Jumlah\ Ekspor\ ID-TH$. Jadi jika ingin mencari jumlah

ekspor dari negara A ke negara B, penyebut yang digunakan adalah perrsentase ekspor Indonesia (ID) ke negara B dan jumlah ekspornya menggunakan nnilai jumlah ekspor dari Indonesia ke negara B. Setelah dilakukan perhitungan tersebut, maka didapatkan jumlah unit ekspor impor antar negara seperti berikut:

Tabel 5.9 Jumlah Unit Ekspor Impor Antar Negara Tahun 2017 (Unit)

Dari/ke	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	1.059	11.540	4.766	72.185	12.222	101.772
Singapore	884	-	858	909	29	16	2.696
Thailand	45.983	4.100	-	3.615	102.994	-	156.691
Malaysia	1.849	172	9.895	-	545	3	12.464
Filipina	22	6	32	60	-	20	138
Vietnam	-	2	-	-	73	-	75
Total	48.737	5.338	22.326	9.349	175.826	12.260	273.836

Dengan menggunakan cara tersebut peneliti bisa mendapatkan perkiraan jumlah unit ekpor – impor untuk tahun tahun berikutnya ataupun sebelumnya. Kemudian, untuk mencari peramalan jumlah muatan ekspor impor di tahun 2025, maka perlu dilakukan seperti pada subbab 3.3.3 . Hal yang perlu dicari dengan menggunakan cara subbab 3.3.3 adalah jumlah unit ekspor Indonesia ke negara lain dan juga nilai ekspor impor kendaraan antar negara pada tahun 2025. Salah satu contoh perhitungannya sebagai berikut :

- Menentukan hal apa yang akan dicari, pada contoh kali ini akan mencari jumlah unit ekspor Indonesia ke Thailand pada tahun 2025.
- Gunakan Rumus 3.5, yaitu a = y bx, Rumus 3.6, yaitu $a = y_r bx_r$ dan Rumus 3.7, yaitu $b = \frac{\sum (x x_n)(y y_n)}{\sum (x x_n)^2}$ pada subbab 3.3.3.
- Mencari nilai yang masih belum diketahui, seperti nilai x dan y, dimana nilai tersebut merupakan rata rataa dari setiap variabel yang diketahui. Dan nilai tersebut adalah x = 2016,5 dan y = 10.017 unit.
- Setelah didapatkan x dan y, maka gunakan Rumus 3.7, untuk mendapatkan nilai b. Dan niali b didapatkan sebesar 4.072,7 unit. Setelah nilai b didapatkan maka masukkan ke Rumus 3.6 untuk mendapatkan nilai a. Setelah mendapatkan nilai a ini lalu gunakan nilai a dan b pada Rumus 3.5 untuk mendapatkan nilai y yang merupakan jumlah unit ekspor Indonesia ke Thailand pada tahun 2025 dan nilainya sebesar 44.635 unit.

Dengan cara perhitungan diatas maka akan digunakan kembali sampai mendapatkan seluruh jumlah unit ekspor dan impor Indonesia pada tahun 2025 serta nilai ekspor impor antar negara pada tahun 2025. Lalu setelah didapatkan kedua data diatas, selanjutnya mencari jumlah unit ekspor impor antar negara seperti yang telah dijelaskan

sebelumnya. Berikut merupakan hasil akhir peramalan jumlah unit ekspor impor antar negara pada tahun 2025 :

Tabel 5.10 Jumlah Unit Ekspor Impor Antar Negara Tahun 2025 (Unit)

Dari/ke	Indonesia	Indonesia Singapore		Malaysia	Filipina	Vietnam	Total
Indonesia	-	4.485	44.635	3.407	194.164	62.809	309.500
Singapore	-	-	841	1.339	-	5	2.185
Thailand	-	11.554	-	-	85.488	8	97.050
Malaysia	-	110	5.044	-	505	0	5.660
Filipina	-	-	-	-	-	-	-
Vietnam	-	-	-	-	105	-	105
Total	-	16.149	50.520	4.746	280.263	62.823	414.501

Selain menghitung total jumlah unit ekspor impor antar negara diperlukan juga mencari jumlah muatan yang akan diangkut oleh kapal. Hal ini perlu dilakukan karena pada penelitian ini kapal akan melakukan bongkar muat di setiap titik pelabuhan, sehingga hal ini dilakukan agar muatan yang akan dibawa oleh kapal tidak melebihi kapasitas kapal. Untuk menghitung jumlah unit yang harus dibawa ini, caranya sama seperti mencari jumlah unit ekspor impor antar negara, hanya saja berbeda pada perkalian jumlah unitnya, sehingga rumusnya berubah menjadi $\frac{\textit{Persentase ekspor negara asal-negara tujuan}}{\textit{Xapasitas Kapal}} \times \textit{Kapasitas Kapal}. \text{ Jadi jika ingin mencari}$ berapa proporsi muatan yang dibawa oleh kapal MV Polaris Leader (untuk spesifikasi dapat dilihat pada subbab 4.6.1) dari Indonesia ke Singapura dalam satu kali perjalanan, hasilnya adalah $\frac{0.437\%}{100\%} \times 5.195 \ unit = 43 \ unit$. Dan berikut merupakan tabel muatan yang terbawa oleh kapal MV Polaris Leader dalam satu kali perjalanan :

Tabel 5.11 Proporsi Jumlah Muatan pada MV Polaris Leader Tahun 2025 (Unit/Trip)

Dari/Ke	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	43	424	32	1.842	596	2.937
Singapore	-	-	21	28	-	0	49
Thailand	-	156	-	-	1.910	1	2.066
Malaysia	-	1	127	-	11	0	140
Filipina	-	-	-	-	-	0	-
Vietnam	-	0	-	-	2	-	2
Total	_	200	572	60	3.766	597	5.195

Jadi berdasarkan tabel diatas, untuk proporsi jumlah muatan yang akan dibawa oleh kapal MV Polaris Leader untuk Indonesia – Singapore sebesar 43 unit. Dan jumlah unit yang dibawa dari Indonesia untuk ke seluruh negara tersebut sebesar 2.937 unit.

5.1.3 Biaya Sewa Kapal (TCH)

Dalam perhitungan penelitian ini, tentu saja terdapat biaya transportasi laut yang mana dalam penelitian ini menggunakan kapal sewa dan jenis sewa yang digunakan adalah *time charter hire*. Sehingga untuk menghitung biaya sewa kapal tersebut

menggunakan grafik yang berada pada Gambar 4.18. Dari gambar grafik tersebut maka akan dicari nilai sewa kapal berdasarkan spesifikasinya. Berdasarkan Gambar 4.18 informasi yang didapatkan adalah:

Tabel 5.12 Biaya Sewa Kapal (€ per hari)

Kapasitas (Unit)	Tahun									
Kapasitas (OIIIt)	2010	2011	2012	2013	2014	2015				
1.300	5.750	5.450	5.500	5.250	5.500	5.700				
1.800	9.000	9.000	7.250	7.000	7.750	8.700				
3.000	12.000	11.000	10.000	9.500	10.500	13.000				
3.500	14.500	10.500	9.500	10.500	12.000	15.200				

Untuk mencari sewa kapal pada tahun 2025, maka diperlukan peramalan nilai biaya sewa kapal. Cara untuk mendapatkan nilai sewa kapal tersebut sama seperti ketika ingin mencari jumlah muatan pada subbab 5.1.2. Setelah mendapatkan nilai tersebut, dilakukan perubahan nilai mata uang dimana $1 \in Rp 15.600,00$. Sehingga nilai yang didapatkan adalah:

Tabel 5.13 Peramalan Biaya Sewa Kapal Tahun 2025 (Rp per hari)

Kapasitas (Unit)	Tahun
Kapasitas (Oilit)	2025
1.300	84.240.000
1.800	95.977.143
3.000	188.314.286
3.500	237.862.857

Selanjutnya mencari persamaan berdasarkan tabel tersebut. Hal ini dilakukan agar bisa mendapatkan biaya sewa sesuai dengan spesifikasi kapal yang dibutuhkan. Cara untuk mencari persamaan sama seperti mencari nilai peramalan pada penjelasan sebelumnya, Sehingga persamaan untuk nilai y adalah y = 71.461x - 19.907.743. Disini variabel x merupakan kapasitas kapal dan variabel y merupakan harga sewa kapal. Maka nilai sewa kapal berdasarkan spesifikasi kapal yang akan digunakan pada subbab 4.6 adalah:

Tabel 5.14 Daftar Peramalan Biaya Sewa Kapal pada Tahun 2025

No	Nama Kapal	Kapasitas (Unit)	TCH (Rp/Hari)	TCH (RP/tahun)
1	Polaris Leader	5.195	Rp 351.331.967	Rp 128.236.168.044
2	Metis Leader	6.153	Rp 419.791.571	Rp 153.223.923.505
3	Grand Vision	5.060	Rp 341.684.737	Rp 124.714.929.017
4	European Highway	5.064	Rp 341.970.581	Rp 124.819.262.025
5	Straits Challenger	4.368	Rp 292.233.750	Rp 106.665.318.601
6	Canopus Leader	5.195	Rp 351.331.967	Rp 128.236.168.044
7	Tianjin Highway	5.036	Rp 339.969.674	Rp 124.088.930.968

5.1.4 Biaya Pelayaran (VC)

Selain biaya sewa kapal, biaya pelayaran merupakan salah satu biaya yang perlu dihitung dalam perhitungan biaya transportasi laut dengan sistem *time charter* hire. Biaya pelayaran sendiri yang dihitung dalam penelitian ini adalah biaya pelabuhan, biaya bahan bakar dan biaya air tawar.

Dalam perhitungan biaya pelayaran terdapat beberapa asumsi dan sumber yang peneliti akan gunakan dalam perhitungan yaitu :

Kecepatan bongkar muat di masing masing pelabuhan
 Dalam asumsi ini, peneliti hanya mendapatkan data di salah satu pelabuhan untuk kecepatan bongkar muat yaitu pelabuhan di Indonesia dengan kecepatan bongkar muat 200 unit / jam dimana data ini berasal dari web pelabuhan Indonesia yaitu www.indonesiacarterminal.com
 Dan kecepatan tersebut akan digunakan untuk seluruh pelabuhan.

- Biaya penanganan muatan

Peneliti menggunakan biaya penanganan muatan satu pelabuhan yang dimana akan dipakai juga oleh seluruh pelabuhan. Biaya penanganan muatan yang dipakai berasal dari pelabuhan Malaysia sebesar Rp 67.000 / unit. Data ini didapatkan dari peraturan pemerintah Malaysia

- Harga bahan bakar

Untuk harga bahan bakar per liternya peneliti menggunakan sumber data dari web www.infohargabbm.com dimana untuk biaya bahan bakar mesin bantu sebesar Rp 11.400 / liter dan mesin utama sebesar Rp. 9.200 / liter.

- Kebutuhan air tawar

Dalam penentuan jumlah kebutuhan air tawar ini peneliti mendapatkan dari peraturan menteri dimana kebutuhannya sebesar 200 liter/hari.orang.

Setelah didapatkan asumsi yang dibutuhkan selanjutnya dilakukan perhitungan biaya pelayaran yang akan dijelaskan sebagai berikut :

a. Biaya Bahan Bakar Mesin (FC) dan Air Tawar

Biaya bahan bakar merupakan salah satu komponen biaya yang penting dalam perhitungan biaya pelayaran. Dalam perhitungan biaya bahan bakar mesin ini dibagi menjadi 2 bagian yang dibagi berdasarkan faktor waktu yang digunakan, yaitu waktu pelayaran dan waktu pelabuhan. Untuk menghitung biaya bahan bakar tersebut, dalam penelitian ini dilakukan cara sebagai berikut :

- Mengumpulkan data yang akan digunakan dalam perhitungan. Data – data tersebut dapat dilihat pada subbab 3.3.1 dan rumus yang akan digunakan adalah Rumus 3.1 yaitu $FC_{S.ME.j.k-l} = \frac{P_{ME.j} \times SFOC_{ME.j} \times ST_{k-l} \times p_{MFO}}{1000 \times \rho_{MFO}}$ yang merupakan rumus untuk menghitung biaya bahan bakar mesin utama karena pengaruh waktu perjalanan, Rumus 3.2 yaitu $FC_{S.AE.j.k-l} = \frac{P_{AE.n} \times SFOC_{AE.j} \times ST_{k-l} \times p_{HSD}}{1000 \times \rho_{HSD}}$ yang merupakan rumus untuk menghitung biaya bahan bakar mesin bantu karena pengaruh waktu pelayaran, dan Rumus 3.3 yaitu $FC_{PT} = \frac{P_{AE.n} \times SFOC_{AE.j} \times (PT_{B.n} + PT_{M.n} + TT) \times p_{HSD}}{1000 \times \rho_{HSD}}$ yang merupakan rumus untuk menghitung

biaya bahan bakar karena pengaruh waktu pelabuhan.

- Sesuai dengan keterangan dari masing masing rumus, maka data yang telah didapatkan adalah daya mesin utama dan bantu, waktu bongkar dan muat, waktu waktu di pelabuhan. Sedangkan data yang belum didapatkan adalah :
 - 1. Waktu Perjalanan, waktu ini dapat dihitung dengan Jarak negara asal ke negara tujuan kecepatan kapal
 - 2. Konsumsi bahan bakar untuk mesin utama dan bantu. Untuk data ini peneliti mendapatkan nilainya berdasarkan katalog mesin Wingd dan juga katalog mesin Hyundai dengan melihat karakterisik putaran serta daya mesin dari kapal tersebut. Berikut merupakan data konsumsi bahan bakar mesin :

Tabel 5.15 Konsumsi Bahan Bakar Mesin tiap Kapal

Kapal	SFOC ME (g/kWh)	SFOC AE (g/kWh)
Polaris Leader	159	183
Metis Leader	157	183
Grand Vision	157	183
European Highway	157	183
Straits Challenger	159	183
Canopus Leader	159	183
Tianjin Highway	155	183

3. Massa jenis dari bahan bakar setiap mesin. Jenis bahan bakar untuk mesin utama menggunakan MFO dan mesin bantu menggunakan HSD. Lalu, untuk data ini peneliti menggunakan data dari penelitian lainnya dan didapatkan nilainya untuk MFO sebesar 0,85 g/cm³ dan HSD sebesar 0,83 g/cm³.

- 4. Tarif bahan bakar mesin. Data ini peneliti dapatkan dari website http://www.infohargabbm.com/ dan didapatkan biaya untuk HSD sebesar Rp 11.400 per liter dan biaya MFO sebesar Rp 9.200 per liter.
- Setelah data terkumpul, maka data tersebut dimasukkan sesuai dengan rumus yang ada, sehingga contoh hasil yang akan didapatkan sebagai berikut :

Tabel 5.16 Biaya Bahan Bakar Mesin Utama (a) dan Mesin Bantu (b) karena Waktu Pelayaran dan Biaya Bahan Bakar karena Waktu Pelabuhan (c)

	Biaya BBM ME (Rp/trip)										
Asal/Tujuan	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore		238.454.896	596.137.240	890.231.612	733.532.680	1.501.130.346	1.526.111.335				
Port Kelang			794.849.654	1.128.686.508	971.987.576	1.739.585.242	1.764.566.231				
Jakarta				1.412.561.384	1.171.835.489	1.894.013.175	1.738.449.742				
Laem Chabang					719.906.686	1.506.807.843	1.598.783.303				
Ho Chi Minh						911.806.103	1.018.543.056				
Hai Phong							1.112.789.515				
Bauan											

(a)

	Biaya BBM AE (Rp/trip)										
Asal/Tujuan	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore		319.312.318	798.280.796	1.192.099.322	982.265.513	2.010.147.071	2.043.598.838				
Port Kelang			1.064.374.395	1.511.411.641	1.301.577.831	2.329.459.390	2.362.911.156				
Jakarta				1.891.545.353	1.569.191.965	2.536.252.129	2.327.938.855				
Laem Chabang					964.019.095	2.017.749.746	2.140.913.068				
Ho Chi Minh						1.220.989.484	1.363.919.760				
Hai Phong							1.490.124.153				
Bauan											

(b)

Negara	Fuel	Cost (Rp/trip)
Malaysia	Rp	130.201.547
Thailand	Rp	526.895.117
Filipina	Rp	710.338.021
Singapore	Rp	138.187.434
Vietnam	Rp	195.113.729
Indonesia	Rp	575.398.384

Sedangkan untuk menghitung biaya air tawar menggunakan Rumus 3.4 yang ada pada subbab 3.3.2, yaitu $AT = \frac{KAT \times ST_{k-l} \times JAK_j \times p_{AT}}{24 \times 1000}$. Data – data yang terlah diketahui untuk menghitung biaya air tawar adakah waktu pelayaran dan jumlah awak kapal. Untuk data yang belum diketahui adalah konsumsi air tawar dan harga air tawar. Untuk konsumsi air tawar, peneliti menggunakan nilai asumsi sebesar 200 liter air per hari. Sednangkan untuk harga air tawar, peneliti mencari harga di internet dan mendapatkan harga sebesar Rp18.000,00 per ton. Setelah mendapatkan semua datanya, maka tinggal menggunakan Rumus 3.4 untuk mendapatkan biayanya. Berikut merupakan contoh biaya air tawar oleh MV Polaris Leader :

Tabel 5.17 Biaya Air Tawar MV Polaris Leader (Rp / Trip)

	Biaya Air Tawar										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore		36.799	91.998	137.383	113.201	231.659	235.514				
Port Kelang			122.664	174.182	150.000	268.458	272.313				
Jakarta				217.991	180.841	292.290	268.283				
Laem Chabang					111.098	232.535	246.729				
Ho Chi Minh						140.713	157.185				
Hai Phong							171.729				
Bauan											

b. Biaya Pelabuhan

Biaya — biaya pelabuhan merupakan salah satu komponen yang akan mempengaruhi dalam biaya pelayaran. Didalam biaya pelabuhan sendiri terdapat beberapa komponen seperti biaya sandar, biaya pandu, biaya tunda dan biaya — biaya lainnya. Tarif pelabuhan sendiri berbeda — beda setiap pelabuhan. Tarif dari setiap pelabuhan akan ditampilkan pada bagian lampiran. Berikut merupakan contoh tarif pelabuhan di Indonesia dan di Malaysia :

Tabel 5.18 Tarif Pelabuhan di Indonesia (a) dan Malaysia (b)

Item	Keterangan	Biaya	satuan	
Labuh		1.500	Rp / GT / kunjungan	
Sandar		800	Rp / GT / etmal	
Pandu	Tarif tetap	1.053.000	Rp / gerakan / kapal	
	Tarif variabel	300	Rp / GT / kapal / gerakan	
Tunda	Tarif tetap	20.539.000	Rp/ kapal / jam	
	Tarif variabel	70	Rp / GT / jam	(a)

Item	Keterangan	Biaya	satuan	
Sandar	<240 Jam	30.000	Rp / 100 GT	
	>240 Jam	5.000	Rp / 100 GT/24 Jam	
Pandu		10.000	Rp/ meter LOA. Gerakan	
Tunda		31.900	Rp/ meter LOA . Gerakan	
Labuh		3.000	Rupiah / GT / Call	(b

Untuk menghitung biaya pelabuhan, dibutuhkan beberapa hal lagi agar bisa menghitungnya, seperti waktu kapal di pelabuhan dimana waktu tersebut bergantung pada jumlah muatan yang dibawa dan kecepatan bongkar muat tiap pelabuhan dan juga waktu tunggu seperti *idle time* (IT) dan *approach time* (AT) dimana pada penelitian ini jumlah waktu tersebut diasumsikan nilainya sebesar 3 jam. Untuk menghitung waktu bongkar muat kapal bergantung pada kecepatan bongkar muat di setiap pelabuhan dimana kecepatan bongkar muat di pelabuhan sesuai dengan yang diasumsikan.

Setelah diketahui kecepatan bongkar muat di setiap pelabuhan, selanjutnya mencari waktu bongkar muat kapal di tiap pelabuhan. Untuk menghitung waktu bongkar

muat kapal perhitungan dapat dilakukan dengan $\frac{Jumlah unit yang akan dibongkar atau muat}{Kecepatan Bongkar muat di pelabuhan}$

- . Contoh perhitungan untuk waktu bongkar muat kapal:
 - Menentukan kapal dan rutenya, pada contoh kali ini kapal yang digunakan adalah MV Polaris Leader dan rute yang akan dilalui adalah Indonesia ke Singapura.
 - Untuk menghitung waktu bongkar muatan maka kecepatan bongkar muat yang dipakai adalah pelabuhan Singapura, sedangkan untuk muat muatan menggunakan pelabuhan di Indonesia. Untuk jumlah muatan yang dibongkar / muat oleh kapal MV Polaris Leader dapat dilihat pada Tabel 5.11 yaitu sebesar 54 unit.
 - Dengan menggunakan rumus pada penjelasan sebelumnya, maka didapatkan waktu bongkar di Singapura selama 0,14 jam dan waktu muat di Indonesia selama 0,17 jam. Dan jika ditotal waktu untuk bongkar muat muatan Indonesia ke Singapura oleh kapal MV Polaris Leader selama 0,31 jam atau sekitar 18 menit. Berikut merupakan tabel waktu bongkar dan muat oleh kapal MV Polaris Leader di tahun 2025:

Tabel 5.19 Waktu Bongkar dan Muat Kapal MV Polaris Leader (jam)

	Port Time (Bongkar)										
Dari/Ke	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam					
Indonesia		0,21	2,12	0,16	9,21	2,98					
Singapore	0,00		0,11	0,14	0,00	0,00					
Thailand	0,00	0,78		0,00	9,55	0,00					
Malaysia	0,00	0,01	0,64		0,06	0,00					
Filipina	0,00	0,00	0,00	0,00		0,00					
Vietnam	0,00	0,00	0,00	0,00	0,01						
Total	0,00	1,00	2,86	0,30	18,83	2,98					

	Port Time (Muat)									
Dari/ke	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total			
Indonesia		0,21	2,12	0,16	9,21	2,98	14,68			
Singapore	0,00		0,11	0,14	0,00	0,00	0,25			
Thailand	0,00	0,78		0,00	9,55	0,00	10,33			
Malaysia	0,00	0,01	0,64		0,06	0,00	0,70			
Filipina	0,00	0,00	0,00	0,00		0,00	0,00			
Vietnam	0,00	0,00	0,00	0,00	0,01		0,01			

Setelah mendapatkan waktu bongkar-muat kapal, maka selanjutnya bisa dilakukan perhitungan biaya pelabuhan sesuai dengan komponen komponen yang ada di setiap pelabuhan. Hal ini dilakukan sampai semua kapal terhitung biaya pelabuhannya. Dan berikut adalah contoh hasil dari biaya pelabuhan untuk kapal MV Polaris Leader adalah

Tabel 5.20 Biaya Pelabuhan MV Polaris Leader

Negara	Biay	a Pelabuhan
Malaysia	Rp	186.401.720
Thailand	Rp	170.529.250
Filipina	Rр	90.854.750
Singapore	Rp	54.824.352
Vietnam	Rр	153.267.540
Indonesia	Rp	201.011.680

5.1.5 Biaya Penanganan Muatan (CHC)

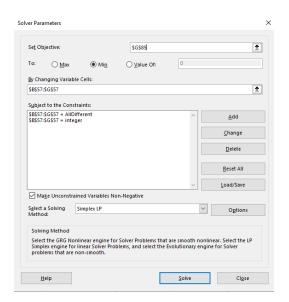
Dalam subbab ini, diketahui bahwa dalam setiap penanganan muatan di pelabuhan memiliki biaya. Sehingga semua unit yang akan dibongkar atau muat di suatu pelabuhan akan terkena tarif penangan muatan tersebut. Dan tarif yang akan digunakan berdasarkan pada data asumsi yang telah dijelaskan sebelumnya, sehingga tarif untuk masing masing negara menjadi :

Tabel 5.21 Tarif Penanganan Muatan (Cargo Handling Cost) di Setiap Negara

Negara	Cargo I	Handling Cost
ivegara	(Rp	per unit)
Indonesia	Rp	67.000
Singapore	Rp	67.000
Thailand	Rp	67.000
Filipina	Rp	67.000
Malaysia	Rp	67.000
Vietnam	Rp	67.000

Beberapa tarif tarif tersebut terdapat tarif asumsi yang dimana memiliki acuan sesuai dengan tarif yang ada. Tarif yang menjadi acuan adalah tarif di Malaysia dan tarif di Indonesia. Lalu untuk mencari berapa biaya penanganan muatannya dilakukan dengan cara menjumlahkan semua jumlah muatan yang dibongkar maupun muat di pelabuhan tersebut untuk setiap kapal. Contoh menghitung biaya penanganan muatan satu kali perjalanan oleh kapal MV Polaris Leader:

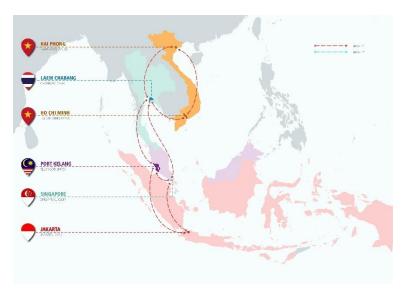
- Mencari berapa muatan yang dibawa oleh MV Polaris Leader. Jumlah muatan ini dapat dilihat pada Tabel 5.11.
- Menjumlahkan semua muatan yang dibawa dari dan ke Indonesia sebagai contoh. Disini untuk jumlah muatan yang dibawa dari Indonesia sebanyak 2.937 unit daan jumlah muatan yang dibawa ke Indonesia sebanyak 0 unit. Hasil dari penjumlahan keduanya sebesar 2.937 unit.
- Total tersebut kemudian dikalikan dengan tarif penanganan muatan di Indonesia sebesar Rp 67.000 / unit (dapat dilihat pada Tabel 5.21). Maka biaya penanganan


muatan MV Polaris Leader di Indonesia untuk satu kali perjalanan sebesar Rp 199.191.000. Lalu cari nilai *CHC* untuk di setiap negara dan pada kapal lainnya.

5.2 Pembuatan Model Optimasi

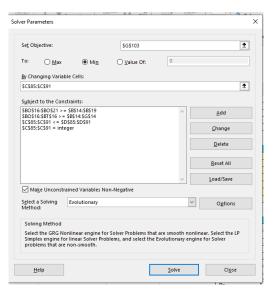
Setelah didapatkan seluruh data untuk model optimasi, langkah selanjutnya adalah membuat model optimasi tersebut. Dalam penelitian ini terdapat 3 skenario model dalam pemilihan rute dan armada kapal yang akan digunakan. Skenario tersebut adalah *multiport* 6 titik, *multiport* 5 titik dan *multiport* 6-5 titik. *Multiport* yang digunakan dalam penelitian ini adalah jenis *multiport circle*. Pemilihan model *multiport* ini dilakukan dengan melihat bagaimana kesiapan muatan yang akan dikirim tersebut. Berdasarkan pengamatan peneliti dimana ketika mengunjungi pelabuhan khusus kendaraan di Indonesia, kesiapan pada muatan tersebut telah ada sebelum kapal bersandar di pelabuhan tersebut. Sehingga muatan untuk kapal tersebut telah siap untuk dikirim sebelum kapal bersandar dan pada pengamatan peneliti muatan tersebut telah dikirim secara berkala pada seminggu sebelum kapal bersandar. Berdasarkan pengamatan tersebut peneliti membuat skema *multiport* dimana muatan yang akan dikirim kesemua negara tersebut telah siap untuk dikirim sebelum kapal bersandar.

5.2.1 Multiport 6 Titik


Dalam pengerjaan model *multiport* 6 titik ini memiliki 2 tahapan dimana tahapan yang pertama adalah mencari jarak rute minimum dan yang kedua adalah mencari armada kapal yang akan dipakai dengan jumlah frekuensi yang akan dipakai. Dalam tahapan untuk mencari jarak rute yang minimum, pembuatan modelnya dapat dilihat pada subbab 3.3.4 . Dimana dalam skenario ini, semua titik akan terlewati dan tidak ada pengulang titik dalam satu kali perjalanan. Pencarian rute minimum ini dipilih karena semakin pendek jarak rute yang ditempuh maka biaya yang dikeluarkan juga akan menjadi lebih kecil.

Gambar 5.1 Model Solver untuk Optimasi rute

Seperti dijelaskan dalam subbab 3.3.4 bagian untuk oprimasi rute, maka nilai objektif yang akan dicari adalah minimum jarak rute yang terlewati. Sedangkan untuk variabel yang akan berubah nilainya adalah titik rute. Dalam program *Microsoft Excel* peneliti menggunakan *tools solver* dalam membantu peneliti menghasilkan nilai yg optimum.


Dari gambar 5.1, \$G\$85 merupakan *objective function* dimana nilai tersebut merupakan total jarak rute yang terpilih. Untuk model matematis dapat dilihat pada subbab 3.3.4. Sedangkan untuk *changing variable* merupakan nilai variabel yang akan berubah ubah berdasarkan *objective function* yang diinginkan yang berada pada *cell* \$B\$57:\$G\$57. *Changing variable* tersebut adalah urutan negara yang akan terpilih. Dan untuk *constraint* nya adalah nilai dari *changing variable* tersebut harus bersifat integer dan nilai dari setiap sel harus berbeda-beda. Hal ini diperlukan karena diharapkan rute yang terpilih tidak memiliki nilai sama di titik yang berbeda.

Gambar 5.2 Hasil Optimasi Rute Skenario Multiport 6 Titik

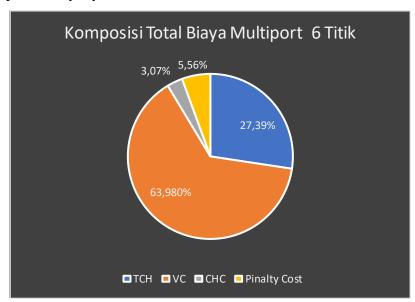
Hasil dari optimasi rute ini adalah 1-3-2-4-6-5-1. Nilai tersebut merupakan nilai dari variabel *i* dimana sesuai dengan subbab 3.3, nilai variabel *i* dapat berubah sesuai dengan apa yang dibutuhkan. Pada optimasi rute ini, nilai variabel *i* dapat berubah menjadi variabel *m* dan *k*, sehingga rute tersebut berubah menjadi Indonesia – Malaysia – Singapura – Thailand – Vietnam – Filipina – Indonesia jika menjadi variabel *m* dan menjadi Jakarta – Port Klang – Singapura – Laem Chabang – Ho Chi Minh – Hai Phong – Bauan – Jakarta jika menjadi variabel *k*. Dan untuk panjang rute tersebut sebesar 5.624 nm.

Setelah mendapatkan rute yang optimum, selanjutnya mencari frekuensi armada kapal yang akan dipilih. Model matematis yang digunakan ada pada subbab 3.3.4. Jika dilihat menggunakan tools *solver*, maka akan terlihat seperti berikut :

Gambar 5.3 Model Solver untuk Optimasi Frekuensi Armada Kapal

Gambar diatas menunjukkan bahwa *objective function* terdapat pada *cell* \$G\$102 dimana *cell* tersebut merupakan total biaya yang dikeluarkan. *Objective function* dicari yang paling minimum. Untuk *changing variable*-nya merupakan jumlah frekuensi kapal yang akan ditentukan. Dan untuk *constraint* atau batasannya adalah nilai dari frekuensi kapal yang terpilih kurang dari sama jumlah frekuensi minimum, nilai dari frekuensi kapal harus *integer* atau bilangan bulat, dan yang terakhir adalah jumlah kapasitas muatan yang terkirim lebih besar sama dengan jumlah muatan yang harus dibawa.

Tabel 5.22 Jumlah Frekuensi Kapal yang Terpilih Berdasarkan Optimasi


Kapal	Ya/Tidak	Frekuensi	Frekuensi Maksimal	
Tianjin Highway	1	25	26	
Polaris Leader	0	0	25	
Grand Vision	1	23	26	
Straits Challenger	0	0	25	
Metis Leader	1	24	24	
European Highway	1	26	26	
Canopus Leader	1	5	26	

Jadi berdasarkan hasil optimasi, kapal yang terpilih adalah MV Tianjin Highway dengan frekuensi 25/26, MV Grand Vision dengan frekuensi 23/26, MV Metis Leader dengan frekuensi 24/24, MV European Highway dengan frekuensi 26/26, dan terakhir MV Canopus Leader dengan frekuensi 5/26. Untuk jumlah kapasitas muatan yang terbawa oleh kapal kapal tersebut sebagai berikut:

Tabel 5.23 Jumlah Kapasitas Muatan yang Terbawa Oleh Kapal Optimasi

Jumlah Kapasit	lumlah Kapasitas Muatan yg Terbawa										
Asal/Tujuan	Indonesia	Singapura	Thailand	Malaysia	Filipina	Vietnam	Total				
Indonesia		4.485	44.641	3.408	194.190	62.818	309.541				
Singapura	-		2.238	2.936	-	40	5.214				
Thailand	-	16.427		-	201.337	57	217.821				
Malaysia	-	157	13.418		1.190	1	14.766				
Filipina	-	-	-	-		-	-				
Vietnam	-	1	-	-	248		249				
Total	-	21.070	60.296	6.344	396.965	62.916	547.591				

Berdasarkan hasil optimasi tersebut total biaya yang diperlukan sebesar Rp2.391.889.959.894 per tahunnya dan untuk mengetahui komponen apa yang mempengaruhi biaya tersebut, maka berikut akan ditampilkan komposisi dari masing masing komponen biayanya:

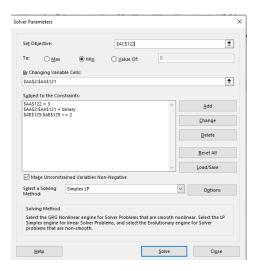
Gambar 5.4 Grafik Komposisi tiap Komponen untuk Model Multiport 6 Titik

Dari gambar diatas dapat dilihat bahwa biaya pelayaran (VC) memiliki pengaruh yang besar yaitu 63,98% dan yg paling kecil merupakan biaya penanganan muatan sebesar 3,07%. Komponen *Pinalty Cost* disini adalah selisih kapasitas muatan dengan jumlah muatan yang harus dibawa dikali dengan konstanta denda yang dimana dalam penelitian ini sebesar Rp 1.000.000 per unit.

Tabel 5.24 Total Biaya Masing Masing Kapal dan Pinalty Cost

Kapal	Total (Rp	Total (Rp/Tahun)			
Tianjin Highway	Rp	476.079.855.825			
Polaris Leader	Rp	-			
Grand Vision	Rp	462.662.242.973			
Straits Challenger	Rp	-			
Metis Leader	Rp	604.660.381.262			
European Highway	Rp	498.289.813.523			
Canopus Leader	Rp	217.107.395.072			
Pinalty Cost	Rp	133.090.271.240			
Total	Rp	2.176.313.701.160			

Dan tabel diatas digunakan untuk mengetahui berapa total biaya masing – masing kapal. Dapat dilihat bahwa total biaya terbesar dihasilkan oleh MV Metis Leader dengan nilai sebesar Rp 604.660.381.262 per tahun.

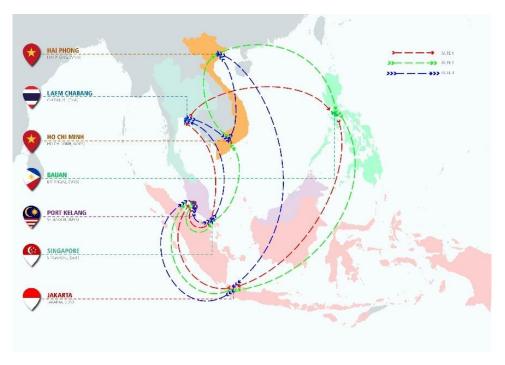

5.2.2 Multiport 5 Titik

Dalam pengerjaan model ini, sama seperti subbab sebelumnya, hanya saja untuk pencarian rute yang terpilih terdapat perbedaan. Perbedaan ini terjadi karena dalam *tools* yang digunakan peneliti dalam membuat rute yang optimum terdapat keterbatasan dimana untuk bagian dimana semua nilai i yang seharusnya berbeda semua nilai semua tidak bisa terpakai karena anggota dari nilai i lebih besar daripada jumlah titik yang akan digunakan. Sehingga untuk mencari rute yang akan digunakan, peneliti menggunakan cara dengan mencari jarak dari seluruh kombinasi yang ada dari anggota variabel i. Salah satu contoh kombinasi rute yang dimaksud adalah :

Tabel 5.25 Contoh Kombinasi Rute 5 Titik

	Rute angka										
				5							
1	2	3	5	4	1						
1	2	4	5	3	1						
1	2	4	3	5	1						
1	2	5	4	3	1						
1	2	5	3	4	1						
1				5							
1				4							
1				2							
1				5							
1	3	5	4	2	1						

Setelah didapatkan semua kombinasi yang ada, kemudian menghitung jarak dari seluruh kombinasi tersebut. Baru setelah didapatkan jarak seluruh kombinasi, peneliti baru menggunakan *tools solver* dimana akan dicari rute mana yang terpendek. Berikut merupakan tampilan *solver* yang digunakan:


Gambar 5.5 Tampilan Solver Rute untuk Multiport 5 Titik

Berdasarkan gambar diatas, set objective dalam *solver* tersebut merupakan minimal total jarak yang akan terpilih dan untuk *changing variable* merupakan terpilih tidaknya rute tersebut. Untuk *constraint* atau batasannya adalah jumlah rute yang terpilih sama dengan 3, nilai dari changing variable adalah binary dimana nilai nya antara 1 atau 0 dan juga jumlah setiap titik yang terdapat pada rute terpilih lebih besar sama dengan 2. Penjelasan untuk *constraint* dimana rute yang terpilih sama dengan 3 ini berpengaruh dengan *constraint* terakhir dimana setiap titik yang terpilih pada rute sama dengan 2. *Constraint* tersebut dibutuhkan agar tidak ada 1 titik yang tidak terhubung dengan titik yang lain. Dan dari optimasi tersebut didapatkan rute yang terpilih adalah

Tabel 5.26 Rute 5 Titik yang Terpilih Berdasarkan Optimasi

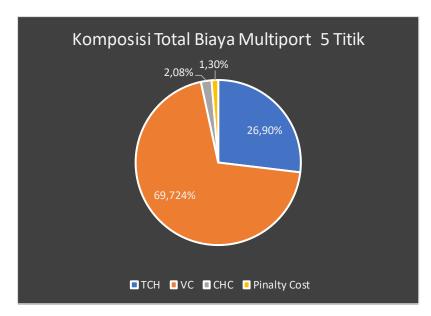
		Rute			Negara						
1	3	2	4	5	1	Indonesia	Malaysia	Singapura Thailand	Filipina	Indonesia	
1	3	2	4	6	1	Indonesia	Malaysia	Singapura Thailand	Vietnam	Indonesia	
1	3	2	6	5	1	Indonesia	Malaysia	Singapura Vietnam	Filipina	Indonesia	

Rute	Kota	Jarak (nm)
1 3 2 4 5 1	Jakarta Port Kelang Singapura Laem Chabang Bauan Jakarta	4.633
1 3 2 4 6 1	Jakarta Port Kelang Singapura Laem Chabang Ho Chi Minh Hai Phong Jakarta	4.799
1 3 2 6 5 1	Jakarta Port Kelang Singapura Ho Chi Minh Hai Phong Bauan Jakarta	4.870

Gambar 5.6 Rute 5 Titik yang Terpilih Berdasarkan Optimasi

Kemudian, untuk mencari kapal mana yang akan terpakai, cara untuk perhitungannya sama seperti pada *multiport* 6 titik. Dan untuk penentuan kapal mana yang akan menggunakan rute mana, peneliti melakukan hal tersebut secara manual. Untuk rute yang akan digunakan oleh masing masing kapal adalah

Tabel 5.27 Pasangan Rute dan Kapal yang Terpilih


Jarak (nm)	Rute Negara						Kapal		
4.633	Indonesia	Malaysia	Singapura	Thailand	Filipina	Indonesia	Tianjin Highway	Polaris Leader	
4.870	Indonesia	Malaysia	Singapura	Vietnam	Filipina	Indonesia	Grand Vision	Canopus Leader	
4.799	Indonesia	Malaysia	Singapura	Thailand	Vietnam	Indonesia	Straits Challenger	Metis Leader	European Highway

Dengan rute dan kapal seperti tabel diatas, maka total biayanya sebesar Rp2.912.055.680.600 per tahun dengan frekuensi kapal yang terpakai sebagai berikut :

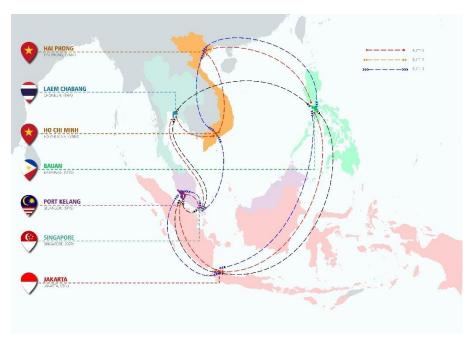
Tabel 5.28 Kapal dan Frekuensi yang Terpakai

Kapal	Ya/Tidak	Frekuensi	Frekuensi Maksimal
Tianjin Highway	1	29	31
Polaris Leader	1	24	30
Grand Vision	1	22	33
Straits Challenger	0	0	33
Metis Leader	1	31	33
European Highway	1	17	35
Canopus Leader	1	32	33

Seperti pada operasi *multiport* 6 titik, disini akan dicari komposisi dari total biaya yang telah didapatkan berdasarkan hasil optimasi. Berikut merupakan grafik komposisi komponen total biaya tersebut :

Gambar 5.7 Grafik Komposisi tiap Komponen untuk Model Multiport 5 Titik

Jika dilihat dari gambar diatas, dapat dilihat bahwa jumlah biaya pelayaran atau *voyage cost (VC)* memiliki bagian terbesar dari total biaya untuk model multiport 5 titik sebesar 69,72%. Dan komponen biaya yang memiliki bagian terkecil adalah *penalty cost* sebesar 1,3%.


Tabel 5.29 Total Biaya Masing – masing Kapal dan Pinalty Cost

Kapal	Total (Rp/Tahun)
Tianjin Highway	Rp	466.470.659.204
Polaris Leader	Rp	483.655.615.914
Grand Vision	Rp	392.891.646.213
Straits Challenger	Rp	-
Metis Leader	Rp	611.117.549.844
European Highway	Rp	319.343.319.339
Canopus Leader	Rp	600.844.415.727
Biaya Pinalti	Rp	37.732.474.360
Total + Biaya Pinalti	Rp	2.912.055.680.600

Sedangkan untuk total biaya dari masing masing kapal dan *penalty cost* dapat terlihat pada tabel diatas. Total biaya dari kapal MV Metis Leader memiliki total biaya terbesar yaitu Rp 611.117.549.844 per tahun dan MV European Highway memiliki total biaya terkecil yaitu Rp 319.343.319.339.

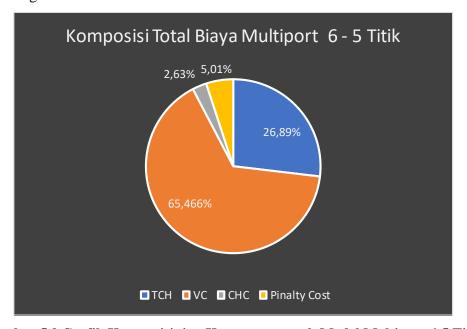
5.2.3 Multiport 6-5 Titik

Sama seperti skenario – skenario sebelumnya, hal pertama yang perlu dilakukan adalah mencari rute yang akan dipakai oleh kapal. Namun karena skenario ini merupakan gabungan antara skenario 1 dan 2 maka rute yang dipakai merupakan rute gabungan kedua skenario tersebut.

Gambar 5.8 Rute Multiport 6-5 Titik

Untuk kapal mana yang menggunakan rute dengan 6 titik atau 5 titik, penulis membuat keputusan berdasarkan kapal dengan rute yang eksisting sehingga kapal yang menggunakan rute 6 titik adalah kapal MV Tianjin Highway, MV Polaris Leader, MV Grand Vision dan MV Straits Challenger. Sedangkan untuk rute dengan 5 titik adalah kapal MV Metis Leader, MV European Highway dan MV Canopus Leader. Lalu untuk pemilihan rute 5 titik, peneliti menggunakan cara manual dengan mencoba semua kemungkinan yang ada bersamaan dengan mencari total biaya paling rendah. Dan berikut merupakan salah satu hasil kombinasi tersebut dan merupakan biaya terendah yaitu sebesar Rp2.832.792.289.845 per tahun dari semua kemungkinan yang dicoba:

Tabel 5.30 Pasangan Rute dan Kapal untuk Multiport 6-5 Titik


Jarak (nm) Rute Negara			Kapal								
5.642	Indonesia	Malaysia	Singapura	Thailand	Vietnam	Filipina	Indonesia	Tianjin Highway	Polaris Leader	Grand Vision	Straits Challenger
4.633	Indonesia	Malaysia	Singapura	Thailand	Filipina		Indonesia	Metis Leader	Canopus Leader		
4.633	Indonesia	Malaysia	Singapura	Thailand	Vietnam		Indonesia	European Highway			

Dan berikut merupakan jumlah frekuensi pelayaran kapal yang terpakai agar jumlah permintaan muatan dapat terpenuhi :

Tabel 5.31 Frekuensi Kapal yang Terpakai

Kapal	Ya/Tidak	Frekuensi	Frekuensi Maksimal
Tianjin Highway	1	26	26
Polaris Leader	1	25	25
Grand Vision	1	25	26
Straits Challenger	1	24	25
Metis Leader	1	9	28
European Highway	1	11	30
Canopus Leader	0	0	31

Sama seperti pada bagian model multiport sebelumnya, disini peneliti juga ingin mengetahui berapa besar bagian dari komponen biaya yang mempengaruhi total biaya dari hasil optimasi model multiport kombinasi 6-5 titik. Besar komponen tersebut dapat dilihat pada gambar dibawah :

Gambar 5.9 Grafik Komposisi tiap Komponen untuk Model Multiport 6-5 Titik

Berdasarkan gambar diatas, dapat dilihat bahwa pengaruh dari biaya pelayaran (VC) kepada total biaya sangat besar sama seperti pada model multiport sebelumnya dan untuk pengaruh yang paling kecil adalah biaya penanganan muatan (CHC). Untuk persentase besar dari biaya pealyaran sebesar 65,46% dan untuk biaya penanganan muatan sebesar 2,63%.

5.3 Perhitungan Load Factor Kapal

Setelah didapatkan hasil optimasi dari masing masing model multiport, selanjutnya dilakukan perhitungan load factor kapal berdasarkan rute yang didapat.

Perhitungan ini dilakukan untuk mencari pada bagian mana load factor tertinggi dan terendah kapal. Selain itu juga digunakan untuk mencari tahu apakah muatan kapal yang terbawa melebihi kapasitas kapal atau tidak.

Untuk menghitung Load Factor kapal akan digunakan hasil optimasi dari model multiport 6 titik dimana rute yang didapat adalah Indonesia — Malaysia — Singapura — Thailand — Vietnam — Filipina — Indonesia dan contoh kapal yang akan digunakan adalah kapal MV Tianjin Highway dimana kapasitasnya sebesar 5.036 unit.

Hal pertama yang perlu diketahui adalah proporsi jumlah muatan yang akan dibawa oleh kapal MV Tianjin Highway yang akan ditampilkan pada tabel dibawah ini :

Tabel 5.32 Proporsi Jumlah Muatan MV Tianjin Highway Tahun 2025 (Unit)

Asal/Tujuan	Indonesia	Singapura	Thailand	Malaysia	Filipina	Vietnam
Indonesia	-	41	411	31	1.786	578
Singapura	-	-	21	27	-	0
Thailand	-	151	-	-	1.852	1
Malaysia	-	1	123	-	11	0
Filipina	-	-	-	-	-	-
Vietnam	-	0	_	-	2	_

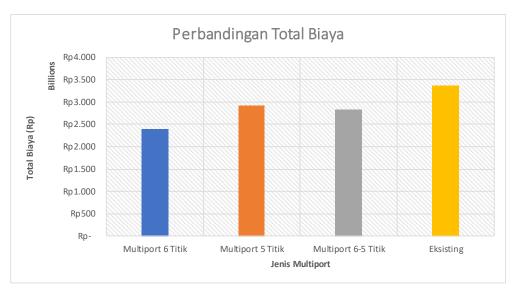
Setelah diketahui proporsi tersebut kemudian dilakukan perhitungannya seperti berikut :

- Mengetahui jumlah muatan yang akan dibawa pada titik pertama yaitu Indonesia menuju titik kedua yaitu Malaysia, maka perlu dijumlahkan muatan yang akan dikirimkan ke titik titik berikutnya dari Indonesia. Sehingga jumlah muatan yang perlu dihitung adalah dari Indonesia Malaysia, Indonesia Singapura sampai ke Indonesia Filipina dimana Filipina merupakan titik terakhir sebelum kembali lagi ke Indonesia. Jumlah dari muatan tersebut adalah 2.847 unit dan jumlah tersebut merupakan jumlah yang akan berada di kapal untuk Indonesia Malaysia.
- Lalu untuk jumlah muatan yang akan dibawa dari Malaysia Singapura juga dilakukan hal yang sama seperti tahap sebelumnya dan didapatkan jumlah muatan sebesar 136 unit.
- Selanjutnya dilakukan perhitungan jumlah muatan yang akan dibongkar. Jumlah muatan yang akan dibongkar ini dilihat dari titik mana yang sebelumnya terlewati sebelum titik yang akan dihitung. Jadi untuk titik Malaysia ini titik sebelumnya merupakan Indonesia sehingga jumlah muatan yang akan dibongkar berasal dari Indonesia Malaysia sebesar 31 unit.
- Untuk menghitung jumlah muatan di kapal untuk Malaysia Singapura dilakukan penjumlahan dari muatan di kapal pada titik sebelumnya yaitu Indonesia Malaysia sebesar 2.847 unit dengan jumlah muatan yang akan dibawa sebesar 136

unit. Setelah didapatkan hasil penjumlah tersebut kemudian dikurangi dengan muatan yang dibongkar pada titik Malaysia tersebut sebesar 31 unit. Hasil akhir untuk jumlah muatan yang berada di kapal untuk Malaysia – Singapura sebesar 2.951 unit.

- Dan untuk titik selanjutnya dapat dihitung dengan cara yang sama. Tahap ini bisa dilakukan hanya sampai tiga kali kapal melakukan *roundtrip* dimana nilai untuk jumlah muatan dikapal stabil untuk di tiap titik yang sama.
- Setelah diketahui jumlah muatan di kapal di setiap titiknya, jumlah tersebut dibagi dengan kapasitas total kapal agar diketahui berapa *load factor* yang didapatkan untuk setiap titiknya. Misal untuk Indonesia – Malaysia dimana jumlah muatan dikapal sebesar 2.847 unit dibagi dengan kapasitas kapal sebesar 5.036 unit maka didapatkan *load factor* sebesar 57%.

Setelah diketahui *load factor* untuk setiap titiknya, maka didapatkan hasil seperti berikut :


Tabel 5.33 Load Factor MV Tianjin Highway Roundtrip ke-3

Rute	Load Factor
Indonesia - Malaysia	60%
Malaysia - Singapura	62%
Singapura - Thailand	59%
Thailand - Vietnam	87%
Vietnam - Filipina	76%
Filipina - Indonesia	4%

Dari tabel tersebut bisa dilihat bahwa *load factor* terbesar berada pada bagian Thailand – Filipina sebesar 87% dan *load factor* terkecil berada pada bagian Filipina – Indonesia sebesar 4%. Untuk hasil perhitungan seluruh *load factor* akan ditampilkan pada lampiran.

5.4 Analisis Perbandingan Antar Model Optimasi

Bagian ini diperlukan untuk membandingkan model mana yang lebih baik berdasarkan faktor apa yang dilihat. Dalam penelitian kali ini faktor yang akan digunakan untuk membandingkan optimasi mana yang lebih baik adalah besaran nilai total biaya, dimana mencari nilai dari total biaya terkecil. Berikut merupakan perbandingan total biaya dari semua model optimasi multiport :

Gambar 5.10 Perbandingan Total Biaya Antar Model Multiport dan Eksisting

Dari diagram tersebut terlihat bahwa total biaya untuk skenario *multiport* 6 titik merupakan yang terkecil dari yang lainnya, sedangkan untuk rute yang sekarang ada atau eksisting memiliki total biaya terbesar. Untuk tabel nilai dari total biaya tersebut dapat dilihat dibawah ini:

Tabel 5.34 Total Biaya Antar Model Multiport dan Eksisting

Jenis Multiport	Total Biaya	
Multiport 6 Titik	Rp	2.391.889.959.894
Multiport 5 Titik	Rp	2.912.055.680.600
Multiport 6-5 Titik	Rp	2.832.792.289.845
Eksisting	Rp	3.379.611.088.305

BAB 6 KESIMPULAN DAN SARAN

6.1 Kesimpulan

Dari hasil penelitian dan perhitungan yang telah dilakukan, maka diperoleh beberapa kesimpulan sebagai berikut :

- Total pengiriman ekspor Indonesia ke negara Malaysia, Singapura, Thailand, Vietnam dan Filipina dari tahun 2015-2018 meningkat sebesar 166% dimana pada tahun 2015 sebesar 47.504 unit dan di tahun 2018 sebesar 126.217 unit.
- Rute pengiriman ekspor impor kendaraan saat ini adalah Singapore Jakarta Singapore Laem Chabang Bauan Laem Chabang Singapore dan Singapore Port Kelang Jakarta Singapore Port Kelang Laem Chabang Ho Chi Minh Hai Phong Laem Chabang Singapore.
- 3. Kapal yang digunakan untuk rute ekspor impor saat ini adalah MV Tianjin Highway (5.036 unit), MV Polaris Leader (5.195 unit), MV Grand Vision (5.060 unit), MV Straits Challenger (4.368 unit), MV Metis Leader (6.153 unit), MV European Highway (5.064 unit), dan MV Canopus Leader (5.195 unit).
- 4. Proyeksi total pengiriman ekspor Indonesia ke negara Malaysia, Singapura, Thailand, Vietnam dan Filipina pada tahun 2025 berjumlah 309.500 unit dimana meningkat sebesar 145% dari tahun 2018 yang berjumlah 126.217 unit.
- 5. Berdasarkan perhitungan yang telah dilakukan pada bagian multiport 6 kapal dapat dilihat bahwa:
 - Rute : Jakarta Port Klang Singapura Laem Chabang Ho Chi Minh Hai Phong - Bauan - Jakarta
 - Kapal yang terpilih: MV Tianjin Highway(5.036 unit), MV Grand Vision (5.060 unit), MV Metis Leader (6.153 unit), MV European Highway (5.064 unit) dan MV Canopus Leader (5.195 unit).
 - Total biaya yang didapatkan sebesar Rp2.391.889.959.894 per tahun.
- 6. Berdasarkan perhitungan yang telah dilakukan pada bagian multiport 5 kapal dapat dilihat bahwa:
 - Rute:
 - 1) Jakarta Port Klang Singapura Laem Chabang –Bauan Jakarta
 - 2) Jakarta Port Klang Singapura Laem Chabang Ho Chi Minh Hai Phong
 - Jakarta

- 3) Jakarta Port Klang Singapura Ho Chi Minh Hai Phong Bauan Jakarta
- Kapal yang terpilih:
 - Rute 1 = MV Tianjin Highway (5.036 unit), MV Polaris Leader (5.195 unit)
 - Rute 2 = MV Grand Vision (5.060 unit), MV Canopus Leader (5.195 unit)
 - Rute 3 = MV Metis Leader (6.153 unit), MV European Highway (5.064 unit).
- Total biaya yang didapatkan sebesar Rp2.912.055.680.600 per tahun
- 7. Berdasarkan perhitungan yang telah dilakukan pada bagian multiport 6-5 kapal dapat dilihat bahwa:
 - Rute:
 - 1) Jakarta Singapura Port Klang Laem Chabang Ho Chi Minh Hai Phong
 - Bauan Jakarta
 - 2) Jakarta Port Klang Singapura Laem Chabang –Bauan Jakarta
 - 3) Jakarta Port Klang Singapura Laem Chabang Ho Chi Minh Hai Phong Jakarta.
 - Kapal yang terpilih:
 - Rute 1 = MV Tianjin Highway (5.036 unit), MV Polaris Leader (5.195 unit), MV Grand Vision (5.060 unit), MV Straits Challenger (4.368 unit)
 - Rute 2 = MV Metis Leader (6.153 unit)
 - Rute 3 = MV European Highway (5.064 unit).
 - Total biaya yang didapatkan sebesar Rp2.832.792.289.845 per tahun
- 8. Berdasarkan hasil dari hasil optimasi 3 jenis multiport dan rute multiport yang telah ada, model multiport 6 titik memiliki total biaya terendah sebesar Rp2.391.889.959.894 per tahun dan rute multiport eksisting memiliki total biaya tertinggi sebesar Rp3.379.611.088.305 per tahun

6.2 Saran

Berdasarkan pengamatan penulis selama pengambilan data, pengolahan data, analisis perhitungan serta perancangan desain, terdapat beberapa saran yang dapat menjadi rekomendasi untuk penelitian selanjutnya. Saran-saran tersebut antara lain sebagai berikut:

- 1. Pada penelitian selanjutnya, untuk memasukkan faktor-faktor perkembangan industri otomotif dalam peramalan jumlah muatan .
- 2. Pada penelitian seanjutnya, dapat menambahkan negara negara yang berpotensi untuk ekspor dari Indonesia.

3.	Pada penelitian yang optimum.	selanjutnya,	diharapkan	dapat untuk	mencari	ukuran ı	ıtama kapal

DAFTAR PUSTAKA

- A, B. P. (2018). ANALISIS PERENCANAAN POLA OPERASI KAPAL TOL LAUT: STUDI KASUS PAPUA DAN MALUKU.
- (2015). *Development in Philippine Automotive Industry*. Technical Education and Skills Development Authority.
- GAIKINDO. (2019). Diambil kembali dari Gabungan Industri Kendaraan Bermotor Indonesia: gaikindo.or.id
- K-Line. (2019). PT. "K" Line (Indonesia). Diambil kembali dari http://www.kline.co.id/
- M., M. N., S., C., & I., G. (2015). Passenger Car Unit of Vehicles on Undivided Intercity Roads in India.
- Mumpuni, C. D. (2019). ANALISIS BENTUK KOMPETISI ANTAR PELABUHAN SEJENIS DALAM SUATU WILAYAH : STUDI KASUS INDONESIA KENDARAAN TERMINAL DAN PELABUHAN PATIMBAN .
- Stopford, M. (2003). *Maritime Economics*. New York: Taylor & Francis e-Library.
- Taha, H. A. (1992). Operation Research. McMillan: An Introduction.
- Wan-Ping, T. (2016). The Political Economy of the Automobile Industry in ASEAN: A Cross-Country Comparison. *Journal of ASEAN Studies*, Vol. 4, , 34-60.
- World, A. (2018). *Special report: The ASEAN auto industry*. Penarth: Automotive World Ltd.
- World, O. (2019). *the Observatory of Economic Complexity*. Diambil kembali dari https://oec.world/en/

LAMPIRAN

Lampiran 1. Data - Data

Lampiran 2. Perhitungan Fuel Cost + Air Tawar + Port Cost

Lampiran 3. Perhitungan Muatan

Lampiran 4. Perhitungan Model Optimasi

Lampiran 1. Data - Data

1. Data Kapal

Nama Kapal	Panjang (m)	Lebar (m)	Sarat (m)	Jumlah Awak Kapal	Kecepatan (knot)
Polaris Leader	179,9	32,2	21,62	25	21,4
Metis Leader	199,97	32,26	21,31	27	21,7
Grand Vision	179,95	32,2	21,42	25	22,7
European Highway	179,99	32,2	21,42	25	22,8
Straits Challenger	179,9	32,2	21,62	23	21,2
Canopus Leader	179,9	32,2	21,62	25	21,3
Tianjin Highway	179,99	32,2	21,42	25	22,5

Nama Kapal	Kapasitas (Unit)	Daya ME (kW)	Daya AE (kW)	Jumlah Unit	GT	Dibangun	Umur
Polaris Leader	5195	14120	3725	4	51917	2009	11
Metis Leader	6153	13260	4275	4	59550	2013	7
Grand Vision	5060	13239	3125	4	47077	1995	25
European Highway	5064	13240	2975	4	48039	1999	21
Straits Challenger	4368	14121	4620	4	51204	1999	21
Canopus Leader	5195	14120	3725	4	51917	2009	11
Tianjin Highway	5036	12500	3017	4	48927	2005	15

2. Data Pelabuhan dan Tarif

Pelabuhan	Kecepatan B/M (Unit /	Negara	Cargo Handling Cost		
Pelabuliali	jam)	ivegara	(Rp per unit)		
Jakarta	200	Indonesia	Rp	67.000	
Singapore	200	Singapore	Rp	67.000	
Laem Chabang	200	Thailand	Rp	67.000	
Bauan	200	Filipina	Rp	67.000	
Port Klang	200	Malaysia	Rp	67.000	
Ho Chi Minh	200	Vietnam	Rp	67.000	
Hai Phong	200				

Tarif Pelabuhan

Port Kelang

Item	Keterangan	Biaya	satuan
Sandar	<240 Jam	30.000	Rp / 100 GT
	>240 Jam	5.000	Rp / 100 GT/24 Jam
Pandu		10.000	Rp/ meter LOA. Gerakan
Tunda		31.900	Rp/ meter LOA . Gerakan
Labuh		3.000	Rupiah / GT / Call

Tarif Pelabuhan

Laem Chabang

Item	Keterangan	Biaya	satuan
Labuh		2.800	Rupiah / GT / Call
Tunda		200	Rupiah / Gt / Jam
	minimum	2.326.900	Rupiah / Tugboat
Pandu		5.000	Rp/ meter LOA. Gerakan
Sandar	<240 Jam	25.000	Rp / 100 GT
	>240 Jam	3.500	Rp / 100 GT/24 Jam

Tarif Pelabuhan

Vietnam

Item	Keterangan	Biaya	satuan
Sandar	<240 Jam	22.000	Rp / 100 GT
	>240 Jam	3.200	Rp / 100 GT/24 Jam
Pandu		7.100	Rp/ meter LOA. Gerakan
Tunda		26.400	Rp/ meter LOA . Gerakan
Labuh		2.500	Rupiah / GT / Call

Tarif Pelabuhan

Indonesia

Item	Keterangan	Biaya	satuan
Labuh		1.500	Rp / GT / kunjungan
Sandar		800	Rp / GT / etmal
Pandu	Tarif tetap	1.053.000	Rp / gerakan / kapal
	Tarif variabel	300	Rp / GT / kapal / gerakan
Tunda	Tarif tetap	20.539.000	Rp/ kapal / jam
	Tarif variabel	70	Rp / GT / jam

Filipina

Item	Keterangan	Biaya	satuan
Port Dues		1.200	Rp / GT / Call
Labuh		550	Rp / GT / Call

Tarif Pelabuhan

Singapore

Item	Keterangan	Biaya	satuan
Biaya Pelabuhan	1 hari	105.600	Rupiah/100 GT
	2 hari	112.600	Rupiah/100 GT
	3 hari	119.600	Rupiah/100 GT
	4 hari	126.600	Rupiah/100 GT

3. Data Muatan Ekspor Indonesia

Tujuan/Tahun	2015	2016	2017	2018
Thailand	4.985	6.621	11.540	16.921
Filipina	37.357	64.176	72.185	85.424
Malaysia	4.812	5.809	4.766	4.542
Vietnam	-	782	12.222	17.798
Singapore	350	275	1.059	1.532
Total	47.504	77.663	101.772	126.217

4. Data Nilai Ekspor Impor Antar Negara

Uang (\$ M)	2.017						
ke/dari	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	6,17	321,00	12,10	0,15	0	339,42
Singapore	13,10	-	81,20	3,40	0,11	0,04	97,86
Thailand	177,00	17,00	-	196,00	0,63	0	390,63
Malaysia	64,70	18,00	71,60	-	1,18	0	155,48
Filipina	1.520,00	0,58	2.040,00	10,80	-	1,44	3.572,82
Vietnam	241,00	0,31	0	0,05	0,39	-	241,75
Total	2.015,80	42,06	2.513,80	222,35	2,46	1,48	4.797,96

Uang (\$ M) 2.015

Odi 19 (4 11)	2.010						
ke/dari	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	87,90	499,00	23,30	2,07	0	612,27
Singapore	4,20	-	166,00	1,11	0	0,20	171,51
Thailand	115,00	13,90	-	146,00	0,21	0	275,11
Malaysia	64,80	33,50	235,00	-	3,16	0	336,46
Filipina	632,00	0,23	1.060,00	3,40	-	0,48	1.696,11
Vietnam	0	0,85	67,40	0	0,52	-	68,76
Total	816,00	136,37	2.027,40	173,81	5,96	0,68	3.160,21

Uang (\$ M)	2.016						
ke/dari	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	18,20	510,00	18,50	1,32	0	548,02
Singapore	3,13	-	201,00	1,72	0	0	205,85
Thailand	141,00	16,00	-	156,00	10,10	0	323,10
Malaysia	102,00	35,40	119,00	-	0,98	0	257,38
Filipina	1.210,00	0,95	1.780,00	9,53	-	2,82	3.003,30
Vietnam	45,70	0,32	0	0	0,14	-	46,16
Total	1.501,83	70,87	2.610,00	185,75	12,54	2,82	4.383,81

5. Data -data lainnya

Harga Bahan Bakar

Harga Bahan Bakar		
HSD	11.400	RP per liter
MFO	9.200	Rp per liter
Air Tawar	18.000	Rp per ton
Kebutuhan Air Tawar	200	liter per orang.hari
Commission Days	330	Hari

Lampiran 2. Perhitungan Fuel Cost + Air Tawar + Port Cost

1. MV Polaris Leader

Sea Time (Jam)								
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	
Singapore	-	9,81	24,53	36,64	30,19	61,78	62,80	
Port Kelang	9,81	-	32,71	46,45	40,00	71,59	72,62	
Jakarta	24,53	32,71	-	58,13	48,22	77,94	71,54	
Laem Chabang	36,64	46,45	58,13	-	29,63	62,01	65,79	
Ho Chi Minh	30,19	40,00	48,22	29,63	-	37,52	41,92	
Hai Phong	61,78	71,59	77,94	62,01	37,52	-	45,79	
Bauan	62,80	72,15	71,54	65,79	41,92	45,79	-	

Biaya BBM ME (Rp/trip)								
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	
Singapore	-	238.454.896	596.137.240	890.231.612	733.532.680	1.501.130.346	1.526.111.335	
Port Kelang	238.454.896	-	794.849.654	1.128.686.508	971.987.576	1.739.585.242	1.764.566.231	
Jakarta	596.137.240	794.849.654	-	1.412.561.384	1.171.835.489	1.894.013.175	1.738.449.742	
Laem Chabang	890.231.612	1.128.686.508	1.412.561.384	-	719.906.686	1.506.807.843	1.598.783.303	
Ho Chi Minh	733.532.680	971.987.576	1.171.835.489	719.906.686	-	911.806.103	1.018.543.056	
Hai Phong	1.501.130.346	1.739.585.242	1.894.013.175	1.506.807.843	911.806.103	-	1.112.789.515	
Bauan	1.526.111.335	1.753.211.236	1.738.449.742	1.598.783.303	1.018.543.056	1.112.789.515	-	

Biaya BBM AE (Rp/trip)								
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	
Singapore	-	319.312.318	798.280.796	1.192.099.322	982.265.513	2.010.147.071	2.043.598.838	
Port Kelang	319.312.318	-	1.064.374.395	1.511.411.641	1.301.577.831	2.329.459.390	2.362.911.156	
Jakarta	798.280.796	1.064.374.395	-	1.891.545.353	1.569.191.965	2.536.252.129	2.327.938.855	
Laem Chabang	1.192.099.322	1.511.411.641	1.891.545.353	-	964.019.095	2.017.749.746	2.140.913.068	
Ho Chi Minh	982.265.513	1.301.577.831	1.569.191.965	964.019.095	-	1.220.989.484	1.363.919.760	
Hai Phong	2.010.147.071	2.329.459.390	2.536.252.129	2.017.749.746	1.220.989.484	-	1.490.124.153	
Bauan	2.043.598.838	2.347.705.808	2.327.938.855	2.140.913.068	1.363.919.760	1.490.124.153	-	

Biaya Air Tawar								
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	
Singapore	-	36.799	91.998	137.383	113.201	231.659	235.514	
Port Kelang	36.799	-	122.664	174.182	150.000	268.458	272.313	
Jakarta	91.998	122.664	-	217.991	180.841	292.290	268.283	
Laem Chabang	137.383	174.182	217.991	-	111.098	232.535	246.729	
Ho Chi Minh	113.201	150.000	180.841	111.098	-	140.713	157.185	
Hai Phong	231.659	268.458	292.290	232.535	140.713	-	171.729	
Bauan	235.514	270.561	268.283	246.729	157.185	171.729	1	

Port Cost								
	Jumlah Mu	ıatan	Waktu					
Negara	Bongkar	Muat	Bongkar	Muat	AT+WT+IT	Total	Etmal	
Malaysia	60	140	0,30	0,70	3	4,00	1,00	
Thailand	572	2.066	2,86	10,33	3	16,19	1,00	
Filipina	3.766	-	18,83	-	3	21,83	1,00	
Singapore	200	49	1,00	0,25	3	4,25	1,00	
Vietnam	597	2	2,98	0,01	3	6,00	1,00	
Indonesia	-	2.937	-	14,68	3	17,68	1,00	

Port Cost	FC					
Pandu Labuh		Tunda	Sandar	Total	AE	
3.598.000	155.751.000	11.477.620	15.575.100	186.401.720	130.201.547	
1.799.000	145.367.600	10.383.400	12.979.250	170.529.250	526.895.117	
	28.554.350			90.854.750	710.338.021	
				54.824.352	138.187.434	
2.554.580	129.792.500	9.498.720	11.421.740	153.267.540	195.113.729	
33.256.200	77.875.500	48.346.380	41.533.600	201.011.680	575.398.384	

2. MV Metis Leader

	Sea Time (Jam)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	-	9,68	24,19	36,13	29,77	60,92	61,94				
Port Kelang	9,68	-	32,26	45,81	39,45	70,60	71,61				
Jakarta	24,19	32,26	•	57,33	47,56	76,87	70,55				
Laem Chabang	36,13	45,81	57,33	-	29,22	61,15	64,88				
Ho Chi Minh	29,77	39,45	47,56	29,22	-	37,00	41,34				
Hai Phong	60,92	70,60	76,87	61,15	37,00	-	45,16				
Bauan	61,94	71,15	70,55	64,88	41,34	45,16	-				

	Biaya BBM ME (Rp/trip)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	-	218.057.806	545.144.516	814.082.477	670.787.347	1.372.725.810	1.395.569.961				
Port Kelang	218.057.806	-	726.859.355	1.032.140.284	888.845.154	1.590.783.617	1.613.627.768				
Jakarta	545.144.516	726.859.355	-	1.291.732.911	1.071.598.363	1.732.002.006	1.589.745.246				
Laem Chabang	814.082.477	1.032.140.284	1.291.732.911	-	658.326.901	1.377.917.663	1.462.025.674				
Ho Chi Minh	670.787.347	888.845.154	1.071.598.363	658.326.901	-	833.811.517	931.418.345				
Hai Phong	1.372.725.810	1.590.783.617	1.732.002.006	1.377.917.663	833.811.517	-	1.017.603.097				
Bauan	1.395.569.961	1.603.244.063	1.589.745.246	1.462.025.674	931.418.345	1.017.603.097	-				

	Biaya BBM AE (Rp/Trip)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	-	356.847.027	892.117.567	1.332.228.900	1.097.729.425	2.246.436.997	2.283.820.972				
Port Kelang	356.847.027	-	1.189.490.089	1.689.075.927	1.454.576.452	2.603.284.024	2.640.667.998				
Jakarta	892.117.567	1.189.490.089	-	2.113.893.816	1.753.648.246	2.834.384.956	2.601.584.753				
Laem Chabang	1.332.228.900	1.689.075.927	2.113.893.816	-	1.077.338.167	2.254.933.355	2.392.574.351				
Ho Chi Minh	1.097.729.425	1.454.576.452	1.753.648.246	1.077.338.167	-	1.364.515.060	1.524.246.586				
Hai Phong	2.246.436.997	2.603.284.024	2.834.384.956	2.254.933.355	1.364.515.060	-	1.665.286.125				
Bauan	2.283.820.972	2.623.675.283	2.601.584.753	2.392.574.351	1.524.246.586	1.665.286.125	-				

	Biaya Air Tawar (Rp/Trip)									
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan			
Singapore	-	39.194	97.984	146.323	120.567	246.733	250.839			
Port Kelang	39.194	-	130.645	185.516	159.760	285.926	290.032			
Jakarta	97.984	130.645	-	232.175	192.608	311.309	285.740			
Laem Chabang	146.323	185.516	232.175	-	118.327	247.666	262.783			
Ho Chi Minh	120.567	159.760	192.608	118.327	-	149.869	167.412			
Hai Phong	246.733	285.926	311.309	247.666	149.869	-	182.903			
Bauan	250.839	288.166	285.740	262.783	167.412	182.903	-			

Port Cost									
	Jumlah Mu	ıatan	Waktu						
Negara	Bongkar	Muat	Bongkar	Muat	AT+WT+IT	Total	Etmal		
Malaysia	60	140	0,30	0,70	3	4,00	1,00		
Thailand	572	2.066	2,86	10,33	3	16,19	1,00		
Filipina	3.766	-	18,83	-	3	21,83	1,00		
Singapore	200	49	1,00	0,25	3	4,25	1,00		
Vietnam	597	2	2,98	0,01	3	6,00	1,00		
Indonesia	-	2.937	-	14,68	3	17,68	1,00		

Port Cost					FC
Pandu	Labuh	Tunda	Sandar	Total	AE
3.999.400	178.650.000	12.758.086	17.865.000	213.272.486	147.546.365
1.999.700	166.740.000	11.910.000	14.887.500	195.537.200	597.085.526
	32.752.500			104.212.500	804.965.804
				62.884.800	156.596.093
2.839.574	148.875.000	10.558.416	13.101.000	175.373.990	221.105.833
37.836.000	89.325.000	49.415.000	47.640.000	224.216.000	652.050.164

3. MV Grand Vision

	Sea Time (Jam)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	-	9,25	23,13	34,54	28,46	58,24	59,21				
Port Kelang	9,25	-	30,84	43,79	37,71	67,49	68,46				
Jakarta	23,13	30,84	-	54,80	45,46	73,48	67,44				
Laem Chabang	34,54	43,79	54,80	ı	27,93	58,46	62,03				
Ho Chi Minh	28,46	37,71	45,46	27,93	-	35,37	39,52				
Hai Phong	58,24	67,49	73,48	58,46	35,37	-	43,17				
Bauan	59,21	68,02	67,44	62,03	39,52	43,17	-				

	Biaya BBM ME (Rp/trip)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	-	208.121.608	520.304.021	776.987.338	640.221.710	1.310.175.078	1.331.978.294				
Port Kelang	208.121.608	-	693.738.695	985.108.947	848.343.318	1.518.296.687	1.540.099.903				
Jakarta	520.304.021	693.738.695	-	1.232.872.767	1.022.769.047	1.653.080.205	1.517.305.631				
Laem Chabang	776.987.338	985.108.947	1.232.872.767	-	628.329.047	1.315.130.355	1.395.405.832				
Ho Chi Minh	640.221.710	848.343.318	1.022.769.047	628.329.047	-	795.817.389	888.976.585				
Hai Phong	1.310.175.078	1.518.296.687	1.653.080.205	1.315.130.355	795.817.389	-	971.234.173				
Bauan	1.331.978.294	1.530.189.350	1.517.305.631	1.395.405.832	888.976.585	971.234.173	-				

	Biaya BBM AE (Rp/Trip)									
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan			
Singapore	ı	249.361.764	623.404.411	930.950.586	767.084.284	1.569.791.678	1.595.915.291			
Port Kelang	249.361.764	ı	831.205.881	1.180.312.351	1.016.446.049	1.819.153.442	1.845.277.055			
Jakarta	623.404.411	831.205.881	-	1.477.171.594	1.225.434.956	1.980.644.870	1.817.966.005			
Laem Chabang	930.950.586	1.180.312.351	1.477.171.594	-	752.835.041	1.575.728.863	1.671.911.257			
Ho Chi Minh	767.084.284	1.016.446.049	1.225.434.956	752.835.041	-	953.511.889	1.065.130.964			
Hai Phong	1.569.791.678	1.819.153.442	1.980.644.870	1.575.728.863	953.511.889	-	1.163.688.233			
Bauan	1.595.915.291	1.833.402.686	1.817.966.005	1.671.911.257	1.065.130.964	1.163.688.233	-			

	Biaya Air Tawar (Rp/Trip)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	-	34.692	86.729	129.515	106.718	218.392	222.026				
Port Kelang	34.692	-	115.639	164.207	141.410	253.084	256.718				
Jakarta	86.729	115.639	-	205.507	170.485	275.551	252.919				
Laem Chabang	129.515	164.207	205.507	-	104.736	219.218	232.599				
Ho Chi Minh	106.718	141.410	170.485	104.736	-	132.654	148.183				
Hai Phong	218.392	253.084	275.551	219.218	132.654	-	161.894				
Bauan	222.026	255.066	252.919	232.599	148.183	161.894	-				

	Jumlah Mu	ıatan	Waktu					
Negara	Bongkar	Muat	Bongkar	Muat	AT+WT+IT	Total	Etmal	
Malaysia	60	140	0,30	0,70	3	4,00	1,00	
Thailand	572	2.066	2,86	10,33	3	16,19	1,00	
Filipina	3.766	-	18,83	-	3	21,83	1,00	
Singapore	200	49	1,00	0,25	3	4,25	1,00	
Vietnam	597	2	2,98	0,01	3	6,00	1,00	
Indonesia	-	2.937	-	14,68	3	17,68	1,00	

Port Cost					FC
Pandu	Labuh	Tunda	Sandar	Total	AE
3.599.000	141.231.000	11.480.810	14.123.100	170.433.910	107.855.530
1.799.500	131.815.600	9.415.400	11.769.250	154.799.750	436.466.028
	25.892.350			82.384.750	588.425.295
				49.713.312	114.470.828
2.555.290	117.692.500	9.501.360	10.356.940	140.106.090	161.627.071
30.352.200	70.615.500	47.668.780	37.661.600	186.298.080	476.644.857

4. MV European Highway

	Sea Time (Jam)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	-	9,21	23,03	34,39	28,33	57,98	58,95				
Port Kelang	9,21	-	30,70	43,60	37,54	67,19	68,16				
Jakarta	23,03	30,70	-	54,56	45,26	73,16	67,15				
Laem Chabang	34,39	43,60	54,56	-	27,81	58,20	61,75				
Ho Chi Minh	28,33	37,54	45,26	27,81	ı	35,22	39,34				
Hai Phong	57,98	67,19	73,16	58,20	35,22	-	42,98				
Bauan	58,95	67,72	67,15	61,75	39,34	42,98	-				

	Biaya BBM ME (Rp/trip)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	-	207.224.446	518.061.115	773.637.931	637.461.867	1.304.527.226	1.326.236.453				
Port Kelang	207.224.446	-	690.748.153	980.862.377	844.686.312	1.511.751.671	1.533.460.899				
Jakarta	518.061.115	690.748.153	-	1.227.558.146	1.018.360.134	1.645.954.170	1.510.764.888				
Laem Chabang	773.637.931	980.862.377	1.227.558.146	-	625.620.470	1.309.461.141	1.389.390.570				
Ho Chi Minh	637.461.867	844.686.312	1.018.360.134	625.620.470	-	792.386.809	885.144.419				
Hai Phong	1.304.527.226	1.511.751.671	1.645.954.170	1.309.461.141	792.386.809	-	967.047.414				
Bauan	1.326.236.453	1.523.593.068	1.510.764.888	1.389.390.570	885.144.419	967.047.414	-				

	Biaya BBM AE (Rp/Trip)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	ı	236.351.205	590.878.012	882.377.831	727.061.325	1.487.887.108	1.512.647.711				
Port Kelang	236.351.205	-	787.837.349	1.118.729.036	963.412.530	1.724.238.313	1.748.998.916				
Jakarta	590.878.012	787.837.349	-	1.400.099.518	1.161.497.349	1.877.303.855	1.723.112.831				
Laem Chabang	882.377.831	1.118.729.036	1.400.099.518	-	713.555.542	1.493.514.518	1.584.678.554				
Ho Chi Minh	727.061.325	963.412.530	1.161.497.349	713.555.542	-	903.761.988	1.009.557.289				
Hai Phong	1.487.887.108	1.724.238.313	1.877.303.855	1.493.514.518	903.761.988	-	1.102.972.289				
Bauan	1.512.647.711	1.737.744.096	1.723.112.831	1.584.678.554	1.009.557.289	1.102.972.289	-				

	Biaya Air Tawar (Rp/Trip)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	-	34.539	86.349	128.947	106.250	217.434	221.053				
Port Kelang	34.539	•	115.132	163.487	140.789	251.974	255.592				
Jakarta	86.349	115.132	-	204.605	169.737	274.342	251.809				
Laem Chabang	128.947	163.487	204.605	-	104.276	218.257	231.579				
Ho Chi Minh	106.250	140.789	169.737	104.276	-	132.072	147.533				
Hai Phong	217.434	251.974	274.342	218.257	132.072	-	161.184				
Bauan	221.053	253.947	251.809	231.579	147.533	161.184	-				

	Jumlah Mu	ıatan	Waktu				
Negara	Bongkar	Muat	Bongkar	Muat	AT+WT+IT	Total	Etmal
Malaysia	60	140	0,30	0,70	3	4,00	1,00
Thailand	572	2.066	2,86	10,33	3	16,19	1,00
Filipina	3.766	-	18,83	-	3	21,83	1,00
Singapore	200	49	1,00	0,25	3	4,25	1,00
Vietnam	597	2	2,98	0,01	3	6,00	1,00
Indonesia	-	2.937	-	14,68	3	17,68	1,00

Port Cost		FC				
Pandu	du Labuh		Sandar	Total	AE	
3.599.800	144.117.000	11.483.362	14.411.700	173.611.862	107.855.530	
1.799.900	134.509.200	9.607.800	12.009.750	157.926.650	436.466.028	
	26.421.450			84.068.250	588.425.295	
				50.729.184	114.470.828	
2.555.858	120.097.500	9.503.472	10.568.580	142.725.410	161.627.071	
30.929.400	72.058.500	47.803.460	38.431.200	189.222.560	476.644.857	

5. MV Straits Challenger

	Sea Time (Jam)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	-	9,91	24,76	36,98	30,47	62,36	63,40				
Port Kelang	9,91	-	33,02	46,89	40,38	72,26	73,30				
Jakarta	24,76	33,02	-	58,68	48,68	78,68	72,22				
Laem Chabang	36,98	46,89	58,68	-	29,91	62,59	66,42				
Ho Chi Minh	30,47	40,38	48,68	29,91	-	37,88	42,31				
Hai Phong	62,36	72,26	78,68	62,59	37,88	-	46,23				
Bauan	63,40	72,83	72,22	66,42	42,31	46,23	-				

	Biaya BBM ME (Rp/trip)									
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan			
Singapore	-	240.721.518	601.803.794	898.693.666	740.505.240	1.515.399.268	1.540.617.713			
Port Kelang	240.721.518	-	802.405.059	1.139.415.184	981.226.758	1.756.120.786	1.781.339.231			
Jakarta	601.803.794	802.405.059	-	1.425.988.419	1.182.974.315	1.912.016.626	1.754.974.493			
Laem Chabang	898.693.666	1.139.415.184	1.425.988.419	-	726.749.725	1.521.130.733	1.613.980.461			
Ho Chi Minh	740.505.240	981.226.758	1.182.974.315	726.749.725	-	920.473.232	1.028.224.768			
Hai Phong	1.515.399.268	1.756.120.786	1.912.016.626	1.521.130.733	920.473.232	-	1.123.367.082			
Bauan	1.540.617.713	1.769.876.301	1.754.974.493	1.613.980.461	1.028.224.768	1.123.367.082	-			

	Biaya BBM AE (Rp/Trip)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	-	399.769.157	999.422.892	1.492.471.518	1.229.766.072	2.516.642.024	2.558.522.602				
Port Kelang	399.769.157	-	1.332.563.855	1.892.240.675	1.629.535.229	2.916.411.181	2.958.291.759				
Jakarta	999.422.892	1.332.563.855	-	2.368.156.337	1.964.579.855	3.175.309.301	2.914.507.518				
Laem Chabang	1.492.471.518	1.892.240.675	2.368.156.337	-	1.206.922.120	2.526.160.337	2.680.357.012				
Ho Chi Minh	1.229.766.072	1.629.535.229	1.964.579.855	1.206.922.120	-	1.528.641.108	1.707.585.398				
Hai Phong	2.516.642.024	2.916.411.181	3.175.309.301	2.526.160.337	1.528.641.108	-	1.865.589.398				
Bauan	2.558.522.602	2.939.255.133	2.914.507.518	2.680.357.012	1.707.585.398	1.865.589.398	-				

	Biaya Air Tawar (Rp/Trip)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	-	34.175	85.436	127.585	105.127	215.137	218.717				
Port Kelang	34.175	-	113.915	161.759	139.302	249.311	252.892				
Jakarta	85.436	113.915	-	202.443	167.943	271.443	249.149				
Laem Chabang	127.585	161.759	202.443	-	103.175	215.950	229.132				
Ho Chi Minh	105.127	139.302	167.943	103.175	-	130.677	145.974				
Hai Phong	215.137	249.311	271.443	215.950	130.677	-	159.481				
Bauan	218.717	251.264	249.149	229.132	145.974	159.481	-				

	Jumlah Mu	ıatan	Waktu					
Negara	Bongkar	Muat	Bongkar	Muat	AT+WT+IT	Total	Etmal	
Malaysia	60	140	0,30	0,70	3	4,00	1,00	
Thailand	572	2.066	2,86	10,33	3	16,19	1,00	
Filipina	3.766	-	18,83	-	3	21,83	1,00	
Singapore	200	49	1,00	0,25	3	4,25	1,00	
Vietnam	597	2	2,98	0,01	3	6,00	1,00	
Indonesia	-	2.937	-	14,68	3	17,68	1,00	

Port Cost		FC			
Pandu	Labuh	Tunda	Sandar	Total	AE
3.598.000	153.612.000	11.477.620	15.361.200	184.048.820	107.855.530
1.799.000	143.371.200	10.240.800	12.801.000	168.212.000	436.466.028
	28.162.200			89.607.000	588.425.295
				54.071.424	114.470.828
2.554.580	128.010.000	9.498.720	11.264.880	151.328.180	161.627.071
32.828.400	76.806.000	48.246.560	40.963.200	198.844.160	476.644.857

6. MV Canopus Leader

	Sea Time (Jam)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	1	9,86	24,65	36,81	30,33	62,07	63,10				
Port Kelang	9,86	-	32,86	46,67	40,19	71,92	72,96				
Jakarta	24,65	32,86	1	58,40	48,45	78,31	71,88				
Laem Chabang	36,81	46,67	58,40	-	29,77	62,30	66,10				
Ho Chi Minh	30,33	40,19	48,45	29,77	-	37,70	42,11				
Hai Phong	62,07	71,92	78,31	62,30	37,70	-	46,01				
Bauan	63,10	72,49	71,88	66,10	42,11	46,01	-				

	Biaya BBM ME (Rp/trip)									
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan			
Singapore	ı	239.574.403	598.936.007	894.411.103	736.976.496	1.508.177.906	1.533.276.177			
Port Kelang	239.574.403	-	798.581.342	1.133.985.506	976.550.898	1.747.752.309	1.772.850.580			
Jakarta	598.936.007	798.581.342	-	1.419.193.128	1.177.337.064	1.902.905.255	1.746.611.478			
Laem Chabang	894.411.103	1.133.985.506	1.419.193.128	-	723.286.530	1.513.882.059	1.606.289.328			
Ho Chi Minh	736.976.496	976.550.898	1.177.337.064	723.286.530	-	916.086.883	1.023.324.948			
Hai Phong	1.508.177.906	1.747.752.309	1.902.905.255	1.513.882.059	916.086.883	ı	1.118.013.879			
Bauan	1.533.276.177	1.761.442.275	1.746.611.478	1.606.289.328	1.023.324.948	1.118.013.879	-			

	Biaya BBM AE (Rp/Trip)									
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan			
Singapore	-	320.811.437	802.028.593	1.197.696.033	986.877.088	2.019.584.381	2.053.193.199			
Port Kelang	320.811.437	-	1.069.371.458	1.518.507.470	1.307.688.525	2.340.395.819	2.374.004.636			
Jakarta	802.028.593	1.069.371.458	-	1.900.425.848	1.576.559.063	2.548.159.416	2.338.868.145			
Laem Chabang	1.197.696.033	1.518.507.470	1.900.425.848	-	968.545.006	2.027.222.749	2.150.964.303			
Ho Chi Minh	986.877.088	1.307.688.525	1.576.559.063	968.545.006	-	1.226.721.829	1.370.323.139			
Hai Phong	2.019.584.381	2.340.395.819	2.548.159.416	2.027.222.749	1.226.721.829	-	1.497.120.041			
Bauan	2.053.193.199	2.358.727.901	2.338.868.145	2.150.964.303	1.370.323.139	1.497.120.041	-			

	Biaya Air Tawar (Rp/Trip)									
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan			
Singapore	-	36.972	92.430	138.028	113.732	232.746	236.620			
Port Kelang	36.972	-	123.239	175.000	150.704	269.718	273.592			
Jakarta	92.430	123.239	-	219.014	181.690	293.662	269.542			
Laem Chabang	138.028	175.000	219.014	-	111.620	233.627	247.887			
Ho Chi Minh	113.732	150.704	181.690	111.620	-	141.373	157.923			
Hai Phong	232.746	269.718	293.662	233.627	141.373	-	172.535			
Bauan	236.620	271.831	269.542	247.887	157.923	172.535	-			

	Jumlah Mu	ıatan	Waktu					
Negara	Bongkar	Muat	Bongkar	Muat	AT+WT+IT	Total	Etmal	
Malaysia	60	140	0,30	0,70	3	4,00	1,00	
Thailand	572	2.066	2,86	10,33	3	16,19	1,00	
Filipina	3.766	-	18,83	-	3	21,83	1,00	
Singapore	200	49	1,00	0,25	3	4,25	1,00	
Vietnam	597	2	2,98	0,01	3	6,00	1,00	
Indonesia	-	2.937	-	14,68	3	17,68	1,00	

Port Cost		FC			
Pandu	Labuh	Tunda	Sandar	Total	AE
3.598.000	155.751.000	11.477.620	15.575.100	186.401.720	107.855.530
1.799.000	145.367.600	10.383.400	12.979.250	170.529.250	436.466.028
	28.554.350			90.854.750	588.425.295
				54.824.352	114.470.828
2.554.580	129.792.500	9.498.720	11.421.740	153.267.540	161.627.071
33.256.200	77.875.500	48.346.380	41.533.600	201.011.680	476.644.857

7. MV Tianjin Highway

	Sea Time (Jam)										
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan				
Singapore	-	9,33	23,33	34,84	28,71	58,76	59,73				
Port Kelang	9,33	•	31,11	44,18	38,04	68,09	69,07				
Jakarta	23,33	31,11	•	55,29	45,87	74,13	68,04				
Laem Chabang	34,84	44,18	55,29	-	28,18	58,98	62,58				
Ho Chi Minh	28,71	38,04	45,87	28,18	-	35,69	39,87				
Hai Phong	58,76	68,09	74,13	58,98	35,69	-	43,56				
Bauan	59,73	68,62	68,04	62,58	39,87	43,56	-				

	Biaya BBM ME (Rp/trip)									
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan			
Singapore	-	195.725.490	489.313.725	730.708.497	602.088.889	1.232.138.562	1.252.643.137			
Port Kelang	195.725.490	-	652.418.301	926.433.987	797.814.379	1.427.864.052	1.448.368.627			
Jakarta	489.313.725	652.418.301	-	1.159.440.523	961.850.980	1.554.619.608	1.426.932.026			
Laem Chabang	730.708.497	926.433.987	1.159.440.523	-	590.904.575	1.236.798.693	1.312.292.810			
Ho Chi Minh	602.088.889	797.814.379	961.850.980	590.904.575	-	748.416.993	836.027.451			
Hai Phong	1.232.138.562	1.427.864.052	1.554.619.608	1.236.798.693	748.416.993	-	913.385.621			
Bauan	1.252.643.137	1.439.048.366	1.426.932.026	1.312.292.810	836.027.451	913.385.621	-			

	Biaya BBM AE (Rp/Trip)									
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan			
Singapore	ı	239.789.706	599.474.265	895.214.902	737.638.810	1.509.533.292	1.534.654.119			
Port Kelang	239.789.706	-	799.299.020	1.135.004.609	977.428.516	1.749.322.998	1.774.443.825			
Jakarta	599.474.265	799.299.020	-	1.420.468.544	1.178.395.127	1.904.615.379	1.748.181.142			
Laem Chabang	895.214.902	1.135.004.609	1.420.468.544	-	723.936.541	1.515.242.571	1.607.732.886			
Ho Chi Minh	737.638.810	977.428.516	1.178.395.127	723.936.541	-	916.910.162	1.024.244.601			
Hai Phong	1.509.533.292	1.749.322.998	1.904.615.379	1.515.242.571	916.910.162	-	1.119.018.628			
Bauan	1.534.654.119	1.763.025.267	1.748.181.142	1.607.732.886	1.024.244.601	1.119.018.628	-			

	Biaya Air Tawar (Rp/Trip)									
Tujuan/Asal	Singapore	Port Kelang	Jakarta	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan			
Singapore	-	35.000	87.500	130.667	107.667	220.333	224.000			
Port Kelang	35.000	-	116.667	165.667	142.667	255.333	259.000			
Jakarta	87.500	116.667	-	207.333	172.000	278.000	255.167			
Laem Chabang	130.667	165.667	207.333	-	105.667	221.167	234.667			
Ho Chi Minh	107.667	142.667	172.000	105.667	-	133.833	149.500			
Hai Phong	220.333	255.333	278.000	221.167	133.833	-	163.333			
Bauan	224.000	257.333	255.167	234.667	149.500	163.333	-			

	Jumlah Mu	ıatan	Waktu					
Negara	Bongkar	Muat	Bongkar	Muat	AT+WT+IT	Total	Etmal	
Malaysia	60	140	0,30	0,70	3	4,00	1,00	
Thailand	572	2.066	2,86	10,33	3	16,19	1,00	
Filipina	3.766	-	18,83	-	3	21,83	1,00	
Singapore	200	49	1,00	0,25	3	4,25	1,00	
Vietnam	597	2	2,98	0,01	3	6,00	1,00	
Indonesia	-	2.937	-	14,68	3	17,68	1,00	

Port Cost		FC			
Pandu	Labuh	Tunda	Sandar	Total	AE
3.599.800	146.781.000	11.483.362	14.678.100	176.542.262	107.855.530
1.799.900	136.995.600	9.785.400	12.231.750	160.812.650	436.466.028
	26.909.850			85.622.250	588.425.295
				51.666.912	114.470.828
2.555.858	122.317.500	9.503.472	10.763.940	145.140.770	161.627.071
31.462.200	73.390.500	47.927.780	39.141.600	191.922.080	476.644.857

Lampiran 3. Perhitungan Muatan

2012

604,00

Filipina

Vietnam

1. Prediksi Ekspor Indonesia Sampai Tahun 2025

Tujuan/Tahun	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Thailand	4.985	6.621	11.540	16.921	20.199	24.271	28.344	32.417	36.489	40.562	44.635
Filipina	37.357	64.176	72.185	85.424	102.838	118.059	133.280	148.501	163.722	178.943	194.164
Malaysia	4.812	5.809	4.766	4.542	4.519	4.334	4.148	3.963	3.778	3.593	3.407
Vietnam	-	782	12.222	17.798	23.909	30.392	36.876	43.359	49.843	56.326	62.809
Singapore	350	275	1.059	1.532	1.887	2.320	2.753	3.186	3.619	4.052	4.485
Total	47.504	77.663	101.772	126.217	153.351	179.376	205.401	231.425	257.450	283.475	309.500

2015

632,00

2016

1.210,00

2017

1.520,00

241,00

2. Prediksi Nilai Ekspor Impor Sampai Tahun 2025

1.060,00

2014

2013

653,00

ke/dari	Indonesia													
Indonesia	-													-
Singapore	1,84	1,54	2,43	4,20	3,13	13,10	15,71	20,16	24,61	29,06	33,51	37,96	42,41	46,86
Thailand	442,00	391,00	323,00	115,00	141,00	177,00	215,51	246,51	280,26	314,02	347,77	381,52	415,27	449,03
Malaysia	154,00	90,10	58,60	64,80	102,00	64,70	59,99	59,94	54,76	49,59	44,41	39,24	34,07	28,89

1.866,45

330,22

2018

2019

2.310,45

450,72

2020

2.711,79

2021

3.113,13

2022

3.514,46

2023

3.915,80

2024

4.317,14

1043,71

2025

4.718,47

1162,30

ke/dari	Singapore													
Indonesia	32,40	48,70	28,80	87,90	18,20	6,17	-	-	-	-	-	-		-
Singapore		-	-	-	-	-	-	-	-	-	-	-	-	-
Thailand	1,62	0,94	20,50	13,90	16,00	17,00	23,21	26,51	29,81	33,11	36,41	39,71	43,01	46,31
Malaysia	3,77	19,50	25,30	33,50	35,40	18,00	35,30	38,94	42,57	46,21	49,85	53,49	57,12	60,76
Filipina	18,80	2,12	9,14	0,23	0,95	0,58	-	-	-	-	-	-	-	-
Vietnam		ol d	1.90	0.85	0.32	0.31	0.66	0.69	0.71	0.73	0.75	0.78	0.80	0.82

ke/dari	Thailand													
Indonesia	1.520,00	1.100,00	723,00	499,00	510,00	321,00	291,86	248,24	158,12	86,15	14,19	-	-	-
Singapore	39,80	31,70	82,10	166,00	201,00	81,20	180,18	203,00	225,83	248,65	271,47	294,29	317,12	339,94
Thailand	-	-	-	-	-	-	-	-	-	-	-	-	-	-]
Malaysia	354,00	336,00	275,00	235,00	119,00	71,60	21,47	-	-	-	-	-	-	-
Filipina	632,00	918,00	833,00	1.060,00	1.780,00	2.040,00	2.195,80	2.477,31	2.758,83	3.040,34	3.321,86	3.603,37	3.884,89	4.166,40
Vietnam	14,10	8,84	37,40	67,40	-	-	14,59	12,67	10,76	8,84	6,93	5,01	3,10	1,18

ke/dari	Malaysia													
Indonesia	65,50	74,20	32,00	23,30	18,50	12,10	8,98	11,13	4,64	1,26	-	-	-	-
Singapore	1,87	2,98	0,72	1,11	1,72	3,40	2,39	2,51	2,64	2,76	2,88	3,00	3,12	3,24
Thailand	98,20	165,00	237,00	146,00	156,00	196,00	203,47	214,07	224,67	235,27	245,87	256,47	267,07	277,67
Malaysia	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Filipina	2,10	2,82	1,87	3,40	9,53	10,80	11,60	13,46	15,33	17,19	19,05	20,91	22,77	24,63
Vietnam	0,00	0,09	0,00	0,00	0,00	0,05	0,021	0,021	0,020	0,020	0,019	0,018	0,018	0,017

ke/dari	Filipina													
Indonesia	9,48	10,20	12,80	2,07	1,32	0,15	-	-	-	-	-	-	-	-
Singapore	-	0,89	0,55	-	-	0,11	-	-	-	-	-	-	-	-
Thailand	27,40	13,30	41,40	0,21	10,10	0,63	-	-	-	-	-	-	-	-
Malaysia	7,02	1,72	5,50	3,16	0,98	1,18	-	-	-	-	-	-	-	-
Filipina	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vietnam	3,67	3,71	5,22	0,52	0,14	0,39	-	-	-	-	-	-	-	-

2025

Uang (\$ M)

σαι 19 (ψ 111)							
ke/dari	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	0	0	0	0	0	-
Singapore	47	-	339,94	3,24	0	0,02	390,07
Thailand	449,03	46,31	-	277,67	0	0	773,00
Malaysia	28,89	60,76	0	-	0	0	89,65
Filipina	4.718,47	0	4.166,40	24,63	-	5,14	8.914,64
Vietnam	1162,30	0,82	1,18	0,02	0,00	-	1.164,33
Total	6.405,56	107,89	4.507,52	305,56	-	5,16	11.331,69

Persentase							
ke/dari	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	0%	0%	0%	0%	0%	0,00%
Singapore	0,82%	-	3,00%	0,03%	0%	0%	3,85%
Thailand	8,15%	0,41%	-	2,45%	0%	0%	11,01%
Malaysia	0,62%	0,54%	0,00%	-	0%	0%	1,16%
Filipina	35,46%	0%	36,77%	0,22%	-	0,05%	72,49%
Vietnam	11,47%	0,01%	0,01%	0%	0%	-	11,49%
Total	56,53%	0,95%	39,78%	2,70%	0,00%	0,05%	100,00%

ke/dari	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	0	0	0	0	0	=
Singapore	4.485	-	11.554	110	0	0	16.149
Thailand	44.635	841	-	5.044	0	0	50.520
Malaysia	3.407	1.339	0	-	0	0	4.746
Filipina	194.164	0	85.488	505	-	105	280.263
Vietnam	62.809	5	8	0	0	-	62.823
Total	309.500	2.185	97.050	5.660	-	105	414.501

3. Kapasitas Muatan Tiap Kapal tiap satu trip

Tianjin Highway

Dari/Ke	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	41	411	31	1786	578	2847
Singapore	-	-	21	27	0	0	48
Thailand	-	151	-	-	1852	1	2.003
Malaysia	-	1	123	-	11	0	136
Filipina	-	О	-	-	-	0	-
Vietnam	-	0	-	-	2	-	2
Total	-	194	555	58	3.651	579	5.036

Grand Vision

Dari/Ke	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	41	413	31	1794	580	2860
Singapore	-	-	21	27	0	0	48
Thailand	-	152	-	-	1860	1	2.013
Malaysia	-	1	124	-	11	0	136
Filipina	-	0	-	-	-	0	-
Vietnam	-	0	1	1	2	-	2
Total	-	195	557	59	3.668	581	5.060

Polaris Leader

Dari/Ke	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	43	424	32	1842	596	2937
Singapore	-	-	21	28	0	0	49
Thailand	-	156	-	-	1910	1	2.066
Malaysia	-	1	127	-	11	0	140
Filipina	-	0	-	-	-	0	-
Vietnam	-	0	-	-	2	-	2
Total	-	200	572	60	3.766	597	5.195

Straits Challenger

Dari/Ke	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	36	356	27	1549	501	2469
Singapore	-	-	18	23	0	0	42
Thailand	-	131	-	-	1606	0	1.738
Malaysia	-	1	107	-	9	0	118
Filipina	-	0	-	-	-	0	-
Vietnam	-	0	-	-	2	-	2
Total	-	168	481	51	3.166	502	4.368

European Highway

Dari/Ke	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	41	413	32	1796	581	2863
Singapore	-	-	21	27	0	0	48
Thailand	-	152	-	-	1862	1	2.014
Malaysia	-	1	124	-	11	0	137
Filipina	-	0	-	-	-	0	-
Vietnam	-	0	-	-	2	-	2
Total	-	195	558	59	3.671	582	5.064

Metis Leader

Dari/Ke	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	50	502	38	2182	706	3478
Singapore	-	-	25	33	0	0	59
Thailand	-	185	-	-	2262	1	2.448
Malaysia	-	2	151	-	13	0	166
Filipina	-	0	-	-	-	0	-
Vietnam	-	0	-	-	3	-	3
Total	-	237	678	71	4.460	707	6.153

Canopus Leader

Dari/Ke	Indonesia	Singapore	Thailand	Malaysia	Filipina	Vietnam	Total
Indonesia	-	43	424	32	1842	596	2937
Singapore	-	-	21	28	0	0	49
Thailand	-	156	-	-	1910	1	2.066
Malaysia	-	1	127	-	11	0	140
Filipina	-	0	-	-	-	0	-
Vietnam	-	0	-	-	2	-	2
Total	-	200	572	60	3.766	597	5.195

Lampiran 4. Perhitungan Model Optimasi

1. Model Multiport 6 Titik

Kapal	TCH	
Tianjin Highway	Rp	128.236.168.044
Polaris Leader	Rp	153.223.923.505
Grand Vision	Rp	124.714.929.017
Straits Challenger	Rp	124.819.262.025
Metis Leader	Rp	106.665.318.601
European Highway	Rp	128.236.168.044
Canopus Leader	Rp	124.088.930.968

Negara	CHC (Rp/unit)	
Indonesia	Rp	45.000
Singapura	Rp	71.000
Thailand	Rp	54.000
Malaysia	Rp	43.000
Filipina	Rp	67.000
Vietnam	Rp	51.000

Port	Cos	t	
		٠.	▔

FUIT COST												
Kapal/Pelabuhan	Indonesia		Singapura		Thailand		Malaysia		Filipina		Vietnam	
Tianjin Highway	Rp	191.922.080	Rp	51.666.912	Rp	160.812.650	Rp	176.542.262	Rp	85.622.250	Rp	145.140.770
Polaris Leader	Rp	201.011.680	Rp	54.824.352	Rp	170.529.250	Rp	186.401.720	Rp	90.854.750	Rp	153.267.540
Grand Vision	Rp	186.298.080	Rp	49.713.312	Rp	154.799.750	Rp	170.433.910	Rp	82.384.750	Rp	140.106.090
Straits Challenger	Rp	198.844.160	Rp	54.071.424	Rp	168.212.000	Rp	184.048.820	Rp	89.607.000	Rp	151.328.180
Metis Leader	Rp	224.216.000	Rp	62.884.800	Rp	195.537.200	Rp	213.272.486	Rp	104.212.500	Rp	175.373.990
European Highway	Rp	189.222.560	Rp	50.729.184	Rp	157.926.650	Rp	173.611.862	Rp	157.926.650	Rp	142.725.410
Canopus Leader	Rp	201.011.680	Rp	54.824.352	Rp	170.529.250	Rp	186.401.720	Rp	90.854.750	Rp	153.267.540

DV

		_					
Kapal	Rute						
Tianjin Highway	1	3	2	4	6	5	1
Polaris Leader	1	3	2	4	6	5	1
Grand Vision	1	3	2	4	6	5	1
Straits Challenger	1	3	2	4	6	5	1
Metis Leader	1	3	2	4	6	5	1
European Highway	1	3	2	4	6	5	1
Canopus Leader	1	3	2	4	6	5	1

Kapal	Rute					
Tianjin Highway	Indonesia	Malaysia	Singapura	Thailand	Vietnam	Filipina
Polaris Leader	Indonesia	Malaysia	Singapura	Thailand	Vietnam	Filipina
Grand Vision	Indonesia	Malaysia	Singapura	Thailand	Vietnam	Filipina
Straits Challenger	Indonesia	Malaysia	Singapura	Thailand	Vietnam	Filipina
Metis Leader	Indonesia	Malaysia	Singapura	Thailand	Vietnam	Filipina
European Highway	Indonesia	Malaysia	Singapura	Thailand	Vietnam	Filipina
Canopus Leader	Indonesia	Malaysia	Singapura	Thailand	Vietnam	Filipina

Indonesia
Indonesia

Kapal	Rute							
Tianjin Highway	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	Jakarta
Polaris Leader	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	Jakarta
Grand Vision	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	Jakarta
Straits Challenger	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	Jakarta
Metis Leader	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	Jakarta
European Highway	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	Jakarta
Canopus Leader	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	Jakarta

Kapal	Ya/Tidak	Frekuensi	Frekuensi Maksimal	Sea Time (Jam)	Port Time (Jam)	Jarak (nm)	Kapasitas (Unit)
Tianjin Highway	1	25	26	250,76	50,36	5.642,0	5.036
Polaris Leader	0	0	25	263,64	51,95	5.642,0	5.195
Grand Vision	1	23	26	248,55	50,60	5.642,0	5.060
Straits Challenger	0	0	25	266,13	43,68	5.642,0	4.368
Metis Leader	1	24	24	260,00	61,53	5.642,0	6.153
European Highway	1	26	26	247,46	50,64	5.642,0	5.064
Canopus Leader	1	5	26	247.46	51.95	5.642.0	5.195

Total Cost														
Kapal	Fuel Cos	t (Jarak) (Rp/trip)	Fuel C	ost (B/M) (Rp/trip)	Air Ta	awar (Rp/ trip)	Port C	Cost (Rp/trip)	TCH		CHC		Total ((Rp/Tahun)
Tianjin Highway	Rp	11.700.841.605	Rp	891.324.132	Rp	940.333	Rp	811.706.924	Rp	124.088.930.968	Rp	16.870.600.000	Rp	476.079.855.825
Polaris Leader	Rp	14.985.345.830	Rp	1.164.533.237	Rp	988.668	Rp	856.889.292	Rp	128.236.168.044	Rp	ı	Rp	=
Grand Vision	Rp	12.291.053.281	Rp	939.600.255	Rp	932.048	Rp	783.735.892	Rp	124.714.929.017	Rp	15.594.920.000	Rp	462.662.242.973
Straits Challenger	Rp	17.207.849.449	Rp	1.214.408.126	Rp	918.156	Rp	846.111.584	Rp	106.665.318.601	Rp	-	Rp	-
Metis Leader	Rp	15.445.776.520	Rp	1.563.023.910	Rp	1.053.000	Rp	975.496.976	Rp	153.223.923.505	Rp	19.788.048.000	Rp	604.660.381.262
European Highway	Rp	11.917.399.147	Rp	895.206.557	Rp	927.961	Rp	872.142.316	Rp	124.819.262.025	Rp	17.642.976.000	Rp	498.289.813.523
Canopus Leader	Rp	15.055.699.567	Rp	1.164.533.237	Rp	993.310	Rp	856.889.292	Rp	128.236.168.044	Rp	3.480.650.000	Rp	217.107.395.072
	_		_						Total		Rp	2.391.889.959.894		

Jumlah Kapasitas Muatan (ı	umlah Kapasitas Muatan (unit/tahun)										
Tujuan/Asal	Indonesia	Singapura	Thailand	Malaysia	Filipina	Vietnam	Total				
Indonesia	-	-	-	-	-	-	-				
Singapura	4.485	-	16.427	157	-	1	21.070				
Thailand	44.641	2.238	•	13.418	-	-	60.296				
Malaysia	3.408	2.936	-	-	-	-	6.344				
Filipina	194.190	-	201.337	1.190	-	248	396.965				
Vietnam	62.818	40	57	1	-	-	62.916				
Total	309.541	5.214	217.821	14.766	-	249	547.591				

Kapal	Total (Rp/Tahi	un)		
Tianjin Highway	Rp	476.079.855.825		
Polaris Leader	Rp	-		
Grand Vision	Rp	462.662.242.973		
Straits Challenger	Rp	-	Jenis Biaya	Persentase
Metis Leader	Rp	604.660.381.262	TCH	27,39%
European Highway	Rp	498.289.813.523	VC	63,980%
Canopus Leader	Rp	217.107.395.072	CHC	3,07%
Pinalty Cost	Rp	133.090.271.240	Pinalty Cost	5,56%
Total	Rp	2.176.313.701.160	Total	100,00%

Rute		Load Factor										
Rute	Tianjin Highway	Polaris Leader	Metis Leader	Canopus Leader								
Indonesia - Malaysia	60%	60%	60%	60%								
Malaysia - Singapura	62%	62%	62%	62%								
Singapura - Thailand	59%	59%	59%	59%								
Thailand - Vietnam	87%	87%	87%	87%								
Vietnam - Filipina	76%	76%	76%	76%								
Filipina - Indonesia	4%	4%	4%	4%								

2. Model Multiport 5 Titik

	А	В	С	·
Tianjin Highway	1	0	0	1
Polaris Leader	1	0	0	1
Grand Vision	0	0	1	1
Straits Challenger	0	1	0	1
Metis Leader	0	1	0	1
European Highway	0	1	0	1
Canopus Leader	0	0	1	1

Kapal	Rute						
Tianjin Highway	Jakarta	Port Kelang	Singapura	Laem Chabang	Bauan		Jakarta
Polaris Leader	Jakarta	Port Kelang	Singapura	Laem Chabang	Bauan		Jakarta
Grand Vision	Jakarta	Port Kelang	Singapura	Ho Chi Minh	Hai Phong	Bauan	Jakarta
Straits Challenger	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong	Jakarta
Metis Leader	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong	Jakarta
European Highway	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong	Jakarta
Canopus Leader	Jakarta	Port Kelang	Singapura	Ho Chi Minh	Hai Phong	Bauan	Jakarta

Kapal	Ya/Tidak	Frekuensi	Frekuensi Maksimal	Sea Time (Jam)	Port Time (Jam)	Jarak (nm)	Kapasitas (Unit)
Tianjin Highway	1	29	31	205,91	44,55	4.633,0	5.036
Polaris Leader	1	24	30	216,50	45,96	4.633,0	5.195
Grand Vision	1	22	33	214,54	24,90	4.870,0	5.060
Straits Challenger	0	0	33	226,37	12,02	4.799,0	4.368
Metis Leader	1	31	33	221,15	16,93	4.799,0	6.153
European Highway	1	17	35	210,48	13,93	4.799,0	5.064
Canopus Leader	1	32	33	213,60	25,56	4.870,0	5.195

Total Cost														
Kapal	Fuel Co	ost (Jarak) (Rp/trip)	Fue	l Cost (B/M) (Rp/trip)	Air T	awar (Rp/ trip)	Port (Cost (Rp/trip)	TCH		CHC		Tota	l (Rp/Tahun)
Tianjin Highway	Rp	9.608.294.781	Rp	788.509.708	Rp	772.167	Rp	811.706.924	Rp	124.088.930.968	Rp	17.312.504.423	Rp	466.470.659.204
Polaris Leader	Rp	12.305.407.166	Rp	1.030.204.086	Rp	811.857	Rp	856.889.292	Rp	128.236.168.044	Rp	14.779.950.231	Rp	483.655.615.914
Grand Vision	Rp	10.609.257.263	Rp	462.384.454	Rp	804.515	Rp	783.735.892	Rp	124.714.929.017	Rp	7.340.710.456	Rp	392.891.646.213
Straits Challenger	Rp	14.636.736.885	Rp	334.047.138	Rp	780.969	Rp	846.111.584	Rp	106.665.318.601	Rp	-	Rp	-
Metis Leader	Rp	13.137.944.261	Rp	429.940.852	Rp	584.357	Rp	975.496.976	Rp	153.223.923.505	Rp	7.030.666.509	Rp	611.117.549.844
European Highway	Rp	10.136.759.750	Rp	246.244.390	Rp	789.309	Rp	872.142.316	Rp	124.819.262.025	Rp	3.173.149.308	Rp	319.343.319.339
Canopus Leader	Rp	12.995.614.479	Rp	573.075.691	Rp	857.394	Rp	856.889.292	Rp	128.236.168.044	Rp	10.962.268.291	Rp	600.844.415.727
									Total		Rp	2.912.055.680.600		

Jumlah Kapasitas Mua	umlah Kapasitas Muatan (unit/tahun)										
Tujuan/Asal	Indonesia	Singapura	Thailand	Malaysia	Filipina	Vietnam	Total				
Indonesia	-	-	•	-	-	-	•				
Singapura	6.758	-	16.426	236	-	1	23.422				
Thailand	44.638	2.238	-	13.417	-	-	60.292				
Malaysia	5.135	4.424	•	-	-	-	9.559				
Filipina	194.436	-	99.539	1.192	-	126	295.292				
Vietnam	63.598	40	29	1	-	-	63.668				
Total	314.564	6.702	115.994	14.846	-	127	452.233				

Jenis Biaya	Persentase
TCH	26,90%
VC	69,724%
СНС	2,08%
Pinalty Cost	1,30%
Total	100,00%

Rute 1 Rute 2

Ruas	Load F	actor	Ruas	Load Factor			
Nuas	Tianjin Highway Polaris Leader			Metis Leader	European Highway		
Indonesia - Malaysia	49%	49%	Indonesia - Malaysia	25%	25%		
Malaysia - Singapura	50%	50%	Malaysia - Singapura	26%	26%		
Singapura - Thailand	47%	47%	Singapura - Thailand	23%	23%		
Thailand - Filipina	76%	76%	Thailand - Vietnam	15%	15%		
Filipina - Indonesia	4%	4%	Vietnam - Indonesia	4%	4%		

Rute 3

Ruas	Load Factor				
Nuas	Grand Vision	Canopus Leader			
Indonesia - Malaysia	49%	49%			
Malaysia - Singapura	48%	48%			
Singapura - Vietnam	48%	48%			
Vietnam - Filipina	36%	36%			
Filipina - Indonesia	1%	1%			

3. Model Multiport 6-5 Titik

Kapal	Rute							
Tianjin Highway	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	Jakarta
Polaris Leader	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	Jakarta
Grand Vision	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	Jakarta
Straits Challenger	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong	Bauan	Jakarta
Metis Leader	Jakarta	Port Kelang	Singapura	Laem Chabang	Bauan			Jakarta
European Highway	Jakarta	Port Kelang	Singapura	Laem Chabang	Ho Chi Minh	Hai Phong		Jakarta
Canopus Leader	Jakarta	Port Kelang	Singapura	Laem Chabang	Bauan			Jakarta

Kapal	Ya/Tidak	Frekuensi	Frekuensi Maksimal	Sea Time (Jam)	Port Time (Jam)	Jarak (nm)	Kapasitas (Unit)
Tianjin Highway	1	26	26	250,76	50,36	5.642,0	5.036
Polaris Leader	1	25	25	263,64	51,95	5.642,0	5.195
Grand Vision	1	25	26	248,55	50,60	5.642,0	5.060
Straits Challenger	1	24	25	266,13	43,68	5.642,0	4.368
Metis Leader	1	9	28	213,50	61,53	4.633,0	6.153
European Highway	1	11	30	210,48	50,64	4.799,0	5.064
Canopus Leader	0	0	31	203,20	51,95	4.633,0	5.195

Total Cost														
Kapal	Fuel C	Cost (Jarak) (Rp/trip)	Fuel	Cost (B/M) (Rp/trip)	Air T	awar (Rp/ trip)	Port C	ost (Rp/trip)	TCH		CHC		Tota	l (Rp/Tahun)
Tianjin Highway	Rp	11.700.841.605	Rp	891.324.132	Rp	940.333	Rp	811.706.924	Rp	124.088.930.968	Rp	17.545.424.000	Rp	490.159.492.819
Polaris Leader	Rp	14.985.345.830	Rp	1.164.533.237	Rp	988.668	Rp	856.889.292	Rp	128.236.168.044	Rp	17.403.250.000	Rp	570.833.343.738
Grand Vision	Rp	12.291.053.281	Rp	939.600.255	Rp	932.048	Rp	783.735.892	Rp	124.714.929.017	Rp	16.951.000.000	Rp	492.048.965.926
Straits Challenger	Rp	17.207.849.449	Rp	1.214.408.126	Rp	918.156	Rp	846.111.584	Rp	106.665.318.601	Rp	14.047.488.000	Rp	583.175.702.151
Metis Leader	Rp	12.683.495.679	Rp	1.563.023.910	Rp	864.684	Rp	975.496.976	Rp	153.223.923.505	Rp	6.564.559.704	Rp	296.794.414.451
European Highway	Rp	10.136.759.750	Rp	895.206.557	Rp	789.309	Rp	872.142.316	Rp	124.819.262.025	Rp	2.053.214.258	Rp	257.826.353.533
Canopus Leader	Rp	12.363.179.031	Rp	1.164.533.237	Rp	815.669	Rp	856.889.292	Rp	128.236.168.044	Rp	-	Rp	-
	-						-	•	Total		Rn	2.832.792.289.845		

Jumlah Kapasitas Muatan (unit/tahun)									
Tujuan/Asal	Indonesia	Singapura	Thailand	Malaysia	Filipina	Vietnam	Total		
Indonesia	-	-	•	-	•	ı	-		
Singapura	4.941	-	18.096	173	•	1	23.211		
Thailand	49.176	2.465	•	14.781	•	ı	66.422		
Malaysia	3.754	3.234	•	ı	•	1	6.988		
Filipina	194.165	·	201.310	1.190	•	223	396.889		
Vietnam	62.847	40	57	1		ı	62.945		
Total	314.883	5.739	219.464	16.145	-	224	556.455		

Rute 1

		Ruas		Load Factor				
		Nuas	Tianjin Highw	ay Polaris Leader	Grand Vision	Straits Challenger		
Jenis Biaya	Persentase	Indonesia - Malays	sia 60%	60%	60%	60%		
TCH	26,89%	Malaysia - Singapu	ıra 62%	62%	62%	62%		
VC	65,466%	Singapura - Thaila	nd 59%	59%	59%	59%		
CHC	2,63%	Thailand - Vietnan	n 87%	87%	87%	87%		
Pinalty Cost	5,01%	Vietnam - Filipina	76%	76%	76%	76%		
Total	100,00%	Filipina - Indonesi	a 4%	4%	4%	4%		

Rute 2 Rute 3

Ruas	Load Factor	Ruas	Load Factor		
Nuas	Metis Leader	Nuas	European Highway		
Indonesia - Malaysia	49%	Indonesia - Malaysia	25%		
Malaysia - Singapura	50%	Malaysia - Singapura	26%		
Singapura - Thailand	47%	Singapura - Thailand	23%		
Thailand - Filipina	76%	Thailand - Vietnam	15%		
Filipina - Indonesia	4%	Vietnam - Indonesia	4%		

BIODATA PENULIS

Nama lengkap penulis adalah Christian Gilang Putra Nugraha. Penulis dilahirkan di Semarang, 7 Mei 1997. Riwayat Pendidikan dimulai dari SD Kristen 2 YSKI (2003-2009), SMP Kristen YSKI (2009-2012), SMA Kristen YSKI (2012-2015) dan pada tahun 2015 penulis diterima sebagai mahasiswa Departemen Teknik Transportasi Laut, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember (ITS) Surabaya melalui jalur mandiri. Selama

perkuliahan penulis aktif dalam berbagai kegiatan di lingkup jurusan maupun kampus. Penulis berkesempatan mengikuti beberapa pelatihandi lingkup kampus seperti LKMM Pra-TD, LKMM TD, LKMW dan lainnya. Untuk berkomunikasi dapat menghubungi dengan email ke: christyangilang@gmail.com