

TESIS - TL185413

PENGARUH DOPING FLOURINE DAN TEMPERATUR KALSINASI PADA MATERIAL Li₄Ti₅O₁₂/C DENGAN METODE SOLID STATE TERHADAP PERFORMA ELEKTROKIMIA ANODA BATERAI ION LITHIUM

ALVALO TOTO WIBOWO NRP. 02511750012004

Dosen Pembimbing Lukman Noerochim, S.T., M.Sc. Eng., Ph.D. Dr. Widyastuti, S.Si., M.Si.

Departemen Teknik Material dan Metalurgi Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember 2020

TESIS - TL185413

THE EFFECT OF FLUORINE DOPING AND CALCINATION TEMPERATURE ON $LI_4Ti_5O_{12}/C$ MATERIAL USING SOLID STATE METHOD FOR ELECTROCHEMICAL PERFORMANCE OF LITHIUM ION BATTERY

ALVALO TOTO WIBOWO NRP. 02511750012004

Advisor Lukman Noerochim, S.T., M.Sc. Eng., Ph.D. Dr. Widyastuti, S.Si., M.Si.

Department of Material And Metallurgical Engineering Faculty of Industrial Technology And Engineering System Institut Teknologi Sepuluh Nopember Surabaya 2020

LEMBAR PENGESAHAN TESIS

Tesis disusun untuk memenuhi satu syarat memperoleh gelar Magister Teknik (MT)

di

Institut Teknologi Sepuluh Nopember

Oleh:

ALVALO TOTO WIBOWO

NRP: 02511750012004

Tanggal Ujian: 27 Januari 2020 Periode Wisuda: Maret 2020

> Disetujui oleh: Pembimbing

- Lukman Noerochim, S.T., M.Sc. Eng., Ph.D. NIP: 197703132003121001
- 2. Dr. Widyastuti, S.Si., M.Si. NIP: 197906202006042001

Penguji

- 1. Diah Susanti, S.T., M.T., Ph.D. NIP: 197701162003122007
- Sigit Tri Wicaksono, S.Si., M.Si., Ph.D. NIP: 197801132002121003

NIP: 197801132002121003

i

PENGARUH DOPING FLUORINE DAN TEMPERATUR KALSINASI PADA MATERIAL Li₄Ti₅O₁₂/C DENGAN METODE SOLID STATE TERHADAP PERFORMA ELEKTROKIMIA ANODA BATERAI ION LITHIUM

Nama Mahasiswa: Alvalo Toto WibowoNRP: 02511750012004Pembimbing: Lukman Noerochim,S.T., M.Sc.Eng., Ph.D.Co. Pembimbing: Dr. Widyastuti, S.Si, M.Si

ABSTRAK

Anoda baterai Li₄Ti₅O₁₂ merupakan bahan alternatif pengganti grafit sebagai bahan anoda pada umumnya. Anoda Li₄Ti₅O₁₂ memiliki keunggulan tegangan operasi lebih stabil dari grafit yang tidak dapat digunakan dalam kondisi high rate power dan dimensi grafit berubah ketika proses charging pertama kali. Penambahan (*doping*) Fluorine pada anoda $Li_4Ti_5O_{12}$ dapat meningkatkan performa elektrokimia pada baterai Dalam penelitian ini dilakukan proses sintesis dan penambahan variasi F (0,1, 0,15 dan 0,2 mol) ke dalam anoda Li₄Ti₅O₁₂ dengan metode solid state reaction menggunakan teknik ball milling. Li₄Ti₅O₁₂ dilakukan proses kalsinasi dengan variasi temperatur 700, 750 dan 800°C. Li₄Ti₅O₁₂ dilapisi dengan karbon dengan menggunakan gas asetilene sehingga terbentuk Li₄Ti₅O₁₂/C. Hasil uji XRD diketahui bahwa Li₄Ti₅O₁₂/C doping F telah berhasil disintesis sesuai dengan JCPDS card No.49-0207. Temperatur optimal yang bisa digunakan untuk mensintesis Li₄Ti₅O₁₂/C adalah 750°C, melebihi temperatur tersebut (800°C) terdapat pengotor berupa TiO₂. Hasil SEM menunjukkan morfologi material anoda Li₄Ti₅O₁₂/C. Pada temperatur kalsinasi 700 dan 750°C terlihat partikel LTO berbentuk butir tak beraturan, berukuran nanometer dengan persebaran yang homogen. Namun pada temperatur kalsinasi 800°C terjadi aglomerasi sehingga partikel melekat satu sama lainnya dan membesar, hal ini mempengaruhi performa elektrokimia dari sampel. Performa elektrokimia dari baterai *coin cell* bisa didapat dari pengujian *cyclic voltammetry* (CV), charge/discharge (CD) dan electrochemical impedance spectroscopy (EIS). Hasil uji CV didapatkan pola puncak yang tajam pada variasi LTO 700°C doping 0,15F dengan nilai tegangan anodik sebesar 1,6598 V dan tegangan katodik sebesar 1,1589 V. Uji CD didapatkan hasil nilai spesifik discharge capacity sebesar 310,11 mAhg⁻¹ pada variasi 750° doping 0.1F. Uji EIS didapatkan hasil optimum pada LTO/C 750°C doping 0,1F dengan nilai resistansi elektrolit dan kontak antar elektroda (R_s) terkecil sebesar 13,809 Ω dan charge transfer resistance R_{ct} sebesar 628,72 Ω .

Kata Kunci: Anoda Li₄Ti₅O₁₂, Ball Mill, Doping F, Temperatur Kalsinasi

THE EFFECT OF FLUORINE DOPING AND CALCINATION TEMPERATURE ON Li₄Ti₅O₁₂/C MATERIAL USING SOLID STATE METHOD ON THE ELECTROCHEMISTRY PERFORMANCE OF LITHIUM ION BATTERY

Student Name	: Alvalo Toto Wibowo
NRP	: 02511750012004
Advisor	: Lukman Noerochim, S.T., M.Sc.Eng., Ph.D.
Co. Advisor	: Dr. Widyastuti, S.Si, M.Si.

ABSTRACT

Li₄Ti₅O₁₂ battery anode is an alternative material to replace graphite as an anode material in general. The Li₄Ti₅O₁₂ anode has the advantage of more stable operating voltage than graphite. Graphite cannot be used in high rate power conditions and the dimensions of the graphite change during the first charging process. The addition of Fluorine to the Li₄Ti₅O₁₂ anode can improve the electrochemical performance of the battery. In this research, the synthesis and addition of F (0.1, 0.15 and 0.2 moles) were added to the $Li_4Ti_5O_{12}$ anode with the solid state reaction method using ball milling technique. Li₄Ti₅O₁₂ calcination process carried out with variations in temperature of 700, 750 and 800°C. $Li_4Ti_5O_{12}$ is coated with carbon using acetylene gas to form $Li_4Ti_5O_{12}/C$. XRD test results are known that $Li_4Ti_5O_{12}/C$ doping F has been successfully synthesized according to JCPDS card No.49-0207. The optimal temperature that can be used to synthesize $Li_4Ti_5O_{12}/C$ is 750°C, above that temperature (800°C) there is an impurity in the form of TiO₂. SEM results show the morphology of the Li₄Ti₅O₁₂/C anode material. At calcination temperatures of 700 and 750°C the $Li_4Ti_5O_{12}/C$ particles had irregular sphere shaped with nanometer size and homogeneous distribution. However, at a calcination temperature of 800°C agglomeration occurred, so that the particles adhere to each other and enlarge. This condition affects the electronic performance of the sample. The electrochemical performance of coin cell batteries can be obtained from cyclic voltammetry (CV), charge/discharge (CD) and electrochemical impedance spectroscopy (EIS) tests. CV test results obtained a sharp peak pattern on variations of the 700°C doped 0.15F with an anodic voltage value of 1.6598 V and a cathodic voltage of 1.1589 V. The CD test obtained the specific value of the discharge capacity of 310.11mAhg⁻¹ at a variation of 750°C doped 0.1F. The EIS test found optimum results at Li₄Ti₅O₁₂/C 750°C doped 0.1F with the lowest electrolyte resistance and contact between electrodes (R_s) of 13,809 Ω and charge transfer resistance of (R_{ct}) of 628,72 Ω .

Keywords: Anode Li₄Ti₅O₁₂, Ball Mill, Doping F⁻, Calcination Temperature

KATA PENGANTAR

Alhamdulillah, puji syukur atas limpahan rahmat dan karunia Allah Subhanahu wata'ala sehingga penulis dapat menyelesaikan tesis serta menyusun laporan tesis yang berjudul **"Pengaruh Doping Fluorine Dan Temperatur Kalsinasi Pada Material Li₄Ti₅O₁₂/C Dengan Metode Solid State Terhadap Performa Elektrokimia Anoda Baterai Ion Lithium".** Tidak lupa sholawat dan salam kepada baginda Rosulullah Muhammad Shallallahu 'alaihiwasallam, karena beliau telah menjadi panutan, menuntun manusia menjadi lebih beradab, berilmu dan beragama dengan lebih baik dan benar.

Dalam penulisan laporan tesis ini penulis melibatkan banyak pihak yang sangat membantu dalam menyelesaikan tesis. Oleh karena itu, pada kesempatan ini penulis mengucapkan banyak terima kasih kepada :

- 1. Orang tua dan keluarga atas segala do'a, dukungan, perhatian, motivasi dan pengertian yang telah diberikan selama ini.
- Prof. Dr. Ir. Mochamad Ashari, M.Eng selaku rektor Intstitut Teknologi Sepuluh Nopember Surabaya.
- 3. Bapak Lukman Noerochim, S.T., M.Sc. Eng., Ph.D selaku dosen pembimbing satu dan orang tua di jurusan teknik material atas kesabarannya dalam membimbing, memotivasi dan memberikan ilmu pada penulis.
- 4. Ibu Dr. Widyastuti, S.Si, M.Si selaku dosen pembimbing dua atas waktu, kritik, saran dan kesabarannya dalam membimbing penulis.
- 5. Ibu Diah Susanti, ST., MT., Ph.D. selaku dosen penguji yang telah memberi banyak masukan dan ilmu yang bermanfaat bagi penulis.
- Bapak Sigit Tri Wicaksono, S.Si., M.Si., Ph.D. selaku dosen penguji dan Kepala Departemen Teknik Material dan Metalurgi ITS
- 7. Bapak Alvian Toto Wibisono S.T., M.T. selaku pembimbing, motivator dan partner yang telah banyak membantu penulis
- Seluruh dosen dan karyawan Jurusan Teknik Material dan Metalurgi ITS yang telah membantu selama proses tesis.

- 9. Teman-teman S2 yang telah menemani penulis, menjadi teman perjuangan disaat susah maupun senang, selalu membantu, menghibur dan mengajari segala hal pada penulis.
- 10. Nisa atas segala doa, pengertian dan dukungan yang telah diberikan kepada penulis.
- 11. Semua pihak yang secara langsung maupun tidak langsung memberikan dukungan dan telah membantu dalam menyelesaikan penulisan tesis ini.

Penulis menyadari adanya kekurangan dan kekeliruan didalam penyusunan tesis ini dikarenakan keterbatasan kemampuan. Besar harapan penulis akan diberi saran dan kritik yang sifatnya membangun untuk kesempurnaan tesis ini. Semoga tulisan ini dapat selalu bermanfaat bagi penulis maupun orang lain.

Surabaya, Januari 2020

Penyusun

DAFTAR ISI

LEMBAR PENGESAHAN	i
ABSTRAK	iii
ABSTRACT	V
KATA PENGANTAR	vii
DAFTAR ISI	ix
DAFTAR GAMBAR	xiii
DAFTAR TABEL	xvii
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang Penelitian	1
1.2 Perumusan Masalah	2
1.3 Batasan Masalah	3
1.4 Tujuan Penelitian	3
1.5 Manfaat Penelitian	3
BAB 2 TINJAUAN PUSTAKA DAN DASAR TEO	RI5
2.1 Baterai Ion Lithium	5
2.2 Komponen Baterai Ion Lithium	6
2.2.1 Anoda	7
2.2.2 Katoda	
2.2.3 Elektrolit	
2.2.4 Separator	
2.3 Bahan Penyusun Anoda LTO	
2.3.1 Lithium Carbonate (Li_2CO_3)	
2.3.2 Titanium Oxide (TiO ₂)	
2.4 Lithium Fluoride (LiF)	
2.5 Metode Solid State (Ball Mill)	
2.6 Pelapisan Carbon	
2.6.1 Gas Asetilene (C_2H_2)	
2.7 Temperatur Kalsinasi	
2.8 Penelitian Pendahuluan	

22
a Baterai LTO 24
Ti ₅ O ₁₂
LiF41
Pengujian Elektokimia 43
C 48
_x F _x /C
rode 49
le 49
v (EIS) 54
action (XRD) 57
mmetry (CV) 77
mmetry (CV)77)

4.3.2 Hasil dan Analisis Electrochemical Impedance Spectroscopy (EIS)	86
BAB 5 KESIMPULAN dan SARAN	91
5.1 Kesimpulan	91
5.2 Saran	91
DAFTAR PUSTAKA	93
LAMPIRAN	97
BIOGRAFI PENULIS	119

DAFTAR GAMBAR

Gambar 2.1 Prinsip Kerja Baterai Lithium yang Dapat Diisi Ulang (a) Proses
Charging, (b) Proses Discharging
$Gambar \ 2.2 \ Struktur \ Spinel \ Li_4Ti_5O_{12} \ \ 8$
Gambar 2.3 (a) Visualisasi Stuktur Kristal Li ₄ Ti ₅ O ₁₂ : Tetrahedral 8a (Putih),
Octahedral 16c (Abu-Abu) Dan Oktahedral 16d (Hitam). Titanium (Bola
Kecil Abu-Abu) Dan Oksigen (Bola Besar Abu-Abu). Akupansi Dari
Lokasi-Lokasi Ini Akan Bervariasi Bergantung Suhu Dan Li $^+$ Yang Ada.
(B) Jarak Inter-Atomic Antara 16d-16c (2.95A), 16c-8a (1,81 A), Dan 8a-
16d (3.46 A)
Gambar 2.4 Letak Separator pada Baterai 15
Gambar 2.5 Jenis-jenis Mechanical Milling (a) Attritor Mill, (b) Vibratory
(Shacker Mill), dan (c) Planetary Ball Mill18
Gambar 2.6 Proses Penghancuran Material Bulk Akibat Kontak Lansung Pada
Proses Ball Mill
Gambar 2.7 Pola XRD dari LTO Dikalsinasi pada Temperature yang Berbeda 22
Gambar 2.8 Pola XRD LTO
Gambar 2.9 (a) Pola XRD Dari Li ₄ Ti ₅ O _{12 -x} f_x yang Disintesis (X = 0, 0,05, 0,1,
0,3, 0,5). (b) Puncak $Li_4Ti_5O_{12}$ Yang Diperbesar (1 1 1) Didoping Dengan
Jumlah F Yang Berbeda25
Gambar 2.10 (A) pola XRD, (B) diperbesar (111) puncak LTO NS dan F-LTO
NS
Gambar 2.11 Cyclic Voltametri Li ₄ Ti ₅ O ₁₂ dengan nyala langsung (direct flaming)
selama 0, 10, dan 20 menit
Gambar 2.12 Kurva Charge-Discharge LTO BM2 Tanpa Flaming Langsung Dan
Dengan Flaming Langsung Asetilen Selama 10 dan 20 Menit
Gambar 2.13 a Rate Capabilities, b Cycle Performance LTO BM2 Tanpa Flaming
Langsung Dan Dengan Flaming Langsung Gas Asetilen Selama 10 Dan
Gambar 2.14 Nyquist Plot LTO BM2 Selama 0, 10, dan 20 Menit Direct Flaming

Gambar 2.15 Kurva Difusi Li-Ion Pada Frekuensi Rendah Untuk Direct Flaming	
Gas Asetilena	32
Gambar 3.1 Diagram Alir Sintesis Li₄Ti₅O ₁₂ Doping F ⁻	42
Gambar 3.2 Diagram Alir Pembuatan Elektroda dan Pengujian Elektrokimia	43
Gambar 3.3 Glove box untuk assembly baterai	46
Gambar 3.4 Skema Bentuk Dimensi Spesimen	46
Gambar 3.5 Hydraulic Crimping Machine	47
Gambar 3.6 Bentuk Baterai berupa Coin Cell	47
Gambar 3.7 Alat Uji XRD	50
Gambar 3.8 Alat Uji SEM	51
Gambar 3.9 Alat Cyclic Voltammetry Electrochemical Workstation CorrTest	52
Gambar 3.10 Alat Uji Charge/Discharge	53
Gambar 3.11 Kurva Nyquist Plot	54
Gambar 4.1 a) Pola XRD LTO dengan variasi doping F dan b) Pergeseran Peak	
dengan Variasi Penambahan Doping F pada temperatur 700°C	58
Gambar 4.2 a) Pola XRD LTO dengan variasi doping F dan b) Pergeseran Peak	
dengan Variasi Penambahan Doping F pada temperatur 750°C	58
Gambar 4.3 a) Pola XRD LTO dengan variasi doping F dan b) Pergeseran Peak	
dengan Variasi Penambahan Doping F pada temperatur 800°C	60
Gambar 4.4 a) Variasi Temperatur Kalsinasi pada LTO doping 0,1 F; b) doping	
0,15 F; c) doping 0.2 F	61
Gambar 4.5 Hasil Uji SEM LTO Perbesaran 25.000x pada setiap variasi (a) LTO	
+ 0.1F Kalsinasi 700°C, (b) LTO + 0.15F Kalsinasi 700°C, (c) LTO + 0.2F	
Kalsinasi 700°C, (d) LTO + 0.1F Kalsinasi 750°C, (e) LTO + 0.15F	
Kalsinasi 750°C, (f) LTO + 0.2F Kalsinasi 750°C, (g) LTO + 0.1F Kalsinasi	
800°C, (h) LTO + 0.15F Kalsinasi 800°C dan (i) LTO + 0.2F Kalsinasi	
800°C	64
Gambar 4.6 (a) Hasil SEM perbesaran 15.000x, (b) Hasil EDX dan (c) Persebaran	
unsur pada LTO/C doping 0,1F pada temperatur 700°C	67
Gambar 4.7 (a) Hasil SEM perbesaran 15.000x, (b) hasil EDX dan (c) Persebaran	
unsur pada LTO/C doping 0,15F pada temperatur 700°C	68

Gambar 4.8 (a) Hasil SEM perbesaran 15.000x, (b) hasil EDX dan (c) Persebaran
unsur pada LTO/C doping 0,2F pada temperatur 700°C69
Gambar 4.9 (a) Hasil SEM perbesaran 15.000x, (b) Hasil EDX dan (c) Persebaran
unsur pada LTO/C doping 0,1F pada temperatur 750°C70
Gambar 4.10 (a) Hasil SEM perbesaran 15.000x, (b) Hasil EDX dan (c)
Persebaran unsur pada LTO/C doping 0,15F pada temperatur 750°C 71
Gambar 4.11 (a) Hasil SEM perbesaran 15.000x, (b) Hasil EDX dan (c)
Persebaran unsur pada LTO/C doping 0,2 F pada temperatur 750°C 72
Gambar 4.12 (a) Hasil SEM perbesaran 15.000x, (b) Hasil EDX dan (c)
Persebaran unsur pada LTO/C doping 0,1F pada temperatur 800°C
Gambar 4.13 (a) Hasil SEM perbesaran 15.000x, (b) Hasil EDX dan (c)
Persebaran unsur pada LTO/C doping 0,15F pada temperatur 800°C 74
Gambar 4.14 (a) Hasil SEM perbesaran 15.000x, (b) Hasil EDX dan (c)
Persebaran unsur pada LTO/C doping 0,2F pada temperatur 800°C 75
Gambar 4.15 Hasil CV LTO/C pada tiap temperature dan variasi F
Gambar 4.16 Kapasitas spesifik charge discahrge sampel LTO/C 700°C pada 0,1
dan 0,15F 80
Gambar 4.17 Kapasitas spesifik charge discahrge sampel LTO/C 750°C pada 0,1
dan 0,2F 81
Gambar 4.18 Kapasitas spesifik charge discahrge sampel LTO/C 800°C pada
0,1F, 0,15F, dan 0,2F
Gambar 4.19 Cycling performance sampel LTO/C 700 °C pada varisi 0.1 dan
0.15F
Gambar 4.20 Cycling performance sampel LTO/C 750 °C pada varisi 0.1 dan
0.2F
Gambar 4.21 Cycling Performance sampel LTO/C 800 °C pada variasi 0,1, 0,15,
dan 0,2F
Gambar 4.22 Nyquist plot pada varisai F pada sampel LTO/C 700°C 87
Gambar 4.23 Nyquist plot pada varisai F pada sampel LTO/C 750°C
Gambar 4.24 Nyquist plot pada varisai F pada sampel LTO/C 800°C

DAFTAR TABEL

Tabel 2.1 Beberapa Material Yang Digunakan Untuk Anoda	.7
Tabel 2.2 Jenis Material Katoda	. 11
Tabel 2.3 Pelarut Organik yang Paling Umum Digunakan dalam Sel Ion Litium	. 12
Tabel 2.4 Garam Litium yang Umum Digunakan dalam Elektolit Sel Ion Litium	. 13
Tabel 2.5 Persyaratan Umum untuk Separator Baterai Ion Lithium	. 14
Tabel 2.6 Karakteristik Lithium Carbonate (Li ₂ CO ₃)	. 16
Tabel 2.7 Karakteristik Titanium Oxide	16
Tabel 2.8 Karakteristik Lithium Fluoride (LiF)	. 17
Tabel 2.9 Karakteristik Unsur Karbon (Grafit)	. 19
Tabel 2.10 Karakteristik Gas Asetilene	20
Tabel 2. 11 Lattice Parameter, Crystallite size and Particle Size of LTO	. 24
Tabel 2. 12 Lattice Parameter dari Li ₄ Ti ₅ O _{12-x} F _x	. 26
Tabel 2. 13 Nilai Rs, Rct, dan D _{Li} Untuk Semua Sampel LTO BM2	. 33
Tabel 2. 14 Klasifikasi Sintesis Doping Anoda Li ₄ Ti ₅ O ₁₂	. 34
Tabel 3.1 Skema Penelitian	55
Tabel 4.1 Nilai Lattice Parameter dan Crystallite Size Setiap Variasi	62
Tabel 4.2 Ukuran Partikel Dari Variasi LTO/C	65
Tabel 4.3 Berat Masing-Masing Unsur Yang Ada Pada Variasi LTO	.76
Tabel 4.4 Nilai Pengujian CV	. 79
Tabel 4.5 Nilai Capacity Discharge Variasi Temperatur 700°C	. 83
Tabel 4.6 Nilai Capacity Discharge Variasi Temperatur 750°C	. 84
Tabel 4.7 Nilai Capacity Discharge Variasi Temperatur 800°C	. 85
Tabel 4.8 Nilai EIS Varisai F Pada Setiap Sampel Baterai bedasarkan Hasil fitting	. 86

BAB 1

PENDAHULUAN

1.1 Latar Belakang Penelitian

Baterai ion lithium merupakan salah satu sumber energi yang banyak digunakan saat ini. Baterai ion lithium biasanya diterapkan pada sistem echogreen seperti pada transportasi kendaraan listrik dan kendaraan listrik hibrida karena energinya yang tinggi, masa pakai yang lama dan daya yang besar (Xu, dkk, 2015). Seperti yang kita ketahui, bahan anoda sering memainkan peran penting dalam penentuan keamanan dan masa pakai baterai ion lithium. Baterai komersial menggunakan grafit atau bahan berkarbon lainnya sebagai elektroda anoda, tetapi keamanannya dapat membatasi penggunaan dalam aplikasi skala besar pada baterai daya. Bahan-bahan berkarbon memiliki masalah keamanan yang parah dari pertumbuhan litium dendritik, karena tegangan operasinya yang rendah (dibawah 0 V vs Li^+/Li). Hal ini mungkin membawa risiko dalam stabilitas jangka panjang dan masalah keamanan. Untuk mengatasi masalah-masalah umum yang terjadi pada anoda baterai, beberapa jenis material anoda telah ditingkatkan kapasitas reversible dan stabilitasnya melebihi kemampuan baterai grafit komersial dan diterapkan pada baterai ion lithium. Sehingga pencarian untuk alternatif material anoda dengan laju kemampuan dan keamanan yang baik telah menjadi topik utama dalam penelitian baterai. Banyak material anoda baru yang telah diusulkan dan telah diinvestigasi secara mendalam, seperti material anoda berbasis Sn, Sb dan Si, bermacam-macam material oksida metal transisi, hard *carbon* dan Li₄Ti₅O₁₂ (LTO). (Vikram, dkk, 2018)

Diantara semua bahan anoda, LTO telah dianggap sebagai bahan anoda pengganti yang menarik untuk grafit, karena LTO memiliki kemampuan penyisipan ion Li⁺ yang cepat, reversibilitas siklus yang sangat baik, dan stabilitas termodinamika tinggi karena tegangannya 1,55 V dibandingkan Li/Li⁺, dan perubahan volume yang hampir dapat diabaikan selama proses pengisian dan pengosongan, sehingga disebut bahan "regangan nol". Spinel LTO dapat menghindari reduksi elektrolit pada permukaan elektroda dan karenanya meningkatkan keamanan baterai lithium-ion dan menjadikannya bahan kandidat elektroda yang ideal untuk baterai umur panjang. Oleh karena itu, spinel LTO telah dipandang sebagai salah satu alternatif yang menjanjikan untuk grafit sebagai bahan anoda dalam baterai lithium-ion. (Vikram, dkk, 2018)

Namun LTO murni memiliki kekurangan yaitu konduktivitas elektronik dan koefisien difusi lithium yang rendah, mengakibatkan penurunan kemampuan baterai ion lithium dan memperlambat aplikasinya secara komersial dalam sistem pemyimpanan energi. Salah satu metode efektif untuk mengatasi masalah ini adalah ditambahkan (*doping*) dengan ion logam diposisi Li atau Ti, atau menggantikan oksigen dengan ion non logam. (Chen, dkk, 2018)

Pada penelitian sebelumnya berhasil mensintesis senyawa LTO yang didoping dengan Br menggunakan reaksi *solid state*. Br yang didopingkan ke senyawa LTO menunjukkan kapasitas *discharge* yang sangat baik yaitu 172 mA hg^{-1} pada 0,5 C, yang sangat dekat dengan kapasitas teoretisnya (175 mAhg⁻¹) (Yanling, dkk, 2009). Peneliti lainnya mengadopsi metode serupa untuk mensintesis senyawa LTO yang didoping Cl (Yudai, dkk, 2012). Doping LTO dengan F⁻ dengan reaksi *solid state* berhasil disintesis dan menunjukkan peningkatan kinerja elektrokimia. Namun, kinerja laju Li₄Ti₅O_{12-x}F_x tidak memuaskan dan kapasitasnya hanya 71,6 mAhg⁻¹ pada kerapatan arus tertinggi 1,7 Ag⁻¹ (Zhen, dkk, 2013).

Pada penelitian ini akan dilakukan proses sintesis $Li_4Ti_5O_{12}$ dengan penambahan (*doping*) F⁻, kemudian dilapisi dengan carbon. Proses sintesis LTO *doping* F⁻ dengan menggunakan metode *Solid State Reaction*. Proses pelapisan karbon dilakukan dengan teknik karbonisasi menggunakan gas asetilene dan argon. Variasi yang digunakan pada penelitian ini adalah penambahan (*doping*) F⁻ dan temperatur kalsinasi. Variasi-variasi yang digunakan diharapkan dapat meningkatkan performa dari baterai ion lithium.

1.2 Perumusan Masalah

Sehubungan dengan latar belakang diatas, maka permasalahan yang akan dikaji dalam penelitian ini adalah sebagai berikut:

- Bagaimana pengaruh variasi penambahan (*doping*) F terhadap morfologi dan performa elektrokimia anoda baterai dari Li₄Ti₅O₁₂/C dengan metode *solid state reaction*
- Bagaimana pengaruh variasi temperatur kalsinasi terhadap morfologi dan performa elektrokimia anoda baterai dari Li₄Ti₅O₁₂/C dengan metode *solid state reaction*

1.3 Batasan Masalah

Batasan - batasan masalah dalam penelitian ini adalah sebagai berikut:

- 1. Serbuk Li₂CO₃, TiO₂ dan serbuk LiF dianggap tidak ada pengotor
- 2. Pengotor didalam vial chamber ball mill diabaikan
- 3. Kecepatan putar saat proses ball mill dianggap kosntan
- 4. Temperatur ketika proses kalsinasi konstan
- 5. Laju aliran gas asetilen dianggap konstan

1.4 Tujuan Penelitian

Tujuan dilakukannya penelitian ini adalah sebagai berikut:

- Menganalisis pengaruh variasi penambahan (*doping*) F⁻ terhadap morfologi dan performa elektrokimia anoda baterai dari Li₄Ti₅O₁₂/C dengan metode *solid state reaction*.
- Menganalisis pengaruh variasi temperatur kalsinasi terhadap morfologi dan performa elektrokimia anoda baterai dari Li₄Ti₅O₁₂/C dengan metode *solid state reaction*.

1.5 Manfaat Penilitian

Manfaat yang diharapkan dari penelitian ini adalah:

- 1. Menunjang program penelitian sekaligus menambah wawasan dalam pengetahuan tentang potensi besar dari baterai ion lithium
- 2. Sebagai bahan rujukan pengembangan ilmu pengetahuan tentang anoda batreai ion lithium
- 3. Memberikan kontribusi dan manfaat untuk diaplikasikan baterai ion lithium

BAB 2

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 Baterai Ion Lithium

Baterai adalah alat listrik-kimiawi yang menyimpan energi dan mengeluarkan tenaganya dalam bentuk listrik. Baterai mamiliki dua sifat yaitu baterai primer dan baterai sekunder. Baterai primer baterai yang hanya bisa digunakan satu kali. Sedangkan baterai sekunder berarti baterai yang dapat dipakai berkali-kali dengan cara isi ulang bila dayanya sudah mulai habis. Baik baterai primer dan sekunder, kedua-duanya bersifat mengubah energi kimia menjadi energi listrik dan masing-masing memiliki beberapa bentuk dan spesifikasi yang berbeda-beda. Baterai terbagi dalam beberapa jenis, yang salah satunya adalah baterai jenis Li-Ion (lithium-ion) yang memiliki sifat sebagai baterai sekunder (*rechargeable battery*).

Baterai lithium secara teori digerakkan oleh ion lithium. Dalam kondisi *charge* dan *discharge* baterai lithium bekerja menurut fenomena interkalasi, dimana ion lithium melakukan migrasi dari katoda lewat elektrolit ke anoda. Baterai ion lithium umumnya dijumpai pada barang-barang elektronik. Baterai ini merupakan jenis baterai isi ulang yang paling popular untuk peralatan elektronik portabel, karena memiliki salah satu kepadatan energi terbaik, tanpa efek memori, dan mengalami kehilangan isi yang lambat saat tidak digunakan. Selain digunakan pada peralatan elektronik konsumen, baterai lithium juga sering digunakan pada kendaraan listrik. (Sari, 2015)

Dalam proses migrasi yang berjalan secara difusi, reaksi kimia terjadi secara *reversible* dari kondisi *charging* atau pengisisan dan *discharging* atau pemakaian. Pada proses *charging* ion lithium akan dilepaskan dari katoda ke anoda melalui elektrolit, dengan begitu katoda harus bersifat konduktif ionik. Elektron yang dilepaskan melewati rangkaian luar (*current collector*) mengalir dari katoda ke anoda, dan arus mengalir dari anoda ke katoda sedangkan pada proses *discharging* ion lithium akan dilepaskan dari anoda ke katoda melalui elektrolit, elektron mengalir dari anoda ke katoda melalui

arus mengalir dari katoda ke anoda. Reaksi kimia dari proses *charging* dan *discharging* dapat dituliskan sebagai berikut:

Reaksi kimia pada proses charging:

Elektroda positif (+): $\operatorname{LiMn}_{y}^{y}O_{z} \rightarrow \operatorname{nLi}^{+1} + \operatorname{Li}_{x-n}Mn_{y}O_{z} + \operatorname{ne}^{-1}$ (2.1)

Elektroda negatif (-):
$$nLi^{+} + C + ne^{+} \rightarrow Li_{n}C$$
 (2.2)

Reaksi keseluruhan :
$$\text{LiMn}_{y}O_{z} + C \longrightarrow \text{Li}_{x-n}Mn_{y}O_{z} + \text{Li}_{n}C$$
 (2.3)

Reaksi kimia pada proses discharging:

Elektroda positif (+):
$$nLi^{+1} + Li_{x-n} Mn_y O_z + ne^{-1} \rightarrow LiMn_y O_z$$
 (2.4)

Elektroda negatif (-):
$$\operatorname{Li}_{n}^{C} \longrightarrow n\operatorname{Li}^{+1} + C + ne^{-1}$$
 (2.5)

Reaksi keseluruhan :
$$\text{Li}_{x-n} \text{Mn}_y \text{O}_z + \text{Li}_n \text{C} \longrightarrow \text{Li} \text{Mn}_y \text{O}_z + \text{C}$$
 (2.6)

Prinsip kerja baterai ion lithium yang dapat diisi ulang dapat dilihat pada Gambar 2.1

Gambar 2.1 Prinsip kerja baterai litium yang dapat diisi ulang a) Proses *Charging*; b) Proses *Discharging* (Priyono, 2013).

2.2 Komponen Baterai Ion Lithium

Sesuai dengan komponen penyusunnya, baterai ion lithium / baterai sekunder dapat dikategorikan menjadi 4 bagian, yaitu anoda (kutub negatif), katoda (kutub positif), elektrolit dan separator. Berikut ini akan dijelaskan 4 bagian dari komponen penyusun baterai ion lithium

2.2.1 Anoda

Anoda merupakan elektroda negatif yang berkaitan dengan reaksi oksidasi setengah sel yang melepaskan elektron ke dalam sirkuit eksternal. Anoda berfungsi sebagai tempat pengumpulan ion lithium serta merupakan tempat bagi material aktif, dimana lembaran pada anoda biasanya berupa tembaga (Cu foil). Material yang dapat dipakai sebagai anoda harus memiliki karakteristik antara lain memiliki kapasitas energi yang besar, memiliki profil kemampuan menyimpan dan melepas muatan/ion yang baik, memiliki tingkat siklus pemakaian yang lama, mudah untuk diproses, aman dalam pemakaian (tidak mengandung racun) dan harganya murah. Salah satu material yang dapat berperan sebagai anoda adalah material yang berbasis karbon seperti grafit (LiC₆). Material aktif lain yang dapat digunakan sebagai anoda antar lain lithium titanium oxide (LTO). Material ini aman dipakai serta memiliki tingkat siklus pemakaian yang cukup lama. Pada Tabel 2.1 memberikan contoh beberapa material yang pernah digunakan sebagai anoda dengan kapasitas energinya.

Anoda	Beda potensial (V)	Kapasitas Spesifik (mAh/g)	Energi Spesifik (kWh/kg)
Grafit (LiC ₆)	0,1 - 0,2	372	0,0372 - 0,0744
Titanate(Li ₄ Ti ₅ O ₁₂)	1 - 2	160	0,16 - 0,32
Si (Li _{4,4} Si)	0,5 - 1	4212	2,106 - 4,212
Ge (Li _{4,4} Ge)	0,7 - 1,2	1624	1,137 – 1,949

Tabel 2.1 Beberapa Material Yang Digunakan Untuk Anoda

Sumber : Gritzner, 1993

Anoda yang digunakan dalam baterai Lithium umumnya tersusun dari grafit. Namun keunggulan grafit yang memiliki kapasitas tinggi juga memiliki keterbatasan nyata, yaitu ketidakmampuan dalam kondisi *high rates discharge* dikarenakan host yang dimiliki grafit adalah interkalasi satu dimensi. Kondisi *high rate* akan menimbulkan efek litiasi yang akan menumbuhkan dendritik pada lapisan anoda sehingga rentan terhadap terjadinya hubungan pendek dalam baterai yang berakibat eksplosif dari segi faktor keamanan. Untuk itu dikembangkan material lain yang memiliki beda tegangan yang cukup tinggi terhadap Li/Li⁺ sehingga menjamin tidak terbentuknya fenomena lithiasi dalam permukaan elektroda. Salah satu kandidat yang sedang banyak diteliti adalah material LTO yang merupakan material keramik lithium titanate. $Li_4Ti_5O_{12}$ merupakan keramik lithium-titanimum oxide, lebih dikenal dengan lithium titanate, memiliki struktur spinel *face-centered cubic* dalam space groups *Fdm*3. Gambar 2.2. memperlihatkan struktur spinel Li₄Ti₅O₁₂ sebagai berikut:

Gambar 2.2. Struktur Spinel Li₄Ti₅O₁₂ (Feng, dkk, 2011)

Sifat utama dari material keramik ini adalah kemampuan strukturnya untuk tidak mengalami perubahan bentuk selama terjadi insersi ion Li⁺. Kingo Ariyoshi, dkk, (2005) melaporkan dengan pengamatan yang sangat presisi menggunakan *synchrotron* XRD mengukur perubahan kisi kristal yang sangat kecil, 0.002 Å pada saat awal *discharge* dan 0.006 Å penyusutan kisi pada proses *discharge* berikutnya. Karena itu keramik LTO dikenal dengan sebutan material *zero-strain insertion*. Jika diamati struktur spinel ini merupakan gabungan dari struktur *rock salt* dan struktur ZnS. Struktur spinel ini memiliki dua kisi yang berfungsi sebagai tempat tinggal ion-ion penyusunnya, yaitu kisi tetrahedral (A) dan kisi oktahedral (B). Kisi-kisi tersebut dibedakan oleh bilangan koordinasi oksigennya, dimana kisi A mempunyai tetangga 4 anion oksigen lainnya, sedangkan kisi B mempunyai 6 anion tetangga oksigen. Pola susunan ion-ion LTO spinel adalah FCC. Satu unit sel mengandung 32 anion oksigen dan kationkation logamnya tersebar dalam dua kisi yang berbeda, yaitu 64 kisi tetrahedral dan 32 kisi oktahedral. Tetapi perlu diketahui bahwa dari 96 kisi ini hanya 24 kisi saja yang diisi oleh ion-ion logam, yaitu 8 kisi tetrahedral dan 16 kisi oktahedral. Kisi tetrahedral ditempati oleh kation bervalensi 1 (Li⁺)dan kisi oktahedral ditempati oleh kation bervalensi 4 (Ti⁴⁺) maka jumlah total muatan positif adalah 8x(+1) = +8 ditambah 16x(+4) = +64, atau jumlah total muatan adalah 72. Untuk kesetimbangan diperlukan 36x(-2) = (-72) muatan negatif O²⁻, maka dalam satu unit cell terdapat 3 molekul Li₄Ti₅O₁₂.

Kapasitas teoritik energi tersimpan $\text{Li}_4/3\text{Ti}_5/3\text{O}_4$ dengan mudah dapat ditentukan dari hasil diatas. Karena melibatkan 3 molekul, maka akan ada 3 Li^+ persatuan unit molekul, sementara itu per gram $\text{Li}_4\text{Ti}_5\text{O}_{12}$ mengandung 1/459.16 mol sehingga kapasitas teoritik muatan per gram keramik $\text{Li}_4\text{Ti}_5\text{O}_{12} = 3 \times 96.500$ (Coulomb) x 0.0021786 / 3600 = 172.5 mAh/g.

Kehadiran ion-ion untuk menempati posisi pada dua tipe kedudukan pada kisi kristal spinel ditentukan oleh : radius ionik dari ion-ion penyusun spinel,besar ukuran kisi interstisi, suhu, dan bilangan koordinasi. Dengan keadaan ini, maka harus dipertimbangkan besar antara radius jari-jari ion dengan kisi interstisi (tetrahedral dan oktahedral). Ion dengan valensi 1 umumnya memiliki radius lebih besar dari ionik yang bervalensi 4.

Kataoka, dkk, (2008) telah membahas struktur kristal tunggal LTO dan perilaku difusi lithium dalam kisi kristal. Sementara, Vijayakumar, dkk, (2011) memberikan gambaran local struktur $Li_4Ti_5O_{12}$ yang lebih modern. Pada $Li_4Ti_5O_{12}$, lokasi oktahedral 16d secara random ditempati oleh lithium dan titanium, lokasi tetrahedral 8a hanya ditempati lithium dan lokasi 16c adalah kosong (*vacant*). Sepanjang insersi lithium, lithium ion berpindah dari 8a menuju lokasi 16c, sehingga berkomposisi $Li_4Ti_5O_{12}$, struktur rock salt terbentuk ketika seluruh site 16c terisi dan site 8a menjadi kosong. Akibatnya jumlah lithium yang bisa berinsersi dibatasi oleh ketersediaan site 16c. Namun peneliti lain menyatakan perilaku *insertion* ini lebih dipengaruhi oleh ion titanium *tetravalent* dibandingkan ketersediaan pada lokasi tetrahedral, (Kataoka, dkk, 2009) seperti pada Gambar 2.3 berikut ini :

Gambar 2.3 (a) Visualisasi stuktur kristal $Li_4Ti_5O_{12}$: tetrahedral 8a (putih), octahedral 16c (abu-abu) dan oktahedral 16d (hitam). Titanium (bola kecil abu-abu) dan oksigen (bola besar abu-abu). Jumlah unit dari lokasi-lokasi ini akan bervariasi bergantung suhu dan Li^+ yang ada. (b) Jarak inter-atomic antara 16d-16c (2.95A), 16c-8a (1,81 A) dan 8a-16d (3.46 A) (Kataoka, dkk, 2008)

Li₄Ti₅O₁₂ memiliki sifat konduktifitas yang berubah pada suhu tinggi. Dengan perbedaan hampir orde 10^6 (~ 10^{-3} S/cm) pada suhu tinggi (>600 K) dibandingkan pada suhu kamar (~ 10^{-8} S/cm). Kenaikan yang sangat tajam ini diinterpretasikan akibat pembentukan fasa *disorder* pada suhu tinggi, dimana lithium secara random terdistribusi pada site 8a dan 16c. Pergantian ion lithium dari site 8a menuju 16c dengan temperatur dan pembentukan keadaan *disorder* mempengaruhi perubahan pada intensitas infrared dan mode Raman, tetapi belum dikonfirmasi dengan penelitian lainnya. (Vijayakumar, dkk, 2011)

2.2.2 Katoda

Katoda merupakan elektroda yang berfungsi sebagai pengumpul ion serta merupakan tempat bagi material aktif, dimana lembaran pada katoda biasanya adalah aluminium foil. Pada katoda terjadi reaksi setengah sel yaitu reaksi reduksi yang menerima elektron dari sirkuit luar sehingga reaksi kimia reduksi terjadi pada elektroda ini. Katoda dan anoda memiliki fungsi yang sama namun, perbedaannya adalah katoda merupakan elektroda positif. Material katoda harus memiliki karakteristik yang harus dipenuhi antara lain material tersebut terdiri dari ion yang mudah melakukan reaksi reduksi dan oksidasi, memiliki konduktifitas yang tinggi, memiliki kapasitas energi yang tinggi, memiliki kestabilan yang tinggi (tidak mudah berubah strukturnya atau terdegradasi baik saat pemakaian maupun pengisian ulang), harganya murah dan ramah lingkungan. Pada tahun 1980 material LiCoO₂ menjadi kandidat material pertama yang digunakan sebagai katoda pada LIBs. Kerapatan energi yang dimiliki LiCoO₂ sebesar 140 mAh/g. Kelemahan pada material ini yaitu memiliki kestabilan yang rendah dan harganya mahal. Beberapa jenis material yang umum digunakan sebagai katoda terdapat pada Tabel 2.2

Katoda	Beda potensial rata-rata (V)	Kapasitas Spesifik (mAh/g)	Energi spesifik (kWh/kg)
LiCoO ₂	3,7	140	0,518
LiMn ₂ O ₄	4,0	100	0,400
LiNiO ₂	3,5	180	0,360
LiFePO ₄	3,3	150	0,495
LiCo _{1/3} Ni _{1/3} O ₂	3,6	160	0,576

Tabel 2.2 Jenis Material Katoda

Sumber : Gritzner, 1993

Katoda disusun dari campuran bahan elektroda (90%), aditif konduktif (6%), bahan pengikat (4%), dan dipasang pada arus kolektor. Li-TMs dengan konduktivitas elektron yang rendah umumnya digunakan sebagai bahan elektroda, terjadi penurunan konduktivitas elektroda. Maka, beberapa karbon konduktif seperti grafit, Acethylene Black (AB), Ketjen Black (KB) kembali ditambahkan untuk meningkatkan sifat konduktif dari elektroda. Polimer fluorocarbon seperti (PTFE), Polyvinylidenedifluoride (PVdF), Polytetra Fluoroethylene dan Polyvinyl-fluoride (PVF) biasanya digunakan sebagai pengikat untuk menghubungkan setiap partikel dari bahan elektroda. Foil biasanya digunakan sebagai arus kolektor, karena harus bertahan dengan kondisi oksidasi yang tinggi $(\sim 4V \text{ vs } \text{Li}^+/\text{Li}).$

2.2.3 Elektrolit

Elektrolit merupakan perangkat elektrokimia yang sangat penting dalam suatu baterai. Elektrolit merupakan material yang bersifat penghantar ionik. Fungsi elektrolit ialah sebagai media untuk mentransfer ion lithium antara katoda dan anoda. Ada beragam jenis elektrolit seperti cair, padat, polimer dan komposit elektrolit. Elektrolit yang banyak digunakan pada baterai lithium adalah elektrolit cair yang terdiri dari garam lithium yang dilarutkan dalam pelarut berair. Hal yang paling penting dalam suatu elektrolit adalah interaksi antara elektrolit dan elektroda pada baterai. Hubungan dua bahan ini akan mempengaruhi kinerja baterai secara signifikan. Karakteristik elektrolit yang penting untuk diperhatikan antara lain konduktivitas ion yang tinggi tetapi konduktivitas elektron yang rendah, viskositas yang rendah, titik leleh yang rendah, titik didih yang tinggi aman (tidak beracun) serta harganya murah (Fadhel, 2009). Pelarut dan garam yang paling umum digunakan ditunjukkan dalam tabel 2.3 dan 2.4 berikut, secara berurutan.

Pelarut	MW, g/mol	T _m , ^o C	T _b , ^o C	T _f , °C	d, g/cm ³
Ethylene carbonate, EC	88	36.4	248	160	1.321
Propylene carbonate, PC	102	-48.8	242	132	1.200
Dimethyl carbonate, DMC	90	4.6	91	18	1.063
Diethyl carbonate, DEC	118	-74.3	126	31	0.969
Ethyl methyl carbonate, EMC	104	-53	110	23.9	1.006
Gamma-butyrolactone, γBL	86	-43.5	204	97	1.199

Tabel 2.3 Pelarut Organik yang Paling Umum Digunakan dalam Sel Ion Litium

Sumber: Gublbinska, 2014

Garam	MW, g/mol	T _m , ^o C	T _{decomp} , ^o C solid
Lithium hexa fluoro	151.0	10/	10/
phousphate, LiPF ₆	131.9	174	174
Lithium bis(oxalato)	102.8	Dekomposisi	202
borate, LIBOB	195.0	sebelum <i>melting</i>	293
0 1 0 1 11 1 00	1 /		

Tabel 2.4 Garam Litium yang Umum Digunakan dalam Elektolit Sel Ion Litium

Sumber: Gublbinska, 2014

2.2.4 Separator

Separator adalah material berpori (*permeable membrane*) yang ditempatkan di antara anoda dan katoda baterai. Fungsi utama dari separator adalah menjaga kedua elektroda terpisah agar tidak bergesekan untuk mencegah terjadinya arus pendek listrik. Tidak hanya sebagai pembatas elektroda, separator juga memungkinkan pengangkutan pembawa muatan ionik yang diperlukan untuk menutup sirkuit selama perjalanan arus dalam sel elektrokimia (harus dapat dilewati oleh ion dengan baik). Separator memiliki peran penting dalam proses penghasilan listrik, pengisian ulang dan tentunya keamanan pada baterai ion sendiri.

Separator merupakan komponen penting dalam baterai elektrolit cair. Suatu pemisah umumnya terdiri dari suatu membran polimerik yang membentuk lapisan mikro. Ini harus stabil secara kimia dan elektrokimia berkaitan dengan elektrolit, bahan elektroda agar cukup kuat secara mekanis untuk menahan tegangan tinggi selama konstruksi baterai. Separator penting untuk baterai karena struktur dan properti mereka sangat mempengaruhi kinerja baterai, termasuk energi baterai dan kerapatan daya, *life cycle*, dan keselamatan.

Karakteristik yang penting untuk dijadikan separator pada baterai yaitu bersifat insulator, memiliki hambatan listrik yang kecil, kestabilan mekanik (tidak mudah rusak), memiliki sifat hambatan kimiawi untuk tidak mudah terdegredasi dengan elektrolit serta memiliki ketebalan lapisan yang seragam atau sama diseluruh permukaan.

Separator dapat berupa elektrolit yang berbentuk gel, atau plastik film microporous (nanopori), atau material inert berpori yang diisi dengan elektrolit cair. Sifat listrik separator ini mampu dilewati oleh ion tetapi juga mampu memblokir elektron, jadi bersifat konduktif ionik sekaligus tidak konduktif elektron. (Subhan, 2011). Persyaratan umum separator yang dapat digunakan untuk baterai ion lithium dapat di lihat pada Tabel 2.5

Parameter pada	Nilai parameter	Standar
separator		
Ketebalan (µm)	< 25	ASTM D5947-96
Hambatan listrik (Ωcm^2)	< 2	US 4.464.238
Ukuran pori (µm)	< 1	ASTM E 128-99
Porositas (%)	± 40	ASTM E 128-99
Wettability	Basah keseluruhan pada	-
	elektrolit	
Stabilitas kimia	Stabil dalam baterai untuk	-
	penggunaan yang lama	
Penyusutan (%)	< 5	ASTM D 1204
Titik leleh (°C)	± 130	-
Tegangan rusak (V)	> 20	_

Tabel 2.5 Persyaratan Umum untuk Separator Baterai Ion Lithium

Sumber : Jun, 2010

Polimer separator umumnya terbuat dari membran polimer mikropori. Selaput seperti ini biasanya dibuat dari berbagai bahan organik, anorganik, dan alami. Ukuran pori biasanya lebih besar dari 50-100 Å. Membran disintesis oleh proses kering lebih cocok untuk kepadatan daya yang lebih tinggi, mengingat struktur pori terbuka dan seragam, sedangkan yang dibuat oleh proses basah menawarkan lebih banyak siklus pengisian / pengosongan karena struktur pori berliku dan saling berhubungan. Hal ini membantu menekan konversi pembawa muatan menjadi kristal pada anoda selama pengisian suhu cepat atau rendah. Gambar 2.4 menunjukkan letak separator pada komponen baterai ion lithium berupa coin cell

Gambar 2.4 Letak Separator pada Baterai (Changhong, 2017)

Ada beberapa *essential properties* yang harus diperhatikan untuk pemilihan separator, diantaranya adalah stabilitas kimia, ketebalan, porositas, ukuran pori, permeabilitas, kekuatan mekanik, *wet ability*, stabilitas thermal dan *thermal shutdown*. Beberapa material yang dapat digunakan sebagai separator antara lain polyolefins (PE dan PP), Poly vinylidene fluoride (PVDF), PTFE (teflon), PVC, dan poly ethylene oxide. (Higuchi, dkk, 1995)

2.3 Bahan Penyusun Anoda LTO

Anoda $Li_4Ti_5O_{12}$ (LTO) dapat disintesi menggunakan pencampuran antara lithium carbonat (Li_2CO_3) dan titanium oxide (TiO_2) dengan perbandingan stoikiometri. Campuran antara lithium carbonat dan titanium oxide diharapkan mampu berkontribusi untuk pembuatan material anoda baterai sesuai dengan karakteristik unsur penyusunnya. Untuk mengetahui karakteristik dari setiap bahan yang akan digunakan, penjelasan tentang karakteristik dari lithium carbonat dan titanium oxide akan dijelaskan sebagai berikut.

2.3.1 Lithium Carbonate (Li₂CO₃)

Karakteristik dari lithium carbonate diantaranya adalah serbuk berwarna putih, bersifat hygroscopis , mampu menyerap H₂O dari lingkungan, memiliki kandungan toksisitas yang rendah. dalam pembuatan keramik dan gelas, lithium carbonate dapat digunakan sebagai katalis dan lapisan untuk menyatukan elektroda. Bentuk kristal dari lithium carbonate adalah monoklinik. Karakteristik lithium carbonate dapat dilihat pada Tabel 2.6

KarakteristikNilaiTitik Lebur (°C)720Densitas (g/cm³)2.1Massa Molar (g/mol)73.89Titik Leleh (°C)1200Indeks refraksi1.428

Tabel 2.6 Karakteristik Lithium Carbonate (Li₂CO₃)

Sumber : Merck, 2017

2.3.2 Titanium Oxide (TiO₂)

Titanium oxide berbentuk serbuk berwarna putih, bersifat polimorfi dengan struktur kristal yaitu 2 fasa yang stabil pada suhu rendah antara lain anatase dan brookit, sedangkan 1 fasa yang lain yaitu rutil stabil pada suhu tinggi. Stabilitas kimia titanium oxide stabil dibawah temperature dan tekanan normal. Memiliki struktur berbentuk tetragonal, tidak mudah terbakar dan tidak mengandung racun. Titanium oxide memiliki konduktifitas listrik yang rendah dan konstanta dielektrik yang tinggi. Karakteristik dari titanium oxide dapat dilihat pada Tabel 2.7

Tabel 2.7 Karakteristik Titanium Oxide (TiO₂)

Karakteristik	Nilai
Titik Didih (°C)	2972
Titik Beku/Lebur (°C)	1843
Density (Rutile) (g/cc)	4.23
Density (Anatase) (g/cc)	3.78
Berat Molekul (g/mol)	79.90

Sumber : MSDS, 2017

2.4 Lithium Fluoride (LiF)

Lithium fluoride adalah senyawa anorganik dengan rumus kimia LiF. LiF berbentuk padatan (serbuk) berwarna putih atau transparan kristal yang bersifat non-hygroscopic. Meskipun tidak berbau, lithium fluoride memiliki rasa asinpahit. LiF memiliki struktur kristal cubic, dengan konstanta kisi (a) 403.51 pm dan bentuk molekul linier. LiF mudah larut dalam air, umumnya digunakan sebagai komponen garam cair. LiF terbuat dari litium hidroksida dan hidrogen fluorida atau dengan melarutkan litium karbonat dalam hidrogen fluorida berlebih, kemudian dikeringkan dan dipanaskan sampai merah. Karakteristik pada LiF dapat dilihat pada Tabel 2.8 berikut

Tabel 2.8 Karakteristik Lithium Fluoride (LiF)

Karakteristik	Nilai
Water Solubility (g/1)	1.3
Boiling Point (°C)	1680
Melting Point (°C)	845
Density (g/cc)	2.635
Molecular Weight (g/mol)	25.94

Sumber : MSDS, 2015

2.5 Metode Solid State (Ball Mill)

Sintesis material bisa dilakukan dengan beberapa metode seperti metode hydrothermal, metode sol-gel, metode *solid state* dan masih banyak yang lainnya. Penelitian ini menggunakan metode sintesis *solid state* untuk membuat bahan yang akan dilakukan penelitian. Dalam prosesnya semakin cepat perputaran *ball mill* maka energi yang dihasilkan juga semakin besar dan menghasilkan temperatur yang semakin tinggi. Apabila kecepatan melebihi kecepatan kritis maka terjadi *pined* pada dinding bagian dalam sehingga bola-bola tidak jatuh dan tidak menghasilkan gaya *impact*, jadi sebaiknya kecepatan yang digunakan harus di bawah kecepatan kritis sehingga bola dapat jatuh dan menghasilkan tenaga *impact* yang optimal. Hal ini berpengaruh pada waktu yang dibutuhkan untuk mencapai hasil yang diinginkan.

Prinsip *ball milling* pada metode ini diawali dengan material yang akan dibuat ukurannya menjadi skala nano disiapkan dan dimasukkan kedalam vial bersama bola-bola penghancur. Kemudian bola yang terbuat dari zirconium misalnya akan bergerak secara *attritor mill*, *vibratory (shaker mill)*, dan *planetary*

ball mill. Skema kerja dari ketiga jenis *ball mill* didasarkan pada gaya yang diberikan pada *ball mill* yang kemudian gaya tersebut digunakan untuk menghancurkan material *bulk* menjadi nanopartikel. Proses *milling* terjadi bila media bergerak rotasi (*stirring*) atau dengan mengocok (*shaking*) atau menggetarkan wadah tempat serbuk material digiling, sehingga terjadi kontak material dengan benda. Beberapa proses tersebut bisa dilihat pada Gambar 2.5 berikut

Gambar 2.5 Jenis-jenis *Mechanical Milling* (a) *Attritor Mill*, (b) *Vibratory* (*Shacker Mill*), dan (c) *Planetary Ball Mill* (Giuliana Gorrasi, 2018)

Akibatnya material yang terperangkap antara bola penghancur dan dinding vial akan saling bertumbukkan menghasilkan deformasi pada material tersebut. Deformasi material tersebut menyebabkan fragmentasi struktur material sehingga terpecah menjadi susunan yang lebih kecil, hal ini bisa dilihat pada Gambar 2.6 berikut.

Gambar 2.6 Proses penghancuran material *bulk* akibat kontak lansung pada proses *ball mill* (Giuliana Gorrasi, 2018)

Kelebihan dari proses *ball mill* ini adalah dapat memproduksi material nano dengan ukuran 2 hingga 20 nm. Ukuran yang dihasilkan bergantung pada kecepatan rotasi bola penghancur. Prosesnya mudah dan sederhana serta biaya instalasi alat murah. Kekurangan dari proses *ball mill* adalah bentuk material nano yang dihasilkan heterogen, adanya *impurities* yang berasal dari eksternal dan metode ini juga sering menghasilkan cacat kristal.

2.6 Pelapisan Carbon

Karbon merupakan unsur kimia yang mempunyai symbol C dan nomor atom 6 pada tabel periodic. Sebagai unsur golongan 14 pada tabel periodik, karbon merupakan unsur non-logam dan bervalensi 4 (tetravalen), yang berarti elektron digunakan bahwa terdapat empat yang dapat untuk membentuk ikatan kovalen. Karbon memiliki beberapa jenis alotrop, yang paling terkenal adalah grafit, intan, dan karbon amorf. Sifat-sifat fisika karbon bervariasi bergantung pada jenis alotropnya. Sebagai contohnya, intan berwarna transparan, manakala grafit berwarna hitam dan kusam. Intan merupakan salah satu materi terkeras di dunia, manakala grafit cukup lunak untuk meninggalkan bekasnya pada kertas. Intan memiliki konduktivitas listrik yang sangat rendah, sedangkan grafit adalah konduktor listrik yang sangat baik. Di bawah kondisi normal, intan memiliki konduktivitas termal yang tertinggi diantara materi-materi lain yang diketahui. Semua alotrop karbon berbentuk padat dalam kondisi normal, tetapi grafit merupakan alotrop yang paling stabil secara termodinamik di antara alotropalotrop lainnya. Untuk mengetahui beberapa karakteristik dari unsur karbon dapat dilihat pada Tabel 2.9

Nama,	Warna	Boiling	Melting	Molecular	Solubility in
Simbol		Point (°C)	Point(°C)	Weight	Water
Karbon, C	Black/gray	4826,6	3651,6	12,01	Insoluble

Sumber: MSDS, 2012

Grafit merupakan konduktor listrik yang baik dan secara termodinamik paling stabil diantara alotrop yang lain. Grafit dapat diperoleh dengan cara menggunakan metode pembakaran menggunakan gas asetilen dan oksigen. Dengan perbandigan nyala api (70% gas asetilen dan 30% gas oksigen) dan tekanan yang ditentukan melalui torch, serta terdapat jarak antara api dan objek maka proses karburisasi bisa dilakukan. Jarak semburan api dengan objek merupakan hal penting, karena api karburisi akan bereaksi dengan udara atau atmosphere sekitar hingga terbentuk lapisan karbon yang akan menempel pada objek. Pelapisan karbon bisa dilakukan dengan berbagai macam cara dan sumber carbon, salah satunya menggunakan gas asetilen.

2.6.1 Gas Asetilene (C₂H₂)

Karakteristik fisika dan kimia dari gas asetilen yaitu berbentuk gas, tidak berwarna, berbau khas asetilen, mudah terbakar pada kondisi panas dan menyebabkan ledakan bila bercampur dengan udara. Asetilen dan oksigen biasanya digunakan dalam proses pengelasan oxy-acetylene. Pada proses ini terdapat 3 pola api yang dikeluarkan, diantaranya yang pertama api potong dimana komposisi gas oksigen jumlahnya lebih banyak dibandingkan dengan oksigen. Kedua api las, dimana komposisi tekanan gas seimbang antara gas asetilene dan oksigen. Ketiga api las karburisasi dimana jumlah gas asetilene lebih banyak daripada oksigen. Karakteristik gas asetilen bisa dilihat pada Tabel 2.10

Karakteristik	Nilai
Symbol	C_2H_2
Berat Molekul (g/mol)	26.038
Spesific Volume @20°C & 1 atm (ml/g)	918.0
Relative Density (air=1)@ 1 atm (g/ml	0.908
Flammability Limits in Air (%) (by volume)	2.5-82
Auto-ignition Temperature (°C)	305

Tabel 2.10 Karakteristik Gas Asetilene

Sumber: MSDS, 2017

2.7 Temperatur Kalsinasi

Kalsinasi adalah proses pemanasan tanpa fusi, untuk mengubah bentuk fisik atau kimia dari suatu bahan. Tujuan proses kalsinasi adalah untuk menghilangkan air yang diserap sebagai kristal, menghilangkan CO₂, SO₂ dan zat volatile lainnya, serta terjadi proses oksidasi zat sepenuhnya atau sebagian. Secara kimiawi kalsinasi dapat didefinisikan sebagai proses dekomposisi termal yang diterapkan pada zat dan bijih untuk membawa transisi fasa, menghilangkan fraksi yang mudah menguap dan dekomposisi termal. Kalsinasi dilakukan pada suhu tinggi yang suhunya tergantung pada jenis bahannya.

Kalsinasi merupakan tahapan perlakuan panas terhadap campuran serbuk pada suhu tertentu, tergantung pada jenis bahan. Kalsinasi diperlukan sebagai penyiapan serbuk keramik untuk diproses lebih lanjut dan juga untuk mendapatkan ukuran partikel yang optimum serta menguraikan senyawa-senyawa dalam bentuk garam atau dihidrat menjadi oksida, dan membentuk fasa kristal. Peristiwa yang terjadi selama proses kalsinasi antara lain:

- a. Pelepasan air bebas (H₂O) dan terikat (O-H) berlangsung sekitar suhu 100 hingga 300°C.
- b. Pelepasan gas-gas, seperti: CO₂ berlangsung sekitar suhu 600°C dan pada tahap ini disertai terjadinya pengurangan berat yang cukup berarti.
- c. Pada suhu lebih tinggi, sekitar 800°C struktur kristalnya sudah terbentuk, dimana pada kondisi ini ikatan diantara partikel serbuk belum kuat dan mudah lepas (Fujiati, 2018)

2.8 Penelitian Pendahuluan

Sintesis anoda baterai $Li_4Ti_5O_{12}$ (LTO) telah berhasil dilakukan oleh peneltian sebelumnya. Sintesis LTO dengan menggunakan metode *solid state reaction* akan dijelaskan. Sintesis LTO dengan penambahan (doping) unsur Flourine (F⁻) juga akan dibahas pada sub-sub bab berikut ini.

2.8.1 Sintesis LTO dengan Metode Solid State

LTO disintesis menggunakan metode *solid state reactions* dengan menggunakan *ball mill*. Komposisi anoda disintesis dengan metode reaksi padat dari jumlah stoikiometrik Li₂CO₃ (Sigma Aldrich 99,9%), TiO₂ (Sigma Aldrich 99,9%) berikut:

$$2\text{Li}_2\text{CO}_3 + 5\text{TiO}_2 \rightarrow \text{Li}_4\text{Ti}_5\text{O}_{12} + 2\text{CO}_2 \uparrow$$
(2.7)

Sedikit kelebihan jumlah lithium (5%) digunakan untuk mengkompensasi kehilangan logam yang mungkin terjadi selama proses kalsinasi. Metode sintesis reaksi solid state didalamnya terdapat satu tahapan saja. Prekursor, sebagai bahan baku, dicampur dengan baik dan ditumbuk dengan sempurna dengan *agate* mortar, kemudian diberi perlakuan panas dan dikalsinasi pada suhu yang berbeda untuk mengeringkan sampel bebas dari kotoran dan akhirnya, bubuk campuran dikalsinasi pada 850 °C selama 16 jam dan pelet disinter pada 900 °C selama 16 jam untuk menyelesaikan reaksi kimia dengan udara menggunakan tungku *muffle furnace*. Pola XRD untuk sampel LTO dikalsinasi pada suhu yang berbeda dari 850 °C ke 900 °C ditunjukkan pada Gambar 2.7

Gambar 2.7 Pola XRD dari LTO Dikalsinasi pada Temperature yang Berbeda (Vikram, dkk, 2018)

Pola XRD dari puncak intensitas sampel LTO murni yang disintesis yang ditekan pada 900 °C / 16 jam dan beberapa puncak menghilang karena TiO_2 rutile fase pengotor. Pola difraksi sinar-X dari LTO dikalsinasi pada 850 °C selama 16 jam ditunjukkan pada Gambar 2.8

Gambar 2.8 Pola XRD LTO (Vikram, dkk, 2018)

Tidak ada karakteristik puncak yang diamati sebagai pengotor lainnya, yaitu rutil dan anatase TiO₂. Pola difraksi sinar-X (XRD) khas dari bahan LTO dan semua puncak difraksi diindeks sebagai LTO spinel dengan kelompok ruang Fd-3m. Puncak difraksi yang tersedia dengan nilai 2 θ (deg.) Sekitar 18,3°; 30,1°; 35,5°; 37,1°; 43,2°; 47,3°; 57,1°; 62,7°; 66,0°; 74,2°; 75,2°; 79,2°; 82,2° dan 90,0° diberikan pada (1 1 1), (2 2 0), (3 1 1), (2 2 2), (4 0 0), (3 3 1), (3 3 3), (4 4 0), (5 3 1), (5 3 3), (6 2 2), (4 4 4), (5 5 1) dan (7 3 1) bentuk spinel LTO, masing-masing. (Vikram, dkk, 2018)

Pola XRD dari puncak intensitas sampel yang disintesis erat sesuai dengan struktur spinel LTO kubik dengan kartu JCPDS # 49-0207 dengan kristalinitas tinggi (puncak difraksi tajam). Tidak ada puncak karakteristik yang diamati untuk pengotor lainnya, yaitu rutil dan anatase TiO₂. Literatur sebelumnya melaporkan bahwa, LTO spinel disintesis oleh reaksi keadaan padat pada 600-

1000°C selama 5-24 jam, yang sesuai dengan studi analisis termal. Ukuran kristal (D) dari LTO ditentukan dari puncak Bragg menggunakan rumus Scherrer:

$$D = \frac{k\lambda}{\beta\cos\theta} \tag{2.8}$$

di mana D adalah ukuran kristalit, k adalah konstanta Scherrer yang biasanya diambil 0,9, λ adalah panjang gelombang radiasi sinar-X (0,15418 nm untuk Cu K α), θ adalah sudut Bragg dan β adalah lebar penuh setengah maksimum (FWHM) dari puncak difraksi diukur pada 2 θ dalam radian. (Vikram, dkk, 2018)

Ukuran kristal yang dihitung dari sampel LTO dari garis perluasan puncak difraksi paling intens (111) bentuknya ditemukan pada 46,02 nm. Nilai parameter sel unit kristalografi dihitung dengan menggunakan perangkat lunak UnitCell yang disimpulkan melalui penyempurnaan kuadrat terkecil dari pola XRD ini yang menghasilkan nilai parameter sel a, konsisten dengan literatur yang dilaporkan sebagaimana tercantum dalam Tabel 2.11

Table 2.11 Lattice Parameter, Crystallite size and Particle Size of LTO

Compound	Lattice	Cell	$I_{(111)}/I_{(400)}$	Crystallite	Grain
	Parameter (Å)	Volume $(\text{\AA})^3$		Size (nm)	Size (µm)
LTO	8.3523	582.73	1.47	46.02	1.1

Sumber : Vikram, dkk, 2018

2.8.2 Metode Doping Fluorine terhadap Anoda Baterai LTO

Baterai LTO bisa dioptimalkan dengan cara menambahkan (*doping*) Flourine (F) pada anoda LTO. Telah dilakukan penelitian, nano size $Li_4Ti_5O_{12-x}F_x(0 \le x \le 0.5)$ (x = 0, 0.05, 0.1, 0.3, 0.5) bisa diperoleh dengan metode konvensional *solid state reaction* dengan perbedaan konten dari fluorine (F). Efek dari *doping* F pada propertis elektrokimia diselidiki. Karena kandungan F-doping diptimalkan, produk ini menunjukkan sifat elektrokimia yang baik. Senyawa $Li_4Ti_5O_{12-x}F_x$ ($0\le x\le 0.5$) disintesis menggunakan metode solid state. Perhitungan stoikiometri diakukan untuk sejumlah Li_2CO_3 (AR, shanghai Chemical Agents Co.,Ltd), anastae TiO₂ (AR, Nan-jing High Technology Nano Material Co., Ltd) dan LiF (AR, Aladdin Industrial Inc.) kemudian dicampurkan antara Li:Ti dengan perbandingan rasio molar 0,84:1 menggunakan high-energi ball milling selama 6 jam, menggunakan alcohol sebagai pendispersi. Campuran dikeringkan dan di sintering pada temperature 800°C selama 12 jam dalam atmosfer udara, Li₄Ti₅O_{12-x} Fx yang terkristalisasi diperoleh setelah dianil pada suhu kamar. LiF digunakan sebagai sumber fluorine dan sumber lithium pada saat yang sama. Sampel-sampel yang disintesis telah dipasang kembali sebelum karakterisasi serbuk dan persiapan elektroda. Pengujian XRD dilakukan, dan hasilnya ditunjukkan pada Gambar 2.9

Gambar 2.9 (a) Pola XRD dari $Li_4Ti_5O_{12} -_xF_x$ yang disintesis (x = 0, 0,05, 0,1, 0,3, 0,5). (b) Puncak $Li_4Ti_5O_{12}$ yang diperbesar (111) didoping dengan jumlah F yang berbeda. (Zhen, dkk, 2013)

Material telah dilakukan pengujian XRD, hasilnya Gambar 2.9 a) menunjukkan pola XRD dari Li₄Ti₅O_{12-x} F_x (x = 0, 0,05,0,1, 0,3, 0,5). Semua lima sampel menunjukkan puncak utama LTO kubik (JCPDS No. 49-0207), yang menunjukkan bahwa dopan F telah memasuki struktur kisi Li₄Ti₅O₁₂ tanpa menyebabkan perubahan karakteristik pola difraksi. Intensitas puncak XRD dari sampel berubah sedikit dengan peningkatan jumlah F. Tidak ada pengotor lain dalam bahan, dan sampel Li₄Ti₅O_{12-x} F_x berhasil disintesis melalui reaksi solidstate. Doping F tidak mengubah struktur spinel kubik Li₄Ti₅O₁₂, tetapi puncak difraksi sampel dengan F-*doping* menunjukkan banyak pergeseran kecil ke arah derajat yang lebih rendah. Untuk pengamatan yang jelas, posisi puncak bidang (111) dari sampel diperbesar dan ditunjukkan pada Gambar 2.9 (b). Hasil pemasangan XRD yang ditunjukkan pada Tabel 2.12 menunjukkan bahwa parameter kisi meningkat dengan meningkatnya jumlah F doping.

 $\begin{tabular}{|c|c|c|c|c|c|c|} \hline Sample & A (nm) \\ \hline Li_4 Ti_5 O_{12} & 0.8349 \\ \hline Li_4 Ti_5 O_{1.95} F_{0.05} & 0.8356 \\ \hline Li_4 Ti_5 O_{11.9} F_{0.1} & 0.8359 \\ \hline Li_4 Ti_5 O_{11.7} F_{0.03} & 0.8362 \\ \hline \end{tabular}$

Tabel 2.12 Lattice Parameter dari Li₄Ti₅O_{12-x} F_x

Sumber: Zhen, dkk, 2013

Li₄Ti₅O_{11.5}F_{0.5}

Oleh karena itu, dapat diamati bahwa parameter kisi meningkat dengan peningkatan jumlah F-doping, yang berlawanan dengan yang diharapkan oleh aturan Vegard untuk penggantian ion O^{2^-} larger yang lebih besar dengan ion F^- yang lebih kecil. Struktur spinel yang diolah dapat dijelaskan sebagai berikut. Ketika ion-ion fluoride yang lebih kecil mengambil lokasi 32e dimana ion oksigen berada, titanium trivalen Ti³⁺ (0,067 nm) yang didistribusikan di situs 16d oktahedral dapat secara acak menempati situs 8b, 48f atau 16c untuk memberikan kompensasi isi ulang daya yang mengarah pada peningkatan kisi parameter . (Zhen, dkk, 2013)

0.8363

Lebih lanjut, reaksi solid-state sulit untuk mengontrol morfologi dan ukuran partikel LTO. Namun demikian, tetap merupakan tantangan besar untuk mensintesis anoda LTO berstruktur nano, seperti nanosheets, dengan substitusi parsial dengan beragam keadaan ion dalam bahan anoda LTO untuk memenuhi persyaratan laju tinggi dan umur yang panjang. Penelitian lainya berhasil mensintesis fluoride doping LTO nanosheets (F-LTO NSs). Efek doping pada struktur dan kinerja elektrokimia telah dibahas. NS F-LTO menunjukkan kemampuan tingkat yang lebih baik dan *cycling performance* dibandingkan dengan LTO NSs murni. (Yuan, dkk, 2018) Etil alkohol absolut, tetrabutil titanat (TBT), LiOH·H₂O dan polyvinylidene difluoride (PVDF) memiliki *grade* analitik dan dibeli dari Shanghai Chemical Corp. Multi-wall CNTs dibeli dari Beijing DK Nano Technology Co. Ltd. French Arkema larutan elektrolit dengan 1 M LiPF₆/ etilena karbonat (EC) / dietil karbonat (DMC) / etil metil karbonat (EMC) (volume 1: 1: 1) dibeli dari Guangzhou Tinci Materials Technology Co. Ltd. Bahan kimia dan pelarut lainnya adalah grade reagen dan tersedia secara komersial. Air terdeionisasi digunakan untuk semua percobaan. (Yuan, dkk, 2018)

Dalam prosedur sintesis yang khas, 1,7 g tetrabutil titanat, 0,204 g LiOH·H₂O dan 0,01 g LiF dicampur secara menyeluruh dalam 20 mL etanol pada suhu kamar. Larutan dicampur sepenuhnya menggunakan pengaduk mekanis dalam labu tertutup dengan wadah tiga leher di lingkungan kering selama sekitar 24 jam dan kemudian, 25 mL air deionisasi ditambahkan ke wadah. Setelah diaduk dengan kuat selama 30 menit, larutan *ivory* dipindahkan ke autoclave stainless berlapis Teflon 50 mL dan ditempatkan dalam oven pada suhu 180°C selama 36 jam. Serbuk putih yang disimpan di bagian bawah reaktor dikumpulkan dan dipisahkan dengan sentrifugasi, diikuti dengan pencucian dengan etanol selama 3 kali, dan kemudian dikeringkan dalam oven pada suhu 60°C selama 8 jam. Terakhir, prekursor dipanaskan pada 700°C selama 6 jam dalam tungku tabung horisontal di bawah atmosfer Ar. Sebagai perbandingan, kami juga menyiapkan nanosheet LTO murni menggunakan prosedur yang sama. Setelah material berhasil, dilakukan pengujian XRD dan hasilnya dapat dilihat pada Gambar 2.10 berikut

Gambar 2.10 (A) pola XRD, (B) diperbesar (111) puncak LTO NS dan F-LTO NS. (Yuan, dkk, 2018)

Pola XRD dari nanosheets lithium titanate (LTO) yang disintesis dengan dan tanpa doping F ditunjukkan pada Gambar 2.10 A. Pada Gambar 2.10 A(a), semua puncak difraksi dapat diindeks sebagai puncak karakteristik lithium titanate fase spinel (kartu JCPDS no. 49-0207). Ketika LiF digunakan sebagai dopan, F doping LTO NSs disintesis menggunakan reaksi hidrotermal yang mudah dan proses kalsinasi. Pola XRD F-LTO NS masih menunjukkan puncak difraksi LTO dan tidak ada puncak pengotor terdeteksi di F-LTO NSs (pada Gambar 2.10 A (b)). Selanjutnya, ketika posisi puncak bidang (1 1 1) diperbesar dan ditunjukkan pada Gambar 2.10 B, puncak difraksi F-LTO NSs menunjukkan sedikit pergeseran ke arah derajat yang lebih rendah, yang menunjukkan bahwa doping F telah memasuki struktur kisi dari NS LTO. (Yuan, dkk, 2018)

2.8.3 Metode *Coating* Carbon pada Anoda Li₄Ti₅O₁₂

Li₄Ti₅O₁₂ disintesis dengan jumlah stoikiometrik dari semua prekursor seperti 1,5g Li₂CO₃ (Merck, 98%) dan 4,0g TiO₂ (Merck, 98%) digiling/digerus menggunakan wet ball mill. Prekursor digiling pada 150 rpm untuk etanol 2, 3, dan 4 jam yang efektif, menjaga rasio bola terhadap serbuk 5:1. Kemudian, sampel diberi label masing-masing sebagai LTO BM2, LTO BM3 dan LTO BM4. Serbuk padat yang dihasilkan kemudian dikeringkan diudara pada suhu 50°C dan ditumbuk menjadi bubuk halus menggunakan mortar dan alu. Selanjutnya, prekursor dikalsinasi pada suhu 750°C selama 6 jam dengan tingkat pemanasan 10°C min⁻¹ di atmosfer, dan kemudian didinginkan secara alami hingga suhu kamar didalam furnace. Proses pelapisan karbon dengan pembakaran langsung gas asetilena dilakukan dengan menggunakan *torch* oksi-asetilen. Sejumlah sampel LTO tertentu dimasukkan ke dalam wadah alumina. Kemudian, torch oksi-asetilen diarahkan ke dalam wadah alumina selama 10 dan 20 menit. Sampel yang disiapkan diidentifikasi sebagai DF10 dan DF20 sesuai dengan waktu untuk LTO terkena gas asetilen. Sampel diassembly kemudian dilakukan pengujian performa elektrokimia berupa cyclic voltammetry (CV), charge/discharge (CD) dan electrochemical impedance spectroscopy (EIS) didapatkan hasil sebagai berikut.

Gambar 2.11 Cyclic Voltametri Li₄Ti₅O₁₂ dengan nyala langsung (*direct flaming*) selama 0, 10, dan 20 menit (Noerochim,2019)

Gambar 2.11 menunjukkan voltametri siklik (CV) untuk siklus pertama sampel LTO. Semua sampel menunjukkan puncak oksidasi dan reduksi yang tinggi dan tajam. Sudah diketahui bahwa puncak redoks yang tajam biasanya menandakan bahwa insertion/de-insertion Li⁺ berlangsung cepat, sementara puncak yang luas menunjukkan proses yang lambat. LTO BM2 DF10 memiliki puncak reduksi dan oksidasi tertinggi. Diindikasikan bahwa LTO BM2 DF10 memiliki konduktivitas tertinggi dibandingkan sampel lainnya. Selain itu, polarisasi LTE LTO BM2 DF10 dari *flaming* langsung adalah yang terkecil dari sampel lainnya. Polarisasi ΔE yang rendah menunjukkan transfer ion Li dan elektron yang cepat selama proses pelepasan muatan. Untuk mnegetahui hasil CD dapat dilihat pada Gambar 2.12 berikut

Gambar 2.12 Kurva Charge-Discharge LTO BM2 Tanpa Flaming Langsung Dan Dengan Flaming Langsung Asetilen Selama 10 dan 20 Menit (Noerochim, 2019)

Gambar 2.12 menunjukkan kurva charge-discharge awal LTO BM2 pada 0,1C. LTO BM2 DF10 menunjukkan kapasitas luahan spesifik 210,61 mAh/g, sedangkan LTO BM2 DF20 menunjukkan kapasitas luahan spesifik 193,67 mAh/g dan LTO BM2 DF0 memiliki kapasitas luahan spesifik 133,26 mAh/g. LTO BM2 DF10 memiliki kapasitas debit spesifik lebih unggul daripada sampel lain bahkan lebih tinggi dari kapasitas debit teoritis $Li_4Ti_5O_{12}$ (175 mAh/g). Hal ini bisa dikaitkan dengan kristalitas tinggi fase tunggal dan polarisasi ΔE terendah. Kemampuan laju sampel LTO BM2 sebagai fungsi kerapatan arus dari 0,4 hingga 5C ditunjukkan pada Gambar 2.13 berikut

Gambar 2.13 a *Rate Capabilities*, b *Cycle Performance* LTO BM2 Tanpa Flaming Langsung Dan Dengan Flaming Langsung Gas Asetilen Selama 10 Dan 20 Menit (Noerochim, 2019)

Gambar 2.13 a meskipun semua sampel LTO BM2 dengan dan tanpa flaming langsung menunjukkan penurunan drastis dalam kapasitas debit ketika meningkatkan kepadatan arus dari 1 ke 5C, kapasitas debit awal pada 0,4C dari LTO BM2 DF10 masih dapat bertahan ~ 34% pada kepadatan tinggi 5C dan dapat dipulihkan hingga lebih dari 90% ketika kepadatan saat ini kembali ke 0.4C. Kemampuan tinggi LTO BM2 DF10 ini dapat dikaitkan dengan pembentukan LTO fase tunggal dengan struktur spinel dan ukuran kristal yang lebih kecil. Ukuran kristal yang lebih kecil dari partikel LTO BM2 DF10 dan distribusi homogen partikel LTO BM2 DF10 harus lebih meningkatkan kinerja elektrokimia.

Gambar 2.13 b menunjukkan stabilitas siklus semua LTOBM2 tanpa flaming langsung dan dengan flaming langsung gas asetilena pada 1C selama 100 siklus. Terlihat jelas bahwa sampel LTO BM2 DF10 memiliki stabilitas siklus tertinggi dengan kapasitas memudar 5,2% dan kapasitas debit spesifik 88,3 mAh/g pada siklus ke-100. Sementara itu, sampel LTO BM2 DF20 dan DF0 memiliki penurunan kapasitas 10,6% dan 21,1% dengan kapasitas debit spesifik masingmasing 78,1 dan 64,3 mAh/g pada siklus ke-100. Stabilitas siklus tinggi dalam sampel LTO BM2 DF10 bisa menjadi kristalinitas tinggi dari LTO BM2 DF10 yang meningkatkan transfer Li-ion selama proses lithiation dan de-lithiation dari lithiumions. Lebih lanjut, komposisi optimal lapisan karbon pada permukaan partikel LTO memudahkan proses transfer elektron dalam elektroda. Hasil uji EIS berupa Nyquist plot tertera pada Gambar 2.14 berikut

Gambar 2.14 Nyquist Plot LTO BM2 Selama 0, 10, dan 20 Menit *Direct Flaming*. (Noerochim, 2019)

Gambar 2.14 menunjukkan plot Nyquist dari semua sampel LTO BM2 dan sirkuit ekivalen kurva. R1(Rs) menunjukkan karakteristik resistensi elektrolit, sedangkan R2(Rct) menunjukkan resistensi transfer muatan, dan elemen sudut fase konstan (CPE) mewakili batas butir kapasitif. Rct menentukan kemampuan transfer elektron sampel. Semakin tinggi Rct, semakin sulit proses transfer elektron. Gambar 2.14 menunjukkan bahwa LTO BM2 tanpa pembakaran langsung gas asetilena memiliki Rct tinggi tetapi ketika pembakaran langsung gas asetilena diterapkan, Rct tersebut secara bertahap menurun. Semua nilai Rs dan Rct ditabulasikan pada Tabel 2.13. Ini menunjukkan bahwa nyala langsung gas asetilena akan mengurangi elektron transfer muatan sampel LTO BM2 DF10 dan DF20. Ketika nyala gas asetilen secara langsung adalah 20 menit, setengah lingkaran diperoleh lebih besar dari sampel DF10. Ini bisa menjadi suhu selama pembakaran langsung menghasilkan pertumbuhan partikel sampel LTO BM2 DF20.

Gambar 2.15 Kurva Difusi Li-Ion Pada Frekuensi Rendah Untuk *Direct Flaming* Gas Asetilena (Noerochim, 2019)

Gambar 2.15 menunjukkan hubungan plot antara impedansi nyata (Z ') dan akar kuadrat resiprokal dari frekuensi sudut ($\omega^{-0,5}$) di wilayah frekuensi rendah. Koefisien difusi ion Li (D_{Li}) dari sampel dihitung dengan Persamaan (2.9) dan (2.10) berikut

$$D = \frac{R^2 T^2}{2A^2 n^4 F^4 c^2 \sigma_w^2}$$
(2.9)

dimana D adalah koefisien difusi lithium-ion (cm²s⁻¹), R adalah konstanta gas (8314 Jmol⁻¹K⁻¹), T adalah suhu absolut (K), A adalah area elektroda (cm²), n adalah jumlah elektron yang terlibat dalam proses redoks (dalam kasus ini), C adalah konsentrasi ion litium (7,69 ×10⁻³mol cm⁻³), F adalah konstanta Faraday (96,486 C mol⁻¹) dan σ_w adalah Warburg Factor, yang terkait dengan Z' dengan persamaan (2.10) berikut:

$$Z' = Rs + Rct + \sigma_w \omega^{1/2}$$
(2.10)

Berdasarkan Persamaan (2.10) koefisien impedansi Warburg dihitung dan kemudian digunakan dalam Persamaan (2.9) untuk mendapatkan koefisien difusi ion lithium dari sampel yang disintesis seperti yang ditunjukkan pada Tabel 2.13 berikut

Sample	Rs (Ω)	Rct(Ω)	σw (Ωs ^{-0.5})	DLi $(\text{cm}-^2\text{s}^{-1})$
BM2 DF0	19.11	340.89	485.66	1.06×10^{-12}
BM2 DF10	6.53	93.47	151.05	1.22×10^{-11}
BM2 DF20	7.72	192.27	615.41	1.50×10^{-12}
	1.12	172.27	015.71	1.50 × 10

Tabel 2.13 Nilai Rs, Rct, dan DLi untuk semua sampel LTO BM2

(Noerochim, 2019)

Hal ini menunjukkan bahwa difusi ion Lithium dari LTO BM2 DF10 memiliki difusi ion Lithium yang lebih rendah daripada sampel lain. Difusi ion lithium yang rendah menunjukkan bahwa ion lithium akan lebih mudah untuk melakukan interkalasi dan de-interkalasi yang akan dapat meningkatkan kinerja elektrokimia baterai lithium-ion (Noerochim, 2019).

Beberapa penelitian lainnya mempelajari tentang pembuatan anoda $Li_4Ti_5O_{12}/C$ dengan menggunakan beberapa metode sintesis yang memperlihatkan peforma dari anoda baterai ion lithium. Klasifikasi dari penelitian lainnya

menggunakan metode yang berhasil untuk mensintesis doping anoda pada baterai lithium titanate oxide ada pada Tabel 2.14

Penulis	Journal	Topik	Metode	Hasil
			Sintesis	
Yanling.Qi, et al.	Electrochi mica Acta Volume 54, Issue 21, 30 August 2009, Pages 4772 – 4776	Preparation and characterizati on of novel spinel Li ₄ Ti ₅ O ₁₂₋ _x Br _x anode materials	Solid state reaction	Senyawa LTO yang didoping Br dengan reaksi solid state berhasil disintesis. Senyawa-senyawa LTO yang didoping Br menunjukkan kapasitas debit yang sangat baik sebesar 172 mAh / g pada 0,5 ° C, yang sangat dekat dengan kapasitas teoretisnya (175 mAh / g).
Yudai Huang, et al.	Journal of Solid State Electroche mistry May 2012, Vol ume 16, Issue 5 , pp 2011– 2016	Synthesis and electrochemi cal properties of spinel Li ₄ Ti ₅ O ₁₂₋ _x Cl _x anode materials for lithium ion batteries	Solid state reaction	Sampel Li ₄ Ti ₅ O _{11.8} Cl _{0.2} menyajikan kapasitas debit terbaik di antara semua sampel dan menunjukkan reversibilitas yang lebih baik dan stabilitas siklik yang lebih tinggi dibandingkan dengan Li ₄ Ti ₅ O ₁₂ yang murni. Ketika laju pelepasan adalah 0,5 C, sampel Li ₄ Ti ₅ O _{11.8} Cl _{0.2} menyajikan kapasitas debit superior 148,7 mAh/g, sedangkan Li ₄ Ti ₅ O ₁₂ yang masih asli adalah 129,8 mAh/g; ketika laju pengosongan adalah 2 C, sampel Li ₄ Ti ₅ O _{11.8} Cl _{0.2} menyajikan kapasitas pengosongan 120,7 mAh/g, sedangkan Li ₄ Ti ₅ O ₁₂ yang masih asli hanya 89,8 mAh/g.
Haifang Ni, et al.	Ionics December 2015, Vol ume 21, Issue 1 2, pp 3169– 3176	Enchanced rate performance of lithium titanium oxide anode material by bromine doping	Liquid deposition reaction by high temperatur treatment	Atom Br dapat memasuki struktur kisi dan memperbesar parameter kisi $Li_4Ti_5O_{12}$. Meskipun Br doping belum mengubah komposisi fase, efek yang jelas pada morfologi dan ukuran partikel telah diamati. Hasil uji elektrokimia menunjukkan bahwa

Tabel 2.14 Klasifikasi Sintesis Doping Anoda $\rm Li_4Ti_5O_{12}$

				kemampuan laju Li ₄ Ti ₅ O ₁₂ telah
				jelas ditingkatkan oleh Br
				doping pada konsentrasi yang
				sesuai. Elektroda Li ₄ Ti ₅ O _{11.8} Br _{0.2}
				yang disintesis menghadirkan
				kapasitas pelepasan yang jauh
				lebih tinggi dan stabilitas siklus
				yang lebih baik daripada
				elektroda lainnya. Kinerja
				elektrokimia yang sangat
				ditingkatkan dari Li ₄ Ti ₅ O _{11.8} Br _{0.2}
				dapat dikaitkan dengan
				peningkatan dispersi
				nanopartikel dan peningkatan
				konduktivitas listrik.
Zhen Zhao,	Electrochi	Synthesis and	Solid state	Sampel $Li_4Ti_5O_{12-x}F_x$ (x = 0,3)
et al.	mica Acta	electrochemi	reaction	menunjukkan kinerja
	Volume	cal		elektrokimia yang luar biasa
	109, 30	performance		dalam kisaran potensial dari 0,01
	October	of F doped		hingga 2,5 V, kapasitas
	2013,	$Li_4Ti_5O_{12}$ for		pembuangan yang lebih tinggi
	Pages 645-	lithium-ion		dan stabilitas siklus jangka
	650	batteries		panjang yang lebih baik
				dibandingkan dengan Li ₄ Ti ₅ O ₁₂
				yang murni. Kapasitas pelepasan
				spesifik awal adalah 234,5
				mAh/g pada kepadatan 85 mA/g,
				dan tetap sekitar 138 mAh/g
				lebih dari 500 siklus ketika
				kepadatan saat ini meningkat
				menjadi 340 mA/g. Kinerja
				elektrokimia yang sangat baik
				dapat dikaitkan dengan
				substitusi F^{-} ke situs O^{2-} , yang
				dapat meningkatkan jumlah
				pencampuran Ti ³⁺ / Ti ⁴⁺ sebagai
				kompensasi charge, yang
				mengarah pada penurunan
				resistensi transfer charge dan
				peningkatan difusi ion lithium di
				$Li_4Ti_5O_{12-x}F_x$. Namun, kinerja
				laju $Li_4Ti_5O_{12-x}$ F _x tidak luar
				biasa dan kapasitasnya hanya
				71,6 mA h/g pada kepadatan
				arus tertinggi 1,7 A/g
Mandi Ji, et	Journal of	Preparation	Solid state	Bahan La ³⁺ dan F ⁻ co-doped
al.	Power	and	reaction	Li ₄ Ti ₅ O ₁₂ berhasil disintesis

	Sources	alactrochami		dengan reaksi solid state. La ³⁺
	Volume			den E ⁻ ion teleh memogulzi sisi
		Cal		dan F Ion teran memasuki sisi
	263, 1	performance		yang berbeda dari struktur
	October	of La ⁵ and F		kristal $L_{14}T_{15}O_{12}$ dan
	2014, Pag	co-doped		menghasilkan distorsi kisi yang
	es 296-303	Li ₄ Ti ₅ O ₁₂		merugikan. Kinerja siklus
		anode		tingkat Li ₄ Ti ₅ O ₁₂ dapat secara
		material for		nyata ditingkatkan oleh La ³⁺ , F
		lithium-ion		co-doping. Hal ini dapat
		batteries		dijelaskan oleh fakta bahwa
		outtories		konduktivitas vang relatif lebih
				tinggi dan koefisien difusi
				lithium alum membantu
				ntmum akan membantu
				melepaskan tekanan yang
				dihasilkan oleh interkalasi ion Li
				berulang-ulang, dan kemudian
				mengurangi polarisasi
				elektrokimia selama proses
				charge/discharge tingkat tinggi.
				La^{3+} dan F ⁻ doping vang tepat
				tidak hanya dapat meningkatkan
				kanasitas huangan tetani juga
				menjaga stabilitas siklus Selain
				itu doping $L_{3^{+}}$ dop E^{-} dopot
				nu, doping La dan F dapat
				meningkaikan kinerja 1.1 ± 1.1
				elektrokimia Li II ^o O ⁻ pada
				suhu rendah. Dari sudut pandang
				kinerja keseluruhan, sampel
				La005-F03 menunjukkan kinerja
				elektrokimia terbaik di antara
				semua sampel, yang
				menuniukkan bahan Li ₄ Ti ₅ O ₁₂
				doping La^{3+} dan F ⁻ adalah bahan
				anoda yang menjanjikan untuk
				baterai ion lithium
Lukmon	Springer	Synthesis of	Hydrothar	Nanowire Litti-O., TiO. foco
Nooroshim	Vorlag	dual phase	mol	and told horizoit disintesia
inoerochim,	verlag	uuai-phase		ganda teran bernasii disintesis
et al.	GmbH	L14115012-	method	dengan metode dua langkah
	Germany,	TiO2		hidrotermal yang
	part of	nanowires as		dikombinasikan dengan proses
	Springer	anode		pertukaran ion. Pola XRD
	Nature	for lithium-		menunjukkan bahwa LTO
	2018	ion battery		200°C memiliki intensitas
				puncak tertinggi vang
				menunjukkan fase paling kristal
				Gambar SEM menggambarkan
				hahwa ITO 200°C mamiliki
1	1	1	1	Janwa LIO 200 C IIICIIIIIKI

Lukman Noerochim, et al.	Springer- Verlag GmbH Germany, part of	High electrochemi cal performance of	Solid-state reaction method	morfologi kawat nano dengan diameter 80 nm dan panjang 10 μ m. Kinerja elektrokimia paling optimal dimiliki oleh sampel LTO 200°C, dengan kapasitas spesifik tertinggi 93,22 mAh/g pada 0,1C dan mengalami pemudaran kapasitas 4,7%. KPP 200°C menunjukkan stabilitas siklus yang sangat baik di mana kapasitas pada siklus 30 tetap 96,3% dari kapasitas awal. Selain itu, LTO 200°C memiliki Rct terendah yang menunjukkan konduktivitas paling baik. Karenanya, LTO 200°C memiliki potensi besar sebagai bahan anoda untuk baterai lithium-ion. Li ₄ Ti ₅ O ₁₂ /C berhasil disintesis dengan metode solid-state dengan proses ball milling 2,3 dan 4 jam dan diikuti oleh pembakaran langsung gas
	Springer Nature 2019	Li4Ti5O12/C synthesized by ball milling and direct flaming of acetylene gas as anode for lithium-ion battery		asetilena 0, 10, dan 20 menit. Hasil XRD menunjukkan fase tunggal fase Li ₄ Ti ₅ O ₁₂ dengan JCPDS 04-0477. Hasil SEM menunjukkan bahwa ukuran partikel antara 0,192 dan 0,360 µm dengan bentuk partikel bundar tetapi masih ada aglomerasi karena suhu tinggi ketika nyala api gas asetilena langsung diterapkan. Alat analisa karbon menunjukkan bahwa lapisan karbon yang diinginkan masih sangat rendah, yaitu sekitar 0,6% untuk 10 menit gas asetilena dan 0,9% untuk 20 menit gas asetilena. LTO BM2 DF10 memiliki kapasitas debit spesifik tertinggi 210,61 mAh/g. Sampel LTO BM2 DF10 juga memiliki stabilitas siklus tertinggi dengan kapasitas memudar 5,2% dan

Amalia	Tesis	Analisis	Solid State	kapasitas debit spesifik 88,3 mAh/g pada siklus ke-100. Hal ini disebabkan oleh satu fase elektroda LTO BM2 DF10 dan rendahnya polarisasi ΔE . Tingginya kristalinitas meningkatkan transfer Li-ion selama proses lithiation dan de- lithiation lithium-ion. Lebih lanjut, komposisi optimal lapisan karbon pada permukaan partikel LTO memudahkan proses transfer elektron dalam elektroda. Ini juga ditingkatkan oleh difusi Rct yang lebih rendah dan difusi Li-ion yang lebih tinggi dari LTO BM2 DF10 dibandingkan dengan sampel lain. Material Li ₄ Ti ₅ O ₁₂ dengan waktu
	Material Metalurgi ITS	Pengaruh Waktu Pembakaran Gas Asetilen dan Waktu Milling Terhadap Hasil Sintesis dan Performa Elektrokiomi a Anoda Baterai dari Material Li ₄ Ti ₅ O ₁₂	Reaction	milling 2, 3 dan 4 jam dan waktu pemberian gas asetilen 0, 10, dan 20 enit telah berhasil disintesis dengan menggunakan metode solid state reaction. Hasil yang terbaik untuk diaplikasikan sebagai anoda baterai ion Li adalah material Li ₄ Ti ₅ O ₁₂ dengan waktu milling 2 jam dan waktu pemberian gas asetilen 10 menit. Analisis struktu kristal dengan alat uji XRD menunjukkan komposisi fasa tunggal yaitu fasa Li ₄ Ti ₅ O ₁₂ dengan JCDPDS 04-0477 pada waktu milling 2 jam dengan temperatur kalsinasi 750°C selama 6 jam. Hasil SEm menunjukkan homogenitas ukuran partikel antara 0,309 – 0,326 µm dalam sampel dengan waktu milling 2 jam sudah cukup baik dengan bentuk partikel bulat namun masih adanya aglomerasi yang disebabkan temperatur tinggi ketika proses pemberian gas

		asetilen. Hasil carbon analyzer
		menunjukkan bahwa coating
		carbon yang diinginkan masih
		sangat sedikit yakni berkisar
		0,06 untuk waktu pemberian gas
		asetilen 10 menit dan 0,09%
		untuk waktu pemberian gas
		asetilen 20 menit. Material
		$Li_4Ti_5O_{12}$ dengan waktu
		pemberian gas asetilen 10 menit
		padaa waktu milling 2 jam
		memiliki kapasitas discharging
		yang tinggi yaitu 600 mAh/g.
		Tingginya nilai kapasitas
		discharge juga didukung dengan
		hasil XRD yang hanya memiliki
		satu fasa, nilai ΔE pada
		pengujian CV juga rendah yakni
		0,17 V. Sedangkan nilai Rct
		hasil pengujian EIS adalah
		93,471 Ω . Untuk nilai difusi ion
		Li material Li ₄ Ti ₅ O ₁₂ sebesar
		$1.22 \times 10^{-11} \text{ cm}^{-2} \text{s}^{-1}$

(Halaman Ini Sengaja Dikosongkan)

BAB 3

METODOLOGI PENELITIAN

3.1 Diagram Alir Penelitian

Dalam pengerjaan penelitian, dibuat perencanaan urutan proses kerja secara sistematis sehingga tujuan dari penelitian dapat tercapai secara optimal. Urutan dari proses tersebut ditunjukkan pada diagram alir berikut.

3.1.1 Diagram Alir Sintesis Li₄Ti₅O₁₂ Doping F⁻

Gambar 3.1 Diagram Alir Sintesis $Li_4Ti_5O_{12}$ Doping F

3.1.2 Diagram Alir Pembuatan Elektroda dan Pengujian Elektrokimia

Gambar 3.2 Diagram Alir Pembuatan Elektroda dan Pengujian Elektokimia

3.2 Prosedur Penelitian

3.2.1 Sintesis Anoda Li₄Ti₅O_{12-x}, F_x/C

Penelitian ini menggunakan $Li_4Ti_5O_{12}$ (LTO) dan LiF sebagai precursor anoda baterai ion lithium. Precursor dipanaskan pada temperature tertentu, maka akan menjadi material aktif. Material aktif tersebut kemudian dialirkan gas asetilen di ruang tertutup. Gas asetilen yang digunakan berfungsi sebagai sumber karbon untuk *coating*.

Hal pertama yang harus dilakukan untuk sintesis $Li_4Ti_5O_{12}$ -x, F_x/C adalah membersihkan semua peralatan yang akan digunakan untuk penelitian agar tidak terkontaminasi. Bubuk LTO dan LiF digunakan sebagai bahan baku dengan perbandingan unstoikiometri. Massa masing-masing serbuk ditimbang sesuai dengan variasi yang digunakan yakni 1 mol LTO atau setara dengan 4,6gram dan variasi mol doping LiF (x = 0.1, 0.15, 0.2) dengan berat masing-masing 0,0259, 0,0389, dan 0,0519 gram. Serbuk-serbuk yang sudah ditimbang kemudian dimasukkan ke dalam suatu chamber ball mill dan menambahkan 8 mL alkohol (99%) sebagai pelarut.

Sampel disintesis menggunakan metotode *solid state reaction* sederhana dengan menggunakan *low temperature ball milling* yang dilengkapi dengan bola zirconia dengan kecepatan 600 rpm selama 6 jam. Proses ini dilakukan agar kedua serbuk yang ada dalam *chamber ball milling* tercampur dan LiF dapat terdoping secara sempurna. Setelah proses *ball milling* dilakukan, kemudian material diletakkan dalam cawan alumina (*crucible*) untuk dilakukan proses kalsinasi pada temperature 700°C, 750°C dan 800°C untuk setiap masing-masing variasi *doping*. Setelah proses kalsinasi, material precursor dilakukan *coating* dengan karbon. Material ditaruh dalam furnace, kemudian furnace dialiri gas asetilene dan argon secara bersamaan dalam kondisi vakum. Pengaturan (*setting*) furnace untuk setiap variasi temperature kalsinasi, holding selama 1 jam agar material terlapis secara sempurna. Material aktif siap digunakan.

3.2.2 Pembuatan *Working Electrode*

Working electrode dibuat dengan cara melakukan pencampuran antara bahan Li₄Ti₅O₁₂-x, F_x/C , *carbon black* dan *polyvinyl difluoride* (PVDF) yang berfungsi sebagai pengikat (*binder*) dengan perbandingan rasio masing-masing 80:10:10 (%). Bahan-bahan tersebut dilakukan proses pencampuran dengan menggunakan mortar hingga homogen. Hasil dari pencampuran ditambahkan sedikit demi sedikit pelarut *N-methylpyrrolidone* (NMP) sebanyak 1.5 ml pada anoda sampai berbentuk bubur (*slurry*). *Slurry* dilapiskan ke *current collector* (tembaga dengan tebal 100 µm), dikeringkan dalam oven selama 2-3 jam pada temperature 80°C. Lembaran Cu foil (elektroda) yang telah kering kemudian dilakuan rolling dengan ketebalan 100 µm untuk meratakan ketebalan, agar ketebalan homogen. Lembaran elektroda kemudian dipotong membentuk lingkaran dengan diameter 1.5-1.6 cm sebelum disusun menjadi baterai *full cell*.

3.2.3 Perakitan Baterai Ion Lithium Half-Cell

Baterai ion lithium dirakit/assembly di Pusat Penelitian Fisika, LIPI, Serpong. Baterai ion lithium cell dapat dirakit / disusun dengan cara mengikuti langkah-langkah berikut:

- 1. Elektroda yang telah berbentuk lingkaran diletakkan diatas cap positif (+) dengan lapisan *slurry* menghadap ke atas
- Letakkan lembaran separator membrane dengan ukuran diameter kurang lebih
 cm diatasnya, kemudian diikuti spacer, dan cap negative (-), letakkan diatas cawan petri
- 3. Masukkan dalam glove box, dan tunggu sekitar 30 menit. *Glove box* digunakan sebagai tempat untuk merakit/menyusun katoda, anoda, separator dan larutan elektrolit, diisi dengan gas argon agar tidak terinduksi / terkontaminasi udara dari luar yang masuk ke dalam *glove box*. Gambar 3.3 merupakan glovebox tempat untuk assembly baterai

Gambar 3.3 Glove box untuk assembly baterai

- 4. Didalam glove box, susunan tadi (point 1-3) mulai dirakit ulang dengan susunan yang sama.
- Larutan elektrolit LiPF6 disiapkan sebesar 1 Molar atau dengan perbandingan 1:6
- 6. Teteskan larutan elektrolit LiPF6 diatas separator dan ditumpuk dengan lithium metal yang sudah diratakan permukaannya, diikuti dengan spacer dan cap negative (-). Susunan assembly dan skema bentuk dimensi spesimen seperti ditunjukkan pada Gambar 3.4

Gambar 3.4 Skema Bentuk Dimensi Spesimen (Wathanyu, 2019)

7. Cek tegangan awal sebelum dilakukan proses *crimping*/penekanan dengan tekanan 1000 psi dengan menggunakan mesin *Hydraulic Crimping Machine* yang ditunjukkan pada Gambar 3.5

Gambar 3.5 Hydraulic Crimping Machine

 Baterai ion lithium dengan anoda Li₄Ti₅O₁₂-x, F_x/C *halfcell* sudah siap untuk diuji performa elektrokimianya, ditunjukkan pada Gambar 3.6

Gambar 3.6 Bentuk Baterai Berupa Coin Cell

3.3 Bahan-Bahan dan Peralatan yang Digunakan

3.3.1 Bahan Pembuatan Anoda Li₄Ti₅O₁₂-x, F_x/C

Bahan-bahan dasar yang digunakan dalam proses pembuatan anoda

 $Li_4Ti_5O_{12}$ -x, F_x/C adalah

- 1. Serbuk Li₂CO₃ (Merck, 99%)
- 2. Serbuk TiO₂ (Merck, 99%)
- 3. Serbuk LiF (Merck)
- 4. Gas Asetilene (C_2H_2)
- 5. Alkohol

3.3.2 Alat untuk Pembuatan Anoda Li₄Ti₅O₁₂-x, F_x/C

Adapun peralatan yang digunakan untuk membuat anoda Li₄Ti₅O₁₂-x,

- F_x/C pada penelitian ini adalah
- 1. Pot sample adalah alat yang berfungsi sebagai wadah precursor / raw material
- 2. Gelas beker merupakan wadah penampung yang digunakan untuk melarutkan bahan dasar, memanaskan cairan, memengendapkan serbuk *precursor*
- 3. Spatula merupakan alat berbentuk sendok kecil pipih yang digunakan untuk mengambil obyek / bahan agar tidak terkontaminasi
- 4. Gelas ukur digunakan untuk mengukur volume cairan.
- 5. Neraca analitik / neraca massa digital untuk menimbang massa suatu obyek/sampel
- 6. Ball mill adalah alat yang digunakan untuk menggerus / menggiling raw material
- 7. Cawan penggerus dan mortar, digunakan untuk menggerus bahan agar bentuknya homogen dan tidak terjadi penggumpalan
- 8. Cawan alumina (*crucible*) adalah wadah yang berbentuk mangkuk kecil yang dilengkapi tutup dan terbuat dari porselen tahan panas (alumina) digunakan sebagai tempat untuk mereaksikan bahan kimia.
- 9. Furnace merupakan sebuah perangkat/alat yang digunakan untuk proses pemanasan serbuk *precursor*

3.3.3 Bahan-Bahan Pembuatan Working Electrode

Bahan-bahan dasar yang digunakan dalam proses pembuatan working electrode adalah

- 1. Active Material (Li₄Ti₅O₁₂-x, F_x/C)
- 2. Carbon Black
- 3. Polyvinyl difluoride (PVDF), ketiga bahan dicampur dengan rasio (80:10:10)
- 4. N-methyl-2-pyrrolidone (NMP) (Merck, 99.5%)

3.3.4 Alat untuk Pembuatan Working Electrode

Peralatan yang digunakan untuk membuat working electrode adalah

- 1. Neraca Massa Digital
- 2. Oven merupakan alat yang digunakan untuk mengeringkan campuran *slurry* bahan-bahan *working electrode*
- 3. Mortar
- 4. Doctor Blade adalah metode yang digunakan untuk membuat/mencetak lapisan tipis
- 5. *Glove box* Sebagai tempat *assembling* sel koin yang memberikan atmosfer *inert* agar elektrolit tidak teroksidasi

3.4 Pengujian

Pengujian dilakukan untuk mengetahui hasil penelitian sesuai dengan prediksi atau tujuan yang diinginkan. Hasil pengujian dapat memberitahu sifatsifat / karakteristik dari suatu material. Pengujian-pengujian yang dilakukan pada penelitian ini dapat dijelaskan sebagai berikut:

3.4.1 X-Ray Diffraction (XRD)

Pengujian ini digunakan untuk mengidentifikasi struktur kristal, unsur atau senyawa, penentuan komposisi dari sebuah sampel. Sampel diukur dengan difraksi sinar X (XRD, PANalytcal) dengan radiasi Cu K α dengan langkah 0,02°. Data hasil pengujian ini berupa grafik puncak intensitas terhadap sudut 2 theta (20). Alat uji XRD bisa ditinjukkan pada Gambar 3.7 berikut

Gambar 3.7 Alat Uji XRD

Tahapan untuk melakukan pengujian ini sebagai berikut:

- 1. Holder (wadah) dibersihkan menggunakan etanol agar terhindar dari pengotor lainnya, pastikan preparasi specimen harus memiliki permukaan rata pada holder.
- 2. Serbuk sampel diletakkan pada holder dan ditekan agar kompak.
- 3. Holder diletakkan ke dalam mesin XRD. Setting pengukuran sudut dilakukan dengan rentang 2θ (10-90°).
- 4. Mesin XRD yang terhubung dengan komputer menampilkan hasil tembakan berupa grafik horizontal dengan puncak-puncak (peaks) grafik pada sudut tertentu.
- 5. Dari hasil XRD berupa *peak-peak* (puncak-puncak) tersebut kemudian di identifikasi struktur kristal, unsur, komposisi dari sampel, *lattice parameter* dan *crystallite size*. Dengan persamaan Bragg, dapat memperoleh nilai jarak antara dua bidang kisi (d) kemudian dapat dikietahui nilai lattice parameternya sesuai dengan persamaan 3.1 berikut (Cullity, 1956):

$$n\lambda = 2 d_{hkl} \sin \theta \tag{3.1}$$

dimana n adalah orde difraksi, λ merupakan panjang difraksi (nm) dan *d* adalah jarak antar kisi (Å).
3.4.2 Scanning Electron Microscope (SEM)

Morfologi dan mikro strukur dapat dipindaii dengan menggunakan mikroskop electron spektroskopi SEM FEI Inspect S50. Perbesaran yang dilakukan dari 10 hingga 100.000 kali. Alat uji SEM bisa dilihat pada Gambar 3.8 berikut

Gambar 3.8 Alat Uji SEM

Langkah kerja dari pengujian SEM ini adalah :

- 1. Mempersiapkan sampel uji (preparasi)
- 2. Memberishkan permukaan sampel
- 3. Meletakkan sampel uji pada holder dengan menempelkan karbon tipe terlebih dahulu sebagai perekat.
- 4. Memasukkan sampel uji ke dalam mesin SEM
- 5. Hasil dari mesin SEM yang terhubung dengan computer akan ditampilakan di layar komputer.

3.4.3 Cyclic Voltammetry (CV)

Cyclic voltammetry digunakan untuk mengetahui reaksi reduksi dan oksidasi(redoks), pergerakan kinetik dari perpindahan elektron yang terjadi pada baterai ion lithium. Hasil reaksi redoks yang terjadi menunjukkan proses interkalasi dan deinterkalasi ion lithium pada kedua elektroda. *Cyclic voltametri* merupakan metode analisis yang berdasarkan pada prinsip elektrolisis dari suatu

larutan yang mengandung analit elektroaktif dan reaksi terjadi pada elektroda logam dengan larutan elektrolitnya. Elektroda pada sel elektrokimia terdiri dari elektroda kerja, elektroda pembanding dan elektroda bantu. Elektroda kerja merupakan tempat terjadinya reaksi elektrokimia seperti arus yang dihasilkan. Umumnya elektroda kerja terbuat dari material logam, semikonduktor, atau karbon. Fungsi elektroda pembanding adalah sebagai pembanding beda potensial pada elektroda dalam sel elektrokimia. Material yang digunakan sebagai elektroda kerja adalah anoda Li₄Ti₅O₁₂. Pengujian *cyclic voltametri* dilakukan dengan menggunakan alat *Electrochemical Workstation CorrTest* dengan range tegangan 0.01-2.5 V dengan scan rate 0.1 mV/s. Proses pengujian CV dilakukan sebanyak 3 *cycle*. Alat untuk CV bisa dilihat pada Gambar 3.9 berikut

Gambar 3.9 Alat Cyclic Voltammetry Electrochemical Workstation CorrTest

3.4.4 Charge / Discharge (CD)

Pengujian *charge-discharge* yang dilakukan untuk mengetahui kemampuan suatu material dalam menghasilkan kapasitas pada arus yang diberikan. Pengujian CD dilakukan dengan menggunakan alat Neware Coin Cell Battery Tester CT-4008-5V10mA-164 Double Range Cycler. Pengujian CD dilakukan sebanyak 5 *cycle* pada tiap variasi C. Kapasitas energi atau muatan dinyatakan dalam satuan mAh/gram. Tes CD dilakukan dengan kepadatan arus konstan. Sel baterai yang digunakan terdiri dari Li₄Ti₅O₁₂ sebagai anoda, lithium metal sebagai katoda dan 1M LiPF₆ sebagai elektrolit. Pada proses *charging* Li⁺ mengalami interkalasi masuk kedalam material anoda (Li₄Ti₅O₁₂ melepas ion Li⁺)

dan ketika *discharging* Li^+ mengalami de-interkalasi dari material anoda masuk ke anoda $Li_4Ti_5O_{12}$.

Karakterisasi *charge-discharge* berfungsi untuk mengetahui kapasitas menyimpan muatan oleh suatu material. Proses pengujian dilakukan menggunakan kerapatan arus konstan. Kapasitas muatan yang diperoleh dinyatakan dalam satuan mAh/g. Kapasitas (Q) dapat dihitung berdasarkan waktu *charge-discharge* dengan menggunakan persamaan 3.2

$$Q = I x t$$
 (3.2)

Dimana Q merupakan kapasitas energy (mAh/g), I adalah kerapatan arus (mA) dan t merupakan waktu charge atau discharge (jam). Pengaturan waktu dibagi menjadi dua, yaitu t_1 sebagai waktu *charging* dan t_2 sebagai waktu *discharging*. Pengaturan jumlah waktu (Δt) diperlukan untuk mengamati tegangan dari baterai V_{OCV} . Sehingga diperoleh pengamatan rekaman waktu (s), arus (mA), dan tegangan (V). Proses pengujian *charge-discharge* menggunakan alat Neware Coin Cell Battery Tester CT-4008-5V10mA-164 Double Range Cycler yang ditunjukkan pada Gambar 3.10

Gambar 3.10 Alat Uji Charge/Discharge

3.4.5 Pengujian Electrochemical Impedance Spectroscopy (EIS)

Pengujian EIS dilakukan untuk mengetahui perilaku impedansi komplek dari material keramik komposit Li₄Ti₅O₁₂. Alat yang digunakan adalah *Electrochemical Workstation CorrTest*. Parameter yang dapat dihasilkan adalah : impedansi ril, impedansi imaginer, pergeseran sudut fasa, dan impedansi total, dengan variasi spektrum frekuensi dalam skala logaritmik. Spektrum frekuensi dibangkitkan dari 4 Hz-1MHz (skala logaritmik dibagi dalam 100 titik data). Pemilihan skala log (f) penting dilakukan untuk menghasilkan sebaran f pada frekuensi rendah. Alat yang digunakan untuk pengujian EIS sama dengan alat uji cyclic voltammetry.

Berikut adalah tahapan dari proses pengukuran impedansi :

- 1. Siapkan coin cell, pastikan tidak kontak langsung dengan tangan.
- 2. Hidupkan alat *Electrochemical Workstation CorrTest*, sambungkan kabel ke alat, kemudian coin cell dijepit pada *sample holder*.
- 3. Rentang frekuensi yang digunakan dalam proses pengukuran diatur pada rentang (0,1Hz-100 kHz)
- 4. Alat uji akan menghasilkan data dari respon material terhadap rentang frekuensi yang diberikan berupa nilai impedansi riil dan impedansi imajiner
- 5. Jika diplotkan antara Z' dan Z" maka akan dihasilkan kurva Nyquist seperti contoh pada Gambar 3.11 dibawah ini

Gambar 3.11 Kurva Nyquist Plot (Lukman, 2018)

3.5 Rancangan Penelitian

Berdasarkan rumusan masalah yang telah dipaparkan, maka penelitian ini menggunakan rancangan penelitian seperti pada Tabel 3.1

LTO : LiF	Ball	Temperatur		Coating	Karakterisasi					
(mol)	Milling	Kalsinasi (°C)		Carbon						
	(jam)	700	750	800	(jam)	XRD	SEM	CV	CD	EIS
1:0,1	6	V	V	V	1	V	V	V	V	V
1:0,15	6	V	V	V	1	V	V	V	V	V
1: 0,2	6	V	V	V	1	V	V	V	V	V

Tabel 3.1 Skema Penelitian

(Halaman Ini Sengaja Dikosongkan)

BAB 4 HASIL DAN PEMBAHASAN

4.1 Hasil dan Pembahasan

Sintesis material Li₄Ti₅O_{12-x},F_x/C (LTO) sebagai material anoda baterai lithium ion telah dilakukan sesuai dengan metode yang telah dijelaskan pada bab sebelumnya. Material LTO didoping menggunakan variasi mol LiF pada temperatur kalsinasi 700, 750 dan 800 °C sehingga membentuk Li₄Ti₅O_{12-x},F_x sebagai material aktif. Material aktif tersebut kemudian dilapisi dengan karbon menggunakan gas asetilene dan argon selama satu jam, sehingga membentuk Li₄Ti₅O_{12-x},F_x/C. Material aktif yang terlapisi (*coating*) carbon dilakukan karakterisasi (XRD dan SEM). Tahapan selanjutnya yaitu pembuatan *slurry*, *drying*, *cutting* dan *assembling* sehingga terbentuk baterai *coin cell*. Baterai *coin cell* dilakukan pengujian performa elektrokimia (CV, CD dan EIS). Hasil karakterisasi dan performa elektrokimia yang diperoleh akan dianalisis dan dijelaskan pada subbab ini

4.2 Hasil Karakterisasi

4.2.1 Hasil Pengujian dan Analisis X-Ray Diffraction (XRD)

Sampel Li₄Ti₅O₁₂ diuji menggunakan *X-Ray Diffraction* (XRD) untuk diidentifikasi struktur kristal, unsur atau senyawa dan penentuan komposisi yang ada didalamnya. Pengamatan struktur dengan XRD dilakukan untuk mengetahui fasa apa yang terbentuk dan diinginkan serta fasa lain yang tidak diharapkan. Sampel diukur dengan difraksi sinar X (XRD, PANalytcal) menggunakan radiasi C-K α dengan *scan step time* 10.1500 detik, posisi 2 θ . awal sebesar 10.0084 dan posisi akhir 89.976 dengan rentang sudut 10° sampai 90°. Data hasil pengujian ini berupa grafik puncak intensitas terhadap sudut 2 θ . Pola XRD dari sampel LTO dengan variasi mol *doping* F dalam LiF yang dikalsinasi pada temperatur 700, 750 dan 800°C ditunjukkan pada Gambar 4.1, Gambar 4.2 dan Gambar 4.3 berikut.

Gambar 4.1 a) Pola XRD LTO dengan variasi doping F dan b) Pergeseran Peak dengan Variasi Penambahan Doping F pada temperatur 700°C

Gambar 4.2 a) Pola XRD LTO dengan variasi doping F dan b) Pergeseran Peak dengan Variasi Penambahan Doping F pada temperatur 750°C

Gambar 4.1a dan Gambar 4.2a menunjukkan pola XRD dari Li₄Ti₅O₁₂ dengan variasi *doping* F sebesar 0.1, 0.15 dan 0.2 mol yang dikalsinasi pada temperatur 700 dan 750°C. Pola XRD yang telah diperoleh menunjukkan bahwa telah terbentuk puncak difraksi pada posisi sudut 2 θ sekitar 18, 35, 43, 47, 57, 63, 66, 74, 75, 79 dan 82 °. Bidang yang terbentuk pada posisi sudut 2 θ tersebut masing-masing adalah (111), (311), (222), (400), (331), (333), (440), (531), (533),

(622), (444) dan (551). Puncak-puncak grafik XRD kemudian dicocokkan dengan data JCPDS *Card* (*Database Joint Commite on Powder Difraction Standards*) yang merupakan database pola refrensi XRD standar digunakan untuk mengetahui kesesuaian Li₄Ti₅O₁₂. Grafik pada setiap variasi menunjukkan puncak utama dari *cubic spinel* LTO sesuai dengan JCPDS card No.49-0207. Gambar 4.1a dan Gamba4 4.2a juga menunjukkan bahwa tidak ada pengotor lain yang terbentuk dalam sampel LTO.

Gambar 4.1b dan Gambar 4.2b merupakan pengamatan pada bidang (111) yang merupakan salah satu *peak* tertinggi dari LTO dengan posisi sudut 20 direntang 17.0-20.0°. Penambahan F telah berhasil dilakukan secara *substitutional* pada material LTO. Unsur F telah menyisip dalam struktur kristal LTO tanpa menyebabkan perubahan karakteristik struktur kristal. Penelitian Karulzaman (2012) menyatakan bahwa substitutional doping adalah proses masuknya element/unsur asing ke dalam sebuah host material, kemudian unsur dopan tersebut mengantikan beberapa bagian/sites dari host material yang sebelumnya. Pada substitusional doping dapat menjaga bentuk struktur kristal. Sehingga senyawa-senyawa yang didoping secara substitusi, posisi atom secara tepat berada dalam kisi kristal. Unsur F berhasil berdifusi dengan baik menggantikan posisi O yang ada pada LTO. Penambahan F tidak mempengaruhi struktur spinel LTO yang telah disintesis, hanya saja dengan adanya penambahan unsur F yang didoping melalui LiF membuat puncak (*peak*) XRD sampel berubah bergeser ke arah derajat yang lebih rendah sehingga semakin kristalin.

LTO dengan variasi 0,1; 0,15; dan 0.2 F yang dikalsinasi pada temperatur 800°C terdapat fasa baru berupa fasa TiO₂ dimana pada sudut 20 sekitar 28° terdapat puncak baru yang terbentuk meskipun nilai intensitasnya kecil. Puncak ini dihasilkan dari sejumlah kecil TiO₂ yang ada dalam kisi yang dikonversi dari anatase yang tidak bereaksi karena penguapan lithium selama proses kalsinasi (Ji, 2010). Fasa TiO₂ anatase dapat juga terbentuk karena proses *milling* yang terlalu lama sehingga menghasilkan energi berlebih yang akan merangsang pembentukan TiO₂ anatase (Lukman, 2019). Fasa TiO₂ pada temperatur 800°C memiliki struktur kristal yaitu anatase dan rutile. Fasa rutile merupakan fasa TiO₂ yang stabil sementara fasa TiO₂ anatase metastabil. Fasa ini merupakan pengotor yang

bisa muncul karena pengaruh dari temperatur kalsinasi yang terlalu tinggi. Temperatur juga bisa menyebabkan fasa yang awalnya setimbang menjadi tidak setimbang. (Yuan, 2010). Hasil XRD pada variasi ini bisa dilihat pada Gambar 4.3 berikut ini

Gambar 4.3 a) Pola XRD LTO dengan variasi doping F dan b) Pergeseran Peak dengan Variasi Penambahan Doping F pada temperatur 800°C

Pengaruh variasi temperatur pada saat proses kalsinasi juga sedikit mempengaruhi hasil dari sintesis LTO. Variasi temperatur kalsinasi yang digunakan adalah 700, 750 dan 800°C. Pengaruh variasi temperatur kalsinasi pada

LTO yang di *doping* dengan F sebesar 0,1; 0,15 dan 0,2 mol bisa dilihat pada grafik Gambar 4.4, berikut.

Gambar 4.4 a) Variasi Temperatur Kalsinasi pada LTO doping 0,1 F, b) doping 0,15 F dan c) doping 0.2 F

Gambar 4.4 menunjukan pengaruh temperatur kalsinasi terhadap proses pembuatan LTO dengan beberapa penambahan *doping* F. Gambar 4.4 a menunjukkan variasi temperatur kalsinasi pada material LTO yang di doping 0,1 F, Gambar 4.4 b merupakan variasi temperatur kalsinasi dengan doping 0,2 F dan Gambar 4.4 c variasi temperatur kalsinasi dengan doping 0,2 F. Ketiganya menunjukkan grafik yang tidak terlalu jauh berbeda. Pada saat temperatur 700°C hingga 750°C, nilai intensitas semakin naik dari sekitar 1000 hingga 1400, sehingga kristalinitas juga tinggi. Namun nilai intensitasnya semakin berkurang dan kristalinitas menjadi lebih rendah pada variasi temperatur kalsinasi 800°C, nilai intensitas menurun hingga sekitar dibawah 600. Dengan adanya *doping*, kristalinitas material induknya (*host*) berkurang sehingga nilai intensitasnya

Penambahan unsur F tidak hanya membuat puncak mengalami pergeseran, namun juga menyebabkan terjadinya perubahan nilai parameter kisi (*lattice parameter*). Penambahan unsur F dan variasi temperatur kalsinasi juga berpengaruh pada ukuran kristal pada sampel. Ukuran kristal bisa dihitung dengan menggunakan persamaan *Debye Schrerrer* sesuai dengan persamaan 4.1 berikut

$$D = \frac{k\lambda}{B\cos\theta} \tag{4.1}$$

dimana D adalah ukuran kristal dalam nm, k merupakan konstanta Schererr biasanya bernilai 0.9, λ merupakan panjang gelombang dari radiasi sinar X (0,15418 nm untuk CuK α), B adalah lebar setengah puncak maksimum pada puncak difraksi yang terukur pada 2 θ atau nilai FWHM (Full Width Half Maximum) dengan satuan radian, θ adalah sudut Brag. Nilai dari *lattice parameter* dan ukuran kristal setiap variasi dapat dilihat pada Tabel 4.1 berikut

Tabel 4.1 Nilai Lattice Parameter dan Crystallite Size (D) setiap variasi

Sampel	Lattice Parameter a (Å)			(Å) D (Nm)		
	0,1 F	0,15 F	0,2 F	0,1 F	0,15 F	0,2F
LTO 700°C	8,284	8,312	8,364	59,818	82,263	60,952
LTO 750°C	8,313	8,322	8,323	68,279	71,288	54,547
LTO 800°C	8,376	8,332	8,323	89,603	105,938	49,443

Pada Tabel 4.1 mengindikasikan bahwa nilai lattice parameter pada temperatur yang sama bertambah seiring dengan meningkatnya jumlah penambahan F yang diberikan. Nilai lattice parameter dari LTO refrensi sesuai dengan JCPDS card 40-0207 untuk a, b dan c adalah 8,3588Å.

Perubahan nilai lattice parameter terjadi karena unsur F menempati posisi unsur O. Hal ini sesuai dengan yang diharapkan oleh aturan *Vegard* untuk substitusi dimana penggantian ion O^{2-} yang ukurannya lebih besar dari (0,140 nm) ion F yang lebih kecil (0,133 nm) (Wu, 2013). Setara dengan penelitian Scharner (1999) bahwa struktur spinel yang diolah dapat dijelaskan sebagai berikut. Ketika ion-ion fluoride yang lebih kecil mengambil lokasi 32e dimana ion oksigen berada, titanium trivalen Ti³⁺ (0,067 nm) yang didistribusikan disitus 16d oktahedral dapat secara acak menempati situs 8b, 48f atau 16c untuk memberikan kompensasi yang mengarah pada peningkatan parameter kisi. Dengan digunakannya temperatur kalsinasi 800°C, LTO yang seharusnya memiliki ukuran lattice parameter yang semakin mengecil seiring dengan jumlah penambahan *doping* F, berubah menjadi membesar. Hal ini bisa disebabkan karena proses substitusi dari ion F untuk menggantikan posisi ion O tidak berhasil secara maksimal, karena butir yang berubah membesar akibat adanya sintering sehingga aglomerasi terjadi.

Tabel 4.1 juga menunjukkan nilai ukuran kristal (*crystallite size*) pada material LTO. Ukuran kristal terendah ada pada variasi *doping* 0,2 F temperatur kalsinasi 800°C dengan nilai 49,443 Nm dan yang tertinggi ukuran kristalnya terdapat pada variasi *doping* 0,15 F pada temperatur 800°C. Ukuran kristal pada variasi 0,1F meningkat seiring dengan bertambahnya temperatur kalsinasi yang digunakan (700, 750 dan 800 °C). Kemudian terjadi anomali dimana pada variasi *doping* 0,15F nilai ukuran kristalnya menurun pada temperatur 750°C dan naik lagi pada temperatur 800°C. Pada variasi *doping* 0,2F nilai ukuran kristal menurun seiring dengan bertambahnya temperatur yang digunakan.

4.2.2 Hasil Pengujian dan Analisis SEM-EDX

Pengujian SEM-EDX dilakukan pada sampel LTO doping F dengan variasi mol 0,1, 0,15 dan 0.2 serta beberapa temperature kalsinasi yaitu 700, 750

dan 800 °C untuk mengetahui morfologi permukaan dari serbuk dan perbesaran nsur penyusun material aktif pada sampel. Alat yang digunakan untuk uji SEM pada penelitian ini menggunakan FEI Inspect S50 dengan tungsten sebagai sumber elektron dan besar *acceleration voltage* 20kV. LTO dengan variasi tersebut ditembak menggunakan elektron kemudian diamati dengan menggunakan perbesaran 25.000x untuk melihat bentuk butir dari sampel dan perbesaran 15.000x untuk pemetaan persebaran unsur yang ada pada beberapa sampel LTO menggunakan EDX. Gambar 4.5 menunjukkan hasil foto SEM dari serbuk LTO/C variasi *doping* F dengan perbesaran 25.000x.

Gambar 4.5 Hasil Uji SEM LTO Perbesaran 25.000x pada setiap variasi (a) LTO + 0,1F Kalsinasi 700°C, (b) LTO + 0,15F Kalsinasi 700°C, (c) LTO + 0,2F Kalsinasi 700°C, (d) LTO + 0,1F Kalsinasi 750°C, (e) LTO + 0,15F Kalsinasi 750°C, (g) LTO + 0,1F Kalsinasi 800°C, (h) LTO + 0,15F Kalsinasi 800°C dan (i) LTO + 0,2F Kalsinasi 800°C.

Gambar 4.5 menunjukkan hasil SEM dari spinel Li₄Ti₅O₁₂ yang dikalsinasi pada temperatur 700, 750 dan 800°C, variasi doping mol F serta dilakukan pelapisan karbon mengunakan asetilen, dengan perbesaran 25.000x . Dapat dilihat dengan jelas bahwa sampel menunjukkan partikel berbentuk butir tak beraturan dengan distribusi ukuran partikel yang seragam. Banyak butir berukuran nanometer dan secara umum terlihat homogen. Hal ini ditunjukkan pada Gambar 4.5a hingga Gambar 4.5f. Ukuran partikel juga cenderung mengalami kenaikan sedikit demi sedikit seiring dengan meningkatnya temperatur kalsinasi yang digunakan. Hal ini terlihat pada Gambar 4.5g, Gambar 4.5h dan Gambar 4.5i. Dengan suhu yang ditingkatkan dari 700 menjadi 800°C, partikel berubah menjadi lebih besar (Zhang,2013). Temperatur tinggi diatas 800°C menyebabkan butir teraglomerasi menjadi padat. Butiran padat tersebut dapat membuat penyisipan/ekrstraksi ion Li⁺ dalam butir LTO bersifat homogen. Pertikel padat ini tidak aktif terutama selama siklus pada kepadatan arus tinggi (*hight current density*) karena peningkatan jarak difusi ion Li⁺. Sebaliknya ukuran butir LTO yang kecil dan seragam dapat berkontribusi untuk meningkatkan performa elektrokimia untuk baterai ion lithium (Babu, 2018). Untuk mengetahui nilai ukuran partikel dari hasil SEM diatas ditunjukkan pada Tabel 4.2 berikut

Li ₄ Ti ₅ O ₁₂ /C	Ukuran Partikel Rata- Rata (nm)	Standard Deviasi (nm)
Doping 0,1F; 700°C	369,68	56,84
Doping 0,15F; 700°C	327,82	89,34
Doping 0,2F; 700°C	313,02	25
Doping 0,1F; 750°C	517,72	52,39
Doping 0,15F; 750°C	469,36	92,39
Doping 0,2F; 750°C	451,4	12,89
Doping 0,1F; 800°C	514,22	112,13
Doping 0,15F; 800°C	586,12	113,41
Doping 0,2F; 800°C	595,74	28,45

Tabel 4.2 UKulali Faltikel uali vallasi L10/
--

Tabel 4.2 menunjukkan ukuran partikel dari masing-masing variasi LTO/C. Pentuan ukuran partikel dilakukan pada lima titik dari hasil SEM perbesaran 25.000x, kemudian dirata-rata sehingga mendapatkan nilai ukuran

partikel dengan nilai standard deviasi. Hal ini dilakukan agar dapat mengetahui ukuran dan persebaran partikel tersebut dalam satu interpretasi, homogen atau tidak. Pada temperatur 700°C dengan doping 0,1 F didapatkan nilai ukuran partikel rata-rata 369,68 nm. Kemudian kadar F ditambah 0,15 mol, didapatkan ukuran partikel 327,82 nm. Unsur F ditambah lagi menjadi 0,2 mol didapatkan ukuran partikel 313,02 nm. Pada temperatur ini dengan penambahan mol F, semakin besar unsur F yang didoping maka ukuran partikel menjadi semakin kecil. Hal yang sama juga terjadi pada temperatur 750°C. Pada temperatur 750°C dengan penambahan 0,1 F didapatkan ukuran partikel rata-rata 517,72 nm. Doping 0,15 F didapatkan ukuran partikel 469,36 nm, serta doping 0,2F dengan ukuran partikel sebesar 451,4 nm. Tidak ada perbedaan yang terlalu signifikan dalam ukuran parrtikel dari temperatur 700 dan 750°C. Namun pada temperatur 800°C, ukuran partikel menjadi semakin membesar seiring dengan peningkatan jumlah doping F yang digunakan, dimulai dari doping 0,1F dengan nilai ukuran partikel rata-rata 514,22 nm, doping 0,15F dengan ukuran partikel 586,12 nm dan doping 0,2F dengan ukuran partikel 595,74 nm. Dengan nilai toleransi yang tertera pada tabel menunjukkan bahwa semakin kecil nilai toleransinya maka semakin akurat. Pada variasi temperatur ini terjadi aglomerasi sehingga membuat ukuran partikel menjadi tidak homogen.

Faktor-faktor penyebab terjadinya aglomerasi saat dilakukan perlakuan solid state reaction dan perbedaan temperatur kalsinasi adalah karena ukuran partikel yang sangat kecil dan tak beraturan (agregat) sehingga memiliki tegangan permukaan dan kekasaran (*roughnes*) yang tinggi. Untuk mengurangi tegangan permukaan tersebut maka antar partikel menyatu secara fisik (aglomerasi) dan saling mengunci (*interlocking*). Akibat panas yang dihasilkan oleh temperatur kalsinasi, maka terjadi difusi dipermukaan antar partikel sehingga menimbulkan efek sintering. Sintering menyebabkan terjadinya peningkatan ukuran partikel.

Hasil SEM dari setiap variasi sampel menunjukkan bahwa kenaikan temperatur kalsinasi dari 700°C dan 750°C menuju temperatur 800°C akan mebuat terjadinya perubahan ukuran partikel, dalam penelitian ini partikel berubah menjadi lebih besar karena teraglomerasi. Menurut Wang (2009) suhu sintesis yang lebih tinggi 750°C akan menghasilkan pertumbuhan partikel yang tidak diinginkan (besar), yang tidak menguntungkan untuk kinerja/performa elektrokimia.

Persebaran unsur-unsur dalam sampel LTO dapat diamati dengan menggunakan EDX. LTO dengan variasi temperatur kalsinasi (700,750 dan 800°C) dan variasi *doping* F diamati dengan menggunakan SEM dan EDX dengan perbesaran 15.000x. Berdasarkan hasil EDX terdeteksi unsur utama yaitu Ti dan O serta unsur tambahan lainnya adalah unsur C dan unsur F. Unsur C didapatkan dari proses kalsinasi dengan menggunakan argon dan asetilen dengan waktu tahan (*holding*) selama 1 jam. Unsur F didapatkan dari penambahan variasi mol yang digunakan, yaitu 0,1; 0,15 dan 0,2. Hasil SEM dan EDX untuk sampel variasi doping 0,1F dengan kalsinasi 700°C ditunjukkan pada Gambar 4.6 berikut ini.

(a)

(b)

(c)

Gambar 4.6 (a) Hasil SEM perbesaran 15.000x, (b) Hasil EDX dan (c) Persebaran unsur pada LTO/C doping 0,1F pada temperatur 700°C

Gambar 4.6 (a) menunjukkan hasil SEM perbesaran 15.000x pada LTO/C dengan doping 0,1F yang dikalsinasi pada temperatur 700°C. Gambar 4.6 (a) menunjukkan hasil SEM dimana semua partikel telihat homogen berbentuk *sphere* dan tersebar secara merata. Gambar 4.6 (b) merupakan hasil EDX berupa garfik unsur-unsur yang muncul pada sampel variasi ini. Unsur-unsur yang muncul pada grafik tersebut adalah unsur Ti dengan berat 55,59%,berat unsur O 42,90%, dan unsur F sebesar 1,51%. Untuk mengetahui berat atom masing-masing unsur terdapat pada lampiran penelitian ini. Gambar 4.6 (c) merupakan persebaran unsur-unsur yang ada pada sampel variasi ini. Dimana unsur Ti ditunjukkan dengan titik-titik warna biru, unsur O dengan titik berwarna merah dan F yang berwarna hijau. Terdapat unsur lain dalam sampel variasi ini, yaitu unsur karbon (C), namun dalam jumlah yang sedikit sekitar 3,75%.

Gambar 4.7 (a) Hasil SEM perbesaran 15.000x, (b) hasil EDX dan (c) Persebaran unsur pada LTO/C doping 0,15F pada temperatur 700°C

Gambar 4.7 merupakan hasil SEM dan EDX pada LTO/C dengan *doping* 0,15F yang dikalsinasi pada temperatur 700°C. Gambar 4.7 (a) hasil SEM dengan

perbesaran 15.000x dan Gambar 4.7 (b) merupakan gambar grafik hasil EDX. Hasil grafik EDX menunjukkan unsur yang terkandung dalam sampel variasi ini terdapat unsur Ti dengan persen berat (wt%) 31,97%, unsur O sebesar 40,36%, unsur F sebesar 0,61% dan unsur C dengan berat 27,05%. Nilai persen berat dari unsur Ti, O dan F pada variasi ini mengalami penurunan dari variasi sebelumnya. Gambar 4.7 (c) merupakan persebaran unsur dari Ti yang berwarna kuning, unsur O berwarna hijau, unsur F berwarna biru, unsur C berwarna merah dan gambar yang terakhir gabungan dari unsur-unsur tersebut dalam satu frame variasi yang sama. Penentuan interpretasi warna setiap unsur ini berlaku untuk variasi selanjutnya.

(c)

Gambar 4.8 (a) Hasil SEM perbesaran 15.000x, (b) hasil EDX dan (c) Persebaran unsur pada LTO/C doping 0,2F pada temperatur 700°C

Gambar 4.8 merupakan hasil SEM dan EDX pada LTO/C dengan *doping* 0,2F yang dikalsinasi pada temperatur 700°C. Gambar 4.8 (a) hasil SEM dengan perbesaran 15.000x dan Gambar 4.8 (b) merupakan gambar grafik hasil EDX. Hasil grafik EDX menunjukkan unsur yang terkandung dalam sampel variasi ini terdapat unsur Ti dengan persen berat (wt%) 48,84%, unsur O sebesar 43,93%, unsur F sebesar 0,61% dan unsur C dengan berat 6,62%. %. Gambar 4.8 (c) merupakan persebaran unsur yang terdapat variasi ini

(b)

(c)

Gambar 4.9 (a) Hasil SEM perbesaran 15.000x, (b) Hasil EDX dan (c) Persebaran unsur pada LTO/C doping 0,1F pada temperatur 750°C

Gambar 4.9 (a) merupakan hasil SEM pada LTO/C dengan *doping* 0,1F yang dikalsinasi pada temperatur 750°C dengan perbesaran 15.000x. Gambar 4.9 (b) merupakan gambar grafik hasil EDX. Hasil grafik EDX menunjukkan unsur yang terkandung dalam sampel variasi ini terdapat unsur Ti dengan persen berat (wt%) 39,61 %, unsur O sebesar 44,93 %, unsur F sebesar 0,33 % dan unsur C dengan berat 15,12 %. Gambar 4.9 (c) merupakan persebaran unsur yang terdapat variasi ini

(b)

(c)

Gambar 4.10 (a) Hasil SEM perbesaran 15.000x, (b) Hasil EDX dan (c) Persebaran unsur pada LTO/C doping 0,15F pada temperatur 750°C

Gambar 4.10 merupakan hasil SEM dan EDX pada LTO/C dengan *doping* 0,15F yang dikalsinasi pada temperatur 750°C. Gambar 4.10 (a) hasil SEM dengan perbesaran 15.000x dan Gambar 4.10 (b) merupakan gambar grafik hasil EDX. Hasil grafik EDX menunjukkan unsur yang terkandung dalam sampel variasi ini terdapat unsur Ti dengan persen berat (wt%) 31,97 %, unsur O sebesar 40,36 %, unsur F sebesar 0,61 % dan unsur C dengan berat 27,05 %. Gambar 4.10 (c) merupakan persebaran tiap masing-masing unsur dari variasi ini.

(a)

(b)

(c)

Gambar 4.11 (a) Hasil SEM perbesaran 15.000x, (b) Hasil EDX dan (c) Persebaran unsur pada LTO/C doping 0,2 F pada temperatur 750°C

Gambar 4.11 merupakan hasil SEM dan EDX pada LTO/C dengan *doping* 0,2F yang dikalsinasi pada temperatur 750°C. Gambar 4.11 (a) hasil SEM

dengan perbesaran 15.000x dan Gambar 4.11 (b) merupakan gambar grafik hasil EDX. Hasil grafik EDX menunjukkan unsur yang terkandung dalam sampel variasi ini terdapat unsur Ti dengan persen berat (wt%) 43,11 %, unsur O sebesar 45,13 %, unsur F sebesar 1,31 % dan unsur C dengan berat 10,45 %. Gambar 4.11 (c) merupakan persebaran tiap masing-masing unsur dari variasi ini.

(c)

Gambar 4.12 (a) Hasil SEM perbesaran 15.000x, (b) Hasil EDX dan (c) Persebaran unsur pada LTO/C doping 0,1F pada temperatur 800°C

Gambar 4.12 merupakan hasil SEM dan EDX pada LTO/C dengan *doping* 0.1F yang dikalsinasi pada temperatur 800°C. Gambar 4.12 (a) hasil SEM dengan perbesaran 15.000x. Pada variasi ini juga mulai terjadi perbedaan ukuran dari butir atau partikel serbuk LTO. Pertikel morfologinya mulai berubah menjadi lebih besar. Hal ini bisa disebabkan karena temperatur kalsinasi yang terlalu tinggi (800°C) sehingga membuat partikel yang awalnya berbentuk *iregular sphere*

berubah menggumpal menjadi satu. Gambar 4.12 (b) merupakan gambar grafik hasil EDX. Hasil grafik EDX menunjukkan unsur yang terkandung dalam sampel variasi ini terdapat unsur Ti dengan persen berat (wt%) 36,89 %, unsur O sebesar 39,90 %, unsur F sebesar 0,96 % dan unsur C dengan berat 22,5 %. Gambar 4.12 (c) merupakan persebaran tiap masing-masing unsur dari variasi ini.

(c)

Gambar 4.13 (a) Hasil SEM perbesaran 15.000x, (b) Hasil EDX dan (c) Persebaran unsur pada LTO/C doping 0,15F pada temperatur 800°C

Gambar 4.13 merupakan hasil SEM dan EDX pada LTO/C dengan *doping* 0.15F yang dikalsinasi pada temperatur 800°C. Gambar 4.13 (a) hasil SEM dengan perbesaran 15.000x. Aglomerasi dari partikel-partikel serbuk LTO variasi ini terlihat semakin banyak dibanding dengan variasi sebelumnya. Gambar 4.13 (b) merupakan gambar grafik hasil EDX. Hasil grafik EDX menunjukkan

unsur yang terkandung dalam sampel variasi ini terdapat unsur Ti dengan persen berat (wt%) 50,95 %, unsur O sebesar 44,54 %, unsur F sebesar 0,68 % dan unsur C dengan berat 3,82 %. Gambar 4.13 (c) merupakan persebaran tiap masingmasing unsur dari variasi ini.

(a)

(b)

Gambar 4.14 (a) Hasil SEM perbesaran 15.000x, (b) Hasil EDX dan (c) Persebaran unsur pada LTO/C doping 0,2F pada temperatur 800°C

Gambar 4.14 merupakan hasil SEM dan EDX pada LTO/C dengan *doping* 0.2F yang dikalsinasi pada temperatur 800°C. Gambar 4.14 (a) hasil SEM dengan perbesaran 15.000x, terlihat aglomerasi dari partikel semakin banyak dan perbesarannya tersebar secara tidak merata. Gambar 4.14 (b) merupakan gambar grafik hasil EDX. Hasil grafik EDX menunjukkan unsur yang terkandung dalam sampel variasi ini terdapat unsur Ti dengan persen berat (wt%) 46,81 %, unsur O

sebesar 41,95 %, unsur F sebesar 1,21 % dan unsur C dengan berat 10,04 %. Gambar 4.14 (c) merupakan persebaran tiap masing-masing unsur dari variasi ini.

Unsur yang lebih dominan dari setiap variasi sampel adalah unsur Ti dan O. Keduanya merupakan unsur utama dari Li₄Ti₅O₁₂. Sementara unsur Li keberadaannya lebih sedikit bahkan tidak dapat diukur dibandingkan dengan unsur yang lainnya. Unsur Li tidak dapat terdeteksi oleh sinar X dari EDX karena Li merupakan unsur yang sangat ringan hampir mirip dengan unsur hydrogen yang juga tidak akan terdeteksi oleh EDX. Jumlah kandungan unsur karbon (C) pada setiap variasi sampel berkisar pada 3-27%. Kandungan unsur Ti sekitar 29-55%, unsur O sekitar 39-45% dan F dengan nilai sekitar 0,61-1,51%. Adanya unsur C membuktikan bahwa *coating* karbon berhasil dilakukan, dan *doping* F juga telah berhasil masuk pada struktur LTO. Untuk mengetahui lebih detail tentang persebaran unsur dan beratnya, dapat dilihat pada Tabel 4.3 berikut

Li ₄ Ti ₅ O ₁₂	Berat Unsur / wt (%)					
(LTO)	Ti	0	F	С		
LTO+0.1F;700°C	55.59	42.90	1.51	3.75		
LTO+0.15F;700°C	31.97	40.36	0.61	27.05		
LTO+0.2F;700°C	48.84	43.93	0.61	6.62		
LTO+0.1F;750°C	29.54	42.04	0.99	27.44		
LTO+0.15F;750°C	39.61	44.93	0.33	15.12		
LTO+0.2F;750°C	43.11	45.13	1.31	10.45		
LTO+0.1F;800°C	36.89	39.90	0.96	22.25		
LTO+0.15F;800°C	50.95	44.54	0.68	3.82		
LTO+0.2F;800°C	46.81	41.95	1.21	10.04		

Tabel 4.3 Berat Masing-Masing Unsur Yang Ada Pada Variasi LTO

Jika dikaitkan dengan hasil XRD, hasil uji SEM pada variasi temperatur 700 dan 750°C mempunyai karakteristik yang hampir sama. Pada temperatur 700 dan 750°C intensitas dari setiap variasi dan morfologinya juga hampir mirip. Namun pada temperatur 800°C nilai intensitas semakin rendah dan partikel juga mengalami perubahan morfologi dimana pada temperatur ini terjadi aglomerasi sehingga membuat partikel membesar.

4.3 Hasil Uji Performa Elektrokimia

4.3.1 Hasil Pengujian dan Analisis Cyclic Voltammetry (CV)

Pengujian CV dilakukan menggunakan alat uji CorrTest CS Studio. Pengujian CV bertujuan untuk mengetahui terjadi atau tidaknya reaksi oksidasi dan reduksi pada sel baterai. Spinel Li₄Ti₅O₁₂ dapat menerima hingga 3 mol atom Li untuk membentuk Li₇Ti₅O₁₂ pada saat pengisian (*charge*). Persamaan ini reversibel setelah pengisian dan saat bahan teroksidasi kembali menjadi Li₄Ti₅O₁₂ ketika pemakaian (*discharge*). Persamaan (4.1) menggambarkan reaksi reduksi dan persamaan (4.2) menggambarkan reaksi oksidasi

$$\text{Li}_4\text{Ti}_5\text{O}_{12} + 3\text{Li}^+ + 3\text{e}^- \rightarrow \text{Li}_7\text{Ti}_5\text{O}_{12}$$
 (reaksi reduksi/charge) (4.1)

$$\text{Li}_7\text{Ti}_5\text{O}_{12} \rightarrow \text{Li}_4\text{Ti}_5\text{O}_{12} + 3\text{Li}^+ + 3\text{e}^- \text{ (reaksi oksidasi/discharge)}$$
(4.2)

Bentuk kurva voltammogram pada uji CV diperoleh dari hubungan antara arus (mA) dengan tegangan (V). Respon arus merupakan hasil yang diperoleh dari proses penyapuan *scan rate* 0,1 mV/s dari nilai tegangan 0,01 V-2,5 V. Pengujian pada CV, akan menjadi salah satu parameter yang dapat digunakan untuk mengetahui prediksi kemampuan baterai saat pengujian *charge discharge* (CD).

Sembilan sampel LTO/C dengan variasi F, telah diuji CV. Dari Sembilan *cell* tersebut, terdapat empat *cell* yang dapat menghasilkan reaksi redoks. Sedangkan sampel lainnya yang telah diuji CV pula, tidak menunjukkan hasil redoks. Hal ini menandakan bahwa *cell* tersebut tidak stabil apabila diuji CD. Gambar 4.15 menunjukan hasil kurva voltammogram pada sampel LTO/C yang telah berhasil uji CV. Sampel yang berhasil diuji CV sebagai berikut; LTO/C 700 °C dengan doping (0,1 F dan 0,15 F), LTO/C 750 °C dengan variasi doping 0,2 F, dan LTO/C 800 °C dengan variasi doping 0,1 F.

Gambar 4.15 Hasil CV LTO/C pada tiap temperature dan variasi F

Gambar 4.15 merupakan hasil kurva voltammogram yang diperoleh, *cell* baterai variasi temperatur 700°C pada variasi doping 0,1F dan 0,5F memiliki bentuk pasangan kurva yang serupa. *Cell* variasi temperatur 750°C pada variasi doping 0,2F memiliki bentuk kurva yang melebar dan tidak tajam. Sedangkan *cell* dengan temperatur 800°C pada variasi doping 0,1F juga memiliki bentuk yang tidak tajam dan melebar. Pada cell ini juga terdapat banyak kurva yang terjadi. Rentang tegangan 0 - 0,5V telah terbentuk kurva dari respon arus yang diperoleh. Hal ini menandakan telah terjadi pergerakan ion Li⁺ dari Li₇Ti₅O₁₂ berubah menjadi Li_{8.5}Ti₅O₁₂. Pada rentang tengangan 1-2,5V terbentuk kurva voltamogram dari setiap cell yang berhasil di uji CV. Hal ini ditunjukkan dengan adanya reaksi perubahan struktur *spinel* Li₄Ti₅O₁₂ menjadi struktur *rock salt* Li₇Ti₅O₁₂ akibat adanya 3Li⁺ yang bergerak. Variasi F pada temperatur 700°C, menyebabkan terjadinya penurunan bentuk kurva yang dihasilkan. Hal ini terlihat dengan bentuk CV anodik dan katodik yang menurun pada tegangan sekitar 1,6 V dan 1,2 V yang ditunjukkan pada Tabel 4.4 berikut

Tabel 4.4 Nilai Pengujian CV

Sampal	Eredo	$_{ks}$ (V)		E ⁰ (V)	
Samper	E _{pa}	E _{pc}	$\Delta \mathbf{E}_{\mathbf{p}}(\mathbf{v})$		
LTO/C 700 °C+0,1F	1,6799	1,1132	0,56	1,39	
LTO/C 700 °C+0,15F	1,6598	1,1589	0,50	1,40	
LTO/C 750 °C+0,2F	1,9018	1,0521	0,85	1,48	
LTO/C 800 ⁰ C+0,1F	2,0316	1,3134	0,72	1,68	

Pada Tabel 4.4, diperoleh besar tegangan anodik (E_{pa}) dan katodik (E_{pc}) masing-masing *cell* LTO 700 °C+0,1F (1,67 V/1,11 V), LTO 700 °C+0,15F (1,65 V/1,15 V), LTO 750 °C+0,2F (1,90 V/1,05 V), dan LTO 800 °C+0,1F (2,03 V/1,31 V). Kurva voltammogram juga dapat menunjukan besar nilai (ΔE_p) yang dimiliki oleh setiap *cell* baterai. Nilai ΔE_p merupakan nilai yang menjelaskan selisih antara puncak anodik dan katodik. Bedasarkan perbedaan nilai ΔE_p yang diperoleh, dapat dijelaskan bahwa dari keempat sampel LTO/C, sampel LTO/C 700 °C+0,15F memiliki selisih yang lebih kecil, daripada sampel lainnya. Hal ini menandakan bahwa pergerakan ion lithium lebih cepat bergerak untuk proses *charge discharge*. E⁰ merupakan working voltage, dimana arus yang digunakan selama proses reduksi-oksidasi berlangsung.

4.3.2 Hasil dan Analisis Charge Discharge (CD)

Kapasitas spsifik *charge discharge* (CD) dari sampel LTO/C dengan variasi temperatur kalsinasi 700, 750 dan 800 °C pada masing-masing (0,1, 0,15, dan 0,2F), diuji CD dengan alat *Neware Battery Testing. Cell* baterai diuji dengan diberikan *current rate* stabil sebesar 0,001C (0,175 mA) pada tegangan kerja 0,01 - 2,5 V sebanyak 5 *cycle*. Berdasarkan Gambar 4.25, Gambar 4.26 dan Gambar 4.27, terdapat garis yang mengarah ke bawah. Garis tersebut menunjukkan besar kapasitas saat penggosongan (*discharge*). Sedangkan garis lurus mendatar pada tegangan kerja ~1,5 merupakan garis *plateu* dari kurva CD. Garis tersebut menunjukkan kemampuan kerja dari *cell* baterai. Secara teori, semakin panjang garis *plateu*, menunjukkan semakin besar pula kemampuan kapasitas *discharge* yang dapat dihasilkan. Besar kapasitas *discharge* didasarkan karena pergerakan ion lithium yang searah dengan elektron pada sirkuit dalam dan e⁻ pada sirkuit

luar. Saat proses *discharge*, sebuah ion lithium berpindah dari elektroda anoda menuju ke katoda. Semakain tinggi arus yang diberikan maka semakin cepat pula elektron yang bergerak dari anoda ke katoda.

Gambar 4.16 Kapasitas spesifik *charge discahrge* sampel LTO/C 700°C pada 0,1 dan 0,15F

Pada Gambar 4.16, diberikan *current rate* 0,001C cycle ke-1. Kapasitas spesifik *discharge* yang dihasilkan oleh sampel LTO/C 700°C+0,1F (236,49 mAh/g) dan LTO/C 700°C+0,15F (222,66 mAh/g). Sedangkan pada variasi temperatur kalsinasi 750°C menyebabkan terjadinya perubahan pada kapasitas spesifik yang semakin besar. Pemberian *current rate* 0,001C cycle ke-1 pada LTO/C 750°C, menghasilkan kapasitas spesifik *discharge* sebesar LTO/C 750°C+0,1F (310,11 mAh/g) dan LTO/C 750°C+0,2F (265,86 mAh/g). Kapasitas discharge variasi ini dapat dilihat pada Gambar 4.17 berikut

Gambar 4.17 Kapasitas spesifik *charge discahrge* sampel LTO/C 750°C pada 0,1 dan 0,2F

Sampel dengan penambahan 0,2F pada LTO/C 700°C dan 0,15F pada LTO/C 750°C, tidak dapat diperoleh hail kapasitas spefisik *discharge*. Hal ini dikarenakan struktur dari LTO/C yang tidak stabil sehingga saat diberikan arus, telah terjadi perubahan struktur.

Pada *current rate* 0,001C cycle ke-1, kapasitas spesifik *discharge* yang dihasilkan oleh sampel LTO/C 800°C+0,1F (201,21 mAh/g), LTO/C 800°C+0,15F (142,87 mAh/g), dan LTO/C 800°C+0,2F (185,45 mAh/g). Bedasarkan gambar tersebut diperoleh nilai kapasitas spesifik yang besar yakni pada variasi penambahan F sebesar 0,1. Terjadi pula penurunan kapasitas spesifik *discharge* saat diberikan penambahan F sebesar 0,15 dan 0,2F. Fenomena tersebut ditunjukkan pada Gambar 4.18

Gambar 4.18 Kapasitas spesifik *charge discharge* sampel LTO/C 800°C pada 0,1F, 0,15F, dan 0,2F.

Garis *plateu* yang dihasilkan pada setiap pengujian CD, menunjukkan bahwa performa cell baterai yang dihasilkan dapat digunakan untuk proses pengisian dan pengosongan. Terjadi hal serupa pada ketiga sampel variasi temperatur dengan penambahan F yang semakin banyak. Fenomena yang terjadi yaitu penurunan kapasitas *discharge*. Selain itu, bedasarkan hasil pengujian pada LTO/C 700, 750 dan 800°C, pada 0,1 F yang sama, telah terjadi penurunan kapasitas *discharge*. Hal ini disebabkan karena adanya perbedaan ukuran partikel, akibat adanya perubahan temperatur kalsinasi. Penambahan F yang menyisip dapat membantu mengurangi *size bulk* material. Sehingga, jalan ion untuk bergerak lebih pendek dan kemampuan bergerak juga lebih cepat. Namun, dikarenakan tidak semua F berhasil masuk, menyebabkan kapasitas *discharge* yang dihasilkan terjadi penurunan.

4.3.2.1 Hasil dan Analisis Charge Discharge Long Cycle Life

Kemampuan *discharge* baterai ion lithium menjadi salah satu hal yang diperlukan untuk mengetahui performa elektrokimia. Parameter yang digunakan yakni *long cycle life*. Hal ini bertujuan untuk mengetahui kemampuan *discharge* baterai ion lithium untuk digunakan berulang kali/berkelanjutan. Namun dalam penelitian ini, pengujian *long cycle life* didasarkan pada kemampuan baterai

dilakukan pengujian CD pada 5 *cycle* awal. Dapat diketahui bahwa jika *cell* pada pengujian awal mendapatkan hasil yang stabil, maka cell dapat diuji untuk pengujian *long cycle life*. Pada pengujian parameter ini, *cell* baterai yang memiliki performa yang baik, terjadi penurunan yang datar. Hal ini mengindikasikan bahwa baterai mampu bertahan apabila digunakan berulang kali.

Pengujian pada setiap sampel dengan temperatur 700⁰C dengan variasi penambahan F menujukkan respon berupa *capacity discharge* yang dihasilkan akibatnya adanya pengujian yang berulang pada rentang tegangan 0.01 -2.5 V dengan arus 0.175 mA. Hal ini bisa dilihat pada Gambar 4.19 berikut ini

Gambar 4.19 *Cycling performance* sampel LTO/C 700 ⁰C pada varisi 0.1 dan 0.15F

Samuel	Capacity Discharge (mAh/g)			
Samper	Cycle 1	Cycle 16		
LTO/C 700 °C+0,1F	230.94	192.31		
LTO/C 700 °C+0,15F	223,18	210,15		

Tabel 4.5 Nilai *Capacity Discharge* variasi temperatur 700⁰C

Bedasarkan hasil yang diperoleh pada Tabel 4.5, sampel LTO/C 700^oC hanya mampu dilalukan pemakaian berkelanjutan hingga 16 *cycle*. Pada penambahan 0,15F memiliki performa *long cycle life* yang lebih baik apabila dibandingkan dengan sampel dengan penambahan 0,1F. Hal ini bersesuaian dengan hasil CV yang menunjukkan bahwa sampel LTO/C 700^oC+0,1F memiliki

separation voltage yang lebih kecil yakni sebesar 0,50 V dengan *working voltage* 1,40 V. Sedangkan LTO/C 700^oC+0,15F *separation voltage* sebesar 0,56 V dengan *working voltage* 1,39 V. Selain itu, penurunan *capacity discharge* yang lebih stabil pada sampel LTO/C 700^oC+0,1F juga disebabkan karena partikel yang homogen. Pengujian pada setiap sampel dengan temperatur 750 ^oC dengan varisi penambahan F ditunjukkan pada Gambar 4.20 berikut ini

Gambar 4.20 Cycling performance sampel LTO/C 750 °C pada varisi 0.1 dan 0.2F

Comnol	Capacity Discharge (mAh/g)			
Samper	Cycle 1	Cycle 8		
LTO/C 750 °C+0,1F	313.39	237.39		
LTO/C 750 °C+0,2F	265.64	252.35		

Tabel 4.6 Nilai *Capacity Discharge* variasi temperatur 750^oC

Bedasarkan hasil yang diperoleh pada Tabel 4.6, sampel LTO/C 750^oC hanya mampu dilalukan pemakaian berkelanjutan hingga 8 *cycle*. Hal ini didasarkan pada karakter setiap sampel yang berbeda-beda dari cell sebelumnya. Perbedaan yang signifikan yang disebabkan karena semakin meningkatnya temperatur menyebabkan ukruan partikel semakin besar. Pada penambahan 0,2F memiliki performa *long cycle life* yang lebih baik apabila dibandingkan dengan sampel dengan penambahan 0,1F. Penurunan *capacity discharge* sampel LTO/C 750 ^oC+0.2F dari 265.64 mAh/g (cycle 1) menjadi 252.35 mAh/g (cycle 8) yang lebih stabil daripada pada sampel LTO/C 750 ^oC+0.1F juga disebabkan karena

partikel yang lebih homogen. Pengujian pada setiap sampel dengan temperatur 800°C dengan varisi penambahan F ditunjukkan pada Gambar 4.21 berikut

Gambar 4.21 *Cycling Performance* sampel LTO/C 800 ⁰C pada variasi 0,1, 0,15, dan 0,2F

Somnal	Capacity Discharge (mAh/g)			
Samper	Cycle 1	Cycle 16		
LTO/C 800 °C+0,1F	201.21	106.70		
LTO/C 800 °C+0,15F	142.87	184.64		
LTO/C 800 °C+0,2F	185.45	134.69		

Tabel 4.7 Nilai *Capacity Discharge* variasi temperatur 800[°]C

Bedasarkan hasil pada Tabel 4.7 pengujian *cycle life* dari ketiga sampel, diketahui terjadi penurunan kapasitas di awal pada sampel penambahan 0,2F dan terjadi penurunan kapasitas pula pada *cycle* akhir dengan penambahan 0,1F. Sampel LTO/C 800⁰C dengan 0,15F mampu dilakukan pemakaian berkelanjutan hingga 16 *cycle* dan lebih stabil. Hal ini didasarkan pada karakter setiap sampel yang berbeda-beda dari cell sebelumnya. Penurunan *capacity discharge* yang dihasilkan disebabkan struktur LTO yang semakin jenuh, akibat adanya proses *charge discharge* selama beberapa cycle.

4.3.2 Hasil dan Analisis Electrochemical Impedance Spectroscopy (EIS)

Pengujian EIS dilakukan untuk mendeteksi besar nilai impedansi yang berkaitan dengan perpindahan muatan dan konduktivitas pada setiap sel baterai. Selain itu, hasil EIS juga dapat digunakan untuk mengkonfirmasi dari hasil *cycle voltammetry* dan *charge discharge* pada pengujian sebelumnya. Pengujian EIS dilakukan dengan memberikan range frekuensi dari rendah (0,01 Hz- 100.000 Hz). Kemudian arus massa dalam elektrolit dipengaruhi oleh besaran frekuensi, dimana terdapat *control kinetic* yang sangat dominan pada frekuensi tinggi. Sedangkan pada fekuensi rendah, arus akan dipengaruhi oleh transfer massa.

Hasil *nyquist* plot EIS, merupakan gabungan bentuk kurva setengah lingkaran dan garis miring pada frekuensi rendah. Bentuk tersebut tersusun dari beberapa komponen. Pada *range* frekuensi tinggi bersesuaian dengan R_s (*solution resistance* (R1)) yang menunjukkan adanya resistansi elektrolit dan kontak antara elektroda. Bentuk setengah lingkaran (*semicircle*) pada rentang frekuensi tinggi hingga frekuensi menengah menunjukkan *charge transfer resistance* (R_{ct}) atau (R2) pada permukaan elektroda. Sedangkan garis miring/*slope line* (Z_w) atau (Ws1) merupakan *warbug factor* yang menyatakan kemampuan ion Li⁺ untuk berdifusi saat proses pengisian dan pengosongan. Beberapa komponen pada plot *nyquist* seperti nilai R_s berhubungan dengan resistansi larutan elektrolit. Semakin kecil nilai Rs maka kemampuan ion Li⁺ untuk bergerak juga semakin cepat. Untuk mengetahui nilai resistansi dari setiap sampel dapat dilihat pada Tabel 4.8 berikut.

Sampel	Rs (Ω)	$R_{ct}(\Omega)$
LTO/C 700 °C+0,1F	6138,8	$5,2234 \times 10^{6}$
LTO/C 700 °C+0,15F	1578,4	8,4472×10 ⁵
LTO/C 700 °C+0,2F	1575,3	1,4933×10 ⁶
LTO/C 750 °C+0,1F	13,549	628,72
LTO/C 750 °C+0,15F	23,816	864,18
LTO/C 750 °C+0,2F	38,809	224,89
LTO/C 800 °C+0,1F	17,512	140,27
LTO/C 800 °C+0,15F	26,938	134,95
LTO/C 800 °C+0,2F	17,166	1404

Tabel 4.8 Nilai EIS varisai F pada setiap sampel baterai bedasarkan hasil *fitting*
Pada Tabel 4.8, besar nilai R_{ct} yang diperoleh, menunjukkan adanya resistansi elektrolit dan kontak antara elektroda. Hal ini mempengaruhi nilai *charge discharge*. Semakin besar nilai Rct maka semakin besar pula hambatan internal yang diperoleh dan sebaliknya. Plot *nyquist* variasi F pada setiap *cell* baterai dengan variasi temperatur kalsinasi yang berbeda-beda ditampilkan pada gambar Gambar 4.22 (*Nyquist plot* pada varisai F pada sampel LTO/C 700°C), Gambar 4.23 (*Nyquist plot* pada varisai F pada sampel LTO/C 750°C) dan Gambar 4.24 (*Nyquist plot* pada varisai F pada sampel LTO/C 800°C) berikut ini.

Gambar 4.22 Nyquist plot pada varisai F pada sampel LTO/C 700°C

Gambar 4.22 menunjukkan nyquist plot LTO/C variasi F pada temperatur kalsinasi 700°C. Pada sampel LTO/C 700°C, menunjukkan bentuk yang serupa. Bentuk *semicircle* yang tidak sempurna dan terbentuk Z_w pada frekuensi yang tinggi. Bedasarkan ketiga sampel hambatan internal yang lebih kecil yaitu pada

sampel LTO/C 700° C+0,15F. Varisai 0,15F yang diberikan pada LTO/C 700° C, mampu menurunkan nilai R_{ct}. *Nyquist plot* pada varisai F pada sampel LTO/C 750°C ditunjukkan pada Gambar 4.23 berikut.

Gambar 4.23 Nyquist plot pada varisai F pada sampel LTO/C 750°C

Gambar 4.23 merupakan *nyquist plot* pada varisai F pada sampel LTO/C 750°C Pada sampel LTO/C 750°C, menunjukkan bentuk yang serupa dan sempurna. Pada variasi LTO/C 750°C, nilai R_{ct} yang terkecil pada sampel LTO/C 750°C+0,2F. Hal ini menunjukkan bahwa semakin banyak unsur F yang ditambahkan pada LTO, dapat menurunkan hambatan internal dari sampel. Unsur F yang memiliki jari-jari ionik yang kecil mengantikan posisi O. Sehingga ukuran bulk material juga semakin kecil. Pada frekuensi rendah, dari ketiga sampel terdapat slope line yang menunjukkan adanya proses pergerakan ion lithium. Hal ini menunjukkan bahwa sampel tersebut seharusnya dapat dilakukan pengujian CD untuk mengetahui kemampuan performa elektrokimia. Hasil *Nyquist plot* pada varisai F pada sampel LTO/C 800°C ditunjukkan pada Gambar 4.24 berikut

Gambar 4.24 Nyquist plot pada varisai F pada sampel LTO/C 800°C

Gambar 4.24 *nyquist plot* pada varisai F pada sampel LTO/C 800°C. Pada sampel LTO/C 800°C+0,15F, memiliki hambatan internal yang ganda. Hambatan ganda yang terbentuk menunjukan bahwa dalam cell baterai terjadi dua kali respon. Bentuk semicircle pertama menunjukkan adanya fenomena resistensi permukaan yang timbulkan akibat diberikan range frekuensi. Sedangkan pada bentuk semicircle yang kedua, menujukkan adanya fenomena *charge-transfer* dari LTO sebagai anoda dan Li metal sebagai katoda. Kemudian pada frekuensi rendah, terdapat slope line yang rendah. Namun hal ini telah cukup menjelaskan bahwa pada sampel dengan R_{ct} ganda dapat pula dilakukan uji CD pada pengujian sebelumnya. Pada variasi LTO/C 800°C, nilai R_{ct} yang terkecil pada sampel LTO/C 800°C+0,1F. Terjadinya perbedaan nilai hambatan disebabkan karena ketidakstabilan struktur yang diperoleh.

BAB 5 KESIMPULAN DAN SARAN

5.1 Kesimpulan

- Hasil XRD dengan adanya doping F pada Li₄Ti₅O₁₂/C membuat pergeseran peak menuju ke arah derajat yang lebih rendah sehingga membuat ukuran partikel menjadi mengecil. Nilai lattice parameter dan ukuran kristal menurun sehingga dapat meningkatkan laju ion karena jarak antar ion juga menjadi lebih kecil untuk dapat berdifusi dengan baik. Hal ini mampu meningkatkan performa anoda baterai. Hasil uji CV didapatkan pola puncak yang tajam pada variasi LTO 700°C *doping* 0,15F dengan nilai tegangan anodik sebesar 1,6598 V dan tegangan katodik sebesar 1,1589 V. CD didapatkan hasil nilai spesifik discharge capacity sebesar 310,11 mAhg⁻¹ pada variasi 750°C *doping* 0,1F. Uji EIS didapatkan hasil optimum pada LTO/C 750°C *doping* 0,1F dengan nilai resistansi elektrolit dan kontak antar elektroda (R_s) terkecil sebesar 13,809 Ω dan *charge transfer resistance* R_{ct} sebesar 628,72 Ω.
- 2. Temperatur 700°C mampu menghasilkan performa yang paling stabil terbukti dengan berhasilnya hasil uji CV, EIS dan CD yang tetap menunjukkan tren. Temperatur 750°C merupakan temperatur optimum, karena pada temperatur ini morfologi partikel tersebar secara homogen. Namun pada temperatur 800°C terjadi aglomerasi. Aglomerasi membuat partikel membesar, sehingga lattice parameter juga meningkat dan jarak antar ion juga semakin jauh, akibatnya laju difusi juga tidak bisa cepat. Pada variasi temperatur 800°C hasil performa elektrokimia tidak maksimal.

5.2 Saran

- 1. Temperatur kalsinasi yang digunakan tidak lebih dari 750°C, agar fasa impuritas tidak terbentuk.
- 2. Material yang telah dilakukan proses *assembling*, harus segera dilakukan pengujian CV, CD, dan EIS
- 3. Pengujian EDX dilakukan dengan perbesaran rendah seperti 100, agar dapat mengetetahui persebaran secara lebih luas.

(Halaman Ini Sengaja Dikosongkan)

Daftar Pustaka

- Babu. B. Vikram, Babu. K. Vijaya, Aregai. G. Tewodros, Devi. L. Seeta, Latha.
 B. Madhavi, Reddi. M. Sushma, Samantha. K, Veeraiah. V, (2018), "Structural And Electrical Properties Of Li₄Ti₅O₁₂ Anode Material For Lithium-Ion Batteries", *Result in Physics*, Vol. 9, hal 284-289.
- Chen. Yuan, Qian. Chen, Zhang. Pengfei, Zhao. Rongfang, Lu. Junjie, Chen. Ming, (2018), "Fluoride Doping Li₄Ti₅O₁₂ Nanosheets As Anode Materials For Enhanced Rate Performance Of Lithium-Ion Batteries", *Journal of Electroanalytical Chemistry*, Vol. 815, hal. 123-129
- Cullity, B. D., (1956), "Elements of X-Rays Diffraction", Addison-Wesley Publishing Company.
- C.Q. Feng, L.Li,Z.P.Guo, D.Q. Shi, R.Zeng, X.J Zhu, (2009), "Synthesis And Properties Of Li-Ti-O Spinel", *Journal of Alloys and Compounds*, Vol. 478, Issues 1-2, hal. 767-770.
- Fadhel. A, (2009), Lithium Bis (Oxalato) Borate Based Electrolyte for Lithium Ion Cells. North Carolina
- Fujiati. Heryani, (2018), Pengaruh Suhu Kalsinasi Terhadap Struktur, Morfologi Dan Sifat Magnet Barium Heksaferit Dengan Doping Nikel Dan Cobalt, Tesis Megister, Universitas Sumatera Utara, Medan
- Gritzner. G, (1993), *Symbol and Definition in Electrochemical Engineering*. Austria: Pure & Application Chemical.
- Gorrasi. Giuliana, Sorrentino. Andrea, (2015), "Mechanical Milling As A Technology To Produce Structural And Functional Bio-Nanocomposites", *Green Chemistry*, Vol. 17, Issue 5, hal. 2610-2625
- Higuchi. H, Matsushita. K, Ezoe. M, Shinomura. T, (1995), US Patent 5, 385, 777
- Huang. Yudai, Qi. Yanling, Jia. Dianzeng, Wang. Xingchao, Guo. Zaiping, Cho. Won II, (2012), "Synthesis And Electrochemical Properties Of Spinel Li₄Ti₅O_{12-X} Cl_x Anode Materials For Lithium-Ion Batteries", J. Solid State Electrochem, Vol. 16, Issue 5, hal. 2011–2016.
- Ji. Shuangze, Zhang. Junying, Wang. Wenwen, Huang. Yan, Feng. Zerong, Zhang. Zhhongtai, Tang. Zilong, (2010), "Preparation and effects of Mgdoping on the electrochemical properties of spinel Li₄Ti₅O₁₂ as anode material for lithium ion battery", Materials Chemistry and Physics, Vol 123, Issues 2-3, Pages 510-515

- Jun,Y.K. (2010), "Plasma Modified Polyethilene Separator Membrance for Lithium Ion Polymer Battery", Lithium Ion Battery. In Tech: China.
- Kamarlzaman, N dan Jaafar M, (2012), "Synthesis and Stoichiometric Analysis of a Li-Ion Battery Cathode Material", Book Chapter, Stoichiometry and Material Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Kataoka. Kunimitsu, Takahashi, Yasuhiko, Kijima. Norihito, Akimoto. Junji, Ohshima. Ken-ichi, (2008), "Single Crystal Growth And Structure Refinement Of Li4Ti5O12", J Physics and Chemistry of Solids, Vol. 69, hal. 1454-1456.
- Kataoka. Kunimitsu, Takahashi, Yasuhiko, Kijima. Norihito, Hayakawa. Hiroshi, Junji, Ohshima. Ken-ichi, (2009), "A single-crystal study of the electrochemically Li-ion intercalated spinel-type Li4Ti5O12", Solid State Ionics, Vol. 180, hal. 631-635.
- Kingo Ariyoshi, Ryoji Yamato, Tsutomu Ohzuku, (2005), "Zero-Strain Insertion Mechanism Of Li[Li1/3Ti5/3]O4 For Advanced Lithium-Ion (Shuttlecock) Batteries", *Electrochimica Acta*, Vol. 51, hal. 1125-1129.
- Maghfiroh. Amalia M, (2018), Analisis Pengaruh Waktu Pembakaran Gas Asetilen dan Waktu Milling Terhadap Hasil Sintesis dan Performa Elektrokimia Anoda Baterai dari Material Li₄Ti₅O₁₂, Tesis, Institut Teknologi Sepuluh Nopember, Surabaya.
- Noerochim. Lukman, M. Amalia, Widyastuti, Susanti. Diah, Prihandoko. Bambang, (2019), 'High electrochemical performance of $\text{Li}_4\text{Ti}_5\text{O}_{12}/\text{C}$ synthesized by ball milling and direct flaming of acetylene gas as anode for lithium-ion battery', Springer-Verlag GmbH Germany, part of Springer Nature.
- Noerochim. Lukman, Fikry. Rais, Nurdiansah. Haniffudin, Purwaningsih. Hariyati, Subhan. Ahmad, Triwibowo. Joko, Prihandoko. Bambang, (2018), 'Synthesis of Dual-Phase Li₄Ti₅O₁₂-TiO₂ Nanowires as Anode for Lithium-Ion Battery', Springer-Verlag GmbH Germany, part of Springer Nature.
- Priyono. Slamet, (2013), Sintesis Serbuk LiTi5O12 yang Didoping Atom Al dan Na untuk Anoda Baterai Ion Lithium, Tesis, Universitas Indonesia, Jakarta.
- Qi. Yanling, Huang. Yudai, Jia. Dianzeng, Bao. Shu-Juan, Guo. Z.P, (2009), "Preparation And Characterization Of Novel Spinel Li4Ti5O12–Xbrx Anode Materials", *Electrochimca Acta*, Vol. 54, Issue 21, hal. 4772–4776.

- Sari. Tri Mala, (2015), Pengaruh Komposisi dan Ketebalan Katoda LiMn₂O₄ (Lithium Mangan Oksida) Pada Kapasitas Baterai Ion Lithium, Final Project, Universitas Sumatera Utara, Medan.
- S. Xu, Wang. Y, Ben. L, Lyu. Y, Song. N, Yang. Z, Li. Y, Mu. L, H.-T. Yang, L. Gu, Y.- S. Hu, H. Li, Z.-H. Cheng, L. Chen, X. Huang, (2015), Advanced Energy Materials. 5 (22) 1501156.
- Vijayakumar. Murugesan, Kerisit. Sebastien, Rosso. Kevin M, Burton. Sarah, Sears. Jesse A, Yang. Zhenguo, Graff. Gordon L, Liu. William J, Hu. Jianzhi, (2011), "Lithium Diffusion In Li₄Ti₅O₁₂ At High Temperatures", *Power Sources*, Vol. 196, hal. 2211-2220.
- Wang, L, Liang, G.C, Ou, X.Q, Zhi, X.K, Zhang, J.P., dan Cui, J.Y, (2009), "Effect of Synthesis Temperature on The Properties of LiFePO4/C Composites Prepared by Carbothermal Reduction", Journal of Power Sources 189, pp 423–428
- Wu. Hongbin, Chang. Sha, Liu.Xiuling, Yu. Liqiu, Wang. Guiling, Cao. Dianxue, Zhang. Yiming, Yang. Baofeng, She. Peiliang, (2013), "Sr-Doped as The Anode Material for Lithium-Ion Batteries", Solid State Ionics Vol 232, pages 13-18.
- Yuan. Tao, Yu. Xing, Cai. Rui, Zhou. Yingke, Shao. Zhongping, (2010), "Synthesis Of Pristine And Carbon-Coated Li₄Ti₅O₁₂ And Their Low Temperature Electrochemical Performance", Power Sources 195,49997-5004
- Zhang. Zhenwei, Cao. Liyun, Huang. Jianfeng, Wang. Dunqiang, Meng. Yan, Cai. Yingjun, (2013), "Temperature Effect on Spinel Li₄Ti₅O₁₂ as Anode Materials for Lithium Ion Btteries", Electrochimica Acta 88, 443-446
- Zhao. Zhen, Xu. Yunlong, Ji. Mandi, Zhang. Huang, (2013), "Synthesis And Electrochemical Performance Of F Doped Li₄Ti₅O₁₂ For Lithium-Ion Batteries", *Electrochimica Acta*, Vol. 109, hal. 645–650.

(Halaman Ini Sengaja Dikosongkan)

LAMPIRAN

1. Pengujian XRD

Data setting alat yang digunakan dalam melakukan penelitian adalah sebagai berikut:

Raw Data Origin	PHILIPS-binary (scan) (.RD)
Scan Axis	Gonio
Start Position [°2Th.]	10.0084
End Position [°2Th.]	89.9764
Step Size [°2Th.]	0.0170
Scan Step Time [s]	10.1500
Scan Type	Continuous
Offset [°2Th.]	0.0000
Divergence Slit Type	Fixed
Divergence Slit Size [°]	0.2500
Specimen Length [mm]	10.00
Receiving Slit Size [mm]	12.7500
Measurement Temperature [°C]	-273.15
Anode Material	Cu
K-Alpha1 [Å]	1.54060
K-Alpha2 [Å]	1.54443
K-Beta [Å]	1.39225
K-A2 / K-A1 Ratio	0.50000
Generator Settings	30 mA, 40 kV
Diffractometer Type	XPert MPD
Diffractometer Number	1
Goniometer Radius [mm]	200.00
Dist. Focus-Diverg. Slit [mm]	91.00
Incident Beam Monochromator	No
Spinning	No

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
18.5973	898.47	0.2175	4.77123	95.23
30.4202	15.62	0.2676	2.93847	1.66
35.7883	643.68	0.1673	2.50907	68.22
37.4042	31.44	0.1004	2.40431	3.33
43.3254	614.98	0.1020	2.08673	65.18
43.4515	943.48	0.1004	2.08269	100.00
47.5629	85.39	0.1338	1.91181	9.05
57.3218	229.79	0.2342	1.60738	24.36
62.9133	388.84	0.1224	1.47608	41.21
63.1707	201.99	0.1224	1.47434	21.41
66.1998	155.55	0.1020	1.41054	16.49
74.4812	42.16	0.2040	1.27288	4.47
75.4632	32.39	0.1632	1.25873	3.43
79.4448	108.77	0.1020	1.20535	11.53
79.7138	54.56	0.1224	1.20494	5.78
82.3609	57.70	0.1428	1.16990	6.12
82.6868	40.23	0.1224	1.16901	4.26

LTO/C + 0.15F, 700°C

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
18.4761	975.93	0.1506	4.80224	100.00
30.3283	9.06	0.5353	2.94717	0.93
35.7022	502.60	0.1506	2.51493	51.50
37.3654	22.77	0.1338	2.40672	2.33
43.2876	490.68	0.0816	2.08846	50.28
43.3802	780.19	0.0669	2.08595	79.94
47.4436	69.22	0.1673	1.91634	7.09
56.3683	17.26	0.0612	1.63093	1.77
57.2959	204.62	0.1673	1.60804	20.97
62.9001	372.56	0.1428	1.47636	38.18
63.0865	286.74	0.1224	1.47611	29.38
66.1540	166.30	0.0816	1.41141	17.04
74.4190	45.36	0.1224	1.27379	4.65
75.4252	27.63	0.2040	1.25927	2.83
79.4170	89.03	0.1632	1.20570	9.12
82.3803	55.03	0.1224	1.16967	5.64

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
18.3145	786.83	0.1338	4.84425	100.00
27.3626	21.34	0.1004	3.25949	2.71
35.5088	393.38	0.1506	2.52818	50.00
37.2008	23.31	0.1338	2.41699	2.96
43.1727	554.24	0.1428	2.09376	70.44
43.3143	305.39	0.0816	2.09242	38.81
47.2862	53.94	0.1632	1.92076	6.86
54.2291	12.84	0.2448	1.69010	1.63
57.1426	193.39	0.1224	1.61066	24.58
57.2886	97.61	0.1020	1.61089	12.41
62.7622	284.46	0.1632	1.47927	36.15
62.9145	165.27	0.0816	1.47973	21.00
65.9786	84.82	0.1224	1.41474	10.78
74.2731	33.57	0.1224	1.27593	4.27
75.2356	14.57	0.4080	1.26198	1.85
79.2859	56.21	0.1020	1.20736	7.14
79.5249	26.69	0.1224	1.20733	3.39
82.2407	60.60	0.0612	1.17130	7.70

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
18.4841	1106.46	0.1506	4.80019	100.00
27.5983	11.69	0.4015	3.23218	1.06
30.3638	13.19	0.2342	2.94381	1.19
35.6839	657.99	0.1004	2.51618	59.47
37.3249	26.48	0.1673	2.40924	2.39
43.3636	929.77	0.1428	2.08498	84.03
43.4673	588.55	0.0816	2.08541	53.19
47.4539	80.24	0.2448	1.91437	7.25
54.5758	5.16	0.9792	1.68018	0.47
57.3154	295.54	0.0816	1.60621	26.71
62.9246	474.10	0.1428	1.47584	42.85
63.1325	228.82	0.1224	1.47514	20.68
66.1284	132.15	0.1020	1.41189	11.94
66.3809	82.69	0.1224	1.40713	7.47
74.4324	48.04	0.1428	1.27359	4.34
75.4507	41.11	0.1224	1.25891	3.72
79.4088	90.95	0.1632	1.20580	8.22
79.6819	47.65	0.1224	1.20534	4.31
82.3809	71.63	0.1224	1.16966	6.47
82.6615	38.16	0.1224	1.16930	3.45

LTO/C + 0.15F, 750°C

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
18.4571	1272.22	0.1506	4.80716	100.00
30.3184	19.68	0.2676	2.94812	1.55
35.6580	773.75	0.1020	2.51586	60.82
35.7382	723.90	0.0816	2.51664	56.90
37.3245	35.24	0.1632	2.40727	2.77
43.3145	1046.02	0.1224	2.08723	82.22
47.4063	91.40	0.1224	1.91618	7.18
57.2824	316.99	0.1224	1.60706	24.92
62.9106	543.08	0.1224	1.47614	42.69
63.0843	319.24	0.1020	1.47615	25.09
66.1405	159.38	0.1224	1.41166	12.53
74.4070	77.41	0.0816	1.27396	6.08
75.4121	36.34	0.1224	1.25946	2.86
79.3809	112.37	0.1224	1.20616	8.83
79.6705	54.26	0.1224	1.20549	4.27
82.3668	70.89	0.1020	1.16983	5.57

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
18.4511	1137.60	0.1673	4.80869	100.00
30.1957	9.65	0.4015	2.95981	0.85
35.6589	650.01	0.1338	2.51788	57.14
37.2718	24.21	0.1673	2.41255	2.13
43.3132	843.18	0.1840	2.08902	74.12
47.4094	74.84	0.2007	1.91764	6.58
57.2349	254.13	0.0816	1.60828	22.34
57.4353	117.15	0.0816	1.60712	10.30
62.8144	345.41	0.1632	1.47817	30.36
63.0474	202.80	0.1224	1.47693	17.83
66.0794	117.80	0.1632	1.41282	10.36
74.3534	38.12	0.2040	1.27475	3.35
75.3671	31.81	0.1224	1.26010	2.80
79.3498	96.81	0.1224	1.20655	8.51
79.6104	45.12	0.1632	1.20625	3.97
82.3089	56.63	0.1428	1.17051	4.98

LTO/C + 0.1F, 800°C

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
11.5451	32.97	0.1004	7.66496	7.14
18.2237	461.83	0.1338	4.86818	100.00
18.4099	278.65	0.1004	4.81935	60.34
23.3458	12.43	0.2007	3.81040	2.69
27.3537	34.79	0.1338	3.26053	7.53
31.5324	15.58	0.2007	2.83733	3.37
35.4581	260.21	0.0669	2.53168	56.34
43.1293	336.05	0.0816	2.09576	72.76
43.2629	350.28	0.1171	2.09133	75.85
47.2856	41.13	0.2007	1.92238	8.91
54.2891	13.50	0.4015	1.68977	2.92
57.0964	106.96	0.1004	1.61318	23.16
62.7159	181.90	0.1224	1.48025	39.39
62.9083	169.82	0.0816	1.47986	36.77
65.9892	62.96	0.1020	1.41453	13.63
74.2752	25.52	0.1428	1.27590	5.52
75.3761	9.39	0.2448	1.25997	2.03
79.2725	43.64	0.1224	1.20753	9.45
82.2356	32.91	0.1224	1.17136	7.13

LTO/C + 0.15F, 800°C

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
18.4384	253.55	0.1506	4.81199	78.64
27.5032	21.59	0.2342	3.24314	6.69
35.6187	202.13	0.0502	2.52063	62.69
36.1461	13.57	0.2007	2.48505	4.21
41.1905	8.25	0.4015	2.19163	2.56
43.2492	322.41	0.1004	2.09196	100.00
47.3913	23.39	0.2007	1.91834	7.25
54.2869	31.50	0.1673	1.68984	9.77
57.1849	86.03	0.2342	1.61090	26.68
62.8732	185.46	0.0836	1.47815	57.52
66.0638	61.34	0.2007	1.41429	19.03
69.0477	6.00	0.4015	1.36028	1.86
74.3481	21.50	0.1004	1.27588	6.67
75.3184	15.92	0.3346	1.26184	4.94
79.3023	45.88	0.1224	1.20715	14.23
82.3038	38.33	0.1338	1.17153	11.89

LTO/C + 0.2F, 800°C

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
18.4447	336.13	0.1171	4.81036	100.00
31.5463	18.21	0.2007	2.83611	5.42
35.6662	179.69	0.2007	2.51738	53.46
37.3462	6.00	0.4015	2.40791	1.79
43.3207	265.06	0.2676	2.08867	78.86
47.4290	25.51	0.1673	1.91690	7.59
57.3300	95.62	0.2342	1.60716	28.45
62.8729	130.31	0.3346	1.47816	38.77
66.1644	61.37	0.1004	1.41238	18.26
74.4637	12.89	0.4015	1.27419	3.83
75.4781	12.78	0.2342	1.25956	3.80
79.4209	31.24	0.2676	1.20665	9.29
82.3262	23.88	0.2676	1.17127	7.10

2. EDX

LTO/C + 0.1F, 700°C

Element	Wt%	At%
ОК	42.90	68.38
FK	01.51	02.03
ΤΙΚ	55.59	29.59
Matrix	Correction	ZAF

LTO/C + 0.15F, 700°C

Element	Wt%	At%
СК	27.05	41.14
ОК	40.36	46.08
FK	00.61	00.59
ΤΙΚ	31.97	12.19
Matrix	Correction	ZAF

LTO/C + 0.2F, 700°C

Element	Wt%	At%
СК	06.62	12.68
ОК	43.93	63.14
FK	00.61	00.73
ΤΙΚ	48.84	23.45
Matrix	Correction	ZAF

LTO/C + 0.1F, 750°C

At% 40.93 47.09 00.93 11.05 Correction ZAF

LTO/C + 0.15F, 750°C

LTO/C + 0.2F, 750°C

Element	Wt%	At%
СК	10.45	18.67
ОК	45.13	60.54
FK	01.31	01.48
ΤΙΚ	43.11	19.31
Matrix	Correction	ZAF

LTO/C + 0.1F, 800°C

Element	Wt%	At%
СК	22.25	35.86
ОК	39.90	48.27
FK	00.96	00.97
ΤΙΚ	36.89	14.90
Matrix	Correction	ZAF

LTO/C + 0.15F, 800°C

Element	Wt%	At%
СК	03.82	07.58
ОК	44.54	66.25
FK	00.68	00.86
ΤΙΚ	50.95	25.31
Matrix	Correction	ZAF

LTO/C + 0.2F, 800°C

Element	Wt%	At%
СК	10.04	18.58
ОК	41.95	58.29
FK	01.21	01.41
ΤΙΚ	46.81	21.72
Matrix	Correction	ZAF

4. Hasil CD yang kurang bagus

LTO + 0.15F; 750°C

5. Fitting hasil EIS LTO Doping 0,1F; 750°C

Image: State in the state	B B G C B Denotes (0.44) Image: Transmit (0.44) Diff: 1 Image: Transmit (0.44	Equivalent Circuit -	📧 Equivalent Circuit – 🗆 🗙		
Non N	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	🐨 📸 🛃 🔚 🕎 🐏 🕨 Simulation 🕑 Fit	🖥 📸 🛃 📳 🕎 🐏 🜗 Simulation 🕑 Fit		
	Image Image <thimage< th=""> <thimage< th=""> <thim< th=""><th></th><th></th></thim<></thimage<></thimage<>				
L L <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	│ <u> </u>	<u>-</u> + ≫		
Name Tope Nume Nume Tope Nume Tope Nume <th< th=""><th>Name Name Name</th><th></th><th></th></th<>	Name				
Name Upe Work Det None Upe Upe<	Name Dipe Wake Divertion Officit Hard USER				
No. No. No. No. 0°E 17 Free 1332 00 232 00 232 00 NS.R Free 17253 1 NS.R Free 1023 0 1 NS.R Free 1033 0 1 NS.R Free 1033 0 1 NS.R Free 1033 0 1 NS.R Free 103 0 </th <th>No. No. No. No. OFEP Pred Pred Pred Pred Pred Pred Pred Pre</th> <th>Name Type Value Error P1 Ereet 111 01575 142%</th> <th>R1 Fixed 11.1</th>	No. No. No. No. OFEP Pred Pred Pred Pred Pred Pred Pred Pre	Name Type Value Error P1 Ereet 111 01575 142%	R1 Fixed 11.1		
GPE:P Red 0.2753 C N2 Red 0.2753 C N1:R Red 0.253 C N1:R Red 0.253 C N1:R Red 0.253 C N1:R Red 0.253 C N1:R Red 0.2637 C N1:R Red 0.2637 C N1:R Red 0.2637 C N1:R No Pred 0.2637 N1:R Red 0.2637 C N1:R No Pred No N:R Red 0.237 C N	CPSP Pred 10.753 C Red 10.753 C Pred 10.753 C NitA Fred 10.753 C Pred 10.753 C NitA Fred 10.753 C Pred 10.753 C Pred 10.753 C NitA Fred 10.853 C NitA Fred 10.753 C Pred	CPE1-T Fixed • 4.3883E-06 /	CPE1-T Free+ 4.3883E-06 2.612E-08, 0.60%		
R2 Red 492.9 Image: State in the	R0 Fred 109.29 Image 109.29 Image <t< th=""><th>CPE1-P Fixed 0.77553 /</th><th>CPE1-P Fixed 0.77553 /</th></t<>	CPE1-P Fixed 0.77553 /	CPE1-P Fixed 0.77553 /		
W14R Pred 65.30 ////////////////////////////////////	With Field 65:30 ////////////////////////////////////	R2 Fixed 619.29 /	R2 Fixed 619.29 /		
West Find 5.131 // West Find 5.131 // West Find 6.538 // West Find 0.00372 // West Find Minit // // West Find Minit // // // West Find Minit // // // // West Find Minit // // // // // West Find Minit // // // // // // West Find Minit // // // // // // // // West Find Minit // // // // // </th <th>White Pred 5.131 // Wite Pred 0.0373 // Wite Pred 0.0373 // Vise Pred 0.0373 // Vise Pred 0.0373 // Vise Pred 0.0373 // Vise Pred 0.0373 // Pred 0.0373 // Vise Pred 0.0373 Pred 0.0373 // Pred 0.0373 // Vise Pred Vise Vise Vise V</th> <th>Ws1-R Fixed 685.36 /</th> <th>Ws1-R Fixed 685.36 /</th>	White Pred 5.131 // Wite Pred 0.0373 // Wite Pred 0.0373 // Vise Pred 0.0373 // Vise Pred 0.0373 // Vise Pred 0.0373 // Vise Pred 0.0373 // Pred 0.0373 // Vise Pred 0.0373 Pred 0.0373 // Pred 0.0373 // Vise Pred Vise Vise Vise V	Ws1-R Fixed 685.36 /	Ws1-R Fixed 685.36 /		
With Pied U.83/2 // Understand Constraint Constraint Constraint Constraint Constraint Constra	With Pind U 382/3 // 1 Equivalent Circuit 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ws1-T Fixed 5.1381 /	Ws1-T Fixed 5.1381 /		
Norm Tes Norm		Ws1-P Fixed 0.683/3 /	Ws1-P Fixed 0.08373		
Norm Norm <th< th=""><th></th><th></th><th></th></th<>					
	None None <th< th=""><th></th><th></th></th<>				
Name Type Value Tor Name Type Value Tor Value Tor Name Type Value Tor Value Tor Value Tor Name Type Value Tor Value Tor Value Tor Name Type Value Tor Value Tor Value	Nume				
Equivalent Circuit Convertient Circuit </th <th>Equivalent Circuit California Image: Circuit Image: Circuit</th> <th>1114</th> <th>UT 12-</th>	Equivalent Circuit California Image: Circuit	1114	UT 12-		
Image Image <th< th=""><th>Image: Second second</th><th>💈 Equivalent Circuit – 🗖 🗙</th><th>🛎 Equivalent Circuit – 🗖 🗙</th></th<>	Image: Second	💈 Equivalent Circuit – 🗖 🗙	🛎 Equivalent Circuit – 🗖 🗙		
R1 FRed 111 ////////////////////////////////////	Image Type Two Two Type Two Two </th <th>📰 📂 🚽 🖫 🕎 🐏 ▶ Simulation 🜗 Fit</th> <th>🗄 🗃 🖟 📑 🎬 D Simulation D Fit</th>	📰 📂 🚽 🖫 🕎 🐏 ▶ Simulation 🜗 Fit	🗄 🗃 🖟 📑 🎬 D Simulation D Fit		
Name Type Wat Image: Non- Name Type Name	Name Type Value Error R1 Field 111.1 / CPE-17 Field 02005777.007% CPE-17 Field 03932.06 / WS-R Field 052.02 / CPE-17 Field 03932.06 / CPE-17 Field 049323 / CPE-17 Field 063373 / CPE-17 Field 063373 / CPE-17 Field CPE-17	R1 CPE1	R1 CPE1		
R2 W1 Name Type Value Error R1 Fixed 11.1 // OPE1-T Fixed 43882-60 // V3:FR Fixed 612.20 // // W3:FR Fixed 612.20 // // W3:FR Fixed 613.20 // // // W3:FR Fixed 613.20 // // // // // W3:FR Fixed 613.20 //<	R2 W33 Name Type Value Error R1 Fied 64382-06 / CPE:17 Fied 64382-06 / R2 Fied 64382-06 / CPE:17 R2 Fied 64382-06 / CPE:17 Fied 64382-06 / W3:R Fied 64383 / / CPE:17 Fied 643835-06 / / W3:R Fied 643836 / <th <="" th=""> <th <="" th=""> /</th><th>│─└──┤∲≫────┬─</th><th></th></th>	<th <="" th=""> /</th> <th>│─└──┤∲≫────┬─</th> <th></th>	/	│─ └──┤ ∲ ≫────┬─	
Name Type Value Error R1 Fixed 11.1 / // OPE1.P Fixed 612.29 // // R2 Fixed 612.29 // // W3.R Fixed 612.29 // // W3.R Fixed 613.23 // // W3.R Fixed 618.23 // // W3.R Fixed 618.37.3 // // W3.R Fixed 618.37.3 // // W3.P Fixed 618.37.3 // // W3.P Fixed 613.37.3 // // W3.P Fixed 613.37.3 // // W3.P Fixed 613.37.3 // // W3.R <td< th=""><th>Name Type Value Error R1 Pixed 1111 / </th><th></th><th></th></td<>	Name Type Value Error R1 Pixed 1111 /				
Vision <	Name Type Table Lion R1 Fixed 1	Name Time Velue From			
CPE1.T Field 4388E-06 / CPE1.P Field 4388E-06 / CPE1.P Field 4388E-06 / CPE1.P Field 4388E-06 / R2 Field 61929 / W31.R Field 653.36 / W31.P Field 068373 / W31.P Field 11.1 / CPE1.P Field 61929 / R2 Field 61929 / W31.R	CPE1-T Fixed 43832-06 / CPE1-T Fixed 43832-06 / CPE1-T Fixed 077553 0.0005777,0.07% R2 Fixed 0452.0 / Ws1-R Fixed 655.5 / Ws1-R Fixed 645.35 / R2 Fixed 645.35 / / R1 Fixed 11.1 / / / CPE1-T Fixed 613.21 / / / Ws1-R Fixed 613.20 / / / / <th>R1 Fixed 11.1</th> <th>R1 Fixed 11.1</th>	R1 Fixed 11.1	R1 Fixed 11.1		
CPE1-P Fied 0.77553 0.0005777.007% R2 Fied 0.97253 / W31-R Fied 0.923 / W31-R Fied 0.923.0 / W31-R Fied 0.933.0 / W31-R Fied 0.983.0 / W31-R Fied 0.983.0 / W31-R Fied 0.983.0 / W31-R Fied 0.983.73 / W31-P Fied 11.1 / CPE1-F Fied 11.1 / CPE1-F Fied 11.1 / CPE1	OPE1-P Free 0.77553 0.0005777,0.07% R2 Free 0.127553 / W3-R Fred 0.523.7 / W3-R Fred 0.5373 / W3-R Fred 11.1 / PE-1 Fred 11.1 / CPE1-P Fred 619.20 / R1 Fred 619.20 / / W3-R Fred 619.20 / / W3-R <th>CPE1-T Fixed 4.3883E-06 /</th> <th>CPE1-T Fixed 4.3883E-06 /</th>	CPE1-T Fixed 4.3883E-06 /	CPE1-T Fixed 4.3883E-06 /		
R2 Fied IN329 / P W31-R Fied 685.50 / P W31-T Fied 51381 / P W31-T Fied 0.68373 / P W31-T Fied Simulation Fet P W31-T Fied W31-T P P P W31-T Fied W31-T P P P P W31-T Fied 11.1 / P P P P P PEt-P Fied 61929 / P P P P P P P P P P P P<	R2 Fixed 61929 / Prese 61929 2799.0.45% WstR Fixed 663.8 / Prese 61929 2799.0.45% WstR Fixed 663.8 / Prese 61929 2799.0.45% WstR Fixed 608373 / Prese 61929 2799.0.45% WstR Fixed 608373 / Prese 61929 / Prese WstR Fixed 608373 / Prese 608373 / Prese 608373 / WstR Fixed 608373 / Prese Fixed Fixed Prese Fixed Prese Prese Fixed Prese Fixed	CPE1-P Free+ 0.77553 0.0005777, 0.07%	CPE1-P Fixed 0.77553 /		
Ws1-R Fixed 683.36 / Ws1-T Fixed 65.38 / Ws1-T Fixed 65.381 / Ws1-T Fixed 65.381 / Ws1-T Fixed 65.381 / Ws1-T Fixed 65.381 / Ws1-T Fixed 683.73 / Ws1-T Fixed 683.73 / Ws1-P Fixed 683.73 / Ws1-P Fixed 683.73 / Name Type Value Error R1 Fixed 11.31 / / Name Type Value Error R1 R2 Fixed 61.92.9 / Name Type Value Error R1 Fixed 61.381 / 1.388.20.6 / 1.388.20.7 / Ws1-R Fixed 61.92.9 / Pixed 61.92.9 / Pixed 61.92.9 / Ws1-R Fixed 60.88373 / Pixed	W3-R Fied 965.36 / W3-T Fied 965.36 / / W3-T Fied 965.36 / / W3-R Fied 908373 / / Manne Type Name Type Name Fied Name Type Value Error R1 Fied 913.3 / R1 Fied 913.3 / / Pied 907553 / Pied 907553 / R2 Fied 908373 / Pied 908373 / Pied 908373 / W31-R<	R2 Fixed 619.29 /	R2 Free+ 619.29 2.799, 0.45%		
Ws1-T Fixed 5.1331 / Ws1-P Fixed 6.1331 / Ws1-P Fixed 6.1331 / Ws1-P Fixed 6.1331 / Construct Construct Construct Construct Construct Construct	Ws1-7 Fied 51381 / / Ws1-7 Fied 61381 / Ws1-7 Fied 0.68373 / Ws1-7 Fied 0.68373 / Ws1-7 Fied 0.68373 / Ws1-7 Fied 0.68373 / Equivalent Circuit - × Equivalent Circuit - × Image: Statustic state Fiel Image: State Image: State Image: State Image: State Name Type Value Error Fiel Image: State Image	Ws1-R Fixed 685.36 /	Ws1-R Fixed 685.36 /		
Ws1-P Fixed 0.68373 / Equivalent Circuit Image: Construct of the state of t	Wist-P Fiel 0.68373 / S Equivalent Circuit - × S Equivalent Circuit - × Image: Simulation Image: Simulatin Image: Simulation Image: Simulation Image: Simulati	Ws1-T Fixed 5.1381 /	Ws1-T Fixed 5.1381 /		
R1 Fped 11.1 / Pred 11.1 / R1 Fped 11.1 / Pred 11.1 / R2 Wai Simulation Fit Pred 11.1 / Pred 11.1	Name Type Value Error R1 Fixed 438836-06 / CPE1-T Fixed 6152.9 / R2 Fixed 6152.9 / Ws1-R	Ws1-P Fixed 0.68373 /	Ws1-P Fixed 0.68373 /		
R1 Freed 11.1 // R1 Freed 11.1 // R1 Freed 619.29 / / P Rid 619.29 / R2 Freed 619.29 / P Rid 619.29 / P Rid 619.29 / Rid 11.1 // P Rid 619.29 / Rid <t< th=""><th>Name Tpe Value Error R1 Fixed 11.1 / CPE1-T Fixed 43888-06 / R1 Fixed 11.1 / CPE1-T Fixed 43888-06 / R2 Fixed 0.77553 / R2 Fixed 0.83373 / Ws1-R Free+ 985.36 20.57, 3.00% Ws1-R Free+ 0.88373 / Ws1-R Free+ 0.88373 /</th><th></th><th></th></t<>	Name Tpe Value Error R1 Fixed 11.1 / CPE1-T Fixed 43888-06 / R1 Fixed 11.1 / CPE1-T Fixed 43888-06 / R2 Fixed 0.77553 / R2 Fixed 0.83373 / Ws1-R Free+ 985.36 20.57, 3.00% Ws1-R Free+ 0.88373 / Ws1-R Free+ 0.88373 /				
Equivalent Circuit Image: Circuit I	R1 Free Name Type Value Error R1 Fixed 11.1 / <t< th=""><th></th><th></th></t<>				
Equivalent Circuit Image: Circuit I	Image: Second				
Equivalent Circuit - × R1 CPE1 Simulation Fit R1 Fixed 43883E-06 / CPE1-T Fixed 43883E-06 / R2 Fixed 61929 / Ws1-R Free+ 665.36 20.57.300% Ws1-P Fixed 0.68373 / Fixed 0.1455.2.83%	Equivalent Circuit Image: Circuit I				
Equivalent Circuit Image: Circuit I	Equivalent Circuit Image: Circuit I				
Name Type Value Error R1 Fixed 11.1 / R1 Fixed 11.1 / CPE1-T Fixed 4.3883E-06 / CPE1-T Fixed 11.1 / CPE1-P Fixed 0.77553 / CPE1-T Fixed 11.1 / R2 Fixed 019.29 / CPE1-T Fixed 65.36 20.57.300% Ws1-R Free+ 685.36 20.57.300% Ws1-R Fixed 619.29 / Ws1-P Fixed 0.68373 / Ws1-R Fixed 65.386 / Ws1-P Fixed 0.68373 / Ws1-R Fixed 63.36 / Ws1-P Fixed 0.68373 / Ws1-R Fixed 0.68373 /	R1 CPE1 R1 Fixed R1 Fixed R1 Fixed CPE1-T Fixed Fixed 619.29 I/2 I/2 Wa1-R Free+ 6063.36 20.57.3.00% Ws1-T Fixed Name 5.1381 I/2 Fixed Ø S.1381 Ø S.1381 Ws1-P Fixed Ø S.1381 Ø S.1381 Ø Ø Ws1-P Fixed Ø Ø.68373	🛎 Equivalent Circuit – 🗖 🗙	📕 Equivalent Circuit 🛛 🗕 🗖 🗙		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R1 CPE1 R2 Fixed 6 619.29 7 R2 Fixed 6 619.29 7 R1 Fixed 6 619.29 7 R2 Fixed 6 619.29 7 R2 Fixed 6 619.29 7 R2 Fixed 6 619.29 7 R31-R Free+ 6 665.36 20.57.3.00% Ws1-R Fixed 6 619.29 7 Ws1-R Fixed 0.68373 7 O Ws1-R Fixed 6 619.29 7 Ws1-P Fixed 0.68373 7 O Ws1-R Fixed 6 685.36 7 O Ws1-P Fixed 0.68373 7 O Ms1-R Fixed 0.68373 7	🗟 💕 属 🔃 🕎 🀏 🔽 Simulation 📄 Fit 🛛	📰 📂 🛃 📆 🥦 I 🔽 Simulation 🗩 Fit		
Name Type Value Error R1 Fixed 11.1 / CPE1-T Fixed 4.3883E-06 / CPE1-P Fixed 0.77553 / R2 Fixed 619.29 / Ws1-R Free+ 685.36 20.57.3.00% Ws1-T Fixed 0.68373 / Ws1-P Fixed 0.68373 /	Name Type Value Error R1 Fixed 11.1 / // CPE1-T Fixed 4.3883E-06 / // CPE1-P Fixed 0.77553 / // R2 Fixed 6.99.29 / // Ws1-R Free+ 6.865.86 20.57.3.00% Ws1-R Fixed 6.92.9 / Ws1-T Fixed 0.68373 / // Ws1-R Fixed 6.1381 0.1455.2.83% Ws1-P Fixed 0.68373 / // // // // //	R1 ÇPE1	R1 CPE1		
Name Type Value Error R1 Fixed 11.1 / R1 Fixed 11.1 / CPE1-T Fixed 4.3883E-06 / R1 Fixed 11.1 / CPE1-T Fixed 0.77553 / R2 Fixed 0.77553 / R2 Fixed 685.36 20.57.3.00% Ws1-R Fixed 685.36 20.57.3.00% Ws1-R Fixed 685.36 / R2 Fixed 685.36 / Million Ws1-T Fixed 0.68373 / Million Ws1-R Fixed 685.36 / Million Ws1-P Fixed 0.68373 / Million <	H2 Ws Name Type Value Error R1 Fixed 11.1 / R1 Fixed 11.1 / CPE1-T Fixed 4.3883E-06 / CPE1-T Fixed 11.1 / / R2 Fixed 0.77553 / CPE1-T Fixed 0.4383E-06 / CPE1-T Fixed 0.77553 /				
Name Type Value Error R1 Fixed 11.1 / R1 Fixed 11.1 / CPE1-T Fixed 4.3883E-06 / C <td< th=""><th>Name Type Value Error R1 Fixed 11.1 / R1 R1 Fixed 11.1 / CPE1-T Fixed 4.3883E-06 / CPE1-T Fixed 4.3883E-06 / CPE1-P Fixed 619.29 / CPE1-T Fixed 619.29 / R2 Fixed 619.29 / CPE1-T Fixed 685.36 / CPE1-T Ws1-R Free+ 686.36 20.57.3.00% Ws1-R Fixed 685.36 / / Ws1-P Fixed 5.1381 / Ws1-R Fixed 685.36 / Ws1-P Fixed 0.68373 / Ws1-R Fixed 0.1455.2.83% Ws1-P</th><th></th><th></th></td<>	Name Type Value Error R1 Fixed 11.1 / R1 R1 Fixed 11.1 / CPE1-T Fixed 4.3883E-06 / CPE1-T Fixed 4.3883E-06 / CPE1-P Fixed 619.29 / CPE1-T Fixed 619.29 / R2 Fixed 619.29 / CPE1-T Fixed 685.36 / CPE1-T Ws1-R Free+ 686.36 20.57.3.00% Ws1-R Fixed 685.36 / / Ws1-P Fixed 5.1381 / Ws1-R Fixed 685.36 / Ws1-P Fixed 0.68373 / Ws1-R Fixed 0.1455.2.83% Ws1-P				
Instruction Type Value Lind Image Value End R1 Fixed 11.1 / R1 Fixed 11.1 / R1 Fixed 11.1 / R1 Fixed 11.1 /	Name Ope Value Enor R1 Fixed 11.1 / / R1 Fixed 11.1 / / CPE1-T Fixed 4.3883E-06 / .	Name Time Value Error			
CPE1-T Fixed 43883E-06 / CPE1-T Fixed 43883E-06 / CPE1-P Fixed 0.77553 / CPE1-T Fixed 43883E-06 / R2 Fixed 619.29 / CPE1-T Fixed 619.29 / Ws1-R Free+ 685.36 20.57, 30.0% Ws1-R Fixed 685.36 / Ws1-T Fixed 5.1381 / Ws1-R Fixed 685.36 / Ws1-P Fixed 0.68373 / Ws1-R Fixed 685.36 /	CPE1-T Fixed 4.3893E-06 / CPE1-T Fixed 4.3893E-06 / CPE1-P Fixed 0.77553 / CPE1-T Fixed 4.3893E-06 / R2 Fixed 619.29 / CPE1-T Fixed 619.29 / Ws1-R Free+ 685.36 20.57, 3.00% Ws1-R Fixed 685.36 / Ws1-T Fixed 6.3833 / Ws1-R Fixed 685.36 / Ws1-P Fixed 6.68373 / Ws1-R Fixed 685.36 /	R1 Fixed 11.1	R1 Fixed II.1		
CPE1-P Fixed 0.77553 / CPE1-P Fixed 0.77553 / R2 Fixed 619.29 /	CPE1-P Fixed 0.77553 / CPE1-P Fixed 0.77553 / R2 Fixed 619.29 /	CPE1-T Fixed • 4.3883E-06 /	CPE1-T Fixed • 4.3883E-06 /		
R2 Fixed 619.29 / R2 Fixed 619.29 / Ws1-R Free+ 685.36 20.57, 3.00% Ws1-R Fixed 685.36 / Ws1-T Fixed 5.1381 / Ws1-R Fixed 685.36 / Ws1-P Fixed 0.68373 / Ws1-R Fixed 0.68373 /	R2 Fixed 619.29 / Ws1-R Free+ 665.36 20.57,3.00% Ws1-T Fixed 5.1381 / Ws1-P Fixed 0.68373 /	CPE1-P Fixed 0.77553 /	CPE1-P Fixed 0.77553 /		
Ws1-R Free+ 685.36 20.57, 3.00% Ws1-R Fixed 685.36 / Ws1-T Fixed 5.1381 / Ws1-R Fixed 685.36 / Ws1-P Fixed 6.68373 / Ws1-R Fixed 6.68373 /	Ws1-R Free+ 685.36 20.57,3.00% Ws1-R Fixed 685.36 // Ws1-T Fixed 5.1381 / Ws1-R Fixed 685.36 / Ws1-P Fixed 0.063373 / Ws1-P Fixed 0.1455,2.83% Ws1-P Fixed 0.063373 / Ws1-P Fixed 0.663373 /	R2 Fixed 619.29 /	R2 Fixed 619.29 /		
Ws1-T Fixed is 1.381 // Ws1-T Free+ is 5.1381 0.1455, 2.83% Wis1-P Fixed 0.68373 / Ws1-T Free+ is 0.68373 /	Ws1-T Fixed 5.1301 // Ws1-T Free+ 5.1301 0.1455,2.83% Ws1-P Fixed 0.068373 / Ws1-P Fixed 0.663373 /	Ws1-R Free+ 685.36 20.57, 3.00%	Ws1-R Fixed 685.36 /		
W/s1-P Fixed (0.68373 // Ws1-P Fixed (0.68373 //	Ws1-P Fixed m 0.68373 // Ws1-P Fixed m 0.68373 //	Ws1-T Fixed 5.1381 /	Ws1-T Free+ 5.1381 0.1455,2.83%		
		Ws1-P Fixed 0.68373 /	Ws1-P Fixed 0.68373 /		

	EC	quivalent Circuit	_ 0 X
Name	Туре	Value	Error
R1	Fixed .	11.1	/
CPE1-T	Fixed	4.3883E-06	1
CPE1-P	Fixed	0.77553	1
R2	Fixed	619.29	1
Ws1-R	Fixed	685.36	1
Ws1-T	Fixed	5.1381	1
Ws1-P	Free+	0.68373	0.008607 , 1.26%

LTO doping 0,15F; 750°C

	Ed	uivalent Circuit	t – 🗆 🗙	8	E	quivalent Circuit	t – 🗖 🗙
: 📾 💕 🖬 🖳 🗒	🖉 🐏 💽 Simulatio	on 💽 Fit			💷 🐏 下 Simulati	ion 💽 Fit	
					0.054		
R1							
	R2	Ws1			R2	Ws1	
		Ws	╞━┛			Ws	<u> </u>
Name	Туре	Value	Error	Name	Туре	Value	Error
R1	Free?	20.242	0.1305,0.64%	R1	Fixed	20.243	1
CPE1-T	Fixed .	4.263E-06	1	CPE1-T	Free?	4.263E-06	1.408E-08, 0.33%
CPE1-P	Fixed .	0.7554	1	CPE1-P	Fixed	0.7554	1
R2	Fixed 🔳	829.22	1	R2	Fixed	829.22	1
Ws1-R	Fixed 🔳	1193.2	1	Ws1-R	Fixed	1193.2	1
Ws1-T	Fixed 🔳	8.1993	1	Ws1-T	Fixed	8.1993	<i>I</i>
Ws1-P	Fixed 🔳	0.57528	1	Ws1-P	Fixed	0.57528	1
	1 1	: :	2 2 I				a a 1
8	: : E0	quivalent Circuit	t – 🗆 🗙		Ec	quivalent Circuit	- = ×
× : 12 💕 🖬 🕞 12	Ec	quivalent Circuit	t – 🗆 🗙		Ec	quivalent Circuit	X
	Ec 📱 🐏 D Simulatio	quivalent Circuit	t – 0 X		Ec 🐏 📔 Simulatic	quivalent Circuit	
R1	Et Simulation	quivalent Circuit	· · · ·	- R1	Ec P P I Simulatic	quivalent Circuit	
×	Er	quivalent Circuit on Fit 		R1	Ec	quivalent Circuit on 💽 Fit 	
R1	Eren Simulation	quivalent Circuit on Pit 	- • •		Ec CPE1	quivalent Circuit	
Name	Er Simulation R2 Type	quivalent Circuit on P Fit Ws1 Ws1 Value		R1 Name	Ec	Quivalent Circuit	Error
Name R1	Ex Type Fixed	uivalent Circuit		R1	Ec Simulatic CPE1 R2 Type Fixed	quivalent Circuit	Error
R1 CPE1-T	Ec Type Fixed	uvivalent Circuit n ▶ Fit Ws1 Value 20 242 4 263E-06	E X	R1 CPE1-T	Ecc Simulatic CPE1 CPE1 R2 Type Fixed Fixed R	uvalent Circuit Ws1 Ws1 Value 20.242 4.263E-06	Error
Name R1 CPE1-T CPE1-P	Economic and the second	wisalent Circuit m ▶ Fit wisal wisal wisal 20.242 4.263E-06 0.7554	Error [/ 0.0003271,0.04%	R1 CPE1-T CPE1-P	Ecc Simulatic CPE1 CPE1 R2 Fixed Fixed Fixed R	quivalent Circuit Ws1 Ws1 Value 20.242 4.263E-06 0.7554	Error
R1 CPE1-P R2	Ee CPE1 R2 Type Fixed m Fixed m Fixed m	yuivalent Circuit m ▶ Fit Wist Value 20.242 4.263E-06 0.7554 829.22	Error [/ [/ [0.0003271,0.04%] [/	R1 CPE1-T CPE1-P R2	Economic CPE1 R2 Type Fixed	uivalent Circuit n ▶ Fit Value 20.242 4.263E-06 0.7554 829.22	Error // // 2.093,0.25%
R1 CPE1-T CPE1-T CPE1-R Ws1-R	CPE1 CPE1 R2 Type Fixed F	uivalent Circuit	Error [/ [/ [R1 CPE1-T CPE1-P R2 Ws1-R	Ecc Proved m Fixed m Fixed m Fixed m Fixed m Fixed m Fixed m	uivalent Circuit n ▶ Fit 20 242 4.263E-06 0.7554 829.22 1193.2	Error [/ / / 2.093,0.25% /
R1 CPE1-T CPE1-T CPE1-T Ws1-R Ws1-T	CPE1 R2 Type Fixed	uivalent Circuit m ▶ Fit W31 W3 Value 20 242 4 263E-06 0.7554 829.22 1193.2 8.1993	Error / / / / / / / / / / / / / / / / / /	Name R1 CPE1-T CPE1-T CPE1-T W31-R W31-T	Ecc Type Fixed	uivalent Circuit n ▶ Fit Value 20242 4263E-06 0.7554 829.22 1193.2 8.1993	Error / / 2.093,0.25% / /
R1 CPE1-T CPE1-P R2 Ws1-R Ws1-T Ws1-P	CPE1 R2 Type Fixed	uivalent Circuit m ▶ Fit Walue 20 242 4 2635-06 0.7554 829.22 1193.2 8.1993 0.57528	Error [[[[[[[[[[[[[Name R1 CPE1-T CPE1-P R2 Ws1-R Ws1-R Ws1-P	Ecc Fixed Fixe	uvivalent Circuit n ▶ Fit Value 20.242 4.263E-06 0.7554 829.22 1193.2 8.1993 0.57528	×
R1 R1 CPE1-T CPE1-T CPE1-P R2 Ws1-R Ws1-P	Economic Sector	uivalent Circuit Wa1 Wa1 Value 20 242 4 263E-06 0.7554 829.22 1193.2 8.1993 0.57528	Error [[[[[[[[[[[[[R1 CPE1-T CPE1-T CPE1-P R2 WS1-R WS1-P	Ecc Simulation CPE1 R2 Fixed Fix	uvivalent Circuit n ▶ Fit Value 20.242 4.263E-06 0.7554 829.22 1193.2 8.1993 0.57528	Error / 2093, 0.25% / / /
Name R1 CPE1-T CPE1-P R2 Ws1-R Ws1-T Ws1-P	Economic Control Contr	uivalent Circuit Mis1 Wis1 Wis1 Value 20.242 4.263E-06 0.7554 829.22 1193.2 8.1993 0.57528	Error [[[[[[[[[[[[[R1 CPE1-T CPE1-T CPE1-P R2 Ws1-R Ws1-T Ws1-P	Ecc Simulation CPE1 R2 Type Fixed Fixe	uvalent Circuit Value 20242 4 263E-06 0.7554 829.22 1193.2 8.1993 0.57528	Error [/ // 2.093, 0.25% / / /
Image: Second	Economic Control Contr	Wis1 Was1 Was2 4263E-06 0.7554 829.22 1193.2 8.1993 0.57528	Error (/ 00003271,0.04% (/ / / / / /	R1 CPE1-T CPE1-P R2 Ws1-R Ws1-P	Fixed m Fixed m Fixed m Fixed m Fixed m Fixed m	Value 20242 4 2635-06 0.7554 829.22 1193.2 8.1993 0.57528	Error / / / 2.003, 0.25% / / / / / / / / / / / / /
Name R1 CPE1-T CPE1-P R2 Ws1-R Ws1-T Ws1-P	Ee Pired Fixed	Wis1 Wis1 Wis1 Wis2 Value 20.242 4.263E-06 0.7554 829.22 1193.2 8.1993 0.57528	Error [/] 00003271,0.04% [/] [/] [/] [/] [/] [/]	R1 CPE1-T CPE1-P R2 Ws1-R Ws1-P	Erec?	vivalent Circuit m ▶ Fit Ws1 Ws1 20.242 4.263E-06 0.7554 829.22 1193.2 8.1993 0.57528 0.57528	Error / / / 2.093,025% / / / /
R1 CPE1-T CPE1-P R2 Ws1-R Ws1-P	Exed n Fixed n Fixed n Fixed n Fixed n Fixed n Fixed n	yuivalent Circuit Wist Wist Value 20.242 4.263E-06 0.7554 829.22 1193.2 8.1993 0.57528	Error	R1 CPE1-T CPE1-T CPE1-P R2 Ws1-R Ws1-P	Ecc CPE1 R2 Type Fixed Fi	uivalent Circuit n ▶ Fit 20242 4.263E-06 0.7554 829.22 1193.2 8.1993 0.57528	Error // // 2093,0.25% // // // //

	E	quivalent Circuit	- 🗆 🗙	×.	E	quivalent Circuit	_ 🗆 🗙
1 🖪 📑 🖌 🕄	📱 🐏 🜗 Simulatio	on 💽 Fit		i 🗈 📂 🖬 🖪 🗉	📱 🐏 💽 Simulatio	n 📔 Fit 📔	
				R1		Ws1 Ws	
Name	Type	Value	Error	Name	Туре	Value	Error
R1	Fixed 💼	20.242	/	R1	Fixed	20.242	1
CPE1-T	Fixed 💼	4.263E-06	1	CPE1-T	Fixed	4.263E-06	1
CPE1-P	Fixed	0.7554	/	CPE1-P	Fixed	0.7554	1
R2	Fixed	829.22	1	R2	Fixed	829.22	1
Ws1-R	Free?	1193.2	17.18 , 1.44%	Ws1-R	Fixed	1193.2	1
Ws1-T	Fixed 🔳	8.1993	1	Ws1-T	Free?	8.1993	0.1792,2.19%
Ws1-P	Fixed 🔳	0.57528	/	Ws1-P	Fixed	0.57528	1

📕 Equivalent Circuit – 🗖 🗙								
🗄 📂 属 📆 🕎 🐏 🔽 Simulation 📄 Fit								
Name	Туре	Value	Error					
R1	Fixed	20.242	1					
CPE1-T	Fixed	4.263E-06	1					
CPE1-P	Fixed	0.7554	1					
R2	Fixed	829.22	1					
Ws1-R	Fixed	1193.2	1					
Ws1-T	Fixed	8.1993	1					
Ws1-P	Free?	0.57528	0.004283 , 0.74%					

LTO doping 0,2F; 750°C

<u>×</u>	Ec	quivalent Circuit	- 🗆 🗙	F		E	quivalent Circuit	- 🗆 🗙		
i 🗈 💕 🛃 🔁 I 🗉	💯 🐏 📘 Simulatio	on 🕟 Fit 🛛			🗄 📸 🛃 🔚 🕎 🐏 D Simulation 🛛 💽 Fit					
				12.IVV	R1		Ws1 Ws	J		
Name	Туре	Value	Error		Name	Type	Value	Error		
R1	Free+	38.148	0.9147 , 2.40%		R1	Fixed	38.148	1		
CPE1-T	Fixed -	3.0466E-05	1		CPE1-T	Free?	2.1071E-05	5.398E-07 , 2.56%		
CPE1-P	Fixed •	0.76	1		CPE1-P	Fixed	0.76	1		
R2	Fixed	182.33	1		R2	Fixed	182.33	1		
Ws1-R	Fixed •	99	1		Ws1-R	Fixed	99	1		
Ws1-T	Fixed	2.7	1		Ws1-T	Fixed	2.7	1		
Ws1-P	Fixed	0.49048	1		Ws1-P	Fixed	0.49048	1		
				D			1/11-7			

8	🛎 Equivalent Circuit – 🗖 🔀						E	quivalent Circu	it –	. 🗆 🗙
🗟 📂 🛃 📳 🕎 🐏 📘 Simulation 👔 Fit					i 🗈 💕	🛃 🖪 月	📱 🐏 📘 Simulat	ion 📄 Fit 🛛		
R1		Ws1 Ws				R1		Ws Ws		
Name R1 F CPE1-T F CPE1-P F R2 F Ws1-R F Ws1-P F	Type Fixed m Fixed m Free? m Fixed m Fixed m Fixed m	Value 38.148 2.1071E-05 0.76047 182.33 99 2.7 0.49048	Error / / / 0.00293,0.39% / / / / / / / / / / / / / / / / / /		R1 CPE1- CPE1- R2 Ws1-F Ws1-T Ws1-F	lame -T -P 	Type Fixed = Fixed = Free? = Fixed = Fixed = Fixed =	Value 38.148 2.1071E-05 0.76047 180.71 99 2.7 0.49048	Error	
¥ 100 20 20 10 10 10	+ Eq ₩ D Simulatio	uivalent Circuit		×				+/Li	t –	
						R1			<u></u>	
Name R1 F CPE1-T F CPE1-P F R2 F Ws1-R F Ws1-T F Ws1-P F	Type Fixed m Fixed m Fixed m Fixed m Fixed m Fixed m	Value 38.148 2.1071E-05 0.76047 180.71 109.18 2.7 0.49048	Error		R1 CPE1 CPE1 R2 Ws1-F Ws1-F	Name	Type Fixed Fixed F	Value 38.148 2.1071E-05 0.76047 180.71 109.18 2.4474 0.49048	Error	

LTO doping 0,1F; 800°C

<u>*</u>	E	quivalent Circuit	- • ×		E	quivalent Circuit	- • • ×
i 🗟 📂 🛃 🖳 🛛	💯 🐏 📘 Simulatio	on 💽 Fit 📔		i 🗈 💕 🛃 📇 !!	🛒 🐏 💽 Simulati	on 📄 Fit 🛛	
R1	CPE1			R1	CPE1		
	R2	W/c1				10/01	
		Ws			Lõ		
			1		1		
Name	Type	Value	Error	Name	Туре	Value	Error
R1	Free+	14.743	0.4038 , 2.74%	R1	Fixed	14.743	/
CPE1-1	Fixed	4.4730EP05	/	CPE1-T	Free+	4.6224E-05	1.219E-00, 2.04%
CPE1-P	Fixed	0.02481	/	CPE1-P	Fixed	0.62481	
R2	Fixed		/	R2	Fixed	111	/
Ws1-R	Fixed	37	/	Ws1-R	Fixed	37	
Ws1-T	Fixed	55	/	Ws1-T	Fixed	55	
Ws1-P	Fixed	0.4	/	Ws1-P	Fixed	0.4	/
		uivalent Circuit	- D X		r	iquivalent Circuit	· ×
	E	quivalent Circuit					
: 🔤 🐸 🖬 🖽 :	🦉 🛗 🕨 Simulatio	on 💽 Fit			💯 📆 🚺 Simulat	ion 🕑 Fit	
P1	CPE1			D1	OPE4		
	R2	Ws1			R2	Ws1	ς Ι
		Ws				Ws	
Name	Туре	Value	Error	Name	Туре	Value	Error
R1	Fixed -	14.743	1	R1	Fixed	14.743	1
CPE1-T	Fixed .	4.6224E-05	1	CPE1-T	Fixed	4.6224E-05	
CRE1-R	Free+	0.62611	0.002577_0.41%	CPE1-P	Fixed	0.62611	
CPEI-P	Fixed	111	1	D2	Free+	123.04	1051 0.85%
RZ	Fixed	27	1	R2	Fileet	27	1.031, 0.03%
Ws1-R	Fixed	37		Ws1-R	Fixed	37	
Ws1-T	Fixed	55	/	WS1-I	Fixed	55	
Ws1-P	Fixed	0.4	/	WS1-P	Fixed	0.4	/
-	F	quivalent Circuit	_ 🗆 🗙	***			
				*		Equivalent Circui	t – U 🔨
	🦉 🎹 🛃 simulati	on Erit		- 🛯 🖾 🚰	🛒 📸 下 Simulat	tion 💽 Fit	
R1	CPE1				005		
—— Ö					ᡝ᠆᠆ᡨ᠊᠊ᢅ		
	R2	Ws1			R2	Ws1	ц
		Ws	-]	
Name	Туре	Value	Error	Name	Type	Value	Error
R1	Fixed	14.743	1	R1	Fixed	14.743	1
CPE1-T	Fixed	4.6224E-05	1	CPE1-T	Fixed	4.6224E-05	1
CPE1-P	Fixed	0.62611	1	CPE1-P	Fixed	0.62611	1
R2	Fixed	123.04	1		Fixed	123.04	
Ws1-R	Free+	90.155	9.48, 10.52%	We1 P	Fixed	90.155	
Ws1-T	Fixed	55	1	We1-T	Free+	55.298	14.56.26.33%
Ws1-P	Fixed	0.4	1	We1 D	Fixed	0.4	1
				WSI-P	INCO	0.7	

	× 6 ≥ 1 6 1	Ec 🐏 💽 Simulatic	quivalent Circuit	- 🗆 🗙
	R1			
	Name	Туре	Value	Error
l	R1	Fixed	14.743	1
l	CPE1-T	Fixed	4.6224E-05	1
	CPE1-P	Fixed	0.62611	1
	R2	Fixed	123.04	1
	Ws1-R	Fixed •	90.155	1
	Ws1-T	Fixed	55.298	1
	Ws1-P	Free+	0.41061	0.02166 , 5.28%

LTO doping 0,2F; 800°C

	E	quivalent Circuit	- 🗆 🗙		8	E	quivalent Circuit	t – 🗆 🗙		
📰 📂 🛃 🖫 📑 Nimulation 🕞 Fit					🗄 📸 🛃 🗒 🥦 🔁 Simulation 🛛 💽 Fit					
R1 CPE1										
—— Ö	• ≫				————————————————————————————————————	-+				
						R2	Ws1	<u> </u>		
			1				WS	J		
Name	Type	Value	Error		Name	Туре	Value	Error		
R1	Free?	13.815	0.2285, 1.65%		R1	Fixed	13.815	/		
CPE1-T	Fixed	8.0253E-06	/		CPE1-T	Free?	8.0255E-06	5.264E-08, 0.66%		
CPE1-P	Fixed	0.72127			CPE1-P	Fixed	0.72127	/		
R2	Fixed	1451.9			R2	Fixed	1451.9	/		
Ws1-R	Fixed	3804.5	1		Ws1-R	Fixed	3804.5			
Ws1-T	Fixed	4.9144	1		Ws1-T	Fixed	4.9144			
Ws1-P	Fixed	0.70564	/		Ws1-P	Fixed	0.70564	/		
							≠# 1 ~			
8	E	quivalent Circuit	- - ×		<u></u>	Ec	+= quivalent Circuit	- 🗆 🗙		
× : 🗟 📽 🖬 🖪 🗎	Ec 🐏 💽 Simulatio	quivalent Circuit	- ¤ <mark>×</mark>		16 E2 📂 🖃 🔁 3	Ec	+// I→ quivalent Circuit on ▶ Fit	🛛		
	Ed 🖹 Ed	quivalent Circuit	- 🗆 🗙			Ec	en IS quivalent Circuit on 💽 Fit	- 🗆 🗙		
	Er Simulatic CPE1	quivalent Circuit	×		ĭ : :::::::::::::::::::::::::::::::::::	Ec P P Simulatic CPE1	quivalent Circuit			
× ■ ■ ■ ■ ■ ■	Ei Simulation CPE1 R2	quivalent Circuit			[™] ■ ■ ■ ■ ■ ■ ■	Ec	urualent Circuit	- • •		
₩	Er Simulatio	quivalent Circuit on P Fit Ws1 Ws			R1	Ec	uvalent Circuit	- • •		
R1 Name	Erection CPE1	quivalent Circuit an P Fit Ws1 Ws1 Value	Error		R1 Name	Ec Simulatic CPE1 R2 Type	Quivalent Circuit	Error		
R1	ER Simulation CPE1 R2 Type Fixed	quivalent Circuit quivalent Circuit prive Fit Wis1 Wis1 Wis1 Value 13.815	_ □ <mark>×</mark>		R1 Name R1	Ec Simulatic CPE1 R2 Type Fixed	VII- quivalent Circuit prit Ws1 Ws1 Value 13.815	- • ×		
R1 CPE1-T	Exed	vira quivalent Circuit n ▶ Fit Wis1 Value 13.815 8.0255E-06	_ □ ×		R1 CPE1-T	Eco Simulatic CPE1 R2 Type Fixed Fixed	UII- quivalent Circuit on Fit / Ws1 Value 13.815 8.0255E-06	- • ×		
R1 CPE1-T CPE1-P	Exect free?	uvalent Circuit n ▶ Fit Wis1 Value 13.815 8.0255E-06 0.72127		-	R1 CPE1-T CPE1-P	Economic Control Contr	UI12 quivalent Circuit Ui12 Vis1 Vis1 Value 13.815 8.0255E-06 0.72127	- • ×		
R1 CPE1-T CPE1-P R2	Fixed	uivalent Circuit m ▶ Fit Wis1 Wis1 Value 13.815 8.0255E-06 0.72127 1451.9	_ □ ×		R1 CPE1-T CPE1-P R2	Ec Simulation Fixed	yuivalent Circuit m ▶ Fit Wis1 Value 13.815 8.0255E-06 0.72127 1451.9	X		
R1 CPE1-T CPE1-P R2 Ws1-R	Exed Fixed F	yuivalent Circuit yuivalent Circuit wsi Value 13.815 0.255E-06 0.72127 1451.9 3804.5	_ □ ×		R1 CPE1-T CPE1-P R2 Ws1-R	Fixed m	Ulii auivalent Circuit m ▶ Fit Wis1 Value 13.815 8.0255E-06 0.72127 1451.9 3804.5	Error / / / 9.823,0.68%		
R1 CPE1-T CPE1-T CPE1-R Ws1-R Ws1-T	Exed m Fixed m Fixed m Fixed m Fixed m	Wist Wist Wist Wist Value 13.815 8.0255E-06 0.72127 1451.9 3804.5 4.9144	_ □ <mark>×</mark> Error [/ [0.0006839.0.09%] [[[] [] [] [] [] [] [] []		R1 CPE1-T CPE1-P R2 Ws1-R Ws1-T	Fixed m	Ulii quivalent Circuit m ▶ Fit Value 13.815 8.0255E-06 0.72127 1451.9 3804.5 4.9144	Error / / 9.823,0.68% / /		
R1 CPE1-T CPE1-P R2 Ws1-R Ws1-T Ws1-P	Exed m Fixed m Fixed m Fixed m Fixed m	wist wist wist wist wist 0.72127 14519 3804.5 4.9144 0.70564	_ □ <mark>×</mark> Error [0.0006839,0.09% [1 1 1 1 1 1 1 1 1		R1 CPE1-T CPE1-T WS1-R WS1-P	Fixed m Fixed m Fixed m Fixed m Fixed m Fixed m Fixed m	Ulii quivalent Circuit m ▶ Fit Walue 13.815 8.0255E-06 0.72127 14519 3804.5 4.9144 0.70564	Error / / / / / / / / / / / / /		
R1 CPE1-T CPE1-T CPE1-T Ws1-R Ws1-T Ws1-P	Fixed m Fixed m Fixed m Fixed m Fixed m	Wis1 quivalent Circuit on ▶ Fit Wis1 13.815 8.0255E-06 0.72127 1451.9 3304.5 4.9144 0.70564	Error [/ 0.0006839.0.09% [/] [/] [/] [/] [/] [/] [/] [/		R1 CPE1-T CPE1-T CPE1-P R2 Ws1-R Ws1-T Ws1-P	Ec Simulation Fixed	Vialent Circuit on ▶ Fit V/s1 Ws1 13.815 8.0255E-06 0.72127 1451.9 3804.5 4.9144 0.70564 9.70564	Error / / 9.823,0.68% / / /		
Name R1 CPE1-T CPE1-P R2 Ws1-R Ws1-T Ws1-P	Fixed m Fixed m Fixed m Fixed m Fixed m	Wist m ▶ Fit Wist Wist Wist 0.2555-06 0.72127 1451.9 3804.5 4.9144 0.70564 0.70564	Error [R1 CPE1-T CPE1-T CPE1-P R2 Ws1-T Ws1-P	Ec Simulation Fixed	yuivalent Circuit n ▶ Fit VValue 13.815 8.0255E-06 0.72127 14519 3804.5 4.9144 0.70564	Error / / 9.823,0.68% / / / /		
R1 CPE1-T CPE1-T CPE1-P R2 Ws1-R Ws1-T Ws1-P	Fixed n Fixed n Fixed n Fixed n Fixed n Fixed n	Wis1 wis1	Error [/ [0.0006839.0.09% [/ [] [] [] [] [] [] [] [] []		R1 CPE1-T CPE1-P R2 Ws1-R Ws1-P	Ec Simulation Fixed	yuivalent Circuit yuivalent Circuit Ws1 Ws1 Ws1 13.815 8.0255E-06 0.72127 1451.9 3804.5 4.9144 0.70564	Error / / / 9.823,0.68% / / / / / / / / / / / / /		
Name R1 CPE1-T CPE1-P R2 Ws1-R Ws1-T Ws1-P	Fixed m Fixed m Fixed m Fixed m	yuivalent Circuit yuivalent Circuit ws Ws1 Ws1 Ws1 Value 13815 8.0255E-06 0.72127 1451.9 3804.5 4.9144 0.70564	_ □ ×		R1 CPE1-T CPE1-P R2 Ws1-R Ws1-T Ws1-P	Eco Philosophic States of Control States of Con	yuivalent Circuit yuivalent Circuit Ws1 Ws1 Value 13.815 8.0255E-06 0.72127 1451.9 3804.5 4.9144 0.70564	X		
Name R1 CPE1-T CPE1-P R2 Ws1-R Ws1-T Ws1-P	Fixed m Fixed m Fixed m Fixed m Fixed m	yuivalent Circuit yuivalent Circuit Wis1 Wis1 Wis1 Wis1 Wis1 Wis1 Wis1 0.255E-06 0.72127 1451.9 3804.5 4.9144 0.70564	_ □ ×		R1 CPE1-T CPE1-P R2 Ws1-R Ws1-P	Eco Pixed m Fixed m Fixed m Fixed m Fixed m Fixed m Fixed m	yuivalent Circuit yuivalent Circuit Ws1 Value 13.815 0.255E-06 0.72127 1451.9 3804.5 4.9144 0.70564	Error / / / / / / / / / / / / /		

8	E	quivalent Circuit		×	8		Ec	quivalent Circu	it	- 🗆 🗙
: 📸 📂 🛃 📳 🕦 🐿 🔽 Simulation 📔 Fit 🛛					🗄 📸 🚅 🔚 🕎 🐏 ▶ Simulation 🗼 Fit					
R1	CPF1					R1	CPF1			
Ö-		I				- <u> </u>	` ≪ +			
		Ws1 Ws							ل_	
Name	Tupo	Value Erro	r	=11	Ner	no	Type	Value	Error	
R1	Fixed •	13.815 /	1		R1	Fixe	d 💌	13.815		
CPE1-T	Fixed	8.0255E-06 /			CPE1-T	Fixe	d 💌	8.0255E-06	1	
CPE1-P	Fixed	0.72127 /			CPE1-P	Fixe	d 🔹	0.72127	1	
R2	Fixed	1451.9 /			R2	Fixe	d 💌	1451.9	1	
Ws1-R	Free?	3804.6 77.	57,2.04%		Ws1-R	Fixe	d 💌	3804.6	1	
Ws1-T	Fixed	4.9144 /			Ws1-T	Fre	e? 💼	4.9144	0.09152 , 1.86%	
Ws1-P	Fixed	0.70564			Ws1-P	Fixe	d 💌	0.70564	1	
		+/∟-→							1	
	1	8	Ec	quivalen	t Circuit		-			
		i 🗟 💕 🛃 📑 I	💯 🐏 D Simulatio	on 🕨 Fi	it					
		R1	CPE1							
			+ _>>							
					Ws1					
	1				_ ws					
		Name	Туре	Va	alue	Error				
		R1	Fixed	13.815		1				
		CPE1-T	Fixed	8.02558	E-06	1				
		CPE1-P	Fixed	0.7212	7	1				
		R2	Fixed	1451.9		1				
		Ws1-R	Fixed	3804.6		1				
		Ws1-T	Fixed	4.9144		1				
		Ws1-P	Free?	0.70563	3	0.005756	0.82%			
	3									

6. Perhitungan Massa Bahan $Li_4Ti_5O_{12}$

Persamaan Stoikiometri:

 $2Li_2CO_{3(S)} + 5TiO_{2(S)} = Li_4Ti_5O_{12(S)} + 2CO_{2(g)}$

Diketahui massa atom relatif masing-masing unsur adalah:

Ar.Li = 6,941; Ar.C = 12,01; Ar.O = 16; Ar.Ti = 47,88

Maka berat molekul dari masing-masing unsur adalah:

Koefisien	Molar Mass (Mr)	Senyawa
2	73,89	Li ₂ CO ₃
5	79,88	TiO_2
1	459,16	$Li_4Ti_5O_{12}$
2	44	CO_2

Menghitung massa setiap senyawa:

 $mol = \frac{massa}{Mr}$

 $\begin{array}{ll} Massa \ Li_2CO_3 = mol \ x \ Mr \\ = \ 0,02 \ x \ 73,89 \\ = \ 1,477 \ gr \end{array} \qquad \begin{array}{ll} Massa \ TiO_2 \\ mol \ x \ TiO_2 \\ = \ mol \ x \ Mr \\ = \ 0,05 \ x \ 79,88 \\ = \ 3,994 \ gr \end{array}$

BIOGRAFI PENULIS

Alvalo Toto Wibowo lahir di Bangkalan, pada tanggal 5 Maret 1995. Penulis meruoakan anak ke dua dari empat bersaudara. Pendidikan formal yang pernah ditempuh oleh penulis yaitu SD Negeri Pejagan 2 Bangkalan, kemudian melanjutkan di SMP Negeri 1 Bangkalan dan dan SMA Negeri 1 Bangkalan. Setelah mengenyam pendidikan dasar hingga menengah, penulis melanjutkan studi ke perguruan tinggi di Politeknik Perkapalan Negeri Surabaya pada

tahun 2013. Selama proses studi di perguruan tinggi, penulis aktif mengikuti organisasi kampus. Penulis menekuni bidang pengelasan pada pendidikan Diploma 4. Penulis kemudian melanjutkan studi program magister pascasarjana S2 di Departemen Teknik Material dan Metalurgi Institut Teknologi Sepuluh Nopember Surabaya pada tahun 2018 periode semester genap. Penulis melakukan penelitian tesis dengan topik baterai ion lithium dibawah bimbingan Lukman Noerochim, S.T., M.Sc. Eng., Ph.D. dan Dr. Widyastuti, S.Si., M.Si, yang berjudul "Pengaruh Doping Fluorine dan Temperatur Kalsinasi pada Material Li4Ti5O12/C dengan Metode Solid State Terhadap Performa Elektrokimia Anoda Baterai Ion Lithium".

Alvalo Toto Wibowo alvalototowibowo@gmail.com +62 823 3294 6808