

TUGAS AKHIR - MN 184801

ANALISIS TEKNIS DAN EKONOMIS PENGEMBANGAN GALANGAN KAPAL MENGGUNAKAN METODE ADVANCED OUTFITTING SYSTEM UNTUK PEMBANGUNAN KAPAL 2000 GT

Muhammad Naufal Aziz NRP 04111540000052

Dosen Pembimbing Ir. Triwilaswandio Wuruk Pribadi, M.Sc. Sufian Imam Wahidi, ST., M.Sc.

DEPARTEMEN TEKNIK PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2020

TUGAS AKHIR - MN 184801

ANALISIS TEKNIS DAN EKONOMIS PENGEMBANGAN GALANGAN KAPAL MENGGUNAKAN METODE ADVANCED OUTFITTING SYSTEM UNTUK PEMBANGUNAN KAPAL 2000 GT

Muhammad Naufal Aziz NRP 04111540000052

Dosen Pembimbing Ir. Triwilaswandio Wuruk Pribadi, M.Sc. Sufian Imam Wahidi, ST., M.Sc.

DEPARTEMEN TEKNIK PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2020

FINAL PROJECT - MN 184801

TECHNICAL AND ECONOMICAL ANALYSIS FOR SHIPYARD DEVELOPMENT USING ADVANCED OUTFITTING METHOD FOR CONSTRUCTION OF 2000GT SHIP

Muhammad Naufal Aziz NRP 04111540000052

Supervisors Ir. Triwilaswandio Wuruk Pribadi, M.Sc. Sufian Imam Wahidi, S.T., M.Sc.

DEPARTMENT OF NAVAL ARCHITECTURE FACULTY OF MARINE TECHNOLOGY SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY SURABAYA 2020

LEMBAR PENGESAHAN

ANALISIS TEKNIS DAN EKONOMIS PENGEMBANGAN GALANGAN KAPAL MENGGUNAKAN METODE ADVANCED OUTFITTING SYSTEM UNTUK PEMBANGUNAN KAPAL 2000 GT

TUGAS AKHIR

Diajukan Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Program Sarjana Departemen Teknik Perkapalan

Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember

Oleh:

MUHAMMAD NAUFAL AZIZ NRP 04111540000052

Disetujui oleh Dosen Pembimbing Tugas Akhir:

Dosen Pembimbing II

Sufian Imam Wahidi, S.T., M.Sc.

NIP 19900322 201903 1 011

Dosen Pembimbing I

Ir. Triwilaswandio Wuruk Pribadi, M.Sc.

NIP 19610914 198701 1 001

Mengetahui, Kepala Cepartemen Teknik Perkapalan

Wasis Dwi Aryawan, M.Sc., Ph.D.

NIP 19640210 198903 1 001

SURABAYA, 31 JANUARI 2020

LEMBAR REVISI

ANALISIS TEKNIS DAN EKONOMIS PENGEMBANGAN GALANGAN KAPAL MENGGUNAKAN METODE ADVANCED OUTFITTING SYSTEM UNTUK PEMBANGUNAN KAPAL 2000 GT

TUGAS AKHIR

Telah direvisi sesuai dengan hasil Ujian Tugas Akhir Tanggal 7 Januari 2020

Program Sarjana Departemen Teknik Perkapalan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember

Oleh:

MUHAMMAD NAUFAL AZIZ NRP 04111540000052

Disetujui oleh Tim Penguji Ujian Tugas Akhir:

- 1. Dony Setyawan, S.T., M.Eng.
- Dr. Ir. Heri Supomo, M.Sc.
- 3. Sri Rejeki Wahyu Pribadi, S.T., M.T.
- 4. M. Sholikhan Arif, S.T., M.T.

Disetujui oleh Dosen Pembimbing Tugas Akhir:

- 1. Ir. Triwilaswandio Wuruk Pribadi, M.Sc.
- 2. Sufian Imam Wahidi, S.T., M.Sc.

J. Julian

SURABAYA, 31 JANUARI 2020

Dan di antara tanda-tanda kekuasaan-Nya ialah kapal-kapal di tengah (yang berlayar) di laut seperti gunung-gunung (32).

Jika Dia menghendaki, Dia akan menenangkan angin, maka jadilah kapal-kapal itu terhenti di permukaan laut. Sesungguhnya pada yang demikian itu terdapat tanda-tanda (kekuasaannya) bagi setiap orang yang banyak bersabar dan banyak bersyukur, (33)

atau kapal-kapal itu dibinasakan-Nya karena perbuatan mereka atau Dia memberi maaf sebagian besar (dari mereka). (34)

Q.S. As-Syura 32 – 34

KATA PENGANTAR

Puji syukur kepada Tuhan Yang Maha Esa karena atas karunianya Tugas Akhir ini dapat diselesaikan dengan baik.

Pada kesempatan ini Penulis ingin mengucapkan terima kasih kepada pihak-pihak yang membantu penyelesaian Tugas Akhir ini, yaitu:

- 1. Bapak Ir. Triwilaswandio Wuruk Pribadi, M.Sc. dan Bapak Sufian Imam Wahidi, S.T., M.Sc. selaku Dosen Pembimbing atas bimbingan dan motivasinya selama pengerjaan dan penyusunan Tugas Akhir ini;
- 2. Bapak Dr. Ir. Heri Supomo, M.Sc., Ibu Sri Rejeki Wahyu Pribadi, S.T., M.T., Bapak M. Sholikhan Arif, S.T., M.T., dan dosen rumpun mata kuliah industri perkapalan lain yang berkenan memberikan masukan dalam proses pengerjaan Tugas Akhir;
- 3. Bapak Adi yang selalu memudahkan penulis dalam mengumpulkan data yang dibutuhkan dalam pengerjaan Tugas Akhir;
- 4. Teman-teman angkatan P55 yang selalu ada di warkop untuk mengerjakan tugas akhir bersama-sama. Hadir kalian memberikan semangat tak terhingga;
- 5. Kamu yang menjadikan peluhnya jiwa dan kacaunya hati di tengah penyelesaian Tugas Akhir ini;

Penulis menyadari bahwa Tugas Akhir ini masih jauh dari kesempurnaan, sehingga kritik dan saran yang bersifat membangun sangat diharapkan. Akhir kata semoga laporan ini dapat bermanfaat bagi banyak pihak.

Surabaya, 31 Januari 2020

Muhammad Naufal Aziz

ANALISIS TEKNIS DAN EKONOMIS PENGEMBANGAN GALANGAN KAPAL MENGGUNAKAN METODE ADVANCED OUTFITTING SYSTEM UNTUK PEMBANGUNAN KAPAL 2000 GT

Nama Mahasiswa : Muhammad Naufal Aziz

NRP : 04111540000052

Departemen / Fakultas : Teknik Perkapalan / Teknologi Kelautan Dosen Pembimbing : 1. Ir. Triwilaswandio Wuruk Pribadi, M.Sc.

2. Sufian Imam Wahidi, ST., M.Sc.

ABSTRAK

Industri pembangunan kapal memegang peran penting dalam meningkatkan daya serap tenaga kerja dalam skala nasional. Namun, durasi pembangunan kapal galangan dalam negeri yang terlalu lama. Maka dari itu, diperlukan implementasi metode pembangunan kapal yang lebih baru. Salah satunya dengan menggabungkan metode zone outfitting system dengan hull block construction method, atau bisa disebut dengan advanced outfitting system. Penelitian ini dilakukan dengan melakukan studi kasus implementasi advanced outfitting method pada pembangunan kapal penumpang barang 2000 GT di galangan PT. X. di Surabaya. Analisa teknis dilakukan dengan melakukan perencanaan pembangunan kapal dengan hull block constuction method. Di dalam analisa teknis ini juga dilakukan perhitungan efisiensi jam orang pada metode advanced outfitting system. Setelah itu, dilakukan analisa terhadap biaya pembangunan kapal dan investasi pengembangan galangan yang dibutuhkan. Analisa teknis implementasi advanced outfititng method menghasilkan faktor efisiensi dari kegiatan material handling dan testing. Faktor efisiensi yang didapatkan sebesar 17% untuk on unit dan 37% untuk on block dibanding dengan on board outfitting. Pembangunan kapal penumpang barang 2000 GT dengan menggunakan metode on board outfitting membutuhkan waktu selama 403 hari kerja. Biaya pembangunan kapal yang dibutuhkan adalah Rp.44.776.954.000. Sedangkan waktu pembangunan kapal dengan metode advanced outfitting system membutuhkan waktu selama 357 hari kerja. Biaya pembangunan kapal yang dibutuhkan adalah Rp.42.843.677.000. Penghematan biaya pembangunan yang didapat sebesar Rp.1.933.277.000. Untuk pengembangan fasilitas pembangunan dan sumber daya manusia dibutuhkan investasi sebesar Rp.3.040.776.000. Pengembalian investasi baru didapatkan dengan penyelesaian proyek pembangunan dua kapal penumpang barang 2000GT.

Kata kunci: advanced outfitting system, efisiensi, pengembangan, waktu

TECHNICAL AND ECONOMICAL ANALYSIS FOR SHIPYARD DEVELOPMENT USING ADVANCED OUTFITTING METHOD FOR CONSTRUCTION OF 2000GT SHIP

Author : Muhammad Naufal Aziz

Student Number : 04111540000052

Department / Faculty: Naval Architecture / Marine Technology Supervisor: 1. Ir. Triwilaswandio Wuruk Pribadi, M.Sc.

2. Sufian Imam Wahidi, ST., M.Sc.

ABSTRACT

The ship building industry have an important role in increasing the absorption of labor on a national scale. However, the duration of the construction of shipbuilding is too long. Therefore, the implementation of newer shipbuilding methods is needed. The example is by combining the zone outfitting system method with the hull block construction method, or it can be called an advanced outfitting system. This research use case study on the implementation of the advanced outfitting method in the construction of the 2000 GT passenger ship at the PT. X. in Surabaya. Technical analysis is carried out by conducting ship building planning using the hull block constuction method. The technical analysis also calculates the efficiency of people's hours on the advaced outfitting system method. After that, an analysis of shipbuilding costs and investment in shipyard development are calculated too. Technical analysis of the implementation of the advanced outfit method obtain an on-unit efficiency factor of 17% and an on-block efficiency factor of 37% compared to on-board outfitting. The construction of the 2000 GT passenger ship using the on-board outfitting method takes 403 working days. The cost of shipbuilding is Rp.44,776,954,000. Whereas the time to build a ship using the advanced outfitting system method takes 357 working days. The cost of shipbuilding is Rp.42,843,677,000. The savings costs obtained is to Rp.1,933,277,000. PT. X. requires an investment of Rp.3,040,776,000 for facilities and human resources development. It tooks two 2000GT freight passenger projects to return the investment.

Keywords: advanced outfitting system, development, eficiency, time

DAFTAR ISI

LEMBAR	PENGESAHAN	iii
	REVISI	
	N PERUNTUKAN	
	NGANTAR	
	ζ	
	ISI	
	GAMBAR	
	TABEL	
BAB 1	PENDAHULUAN	
1.1.		
1.1.	Latar Belakang Masalah	
·	Perumusan Masalah	
1.3.	Tujuan	
1.4.	Batasan Masalah	
1.5.	Manfaat	
1.6.	Hipotesis	3
BAB 2	STUDI LITERATUR	5
2.1.	Proses Pembangunan Kapal	5
2.2.	Proses Pemasangan Outfitting Kapal	8
2.3.	Advanced Outfitting System	10
2.4.	Work Process Lane (Alur Urutan Pekerjaan)	13
2.5.	Perencanaan Pengembangan Fasilitas Galangan	18
2.5.1.	Perencanaan Tata Letak Galangan	18
2.5.2.	Tujuan Tata Letak Galangan	19
2.5.3.	Tipe Dasar Perencanaan Tata Letak Galangan Kapal	19
2.6.	Investasi	20
BAB 3	METODOLOGI	25
3.1.	Tahap Identifikasi	25
3.2.	Tahap Pengumpulan dan Pengolahan Data	26

3.3.	Tahap Analisa Teknis dan Ekonomis	26
3.4.	Tahap Kesimpulan dan Saran	27
BAB 4	KONDISI TERKINI GALANGAN KAPAL	29
4.1.	Tinjauan Umum Perusahaan	29
4.2.	Tata Letak Galangan Kapal	29
4.3.	Fasilitas Utama Galangan Kapal	31
4.4.	Fasilitas Pendukung Galangan Kapal	32
4.5.	Metode Pembangunan Kapal	33
4.5.1.	Desain	34
4.5.2.	Pembagian Blok	36
4.5.3.	3D Block	39
4.5.4.	Product Work Breakdown Structure	40
4.5.5.	Pemasangan Outfitting	41
4.5.6.	Produktivitas Galangan	43
BAB 5	ANALISIS TEKNIS PENGEMBANGAN GALANGAN KAPAL	49
5.1.	Perencanaan Pembangunan antar Metode	49
5.1.1.	Pembagian Blok	51
5.1.2.	Product Work Breakdown Structure	52
5.1.3.	Composite Drawing	53
5.1.4.	3D Block	55
5.1.5.	Identifikasi Zone Outfitting	56
5.1.6.	Perhitungan Kebutuhan Jam Orang	60
5.1.7.	Waktu Pembangunan Kapal	66
5.2.	Rencana Pengembangan Galangan	70
5.2.1.	Pengembangan Fasilitas Galangan	70
5.2.2.	Pegembangan Kemampuan SDM	73
BAB 6	ANALISIS EKONOMIS PENGEMBANGAN GALANGAN KAPAL	75
6.1.	Perhitungan Biaya Konstruksi Kapal	75
6.2.	Perhitungan Biaya Pekerja Tetap	78
6.3.	Perhitungan Biaya Pekerja Sub-Kontraktor	79
6.4.	Perhitungan Penghematan Biaya	82
6.5.	Investasi Pengembangan Galangan	83
RAR 7	KESIMPI II AN	85

7.1.	Kesimpulan85
7.2.	Saran85
DAFTA	R PUSTAKA86
LAMPIF	RAN
Perhitu	ngan Teknis On Board Outfitting
Perhitu	ngan Teknis Advanced Outfitting System
Perhitu	ngan Ekonomis On Board Outfitting
Perhitu	ngan Ekonomis Advanced Outfitting System
Perban	dingan Jo, Waktu, Dan Biaya Pembangunan antar Metode
Block I	Division
Lifting	Plan
3d Bloo	ck On Board Outfitting
3d Bloo	ck Advanced Outfitting System
Produc	t Work Breakdown On Board Outfitting
Produc	t Work Breakdown Advanced Outfitting System
Unit O	utfit Plan

DAFTAR GAMBAR

Gambar 2. 1 Alur pembangunan kapal dengan metode HBCM	5
Gambar 2. 2 Konstruksi machinery unit yang dibuat dalam on-unit outfitting zone	8
Gambar 2. 3 Konstruksi pipe unit yang dibuat dalam on-unit outfitting zone	9
Gambar 2. 4 On-block outfitting pada side shell di ruang mesin	10
Gambar 2. 5 Perbedaan level teknologi produksi metode HBCM dengan AOS	11
Gambar 2. 6 Composite drawing di dalam ruang mesin	13
Gambar 2. 7 Pin jig yang bisa diatur ketinggiannya	14
Gambar 2. 8 urutan pekerjaan fabrikasi dalam metode AOS	15
Gambar 2. 9 urutan pekerjaan sub-assembly flat panel dalam metode AOS	16
Gambar 2. 10 urutan pekerjaan assembly flat panel dalam metode AOS	17
Gambar 2. 11 Layout galangan tipe garis lurus	20
Gambar 2. 12 Layout galangan tipe U	20
Gambar 2. 13 Layout galangan tipe S	20
Gambar 3. 1 Diagram alir pegerjaan tugas akhir	28
Gambar 4. 1 Tata letak galangan kapal PT. X	30
Gambar 4. 2 aplikasi CAD yang digunakan dalam desain kapal	34
Gambar 4. 3 Isometric Drawing Pipa Ballast	35
Gambar 4. 4 Elevation View sistem ballast di ruang muat	36
Gambar 4. 5 Perencanaan pembagian blok pada metode on-board outfitting	37
Gambar 4. 6 Lifting plan blok 115 dengan berat 52,403 ton	38
Gambar 4. 7 3D blok kapal pada metode on-board outfitting	39
Gambar 4. 8 Product work breakdown structure pada metode on-board outfitting	40
Gambar 4. 9 (a) Pemasangan main engine, (b) Pemasangan sistem perpipaan	41
Gambar 4. 10 Bengkel perpipaan galangan PT. X.	42
Gambar 4. 11 Rekapitulasi jam orang proses erection dari tabel presensi	45
Gambar 5. 1 Rencana umum kapal penumpang barang 2000 GT tampak samping	49
Gambar 5. 2 Construction profile penumpang barang 2000 GT	49
Gambar 5. 3 (a) Engine room layout, (b) Penampang memanjang sistem perpipaan	50
Gambar 5. 4 Pembagian blok pada metode advanced outfitting system	51

Gambar 5. 5 (a) WBS pada on board outfitting (b) WBS pada advanced outfitting	53
Gambar 5. 6 Composite drawing blok 115 dalam advanced outfitting system	54
Gambar 5. 7 (a) 3D blok on board outfitting (b) 3D blok advanced outfitting	56
Gambar 5. 8 3D unit 2 pada rencana unit outfitting	58
Gambar 5. 9 Kebutuhan jam orang tahap fabrikasi	60
Gambar 5. 10 Kebutuhan jam orang tahap assembly	61
Gambar 5. 11 Kebutuhan jam orang tahap <i>erection</i>	62
Gambar 5. 12 Kebutuhan jam orang fabrikasi outfitting	65
Gambar 5. 13 Kebutuhan jam orang instalasi outfitting	65
Gambar 5. 14 Perbandingan waktu kontruksi antar metode pembangunan (a) tahap fabrik	asi
(b) tahap assembly (c) tahap erection	67
Gambar 5. 15 perbandingan waktu outfitting antar metode pembangunan (a) tahap fabrik	asi
(b) tahap instalasi	69
Gambar 5. 16 (a) Layout galangan saat ini (b) rencana pengembangan layout galangan	70
Gambar 5. 17 Tata letak bengkel unit outfitting	71
Gambar 5. 18 Rencana area block outfitting	72
Gambar 6. 1 Berat kebutuhan material baja per seksi	75
Gambar 6. 2 Biaya sub kontraktor konstruksi	79

DAFTAR TABEL

Tabel 4. 1 Load Chart Crane Hitachi 150 ton	32
Tabel 4. 2 Hasil perhitungan blok kapal pada metode on-board outfitting	37
Tabel 4. 3 data historis presensi sub-kontraktor Kapal Penumpang Barang 2000GT	43
Tabel 4. 4 Hasil perhitungan produktivitas tahap assembly	44
Tabel 4. 5 panjang lajur pengelasan blok	46
Tabel 4. 6 Jam orang tahap <i>erection</i> pada metode on-blok outfitting	46
Tabel 4. 7 Rekapitulasi jam orang pemasangan sistem perpipaan kapal penumpang barang	
2000 GT	47
Tabel 4. 8 Produktivitas pemasangan sistem perpipaan	48
Tabel 5. 1 Daftar sistem perpipaan pada blok 115	55
Tabel 5. 2 Zone outfitting pada metode on board outfitting	57
Tabel 5. 3 Zone outfitting pada metode advanced outfitting	59
Tabel 5. 4 Perhitungan efisiensi advanced outfitting system	64
Tabel 5. 5 Perencanaan jumlah pekerja pembangunan kapal	66
Tabel 5. 6 Daftar peralatan tambahan bengkel unit outfitting	72
Tabel 5. 7 Daftar karyawan yang dimiliki PT. X	73
Tabel 6. 1 Biaya kebutuhan pelat dan profil baja kapal	76
Tabel 6. 2 Perhitungan biaya pembelian permesinan kapal	77
Tabel 6. 3 Hasil perhitungan biaya perlengkapan kapal	77
Tabel 6. 4 Biaya jasa pihak ketiga	78
Tabel 6. 5 Perbandingan biaya karyawan tetap antara OBO dan AOS	79
Tabel 6. 6 Biaya sub kontraktor perlengkapan pada metode on board outfitting	80
Tabel 6. 7 Biaya sub kontraktor perlengkapan pada metode advanced outfitting system	81
Tabel 6. 8 Perbandingan biaya pembangunan kapal tiap metode	82
Tabel 6. 9 Biaya investasi fasilitas galangan PT. X	83
Tabel 6. 10 Jumlah peserta pengembangan SDM	84

BAB 1

BAB 1 PENDAHULUAN

1.1. Latar Belakang Masalah

Saat ini, waktu pembangunan kapal di Indonesia masih tergolong lama. Butuh sekitar 12-24 bulan untuk menyelesaikan pembangunan satu kapal, tergantung ukurannya. Seperti yang terjadi pada proyek pembangunan kapal PT. Pertamina oleh PT. Sochi Lines Tbk., pembangunan kapal baru selesai 3 tahun dari rencana awal pembangunan 2 tahun. Hal ini dikarenakan keterbatasan perusahaan dalam memahami *nature of business* proyek pembangunan kapal. Pada kasus yang hampir sama, keterlambatan pembangunan kapal juga terjadi di PT. Dok dan Perkapalan Surabaya dalam membangun dua kapal 8000 DWT SPCB milik PT. Tonasa Lines. Rencana awal pembangunan yang hanya membutuhkan waktu 12 bulan, mengalami keterlambatan menjadi 29 bulan. Indikasi terbesar penyebab keterlambatan berasal dari proses produksi yang terganggu, seperti pembangunan badan kapal yang direncanakan selama 188 hari menjadi 368 hari

Mayoritas keterlambatan pembangunan kapal tersebut terjadi karena faktor internal galangan yang berkaitan dengan proses produksi kapal. Selama ini, sebagian besar proses produksi di galangan nasional masih banyak menggunakan metode konvensional, yaitu instalasi perlengkapan kapal dengan *on-board outfitting*. Konsep utama metode ini adalah melakukan pemasangan perlengkapan kapal yang dilakukan setelah konstruksi kapal selesai. Jelas metode ini akan memakan waktu yang lebih lama, seperti yang ada pada data pembangunan kapal SPCB di atas, waktu yang dibutuhkan untuk membangun konstruksi kapal lengkap dengan *outfitting*-nya adalah 322 hari. (Kurniawan, 2015)

Maka dari itu, dibutuhkan metode baru dalam pembangunan kapal untuk mempersingkat waktu produksi. Pada tahun 2003, SNAME mempublikasikan hasil riset tentang metode baru dalam pemasangan *outfitting* kapal, mereka menyebutnya sebagai *Improved Outfit Process*. Inti dari metode ini adalah menciptakan inovasi proses *outfitting* yang dilakukan lebih awal pada saat masih dalam bentuk blok atau bahkan unit (Storch, Hammon, & Bunch, 1988). Sembilan tahun setelah itu, Rajko Rubesa melakukan penelitian tentang *advanced outfitting* system dengan mempertimbangkan implikasinya terhadap efektivitas, produktivitas, dan biaya pembangunan kapal. Hasilnya, proses pembangunan kapal dengan *advanced outfitting* system dapat menekan biaya proses outifitting hingga 80%. Hal itu bisa

terjadi karena metode ini bisa menekan waktu pengerjaan *outfitting*, sehingga biaya untuk pekerja dapat diturunkan. (Storch et al., 1988)

Dari uraian tersebut, *advanced outifitting system* diharapkan menjadi alternatif solusi bagi galangan kapal nasional untuk mempersingkat proses pembangunan kapal, sekaligus untuk menekan biaya produksinya. Namun di sisi lain, perlu dilakukan pengujian secara teknis dan ekonomis terhadap apa saja yang perlu dipersiapkan oleh galangan kapal nasional untuk bisa menerapkan metode ini.

1.2. Perumusan Masalah

Rumusan masalah dalam penelitian pengembangan galangan kapal dengan menggunakan *advanced outfitting system* adalah:

- 1. Bagaimana metode pembangunan kapal yang diterapkan di galangan kapal saat ini?
- 2. Bagaimana metode pembangunan advanced outfitting system yang benar?
- 3. Bagaimana implikasi biaya pembangunan kapal yang dibutuhkan untuk mengubah metode konvensional ke *advanced outfitting system*?

1.3. Tujuan

Tujuan dari penelitian pengembangan galangan kapal dengan menggunakan *advanced outfitting system* adalah:

- Mengidentifikasi metode pembangunan konvensional yang dilakukan di galangan kapal saat ini
- 2. Merencanakan pembangunan kapal menggunakan metode pembangunan *advanced outfitting system* yang benar
- 3. Menentukan biaya pembangunan kapal yang dibutuhkan untuk metode konvensional dan *advanced outfitting system*

1.4. Batasan Masalah

Jumlah galangan kapal kecil – menengah di Indonesia sangat banyak, dan semua galangan itu masih menerapkan metode konvensional dalam membangun kapal. Maka dari itu, dibutuhkan batasan masalah untuk memperkecil ruang lingkup penelitian. Berikut ini adalah batasan masalah penelitian ini:

- 1. Galangan kapal yang menjadi obyek penelitian adalah salah satu perusahaan galangan kapal yang ada di Surabaya yang selanjutnya disebut dengan PT. X.
- 2. Kapal yang dilakukan obyek studi adalah jenis kapal penumpang barang dengan ukuran 2000GT.

3. Advanced outfitting system yang digunakan mencakup sistem perpipaan dan permesinan, deck machinery, dan deck outfitting.

1.5. Manfaat

Penelitian tentang pengembangan galangan kapal dengan menggunakan *advanced outfitting system* diharapkan dapat memberikan manfaat seluas-luasnya kepada beberapa pihak seperti:

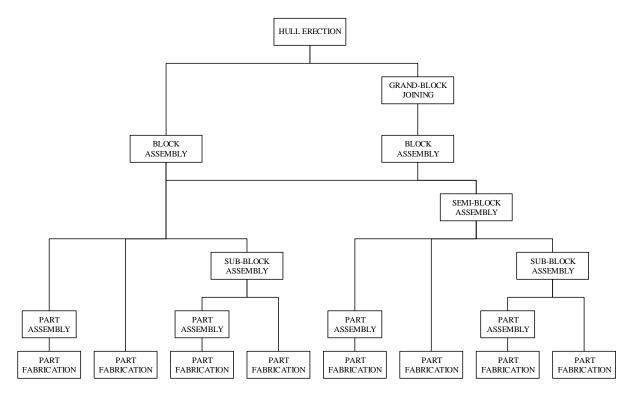
- 1. Akademisi, bisa sebagai bahan pembelajaran dalam memahami perkembangan teknologi produksi kapal yang terbaru dan lebih efisien.
- 2. Praktisi galangan, *advanced outfitting system* dapat menjadi alternatif untuk memotong waktu produksi dan memangkas biaya produksi yang berlebih..
- 3. Pemilik kapal, *advanced outfitting system* dapat mempercepat proses pembangunan kapal sehingga waktu pengiriman kapal bisa dipercepat.

1.6. Hipotesis

Metode *advanced outfitting system* memungkinkan pembangunan konstruksi badan kapal dan perlengkapan dilakukan secara bersamaan pada tahap pembangunan blok, sehingga dapat menurunkan biaya produksi kapal

Halaman ini sengaja dikosongkan

BAB 2



BAB 2 STUDI LITERATUR

2.1. Proses Pembangunan Kapal

Pembangunan kapal memerlukan perencanaan yang matang dari segi teknis, biaya, waktu dan pekerja yang akan dilibatkan. Dalam aspek teknisnya, metode pembangunan kapal dapat dilakukan dengan membagi kapal menjadi blok-blok konstruksi yang selanjutnya disebut dengan metode HBCM (*Hull Block Construction Method*). Metode ini memungkinkan pekerjaan pembangunan menjadi lebih cepat, karena konstruksi kapal dapat dikerjakan secara bersamaan. Berikut ini adalah alur pembangunan kapal dalam metode HBCM (Storch et al., 1988)

Gambar 2. 1Alur pembangunan kapal dengan metode HBCM

Alur metode HBCM yang ada pada Gambar 2. 1 menunjukkan tahap-tahap yang dilalui untuk membangun sebuah konstruksi kapal secara utuh. Dimulai dari tahap pembuatan bagian terkecil, perakitan, pengelasan antar panel, pembangunan blok, hingga proses penggabungan blok menjadi kapal utuh. Berikut ini adalah uraian pekerjaan yang dilakukan dalam metode HBCM:

1. Part Fabrication

Tahap *part fabrication* adalah pembuatan bagian terkecil penyusun konstruksi kapal, sistem perpipaan, sampai *deck outfitting*. Untuk bisa mengetahui bagian terkecil yang dibutuhkan dalam pembuatan kapal, digunakan metode *product work breakdown structure* yang akan dijelaskan dalam sub bab selanjutnya.

Proses pembuatan bagian terkecil kapal dilakukan dengan kegiatan-kegiatan seperti cutting, bending, dan marking. Cutting adalah kegiatan pemotongan pelat menjadi bagian kapal seperti pelat geladak dan bracket dengan ukuran yang sesuai kebutuhan. Bending adalah kegiatan pembengkokan profil dan pelat supaya bisa menyesuaikan dengan bentuk yang diinginkan. Sedangkan, marking adalah proses pemberian tanda pada bagian yang sudah difabrikasi supaya tidak tertukar dengan bagian kapal yang lain. Hal ini dilakukan untuk meminimalisasi kesalahan dalam proses selanjutnya. Setelah melalui proses cutting, bending, dan/atau marking, hasil dari level produksi ini selanjutnya disebut dengan piece part.

2. Part Assembly

Tahap *part assembly* baru dilakukan hanya jika dibutuhkan proses pengelasan *piece part* menjadi bagian yang siap digabung menjadi panel. Contoh dari proses ini adalah pengelasan *face* dan *web* untuk *stringer* dan penegar lainnya yang tidak bisa ditemukan ukurannya di pasaran.

3. Sub-Block Assembly

Level produksi *sub-block assembly* adalah proses penggabungan *piece part* dari hasil *part fabrication* menjadi panel-panel. Panel adalah konstruksi yang berbentuk gabungan dari profil dan pelat dalam bentuk datar. Menurut bentuknya, panel dibagi menjadi dua macam, *flat panel* dan *curved panel*. *Flat panel* adalah panel yang berbentuk bidang datar, seperti yang ditemui di bagian geladak kapal atau di bagian *parallel middle body*. Sedangkan, *curved panel* adalah panel yang memiliki bentuk yang berkurva, mengikuti bentuk bagian tertentu dari kapal. Panel seperti ini banyak ditemui di bagian haluan dan buritan kapal. Proses pekerjaan yang dilakukan dalam tahap ini meliputi *fitting* dan *welding*. *Fitting* adalah kegiatan pemasangan pelat dengan pelat, atau pelat dengan profil, namun hanya dilakukan dengan pengelasan secara menyeluruh. Sedangkan, *welding* adalah kegiatan pengelasan secara menyeluruh. Sedangkan, *welding* adalah kegiatan pengelasan secara penuh. Tentu, proses ini disesuaikan dengan WPS yang sudah diakui oleh badan klasifikasi yang bersangkutan.

4. Block Assembly

Block assembly adalah proses pemasangan panel-panel menjadi blok konstruksi kapal. Ukuran dan berat blok yang akan dibuat, sudah didefinisikan terlebih dahulu pada saat perencanaan produksi kapal. Beberapa hal yang perlu diperhatikan sebelum membagi blok adalah sebagai berikut:

a. Ketersediaan ukuran pelat di pasar

Semakin besar ukuran pelat yang ada di pasaran, dapat mempercepat proses pemasangan panel menjadi blok. Hal ini sangat menguntungkan bagi galangan kapal karena tidak banyak biaya yang dikeluarkan untuk proses pengelasan. Namun, tidak semua ukuran pelat yang dibutuhkan ada di pasaran. Maka dari itu, proses pembagian blok harus memerhatikan ketersediaan ukuran pelat di pasaran.

b. Kapasitas *crane*

Sebagai perencana pembangunan kapal, ukuran blok yang lebih besar dapat memungkinkan pekerjaan lebih cepat dilakukan. Namun, fasilitas pengangkat blok juga harus diperhatikan. Karena tidak semua galangan kapal memiliki kapasitas *crane* yang besar untuk mengangkat blok dengan berat yang besar. Maka dari itu, perencanaan pembagian blok juga harus memerhatikan SWL (*safety working load*) *crane* yang tersedia di galangan kapal.

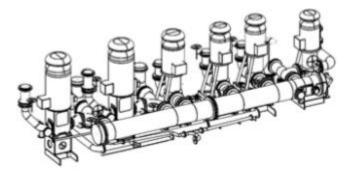
c. Luas assembly area

Ukuran blok yang direncanakan juga harus memerhatikan luasan *assembly area* yang tersedia di lapangan. Bukan hanya ukuran, jumlah proyek yang berjalan bersamaan juga harus diperhatikan supaya ukuran blok tidak terlalu memakan tempat *assembly area*. Maka dari itu, ukuran blok tidak mungkin direncanakan melebihi *assembly area* yang tersedia.

5. Hull Erection

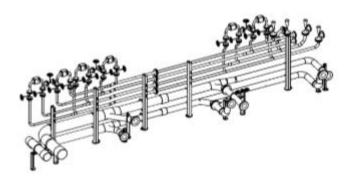
Erection adalah tahap terakhir dalam pembangunan kosnstruksi kapal. Di tahap ini, dilakukan proses fitting dan welding untuk menggabungkan beberapa blok kapal menjadi kapal utuh. Dalam beberapa kasus khusus, kegiatan fairing juga dilakukan untuk memperbaiki deformasi yang terjadi antar blok kapal. Sehingga jarak antar blok (gap) sesuai dengan yang disyaratkan dalam WPS. Setelah proses pengelasan selesai dilakukan, hasil erection selanjutnya akan diinspeksi untuk mengetahui keberadaan cacat las di badan kapal. Hal ini penting dilakukan untuk menghindari resiko keretakan dan/atau kebocoran pada saat kapal beroperasi. (Storch et al., 1988)

2.2. Proses Pemasangan Outfitting Kapal


Pembangunan kapal memiliki proses pemasangan *outfitting* (perlengkapan) kapal yang dilakukan setelah dan/atau bersamaan dengan proses pengerjaan konstruksi selesai dilakukan. Maka dari itu, jenis metode pemasangan perlengkapan kapal dibagi dalam beberapa kategori, berdasarkan pada waktu pemasangannya (Rubeša, Fafandjel, & Koli, 2011). Berikut ini adalah beberapa kategori pemasangan perlengkapan kapal:

1. On-Unit Outfitting

Yaitu proses pemasangan perlengkapan kapal yang dilakukan di unit perlengkapan itu sendiri. Seperti contoh, proses perakitan komponen permesinan kapal sebelum dipasang di kamar mesin. contoh lainnya, proses perakitan komponen winch menjadi satu kesatuan winch yang terdiri dari rope drum, clutch, main shaft, bed plate, pondasi, dll.. Atau unit hatch cover yang dijadikan satu dengan hatch coaming-nya sebelum dipasang secara bersamaan di dek kapal. Biasannya, perakitan komponen dilakukan dalam bengkel terkait. Jika perakitan mesin, maka proses perakitan dilakukan di bengkel permesinan, begitu pula dengan yang lainnya.


Unit outfitting menjadi konstruksi awal dalam pemasangan outfitting, seperti yang terdapat pada Gambar 2. 2. Pembuatan unit outfitting hanya memerlukan satu level produksi. Namun, karena sistem yang ada di dalam kapal ada bermacam-macam, dan jumlahnya juga beragam, maka unit outfitting bisa dikelompokkan menjad dua hal:

- 1. Ukuran besar, yaitu *unit outfitting* yang memiliki berat lebih dari 1 ton
- 2. Ukuran kecil, yaitu *unit outfitting* yang memiliki berat kurang dari sama dengan 1 ton. Secara lebih lanjut, unit outfitting bisa juga diklasifikasikan dalam beberapa *problem area* berikut:
- 1. *Machinery unit*, yang terdiri dari permesinan, pondasi, *valve*, konstruksi penyangga lainnya, dan komponen yang berdekatan dengan permesinan

Gambar 2. 2 Konstruksi machinery unit yang dibuat dalam on-unit outfitting zone (Sumber: Rubeša et al., 2011)

2. *Pipe unit* (tanpa permesinan), yang terdiri dari perpipaan yang dikombinasikan dengan valve, konstruksi penyangga, *walkways*, All. Contoh gambar *pipe unit* ada pada Gambar 2.

Gambar 2. 3 Konstruksi pipe unit yang dibuat dalam on-unit outfitting zone (Sumber: Rubeša et al., 2011)

3. Lain-lain, seperti hacth cover dengan hacth coaming, mast, dll. (Storch et al., 1988)

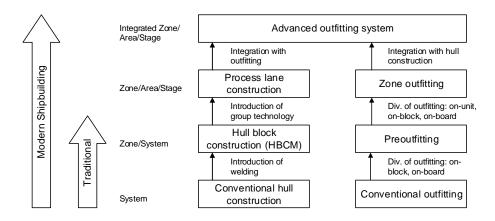
2. On-Block Outfitting

Yaitu proses pemasangan perlengkapan kapal yang dilakukan pada saat proses block assembly sedang berlangsung. Bentuk perlengkapan kapal bisa berupa unit outfitting atau komponen terkecil dari outfitting. Seperti contoh, pemasangan sistem perpipaan yang melewati blok atau komponen permesinan yang ada di dalam blok, seperti yang ada pada Gambar 2. 4. Meski demikian, proses pemasangan outfitting di dalam blok juga harus bisa dikerjakan dengan mudah, serta memperhatikan faktor keamanan untuk pekerja. Seperti proses pemasangan outfitting di bagian atap (ceiling). Blok kapal harus dibalik terlebih dahulu agar pemasangan outfitting lebih mudah dilakukan. Lalu disusul dengan pemasangan outfitting di blok bagian bawah. Seperti pemasangan sistem perpipaan di dalam alas ganda, baru disusul dengan pemasangan panel alas ganda.

Secara khusus, pembagian kerja *on-block outfitting* membutuhkan spesialisasi pembagian kerja yang berbeda beda. tergantung bagian kapal yang akan dikerjakan. Maka dari itu, zona pekerjaan dibagi menjadi tiga, bagian lambung kapal, permesinan, dan *superstucture*. Lebih lanjut lagi, terdapat enam pembagian berdasarkan jumlah perlengkapan yang terpasang di dalam blok kapal:

- 1. Lambung: perlengkapan dalam jumlah yang banyak dan dalam jumlah yang sedikit
- 2. Permesinan: perlengkapan dalam jumlah yang banyak dan dalam jumlah yang sedikit
- 3. Superstructure: perlengkapan dalam jumlah yang banyak dan dalam jumlah yang sedikit

Jika perlengkapan kapal yang akan dipasang hanya sedikit, maka proses pemasangan bisa dilakukan bersamaan dengan proses *assembly* tiap panel. Namun, jika jumlah perlengkapan yang akan dipasang terlalu banyak, proses pemasangannya harus dilakukan setelah *assembly* selesai dan dilakukan di tempat lain supaya bisa digunakan untuk proses *assembly block* yang selanjutnya. (Storch et al., 1988)


Gambar 2. 4 On-block outfitting pada side shell di ruang mesin (Sumber: Storch et al., 1988)

3. On-Board Outfitting

Yaitu proses pemasangan perlengkapan kapal yang dilakukan di *building berth* pada saat proses *erection* dilakukan atau saat kapal baru saja diluncurkan. Perlengkapan kapal yang dipasang secara *on-board* adalah segala hal yang tidak bisa dipasang secara *on-unit* dan *on-board*. Tidak terpasangnya perlengkapan secara *on-unit* dan *on-board* karena faktor efektivitas. Seperti instalasi kelistrikan, yang lebih baik dipasang secara *on-board* tanpa harus memotong kabel dari satu blok ke blok lainnya. Faktor lainnya adalah ketersediaan tempat, seperti proses pemasangan mesin utama yang terletak diantara dua blok. Oleh karenanya, mesin utama hanya bisa dipasang pada saat blok satu dan yg lain selesai diereksi.

2.3. Advanced Outfitting System

Advanced outfitting system (AOS) adalah metode pembangunan kapal dengan melakukan pemasangan sistem perlengkapan dan peralatan sebisa mungkin sebelum proses erection dilakukan (Rubeša et al., 2011). Sehingga, pemasangan outfitting dilakukan dengan cara on-unit dan on-block. Pembeda terbesar antara metode on board outfitting dengan metode AOS adalah level teknologi produksi yang digunakan, seperti yang tertera pada Gambar 2. 5.

Gambar 2. 5 Perbedaan level teknologi produksi metode HBCM dengan AOS (Sumber: Okayama, 1983)

Pada gambar di atas, dijelaskan perbedaan level teknologi produksi yang digunakan dalam metode pembangunan secara konvensional (skeletal), *hull block construction*, sampai dengan *advanced outfitting system*. Tiga metode pembangunan konstruksi kapal tersebut memiliki perbedaan bergantung pada penerapan teknologi dan metode produksinya. Berikut ini adalah penjelasan lebih lanjut,

- 1. Conventional hull construction adalah metode pembangunan kapal yang dilakukan dengan teknologi keling untuk menyambung antar-pelat dan profil. Di level yang sama, conventional outfitting hanya mengenal pemasangan perlengkapan kapal pada saat proses pembangunan konstruksi kapal selesai dilakukan.
- 2. Hull block construction method adalah metode pembangunan kapal dengan membagi badan kapal menjadi beberapa blok konstruksi. Sehingga proses pengerjaan konstruksi kapal bisa dilakukan secara bersamaan. Dengan harapan proses pembangunan kapal dapat dikerjakan lebih cepat. Untuk proses pengerjaan outfitting, di level yang sama sudah mengenal metode preoutfitting. Yaitu pengerjaan outfitting yang sudah membagi pekerjaan outfitting menjadi dua bagian. Bagian yang dilakukan secara on-block, dan on-board.
- 3. Advanced outfitting system adalah metode pembangunan kapal yang sudah menerapkan metode pembangunan konstruksi secara HBCM, process lane sudah dipisah berdasarkan bidang masalahnya, dan pemasangan outfitting yang sudah diintegrasikan dengan pembangunan konstruksi kapal.

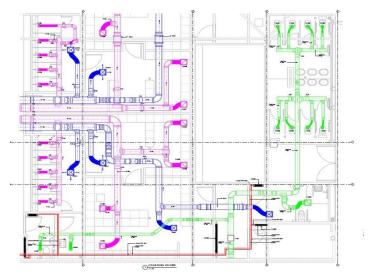
Tiga penjelasan metode pembangunan kapal di atas menggambarkan metode *advanced outfitting system*-lah yang membutuhkan kombinasi metode produksi yang lebih kompleks dari pada yang lain. Mulai dari penguasaan teknologi produksinya, metode pembangunan konstruksi badan kapal, sampai metode pemasangan *outfitting*.

A. HBCM dalam AOS

Hull block construction dalam advanced outfitting system mempertimbangkan banyak hal selain ukuran pelat dan safe working load (SWL) crane yang dimiliki perusahaan. Perencanaan desain konstruksi kapal, perpipaan, dan segala perlengkapan lainnya juga harus diperhatikan sebelum pembagian blok dilakukan. Hal ini ditujukan untuk meminimalisasi kesalahan produksi, pemborosan material, dan proses pemasangan yang menyulitkan pekerja lapangan.

B. Zone Outfitting dalam AOS

Zone outfitting adalah proses pemasangan outfitting yang sudah mempertimbangkan bidang masalah yang sesuai untuk setiap perlengkapan kapal. Setiap macam outfitting akan dibagi menjadi tiga macam metode pemasangan, yaitu, on-unit on-block, dan on-board outfitting (Lamb & Arbor, 1986). Tiga macam metode ini memiliki bidang masalah yang sama, dan alur produksi yang sama pula. Seperti contoh, pembuatan on-unit outfitting memerlukan proses pembuatan konstruksi untuk dudukan beberapa peralatan supaya menjadi satu unit outfitting. Lalu unit tersebut akan dipasang pada saat proses erection sedang berlangsung. Begitu pula dengan unit-unit yang lainnya.


C. PWBS dalam AOS

PWBS atau product work breakdown structure adalah metode perencanaan produksi kapal yang bertujuan untuk mengidentifikasi jenis bahan baku, komponen, serta proses produksi yang dibutuhkan untuk membuat sebuah kapal utuh. Data yang diperlukan untuk membuat PWBS adalah basic design, functional design, transition design, dan work instruction design. Basic design yang meliputi rencana umum dan rencana garis menggambarkan gambaran kapal utuh ketika sudah selesai diproduksi. Functional design salah satunya berisi tentang pembagian blok kapal untuk keperluan pembangunan supaya bisa dikerjakan secara bersamaan. Transition design berisi tentang composite drawing yang mengambarkan blok yang sudah terpasang perlengkapan kapal. Luaran dari composite drawing adalah work instruction design yang menjelaskan bahan baku, proses pengerjaan, sampai komponen yang akan dihasilkan dari pekerjaan tersebut.

D. Composite Drawing dalam AOS

PWBS dalam AOS dan metode lainnya sangat berbeda, terutama dalam tahap transition design. Composite drawing metode konvensional hanya menggambarkan blok kapal secara rinci saja. Sedangkan dalam metode AOS, composite drawing yang dihasilkan sudah

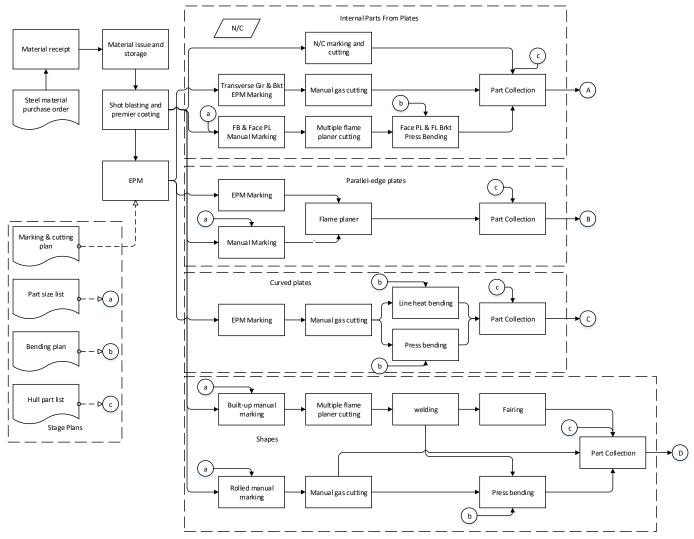
meliputi lokasi pemasangan perlengkapan kapal yang akan dipasang *on-block*, ukurannya, serta jumlahnya.

Gambar 2. 6 *Composite drawing* di dalam ruang mesin (Sumber: www.teslacad.co.uk, 2019)

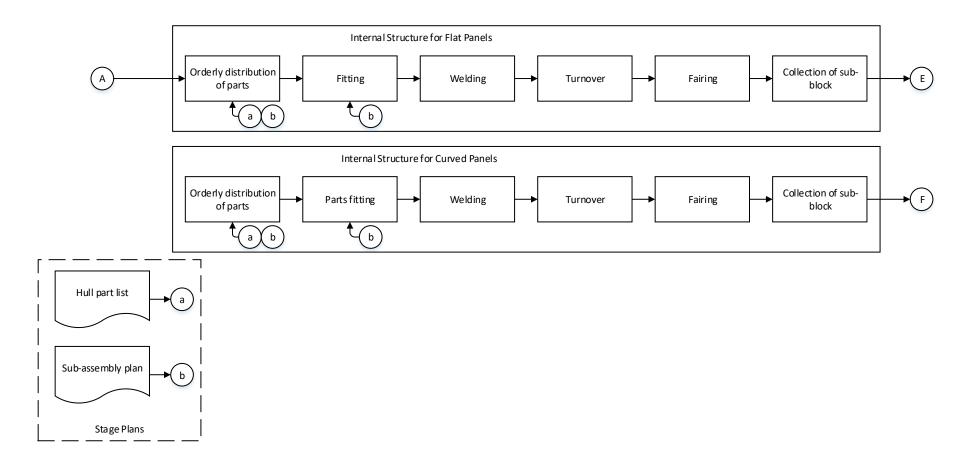
Gambar 2. 6 di atas menjelaskan sketsa sistem perpipaan dan peralatan yang digabung menjadi satu di dalam suatu ruangan. Di dalamnya terdapat pompa sistem pemadam kebakaran, sistem *inert gas*, serta sistem pendingin generator listrik menggunakan air laut (Storch et al., 1988). Gambar ini didapatkan dengan melakukan *overlay* gambar *construction profile*, *block division*, dan semua sistem perpipaan sepanjang kapal.

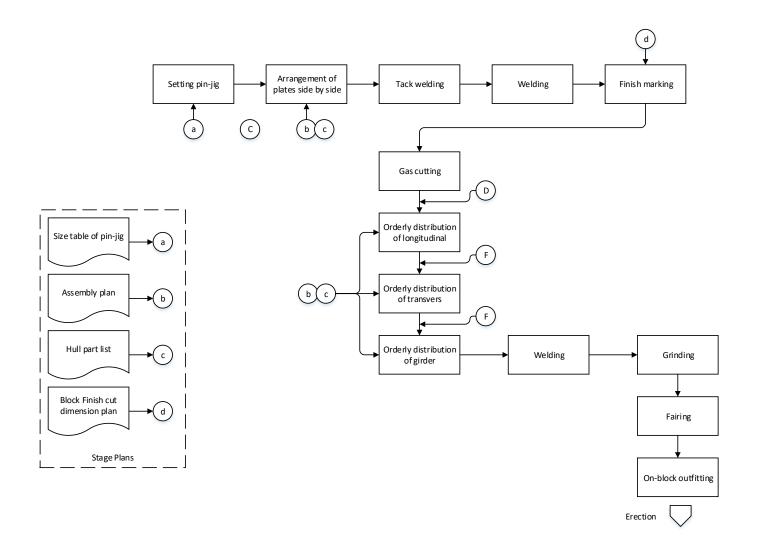
2.4. Work Process Lane (Alur Urutan Pekerjaan)

Pembangunan kapal juga memiliki urutan pelaksanaan yang sistematis dan terarah. Tujuan utama adanya urutan pelaksanaan pekerjaan adalah untuk memberikan gambaran umum bagaimana kapal nanti akan dibangun, proses apa saja yang akan dilalui, dan komponen apa saja yang akan dibuat (Okayama, 1983). Aspek lainnya yang perlu diperhatikan dalam menyusun urutan pelaksanaan pekerjaan adalah aspek *problem area* (bidang masalah) di tiap proses produksi kapal. Seperti, urutan pelaksanaan pengerjaan blok yang berbidang datar (*flat block*) tidak disamakan dengan blok yang bidangnya melengkung (*curved block*). Begitu juga yang dilakukan pada saat proses fabrikasi komponen pelat yang berbidang datar dan berbidang lengkung.


Pada Gambar 2. 8 dan Gambar 2. 9 dijelaskan alur pengerjaan proses fabrikasi dan *sub-assembly* blok berbidang datar yang sudah dikelompokkan berdasarkan bidang masalahnya. Seperti contoh, pembuatan pelat berbidang datar memiliki alur proses produksi yang lebih singkat dari pada pembuatan pelat berbidang lengkung. Di dalam proses pembuatan pelat

berbidang datar, tidak memerlukan proses pembengkokan. Sehingga pelat yang sudah selesai dipotong dan diberi tanda, langsung disimpan dan dikelompokkan menurut ukuran dan lokasi pemasangannya (*palletizing*). Sedangkan, proses fabrikasi pelat berbidang lengkung harus melalui proses pembengkokan. Baik yang dilakukan dengan metode *line heat bending* atau metode *press bending*. Setelah itu komponen kapal baru bisa diberi tanda dan disimpan.


Proses *assembly* blok kapal dengan metode AOS juga mengharuskan pembedaan urutan pengerjaan blok yang berbidang datar dan berbidang lengkung, lihat Gambar 2. 10. Pembedaan ini dilakukan untuk menjaga akurasi pemasangan perlengkapan yang akan dipasang di dalam blok. Sebagai contoh, proses pengerjaan blok berbidang lengkung harus menggunakan *pin-jig*, yaitu sebuah alat yang berfungsi sebagai dudukan blok kapal. *Pin-jig* (lihat Gambar 2. 7) ini bisa diatur ketinggianya sehingga dapat menyesuaikan bentuk pelat lengkung yang akan diletakkan di atasnya. Setalah pelat lengkung diletakkan, barulah dipasang pembujur dan pelintang yang ada di dalam blok tersebut. Lalu disusul dengan pemasangan *outfitting* di dalam blok. Hasil *assembly flat block* dan curved *block* yang sudah jadi, selanjutnya dikirim ke *building berth* untuk dilakukan proses *erection*.


Gambar 2. 7 Pin jig yang bisa diatur ketinggiannya (Sumber: Storch et al., 1988)

Gambar 2. 8 Urutan pekerjaan fabrikasi dalam metode AOS (Sumber: Okayama, 1983)

Gambar 2. 9 Urutan pekerjaan *sub-assembly flat panel* dalam metode AOS (Sumber: Okayama, 1983)

Gambar 2. 10 Urutan pekerjaan *assembly flat panel* dalam metode AOS (Sumber: Okayama, 1983)

2.5. Perencanaan Pengembangan Fasilitas Galangan

Perencanaan fasilitas merupakan suatu kegiatan yang dilakukan sebelum dan setelah perusahaan beroperasi. Perencanaan ini menentukan bagaimana suatu asset tetap perusahaan digunakan dengan baik untuk menunjang tujuan perusahaan (Tompkins, 1996). Bagi suatu perusahaan galangan kapal, perencanaan fasilitas produksi digunakan secara efektif dan efisien dalam menunjang kegiatan pembangunan kapal. Proses perencanaan fasilitas produksi merupakan suatu proses yang berkelanjutan. Daur hidup fasilitas produksi melalui fase-fase seperti berikut:

- 1. Fase I, menetapkan tujuan
- 2. Fase II, mengembangkan rencana fasilitas
- 3. Fase III, menerapkan rencana fasilitas

2.5.1. Perencanaan Tata Letak Galangan

Perencanaan tata letak galangan kapal merupakan suatu proses yang sangat penting untuk dilakukan sebaik mungkin. Beberapa hal yang perlu diperhatikan dalam merencanakan tata letak galangan kapal adalah sebagai berikut:

1. Jenis proses produksi

Proses produksi kapal terdiri dari 2 jenis kegiatan pokok yaitu *hull construction* dan *outfitting work*. Jenis kegiatan ini perlu disusun dalam bentuk arus kegiatan/material sejak dari kedaangan material sampai dengan kapal siap diserahkan

2. Arah Masuk/Keluar Material Flow

Titik awal dan titik akhir dari proses produksi tersebut akan sangat ditentukan oleh metode pengiriman bahan baku pembuatan kapal, baik yang dikirim melalui darat atau laut. Titik dimana material itu datang adalah titik awal (*starting point*) dari urutan produksi yang telah direncanakan termasuk kemudian pada area lahan yang tersedia.

3. Perhitungan Luas Fasilitas Utama

Perhitungan luas area masing-masing fasilitas yang diperlukan sesuai dengan kapasitas produksi yang direncanakan. Luas area produksi yang perlu dihitung adalah: gudang pelat/profil, bengkel persiapan, bengkel fabrikasi, bengkel *assembly*, *building berth*, dan bengkel *outfitting*.

4. Penentuan Lokasi Fasilitas Utama

Peletakan lokasi fasilitas utama galangan kapal adalah panduan utama peletakan fasilitas penunjang yang lain. Dengan memperhatikan ketersediaan lahan yang ada di perusahaan

tersebut, maka fasilitas utama galangan kapal diletakkan pada proporsi urutan produksi yang sesuai.

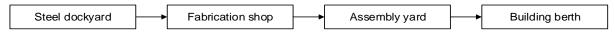
5. Penentuan Lokasi Fasilitas Penunjang

Peletakan fasilitas penunjang merupakan kegiatan yang membutuhkan usaha lebih untuk mencari hasil yang optimal. Sehingga dapat memungkinkan terjadinya beberapa kali perubahan pada saat proses *trial and error*. Hasil optimal yang dimaksud adalah dengan memertimbangkan factor-faktor lain seperti keselamatan kerja, efisiensi, dan pemanfaatan lahan secara optimal.

2.5.2. Tujuan Tata Letak Galangan

Tujuan utama yang ingin dicapai dalam perencanaan tata letak industri galangan kapal pada dasarnya adalah meminimalkan biaya dengan meningkatkan efisiensi pekerjaan. Di samping itu, tujuan dari perencanaan tata letak galangan adalah utnuk memberikan suasana kerja yang relatif nyaman, sistem kerja yang teratur, dan kemudahan dalam perawatan keseluruhan sistem. Sedangkan tujuan penataan sarana produksi adalah:

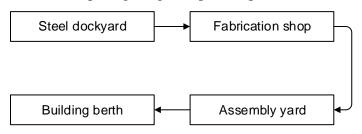
- 1. Mengurangi jarak kerja *material handling*
- 2. Menghindari gangguan dalam frekuensi produksi
- 3. Mempermudah perawatan sarana produksi
- 4. Menekan biaya produksi
- 5. Mengingkatkan faktor keselamatan kerja
- 6. Meningkatkan efisiensi produksi
- 7. Meningkatkan mutu hasil produksi
- 8. Memudahkan proses pengawasan


2.5.3. Tipe Dasar Perencanaan Tata Letak Galangan Kapal

Tata letak galangan kapal dipengaruhi oleh beberapa faktor yang harus diperhatikan seperti efisiensi kerja, keselamatan kerja, dan jarak *material handling*. Di samping itu, tata letak galangan kapal juga memiliki pola yang memiliki maksud tersendiri. Berikut ini adalah tipetipe tata letak galangan kapal berdasarkan polanya:

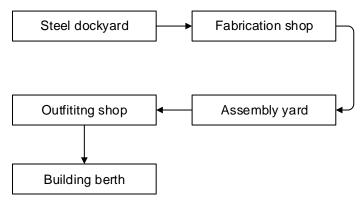
1. Garis Lurus

Dapat digunakan jika proses pembangunan kapal relatif pendek, sederhana, dan umumnya terdiri dari beberapa komponen atau beberapa macam peralatan produksi. Pola aliran bahan berdasarakan garis lurus ini akan memberikan jarak terpendek antara dua titik. Aktivitas produksi juga akan berlangsung sepanjang garis lurus, dari mesin nomor satu sampai ke mesin


terakhir, jarak pemindahan bahan secara total akan lebih kecil. Contoh tata letak berbentuk garis lurus pada galangan kapal ada pada Gambar 2. 11

Gambar 2. 11 Layout galangan tipe garis lurus

2. Bentuk U (U-Shaped)


Pola aliran bentuk U dapat diterapkan jika diharapkan produk jadinya mengkhiri proses pada tempat yang relatif sama dengan proses awal. Hal ini dengan mempertimbangkan keadaan transportasi material di luar pabrik, pemakaian mesin secara bersamaan, dan sebagainya. Contoh tata letak berbentuk U pada galangan kapal ada pada Gambar 2. 12

Gambar 2. 12 Layout galangan tipe U

3. Bentuk Zig Zag (S-Shaped)

Dapat diterapkan jika lintasan lebih panjang dari ruangan yang dapat digunakan untuk ditempatinya. Tujuannya adalah untuk menghemat pemakaian lahan produksi namun tidak mengganggu proses produksi yang akan dilakukan. Contoh tata letak berbentuk Z pada galangan kapal ada pada Gambar 2. 13

Gambar 2. 13 Layout galangan tipe S

2.6. Investasi

Investasi adalah penanaman modal yang dilakukan oleh investor, baik investor asing maupun domestic dalam berbagai bidang usaha yang terbuka untuk investasi. Tujuan dari kegiatan investasi adalah untuk memperoleh berbagai manfaat yang cukup layak di masa yang

akan datang (Pujawan, 2004). Manfaat tersebut dapat berupa imbalan keuangan, imbalan non-keuangan atau kombinasi dari keduanya.

Penanaman investasi terhadap kegiatan produksi kapal haruslah dipertimbangkan dengan matang untuk menghindari kerugian akibat perencanaan yang salah. Maka dari itu, diperlukan studi kelayakan investasi untuk bisa dinilai apakah investasi tersebut layak dilanjutkan atau sebaliknya. Metode yang digunakan dalam studi kelayakan investasi adalah sebagai berikut:

- 1. NPV (Net Present Value)
- 2. Rasio B/C (ratio of benefit and cost)
- 3. IRR (*Internal rate of return*)
- 4. Payback period, yang digunakan untuk menghitung periode pengembalian investasi.
- 5. BEP (*Break even point*) dan analisis sensitivitas yang digunakan untuk menghitung kuantitas produk yang harus terjual supaya modal bisa kembali.

Di dalam perencanaan investasi dibutuhkan perhitungan sebagai berikut:

1. Ketersediaan pasar dan pemasaran

Evaluasi aspek pasar dan pemasaran meliputi kedudukan produk yang direncanakan pada saat ini, komposisi dan perkembangan permintaan produk, mulai dari yang lampau sampai saat sekarang, proyeksi permintaan di masa yang akan datang, kemungkinan persaingan dan peranan pemerintah dalam menunjang perkembangan pemasaran.

2. Evaluasi teknis

Evaluasi teknis meliputi penentuan kapasitas produksi ekonomis proyek, jenis teknologi yang paling sesuai, serta penggunaan mesin dan peralatan. Di samping itu, perlu diteliti dan diajukan saran tentang lokasi proyek dan tata letak pabrik yang paling menguntungkan ditinjau dari berbagai segi. Selain itu, evaluasi teknis meliputi kebutuhan tenaga kerja, sarana produksi, dan rencana pengembangannya di masa yang akan datang.

3. Manajemen operasi proyek

Proyek tidak dapat beroperasi dengan baik tanpa didukung dengan tenaga manajemen yang kapabel, bermotivasi, dan berdedikasi. Sebelum keputusan investasi diambil, harus ada gambaran terlebih dahulu tentang tenaga manajemen yang dipekerjakan. Agar dapat menarik dan memertahankan tenaga ahli yang berdedikasi tinggi, proyek yang direncanakan harus mampu menyediakan dana balas jasa yang memadai pula.

4. Aspek Ekonomi dan Keuangan

Untuk menentukan kelayakan investasi ditinjau dari aspek keuangan dapat diukur dengan beberapa kriteria. Setiap nilai kelayakan diberikan standar untuk usaha yang sejenis dengan

cara membandingkan dengan target yang telah ditentukan. Kriteria sangat bergantung pada kebutuhan masing-masing perusahaan dan metode mana yang digunakan. Setiap metode memiliki kelebihan dan kelemahannya masing-masing. Dalam penilaian suatu usaha hendaknya penilai menggunakan beberapa metode sekaligus. Artinya, semakin banyak metode yang digunakan, maka semakin memberikan gambaran lengkap sehingga diharapkan memberikan hasil yang akan diperoleh menjadi lebih sempurna.

Kriteria yang dapat digunakan untuk meninjau kelayakan investasi dari sebuah usaha adalah sebagai berikut:

1. Payback Period (PP)

Metode *payback period* (PP) merupakan bentuk teknik penilaian terhadap jangka waktu (periode) pengambilan investasi untuk proyek atau usaha. Perhitungan ini dapat dilihat dari perhitungan kas bersih (*proceed*) yang diperoleh setiap tahun. Nilai kas bersih merupakan penjumlahan laba setelah pajak ditambah dengan penyusutan, dengan catatan investasi harus 100% menggunakan modal sendiri:

$$PP = \frac{Investasi}{Kas\ bersih/tahun} \times 1\ tahun$$
[1]

2. *Net Present Value* (NPV)

Net present value (NPV) atau nilai bersih sekarang adalah perbandingan antara present value nilai sekarang (PV) dari kas bersih dengan nilai sekarang dari investasi selama umur investasi. Selisih antara kedua PV tersebut dikenal dengan NPV. Untuk menghitung NPV, terlebih dulu harus diketahui berapa PV kas bersihnya. PV kas bersih dapat dicari dengan cara membuat dan menghitung cash flow perusahaan selama umur investasi tertentu. Rumus NPV yang biasa digunakan adalah sebagai berikut:

Dengan keterangan symbol sebagai berikut:

NPV = nilai bersih sekarang

(C)t = aliran kas masuk tahun ke - t

 $(C_0)t$ = aliran kas masuk tahun ke – t

n = umur unit usaha hasil investasi

i = arus pengembalian (*rate of return*)

t = waktu

nilai NPV yang akan muncul dari persamaan di atas akan ada tiga macam sebagai berikut:

NPV = positif, berarti usulan proyek investasi dapat diterima

NPV = negatif, berarti usulan proyek investasi tidak dapat diterima

NPV = 0, netral

3. Break Even Point (BEP)

Break even point atau analisis titik impas adalah salah satu analisis dalam ekonomi Teknik yang sangat popular diguakan terutama pada sektor industri padat karya. Analisis ini akan sangat berguna apabila seseorang akan mengambil keputusan pemilihan alternative yang sangat sensitive terhadap parameter/variable dan bila variable tersebut sulit diestimasi nilainya. Nilai suatu variabel/parameter dapat menentukan tingkat produksi yang bisa menjadikan kegiatan usaha tersebut berada dalam titik impas. Supaya didapatkan titik impas ini, maka harus dicari fungsi-fungsi dari biaya maupun pendapatannya.

Proses analisis titik impas mengasumsikan fungsi pendapatan dan fungsi biaya linear terhadap volume produksi. Ada tiga komponen biaya yang harus dipertimbangakan dalam analisa ini, yaitu:

a. Biaya tetap (Fixed cost)

Biaya tetap adalah biaya-biaya yang besarnya tidak dipengaruhi oleh volume produksi. Adapun yang termasuk biaya tetap seperti halnya biaya gedung, biaya pajak, biaya tanah, dan sebagainya.

b. Biaya tidak tetap (Variable cost)

Biaya tetap adalah biaya-biaya yang besarnya dipengaruhi atau tergantung terhadap volume produksi. Yang termasuk biaya tidak tetap adalah biaya bahan baku, biaya tenaga kerja, dan sebagainya.

c. Biaya total (*Total cost*)

Biaya total adalah jumlah keseluruhan dari biaya tetap dan biaya tidak tetap.

Perhitungan BEP adalah sebagai berikut:

Bila dimisalkan X adalah volume produk yang dibuat, dan c adalah biaya investasi yang terlibat dalam pembuatan satu buah produk, maka biaya variabel untuk mambuat X produk adalah:

$$VC = c \times X$$
[3]

Karena biaya total adalah jumlah antara biaya tetap dan biaya tidak tetap, maka berlaku hubungan sebagai berikut:

$$TC = FC + VC$$

$$TC = FC + c.X \qquad[4]$$

Dengan keterangan:

TC = biaya total untuk membuat X jumlah produk

FC = biaya tetap (*fixed cost*)

VC = biaya tidak tetap untuk membuat satu produk

Untuk mendapatkan titik impas, diasumsikan bahwa total pendapatan diperoleh dari penjualan semua produk. Sehingga didapatkan persamaan sebagai berikut:

$$TR = P \times X$$
[5]

dengan keterangan:

TR = total penjualan dari X jumlah produk

P = harga penjualan tiap unit produk

Titik impas baru akan didapatkan ketika total biaya-biaya yang terlibat dalam proses produksi sama dengan total pendapatan yang dicapai. Maka didapatkan persamaan sebagai berikut:

Dimana X adalah jumlah produk yang harus terjual supaya perusahaan berapa pada titik impas (BEP). Tentu saja perusahaan akan mendapatkan keuntungan apabila berproduksi melampaui titik impas.

BAB 3

METODOLOGI

BAB 3 METODOLOGI

Penelitian ini berupa analisis teknis dan ekonomis pengembangan galangan kapal supaya mampu menerapkan metode *Advanced Outfitting System* dengan studi kasus pembangunan kapal penumpang barang 2000 GT. Analisis dilakukan secara kuantitatif dengan luaran untuk merencanakan produksi kapal menggunakan metode *advanced outfitting system* dan keterkaitannya terhadap biaya pembangunan kapal. Selama pengerjaan tugas akhir ini, penulis membagi pengerjaan dalam beberapa tahapan, sebagai berikut:

3.1. Tahap Identifikasi

Di tahap ini dilakukan identifikasi masalah, pencarian sumber informasi (studi literatur dan studi lapangan). Selanjutnya dilakukan pengkajian, evaluasi, dan identifikasi aspek teknis dan ekonomis yang diperlukan dalam pengembangan galangan kapal.

Identifikasi masalah

Pengembangan galangan kapal untuk produksi kapal penumpang barang dengan metode *advanced outfitting system* muncul akibat adanya permasalahan sebagai berikut:

- a. Lamanya waktu pembangunan kapal jika hanya dibangun dengan metode *hull block construction method*.
- b. Biaya pembangunan kapal menjadi besar akibat lamanya waktu pembangunan kapal.
- c. Galangan kapal yang menjadi obyek penelitian belum menerapkan metode pembangunan *advanced outfitting system*.

- Perumusan masalah dan tujuan

Informasi dan masalah yang berhasil diidentifikasi dibuat bahan untuk merumuskan masalah dan tujuan penelitian yang akan dilakukan.

- Studi literatur

Studi literatur dilakukan terhadap berbagai referensi terkait topik penelitian. Studi literatur ini dimaksudkan untuk memahami konsep dan metode yang tepat untuk menyelesaikan masalah yang terlah dirumuskan pada tahap sebelumnya. Selain itu,

studi literatur juga dilakukan untuk mewujudkan tujuan penelitian yang dimaksudkan dengan cara mencari referensi penelitian sebelumnya dan teori-teori yang berkaitan dengan topik penelitian. Adapun referensi yang diperlukan adalah sebagai berikut:

- a. Tahap-tahap dalam pembangunan kapal
- b. Produktivitas galangan kapal
- c. Network planing pada pembangunan kapal
- d. Advanced outfitting system
- e. Metode pemasangan perlengkapan kapal

3.2. Tahap Pengumpulan dan Pengolahan Data

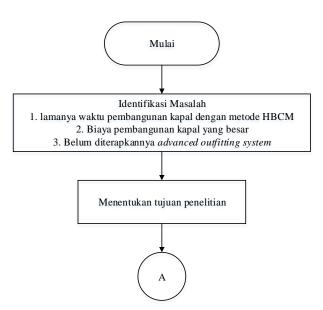
Setelah dapat memahami konsep, penulis melakukan penentuan variabel penelitian yang digunakan, variabel tersebut yaitu:

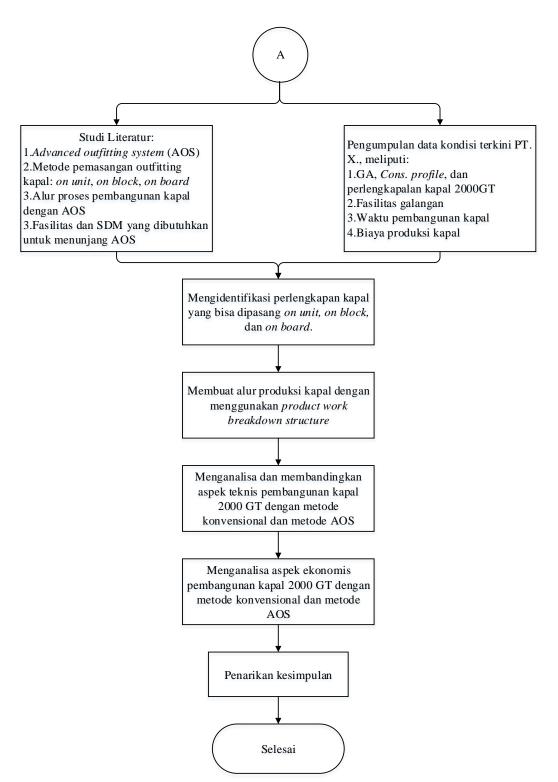
- Jenis kapal yang akan dibangun, yaitu kapal penumpang barang 2000 GT
- Galangan yang membangun kapal penumpang barang 2000 GT
- Metode pembangunan kapal, hull block construction method dan advanced outfitting system
- Waktu pembangunan kapal dan biaya pembangunan kapal

Setelah menentukan variabel, maka langkah selanjutnya adalah melakukan pengumpulan data. Penulis menggunakan metode pengumpulan data secara tidak langsung yang meliputi:

- Data rencana umum, *construction profile*, dan perlengkapan kapal penumpang barang 2000 GT
- Data fasilitas galangan pembangun kapal penumpang barang 2000 GT
- Tahapan pembangunan kapal penumpang barang 2000 GT
- Data kuantitas material yang dibutuhkan untuk membangun kapal penumpang barang 2000 GT

3.3. Tahap Analisa Teknis dan Ekonomis


Analisis aspek teknis dan ekonomis dilakukan setelah proses pengumpulan dan pengolahan data selesai dilakukan. Analisis teknis berupa perencanaan pembangunan kapal penumpang barang 2000 GT di galangan kapal X dengan menggunakan metode *advanced outfitting system*. Sedangkan, analisis ekonomis dalam penelitian ini berupa perhitungan kebutuhan investasi penambahan fasilitas galangan, dan biaya


pembangunan kapal penumpang barang 2000 GT dengan metode *advanced outfitting* system.

3.4. Tahap Kesimpulan dan Saran

Dari hasil analisis teknis dan ekonomis dapat ditarik kesimpulan berupa kemungkinan keuntungan yang akan didapatkan galangan kapal X ketika menerapkan metode pembangunan kapal menggunakan *advanced outfitting system*. Kemudian diberikan saran-saran yang bisa digunakan oleh pihak galangan kapal X sehingga dapat memperkirakan besar investasi yang dikeluarkan untuk menerapkan metode *advanced outfitting system*.

Dari uraian penjelasan di atas, dibuatkan diagram alir pengerjaan tugas akhir seperti pada Gambar 3. 1. Dalam mendeskripsikan perusahaan yang digunakan sebagai obyek penelitian, penulis menuliskannya dengan istilah PT. X.. Hal ini ditujukan untuk melindungi privasi perusahaan yang diteliti.

Gambar 3. 1 Diagram alir pegerjaan tugas akhir

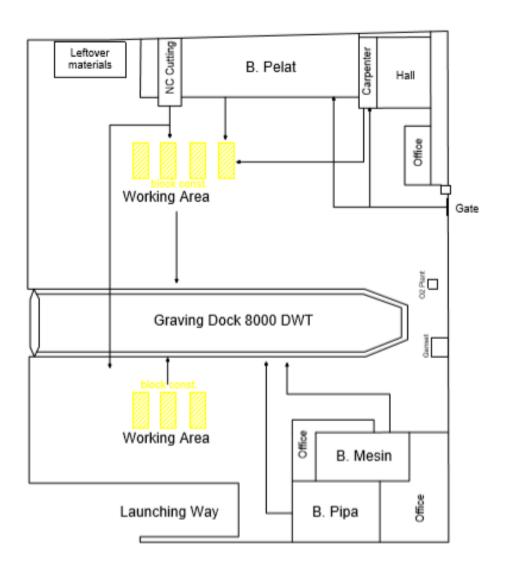
BAB 4

KONDISI TERKINI GALANGAN KAPAL

BAB 4 KONDISI TERKINI GALANGAN KAPAL

4.1. Tinjauan Umum Perusahaan

Galangan kapal yang digunakan sebagai obyek penelitian adalah perusahaan yang berada di dareah Surabaya, Jawa Timur, yang selanjutnya disebut sebagai PT. X. Perusahaan ini menerima jasa pembangunan kapal baru dan reparasi. Pada umumnya, perusahaan ini menerima segala macam jenis kapal untuk dibangun. Di periode pemerintahan yang lalu, perusahaan ini menerima 20 kapal perintis dengan berbagai macam ukuran dari kementerian perhubungan. Di saat yang sama, perusahaan juga menerima pembangunan kapal *ferry* dari perusahaan pelayaran swasta dalam negeri. Banyaknya proyek pembangunan kapal yang dilakukan bersamaan akan dijadikan bahan pertimbangan yang penting dalam merencanakan pembangunan kapal di bab selanjutnya.


Sebagai bahan penelitian penerapan metode *advanced outfitting system*, penulis mengasumsikan bahwa kondisi galangan sesuai dengan pada saat pembangunan kapal penumpang barang 2000 GT berlangsung. Kondisi yang dimaksud seperti jumlah proyek yang dikerjakan secara bersamaan dan lokasi tempat kapal penumpang barang 2000 GT dibangun. Lokasi ini penting untuk didefinisikan di awal. Hal ini dikarenakan perusahaan yang diteliti memiliki dua tempat dengan fasilitas utama pembangunan yang berbeda ukuran dan kapasitas produksinya.

4.2. Tata Letak Galangan Kapal

Galangan kapal perusahaan PT. X. memiliki fasilitas utama yang cukup lengkap, begitu pula galangan yang menjadi tempat dibangunnya kapal penumpang barang 2000 GT. Seperti yang dijelaskan di dalam Gambar 4. 1, perusahaan PT X memiliki dok kolam (*graving dock*) dengan kapasitas 8000 DWT, *launching way* serta *working area* yang relatif luas di sebelah utara dan selatannnya. Di dalam area galangan kapal juga tersedia bengkel (*workshop*) sebagai tempat untuk mengolah bahan baku pembuatan kapal menjadi bagian terkecil komponen penyusun kapal.

Di dalam Gambar 4. 1 juga dijelaskan bagaimana alur barang/material selama proses pembangunan kapal berlangsung. Bahan baku yang datang ke galangan diangkut ke bengkel pelat dan pipa. Sedangkan komponen permesinan dan peralatan akan dikirim ke bengkel permesinan untuk disimpan atau dilakukan proses perakitan. Selanjutnya, komponen kapal

hasil pengerjaan di bengkel, selanjutnya dirakit di lapangan perakitan (*working area*) untuk menghasilkan blok kapal. Di galangan kapal PT. X, terdapat dua *working area* yang tersedia. Dengan fungsi yang sama. Setelah proses perakitan selesai dilakukan, blok kapal dikirim ke *graving dock* untuk dilakukan proses *erection*. Kegiatan ini berlanjut hingga proses penggabungan blok konstruksi selesai dilakukan. Lalu disusul dengan kegiatan pemasangan perlengkapan kapal dan pengecatan badan kapal. Setelah semua kegiatan pembangunan selesai dilakukan, kapal diluncurkan dan dikirim ke pemilik kapal.

Gambar 4. 1 Tata letak galangan kapal PT. X (Sumber: data pribadi perusahaan)

4.3. Fasilitas Utama Galangan Kapal

Fasilitas utama pembangunan kapal di dalam perusahaan adalah segala fasilitas yang menjadi kebutuhan dasar pembangunan kapal, seperti lahan perakitan kapal, bengkel, kantor, dan lain sebagainya. Berikut ini adalah fasilitas utama yang dimiliki PT. X untuk membangun kapal penumpang barang 2000 GT:

1. Kantor utama

Kantor utama adalah sebuah bangunan berlantai tiga yang digunakan sebagai tempat para pekerja administrasi, insinyur, dan pimpinan PT. X dalam melakukan pekerjaannya. Di dalam kantor ini terdapat beberapa ruangan yang sudah dikelompokkan sesuai dengan tugasnya, seperti, ruang Teknik dan perencanaan, ruangan PPC (*Production*, *Planning*, and *Control*), pemasaran, dan ruangan rapat.

2. Gudang Penyimpanan

Gudang penyimpanan digunakan untuk menyimpan bahan baku pembuatan kapal. Barangbarang yang sudah dibeli, beberapa tidak bisa langsung dipasang karena memerlukan proses pengerjaan terlebih dulu. Maka dari itu, barang tersebut disimpan sementara di dalam gudang penyimpanan supaya memudahkan proses pencatatan inventaris dan supaya barang tidak mudah rusak.

3. Bengkel Perpipaan

Bengkel perpipaan digunakan untuk melakukan proses preparation yang meliputi pekerjaan pengecatan primer dan straigthening (jika dibutuhkan) hingga proses fabrikasi bahan dasar pipa menjadi piece part. Maka dari itu, di dalam bengkel perpipaan juga terdapat pekerjaan *cutting*, *forming*, dan *welding*.

4. Bengkel Pelat

Setelah pelat selesai dilakukan *proses blasting*, selanjutnya pelat dikirim ke bengkel pelat. Di dalam bengkel ini, dilakukan proses pemotongan pelat menggunakan N/C *cutting*. Hasil dari pemotongan pelat merupakan komponen terkecil penyusun konstruksi kapal. Setelah komponen ini terbentuk, dilakukan proses marking pada tiap bagian komponen untuk memudahkan proses *sub asembly* yang akan di kerjakan setelahnya.

5. Bengkel Permesinan

Bengkel yang digunakan untuk mengerjakan pekerjaan yang berhubungan dengan mesin. Sebagai contoh pengerjaan perakitan mesin baru dan reparasi sistem permesinan kapal yang sedang dilakukan pengedokan.

6. Graving Dock

Graving dock yang ada di galangan PT. X. memiliki ukuran 125m x 20m x 6m dengan kapasitas 8000 DWT. *Graving dock* biasanya difungsikan untuk reparasi dan pembangunan kapal baru. Tergantung ketersediaan proyek dan ruang kosong yang ada di dalamnya.

4.4. Fasilitas Pendukung Galangan Kapal

Fasilitas pendukung adalah segala macam peralatan yang digunakan untuk menunjang proses pembangunan kapal. Contoh fasilitas pendukung seperti, mesin las, *crane*, permesinan, dan lain sebagainya. Berikut ini adalah fasilitas pendukung yang dimiliki oleh galangan kapal PT. X untuk membangun kapal penumpang barang 2000 GT:

1. Crawler Crane

Merupakan crane yang memiliki roda-roda *crawler* yang dapat digunakan untuk berbagai medan. *Crawler crane* merupakan crane yang dapat bergerak dari satu lokasi ke lokasi lainnya. Biasanya crane ini digunakan untuk mengangkat blok yang siap di erection. *Crawler crane* tersebut bermerek Hitachi dengan kapasitas 150 ton, dengan panjang *mast* 24 m dan panjang *boom* 42 m.

Tabel 4. 1 Load Chart Crane Hitachi 150 ton (Sumber: Katalog Produk Hitachi)

Mast	Boom	Working	Rated Load			
(CB) length	Length	Radius	JIS Rating	BS rating	PCSA rating	
m	m	m	kg	kg	kg	
		10	150000	150000	150000	
		12	132500	132500	132500	
		14	107200	107200	107200	
		16	89700	89700	89700	
			18	76900	76900	76900
		20	67100	67100	67100	
		22	59400	59400	59400	
24	42	24	53100	53100	53100	
			26	48000	48000	48000
		28	43700	43700	43700	
			30	40000	40000	40000
		32	36900	36900	36900	
		34	34200	34200	34200	
		36	31900	31900	31900	
		38	29800	29800	29800	

Tabel 4. 1 menunjukkan daftar kapasitas *crane* Hitachi *tubular chord crane boom* yang didesain untuk dioperasikan dalam kondisi pekerjaan berat (*heavy duty*). Kapasitas maksimal *crane* adalah 150 ton dengan radius kerja 10 meter. Tentu kapasitas beban yang mampu diangkat *crane* akan berbeda jika radius kerja *crane* berubah.

2. Mobile Crane

Mobile crane ini memiliki cara kerja yang hampir sama dengan crawler crane, hanya saja perbedaannya mobile crane dibawa pada truk yang memiliki roda biasa. Dalam penggunaanya, mobile crane digunakan untuk sarana bantu dalam proses assembly. PT. X. memiliki tiga mobile crane dengan kapasitas masing-masing 70 ton. 30 ton, dan 13 ton.

3. *Gantry Crane*

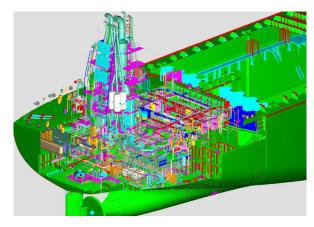
Crane yang dipasang pada gantry dimana crane tersebut dipasang pada portal tinggi berkaki tegak yang mengangkat benda dengan menggunakan hoist. Crane ini terletak pada sepanjang tempat pengerjaan blok. Dalam pengoperasiannya, crane ini berjalan diatas rel dalam dua arah, yaitu maju dan mundur. Dalam bangunan baru, crane ini digunakan untuk mengangkat blok yang telah selesai dikerjakan untuk dipindahkan tempatnya. Gantry crane yang ada di PT. X. memiliki kapaitas sebesar 35 ton

4. *Mesin N/C Cutting*

Merupakan mesin yang digunakan untuk memotong pelat. Mesin ini merupakan mesin yang pemotongannya dapat menggunakan *flame* atau *plasma*. Berbeda dengan mesin *guillotine*, mesin ini dalam kerjanya tidak manual, tetapi menggunakan bantuan komputer secara otomatis. Dalam hasil pemotongannya, tentu saja mesin ini memiliki hasil yang lebih baik. Mesin ini dapat digunakan untuk pelat dengan tebal hingga 12 mm dengan kapasitas produksi hingga 12 ton per hari.

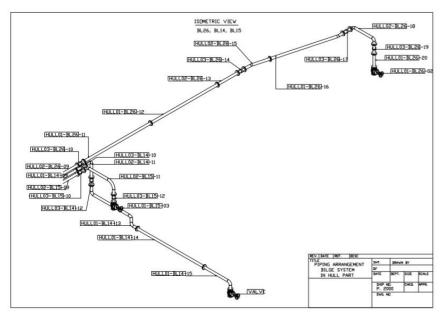
4.5. Metode Pembangunan Kapal

Galangan kapal PT. X sudah berpengalaman dalam membangun dan mereparasi berbagai jenis kapal. Dari data yang dikumpulkan penulis, PT X. berhasil membangun kapal jenis *ferry*, penumpang-barang, *tug boat*, *tanker*, dll dalam sepuluh tahun terakhir. Metode pembangunan konstruksi kapal yang dilakukan oleh perusahaan sudah menggunakan *hull block construction*. Sedangkan proses pemasangan *outfitting* masih dilakukan setelah proses *erection* selesai.

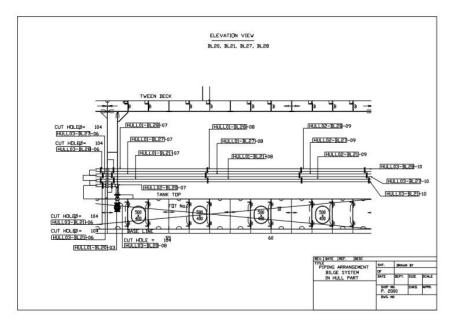

Untuk meninjau kondisi galangan kapal secara khusus pada metode pembangunan yang digunakan, maka perlu ditinjau keseluruhan proses produksi mulai dari tahap desain sampai tahap pemasangan perlengkapan kapal. Berikut ini adalah penjelasan proses pembangunan kapal secara keseluruhan yang dilakukan di galangan kapal PT. X.

4.5.1. Desain

Proses mendesain kapal memiliki beberapa tahapan. Mulai dari basic design, functional design, transition design, sampai work instruction design. Basic design adalah gambaran umum tentang kapal yang akan dibangun, seperti general arrangement, lines plan, machinery arrangement, outfit system diagram. Functional design adalah desain awal yang berorientasikan pada sistem. Di dalamnya menggambarkan perencanaan sistem perkapalan, material yang dibutuhkan, termasuk bahan baku yang dibutuhkan seperti pipa, profil siku, dan kabel listrik. Transition design adalah desain yang menggambarkan desain konstruksi, perpipaan, ventilasi, dsb dalam satu gambar yang disebut composite drawing. Instruction design adalah desain yang digunakan untuk proses pembangunan yang ada di lapangan. Karakteristik dari instruction drawing adalah bisa dipahami oleh operator mesin produksi dan pekerja lapangan yang lain.


Karena proses desain yang panjang, aplikasi desain sangat dibutuhkan untuk mempercepat proses ini. Aplikasi yang paling umum digunakan di perusahaan galangan kapal adalah CAD untuk menggambar detail konstruksi kapal. Tidak hanya itu, proses pembuatan *transition design* juga membutuhkan aplikasi yang bisa menggambarkan semua bagian kapal dalam satu kesatuan sistem utuh. Supaya bisa dipastikan tidak ada sistem yang saling tumpang tindih antara satu dengan yang lain.

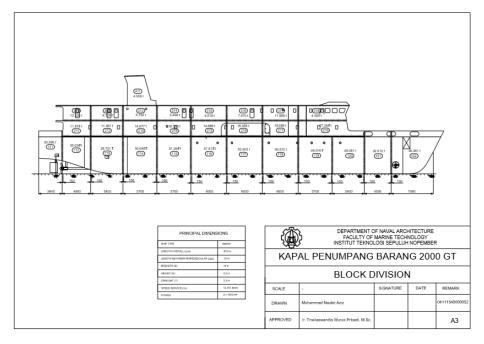
PT. X. menggunakan aplikasi CAD untuk mempermudah proses desain transisinya. Di dalam aplikasi CAD, desain konstruksi dan sistem perkapalan dapat digabungkan dalam bentuk tiga dimensi. Selain itu, aplikasi ini mampu menampilkan lajur perpipaan untuk salah satu sistem yang dipilih. Aplikasi CAD juga memungkinkan untuk menampilkan perlengkapan kapal yang ada di dalam satu blok saja. Tentu hal ini sangat membantu proses desain pada metode pembangunan menggunakan *advanced outfitting system*.


Gambar 4. 2 aplikasi CAD yang digunakan dalam desain kapal (Sumber:Ship-technology.com, 2019)

Gambar 4. 2 adalah *combination drawing* tiga dimensi antara sistem konstruksi kapal dengan sistem perpipaan yang ada di satu kapal. *Combination drawing* memiliki luaran berupa *isometric drawing* yang selanjutnya akan diproses oleh divisi produksi untuk dijadikan *work instruction drawing*. *Isometric drawing* adalah gambar sistem perpipaan dan kosntruksi kapal yang dilihat dalam perspektif isometrik. Di dalam gambar juga sudah didefinisikan kode pie*ce part* yang menunjukkan sistem dan lokasi pemasangan pipa. Kode ini yang digunakan acuan untuk proses *palletizing* setelah fabrikasi selesai dilakukan.

Gambar 4. 3 Isometric Drawing Pipa Ballast (Sumber: data pribadi perusahaan)

Gambar 4. 3 menunjukkan *isometric drawing* sistem *ballast* di bagian ruang muat kapal penumpang – barang ukuran 2000 GT. Di dalam gambar ini bisa diketahui *piece part* yang terdapat dalam satu sistem, termasuk detail material yang digunakan. Untuk detail ukuran yang ada di setiap *piece part*, divisi PPC mencari informasinya melalui gambar tampak atas dan *elevation view* seperti yang ada pada Gambar 4. 4

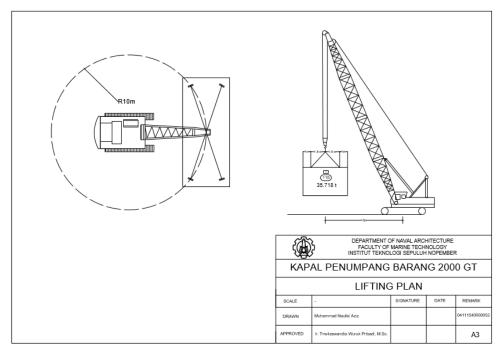


Gambar 4. 4 Elevation View sistem ballast di ruang muat (Sumber: Data pribadi perusahaan)

4.5.2. Pembagian Blok

Perencanaan pembagian blok konstruksi kapal dalam metode *on-board outfitting* mempertimbangkan beberapa hal. Pertama, ketersediaan ukuran pelat di pasaran. Pembagian blok kapal sebisa mungkin direncanakan dengan ukuran yang besar. Tentu hal ini harus disesuaikan dengan ketersediaan ukuran satu lajur pelat di kapal. Jika tidak, maka akan dibutuhkan proses pengelasan antar lajur pelat secara memanjang. Dan proses itu akan memakan waktu lama dalam prose *assembly blok*. Maka dari itu, perencanaan pembagian blok kapal akan digunakan ukuran pelat dengan panjang 6000 mm. Artinya, dalam satu blok kapal, panjang maksimal blok tidak lebih dari 6 meter. Kedua, ketersediaan *crane* sebagai alat angkat untuk proses *erection*. Di dalam bab sebelumnya dijelaskan bahwa galangan kapal PT. X. memiliki crane dengan kapasitas maksimal 150 ton. Tentu kondisi ini akan berbeda jika *working radius* nya diperbesar.

Dari dua pertimbangan ini, didapatkan rencana pembagian blok kapal sesuai dengan Gambar 4. 5 Terdapat 29 blok yang akan menyusun konstruksi kapal penumpang barang 2000 GT. Lambung kapal dibagi menjadi 12 bagian blok kapal. Pembagian blok lambung kapal tepat di atas *main deck*. Sedangkan pembagian blok konstruksi *super structure* dan *deck houses* dilakukan dengan membaginya tepat di atas geladak *navigasi*. Gambar pembagian blok lebih rincinya akan dijelaskan secara terlampir.


Gambar 4. 5 Perencanaan pembagian blok pada metode on-board outfitting

Alasan pembagian blok lambung kapal yang tidak menerus ke geladak utama dilakukan dengan mempertimbangkan ketersediaan *assembly area*. Luas area kerja pada proses *assembly* diasumsikan tidak ada proyek lain yang menggangu kegiatan penyimpanan blok kapal. Sehingga pembagian blok kapal bisa direncakanan lebih besar. Tentu hal ini akan mempengaruhi berat tiap blok konstruksi kapal. Dari hasil perhitungan penulis, berat blok kapal didapatkan seperti pada Tabel 4. 2. Hasil pehitungan berat tiap blok didapatkan dari proses menghitung tiap komponen konstruksi kapal. Data yang digunakan dalam proses ini adalah *construction profile* dan gambar pembagian blok di atas. Komponen yang mempengaruhi berat kapal meliputi tebal pelat lambung, dinding, sekat, ukuran profil, dan penegar-penegar lainnya. Tabel perhitungan berat blok kapal akan dijelaskan secara terlampir.

Tabel 4. 2 Hasil perhitungan blok kapal pada metode on-board outfitting

Blok	Berat	Blok	Berat	Blok	Berat
111	30,395	121	32,51 ton	311	10,52 ton
112	35,034	122	35,36 ton	312	8,12 ton
113	28,751	211	11,88 ton	313	6,75 ton
114	50,045	212	11,06 ton	314	5,49 ton
115	51,264	213	14,98 ton	315	4,91 ton
116	51,913	214	18,52 ton	316	7,97 ton
117	52,403	215	14,89 ton	317	11,99 ton
118	50,572	216	16,06 ton	318	4,56 ton
119	49,316	217	18,70 ton	411	4,56 ton
120	48,081	218	27,34 ton		

Langkah selanjutnya adalah meninjau kemampuan *crawler crane* yang dimiliki galangan PT. X. Operasional *crane* harus dipastikan tetap aman pada saat proses *erection* dilakukan. Maka dari itu, diperlukan *lifting plan*, yaitu sebuah rencana pengangkatan blok yang di dalamnya menjelaskan skema pengangkatan blok tiap kapal. Namun dalam analisa teknis ini, akan digambarkan satu rencana pengangkatan blok yang akan mewakili semua skema pengangkatan blok yang lain.

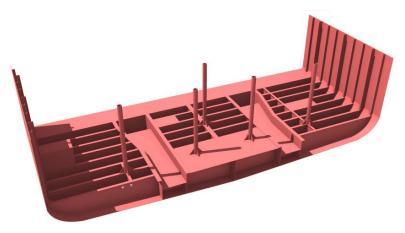
Gambar 4. 6 Lifting plan blok 115 dengan berat 52,403 ton

Pada Gambar 4. 6 menjelaskan bagaimana blok kapal dengan kode 117 akan diangkat dan ditempatkan di dok gali untuk dilakukan proses *erection*. Proses pengangkatan ini dilakukan pada radius kerja 10 meter oleh *crawler crane* Hitachi. Sesuai dengan Tabel 4. 2, kapasitas *crane* pada radius kerja tersebut adalah 150 ton. Dalam perhitungan faktor keselamatan, *crane* memiliki SWL (*safe working load*), yaitu sebuah batas aman beban yang dapat diangkat oleh *crane*. SWL yang digunakan dalam perencanaan *lifting plan* adalah 85% dari kapasitas total yang ada di dalam tabel. Sehingga persamaan SWL *crane* adalah sebagai berikut:

$$SWL = 85\% \times Capacity$$
[7]

Dari persamaan tersebut, didapatkan nilai SWL crane:

$$SWL = 85\% \times 150 ton$$

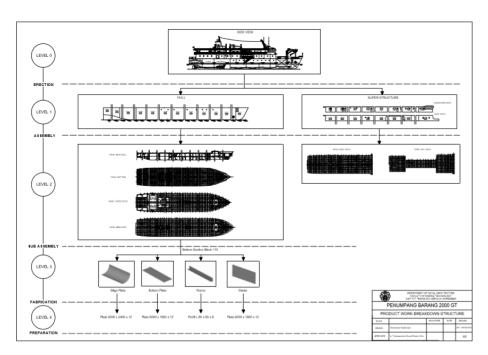

$$SWL = 127.5 ton$$

Perhitungan di atas yang menunjukkan SWL jauh lebih besar dari pada berat blok mengindikasikan bahwa semua blok yang ada pada perencanaan pembagian blok dapat diangkat dengan aman menggunakan *crane* yang dimiliki perusahaan. Sehingga galangan PT. X. tidak memerlukan skenario penyewaan *crane* tambahan untuk proses *erection*.

4.5.3. 3D Block

Pembangunan kapal juga membutuhkan simulasi untuk memastikan bentuk final kapal. Salah satu metode yang paling sering digunakan adalah dengan menggambarkannya dalam bentuk 3 dimensi. Proses pembuatan 3D kapal dilakukan dalam satu kesatuan kapal utuh terlebih dahulu. Lalu didetailkan dalam bentuk 3D per blok konstruksi kapal. Pada level ini, desain 3D blok konstruksi juga digunakan untuk mengidentifikasi komponen-komponen penyusun blok secara lebih rinci.

Seperti yang ada di dalam Gambar 4. 7, 3D blok dimungkinkan untuk dipecah menjadi beberapa bagian kecil penyusunnya. Dalam proses pembuatannya, penulis menggunakan *software modeling 3D*, yaitu sebuah aplikasi pengolahan desain 3D. Namun dalam praktiknya di lapangan, perusahaan galangan PT. X. menggunakan aplikasi CAD yang berbeda untuk membantu proses di tahap ini. Luaran yang dihasilkan akan sama, meskipun aplikasi yang digunakan berbeda.


Gambar 4. 7 3D blok kapal pada metode on-board outfitting

Gambar di atas adalah 3D blok 115 dari kapal penumpang barang 2000 GT. Di gambar tersebut digambarkan bahwa di dalam blok 115 terdapat komponen blok kapal yang terdiri dari profil L untuk gading, profil T untuk gading besar, pipa sch. 80 untuk pilar penyangga *tween deck*, dan pelat 12 mm untuk pelat dasar dan pelat sisi.

Komponen-komponen ini selanjutnya digunakan sebagai referensi pembuatan *work* breakdown structure. Hasil yang didapatkan adalah komponen spesifik pada blok kapal yang dimodelkan. Seperti, bentuk komponen dan jumlah yang dibutuhkan untuk proses produksi.

4.5.4. Product Work Breakdown Structure

PWBS yang dibuat dalam perencanaan produksi ditujukan untuk mengidentifikasi bahan baku, komponen, dan proses yang akan dilalui untuk membuat kapal menjadi satu kesatuan utuh. Proses identifikasi dilakukan dari level paling atas, kapal utuh, lalu diturunkan menjadi blok kapal, dan seterusnya sampai pada bahan baku penyusun blok-blok kapal. Untuk sub-bab ini, analisa dilakukan untuk menyimulasikan pembangunan kapal menggunakan *on-board outfitting*. Maka dari itu, proses pembuatan PWBS juga memperhatikan pada tahap apa pemasangan perlengkapan kapal dilakukan. Berikut ini adalah PWBS pada metode *on board outfitting system* yang dijelaskan pada Gambar 4. 8. Gambar PWBS lebih jelasnya terdapat di bagian lampiran laporan.

Gambar 4. 8 Product work breakdown structure pada metode on-board outfitting

Pelat dan profil yang baru dibeli dari pasar dilakukan proses fabrikasi menjadi komponen terkecil penyusun kapal. Contoh komponen yang diproduksi adalah pelat bilga, pelat alas kapal, gading, dan wrang pelat. Komponen ini selanjutnya digabungkan pada proses *sub-assembly* menjadi panel berbentuk datar atau berkurva. Proses penggabungan dilakukan dengan pengelasan menggunakan metode SMAW dan FCAW. Panel berbentuk datar yang dihasilkan pada tahap produksi ini adalah panel geladak antara, geladak utama, dan geladak bangunan atas.

Sedangkan, contoh panel berbentuk kurva yang dihasilkan adalah panel sisi lambung kapal yang ada pada bagian haluan dan buritan kapal.

Pada proses pembuatan panel alas, galangan kapal PT. X. melakukannya dengan posisi terbalik. Bagian alas ganda kapal diposisikan berada di panel bagian bawah. Hal ini dilakukan untuk menghindari *misalignment* karena tidak adanya pin jig yang bisa diatur ketinggiannya. Baru setelah proses *sub-assembly* panel selesai, panel alas dibalik menggunakan crane. Untuk selanjutnya digabung dengan panel lain menjadi satu blok kapal.

Proses penggabungan panel menjadi blok disebut dengan *erection*. Proses ini menghasilkan dua macam konstruksi badan kapal, yaitu lambung kapal dan bangunan atas kapal. Lambung kapal terbagi menjadi 12 blok. Sedangkan bangunan atas kapal terbagi menjadi 16 blok kapal. Proses penggabungan blok kapal dilakukan dengan pengelesan metode FCAW. Proses pengelasan pada tahap *erection* dilakukan di *graving dock* PT. X. Pada saat tahap *erection* dilakukan, proses pemasangan perlengkapan kapal juga dilakukan. Proses pemasangan ini dimulai dari sistem perpipaan yang berada di bagian alas kapal, seperti pipa *ballast*. Disusul pemasangan *cable tray, ducting,* dan perlengkapan geladak lainnya. Hingga di akhir proses dihasilkan sebuah kapal utuh dengan tipe penumpang barang 2000 GT.

4.5.5. Pemasangan *Outfitting*

Segala macam *outfitting* dipasang dengan metode *on board outfitting*. Yaitu metode pemasangan perlengkapan kapal yang dilakukan pada saat proses *erection* dilakukan. Pada metode ini, perlengkapan yang dipasang meliputi sistem permesinan, propulsi, sistem perpipaan, sampai perlengkapan keselamatan. Di galangan PT. X., sistem permesinan dipasang lebih dulu. Lalu sistem perpipaan dipasang setelahnya. Dilanjutkan dengan memasang sistem ventilasi udara, perlengkapan akomodasi, dan perlengkapan keselamatan.

Gambar 4. 9 (a) Pemasangan main engine, (b) Pemasangan sistem perpipaan

Gambar 4. 9 (a) menunjukkan pemasangan perlengkapan kapal di dalam ruang mesin. *Main engine* yang sudah terpasang, dibungkus dengan menggunakan plastik untuk sementara waktu. Hal ini dilakukan dengan tujuan untuk melindungi mesin dari resiko kerusakan akibat kegiatan pekerja di sekitarnya. Gambar 4. 9 (b) menunjukkan sistem perpipaan yang dipasang setelah permesinan terpasang. Dapat dilihat bahwa sistem perpipaan diletakkan di atas wrang pelat dan lebih rendah dari permesinan.

Pemasangan outfitting juga ditunjang oleh fasilitas galangan kapal. Fasilitas penunjang kegiatan pemasangan *outfitting* meliputi fasilitas utama dan fasilitas pendukung. Fasilitas utama yang terlibat seperti bengkel perpipaan dan bengkel permesinan. PT. X. memiliki satu bengkel perpipaan dan satu bengkel mesin yang ada di bagian selatan. Bengkel ini yang bertanggung jawab pada proses fabrikasi pipa, dan perakitan sistem permesinan sebelum dilakukan pemasangan di badan kapal.

Fasilitas pendukung pemasangan perlengkapan kapal meliputi mesin fabrikasi dan alat *material handling*. Galangan PT. X. memiliki mesin penunjang fabrikasi perlengkapan seperti mesin *bending* pipa, mesin *cutting*, mesin bubut, mesin las, dan lain sebagainya. Alat *material handling* yang dimiliki galangan PT. X adalah *forklift*, *gantry* crane, dan tiga *mobile crane*.

Gambar 4. 10 Bengkel perpipaan galangan PT. X.

Gambar 4. 9 adalah tampak luar bengkel perpipaan yang ada di galangan PT. X.. Di bagian depan bengkel, digunakan sebagai tempat untuk menyimpan material pipa sebelum dilakukan proses fabrikasi. Penyimpanan pipa sudah dilakukan pemisahan berdasarkan ukurannya. Di bagian luar bengkel, juga digunakan sebagai tempat untuk menyimpan tabung gas untuk *flame cutting* pada proses fabrikasi.

4.5.6. Produktivitas Galangan

Produktivitas galangan adalah perbandingan antara input dan output dalam proses produksi. Input yang dimaksudkan adalah masukan sumber daya yang dimiliki. Sedangkan, output adalah produk yang dihasilkan dalam proses produksi. Dalam galangan kapal, produktivitas dikenal dengan perbandingan antara perbandingan antara jam orang dan beban produksi (ton). Sehingga rumus produktivitas adalah sebagai berikut.

$$produktivitas = \frac{beban \ produksi \ (ton)}{jam \ orang \ (JO)} \qquad[8]$$

Persamaan di atas digunakan untuk menghitung produktivitas pada setiap tahap produksi. Perhitungan ini juga bisa dilakukan per bengkel produksi. Dalam proses pembangunan kapal, terdapat beberapa tahapan produksi, mulai dari tahap fabrikasi, *assembly, erection*, dan *outfitting*. Setiap tahapan produksi ini harus dihitung untuk selanjutnya dapat digunakan sebagai acuan dalam merencanakan pembangunan kapal yang lainnya.

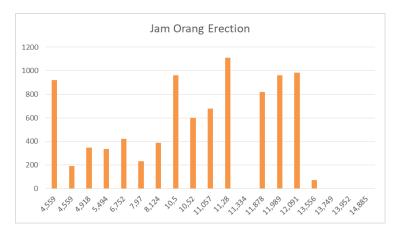
Bengkel pelat galangan PT. X. sudah dilengkapi dengan mesin N/C cutting untuk membantu proses fabrikasi. Mesin ini menggunakan teknologi *flame cutting* untuk memotong pelat hingga ketebalan 16 mm. Mesin N/C *cutting* memiliki kapasitas produksi sebesar 6 ton per hari. Sedangkan operasional mesin dilakukan oleh tiga orang pekerja. Satu orang pekerja sebagai operator mesin, dan dua orang pekerja memiliki tugas sebagai pekerja *material handling*. Jika diasumsikan bengkel menggunakan kapasitas maksimalnya, pekerjaan fabrikasi konstruksi kapal memiliki produktivitas sebesar 24,5JO/ton.

Perhitungan produktivitas pekerjaan *assembly* blok juga dibutuhkan. Data yang digunakan berupa berat kapal penumpang barang 2000GT dan rekapitulasi presensi semua tenaga kerja yang berkaitan langsung dengan proses produksi. Rekapitulasi presensi diolah menjadi jumlah jam orang yang dibutuhkan dalam menyelesaikan tiap jenis pekerjaan. Berikut ini adalah contoh tabel rekapitulasi jam orang untuk pekerjaan konstruksi di lokasi 12.

Tabel 4. 3 Data historis presensi sub-kontraktor Kapal Penumpang Barang 2000GT

Karyawan Sub	Kode Bagian	Lokasi	Jam Normal	Jam Lembur	Total Jam
Biru Laut 1	SC-HC	12	8	0	8
Biru Laut 2	SC-HC	12	8	0	8
Biru Laut 3	SC-HC	12	7	0	7
Biru Laut 4	SC-HC	12	8	0	8
Biru Laut 5	SC-HC	12	8	1.5	9.5
Biru Laut 6	SC-HC	12	7	0	7
Biru Laut 7	SC-HC	12	7	0	7
Biru Laut 8	SC-HC	12	7	0	7
Biru Laut 9	SC-HC	12	8	0	8
Biru Laut 10	SC-HC	12	8	0	8
				Total JO	77.5

Tabel 4. 3 menunjukkan presensi sub kontraktor konstruksi. Di dalam tabel rekapitulasi presensi tertulis nama perusahaan sub konstruksi, nama pekerja, bagian pekerjaan, dan waktu kerja dalam satu hari. Presensi ini terdaftar lengkap dari proses awal sampai akhir pembangunan kapal. Juga meliputi seluruh kegiatan dalam proses pembangunan kapal


Dalam menghitung produktivitas, penulis melakukan klasifikasi pekerjaan sesuai dengan tingkat kesulitannya. Konstruksi kapal diklasifikasikan menjadi tiga bagian. Yaitu, *parallel middle body*, haluan/buritan, dan bangunan atas. Ketiga kegiatan ini memiliki bentuk yang berbeda satu sama lain. Ukuran pelat dan profil yang digunakan juga berbeda. Maka hasil perhitungan produktivitas juga akan berbeda. Berikut ini adalah tabel perhitungan produktivitas dari pengolahan data historis jam orang di PT. X.

Tabel 4. 4 Hasil perhitungan produktivitas tahap assembly

Tabel 4. 4 Hasil perhitungan produktivitas tahap assembly							
Paralel Middle Body							
Blok	Berat	JO	Produktivitas	Rerata			
218	11,33 ton	879,08	77,56 JO/ton				
217	13,56 ton	1051,42	77,56 JO/ton				
219	13,75 ton	1066,38	77,56 JO/ton				
215	15,55 ton	1205,76	77,56 JO/ton				
216	16,82 ton	1304,42	77,56 JO/ton	77,56 JO/ton			
116	35,10 ton	2722,00	77,56 JO/ton	77,30 30/1011			
119	35,57 ton	2758,61	77,56 JO/ton				
115	35,72 ton	2770,32	77,56 JO/ton				
117	38,85 ton	3013,01	77,56 JO/ton				
118	39,24 ton	3043,33	77,56 JO/ton				
		Halu	an/Buritan				
Blok	Berat	9	Produktivitas				
221	11,28 ton	1001,96	88,83 JO/ton				
213	12,09 ton	1074,00	88,83 JO/ton				
220	13,95 ton	1623,48	116,36 JO/ton				
111	14,92 ton	1909,30	127,97 JO/ton				
211	15,48 ton	2073,17	133,97 JO/ton				
214	16,14 ton	2270,11	140,63 JO/ton				
113	16,66 ton	2423,06	145,44 JO/ton	141,99 JO/ton			
122	16,70 ton	2433,69	145,76 JO/ton	141,99 30/1011			
212	17,15 ton	2568,92	149,76 JO/ton				
112	17,88 ton	2783,28	155,66 JO/ton				
222	18,67 ton	3015,06	161,54 JO/ton				
121	21,23 ton	3773,00	177,70 JO/ton				
114	33,90 ton	6024,68	177,70 JO/ton				
120	34,13 ton	6064,84	177,70 JO/ton				
		Bang	junan Atas				
Blok	Berat	9	Produktivitas				
418	4,56 ton	326,77	71,68 JO/ton				
511	4,56 ton	326,77	71,68 JO/ton				
415	4,92 ton	352,50	71,68 JO/ton				
414	5,49 ton	445,92	81,17 JO/ton				
413	6,75 ton	649,96	96,26 JO/ton				
416	7,97 ton	847,51	106,34 JO/ton				
412	8,12 ton	872,49	107,40 JO/ton	111,79 JO/ton			
319	10,50 ton	1257,86	119,80 JO/ton				
411	10,52 ton	1261,11	119,88 JO/ton				
312	11,06 ton	1348,20	121,93 JO/ton				
311	11,88 ton	1481,36	124,71 JO/ton				
417	11,99 ton	1499,37	125,06 JO/ton				
315	14,89 ton	1969,08	132,29 JO/ton				

	Bangunan Atas				
313	14,98 ton	1984,00	132,47 JO/ton		
316	16,06 ton	2127,20	132,47 JO/ton		
318	16,84 ton	2231,32	132,47 JO/ton		
314	18,52 ton	2453,74	132,47 JO/ton		
317	18,70 ton	2477,05	132,47 JO/ton		

Perhitungan produktivitas *erection* bisa dilakukan dengan menggunakan metode yang sama. Namun, data yang didapatkan penulis menghasilkan rekapitulasi jam orang proses eretion yang tidak lengkap. Terdapat beberapa blok kapal yang tidak memiliki rekapitulasi jam orang. Berikut ini adalah grafik jam orang proses *erection* pada tiap blok kapal.

Gambar 4. 11 Rekapitulasi jam orang proses erection dari tabel presensi

Gambar 4. 11 menunjukkan grafik produktivitas yang tidak merata. Perubahan kebutuhan jam orang terhadap kenaikan beban pekerjaan juga tidak konsisten. Selain itu, ada juga data kosong yang menjadi *outlier* dalam perhitungan produktivitas di atas. Maka dari itu, perhitungan produktivitas proses *erection* perlu menggunakan pendekatan lain.

Pendekatan yang digunakan adalah dengan menghitung jam orang yang dibutuhkan untuk menyelesaikan pengelasan sepanjang lajur las. Langkah pertama adalah menghitung panjang lajur las dengan data berupa *shell expansion* dan *construction profile* yang akan dijelaskan secara terlampir. Perhitungan panjang lajur las dilakukan pada tiap blok kapal yang membutuhkan proses pengelasan pada saat tahap *erection*. Hasil perhitungan panjang lajur las tiap blok dijelaskan dalam Tabel 4. 5.

Tabel 4. 5 panjang lajur pengelasan blok

F .: G	Paniang laiur las (mm)			s (mm)	Panjang total
Erection Seq.	Keterangan	Bottom	Side	Deck	(mm)
1	114 ke 115	14440	10220	27992	52652
2	116 ke 115	14840	10224	28000	53064
3	113 ke 114	13464	9858	27954	51276
4	117 ke 116	14840	10192	28000	53032
5	112 ke 113	12078	9260	27722	49060
6	118 ke 117	14840	10162	28000	53002
7	111 ke 112	10574	11142	26138	47854
8	119 ke 118	14770	10202	27992	52964
9	217 ke 118	12000	-	-	12000

Panjang pengelasan ini dikalikan dengan jumlah *layer* pengelasan yang sesuai dengan WPS (*welding procedure specification*). Di dalam WPS tertera jumlah layer yang dibutuhkan adalah 5 layer. Setiap layer digunakan metode pengelasan secara FCAW. Untuk proses perhitungan waktu, penulis mengasumsikan mesin las yang digunakan adalah MIG Welder 501i seperti yang tertera secara terlampir. *Duty cycle* mesin las sebesar 60% dan *travel speed* yang diizinkan oleh WPS sebesar 100mm/menit, maka didapatkan persamaan jam orang seperti pada persamaan berikut. Hasil perhitungan dari persamaan di bawah ini, dijelaskan pada Tabel 4. 6.

$$JO = \frac{l.n}{(DC).v.60}.1 \, orang \, (Jam \, orang) \qquad \dots$$
[9]

Dengan keterangan:

JO = jam orang yang dibutuhkan untuk proses *erection*

1 = panjang pengelasan

n = jumlah layer

 $DC = duty \ cycle \ mesin \ las$

v = travel speed pengelasan sesuai WPS

Tabel 4. 6 Jam orang tahap erection pada metode on-blok outfitting

Erection Seq.	Keterangan	Panjang total (mm)	Jam Orang
1	114 ke 115	52652	1755
2	116 ke 115	53064	1769
3	113 ke 114	51276	1709
4	117 ke 116	53032	1768
5	112 ke 113	49060	1635
6	118 ke 117	53002	1767
7	111 ke 112	47854	1595
8	119 ke 118	52964	1765
9	217 ke 118	12000	400
10	120 ke 119	51648	1722
11	216 ke 117	31476	1049
12	121 ke 120	47466	1582
13	215 ke 116	31478	1049

Erection Seq.	Keterangan	Panjang total (mm)	Jam Orang
14	122 ke 121	35936	1198
15	214 ke 115	30854	1028
16	218 ke 119	44882	1496
17	213 ke 114	30920	1031
18	314 ke 214	11438	381
19	212 ke 113	30270	1009
20	315 ke 215	23232	774
21	211 ke 112	30797	1027
22	316 ke 216	23232	774
23	313 ke 213	22710	757
24	317 ke 217	31224	1041
25	312 ke 212	22070	736
26	318 ke 218	30682	1023
27	311 ke 211	18186	606
28	411 ke 311	11009	367

Tabel 4. 6 menunjukkan jam orang yang dibutuhkan pada tahap *erection*. Beban kerja yang dihitung bukan berupa berat blok kapal, tetapi panjang pengelasan. Sehingga di dalam perhitungan produktivitas *erection* hanya menggunakan *travel speed* proses pengelasan sebagai satuan produktivitas. Di dalam hasil akhir nantinya juga akan dihasilkan jam orang yang dibutuhkan. Sehingga satuan *travel speed* atau *produktivitas erection* sama sama bisa digunakan.

Selain perhitungan jam orang konstruksi, perhitungan jam orang untuk pemasangan *outfitting* juga perlu dihitung. Metode perhitungannya sama dengan yang dilakukan pada perhitungan jam orang pembangunan konstruksi badan kapal. Perbedaannya, produktivitas dihitung berdasarkan jenis perlengkapan kapal yang dipasang. Seperti sistem perpipaan yang terdiri dari sistem sanitari, dipisahkan dengan sistem air *ballast*. Atau sistem permesinan dengan perlengkapan keselamatan. Begitu juga dengan perlengkapan lainnya. Berikut ini adalah hasil rekapitulasi jam orang yang dibutuhkan untuk memasang sistem perpipaan.

Tabel 4. 7 Rekapitulasi jam orang pemasangan sistem perpipaan kapal penumpang barang 2000 GT

Ciatana	Berat	Jam.Orang l		Jam Orang Hasil Koreksi		
Sistem	(ton)	Fabrikasi	Instalasi	Fabrikasi	Instalasi	
Sea water cooling	3,194	651,00 JO	3049,00 JO	72,00 JO	871,50 JO	
Oil water separator	0,425	104,00 JO	901,00 JO	104,00 JO	901,00 JO	
Bilge ballast	3,044	2159,00 JO	3498,00 JO	320,00 JO	3302,00 JO	
Fresh water cooling	1,046	0,00 JO	532,00 JO	473,63 JO	532,00 JO	
Sea water sanitary	1,690	109,00 JO	2634,00 JO	765,42 JO	2634,00 JO	
Fresh water sanitary	2,603	1179,00 JO	3963,00 JO	1179,00 JO	3963,00 JO	
Sewage	0,537	320,00 JO	3302,00 JO	2159,00 JO	3498,00 JO	
Drainage	5,062	121,00 JO	2754,50 JO	651,00 JO	3049,00 JO	
Scupper	4,594	207,00 JO	1856,00 JO	1256,00 JO	4109,00 JO	
Sounding	3,390	1256,00 JO	4109,00 JO	1826,00 JO	4044,00 JO	
Lubricating Oil	0,206	72,00 JO	871,50 JO	207,00 JO	1856,00 JO	
Exhaust	3,967	1826,00 JO	4044,00 JO	440,00 JO	2636,00 JO	
Fire fighting	4,602	440,00 JO	2636,00 JO	121,00 JO	2754,50 JO	

Tabel 4. 7 masih memiliki data yang tidak lengkap. Sistem perpipaan *fresh water cooling* yang membutuhkan 0 jam orang pada saat proses instalasinya. Maka diperlukan koreksi data dengan menggunakan metode perbandingan. Perhitungan perbandingan menggunakan sistem dengan ukuran pipa yang sama. Contohnya, *fresh water cooling* memiliki ukuran dan spesifikasi yang sama dengan *fresh water sanitary*. Dengan membandingkan JO, didapatkan nilai jam orang yang dibutuhkan untuk memasang *fresh water cooling* adalah 473,63 ton. Begitu pula yang dilakukan pada *sea water sanitary*. Data jam orang *sea water sanitary* dengan *sea water cooling* tidak memiliki perbandingan berat dan JO yang linear. Padahal kedua sistem memiliki spesifikasi ukuran pipa yang sama, sch. 40 *outer diameter* 48,3mm dan ketebalan 3,68mm. Hasil koreksi perhitungan jam orang proses fabrikasi dan instalasi sistem perpipaan disajikan si kolom sebelah kanan tabel.

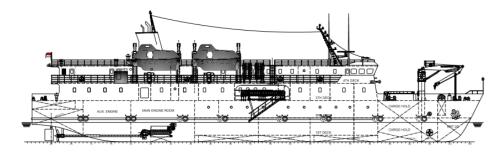
Hasil perhitungan jam orang pada Tabel 4. 8 digunakan sebagai input dalam perhitungan produktivitas pemasangan sistem perpipaan. Perhitungan produktivitas dibagi menjadi dua bagian pekerjaan, fabrikasi dan instalasi. Fabrikasi dilakukan di dalam bengkel permesinan dan perpipaan. Sedangkan instalasi dilakukan di *graving dock* yang ada di lapangan. Berikut ini adalah produktivitas pemasangan sistem perpipaan yang dihasilkan.

Tabel 4. 8 Produktivitas pemasangan sistem perpipaan

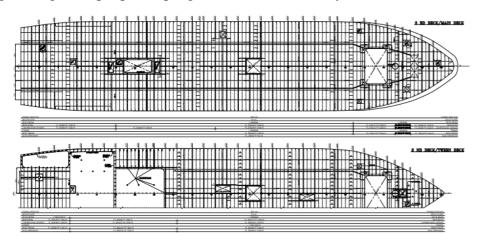
Ciatana	Dama4	Jam	Orang	Produ	ktivitas
Sistem	Berat	Fabrikasi	Instalasi	Fabrikasi	Instalasi
Lubricating Oil	0,206	72,00 JO	871,50 JO	349,49 JO/ton	4230,34 JO/ton
Oil water separator	0,425	104,00 JO	901,00 JO	244,81 JO/ton	2120,90 JO/ton
Sewage	0,537	320,00 JO	3302,00 JO	595,47 JO/ton	6144,48 JO/ton
Fresh water cooling	1,046	473,63 JO	532,00 JO	452,94 JO/ton	508,77 JO/ton
Sea water sanitary	1,690	765,42 JO	2634,00 JO	452,94 JO/ton	1558,69 JO/ton
Fresh water sanitary	2,603	1179,00 JO	3963,00 JO	452,94 JO/ton	1522,49 JO/ton
Bilge ballast	3,044	2159,00 JO	3498,00 JO	709,21 JO/ton	1149,06 JO/ton
Sea water cooling	3,194	651,00 JO	3049,00 JO	203,80 JO/ton	954,52 JO/ton
Sounding	3,390	1256,00 JO	4109,00 JO	370,54 JO/ton	1212,22 JO/ton
Exhaust	3,967	1826,00 JO	4044,00 JO	460,24 JO/ton	1019,29 JO/ton
Scupper	4,594	207,00 JO	1856,00 JO	45,06 JO/ton	404,02 JO/ton
Fire fighting	4,602	440,00 JO	2636,00 JO	95,62 JO/ton	572,86 JO/ton
Drainage	5,062	121,00 JO	2754,50 JO	23,91 JO/ton	544,19 JO/ton

Tabel 4. 8 menunjukkan produktivitas pemasangan sistem perpipaan pada galangan PT. X. dari hasil perhitungan, didapatkan bahwa nilai produktivitas pemasangan sistem perpipaan berbeda satu dengan yang lain. Namun, didapatkan bahwa nilai produktivitas proses fabrikasi lebih rendah dari pada produktivitas proses instalasi. Artinya, untuk memproduksi kuantitas produk yang sama, proses fabrikasi hanya membutuhkan jam orang yang lebih sedikit dari pada proses instalasi.

ANALISIS TEKNIS PENGEMBANGAN GALANGAN KAPAL

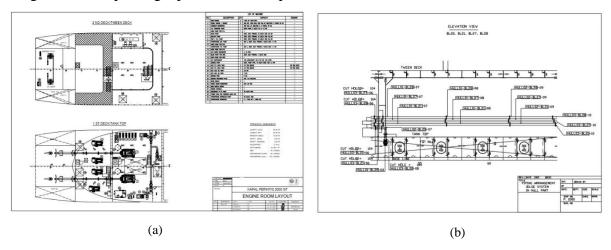


BAB 5 ANALISIS TEKNIS PENGEMBANGAN GALANGAN KAPAL


5.1. Perencanaan Pembangunan antar Metode

Analisa dilakukan dengan menggunakan studi kasus pembangunan kapal dengan jenis penumpang barang 2000 GT. Kapal ini didesain khusus untuk memenuhi kebutuhan program tol laut pada periode pemerintahan Indonesia 2014 – 2019. Kargo yang dimuat dalam kapal ini adalah *container* dan orang. Seperti yang terlihat dalam Gambar 5. 1, di bagian depan kapal dilengkapi *cargo hold* dengan *material handling* berupa *crane*. Lalu disusul tiga dek penumpang di bagian belakangnya.

Gambar 5. 1 Rencana umum kapal penumpang barang 2000 GT tampak samping

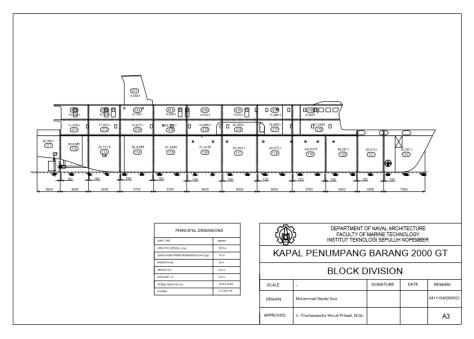

Kapal penumpang barang dengan panjang 68.5 m ini memiliki jenis konstruksi melintang sepanjang kapal. Di bagian ruang mesin, konstruksi bagian bawah kapal tidak dilengkapi dengan pelat *top deck*. Sedangkan di bagian ruang muat, dilengkapi dengan *top deck* yang berfungsi sebagai tempat penumpang melakukan aktivitasnya.

Gambar 5. 2 Construction profile penumpang barang 2000 GT

Construction profile pada Gambar 5. 2 berisi tentang informasi detail tentang profil dan tebal pelat yang digunakan pada seluruh badan kapal. Dalam gambar ini, juga terdapat informasi tentang jarak antar gading sepanjang kapal. Data ini digunakan untuk membuat pembagian blok dengan mempertimbangkan jarak antar gading, letak sekat, dan kapasitas crane yang tersedia pada galangan. Selain itu, perencanaan pembangunan juga membutuhkan informasi mengenai berat tiap blok kapal. Maka dari itu, proses perhitungan berat kapal juga menggunakan gambar contruction profile sebagai data utamanya.

Selain itu, data yang diperlukan dalam proses perencanaan pembangunan adalah daftar perlengkapan kapal. Perlengkapan kapal yang terpasang memiliki beberapa klasifikasi. Yaitu, sistem perpipaan, permesinan, deck machinery, deck outfitting, dan perlengkapan keselamatan. Untuk mengidentifikasi deck machinery dan deck outfittin, gambar yang digunakan adalah rencana umum kapal penumpang barang 2000GT. Sedangkan, permesinnan kapal menggunakan engine room layout dan sistem perpipaan menggunakan gambar isometric drawing setiap sistemnya. Berikut ini adalah contoh gambar yang dibutuhkan untuk mengidentifikasi perlengkapan di dalam kapal.

Gambar 5. 3 (a) Engine room layout, (b) Penampang memanjang sistem perpipaan

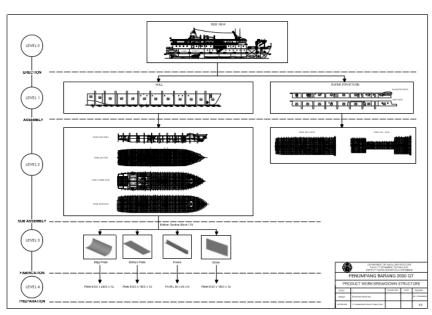

Beberapa data pada Gambar 5. 3 dijadikan data utama dalam merencanakan pembangunan kapal. Perencanaan pembangunan kapal dilakukan dengan dua metode yang berbeda, metode *on board outfitting* dan metode *advanced outfitting* system. Kedua metode ini direncanakan dengan menggunakan variabel tetap seperti jumlah tenaga kerja, dan skenario pembagian blok kapal. hasil yang diharapkan adalah berupa jam orang dan waktu pembangunan yang dibutuhkan di tiap metode.

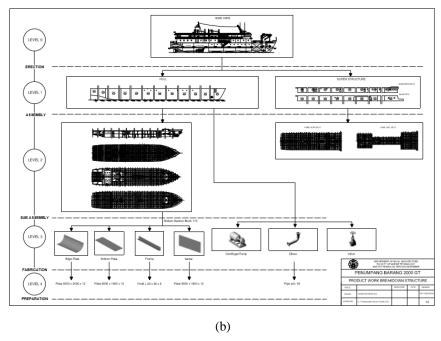
Untuk mendapatkan hasil tersebut, perencanaan produksi kapal memerlukan beberapa tahapan. Sesuai dengan teori pembangunan kapal, tahapan produksi kapal dimulai dengan perencanaan pembagian blok kapal. Disusul dengan melakukan *work breakdown structure*. (WBS) pada tiap tahapan produksi. Hasil pembagian blok dan WBS dijadikan input pada proses perhitungan kebutuhan jam orang. Selanjutnya, dilakukan perencanaan jumlah tenaga kerja di tiap tahap produksi untuk melengkapi perhitungan waktu pembangunan.

5.1.1. Pembagian Blok

Perencanaan pembagian blok kapal perlu mempertimbangkan beberapa hal. Pertama, ketersediaan ukuran pelat di pasaran. Pembagian blok kapal direncanakan dengan ukuran sepanjang lajur pelat yang ada di pasaran. Hal ini ditujukan untuk mengurangi kegiatan pengelasan pada saat proses *assembly*. Kedua, jumlah *outfitting* yang bisa dipasang di dalam blok. Perlengkapan kapal yang dipasang di dalam blok kapal harus direncanakan seoptimal mungkin. Tujuannya adalah untuk memaksimalkan proses pemasangan yang dilakukan di dalam blok.

Dari kedua aspek di atas, penulis merencanakan pembagian blok kapal menggunakan pelat dengan panjang 6000 mm. Tinggi blok kapal dibagi tepat di atas tiap geladak kapal, mulai dari *main deck, boat deck*, dan *navigation deck*, seperti yang tertera di dalam Gambar 5. 4. Jumlah dan jenis *outfitting* yang dipasang di dalam blok akan diidentifikasi di dalam sub bab selanjutnya.


Gambar 5. 4 Pembagian blok pada metode advanced outfitting system


Di dalam Gambar 5. 4 rencana pembagian blok, dapat dilihat bahwa blok kapal pada metode pembangunan *advanced outfitting system* **direncanakan sama** dengan metode *on-board outfitting*. Blok konstruksi penyusun lambung kapal dibagi menjadi dua bagian secara vertikal. Sedangkan bagian *superstructure* dan *deckhouses* direncanakan dibagi tiap geladak.

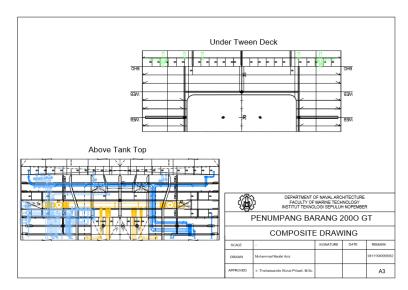
Perencanaan jumlah blok yang sama dimaksudkan sebagai variabel kontrol dalam menganalisa implikasi metode pembangunan kapal. Implikasi yang ingin diketahui dalam bab ini adalah waktu yang dibutuhkan di setiap level produksi. Seperti waktu *fabrikasi*, perakitan tiap unit *outfitting*, *assembly* blok dengan *outfitting*, dan waktu yang dibutuhkan untuk proses *erection*.

5.1.2. Product Work Breakdown Structure

PWBS yang dibuat dalam perencanaan produksi ditujukan untuk mengidentifikasi bahan baku, komponen, dan proses yang akan dilalui untuk membuat kapal menjadi satu kesatuan utuh. Proses identifikasi dilakukan dari level paling atas, kapal utuh, lalu diturunkan menjadi blok kapal, dan seterusnya sampai pada bahan baku penyusun blok-blok kapal. Untuk sub-bab ini, analisa dilakukan untuk mensimulasikan pembangunan kapal menggunakan *advanced outfitting system*. Maka dari itu, proses pembuatan PWBS juga memperhatikan *zone outfitting* untuk proses pemasangan perlengkapan kapal. Hasil PWBS metode *advanced outfitting system* dijelaskan di dalam Gambar 5. 5.

Gambar 5. 5 (a) WBS pada on board outfitting (b) WBS pada advanced outfitting

Di dalam Gambar 5. 5 (a) diketahui bahwa WBS menghasilkan proses fabrikasi pelat & profil, *assembly*, dan *erection* hingga menjadi satu kesatuan kapal utuh. Proses pembangunan setelah itu adalah dengan memasang perlengkapan kapal seperti pompa, *valve*, dan pipa. Kedua proses ini dilakukan secara seri. Maka dari itu, proses pemasangan perlengkapan kapal hanya bisa dilakukan setelah pekerjaan konstruksi selesai. Sedangkan pada Gambar 5. 5 (b) didapatkan bahwa proses fabrikasi komponen konstruksi kapal dilakukan secara bersamaan dengan fabrikasi dan *assembly* perlengkapan kapal. Baik untuk pemasangan *on unit*, maupun *on board*. Hasil fabrikasi perlengkapan dikirim ke tahap *assembly* blok kapal. dengan begitu, proses pemasangan perlengkapan kapal dan pekerjaan konstruksi bisa dilakukan secara paralel.


Proses fabrikasi pipa dan perakitan *unit outfit* memerlukan tempat khusus. Sedangkan, dari hasil pengamatan penulis, PT. X. masih belum memiliki tempat untuk melakukan proses perakitan *unit outfit*. Ruang bengkel permesinan dan bengkel pipa digunakan secara bersamaan dengan proyek reparasi kapal. Sehingga ruang kosong yang ada di dalamnya selalu digunakan sebagai tempat menyimpan komponen kapal yang akan dilakukan pengerjaan.

5.1.3. Composite Drawing

Perbedaan paling mendasar dari perencanaan blok konstruksi kapal antara metode *on-board outfitting* dan *advanced outfitting* adalah pada desain *composite drawing-*nya. Di dalam metode *on board outfitting*, **tidak dikenal** jenis perencanaan ini. Hal ini dikarenakan perencanaan blok kapal dengan metode *ob board outfitting* tidak memerlukan pemasangan perlengkapan di dalamnya. Sedangkan, pada metode *advanced outfitting*, *composite drawing*

sudah meliputi peralatan dan sistem perpipaan yang ada di dalam blok kapal. Tujuan dari proses ini adalah untuk mengidentifikasi komponen terkecil penyusun blok. Selain itu, tujuan pembuatan *composite drawing* adalah untuk merencanakan pembangunan blok yang sudah meliputi perlengkapan di dalamnya.

Gambar *composite drawing* didapatkan dari *overlay* gambar konstruksi kapal, pembagian blok kapal, dan sistem perpipaan yang ada pada sepanjang kapal. Penulis berhasil mengidentifikasi 14 sistem perpipaan yang terpasang di dalam kapal. Sistem ini diidentifikasi di setiap blok kapal untuk bisa digambarkan *composite drawing*-nya. Seperti yang tertera pada Gambar 5. 6, adalah hasil *composite drawing advanced outfitting system* pada blok 115.

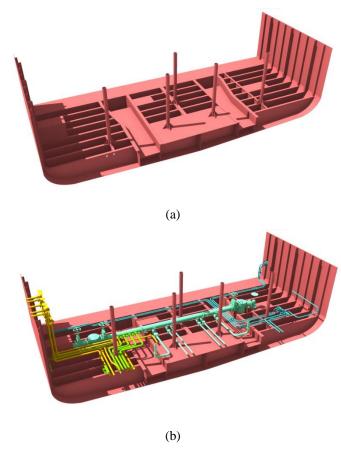
Gambar 5. 6 Composite drawing blok 115 dalam advanced outfitting system

Dapat dilihat dari Gambar 5. 6 bahwa terdapat sistem perpipaan yang berada di bawah tween deck kapal. Proses pemasangan perpipaan ini dilakukan sebelum assembly panel tween deck dilakukan. Diharapkan metode ini dapat mempermudah proses pemasangan oleh pekerja lapangan. Selain itu, bentuk blok 115 yang tidak berbidang datar membutuhkan dudukan supaya posisi blok tetap lurus. Tentu metode ini berbeda dengan metode yang diterapkan oleh PT.X pada pembangunan blok secara on-board outfitting. Perusahaan membangun blok secara terbalik, dimana geladak kapal diposisikan di bawah sebagai referensi datarnya. Sedangkan dalam pembangunan dengan metode advanced outfitting, dibutuhkan blok dalam keadaan datar pada berbagai macam kondisi. Hal ini ditujukan untuk menjaga akurasi pada saat pemasangan sistem perpipaan di dalamnya.

Composite drawing blok 115 yang ada di dalam Gambar 5. 6 menunjukkan jenis sistem perpipaan yang dipasang di dalamnya. Pada blok 115, dipasang delapan sistem perpipaan yang

memiliki ukuran dan posisi spesifik satu sama lain. Sistem perpipaan yang berhasil diidentifikasi pada gambar *composite drawing* didaftar pada Tabel 5. 1 untuk selanjutnya dicari tahu spesifikasinya.

Tabel 5. 1 Daftar sistem perpipaan pada blok 115


Blok	Sistem	Berat
	Sea water cooling	1,48 ton
	Scupper	0,14 ton
	Fire Fighting	0,55 ton
	Fresh water cooling	0,33 ton
	Watter Ballast	1,13 ton
115	OWS	0,29 ton
	Lubricating oil	0,08 ton
	Sewage	0,30 ton
	Sounding	0,50 ton
	ASL	0,14 ton
	Sea water sanitary	0,05 ton

Tabel 5. 1 menunjukkan daftar sistem perpipaan yang terpasang di dalam blok 115. Terdapat 11 sistem yang ada di dalamnya. Setiap sistem memiliki spesifikasi pipa yang berbeda satu sama lain. Sistem yang baling banyak terpasang dari segi berat adalah sistem *sea water cooling*. Diususl dengan sistem *water ballast*. Hal ini bisa terjadi karena di dalam blok 115, ukuran pipa kedua sistem paling besar diantara semua sistem yang ada.

5.1.4. 3D Block

Pembangunan kapal membutuhkan simulasi untuk memastikan bentuk final kapal. Salah satu metode yang paling sering digunakan adalah dengan menggambarkannya dalam bentuk tiga dimensi. Proses pembuatan kapal 3D dilakukan dalam satu kesatuan kapal utuh terlebih dahulu. Lalu didetailkan dalam bentuk 3D per blok konstruksi kapal. Pada level ini, desain 3D blok konstruksi juga digunakan untuk mengidentifikasi komponen-komponen penyusun blok secara lebih rinci.

Untuk bisa menganalisis perbedaan 3D blok kedua metode, dilakukan permodelan pada keduanya. Proses pembuatan 3D menggunakan salah satu software CAD. Data yang diperlukan meliputi gambar konsturksi kapal dan rencana pembagian blok kapal. Dua data ini cukup untuk dijadikan bahan dalam membuat 3D blok pada metode on board outfitting. Namun, untuk membuat model 3D blok pada metode advanced outfitting system, diperlukan gambar composite drawing di masing-masing blok kapal. Gambar ini sangat membantu designer dalam membuat piece part tiap komponen perpipaan. Dengan bantuan aplikasi CAD, komponen perpipaan yang selesai dibuat, diletakkan pada posisi yang sudah ditentukan di dalam composite drawing. Berikut ini adalah hasil permodelan 3D blok kapal 115 antara kedua metode pembangunan.

Gambar 5. 7 (a) 3D blok on board outfitting (b) 3D blok advanced outfitting

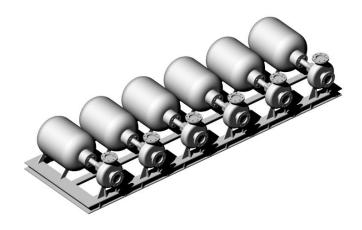
Di dalam Gambar 5. 7 dijelaskan gambar 3D pada blok 115 sesuai dengan hasil pembagian blok kapal. Gambar blok kapal pada metode *on board outfitting* tidak disertai dengan perlengkapan kapal. Sedangkan pada gambar blok kapal pada metode *advanced outfitting* sudah disertai dengan sistem perpipaan di dalamnya. Pemasangan sistem perpipaan direncanakan tidak segaris lurus dengan ujung blok kapal. Selisih yang direncanakan adalah 500 mm. Hal ini dilakukan untuk meminimalisasi adanya resiko benturan pada saat *material handling* pada proses *erection*.

5.1.5. Identifikasi Zone Outfitting

Zone outifitting adalah metode pemasangan perlengkapan yang dikategorikan menjadi tiga macam. Pembagian kategori dilakukan berdasarkan tempat pemasangan perlengkapan. Yaitu, on unit, on block, dan on board outfitting. Pada tahap ini, metode on board outfitting tidak mengenal pemasangan perlengkapan secara on unit dan on block. Semua perlengkapan kapal dipasang pada saat blok kapal di erection di graving dock.

Daftar perlengkapan kapal yang dipasang pada metode *on board outfitting* meliputi sistem perpipaan, sistem permesinan, *deck outfitting*, *deck machinery*, dan perlengkapan keselamatan. Pemasangan perlengkapan dimulai dengan memasang sistem permesinan di ruang

mesin. Dilanjut dengan pemasangan sistem perpipaan, dan seterusnya. Berikut ini adalah daftar perlengkapan kapal yang dipasang dengan metode *on board outfitting*.


Tabel 5. 2 Zone outfitting pada metode on board outfitting

No.	Zone Outfitting	Berat	No.	Zone Outfitting	Berat
1	On Unit		37	On Board	
	-		38	Deck Machinery	6974kg
2	On Block		39	Windlass	3000 kg
	-		40	Vertical Winch	24 kg
3	On Board		41	Emergency Genset	1000 kg
4	Sistem Perpipaan	•	42	Emergency switch board	550 kg
5	Lubricating Oil	0,21 kg	43	Crane SWL 2.5ton	2400 kg
6	Oil water separator	0,42 kg	44	Deck Outfitting	1275 kg
7	Sewage	0,54 kg	45	Hawse pipe	48 kg
8	Fresh water cooling	1,05 kg	46	Roller	52 kg
9	Sea water sanitary	1,69 kg	47	Bollard	240 kg
10	Fresh water sanitary	2,60 kg	48	Fairlead	50 kg
11	Bilge ballast	3,04 kg	49	Chocks	96 kg
12	Sea water cooling	3,19 kg	50	Bollard	120 kg
13	Sounding	3,39 kg	51	Fairlead	75 kg
14	Exhaust	3,97 kg	52	Mushroom vent. Head	80 kg
15	Scupper	4,59 kg	53	Mushroom vent. Head	160 kg
16	Fire fighting	4,60 kg	54	Mushroom vent. Head	240 kg
17	Drainage	5,06 kg	55	Expansion tank for FW	114 kg
18	Engine room machinery	11875 kg	56	Safety Equipment	17181 kg
19	Main engine	2600 kg	57	Marine evacuation system	1370 kg
20	Diesel engine / Genset	3840 kg	58	Davit	3600 kg
21	Harbour Generator	1280 kg	59	Life boat	9200 kg
22	Main switch board	550 kg	60	Liferaft	2220 kg
23	Steering gear	1360 kg	61	CO2	791 kg
24	S.W. Hydrophore	26 kg			
25	S.W. Pump	100 kg			
26	S.W Hand Pump	6 kg			
27	Bilge Pump	25 kg			
28	Ballast Pump	225 kg			
29	Fire/G.S. Pump	100 kg			
30	F.W. Hydrophore	26 kg			
31	F.W. Pump	100 kg			
32	F.W Hand Pump	6 kg			
33	Oily Water Separator (OWS)	600 kg			
34	Bilge Pump for OWS	25 kg			
35	Hand Pump for OWS	6 kg			
36	Seawage Treatment Plant	1000 kg			

Tabel 5. 2 menunjukkan daftar perlengkapan kapal yang dipasang pada metode *on board outfitting*. Beban pekerjaan yang paling besar terdapat pada sistem permesinan dengan total 18 peralatan yang harus dipasang secara *on board*. Disusul dengan sistem perpipaan yang memiliki 13 sistem perpipaan yang harus dipasang secara on board. Lalu disusul dengan *deck outfitting*, *deck machinery*, dan perlengkapan keselamatan.

Berbeda dengan *on board outfitting*, *advanced outfitting system* memaksimalkan pemasangan *outfitting* pada metode *on unit* dan *on block*. Perlengkapan kapal yang bisa dipasang secara *on-unit* diidentifikasi dengan cara meninjau *engine room layout*. Di dalam ruang mesin terdapat berbagai macam permesinan dan peralatan yang disusun saling berdekatan. Di dalam buku *Parametric Approach to Machinery Unitization in Shipbuilding* dijelaskan bahwa unitisasi perlengkapan di ruang mesin dilakukan mulai pada tahap desain *engine room layout*.

Dalam tahap desain, tiap permesinan diletakkan di lokasi yang berdekatan. Tujuannya adalah untuk mengoptimalkan unit yang akan dibangun di bengkel permesinan. (Jaquith, 1997) Dalam analisis ini, proses desain ruang mesin tidak dimungkinkan untuk dilakukan perubahan. Jika tata letak ruang mesin diubah, maka sistem perpipaan di dalamnya juga akan berubah (Stumbo, 1985). Tata letak ruang mesin kapal penumpang barang 2000 GT memungkinkan untuk dilakukan perencanaan unit sebanyak 5 buah. Yaitu, unit sea water system, unit bilge and ballast, unit fresh water system, unit fresh water system, dan unit sewage treatment. Berikut ini adalah contoh unit outfitting yang akan dibuat.

Gambar 5. 8 3D unit 2 pada rencana unit outfitting

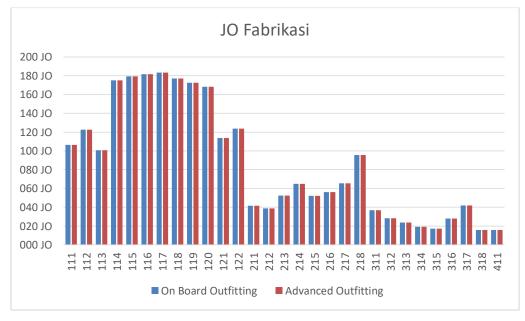
Gambar 5. 8 menunjukkan unit 2, yaitu unit *bilge and ballast*. Di dalam unit ini terdapat 3 unit pompa ballast, 1 unit pompa *bilga*, dan 2 unit pompa Fi-Fi. Keenam pompa dipasang dalam satu konstruksi dasar yang berbahan *flat bar*. Konstruksi ini direncanakan mampu untuk menahan deformasi akibat proses *material handling* dari bengkel menuju tempat pemasangan *outfitting*.

Perencanaan pemasangan *outfitting* selanjutnya adalah dengan memasang perlengkapan yang tidak bisa dilakukan secara *on-unit* ke dalam blok-blok kapal. Istilah yang digunakan adalah *on-block outfitting*. Cara mengidentifikasi perlengkapan kapal yang bisa dipasang di

dalam blok adalah dengan meninjau gambar sistem perpipaan, *engine room layout*, dan perencanaan pembagian blok kapal. Desain sistem perpipaan dan peralatan di setiap blok dilakukan disusun di atas gambar perencanaan pembagian blok kapal. Dengan begitu, desain tiap blok kapal sudah meliputi perlengkapan yang ada di dalamnya. Perlengkapan yang sudah terpasang di dalam blok perlu dilakukan perhitungan secara teliti untuk diketahui penambahan berat tiap blok kapal.

Selanjutnya, perlengkapan yang belum terpasang, akan dipasang secara *on-board*. Proses identifikasi perlengkapan kapal dilakukan dengan meninjau perlengkapan yang belum terpasang melalui *general arrangement*, *engine room layout*, dan daftar perlengkapan yang sudah tercantum di bagian *on-unit* dan *on-block*.

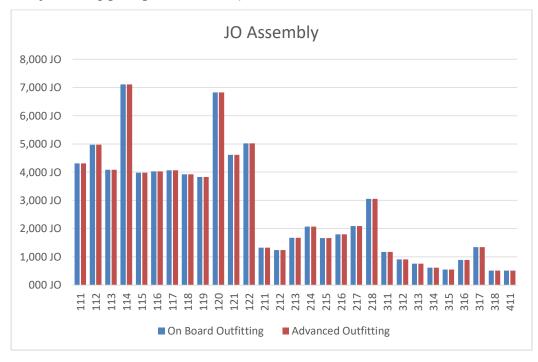
Tabel 5. 3 Zone outfitting pada metode advanced outfitting


Tabel 5. 3 Zone outfitting pada metode advanced outfitting						
No.	Zone Outfitting	Berat	No.	Zone Outfitting	Berat	
1	On Unit		37	On Board		
2	Unit 1	82 kg	38	Engine Room Machinery	9630 kg	
3	S.W. Hydrophore	26 kg	39	Main engine	2600 kg	
4	S.W. Pump	50 kg	40	Diesel engine / Genset	3840 kg	
5	S.W Hand Pump	6 kg	41	Harbour Generator	1280 kg	
6	Unit 2	150 kg	42	Main switch board	550 kg	
7	Bilge Pump	25 kg	43	Steering gear	1360 kg	
8	Ballast Pump	75 kg	44	Deck Machinery	6974 kg	
9	Fire/G.S. Pump	50 kg	45	Windlass	3000 kg	
10	Unit 3	82 kg	46	Vertical Winch	24 kg	
11	F.W. Hydrophore	26 kg	47	Emergency Genset	1000 kg	
12	F.W. Pump	50 kg	48	Emergency switch board	550 kg	
13	F.W Hand Pump	6 kg	49	Crane SWL 2.5ton	2400 kg	
14	Unit 4	631 kg	50	Deck Outfitting	1275 kg	
15	Oily Water Separator (OWS)	600 kg	51	Hawse pipe	48 kg	
16	Bilge Pump for OWS	25 kg	52	Roller	52 kg	
17	Hand Pump for OWS	6 kg	53	Bollard	240 kg	
18	Unit 5	1000 kg	54	Fairlead	50 kg	
19	Seawage Treatment Plant	1000 kg	55	Chocks	96 kg	
20	On Block		56	Bollard	120 kg	
21	112	0,07 kg	57	Fairlead	75 kg	
22	113	3,14 kg	58	Mushroom vent. Head	80 kg	
23	114	5,28 kg	59	Mushroom vent. Head	160 kg	
24	115	4,99 kg	60	Mushroom vent. Head	240 kg	
25	116	6,37 kg	61	Expansion tank for FW	114 kg	
26	117	3,48 kg	62	Safety Equipment	17181 kg	
27	118	2,55 kg	63	Marine evacuation system	1370	
28	119	2,87 kg	64	Davit	3600	
29	120	2,36 kg	65	Life boat	9200	
30	121	2,06 kg	66	Liferaft	2220	
31	122	0,49 kg	67	CO2	791	
32	214	0,34 kg				
33	215	0,63 kg				
34	216	0,38 kg				
35	217	0,38 kg				
36	218	0,40 kg				

Tabel 5. 3 adalah daftar perlengkapan yang dipasang dengan metode *advanced outfitting* system. Dari tabel di atas, dapat diketahui bahwa perencanaan pemasangan permesinan kapal semuanya dilakukan pada saat proses *erection* berlangsung. Mesin utama, *generator*, dan peralatan *maneuvering* hanya bisa dipasang pada saat blok kapal di bagian kamar mesin dan buritan terpasang semua. Hal ini dikarenakan proses yang dilakukan pada saat pemasangan sistem propulsi perlu mempertmbangkan keseluruhan komponen penyusunnnya, mulai dari mesin utama, poros, baling-baling, hingga kemudi kapal.

Alasan yang berbeda berlaku pada *deck machinery* dan *deck outfitting*. Perencanaan penyimpanan blok sementara juga perlu dipertimbangkan. Pada saat pengamatan lapangan dilakukan, blok kapal penumpang barang 2000 GT yang sudah selesai dilakukan *assembly* selanjutnya ditumpuk di beberapa tempat seperti *working area* dan di atas tongkang milik galangan. Resiko deformasi karena penyimpanan blok kapal yang demikian perlu dipertimbangkan lagi ketika perencanaan pemasangan *deck outfitting* perlu dilakukan. Dengan alasan itu, segala macam *deck machinery* dan *deck outfitting* direncanakan untuk dipasang pada saat proses *erection* selesai dilakukan.

5.1.6. Perhitungan Kebutuhan Jam Orang


Jam orang adalah satuan sumber daya manusia dalam rentang waktu tertentu (Jasmine & Pribadi, 2019). Jumlah kebutuhan jam orang dilakukan dengan mengalikan produktivitas dengan beban kerja tdi tiap tahap pembangunan kapal. berikut ini adalah hasil kebutuhan jam orang pada tahap fabrikasi.

Gambar 5. 9 Kebutuhan jam orang tahap fabrikasi

Gambar 5. 9 menunjukkan kebutuhan jam orang antar metode pembangunan kapal. Warna biru mewakili metode *on board outfitting*, sedangkan warna merah mewakili metode *advanced outfitting*. Jumlah kebutuhan jam orang kedua metode adalah sama. Jam orang yang paling banyak ada di bagian konstruksi lambung kapal. Setelah itu, disusul dengan jam orang pada bangunan atas.

Jam orang yang dihitung selanjutnya adalah pada tahap *assembly*. Nilai produktivitas tahap *assembly* diklasifikasikan menjadi tiga bagian. Untuk menghitung jumlah kebutuhan jam orang, beban pekerjaan harus dikalikan dengan nilai produktivitas yang sesuai. Blok 115-119 dikalikan dengan produktivitas *assembly parallel middle body*. Blok 111-114 dan 120 -122 dikalikan dengan produktivitas *assembly* buritan dan haluan. Sedangkan blok 211 sampai 411 dikalikan dengan produktivitas *assembly* bangunan atas. Berikut ini adalah hasil perhitungan kebutuhan jam orang pada proses *assembly*.

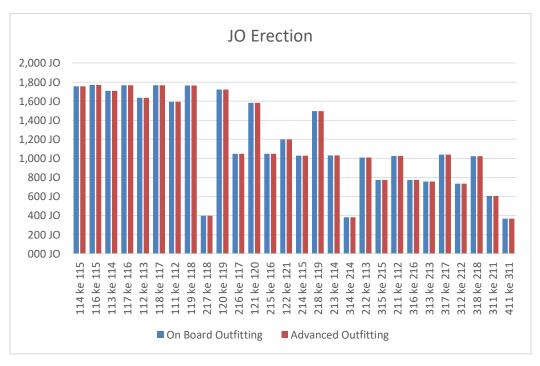
Gambar 5. 10 Kebutuhan jam orang tahap assembly

Gambar 5. 10 menunjukkan kebutuhan jam orang antar metode pembangunan kapal pada tahap *assembly*. Warna biru mewakili metode *on board outfitting*, sedangkan warna merah mewakili metode *advanced outfitting*. Jumlah kebutuhan jam orang kedua metode adalah sama. Jam orang yang paling banyak ada di bagian konstruksi lambung kapal. Jika dibandingkan dengan tahap fabrikasi, tahap assembly membutuhkan jam orang yang lebih banyak 20 kali lipat. Maka dari itu, jumlah orang yang direncakanan harus diperbanyak untuk menghindari proses pembangunan yang terlalu lama.

Jam orang yang dihitung selanjutnya adalah pada tahap *erection*. Proses perhitungan jam orang tahap *erection* dilakukan dengan menghitung waktu yang dibutuhkan untuk menyelesaikan proses pengelasan. Diketahui bahwa panjang pengelasan pada tiap blok berbeda satu sama lain. Maka dari itu, diperlukan perhitungan panjang pengelasan pada tiap *erection sequence*. Setelah panjang pengelasan didapatkan, hasil ini dikalikan dengan *travel speed* WPS dan faktor *duty cycle* mesin las. Operasi matematis ini menghasilkan jam orang pada tahap *erection*. Berikut ini adalah rumus dalam menghitung kebutuhan jam orangnya. Hasil rumus di bawah, disajikan dalam Gambar 5. 11, kebutuhan jam orang pada tahap *erection*.

$$JO = \frac{l.n}{(DC).v.60}.1 \, orang \, (Jam \, orang) \qquad \dots [10]$$

Dengan keterangan:


JO = jam orang yang dibutuhkan untuk proses *erection*

1 = panjang pengelasan

n = jumlah layer

 $DC = duty \ cycle \ mesin \ las$

v = travel speed pengelasan sesuai WPS

Gambar 5. 11 Kebutuhan jam orang tahap erection

Gambar 5. 11 menunjukkan kebutuhan jam orang antar metode pembangunan kapal pada tahap *erection*. Warna biru mewakili metode *on board outfitting*, sedangkan warna merah mewakili metode *advanced outfitting*. Jumlah kebutuhan jam orang kedua metode adalah sama.

Dari seluruh pekerjaan konstruksi kapal, tidak ada perbedaan kebutuhan jam orang pada kedua metode. Hal ini dikarenakan beban kerja dan produktivitas yang digunakan adalah sama. Beban kerja tetap sama karena perencanaan pembagian blok kapal dikondisikan tetap. Produktivitas yang digunakan tetap sama karena proses pembangunan kapal dilakukan di galangan kapal yang sama.

Setelah perhitungan kebutuhan jam orang selesai dilakukan, proses perhitungan dilanjutkan pada tahap pekerjaan *outfitting*. Perhitungan jam orang pekerjaan outfitting dianalisa pada tiap *zone outfitting*. Data yang digunakan adalah hasil identifikasi *zone outfitting* dan perhitungan produktivitas galangan kapal.

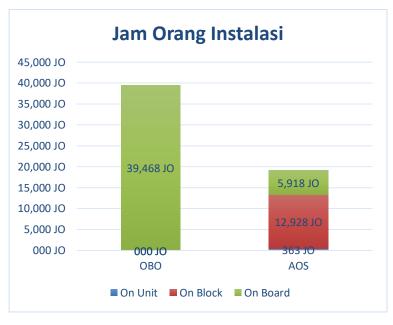
Selain itu, hal yang perlu dipertimbangkan dalam menghitung kebutuhan jam orang adalah faktor efisiesi proses pengerjaam pada metode *on unit* dan *on block* dibandingkan dengan *on board outfitting*. Faktor efisiensi didapatkan dari beberapa hal sebagai berikut:

- 1. Waktu *material handling*, pemindahan material perlengkapan kapal dari bengkel ke *building berth* membutuhkan waktu yang lebih lama dari pada pemindahan material yang dilakuakan per modul *uni outfit*.
- 2. Tempat kerja, proses pekerjaan pemasangan perlengkapan kapal memiliki kontribusi dalam kebutuhan pekerja. Pekerjaan yang dilakukan pada konstruksi kapal lebih susah dilakukan dari pada pekerjaan yang dilakukan di bengkel permesinan dan blok kapal. di dalam bengkel sudah dilengkapi dengan permesinan dan peralatan pendukung lainnya. Sehingga pekerjaan akan semakin mudah dilakukan apabila diperlukan pekerjaan tambahan.
- 3. Kemudahan pengetesan, proses pemasangan di konstruksi kapal yang sudah jadi memerlukan proses pengetesan setelahnya. Setidaknya pekerja harus melakukan pengetesan secara menyeluruh pada satu sistem yang sudah terpasang di dalam kapal. Sedangkan, proses pengetesan di unit dan blok bisa dilakukan dengan lebih mudah. Karena proses pengetesan bisa dilakukan tiap lajur pipa/unit *outfitting* yang dibuat (Rubeša et al., 2011)


Ketiga faktor ini menghasilkan faktor efisiensi pada tiap zone outfitting. Faktor efisiesi tiap zona dihitung dengan menggunakan analisis breakdown aktivitas pada advanced outfitting dibandingkan dengan on board outfitting. Perbandingan aktivitas dilakukan dengan tabel perbandingan kegiatan di setiap zone outfitting. Lalu dicari faktor efisiensi yang terdapat di on unit dan on block outfitting dengan rumus rerata. Berikut ini adalah hasil perhitungan efisiensi advanced outfitting system.

Tabel 5. 4 Perhitungan efisiensi advanced outfitting system

		140013. 110111			On Boar	0 ,		
Efficiency of Advanced Outfitting Using Activity Breakdown		Fabrikasi	Material	handling	Instalasi	Testing	Rerata	
		Sesuai production drawing	bengkel ke graving dock	graving dock ke kapal	pemasangan per <i>piece</i> part	dites setelah terpasang semua	Efisiensi yg didapat	
	Fabrikasi	Sesuai production drawing	-					
	Material	bengkel ke bengkel		0,1				0,17
On Unit		internal bengkel unit outfitting			0,3			
	Instalasi	pemasangan per piece part				-		
	Testing	dites per unit					0,1	
	Fabrikasi	Sesuai production drawing	-					
	Material	bengkel ke working area		0,5				
On Block	Handling working area ke dalam blok			0,3			0,37	
	Instalasi	pemasangan per piece part				-		
	Testing	dites per lajur di dalam blok					0,3	


Tabel 5. 4 menunjukkan nilai efisiensi *advanced outfitting system* di setiap *unit outfitting*. Penentuan nilai efisiensi di tiap *breakdown aktivitas* didapatkan dari uraian kegiatan yang dilakukan. Sebagai contoh, material handling dari bengkel ke bengkel memiliki faktor efisiensi 0,1 karena jarak yang ditempuh lebih pendek 90% dari pada dari bengkel ke *graving dock*. Begitu juga dengan proses pengetesan *unit outfitting* dan sistem perpipaan di dalam blok. Hasil akhir efisiensi *zone outfitting* didapatkan dari nilai rerata dari seluruh efisiensi *breakdown aktivitas* yang didapatkan.

Kebutuhan jam orang pada tiap *zone outfitting* dihitung terlebih dulu secara *on board outfitting*. Jam orang yang dihasilkan selanjutnya dilkalikan dengan faktor efisiensi di atas. Hasil perkalian ini adalah kebutuhan jam orang pada tiap *zone outfitting*. Berikut ini adalah hasil perhitungan jam orang pekerjaan *outiffting*, mulai dari tahap fabrikasi sampai instalasi.

Gambar 5. 12 Kebutuhan jam orang fabrikasi outfitting

Gambar 5. 12 menunjukkan kebutuhan jam orang pada tahap fabrikasi untuk kedua metode pembangunan. Wana biru menunjukkan jam orang fabrikasi *on unit outfitting*, warna merah menunjukkan jam orang fabrikasi *on block outfitting*, dan warna hijau menunjukkan jam orang fabrikasi *on board outfitting*. Pada metode *on board outfitting*, tidak ada kegiatan fabrikasi *on unit* dan *on board outfitting*, sehingga tidak ada kebutuhan jam orang. Maka dari itu, total kebutuhan jam orang metode *on board outfitting* lebih sedikit dari pada metode *advanced outfitting*.

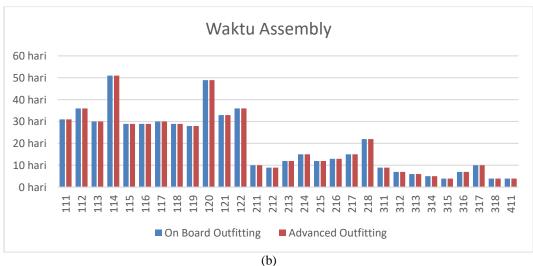
Gambar 5. 13 Kebutuhan jam orang instalasi outfitting

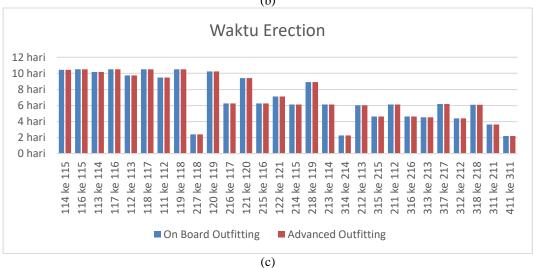
Gambar 5. 13 menunjukkan kebutuhan jam orang pada tahap instalasi untuk kedua metode pembangunan. Wana biru menunjukkan jam orang fabrikasi *on unit outfitting*, warna merah menunjukkan jam orang fabrikasi *on board outfitting*. Pada metode *on board outfitting*, tidak ada kegiatan instalasi *on unit* dan *on board outfitting*, sehingga tidak ada kebutuhan jam orang di dalamnya. Pada metode *advanced outfitting* terdapat kebutuhan jam orang di tiap *zone outfitting*. Namun, jumlah total kebutuhan jam orang proses instalasinya lebih rendah dari pada kebutuhan jam orang pada metode *on board outfitting*.

5.1.7. Waktu Pembangunan Kapal

Di dalam perhitungan waktu pembangunan kapal, ditentukan terlebih dahulu jumlah orang (tenaga kerja) yang digunakan di setiap level produksi, mulai dari fabrikasi, *assembly*, sampai *erection*. Penentuan tenaga kerja pada metode *advanced outfitting system* direncanakan sama dengan metode *on-board outfitting system*. Jumlah tenaga kerja yang sama dilakukan sebagai variabel kontrol dalam penelitian. Untuk selanjutnya dapat diketahui dampaknya pada jam orang yang dibutuhkan pada tiap proses pembangunan kapal. Berikut ini adalah tabel perencanaan jumlah pekerja pada kedua metode pembangunan kapal.

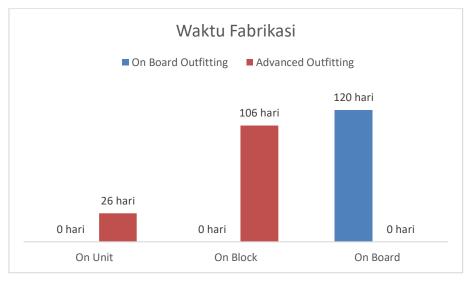

Tabel 5. 5 Perencanaan jumlah pekerja pembangunan kapal

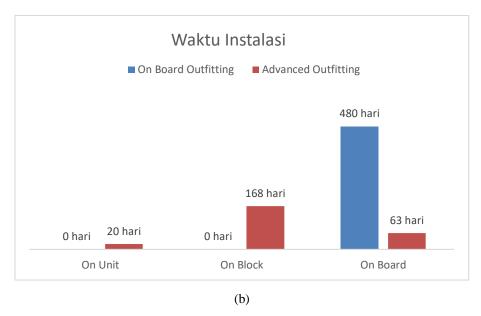

No	Kegiatan		Konstruksi	Outfitting		
NO		Fabrikasi	Assembly	Erection	Fabrikasi	Instalasi
1	Welder	0 orang	6 orang	6 orang	4 orang	4 orang
2	Fitter	0 orang	9 orang	9 orang	6 orang	6 orang
3	Helper	0 orang	5 orang	4 orang	2 orang	2 orang
4	Material handling	2 orang	0 orang	5 orang	0 orang	0 orang
5	Operator mesin	1 orang	0 orang	0 orang	0 orang	0 orang
Total		3 orang	20 orang	24 orang	12 orang	12 orang
	Jumlah Grup	1	5	2	2	6


Tabel 5. 5 menunjukkan perencanaan jumlah tenaga kerja pada tiap tahapan pembangunan kapal. Jumlah tenaga kerja yang tertulis di dalam tabel adalah jumlah dalam satu grup. Dalam perencanaannya, pekerjaan konstruksi dan perlengkapan kapal dilakukan dalam beberapa grup, kecuali pada kegiatan fabrikasi konstruksi kapal. Fabrikasi dilakukan di dalam bengkel pelat yang dibantu oleh mesin N/C cutting. Sehingga jumlah pekerja yang ada di tahap ini hanya ada tiga orang.

Setelah jumlah tenaga kerja ditentukan, proses selanjutnya adalah menghitung jumlah kebutuhan jam orang proses pembangunan kapal. Perhitungan jam orang yang ada di sub bab sebelumnya dijadikan sebagai data utama dalam penentuan waktu pengerjaan kapal. Jam orang yang didapatkan selanjutnya dibagi dengan jumlah pekerja yang direncanakan, dan waktu kerja secara efektif per hari. Hasil pembagian ini akan mendapatkan durasi waktu yang dibutuhkan

untuk membangun kapal di setiap tahap produksi. Berikut ini adalah waktu pembangunan kapal yang dihasilkan dari hasil perhitungan.




Gambar 5. 14 Perbandingan waktu kontruksi antar metode pembangunan (a) tahap fabrikasi (b) tahap assembly (c) tahap erection

Gambar 5. 14 (a) menunjukkan perbandingan waktu fabrikasi antara dua metode pembangunan kapal. Warna biru mewakili metode *on board outfitting*, warna merah mewakili metode *advanced outfitting*. kedua metode memiliki waktu fabrikasi yang sama Gambar 5. 14 (b) menunjuukan perbandingan waktu *assembly* antara dua metode. Didapatkan bahwa waktu *assembly* blok kapal memiliki durasi yang sama Gambar 5. 14 (c) menunjukkan perbandingan waktu *erection* antara dua metode. Kedua metode juga memiliki durasi waktu *erection* yang sama. Dari sini, dapat diketahui bahwa metode implementasi metode *advanced outfitting system* tidak memengaruhi waktu pekerjaan konstruksi badan kapal mulai dari tahap fabrikasi sampai tahap *erection*.

Perhitungan waktu pembangunan dilanjutkan dengan menghitung durasi waktu pembangunan pada tiap *zone outfitting*. Analisa dilakukan dengan membandingkan waktu yang dibutuhkan untuk menyelesaikan pekerjaan fabrikasi dan instalasi. Pada zona *unit outfitting*, pekerjaan fabrikasi dilakukan sekaligus dengan pekerjaan perakitan unit *outfitting* di dalam satu bengkel. Dengan alasan itu, hasil perhitungan dijadikan satu dalam satu proses dinamakan fabrikasi *unit outfitting*. berikut ini adalah hasil perhitungan waktu pemasangan *outfitting* pada tiap tahap pekerjaan.

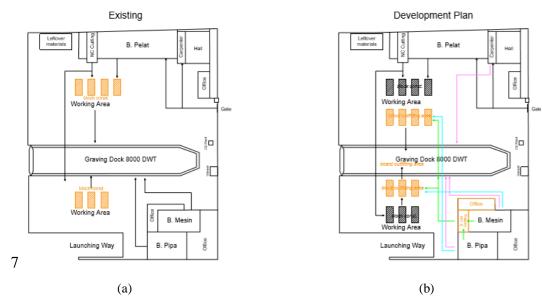
(a)

Gambar 5. 15 perbandingan waktu outfitting antar metode pembangunan (a) tahap fabrikasi (b) tahap instalasi

Gambar 5. 15 menunjukkan perbandingan waktu fabrikasi dan instalasi *outfitting* antar metode pembangunan kapal. Warna biru mewakili metode *on board outfitting*, dan warna merah mewakili metode *advanced outfitting*. Hasil perhitungan waktu fabrikasi menunjukkan bahwa *on board outfitting* lebih cepat 12 hari dari pada *advanced outfitting*. Sedangkan hasil perhitungan waktu instalasi menunjukkan *advanced outfitting* lebih cepat 229 hari dari pada *on board outfitting*. Jika diakumulasikan, metode *advanced outfitting* memiliki total waktu pengerjaan *outfitting* lebih cepat dari pada metode *on board outfitting*. Untuk mengetahui implikasi waktu pembangunan secara keseluruhan, diperlukan simulasi penjadwalan pembangunan kapal. Dimulai dari perencanaan waktu pembangunan konstruksi, pemasangan perlengkapan kapal hingga proses *delivery* dilakukan.

Simulasi penjadwalan pembangunan dilakukan dengan menggunakan aplikasi *microsoft* project. Daftar pekerjaan pembangunan kapal meliputi konstruksi kapal yang terdiri dari tahap fabrikasi, assembly, dan erection. ketiga tahap ini didetailkan sampai 28 pekerjaan blok kapal. Waktu yang dibutuhkan untuk pekerjaan konstruksi adalah 182 hari pada metode on board outfitting, dan 194 hari untuk metode advanced outfitting. pertambahan waktu ini diakibatkan dari adanya tambahan waktu pekerjaan on board outfitting sebelum erection dilakukan. Di lain sisi, waktu yang dibutuhkan untuk pekerjaan outfitting adalah 182 hari pada metode on board outfitting, 222 hari untuk metode advanced outfitting. Sedangkan, rangkuman waktu pembangunan kapal secara keseluruhan yang didapatkan adalah 403 hari untuk metode on board outfitting, dan 357 hari untuk metode advanced outfitting. Waktu pembangunan advanced outfitting yang semakin singkat ini didapatkan dari proses pemasangan perlengkapan

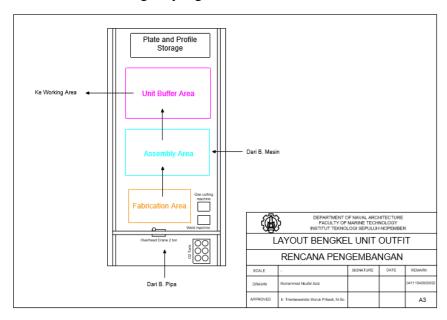
kapal yang dilakukan secara bersamaan. Untuk lebih jelasnya, diagram *gantt* pembangunan kapal dijelaskan lebih lanjut di dalam laporan tugas akhir ini.


5.2. Rencana Pengembangan Galangan

Pengembangan dimaksudkan untuk meningkatkan kapasitas dan kemampuan galangan PT. X supaya mampu menerapan metode *advanced outfitting system*. Peningkatan kemampuan dilakukan pada sumber daya manusia dan sumber daya lainnya, berupa fasilitas utama dan fasilitas pendukung yang dimiliki perusahaan. Perencanaan pengembangan fasilitas, dilakukan dengan memertimbangkan hasil rencana pembangunan kapal dengan metode *advanced outfitting system*.

5.2.1. Pengembangan Fasilitas Galangan

Galangan PT. X. Memiliki fasilitas utama meliputi graving dock, working area, dan beberapa bengkel untuk pekerjaan fabrikasi outfitting. Fasilitas pendukung yang dimiliki perusahaan meliputi peralatan material handling, mesin N/C cutting untuk membantu proses fabrikasi, mesin las untuk proses assembly/erection, dan banyak mesin bantu lainnya. Perencanaan pengembangan fasilitas yang dimiliki oleh perusahaan harus disesuaikan dengan kebutuhan perencanaan pembangunan kapal dengan metode advanced outfitting system (AOS). (Andrian & Pribadi, 2018)

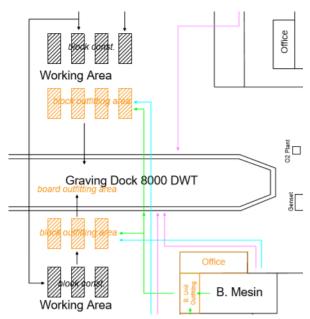

Rencana pembangunan kapal dengan metode AOS membutuhkan tempat untuk melakukan pemasangan *outfitting* di tiap *zone outfitting*. Tempat ini meliputi fasilitas pemasangan perlengkapan secara *on unit*, *on block*, dan *on board*. Berikut ini adalah hasil perencanaan pengembangan fasilitas utama galangan PT. X.

Gambar 5. 16 (a) Layout galangan saat ini (b) rencana pengembangan layout galangan

Dari Gambar 5. 16 diketahui bahwa galangan kapal PT. X saat ini memiliki bengkel pelat dan *carpenter* di bagian utara. Perusahaan juga memiliki bengkel mesin dan bengkel pipa di bagian selatan. *Working area* biasanya digunakan untuk proses *assembly* blok dengan metode *hull block concstruction*. Tempat ini bisa digunakan untuk menampung 20 blok konstruksi kapal yang dikerjakan secara bersamaan. Dari proses *assembly*, blok kapal yang sudah jadi dikirim ke *graving dock* untuk dilakukan proses *erection*.

Dalam perencanaan pembangunan kapal, dibutuhkan tempat untuk membuat 5 unit outfit yang dikerjakan di awal pembangunan. Tempat ini harus difasilitasi peralatan untuk menunjang proses perakitan unit. Tempat perakitan unit outfit juga harusnya dirancang tertutup untuk melindungi mesin dan peralatan elektronik dari perubahan cuaca di lokasi pengerjaan. Dengan pertimbangan itu, direncanakan pembangunan bengkel unit outfitting yang berada di bagian barat bengkel mesin. Bengkel ini juga direncanakan berdekatan dengan bengkel perpipaan. Lokasi bengekl unit outfitting yang berdekatan dimaksudkan untuk mempermudah proses material handling komponen penyusun unit outfit sebelum dilakukan perakitan di dalam bengkel. Berikut ini tata letak bengkel yang direncanakan.

Gambar 5. 17 Tata letak bengkel unit outfitting


Bengkel unit *outfitting* yang ada pada Gambar 5. 17 direncanakan memiliki tempat penyimpanan pelat dan profil. Tempat ini berfungsi sebagai tempat menyimpan komponen penyusun struktur *unit outfit*. Selain itu, bengkel *unit outfitting* juga dilengkapi dengan beberapa permesinan untuk proses fabrikasi dan perakitan seperti mesin cutting dan mesin las. Untuk mempermudah proses pengerjaan, di dalam bengkel juga dilengkapi dengan *overhead crane* 2 ton. Detail peralatan yang ada di dalam bengkel ada di dalam daftar tabel berikut.

Tabel 5. 6 Daftar peralatan tambahan bengkel unit outfitting

Peralatan	Jumlah	Satuan
Gas cutting machine with rail	1	buah
Cutting torch	1	buah
MIG Welding	1	buah
Stick Welding	1	buah
Overhead crane 2 ton	1	buah
Tabung gas	6	buah

Tabel 5. 6 adalah daftar peralatan yang dibutuhkan sebagai fasilitas pendukung operasional bengkel *unit outfitting*. Dalam perencanaan pengadaan fasilitas pendukung, tidak diperlukan mesin fabrikasi komponen *unit outfit* karena bisa menggunakan mesin yang ada di dalam bengkel perpipaan dan permesinan. Letak bengkel yang berdekatan juga mendukung skenario ini. Seperti yang ada di dalam Gambar 5. 17, alur material dari bengkel mesin dan bengkel pelat langsung mengarah ke area perakitan *unit outfitting*. Selanjutnya, hasil *unit outfit* dikirim ke *buffer area* sebagai tempat menunggu waktu pemasangan di badan kapal.

Selain perencanaan tempat *unit outfitting*, tempat *on block outfitting* juga perlu direncanakan. Tempat *on block outfitting* direncanakan sebagai tempat khusus untuk melakukan pekerjaan pemasangan perlengkapan kapal setelah blok kapal selesai dikerjakan. Perencanaan tempat *on block outfitting* juga direncanakan sebisa mungkin tidak mengganggu proses produksi lainnya. Berikut ini adalah rencana penentuan area *on block outfitting* di galangan PT. X.

Gambar 5. 18 Rencana area block outfitting

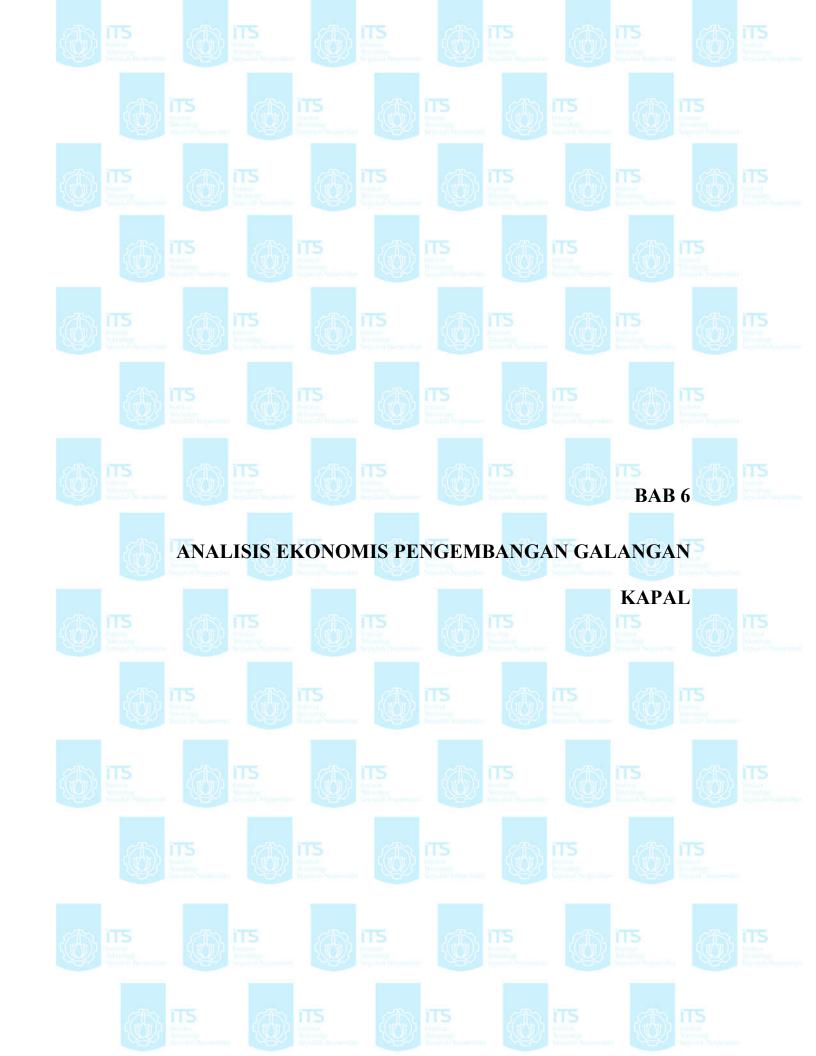
Gambar 5. 18 menunjukkan rencana lokasi pemasangan perlengkapan kapal dengan metode *on block outfitting*. Rencana pengadaan area khusus pemasangan perlengkan *on block* di dalam *working* area mengurangi kapasitas tempat pekerjaan *assembly block*. Untuk memastikan tempat *assembly* masih mencukupi, perlu ditinjau jumlah grup yang melakukan pekerjaan *assembly* secara bersamaan.

Perencanaan produksi kapal menggunakan *advanced outfitting system* dilakukan dengan menggunakan 1 grup fabrikasi, 5 grup *assembly*, dan 2 grup *erection*. Selain itu, jumlah blok kapal yang mengalami *bottle neck* antara *assembly* dan *erection* sejumlah 3 blok. Angka ini didapatkan dari hasil simulasi penjadwalan. Dengan data ini, didapatkan jumlah blok maksimal yang duduk di *working area* pada perencanaan produksi sejumlah 8 blok. Sedangkan kapasitas maksimal *working area* adalah 20 blok kapal. Sehingga angka ini perencanaan area *block outfitting* mungkin untuk dilakukan.

Di dalam Gambar 5. 18 juga terdapat area khusus untuk pemasangan *on board outfitting*. Rencana pemasangan perlengkapan secara *on board* dilakukan di dalam *graving dock*, seperti kondisi saat ini. Proses pemasangan ini dibantu oleh *gantry crane* dengan kapasitas 35 ton.

5.2.2. Pegembangan Kemampuan SDM

Penerapan metode pembangunan yang baru membutuhkan pemahaman terhadap *advanced outfitting system*. Pemahaman ini harus didapatkan oleh semua karyawan tetap yang berkaitan dengan proses pembangunan kapal. Termasuk karyawan konstruksi, bengkel perpipaan, bengkel mesin, karyawan keselamatan, dan karyawan tambahan yang ada di dalam rencana penambahan bengkel *unit outfitting*. Berikut ini adalah daftar karyawan yang dimiliki perusahaan PT. X.

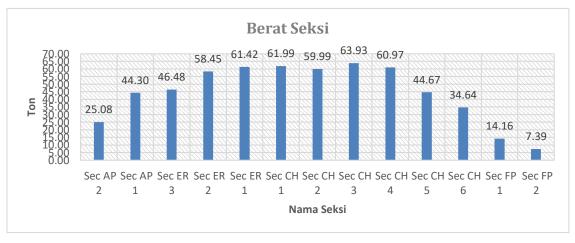

Tabel 5. 7 Daftar karvawan yang dimiliki PT. X.

rusers: / Burtar Karyawan jung ammini 1:11.						
No	Bagian	Jumlah				
1	Keselamatan	6				
2	Umum	1				
3	Fashar-Peralatan	13				
4	Fashar-Listrik	8				
5	Pelayanan Dok	61				
6	Konstruksi	51				
7	Perlengkapan-Pipa	17				
8	Perlengkapan-Ventilasi	20				
9	Perlengkapan-Akomodasi	61				
10	Mekanik-Mesin	15				
11	Mekanik-Propulsi	17				
12	Mekanik-Bengkel	1				
13*	Pekerja Bengkel on unit	4				

Tabel 5. 7 menunjukkan daftar karyawan yang dimiliki perusahaan PT. X. yang berkaitan dengan proses pembangunan kapal. Terdapat beberapa bagian yang perlu diberikan penambahan pemahaman mengenai penerapan metode produksi yang baru. Warna kuning menandakan bagian yang akan diberikan pelatihan mengenai metode produksi *advanced outfitting system*. Jumlah karyawan yang diberikan pelatihan sejumlah 113 orang.

Dalam perencanaannya, pelatihan dijadikan dalam beberapa *batch*. Setiap *batch* terdiri dari 20 orang peserta. Sehingga akan direncanakan pelatihan *advanced outfitting system* dalam 6 *batch* untuk mengakomodasi seluruh peserta. Setiap *batch* pelatihan akan disampaikan satu rangkaian materi pelatihan sebagai berikut.

- 1. Pengenalan metode advanced outfitting system
- 2. Perencanaan pembangunan kapal menggunakan advanced outfitting system
- 3. Pengenalan fungsi bengkel *unit outfitting*
- 4. Pengenalan area on block outfitting dan on board outfitting
- 5. Pengenalan alur pemasangan *outfitting* dan gambar produksi tiap *zone outfitting*



BAB 6 ANALISIS EKONOMIS PENGEMBANGAN GALANGAN KAPAL

Pengembangan galangan kapal turut memertimbangkan aspek ekonomis. Analisa ini dimaksudkan untuk mengetahui akibat penerapan metode *advanced outfitting system* terhadap biaya pembangunan kapal. Perhitungan aspek eknomis harus dilakukan secara lebih rinci. Mulai dari perhitungan biaya material, biaya pekerja sub-kontraktor, dan juga biaya pekerja tetap perusahaan galangan kapal.

6.1. Perhitungan Biaya Konstruksi Kapal

Kapal penumpang barang 2000 GT adalah kapal baja dengan kapasitas penumpang 472 orang. Komponen penyusun kapal dibagi menjadi dua bagian utama, konstruksi kapal dan perlengkapan kapal. Dua komponen ini didesain dan direncanakan sedemikian rupa sehingga bisa digunakan oleh pengguna dengan aman. Rancangan komponen penyusun konstruksi kapal bisa dilihat melalui desain konstruksi kapal. Luasan pelat yang digunakan untuk membentuk lambung kapal didapatkan dari desain bukan kulit. Perhitungan kebutuhan material baja untuk konstruksi kapal didapatkan dengan menghitung konstruksi pos per pos. Sehingga didapatkan berat kapal per seksi.

Gambar 6. 1 Berat kebutuhan material baja per seksi

Pada Gambar 6. 1 ditampilkan kebutuhan material baja penyusun konstruksi kapal secara keseluruhan. Hasil perhitungan kebutuhan baja tersebut didetailkan menjadi kebutuhan material pelat baja dan profil baja. Metode perhitungan yang dilakukan sama, yaitu dengan tabel

perhitungan berat per seksi. Namun hasil perhitungan pada tabel dipilah menurut material penyusunnya, pelat dan profil. Selanjtunya, hasil pemilahan material pelat dan profil dikalikan dengan harga pasar pelat dan profil. Harga pelat kapal didapatkan Rp.14.000 per kg. sedangkan harga profil kapal didapatkan Rp.10.000 per kg. Dari perhitungan tersebut, didapatkan hasil kebutuhan biaya material penyusun konstruksi kapal adalah sebagai berikut.

Tabel 6. 1 Biaya kebutuhan pelat dan profil baja kapal

No	Bagian	Block	Berat		Biaya dalam Ru	piah (x1000)
			Pelat	Profil	Pelat	Profil
1	Buritan	Sec AP 2	13,21	11,87	184.934	166.224
2		Sec AP 1	26,25	18,04	367.537	252.616
3	Kamar Mesin	Sec ER 3	22,72	23,76	318.055	332.689
4		Sec ER 2	31,74	26,70	444.393	373.849
5		Sec ER 1	33,57	27,85	469.994	389.861
6	Cargo Hold	Sec CH 1	38,75	23,25	542.433	325.458
7		Sec CH 2	36,83	23,16	515.634	324.287
8		Sec CH 3	39,07	24,85	547.038	347.921
9		Sec CH 4	37,39	23,58	523.481	330.116
10		Sec CH 5	27,59	17,08	386.280	239.074
11		Sec CH 6	21,64	12,99	303.027	181.918
12	Forepeak	Sec FP 1	10,00	4,16	140.049	58.197
13		Sec FP 2	5,43	1,96	76.029	27.427
		Jumlah	344,21	239,26	4.818.886	3.349.637

Kebutuhan biaya material konstruksi kapal adalah jumlah dari kebutuhan pelat dan profil kapal. Dari Tabel 6. 1, didapatkan nilai biaya sebesar Rp.8.168.523.000. Biaya ini selanjutnya ditambahkan dengan biaya kebutuhan perlengkapan kapal. Perhitungan kebutuhan perlengkapan kapal dilakukan dengan meninjau harga tiap komponen. Untuk mempermudah perhitungan, perlengkapan kapal dibagi menjadi beberapa klasifikasi. Terdapat empat klasifikasi perhitungan, diantaranya: perlindungan terhadap korosi, permesinan, perlengkapan geladak, dan perlengkapan keamanan.

Tiap klasifikasi membutuhkan data untuk mendaftar perlengkapan kapal yang dibutuhkan. Sebagai contoh, perlengkapan permesinan kapal membutuhkan *engine room layout* untuk mengetahui jumlah dan spesifikasi permesinan yang digunakan. Hasil menelaah *layout* ruang mesin selanjutnya dibuat tabel daftar harga setiap mereknya. Untuk setiap merek yang dijual dalam mata uang dolar amerika, maka harus dikalikan dengan kurs saat ini. Penulis menggunakan kurs mata uang dolar terhadap rupiah saat ini, yaitu Rp.14.000. Di dalam Tabel 6. 2 ditunjukkan hasil perhitungan kebutuhan biaya permesinan kapal setelah dikonversi dalam mata uang rupiah.

Tabel 6. 2 Perhitungan biaya pembelian permesinan kapal

No	Permesinan	Jumlah	Harga (\$)	Merek	Harga dalam Rp. (x1000)
1	Main engine 1400 HP 1650 rpm	2	\$155.000	Cummins KTA38- P1400	4.340.000
2	Genset 280kW, 1500 rpm	3	\$25.000	Newtech CCFJ N855-DM	1.050.000
3	Harbour Generator 350 kVA	1	\$26.000	Cummins NTA855- DM	364.000
4	Fuel oil transfer pump 5m3/h 30m	1	\$190	Qiangheng YCB 2.5 - 0.6	2.660
5	Hand pump for fuel oil	1	\$140	Fill Rite FR112	1.960
6	Sewage pump 10m3/h 15m	1	\$440	Shuangbao IH65-50- 125	6.160
7	Air compressor 185L/m 10k 0.75kW	1	\$300	Sinewy	4.200
8	Hydrophore sprinkler pump 84 m3/h 50m	1	\$1.650	Shuangbao IH65-65- 200	23.106

Dengan metode yang sama, perlengkapan keselamatan, perlengkapan geladak, dan biaya pengecatan dihitung dengan teliti per harga satuan perlengkapan yang dibutuhkan. Untuk harga pengecatan kapal, penulis menggunakan standar harga yang digunakan oleh asosiasi IPERINDO. Dari data **referensi tarif** pengedokan didapatkan harga pengecatan sebesar Rp.8.100/m². Komponen biaya pencegahan korosi juga meliputi biaya pembelian anoda tumbal yang dipasang di bagian kapal yang tercelup air. Detail perhitungan dijelaskan secara terlampir. Pada Tabel 6. 3 adalah biaya perlengkapan kapal menurut klasifikasinya.

Tabel 6. 3 Hasil perhitungan biaya perlengkapan kapal

No	Perlengkapan	Biaya (x1000)
1	Permesinan Kapal	Rp.6.201.888
2	Perlengkapan dan Permesinan Geladak	Rp.2.861.660
3	Perlengkapan Keselamatan	Rp.6.034.700
4	Proteksi korosi	Rp.3.157.202
	Jumlah	Rp.18.255.450

Tabel 6. 3 perhitungan perlengkapan kapal menunjukkan biaya kebutuhan perlengkapan sebesar Rp.18.255.450. Hasil ini dijumlahkan dengan komponen biaya lainnya pada akhir perhitungan. Selanjutnya, perhitungan biaya pembangunan kapal juga memertimbangkan biaya pihak ketiga sebagai *stakeholder* yang berkepentingan dalam pembangunan kapal. Contoh pihak ketiga adalah surveyor badan klasifikasi dan syahbandar sebagai perwakilan *flag state*. Perhitungan biaya pihak ketiga dijelaskan di dalam Tabel 6.4

Tabel 6. 4 Biaya jasa pihak ketiga

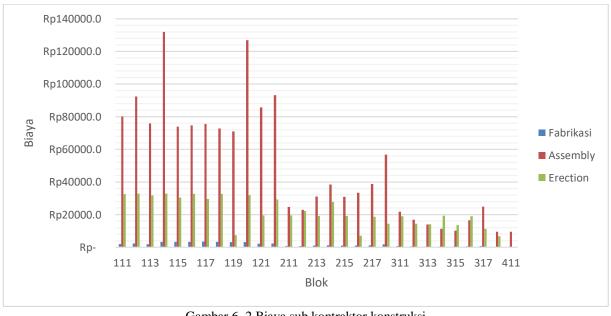
Jasa Pihak Ketiga	Jumlah	Biaya (x1000)
Clas Supervision and Certificate	1	Rp.500.000
Flag State and Certificate	1	Rp.150.000
Commisioning	1	Rp.350.000
Dock Trial	1	Rp.300.000
Launching and sea trial	1	Rp.350.000
Joy Sailing	1	Rp.200.000
Training and Familirization	1	Rp.100.000
Delivery	1	Rp.50.000
Insurance	1	Rp.80.000
Jumlah	Rp.2.080.000	

Tabel 6. 4 hasil perhitungan biaya pihak ketiga dijumlahkan dengan komponen penyusun biaya pembangunan kapal yang lain di dalam sub bab ini. Biaya kebutuhan material didapatkan Rp.8.168.523.000. Biaya kebutuhan perlengkapan kapal didapatkan Rp18.636.248.000. dan biaya kebutuhan jasa pihak ketiga didapatkan Rp2.080.000.000. Sehingga didapatkan biaya konstruksi dan perlengkapan kapal sebesar Rp27.927.732.000.

Biaya sebesar Rp.30 Milyar untuk pembelian material kostruksi dan perlengkapan kapal digunakan pada kedua metode pembangunan kapal, baik itu *on-board outfitting* dan *advanced outfitting system*. Tidak ada perbedaan komponen penyusun kapal pada bagian ini. Karena kapal yang digunakan sebagai variabel tetap pada penelitian ini.

6.2. Perhitungan Biaya Pekerja Tetap

Pembangunan kapal penumpang barang 2000 GT juga melibatkan pekerja tetap perusahaan PT. X.. Jumlah pekerja tetap berbeda-beda di setiap proses produksi kapal. Untuk mengetahui jumlahnya, penulis menggunakan data presensi pekerja tetap pada proses pembangunan kapal yang sama.


Jumlah pekerja tetap hasil rekapitulasi harus dikalikan dengan biaya yang dikeluarkan perusahaan untuk gaji bulanan. Penulis menggunakan asumsi gaji pekerja sama dengan upah minimum regional Surabaya pada tahun 2019, sebesar Rp.3.900.000 per bulan. Gaji bulanan ini dihitung per hari untuk selanjutnya dikalikan dengan masa kerja pembangunan kapal, sesuai dengan hasil perhitungan jadwal pembangunan kapal. Di dalam jadwal pembangunan kapal, didapatkan jumlah hari pembangunan kapal dengan metode *on board outfitting* adalah 403 hari. Sedangkan metode *advanced outfitting system* membutuhkan waktu 357 hari. Sehingga dapat dibandingkan biaya yang dibutuhkan perusahaan untuk menggaji karyawan tetapnya adalah seperti pada Tabel 6. 5.

Tabel 6. 5 Perbandingan biaya karyawan tetap antara OBO dan AOS

			Biaya dalam F	Rupiah (x1000)
No	Bagian	Jumlah	On Board	Advanced
			Outfitting	Outfitting
1	Keselamatan	6	314.340	278.460
2	Umum	1	52.390	46.410
3	Fashar-Peralatan	13	681.070	603.330
4	Fashar-Listrik	8	419.120	371.280
5	Pelayanan Dok	61	3.195.790	2.831.010
6	Konstruksi	51	2.671.890	2.366.910
7	Perlengkapan-Pipa	17	890.630	788.970
8	Perlengkapan-Ventilasi	20	1.047.800	928.200
9	Perlengkapan-Akomodasi	61	3.195.790	2.831.010
10	Mekanik-Mesin	15	785.850	696.150
11	Mekanik-Propulsi	17	890.630	788.970
12	Mekanik-Bengkel	1	52.390	46.410
	Jumlah	271	14.197.690	12.577.110

6.3. Perhitungan Biaya Pekerja Sub-Kontraktor

Pembangunan kapal penumpang barang 2000 GT juga menggunakan tenaga pekerja sub-kontraktor. Perhitungan biaya pekerja sub-kontraktor dibagi menjadi dua bagian, pekerjaan konstruksi badan kapal dan perlengkapan kapal. Pekerjaan konstruksi kapal dihitung dengan pendekatan perhitungan jam orang yang dibutuhkan. Jumlah jam orang yang didapatkan dikalikan dengan biaya gaji yang diberikan per jam orang. Penulis merencanakan gaji subkontraktor disesuaikan dengan harga pasar, yaitu Rp.130.000 per orang per hari. Atau sekitar Rp.18.570 per jam orang. Berikut adalah hasil perhitungan biaya pengerjaan konstruksi kapal pada kedua metode pembangunan kapal.

Gambar 6. 2 Biaya sub kontraktor konstruksi

Biaya pengerjaan konstruksi kapal pada Gambar 6. 2 tidak memiliki perbedaan antara metode *on board outfitting* dengan metode *advanced outfitting system*. Hal ini dikarenakan jam orang yang dibutuhkan juga sama. Dari grafik di atas, dapat diketahui bahwa biaya fabrikasi konstruksi memiliki nominal paling kecil. Total biaya fabrikasi yang dibutuhkan adalah Rp.46.407.000. Pada tahap *assembly*, biaya yang dibutuhkan paling besar. Total dana yang dikeluarkan untuk tahap *assembly* adalah Rp.1.465.753.000. Pada tahap *erection*, biaya yang dibutuhkan sebesar Rp.609.399.000. Dari ketiga tahap pembangunan konstruksi, biaya sub kontraktor yang dibutuhkan sebesar Rp.2.121.559.000.

Pada proses pemasangan perlengkapan kapal, jam orang yang dibutuhkan dihitung pada setiap zone outfitting pada masing-masing metode. Untuk metode on board outfitting, zone outfitting yang digunakan hanya satu, yaitu on board outfitting. Sedangkan pada metode advanced outfitting system, zone outfitting yang digunakan meliputi tiga hal, on-unit, on-block, dan on-board outfitting.

Pada metode *on board outfitting* dilakukan perhitungan jumlah jam orang dikalikan dengan biaya gaji per jam orang untuk sub-kontraktor. Proses perhitungan ini meliputi semua jenis perlengkapan kapal, mulai dari sistem perpipaan, permesinan, perlengkapan keselamatan, dan lain-lain. Sebagai contoh, pada Tabel 6. 6 ditunjukkan perhitungan biaya pemasangan sistem perpipaan dalam ribu pada kapal penumpang barang 2000 GT

Tabel 6. 6 Biaya sub kontraktor perlengkapan pada metode on board outfitting

Sistem	Donat (ton)	JO yang di	butuhkan	Biaya	(x1000)		
Sistem	Berat (ton)	Fabrikasi Ins		Fabrikasi	Instalasi		
Lubricating Oil	0,206	72	872	Rp 1.337	Rp 16.185		
Oil water separator	0,425	104	901	Rp 1.931	Rp 16.733		
Sewage	0,537	320	3302	Rp 5.943	Rp 61.323		
Fresh water cooling	1,046	474	532	Rp 8.796	Rp 9.880		
Sea water sanitary	1,690	765	2634	Rp 14.215	Rp 48.917		
Fresh water sanitary	2,603	1179	3963	Rp 21.896	Rp 73.599		
Bilge ballast	3,044	2159	3498	Rp 40.096	Rp 64.963		
Sea water cooling	3,194	651	3049	Rp 12.090	Rp 56.624		
Sounding	3,390	1256	4109	Rp 23.326	Rp 76.310		
Exhaust	3,967	1826	4044	Rp 33.911	Rp 75.103		
Scupper	4,594	207	1856	Rp 3.844	Rp 34.469		
Fire fighting	4,602	440	2636	Rp 8.171	Rp 48.954		
Drainage	5,062	121	2755	Rp 2.247	Rp 51.155		
Engine room machinery	11,875	0	1693	Rp -	Rp 31.435		
Deck Machinery	6,974	0	994	Rp -	Rp 18.462		
Deck outfitting	1,275	0	182	Rp -	Rp 3.375		
Safety Equipment	17,181	0	2449	Rp -	Rp 45.481		
Jumlah		9574	39468	Rp 177.804	Rp 732.968		
Biaya	Sub Perlengkap	an		Rp	910.772		

Total biaya pekerja sub-kontraktor untuk pemasangan perlengkapan kapal adalah jumlah dari biaya fabrikasi dan biaya instalasi. Biaya fabrikasi yang dibutuhkan didapatkan Rp.177.804.000. Sedangkan biaya instalasi yang dibutuhkan didapatkan Rp.732.968.000. Total biaya yang dibutuhkan untuk gaji sub-kontraktor pengerjaan perlengkapan kapal dengan metode *on board outfitting* adalah Rp. 910.772.000. Perhitungan detail dijelaskan secara terlampir

Perhitungan efisiensi biaya sub kontraktor perlengkapan kapal pada *advanced outfitting* system memerlukan metode yang berbeda. Tiap zone outfitting memiliki faktor efisiensi yang memengaruhi jumlah jam orang pemasangan perlengkapan kapal. Nilai efisiensi inilah yang menurunkan kebutuhan jam orang pada proses pemasangan perlengkapan dengan *advanced* outfitting system. Jika jumlah kebutuhan jam orang menurun, maka jumlah biaya sub kontraktor perlengkapan juga akan menurun. Dengan menggunakan hasil faktor efisiensi yang ada di dalam Tabel 5. 4, bisa didapatkan hasil perhitungan biaya sub kontraktor perlengkapan kapal.

Tabel 6. 7 Biaya sub kontraktor perlengkapan pada metode advanced outfitting system

Zone Outfitting Unit Outfitting	Berat (ton)	JO On	Board	Efisiensi	10 1 1			D' /	1000	
	(ton)					utfitting system		Biaya (
Unit Outfitting	(ton)	Fabrikasi	Instalasi	AOS	Fabrikasi	Instalasi	Fabrik	casi	Insta	lasi
Unit 1	0,082	223,53 JO	82,35 JO	17%	38,00 JO	14,00 JO	Rp	706	Rp	260
Unit 2	0,15	182,35 JO	176,47 JO	17%	31,00 JO	30,00 JO	Rp	576	Rp	557
Unit 3	0,082	223,53 JO	129,41 JO	17%	38,00 JO	22,00 JO	Rp	706	Rp	409
Unit 4	0,631	911,76 JO	1341,18 JO	17%	155,00 JO	228,00 JO	Rp	2.879	Rp	4.234
Unit 5	1	1441,18 JO	405,88 JO	17%	245,00 JO	69,00 JO	Rp	4.550	Rp	1.281
Block Outfitting							Rp	-	Rp	-
112	0,07	18,34 JO	49,44 JO	37%	6,79 JO	18,29 JO	Rp	126	Rp	340
113	3,14	2794,69 JO	3901,53 JO	37%	1034,04 JO	1443,56 JO	Rp	19.204	Rp	26.809
114	5,28	5448,54 JO	6968,60 JO	37%	2015,96 JO	2578,38 JO	Rp	37.439	Rp	47.884
115	4,99	4854,80 JO	8311,01 JO	37%	1796,28 JO	3075,08 JO	Rp	33.359	Rp	57.109
116	6,37	5108,08 JO	7554,47 JO	37%	1889,99 JO	2795,15 JO	Rp	35.100	Rp	51.910
117	3,48	1538,67 JO	3401,78 JO	37%	569,31 JO	1258,66 JO	Rp	10.573	Rp	23.375
118	2,55	854,96 JO	2130,52 JO	37%	316,33 JO	788,29 JO	Rp	5.875	Rp	14.640
119	2,87	1005,07 JO	2470,00 JO	37%	371,87 JO	913,90 JO	Rp	6.906	Rp	16.972
120	2,36	1280,62 JO	2569,77 JO	37%	473,83 JO	950,81 JO	Rp	8.800	Rp	17.658
121	2,06	1533,28 JO	2459,07 JO	37%	567,31 JO	909,86 JO	Rp	10.536	Rp	16.897
122	0,49	676,84 JO	572,75 JO	37%	250,43 JO	211,92 JO	Rp	4.651	Rp	3.936
214	0,34	107,44 JO	247,16 JO	37%	39,75 JO	91,45 JO	Rp	738	Rp	1.698
215	0,49	237,82 JO	461,12 JO	37%	87,99 JO	170,62 JO	Rp	1.634	Rp	3.169
216	0,63	375,07 JO	678,66 JO	37%	138,78 JO	251,11 JO	Rp	2.577	Rp	4.663
217	0,38	102,45 JO	257,65 JO	37%	37,91 JO	95,33 JO	Rp	704	Rp	1.770
218	0,4	261,92 JO	461,14 JO	37%	96,91 JO	170,62 JO	Rp	1.800	Rp	3.169
Board Outfitting							Rp	-	Rp	-
ER Machinery	9,63	0 JO	1625 JO	100%	0,00 JO	1625,38 JO	Rp	-	Rp	30.186
Deck Machinery	6,974	0 JO	1177 JO	100%	0,00 JO	1177,09 JO	Rp	-	Rp	21.860
Deck Outfitting	1,275	0 JO	215 JO	100%	0,00 JO	215,20 JO	Rp	-	Rp	3.997
Safety equipment	17,181	0 JO	2900 JO	100%	0,00 JO	2899,86 JO	Rp	-	Rp	53.855
Jumlah		29181 JO	50547 JO		10200,48 JO	22003,57 JO	Rp 1	89.437	Rp -	408.638
		Biaya Sub K	ontraktor Per	lengkapan			Rp			598.075

Tabel 6. 7 menunjukkan hasil perhitungan biaya sub kontraktor perlengkapan kapal pada metode *advanced outfitting system*. Lima *unit outfitting* yang direncanakan, membutuhkan biaya pekerja sub kontraktor sebesar Rp.16.157.000. *outfitting* yang dipasang secara *on block* membutuhkan biaya sebesar Rp.420.110.000. Sedangkan, *outfitting* yang dipasang secara *on*

board membutuhkan biaya sebesar Rp.109.897.000. Total biaya pekerja sub kontraktor bagian perlengkapan kapal adalah Rp.546.164.000.

6.4. Perhitungan Penghematan Biaya

Dari hasil perhitungan biaya di atas, dapat dicari jumlah biaya pembangunan kapal pada tiap metode pembangunan. Biaya pembangunan adalah jumlah total dari biaya konstruksi kapal, biaya pekerja tetap, dan biaya pekerja sub-kontraktor pekerjaan konstruksi serta perlengkapan kapal. Tabel 6. 8 di bawah ini adalah perbandingan biaya pembangunan dalam ribu.

Tabel 6. 8 Perbandingan biaya pembangunan kapal tiap metode

No	Cost Structure	Biaya dalam Rupiah (x1000)			
110	Cost Structure	On-Board Outfitting	Advanced Outfititng		
1	Material Kapal	25.309.732	25.309.732		
2	Karyawan Tetap	14.197.690	12.577.110		
3	Pihak Ketiga	2.080.000	2.080.000		
4	Pekerja Sub-Kon Konstruksi	2.121.559	2.121.559		
5	Pekerja Sub-Kon Perlengkapan	910.772	546.164		
	- On unit	-	16.157		
	- On block	-	420.110		
	- On board	910.772	109.897		
Jumlah		44.776.954	42.843.677		

Perbedaan struktur biaya pembangunan antara metode *advanced outfitting system* dengan *on board outfitting system* ada pada biaya gaji karyawan tetap dan biaya pekerja sub kontraktor perlengkapan kapal. Total perbedaan biaya sebesar Rp.1.933.277.000. Gaji karyawan tetap memiliki perbedaan karena masa kerja yang digunakan pada tiap metode berbeda. Metode *advanced outfitting system* memiliki masa kerja sejumlah 357 hari. Sedangkan metode *on board outfitting system* memiliki masa kerja sejumlah 403 hari. Hal inilah yang menimbulkan selisih paling besar, yaitu Rp.1.620.580.000. Atau berkontribusi sebesar 84% dari total selisih biaya pembangunan kapal. Sedangkan perbedaan biaya sub kontraktor pembangunan kapal hanya sebesar Rp.312.697.000. Atau berkontribusi sebesar 16% dari total selisih biaya pembangunan kapal.

Selain itu, galangan PT. X. juga dapat menghemat *oportunity cost* dari selisih hari yang dibutuhkan pada kedua metode pembangunan kapal. *Oportunity cost* didapatkan dari kesempatan galangan kapal untuk menerima jasa perbaikan kapal di dok kolam yang dimiliki. Tarif jasa pelayanan dock yang digunakan oleh PT.X. disesuaikan dengan standar tarif anggota asosiasi IPERINDO lainnya, yaitu Rp.3.928.000 per hari. Jika selisih hari yang dibutuhkan untuk pembangunan kapal adalah 106 hari. Maka didapatkan *oportunity cost* sebesar Rp.416.368.000.

6.5. Investasi Pengembangan Galangan

Rencana pengembangan galangan memerlukan biaya untuk bisa direalisasikan. Perhitungan biaya investasi secara rinci juga diperlukan. Dalam rencana pengembangan galangan, terdapat dua komponen utama biaya pengembangan. Yaitu pengembangan fasilitas galangan dan pengembangan kemampuan sumber daya manusia. Kedua komponen ini dihitung satu per satu. Pertama, biaya pengembangan fasilitas disesuaikan dengan daftar penambahan/pengembangan fasilitas galangan. Lalu dikalikan dengan harga dan jumlah fasilitas yang dibutuhkan. Berikut ini adalah biaya pengembangan fasilitas yang diperlukan.

Tabel 6. 9 Biaya investasi fasilitas galangan PT. X

No.	Nama Fasilitas	Jumlah	Satuan	Harga Satuan (x1000)	Harga Total (x1000)
1	Bengkel Unit Outfitting	162	m^2	Rp. 3.000	Rp.486.000
1	Office	320	m^2	Rp. 3.000	Rp.960.000
	Gas cutting machine with rail	1	buah	Rp.28.055	Rp. 28.055
	Cutting torch	1	buah	Rp. 1.365	Rp. 1.365
2	MIG Welding	1	buah	Rp.18.358	Rp. 18.358
2	Stick Welding	1	buah	Rp.71.490	Rp. 71.490
	Overhead crane 2 ton	1	buah	US\$.53.322	Rp.746.508
	Tabung gas	6	buah	Rp. 1500	Rp. 9.000
				Total	Rp.2.320.776

Tabel 6. 9 menunjukkan biaya investasi yang diperlukan galangan PT. X dari segi fasilitas pembangunan kapal. Dalam perencanaannya, bengkel unit outfitting dibangun di atas tanah seluas 162 m². Bangunan kantor yang ada di sana, dipindah ke lahan kosong di sebelah utara seluas 320 m². Biaya yang diperlukan untuk membangun dua bangunan baru tersebut adalah Rp.3.000.000/m². Dari sini, didapatkan biaya pembangunan bengkel *unit outfitting* sebesar Rp.486.000.000, dan kantor baru sebesar Rp.960.000.000.

Selain fasilitas berupa bangunan, perusahaan juga perlu menambah fasilitas pendukung operasional bengkel *unit outfitting*. Pengadaan peralatan operasional bengkel meliputi mesin *cutting*, *welding*, dan *material handling*. Biaya peralatan bengkel adalah Rp.874.776.000. Dari dini, dapat diketahio biaya investasi PT. X. dari segi fasilitas adalah sebesar Rp.2.320.776.000.

Kedua, pengembangan galangan PT. X. juga memerlukan pengembangan dari sisi sumber daya manusia (SDM) yang dimiliki. Pengembangan SDM meliputi karyawan tetap PT. X. yang berkaitan langsung dengan proses pemangunan kapal. Teknis pengembangan dilakukan dengan pelatihan. Tujuan utama pelatihan adalah untuk menambah pengetahuan karyawan terhadap metode pembangunan kapal yang baru.

Biaya pelatihan dihitung per *batch* yang direncanakan. Satu *batch* terdiri dari 20 orang karyawan yang meliputi berbagai macam divisi. Perhitungan jumlah *batch* yang diperlukan ada pada tabel di bawah ini.

Tabel 6. 10 Jumlah peserta pengembangan SDM

No	Bagian	Jumlah
1	Keselamatan	6
2	Konstruksi	51
3	Perlengkapan-Pipa	17
4	Perlengkapan-Ventilasi	20
5	Mekanik-Mesin	15
6	Pekerja Bengkel on unit	4
	Total	113
	Jumlah Batch	6

Tabel 6. 10 menunjukkan jumlah karyawan PT. X. yang akan diikutkan dalam pelatihan. Biaya pelatihan yang direncanakan sebesar Rp.130.000.000 per *batch*. Jika direncanakan terdapat 6 *batch*, maka biaya yang dibutuhkan untuk pelatihan 113 pegawai adalah sebesar Rp.720.000.000.

Dari sini, kedua komponen biaya pengembangan galangan kapal sudah didapatkan. Pertama, biaya investasi pengadaan fasilitas yang diperlukan sebesar Rp.2.320.776.000. Kedua, biaya investasi pengembangan sumber daya manusia sebesar Rp.720.000.000. Maka, total investasi yang diperlukan untuk pengembangan galangan sebesar Rp.3.040.776.000. Nominal biaya investasi tersebut, bisa diatasi dengan penghematan biaya pembangunan kapal dengan metode terbaru. Jika satu kapal dapat menghemat biaya pembangunan sebesar Rp.1.933.277.000, maka perlu dua pembangunan kapal untuk bisa menutup biaya investasi pengembangan kapal.

BAB 7

KESIMPULAN

BAB 7 KESIMPULAN

7.1. Kesimpulan

Setelah dilakukan penelitian terhadap pembangunan kapal penumpang barang 2000 GT pada galangan kapal PT. X., didapatkan kesimpulan sebagai berikut:

- 1. Galangan kapal PT. X. masih menggunakan metode *hull block construction method* untuk membangun konstruksi badan kapal. Pemasangan *outfitting* kapal masih menggunakan metode *on-board outfitting* secara keseluruhan.
- 2. Metode *advanced outfitting system* memerlukan perencanaan dari tahap desain. Identifikasi perlengkapan kapal yang dipasang secara *on unit* dilakukan dengan meninjau permesinan dan peralatan yang saling berdekatan satu sama lain. Identifikasi perlengkapan kapal yang dipasang secara *on block* dilakukan dengan *overlay block division*, sistem perpipaan, dan general arrangement untuk menghasilkan *composite drawing* tiap blok. Perlengkapan kapal yang dipasang secara *on board* adalah sisa dari perlengkapan yang tidak bisa dipasang secara *on unit* maupun *on block*.
- 3. Metode *on board outfitting* membutuhkan waktu pengerjaan selama 403 hari, dan biaya pembangunan kapal sebesar Rp.44.776.954.000. Sedangkan metode *advanced outfitting system* membutuhkan waktu pengerjaan selama 357 hari dengan biaya pembangunan kapal sebesar Rp.42.843.677.000. Dengan begitu, metode *advanced outfitting system* mampu mempersingkat waktu pembangunan dan mengurangi biaya pembangunan kapal.

7.2. Saran

Penulis menyadari bahwa penelitian tentang pengembangan galangan kapal dalam membangun kapal penumpang barang 2000 GT dengan metode *advanced outfitting system* belum sempurna. Maka dari itu, disarankan sebagai berikut:

- 1. Dilakukan pengkajian secara rinci tentang faktor efisiensi pengerjaan *outfitting* secara *on unit* dan *on block*. Dengan begitu, diharapkan perhitungan jam orang dapat dihasilkan angka yang lebih teliti
- 2. Penguasaan software desain 3D kapal berbasis CAD harus dimiliki galangan kapal dalam merencanakan pembangunan kapal dengan metode *advanced outfitting system*.

DAFTAR PUSTAKA

- Andrian, R., & Pribadi, T. W. (2018). Analisa Teknis dan Ekonomis Pembangunan Galangan Kapal Pengangkut LNG Ukuran Kecil (Small Scale LNG Carrier) untuk Perairan Indonesia. *Jurnal Teknik ITS*. Surabaya: Jurnal Teknik ITS.
- Jaquith, P. E. (1997). Facilities And Environmental Effects Surface Preparation And Coatings Design / Production Integration Human Resource Innovation Marine Industry Standards Welding Industrial Engineering. SNAME. Jersey: SNAME.
- Jasmine, N. A., & Pribadi, T. W. (2019). Analisis Teknis dan Ekonomis Pengaruh Jarak Gading terhadap Proses Produksi Kapal Baja. Surabaya: Jurnal Teknik ITS.
- Kurniawan, R. (2015). Studi Keterlambatan Proyek Pembangunan Kapal Kargo dengan Metode Bow Tie Analysis. *Jurnal Teknik ITS*. Surabaya: Jurnal Teknik ITS.
- Lamb, T., & Arbor, A. (1986). Engineering for Ship Production. Michigan: SNAME.
- Okayama, Y. (1983). Integrated Hull Construction, Outfitting and Painting. In *NSRP*. Washington: SNAME.
- Pujawan, I. N. (2004). Ekonomi Teknik. Penerbit Guna Widya. Surabaya.
- Rubeša, R., Fafandjel, N., & Koli, D. (2011). Procedure for Estimating the Effectiveness of. Rijeka: Engineering Review.
- Ship-technology.com. (2019). CAD Matic Project. Retrieved from https://www.ship-technology.com/contractors/project/nasdis/attachment/nasdis4/
- Storch, R. L., Hammon, C. P., & Bunch, H. M. (1988). Ship production. Centreville: Cornell Maritime Press.
- Stumbo, S. C. (1985). Impact of zone outfitting on ship space utilization and construction costs. *Naval Engineers Journal*. Alexandria: American Society of Naval Engineers.
- Tompkins, J. A. (1996). Facilities Planing. John Wiley & Sons.

LAMPIRAN PERHITUNGAN TEKNIS *ON BOARD OUTFITTING*

Tabel Jam Orang Pembangunan Konstruksi Blok Kapal (Assembly)

Produktivitas

JO/ton yang dibutuhkan untuk membangun konstruksi kapal dibagi menjadi 3 bagian menurut lokasinya. Yaitu, bagian paralel middle body, buritan/haluan, dan bangunan atas

Produktivitas pembangunan dihitung dengan membagi rekapitulasi JO dengan berat pengerjaan konstruksi blok kapal dari block div PT. X. Dihasilkan tabel sebagai berikut

Paralel Middle Body					
Blok	Berat	JO	Produktivitas	Rerata	
218	11,33 ton	879,08	77,56 JO/ton		
217	13,56 ton	1051,42	77,56 JO/ton		
219	13,75 ton	1066,38	77,56 JO/ton		
215	15,55 ton	1205,76	77,56 JO/ton		
216	16,82 ton	1304,42	77,56 JO/ton	77,56 JO/ton	
116	35,10 ton	2722,00	77,56 JO/ton	77,50 50/1011	
119	35,57 ton	2758,61	77,56 JO/ton		
115	35,72 ton	2770,32	77,56 JO/ton		
117	38,85 ton	3013,01	77,56 JO/ton		
118	39,24 ton	3043,33	77,56 JO/ton		
		Haluan/B			
Blok	Berat	JO	Produktivitas		
221	,	1001,96	88,83 JO/ton		
213			88,83 JO/ton		
220			116,36 JO/ton		
111			127,97 JO/ton		
211	15,48 ton		133,97 JO/ton		
214			140,63 JO/ton		
113	16,66 ton		145,44 JO/ton	141,99 JO/ton	
122	16,70 ton		145,76 JO/ton	141,99 30/1011	
212		2568,92	149,76 JO/ton		
112			155,66 JO/ton		
222	18,67 ton		161,54 JO/ton		
121		3773,00	177,70 JO/ton		
114	33,90 ton		177,70 JO/ton		
120	34,13 ton		177,70 JO/ton		
		Banguna	n Atas		
Blok	Berat	JO	Produktivitas		
418	4,56 ton	326,77			
511	4,56 ton	326,77			
415	4,92 ton	352,50			
414	5,49 ton	445,92	81,17 JO/ton		
413	6,75 ton	649,96			
416	7,97 ton	847,51			
412	8,12 ton	872,49	107,40 JO/ton		
319	10,50 ton	1257,86	119,80 JO/ton		
411	10,52 ton	1261,11	119,88 JO/ton	111,79 JO/ton	
312	11,06 ton	1348,20	121,93 JO/ton	111,73 00/1011	
311	11,88 ton	1481,36	124,71 JO/ton		
417	11,99 ton	1499,37	125,06 JO/ton		
315	14,89 ton	1969,08	132,29 JO/ton		
313	14,98 ton	1984,00	132,47 JO/ton		
316	16,06 ton	2127,20	132,47 JO/ton		
318	16,84 ton	2231,32	132,47 JO/ton		
314	18,52 ton	2453,74	132,47 JO/ton		
317	18,70 ton	2477,05	132,47 JO/ton		

Pembagian blok direncanakan lebih besar dari pada kondisi sebenarnya pembangunan kapal penumpang barang 2000 GT. Ukuran blok yang lebih besar dimaksudkan untuk mengoptimalkan jumlah *outfitting* yang dapat dipasang di dalam blok kapal

Perencanaan pembagian blok dan perhitungan kebutuhan jam orang

No	Blok	Berat	Produktivitas	JO
1	111	30,40 ton	141,99 JO/ton	4315,78
2	112	35,03 ton	141,99 JO/ton	4974,48
3	113	28,75 ton	141,99 JO/ton	4082,35
4	114	50,05 ton	141,99 JO/ton	7105,89
5	115	51,26 ton	77,56 JO/ton	3976,08
6	116	51,91 ton	77,56 JO/ton	4026,42
7	117	52,40 ton	77,56 JO/ton	4064,42
8	118	50,57 ton	77,56 JO/ton	3922,41
9	119	49,32 ton	77,56 JO/ton	3824,99
10	120	48,08 ton	141,99 JO/ton	6827,02
11	121	32,51 ton	141,99 JO/ton	4616,38
12	122	35,36 ton	141,99 JO/ton	5020,91
13	211	11,88 ton	111,79 JO/ton	1327,83
14	212	11,06 ton	111,79 JO/ton	1236,05
15	213	14,98 ton	111,79 JO/ton	1674,27
16	214	18,52 ton	111,79 JO/ton	2070,67
17	215	14,89 ton	111,79 JO/ton	1663,98
18	216	16,06 ton	111,79 JO/ton	1795,11
19	217	18,70 ton	111,79 JO/ton	2090,35
20	218	27,34 ton	111,79 JO/ton	3056,76
21	311	10,52 ton	111,79 JO/ton	1176,02
22	312	8,12 ton	111,79 JO/ton	908,18
23	313	6,75 ton	111,79 JO/ton	754,80
24	314	5,49 ton	111,79 JO/ton	614,17
25	315	4,91 ton	111,79 JO/ton	549,33
26	316	7,97 ton	111,79 JO/ton	890,96
27	317	11,99 ton	111,79 JO/ton	1340,24
28	318	4,56 ton	111,79 JO/ton	509,65
29	411	4,56 ton	111,79 JO/ton	509,65

Tabel Jam Orang PT. Dumas Tanjung Perak Surabaya Di Tahap Produksi dan Instalasi Perpipaan

Sistem	Berat (ton)	Jam.0	Jam.Orang		
Oisteili	Derat (toll)	Fabrication	Installation		
Sea water cooling	3,194	651,00 JO	3049,00 JO		
Oil water separator	0,425	104,00 JO	901,00 JO		
Bilge ballast	3,044	2159,00 JO	3498,00 JO		
Fresh water cooling	1,046	0,00 JO	532,00 JO		
Sea water sanitary	1,690	109,00 JO	2634,00 JO		
Fresh water sanitary	2,603	1179,00 JO	3963,00 JO		
Sewage	0,537	320,00 JO	3302,00 JO		
Drainage	5,062	121,00 JO	2754,50 JO		
Scupper	4,594	207,00 JO	1856,00 JO		
Sounding	3,390	1256,00 JO	4109,00 JO		
Lubricating Oil	0,206	72,00 JO	871,50 JO		
Exhaust	3,967	1826,00 JO	4044,00 JO		
Fire fighting	4,602	440,00 JO	2636,00 JO		

Fabrikasi						
Sistem	Berat	Jam Orang				
Lubricating Oil	0,206	72,00 JO				
Oil water separator	0,425	104,00 JO				
Sewage	0,537	320,00 JO				
Fresh water cooling	1,046	0,00 JO				
Sea water sanitary	1,690	109,00 JO				
Fresh water sanitary	2,603	1179,00 JO				
Bilge ballast	3,044	2159,00 JO				
Sea water cooling	3,194	651,00 JO				
Sounding	3,390	1256,00 JO				
Exhaust	3,967	1826,00 JO				
Scupper	4,594	207,00 JO				
Fire fighting	4,602	440,00 JO				
Drainage	5,062	121,00 JO				

Instalasi					
Sistem	Berat	Jam Orang	Produktivitas		
Lubricating Oil	0,206	871,50 JO	4230,34 JO		
Oil water separator	0,425	901,00 JO	2120,90 JO		
Sewage	0,537	3302,00 JO	6144,48 JO		
Fresh water cooling	1,046	532,00 JO	508,77 JO		
Sea water sanitary	1,690	2634,00 JO	1558,69 JO		
Fresh water sanitary	2,603	3963,00 JO	1522,49 JO		
Bilge ballast	3,044	3498,00 JO	1149,06 JO		
Sea water cooling	3,194	3049,00 JO	954,52 JO		
Sounding	3,390	4109,00 JO	1212,22 JO		
Exhaust	3,967	4044,00 JO	1019,29 JO		
Scupper	4,594	1856,00 JO	404,02 JO		
Fire fighting	4,602	2636,00 JO	572,86 JO		
Drainage	5,062	2754,50 JO	544,19 JO		

Perbaikan Data FABRIKASI Outer Diameter

- Fresh water cooling sama dengan Fresh water sanitary

- Sea water sanitary sama dengan Fresh water cooling

Karena terdapat anomali dalam data, penulis mencoba mancari kesamaan antar sistem untuk mengestimasi nilai jam orang sesungguhnya sehingga didapatkan data sebagai berikut

Fabrikasi					
Sistem	Berat	Jam Orang	Produktivitas		
Lubricating Oil	0,206	72,00 JO	349,49 JO		
Oil water separator	0,425	104,00 JO	244,81 JO		
Sewage	0,537	320,00 JO	595,47 JO		
Fresh water cooling	1,046	473,63 JO	452,94 JO		
Sea water sanitary	1,690	765,42 JO	452,94 JO		
Fresh water sanitary	2,603	1179,00 JO	452,94 JO		
Bilge ballast	3,044	2159,00 JO	709,21 JO		
Sea water cooling	3,194	651,00 JO	203,80 JO		
Sounding	3,390	1256,00 JO	370,54 JO		
Exhaust	3,967	1826,00 JO	460,24 JO		
Scupper	4,594	207,00 JO	45,06 JO		
Fire fighting	4,602	440,00 JO	95,62 JO		
Drainage	5,062	121,00 JO	23,91 JO		

No.	Zone Outfitting	Berat	No.	Zone Outfitting	Berat
1	On Unit		37	On Board	
	-		38	Deck Machinery	6974
2	On Block		39	Windlass	3000 kg
	-		40	Vertical Winch	24 kg
3	On Board		41	Emergency Genset	1000 kg
4	Sistem Perpipaan		42	Emergency switch board	550 kg
5	Lubricating Oil	0,21 kg	43	Crane SWL 2.5ton, 3.5 - 11 m	2400 kg
6	Oil water separator	0,42 kg	44	Deck Outfitting	1275
7	Sewage	0,54 kg	45	Hawse pipe	48 kg
8	Fresh water cooling	1,05 kg	46	Roller	52 kg
9	Sea water sanitary	1,69 kg	47	Bollard	240 kg
10	Fresh water sanitary	2,60 kg	48	Fairlead	50 kg
11	Bilge ballast	3,04 kg	49	Chocks	96 kg
12	Sea water cooling	3,19 kg	50	Bollard	120 kg
13	Sounding	3,39 kg	51	Fairlead	75 kg
14	Exhaust	3,97 kg	52	Mushroom vent. Head	80 kg
15	Scupper	4,59 kg	53	Mushroom vent. Head	160 kg
16	Fire fighting	4,60 kg	54	Mushroom vent. Head	240 kg
17	Drainage	5,06 kg	55	Expansion tank for FW	114 kg
18	Engine room machinery	11875	56	Safety Equipment	17181
19	Main engine	2600 kg	57	Marine evacuation system	1370 kg
20	Diesel engine / Genset	3840 kg	58	Davit	3600 kg
21	Harbour Generator	1280 kg	59	Life boat	9200 kg
22	Main switch board	550 kg	60	Liferaft	2220 kg
23	Steering gear	1360 kg	61	CO2	791 kg
24	S.W. Hydrophore	26 kg			
25	S.W. Pump	100 kg			
26	S.W Hand Pump	6 kg			
27	Bilge Pump	25 kg			
28	Ballast Pump	225 kg			
29	Fire/G.S. Pump	100 kg			
30	F.W. Hydrophore	26 kg			
31	F.W. Pump	100 kg			
32	F.W Hand Pump	6 kg			
33	Oily Water Separator (OWS)	600 kg			
34	Bilge Pump for OWS	25 kg			
35	Hand Pump for OWS	6 kg			
36	Seawage Treatment Plant	1000 kg			

PERENCANAAN JUMLAH TENAGA KERJA DAN WAKTU PEMBANGUNAN KAPAL

Perencanaan jumlah tenaga kerja dibutuhkan untuk memenuhi ekspektasi waktu penyelesaian proyek pembangunan kapal

Dari kebutuhan jam orang di tiap proses produksi dan jumlah orang yang digunakan, dapat dihitung waktu yang dibutuhkan untuk menyelesaikan pembangunan kapal

- Hull Construction

kegiatan pembangunan konstruksi kapal berupa blok-blok. Level produksi yang dihitung pada tabel di bawah ini adalah pada tahap **fabrikasi dan assembly**

Dalam tahap **fabrikasi**, kapasitas mesin cnc yang digunakan untuk memotong pelat menjadi piece part adalah: 12 ton per hari

Sedangkan dalam perencanaan tenaga kerja untuk proses **assembly** harus memerhatikan perencanaan pekerja dengan komposisi sebagai berikut:

Welder = 6 Fitter = 9 Helper = 5 total = 20

jam kerja = 7 jam per hari ;sesuai dengan jam kerja PT. X sebagai obyek penelitian

Tabel waktu pembangunan konstruksi blok kapal

Pull				Waktu
Blok	Berat (ton)	JO yang dibutuhkan	Fabrikasi	Assembly
111	30,395	4315,78 JO	3 hari	31 hari
112	35,034	4974,48 JO	3 hari	36 hari
113	28,751	4082,35 JO	3 hari	30 hari
114	50,045	7105,89 JO	5 hari	51 hari
115	51,264	3976,08 JO	5 hari	29 hari
116	51,913	4026,42 JO	5 hari	29 hari
117	52,403	4064,42 JO	5 hari	30 hari
118	50,572	3922,41 JO	5 hari	29 hari
119	49,316	3824,99 JO	5 hari	28 hari
120	48,081	6827,02 JO	5 hari	49 hari
121	32,512	4616,38 JO	3 hari	33 hari
122	35,361	5020,91 JO	3 hari	36 hari
211	11,878	1327,83 JO	1 hari	10 hari
212	11,057		1 hari	9 hari
213	14,977	1674,27 JO	2 hari	12 hari
214	18,523	2070,67 JO	2 hari	15 hari
215	14,885	1663,98 JO	2 hari	12 hari
216	16,058	1795,11 JO	2 hari	13 hari
217	18,699	2090,35 JO	2 hari	15 hari
218	27,344	3056,76 JO	3 hari	22 hari
311	10,52	1176,02 JO	1 hari	9 hari
312	8,124	908,18 JO	1 hari	7 hari
313	6,752		1 hari	6 hari
314	5,494	614,17 JO	1 hari	5 hari
315	4,914	549,33 JO	1 hari	4 hari
316	7,97	890,96 JO	1 hari	7 hari
317	11,989	1340,24 JO	1 hari	10 hari
318	4,559	509,65 JO	1 hari	4 hari
411	4,559	509,65 JO	1 hari	4 hari

- On Board Outfitting

kegiatan pemasangan outifitting yang bisa dilakukan di blok kapal yang sudah dierection. Kegiatan ini dilakukan bersamaan dengan pembangunan kapal pada level **erection**

Perencanaan tenaga kerja

Welder = 4
Fitter = 6
Helper = 2
total = 12

jam kerja = 7 jam per hari

;sesuai dengan jam kerja PT. X sebagai obyek penelitian

Tabel waktu pemasangan outfitting on board

Ciatama	Danet (4am)	JO yang dib	outuhkan	Waktu		
Sistem	Berat (ton)	Fabrikasi	Instalasi	Fabrikasi	Instalasi	
Lubricating Oil	0,206	72,00 JO	871,50 JO	1 hari	11 hari	
Oil water separator	0,425	104,00 JO	901,00 JO	2 hari	11 hari	
Sewage	0,537	320,00 JO	3302,00 JO	4 hari	40 hari	
Fresh water cooling	1,046	473,63 JO	532,00 JO	6 hari	7 hari	
Sea water sanitary	1,690	765,42 JO	2634,00 JO	10 hari	32 hari	
Fresh water sanitary	2,603	1179,00 JO	3963,00 JO	15 hari	48 hari	
Bilge ballast	3,044	2159,00 JO	3498,00 JO	26 hari	42 hari	
Sea water cooling	3,194	651,00 JO	3049,00 JO	8 hari	37 hari	
Sounding	3,390	1256,00 JO	4109,00 JO	15 hari	49 hari	
Exhaust	3,967	1826,00 JO	4044,00 JO	22 hari	49 hari	
Scupper	4,594	207,00 JO	1856,00 JO	3 hari	23 hari	
Fire fighting	4,602	440,00 JO	2636,00 JO	6 hari	32 hari	
Drainage	5,062	121,00 JO	2754,50 JO	2 hari	33 hari	
-	Total	9574,05 JO	34150,00 JO	120 hari	414 hari	

Produktivitas: 142,54 JO/ton

Perlengkapan	Jumlah	Berat	Berat total	Jam Orang Instalasi	Waktu
Engine Room Machinery			11875 kg	1692,68 JO	21 hari
Main engine	2	1300 kg	2600 kg		
Diesel engine / Genset	3	1280 kg	3840 kg		
Harbour Generator	1	1280 kg	1280 kg		
Main switch board	1	550 kg			
Steering gear	2	680 kg	1360 kg		
S.W. Hydrophore	1	26 kg	26 kg		
S.W. Pump	2	50 kg	100 kg		
S.W Hand Pump	1	6 kg	6 kg		
Bilge Pump	1	25 kg	25 kg		
Ballast Pump	3	75 kg	225 kg		
Fire/G.S. Pump	2	50 kg			
F.W. Hydrophore	1	26 kg	26 kg		
F.W. Pump	2	50 kg	100 kg		
F.W Hand Pump	1	6 kg	6 kg		
Oily Water Separator (OWS)	1	600 kg	600 kg		
Bilge Pump for OWS	1	25 kg			
Hand Pump for OWS	1	6 kg	6 kg		
Seawage Treatment Plant	1	1000 kg	1000 kg		
Deck Machinery			6974 kg	994,08 JO	12 hari
Windlass	2	1500 kg	3000 kg		
Vertical Winch	1	24 kg			
Emergency Genset	1	1000 kg	1000 kg		·
Emergency switch board	1	550 kg	550 kg		·
Crane SWL 2.5ton, 3.5 - 11 m	1	2400 kg	2400 kg		

Deck Outfitting			1275 kg	181,74 JO	3 hari
Hawse pipe	2	24 kg	48 kg		
Roller	2	26 kg	52 kg		
Bollard	8	30 kg			
Fairlead	2	25 kg	50 kg		
Chocks	4	24 kg	96 kg		
Bollard	4	30 kg	120 kg		
Fairlead	3	25 kg	75 kg		
Mushroom vent. Head	2	40 kg			
Mushroom vent. Head	4	40 kg			
Mushroom vent. Head	6	40 kg	240 kg		
Expansion tank for FW	2	57 kg	114 kg		
Safety Equipment			17181 kg	2449,00 JO	30 hari
Marine evacuation system	2	685 kg	1370 kg		
Davit	4	900 kg	3600 kg		
Life boat	4	2300 kg	9200 kg		
Liferaft	12	185 kg	2220 kg		
CO ₂	7	113 kg	791 kg		
		Total	37305 kg	5317,50 JO	66 hari

LAMPIRAN PERHITUNGAN TEKNIS ADVANCED OUTFITTING SYSTEM

Tabel Jam Orang Pembangunan Konstruksi Blok Kapal (Assembly)

Produktivitas

JO/ton yang dibutuhkan untuk membangun konstruksi kapal dibagi menjadi 3 bagian menurut lokasinya. Yaitu, bagian paralel middle body, buritan/haluan, dan bangunan atas

Produktivitas pembangunan dihitung dengan membagi rekapitulasi JO dengan berat pengerjaan konstruksi blok kapal dari block div PT. X. Dihasilkan tabel sebagai berikut

Blok Berat JO Produktivitas Rerata	Paralel Middle Body						
217	Blok	Berat		Produktivitas	Rerata		
219	218	11,33 ton	879,08				
215							
216		13,75 ton	1066,38	77,56 JO/ton			
116	215		1205,76				
116	216	16,82 ton	1304,42	77,56 JO/ton	77 56 JO/ton		
115 35,72 ton 2770,32 77,56 JO/ton 117 38,85 ton 3013,01 77,56 JO/ton 118 39,24 ton 3043,33 77,56 JO/ton	116	35,10 ton	2722,00	77,56 JO/ton	77,00 00/1011		
117 38,85 ton 3013,01 77,56 JO/ton 118 39,24 ton 3043,33 77,56 JO/ton	119			77,56 JO/ton			
Blok Berat JO Produktivitas	115	35,72 ton					
Haluan/Buritan			3013,01				
Blok	118	39,24 ton					
221 11,28 ton 1001,96 88,83 JO/ton 213 12,09 ton 1074,00 88,83 JO/ton 220 13,95 ton 1623,48 116,36 JO/ton 111 14,92 ton 1909,30 127,97 JO/ton 211 15,48 ton 2073,17 133,97 JO/ton 214 16,14 ton 2270,11 140,63 JO/ton 113 16,66 ton 2423,06 145,44 JO/ton 122 16,70 ton 2433,69 145,76 JO/ton 112 17,88 ton 2783,28 155,66 JO/ton 112 17,88 ton 2783,28 155,66 JO/ton 121 21,23 ton 3015,06 161,54 JO/ton 121 21,23 ton 3773,00 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 121 4,56 ton 326,77 71,68 JO/ton 121 4,56 ton 326,77 71,68 JO/ton 121 4,59 ton 352,50 71,68 JO/ton 121 5,49 ton 445,92 81,17 JO/ton 121 8,12 ton 872,49 107,40 JO/ton 121 8,12 ton 872,49 107,40 JO/ton 121 10,52 ton 1261,11 119,88 JO/ton 121 11,06 ton 1348,20 121,93 JO/ton 121 11,08 ton 1481,36 124,71 JO/ton 121 11,99 ton 1499,37 125,06 JO/ton 121 14,89 ton 1969,08 132,29 JO/ton 121 14,89 ton 1969,08 132,29 JO/ton 121 14,89 ton 1984,00 132,47 JO/ton			Haluan/B				
213 12,09 ton 1074,00 88,83 JO/ton 220 13,95 ton 1623,48 116,36 JO/ton 111 14,92 ton 1909,30 127,97 JO/ton 211 15,48 ton 2073,17 133,97 JO/ton 214 16,14 ton 2270,11 140,63 JO/ton 113 16,66 ton 2423,06 145,44 JO/ton 122 16,70 ton 2433,69 145,76 JO/ton 212 17,15 ton 2568,92 149,76 JO/ton 112 17,88 ton 2783,28 155,66 JO/ton 121 21,23 ton 3773,00 177,70 JO/ton 121 21,23 ton 3773,00 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 141 4,56 ton 326,77 71,68 JO/ton 141 5,49 ton 352,50 71,68 JO/ton 141 5,49 ton 445,92 81,17 JO/ton 141 6,797 ton 847,51 106,34 JO/ton 141 8,12 ton 872,49 107,40 JO/ton 110,50 ton 1257,86 119,80 JO/ton 111,79 JO/ton 111,199 ton 1499,37 125,06 JO/ton 111,79 JO/ton 111,88 ton 1481,36 124,71 JO/ton 111,79 JO/ton 111,99 ton 1499,37 125,06 JO/ton 111,79 JO/ton 111,99 ton 1499,37 125,06 JO/ton 111,79 JO/ton 111,199 ton 1499,37 125,06 JO/ton 111,79 JO/ton 111,489 ton 1984,00 132,47 JO/ton 1313 14,98 ton 1984,00 132,47 JO/ton				Produktivitas			
220 13,95 ton 1623,48 116,36 JO/ton 111 14,92 ton 1909,30 127,97 JO/ton 211 15,48 ton 2073,17 133,97 JO/ton 214 16,14 ton 2270,11 140,63 JO/ton 113 16,66 ton 2423,06 145,44 JO/ton 122 16,70 ton 2433,69 145,76 JO/ton 212 17,15 ton 2568,92 149,76 JO/ton 112 17,88 ton 2783,28 155,66 JO/ton 222 18,67 ton 3015,06 161,54 JO/ton 121 21,23 ton 3773,00 177,70 JO/ton 120 34,13 ton 6024,68 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 131 4,56 ton 326,77 71,68 JO/ton 141 4,56 ton 326,77 71,68 JO/ton 141 5,49 ton 352,50 71,68 JO/ton 141 5,49 ton 445,92 81,17 JO/ton 141 6,79 ton 847,51 106,34 JO/ton 141 6,79 ton 847,51 106,34 JO/ton 141 8,12 ton 872,49 107,40 JO/ton 141 10,52 ton 1261,11 119,88 JO/ton 141 10,52 ton 1261,11 119,88 JO/ton 141 11,88 ton 1481,36 124,71 JO/ton 141 11,99 ton 1499,37 125,06 JO/ton 141 11,99 ton 1499,37 125,06 JO/ton 141 11,99 ton 1969,08 132,29 JO/ton 141 14,98 ton 1984,00 132,47 JO/ton							
111 14,92 ton 1909,30 127,97 JO/ton 211 15,48 ton 2073,17 133,97 JO/ton 214 16,14 ton 2270,11 140,63 JO/ton 113 16,66 ton 2423,06 145,44 JO/ton 122 16,70 ton 2433,69 145,76 JO/ton 212 17,15 ton 2568,92 149,76 JO/ton 112 17,88 ton 2783,28 155,66 JO/ton 222 18,67 ton 3015,06 161,54 JO/ton 121 21,23 ton 3773,00 177,70 JO/ton 121 21,23 ton 3773,00 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 1418 4,56 ton 326,77 71,68 JO/ton 1415 4,92 ton 352,50 71,68 JO/ton 1415 4,92 ton 352,50 71,68 JO/ton 1416 7,97 ton 847,51 106,34 JO/ton 1416 7,97 ton 847,51 106,34 JO/ton 1417 10,52 ton 1261,11 119,88 JO/ton 111,79 JO/ton 111,79 JO/ton 111,88 ton 1481,36 124,71 JO/ton 111,79 JO/ton 111,79 JO/ton 111,88 ton 1481,36 124,71 JO/ton 111,79 JO/ton 115 14,89 ton 1969,08 132,29 JO/ton 1313 14,98 ton 1984,00 132,47 JO/ton							
211 15,48 ton 2073,17 133,97 JO/ton 214 16,14 ton 2270,11 140,63 JO/ton 113 16,66 ton 2423,06 145,44 JO/ton 122 16,70 ton 2433,69 145,76 JO/ton 212 17,15 ton 2568,92 149,76 JO/ton 112 17,88 ton 2783,28 155,66 JO/ton 222 18,67 ton 3015,06 161,54 JO/ton 121 21,23 ton 3773,00 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 141 4,56 ton 326,77 71,68 JO/ton 511 4,56 ton 326,77 71,68 JO/ton 415 4,92 ton 352,50 71,68 JO/ton 415 4,92 ton 352,50 71,68 JO/ton 416 7,97 ton 847,51 106,34 JO/ton 410 7,97 ton 847,51 106,34 JO/ton 411 10,52 ton 1257,86 119,80 JO/ton 319 10,50 ton 1257,86 119,80 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton							
214 16,14 ton 2270,11 140,63 JO/ton 113 16,66 ton 2423,06 145,44 JO/ton 122 16,70 ton 2433,69 145,76 JO/ton 212 17,15 ton 2568,92 149,76 JO/ton 112 17,88 ton 2783,28 155,66 JO/ton 112 17,88 ton 3015,06 161,54 JO/ton 121 21,23 ton 3773,00 177,70 JO/ton 121 21,23 ton 3773,00 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 141 4,56 ton 326,77 71,68 JO/ton 141 5,49 ton 352,50 71,68 JO/ton 141 5,49 ton 445,92 81,17 JO/ton 141 5,49 ton 445,92 81,17 JO/ton 141 6,797 ton 847,51 106,34 JO/ton 141 6,797 ton 847,51 106,34 JO/ton 141 10,52 ton 1257,86 119,80 JO/ton 141 10,52 ton 1261,11 119,88 JO/ton 141 10,52 ton 1261,11 119,88 JO/ton 141 10,52 ton 1348,20 121,93 JO/ton 141 11,99 ton 1499,37 125,06 JO/ton 141 11,99 ton 1499,37 125,06 JO/ton 141 11,99 ton 1969,08 132,29 JO/ton 131 11,88 ton 1969,08 132,29 JO/ton 131 14,89 ton 1984,00 132,47 JO/ton							
113 16,66 ton 2423,06 145,44 JO/ton 122 16,70 ton 2433,69 145,76 JO/ton 212 17,15 ton 2568,92 149,76 JO/ton 112 17,88 ton 2783,28 155,66 JO/ton 222 18,67 ton 3015,06 161,54 JO/ton 121 21,23 ton 3773,00 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 141 4,56 ton 326,77 71,68 JO/ton 141 5,49 ton 352,50 71,68 JO/ton 141 5,49 ton 445,92 81,17 JO/ton 141 6,797 ton 847,51 106,34 JO/ton 141 8,12 ton 872,49 107,40 JO/ton 141 10,52 ton 1257,86 119,80 JO/ton 111,79 JO/ton 111,88 ton 1481,36 124,71 JO/ton 111,79 JO/ton 111,88 ton 1481,36 124,71 JO/ton 111,99 ton 1499,37 125,06 JO/ton 1313 14,98 ton 1984,00 132,47 JO/ton 1313 14,98 ton 1984,00 132,47 JO/ton 1313 14,98 ton 1984,00 132,47 JO/ton 1314,98 ton 1984,00 132,47 JO/ton 1315 14,89 ton 1984,00 132,47 JO/ton 1313 14,98 ton 1984,00 132,47 JO/ton	211	15,48 ton	2073,17	133,97 JO/ton			
122 16,70 ton 2433,69 145,76 JO/ton 212 17,15 ton 2568,92 149,76 JO/ton 112 17,88 ton 2783,28 155,66 JO/ton 222 18,67 ton 3015,06 161,54 JO/ton 121 21,23 ton 3773,00 177,70 JO/ton 141 33,90 ton 6024,68 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 141 4,56 ton 326,77 71,68 JO/ton 511 4,56 ton 326,77 71,68 JO/ton 415 4,92 ton 352,50 71,68 JO/ton 414 5,49 ton 445,92 81,17 JO/ton 413 6,75 ton 649,96 96,26 JO/ton 412 8,12 ton 872,49 107,40 JO/ton 412 8,12 ton 872,49 107,40 JO/ton 319 10,50 ton 1257,86 119,80 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton 1314,98 ton 1984,00 132,47 JO/ton			2270,11	140,63 JO/ton			
122 16,70 ton 2433,69 145,76 JO/ton 212 17,15 ton 2568,92 149,76 JO/ton 112 17,88 ton 2783,28 155,66 JO/ton 222 18,67 ton 3015,06 161,54 JO/ton 121 21,23 ton 3773,00 177,70 JO/ton 141 33,90 ton 6024,68 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 120 34,13 ton 6064,84 177,70 JO/ton 1418 4,56 ton 326,77 71,68 JO/ton 1511 4,56 ton 326,77 71,68 JO/ton 1511 4,56 ton 326,77 71,68 JO/ton 1511 4,59 ton 352,50 71,68 JO/ton 151 4,92 ton 352,50 71,68 JO/ton 151 4,92 ton 445,92 81,17 JO/ton 151 4,92 ton 445,92 81,17 JO/ton 151 6,797 ton 649,96 96,26 JO/ton 151 6,797 ton 847,51 106,34 JO/ton 151 8,12 ton 872,49 107,40 JO/ton 151 10,52 ton 1257,86 119,80 JO/ton 151 10,52 ton 1261,11 119,88 JO/ton 151 11,06 ton 1348,20 121,93 JO/ton 151 11,06 ton 1348,20 121,93 JO/ton 151 11,09 ton 1499,37 125,06 JO/ton 151 14,89 ton 1969,08 132,29 JO/ton 151 14,89 ton 1969,08 132,29 JO/ton 151 14,89 ton 1984,00 132,47 JO/ton	113	16,66 ton	2423,06	145,44 JO/ton	1/1 00 IO/ton		
112 17,88 ton 2783,28 155,66 JO/ton 222 18,67 ton 3015,06 161,54 JO/ton 121 21,23 ton 3773,00 177,70 JO/ton 114 33,90 ton 6024,68 177,70 JO/ton Blok Berat JO Produktivitas 418 4,56 ton 326,77 71,68 JO/ton 511 4,56 ton 326,77 71,68 JO/ton 415 4,92 ton 352,50 71,68 JO/ton 414 5,49 ton 445,92 81,17 JO/ton 413 6,75 ton 649,96 96,26 JO/ton 416 7,97 ton 847,51 106,34 JO/ton 412 8,12 ton 872,49 107,40 JO/ton 411 10,52 ton 1257,86 119,80 JO/ton 411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 313 14,89 ton 1969,08 132,29 JO/ton	122		2433,69	145,76 JO/ton	141,99 30/1011		
222 18,67 ton 3015,06 161,54 JO/ton 121 21,23 ton 3773,00 177,70 JO/ton 114 33,90 ton 6024,68 177,70 JO/ton Bangunan Atas Blok Berat JO Produktivitas 418 4,56 ton 326,77 71,68 JO/ton 511 4,56 ton 326,77 71,68 JO/ton 415 4,92 ton 352,50 71,68 JO/ton 414 5,49 ton 445,92 81,17 JO/ton 413 6,75 ton 649,96 96,26 JO/ton 416 7,97 ton 847,51 106,34 JO/ton 412 8,12 ton 872,49 107,40 JO/ton 411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton	212	17,15 ton					
121 21,23 ton 3773,00 177,70 JO/ton 114 33,90 ton 6024,68 177,70 JO/ton Bangunan Atas Blok Berat JO Produktivitas 418 4,56 ton 326,77 71,68 JO/ton 511 4,56 ton 326,77 71,68 JO/ton 415 4,92 ton 352,50 71,68 JO/ton 414 5,49 ton 445,92 81,17 JO/ton 413 6,75 ton 649,96 96,26 JO/ton 416 7,97 ton 847,51 106,34 JO/ton 412 8,12 ton 872,49 107,40 JO/ton 411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton	112	17,88 ton	2783,28	155,66 JO/ton			
114 33,90 ton 6024,68 177,70 JO/ton Bangunan Atas Blok Berat JO Produktivitas 418 4,56 ton 326,77 71,68 JO/ton 511 4,56 ton 326,77 71,68 JO/ton 415 4,92 ton 352,50 71,68 JO/ton 414 5,49 ton 445,92 81,17 JO/ton 413 6,75 ton 649,96 96,26 JO/ton 416 7,97 ton 847,51 106,34 JO/ton 412 8,12 ton 872,49 107,40 JO/ton 411 10,52 ton 1257,86 119,80 JO/ton 411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton	222	18,67 ton	3015,06	161,54 JO/ton			
Blok Berat JO Produktivitas	121	21,23 ton	3773,00	177,70 JO/ton			
Bangunan Atas Blok Berat JO Produktivitas 418 4,56 ton 326,77 71,68 JO/ton 511 4,56 ton 326,77 71,68 JO/ton 415 4,92 ton 352,50 71,68 JO/ton 414 5,49 ton 445,92 81,17 JO/ton 413 6,75 ton 649,96 96,26 JO/ton 416 7,97 ton 847,51 106,34 JO/ton 412 8,12 ton 872,49 107,40 JO/ton 319 10,50 ton 1257,86 119,80 JO/ton 411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton	114	33,90 ton	6024,68	177,70 JO/ton			
Blok Berat JO Produktivitas 418 4,56 ton 326,77 71,68 JO/ton 511 4,56 ton 326,77 71,68 JO/ton 415 4,92 ton 352,50 71,68 JO/ton 414 5,49 ton 445,92 81,17 JO/ton 413 6,75 ton 649,96 96,26 JO/ton 416 7,97 ton 847,51 106,34 JO/ton 412 8,12 ton 872,49 107,40 JO/ton 319 10,50 ton 1257,86 119,80 JO/ton 411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton	120	34,13 ton	6064,84	177,70 JO/ton			
418 4,56 ton 326,77 71,68 JO/ton 511 4,56 ton 326,77 71,68 JO/ton 415 4,92 ton 352,50 71,68 JO/ton 414 5,49 ton 445,92 81,17 JO/ton 413 6,75 ton 649,96 96,26 JO/ton 416 7,97 ton 847,51 106,34 JO/ton 412 8,12 ton 872,49 107,40 JO/ton 319 10,50 ton 1257,86 119,80 JO/ton 411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton			Banguna	n Atas			
511 4,56 ton 326,77 71,68 JO/ton 415 4,92 ton 352,50 71,68 JO/ton 414 5,49 ton 445,92 81,17 JO/ton 413 6,75 ton 649,96 96,26 JO/ton 416 7,97 ton 847,51 106,34 JO/ton 412 8,12 ton 872,49 107,40 JO/ton 319 10,50 ton 1257,86 119,80 JO/ton 411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton		Berat					
415 4,92 ton 352,50 71,68 JO/ton 414 5,49 ton 445,92 81,17 JO/ton 413 6,75 ton 649,96 96,26 JO/ton 416 7,97 ton 847,51 106,34 JO/ton 412 8,12 ton 872,49 107,40 JO/ton 319 10,50 ton 1257,86 119,80 JO/ton 411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton	418						
414 5,49 ton 445,92 81,17 JO/ton 413 6,75 ton 649,96 96,26 JO/ton 416 7,97 ton 847,51 106,34 JO/ton 412 8,12 ton 872,49 107,40 JO/ton 319 10,50 ton 1257,86 119,80 JO/ton 411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton		4,56 ton	326,77	71,68 JO/ton			
413 6,75 ton 649,96 96,26 JO/ton 416 7,97 ton 847,51 106,34 JO/ton 412 8,12 ton 872,49 107,40 JO/ton 319 10,50 ton 1257,86 119,80 JO/ton 411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton	415	4,92 ton		71,68 JO/ton			
416 7,97 ton 847,51 106,34 JO/ton 412 8,12 ton 872,49 107,40 JO/ton 319 10,50 ton 1257,86 119,80 JO/ton 411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton	414	5,49 ton	445,92	81,17 JO/ton			
412 8,12 ton 872,49 107,40 JO/ton 319 10,50 ton 1257,86 119,80 JO/ton 411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton			649,96				
319 10,50 ton 1257,86 119,80 JO/ton 411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton	416	7,97 ton	847,51	106,34 JO/ton			
411 10,52 ton 1261,11 119,88 JO/ton 312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton	412	8,12 ton	872,49	107,40 JO/ton			
312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton	319		1257,86	119,80 JO/ton			
312 11,06 ton 1348,20 121,93 JO/ton 311 11,88 ton 1481,36 124,71 JO/ton 417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton	411	10,52 ton	1261,11	119,88 JO/ton	111 70 IO/ton		
417 11,99 ton 1499,37 125,06 JO/ton 315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton					111,73 30/1011		
315 14,89 ton 1969,08 132,29 JO/ton 313 14,98 ton 1984,00 132,47 JO/ton			1481,36	124,71 JO/ton			
313 14,98 ton 1984,00 132,47 JO/ton							
	315	14,89 ton	1969,08	132,29 JO/ton			
316 16 06 ton 2127 20 132 47 10/ton	313	14,98 ton	1984,00	132,47 JO/ton			
	316	16,06 ton	2127,20	132,47 JO/ton			
318 16,84 ton 2231,32 132,47 JO/ton	318	16,84 ton		132,47 JO/ton			
314 18,52 ton 2453,74 132,47 JO/ton	314			132,47 JO/ton			
317 18,70 ton 2477,05 132,47 JO/ton	317	18,70 ton	2477,05	132,47 JO/ton			

Pembagian blok direncanakan lebih besar dari pada kondisi sebenarnya pembangunan kapal penumpang barang 2000 GT. Ukuran blok yang lebih besar dimaksudkan untuk mengoptimalkan jumlah *outfitting* yang dapat dipasang di dalam blok kapal

Perencanaan pembagian blok dan perhitungan kebutuhan jam orang

No	Blok	Berat	Produktivitas	JO
1	111	30,40 ton	141,99 JO/ton	4315,78
2	112	35,03 ton	141,99 JO/ton	4974,48
3	113	28,75 ton	141,99 JO/ton	4082,35
4	114	50,05 ton	141,99 JO/ton	7105,89
5	115	51,26 ton	77,56 JO/ton	3976,08
6	116	51,91 ton	77,56 JO/ton	4026,42
7	117	52,40 ton	77,56 JO/ton	4064,42
8	118	50,57 ton	77,56 JO/ton	3922,41
9	119	49,32 ton	77,56 JO/ton	3824,99
10	120	48,08 ton	141,99 JO/ton	6827,02
11	121	32,51 ton	141,99 JO/ton	4616,38
12	122	35,36 ton	141,99 JO/ton	5020,91
13	211	11,88 ton	111,79 JO/ton	1327,83
14	212	11,06 ton	111,79 JO/ton	1236,05
15	213	14,98 ton	111,79 JO/ton	1674,27
16	214	18,52 ton	111,79 JO/ton	2070,67
17	215	14,89 ton	111,79 JO/ton	1663,98
18	216	16,06 ton	111,79 JO/ton	1795,11
19	217	18,70 ton	111,79 JO/ton	2090,35
20	218	27,34 ton	111,79 JO/ton	3056,76
21	311	10,52 ton	111,79 JO/ton	1176,02
22	312	8,12 ton	111,79 JO/ton	908,18
23	313	6,75 ton	111,79 JO/ton	754,80
24	314	5,49 ton	111,79 JO/ton	614,17
25	315	4,91 ton	111,79 JO/ton	549,33
26	316	7,97 ton	111,79 JO/ton	890,96
27	317	11,99 ton	111,79 JO/ton	1340,24
28	318	4,56 ton	111,79 JO/ton	509,65
29	411	4,56 ton	111,79 JO/ton	509,65

	·				Efisiensi Instalasi	37%	
Block	Sistem	Berat	Fabrikasi	Instalasi	Total JO Fabrikasi	Total JO Instalasi	
112	Fire Fighting	0,07 ton	6,79 JO	40,65 JO	6,79 JO	15,04 JO	
	Sea water cooling	0,95 ton	193,06 JO	904,23 JO			
	Fire Fighting	0,13 ton	12,17 JO	72,92 JO			
	Fresh water cooling	0,02 ton	8,02 JO	9,01 JO			
113	OWS	0,03 ton	7,83 JO	67,80 JO	1034,04 JO	1186,93 JO	
	Exhaust	1,10 ton	507,70 JO	1124,39 JO			
	Fire Fighting	0,12 ton	11,38 JO	68,15 JO			
	Sounding	0,79 ton	293,88 JO	961,43 JO			
	Sea water cooling	0,76 ton	155,51 JO	728,36 JO			
	Fire Fighting	0,13 ton	12,01 JO	71,95 JO			
	Fresh water cooling	0,23 ton	105,17 JO	118,13 JO			
	OWS	0,03 ton	6,97 JO	60,36 JO			
	Lubricating oil	0,12 ton	43,44 JO	525,83 JO			
114	Exhaust	2,86 ton	1318,30 JO	2919,61 JO	2015,96 JO	2120,00 JO	
	Fire Fighting	0,25 ton	24,02 JO	143,90 JO			
	Fresh water sanitary	0,12 ton	53,79 JO	180,80 JO			
	Sounding	0,64 ton	237,97 JO	778,51 JO			
	Sea water sanitary	0,04 ton	58,78 JO	202,28 JO			
	Sea water cooling	1,48 ton	302,42 JO	1416,41 JO			
	Sea water cooling Scupper	0,08 ton	3,65 JO	32,71 JO			
	Fire Fighting	0,13 ton	12,67 JO	75,91 JO			
	Fresh water cooling	0,28 ton	128,26 JO	144,07 JO			
	Watter Ballast	1,13 ton	799,19 JO	1294,85 JO			
	OWS	0,29 ton	70,42 JO	610,09 JO			
115	Lubricating oil	0,08 ton	28,56 JO	345,67 JO	1796,28 JO	2528,40 JO	
	Sewage	0,30 ton	176,37 JO	1819,91 JO	•	,	
	Scupper	0,06 ton	2,72 JO	24,43 JO			
	Fire Fighting	0,42 ton	40,08 JO	240,10 JO			
	Fresh water sanitary	0,05 ton	21,70 JO	72,92 JO			
	Sounding	0,50 ton	185,21 JO	605,90 JO			
	ASL	0,14 ton	3,33 JO	75,86 JO			
	Sea water sanitary	0,05 ton	21,70 JO	74,66 JO			
	Scupper	1,34 ton	60,28 JO	540,45 JO			
	Fire Fighting	0,27 ton	25,36 JO	151,92 JO			
	Fresh water cooling	0,51 ton	232,18 JO	260,79 JO			
	Fresh water sanitary	0,10 ton	44,39 JO	149,20 JO			
	Watter Ballast	1,39 ton	985,10 JO	1596,06 JO			
	ASL	0,30 ton	7,12 JO	162,06 JO			
	Sea water sanitary	0,09 ton	42,52 JO	146,34 JO			
116	OWS	0,08 ton	18,79 JO	162,75 JO	1889,99 JO	2298,24 JO	
	Sewage	0,24 ton	143,63 JO	1482,09 JO			
	Scupper	0,41 ton	18,26 JO	163,70 JO			
	Fire Fighting	0,70 ton	67,18 JO	402,47 JO			
	Fresh water sanitary	0,16 ton	71,90 JO	241,67 JO			
	Sounding	0,28 ton	104,71 JO	342,55 JO			
	ASL	0,38 ton	8,97 JO	204,28 JO			
	Sea water sanitary	0,13 ton	59,60 JO	205,11 JO			
	Scupper	0,17 ton	7,53 JO	67,53 JO			
	Fire Fighting	0,27 ton	25,36 JO	151,95 JO			
	Fresh water sanitary	0,43 ton	194,85 JO	654,97 JO			
	ASL	0,70 ton	16,72 JO	380,53 JO			
	Sea water sanitary	0,34 ton	153,85 JO	529,44 JO			
117	Scupper	0,35 ton	15,61 JO	139,94 JO	569,31 JO	1034,90 JO	
	Fire Fighting	0,66 ton	62,83 JO	376,42 JO			
	Fresh water sanitary	0,00 ton	60,26 JO	202,56 JO			
	ASL	0,13 ton	9,45 JO	202,30 JO 215,08 JO			
	Sea water sanitary						
	Gea water Samilary	0,05 ton	22,84 JO	78,60 JO			

r	1 0 1	I		2= 12 12		
	Scupper	0,17 ton	7,53 JO	67,49 JO		
	Fire Fighting	0,43 ton	41,18 JO	246,72 JO		
	Fresh water sanitary	0,10 ton	45,68 JO	153,56 JO		
	ASL	0,40 ton	9,45 JO	215,08 JO		
	Sea water sanitary	0,10 ton	45,68 JO	157,21 JO		
118	Scupper	0,35 ton	15,79 JO	141,58 JO	316,33 JO	648,15 JO
	Fire Fighting	0,33 ton	31,62 JO	189,41 JO		
	Fresh water sanitary	0,05 ton	22,84 JO	76,78 JO		
	Sounding	0,17 ton	64,27 JO	210,26 JO		
	ASL	0,40 ton	9,45 JO	215,08 JO		
	Sea water sanitary	0,05 ton	22,84 JO	78,60 JO		
	Scupper	0,16 ton	7,16 JO	64,19 JO		
	Fire Fighting	0,16 ton	15,68 JO	93,96 JO		
	Fresh water sanitary	0,10 ton	45,68 JO	153,56 JO		
	ASL	0,39 ton	9,44 JO	214,93 JO		
	Sea water sanitary	0,10 ton	45,65 JO	157,10 JO		
119	Scupper	0,38 ton	17,20 JO	154,21 JO	371,87 JO	751,43 JO
	Fire Fighting	0,56 ton	53,16 JO	318,48 JO		
	Fresh water sanitary	0,08 ton	36,59 JO	123,00 JO		
	Sounding	0,25 ton	94,47 JO	309,07 JO		
	ASL	0,61 ton	14,55 JO	331,32 JO		
	Sea water sanitary	0,07 ton	32,27 JO	111,06 JO		
	Scupper	0,06 ton	2,85 JO	25,55 JO		
	Fire Fighting	0,13 ton	12,68 JO	75,96 JO		
	Fresh water sanitary	0,15 ton	67,83 JO	227,99 JO		
	ASL	0,80 ton	19,13 JO	435,44 JO		
120	Sea water sanitary	0,14 ton	64,20 JO	220,94 JO	473,83 JO	781,78 JO
0	Fire Fighting	0,41 ton	39,13 JO	234,42 JO	0,00 00	
	Fresh water sanitary	0,15 ton	66,70 JO	224,20 JO		
	Sounding	0,39 ton	143,44 JO	469,27 JO		
	Sea water sanitary	0,13 ton	57,87 JO	199,15 JO		
	Fire Fighting	0,20 ton	19,56 JO	117,17 JO		
	Fresh water sanitary	0,25 ton	113,66 JO	382,05 JO		
	Watter Ballast	0,20 ton	139,19 JO	225,51 JO		
	ASL	0,56 ton	13,39 JO	304,85 JO		
121	Sea water sanitary	0,30 ton	137,60 JO	473,50 JO	567,31 JO	748,10 JO
	Fire Fighting	0,07 ton	6,59 JO	39,48 JO		
	Sounding	0,36 ton	132,05 JO	432,00 JO		
	Scupper	0,12 ton	5,28 JO	47,34 JO		
	Fire Fighting	0,12 ton		89,35 JO		
122	Watter Ballast	0,33 ton	235,51 JO	381,58 JO	250,43 JO	174,24 JO
	Scupper	0,28 ton	12,42 JO	111,33 JO		
214	Fresh water sanitary	0,26 ton	27,34 JO	91,89 JO	39,75 JO	75,19 JO
	Scupper	0,33 ton	14,87 JO	133,37 JO		
215	Fresh water sanitary	0,35 ton	73,12 JO	245,78 JO	87,99 JO	140,28 JO
	Scupper	0,10 ton	16,33 JO	146,44 JO		
216	Fresh water sanitary	0,30 ton	122,44 JO	411,57 JO	138,78 JO	206,46 JO
	Scupper	0,27 ton	15,06 JO	135,07 JO		
217	Fresh water sanitary	0,05 ton	22,84 JO	76,78 JO	37,91 JO	78,38 JO
	Scupper	0,03 ton	9,53 JO	85,44 JO		
218	Fresh water sanitary	0,21 ton	22,84 JO	76,78 JO	96,91 JO	140,29 JO
210		0,05 ton			30,31 JO	140,2830
	Fresh water sanitary	0, 14 (01)	64,54 JO	216,93 JO	0603 40 10	12927,82 JO
				Total	9693,48 JO	12921,02 JU

PERENCANAAN JUMLAH TENAGA KERJA DAN WAKTU PEMBANGUNAN KAPAL

Perencanaan jumlah tenaga kerja dibutuhkan untuk memenuhi ekspektasi waktu penyelesaian proyek pembangunan kapal

Dari kebutuhan jam orang di tiap proses produksi dan jumlah orang yang digunakan, dapat dihitung waktu yang dibutuhkan untuk menyelesaikan pembangunan kapal

- Hull Construction

kegiatan pembangunan konstruksi kapal berupa blok-blok. Level produksi yang dihitung pada tabel di bawah ini adalah pada tahap **fabrikasi dan assembly**

Dalam tahap **fabrikasi**, kapasitas mesin cnc yang digunakan untuk memotong pelat menjadi piece part adalah: 6 ton per hari

Sedangkan dalam perencanaan tenaga kerja untuk proses **assembly** harus memerhatikan perencanaan pekerja dengan komposisi sebagai berikut:

Welder = 6 Fitter = 9 Helper = 5 total = 20

jam kerja = 7 jam per hari ;sesuai dengan jam kerja PT. X sebagai obyek penelitian

Tabel waktu pembangunan konstruksi blok kapal

l abel waktu pembangunan konstruksi blok kapal										
Blok	Berat (ton)	JO yang dibutuhkan	Wa	ıktu						
DIOK	Derat (torr)	JO yang dibutunkan	Fabrikasi	Assembly						
111	30,395	4315,78 JO	6 hari	31 hari						
112	35,034	4974,48 JO	6 hari	36 hari						
113	28,751	4082,35 JO	5 hari	30 hari						
114	50,045	7105,89 JO	9 hari	51 hari						
115	51,264	3976,08 JO	9 hari	29 hari						
116	51,913	4026,42 JO	9 hari	29 hari						
117	52,403	4064,42 JO	9 hari	30 hari						
118	50,572	3922,41 JO	9 hari	29 hari						
119	49,316	3824,99 JO	9 hari	28 hari						
120	48,081	6827,02 JO	9 hari	49 hari						
121	32,512	4616,38 JO	6 hari	33 hari						
122	35,361	5020,91 JO	6 hari	36 hari						
211	11,878	1327,83 JO	2 hari	10 hari						
212	11,057	1236,05 JO	2 hari	9 hari						
213	14,977	1674,27 JO	3 hari	12 hari						
214	18,523	2070,67 JO	4 hari	15 hari						
215	14,885	1663,98 JO	3 hari	12 hari						
216	16,058	1795,11 JO	3 hari	13 hari						
217	18,699	2090,35 JO	4 hari	15 hari						
218	27,344	3056,76 JO	5 hari	22 hari						
311	10,52	1176,02 JO	2 hari	9 hari						
312	8,124	908,18 JO	2 hari	7 hari						
313	6,752	754,80 JO	2 hari	6 hari						
314	5,494	614,17 JO	1 hari	5 hari						
315	4,914	549,33 JO	1 hari	4 hari						
316	7,97	890,96 JO	2 hari	7 hari						
317	11,989	1340,24 JO	2 hari	10 hari						
318	4,559	509,65 JO	1 hari	4 hari						
411	4,559	509,65 JO	1 hari	4 hari						

Tabel waktu pemasangan outfitting on unit
*Perencanaan pekerja bengkel Fitter
permesinan untuk assembly dan Welder
instalasi unit Material 1 orang 1 orang 1 orang 3 orang Material Handling

Jumlah

Efisiensi	Instalasi	17%

	Guillian	o orang		iolorioi iriotalaoi				
Name	Qnty	Berat		Assembly		lı lı	nstalasi	
Name	Qiity	Derat	Produktivitas	Jam Orang	Waktu	Produktivitas	Jam Orang	Waktu
Unit 1		82 kg	452,94 JO/ton	38 JO	2 hari	954,52 JO/ton	14 JO	1 hari
S.W. Hydrophore	1	26 kg						
S.W. Pump	2	50 kg						
S.W Hand Pump	1	6 kg						
Unit 2		150 kg	203,80 JO/ton	31 JO	2 hari	1149,06 JO/ton	30 JO	2 hari
Bilge Pump	1	25 kg						
Ballast Pump	3	75 kg						
Fire/G.S. Pump	2	50 kg						
Unit 3		82 kg	452,94 JO/ton	38 JO	2 hari	1522,49 JO/ton	22 JO	2 hari
F.W. Hydrophore	1	26 kg						
F.W. Pump	2	50 kg						
F.W Hand Pump	1	6 kg						
Unit 4		631 kg	244,81 JO/ton	155 JO	8 hari	2120,90 JO/ton	228 JO	11 hari
Oily Water Separator (OWS)	1	600 kg						
Bilge Pump for OWS	1	25 kg						
Hand Pump for OWS	1	6 kg						
Unit 5		1000 kg	244,81 JO/ton	245 JO	12 hari	404,02 JO/ton	69 JO	4 hari
Seawage Treatment Plant	1	1000 kg						
			Total	507 JO	26 hari		363 JO	20 hari

Tabel Waktu Pemasangan Outiftting on Block
*Perencanaan jumlah pekerja Fitter
proses instalasi dan fabrikasi Welder
masing masing seperti berikut Material ha 6 orang 4 orang 4 orang 14 orang Material handling

Efisiensi Instalasi 37%

	Jumlah	14 orang		
Block	Fabrikasi		Insta	ılasi
BIOCK	JO	Waktu	JO	Waktu
112	6,79 JO	1 hari	15,04 JO	1 hari
113	1034,04 JO	11 hari	1186,93 JO	13 hari
114	2015,96 JO	21 hari	2120,00 JO	22 hari
115	1796,28 JO	19 hari	2528,40 JO	26 hari
116	1889,99 JO	20 hari	2298,24 JO	24 hari
117	569,31 JO	6 hari	1034,90 JO	11 hari
118	316,33 JO	4 hari	648,15 JO	7 hari
119	371,87 JO	4 hari	751,43 JO	8 hari
120	473,83 JO	5 hari	781,78 JO	8 hari
121	567,31 JO	6 hari	748,10 JO	8 hari
122	250,43 JO	3 hari	174,24 JO	2 hari
214	39,75 JO	1 hari	75,19 JO	1 hari
215	87,99 JO	1 hari	140,28 JO	2 hari
216	138,78 JO	2 hari	206,46 JO	3 hari
217	37,91 JO	1 hari	78,38 JO	1 hari
218	96,91 JO	1 hari	140,29 JO	2 hari
Total	9693,48 JO	106 hari	12927,82 JO	139 hari

Tabel Waktu Pemasangan Outfitting on Board
*Perencanaan jumlah pekerja Fitter
proses instalasi dan fabrikasi Welder
masing masing seperti berikut Waterial handling
Jumlah 6 orang 4 orang 4 orang 14 orang

masing masing seperti berikut	Material handling	4 orang			
	Jumlah	14 orang		Produktivitas	168,78 JO/ton
Perlengkapan	Jumlah	Berat	Berat total	JO	Waktu
Engine Room Machinery			9630 kg	1625,38 JO	17 hari
Main engine	2	1300 kg	2600 kg		
Diesel engine / Genset	3	1280 kg	3840 kg		
Harbour Generator	1	1280 kg	1280 kg		
Main switch board	1	550 kg	550 kg		
Steering gear	2	680 kg	1360 kg		
Deck Machinery			6974 kg	1177,09 JO	13 hari
Windlass	2	1500 kg	3000 kg		
Vertical Winch	1	24 kg	24 kg		
Emergency Genset	1	1000 kg	1000 kg		
Emergency switch board	1	550 kg	550 kg		
Crane SWL 2.5ton, 3.5 - 11 m	1	2400 kg	2400 kg		
Deck Outfitting			1275 kg	215,20 JO	3 hari
Hawse pipe	2	24 kg	48 kg		
Roller	2	26 kg	52 kg		
Bollard	8	30 kg	240 kg		
Fairlead	2	25 kg	50 kg		
Chocks	4	24 kg	96 kg		
Bollard	4	30 kg	120 kg		
Fairlead	3	25 kg	75 kg		
Mushroom vent. Head	2	40 kg	80 kg		
Mushroom vent. Head	4	40 kg	160 kg		
Mushroom vent. Head	6	40 kg	240 kg		
Expansion tank for FW	2	57 kg	114 kg		
Safety Equipment			17181 kg	2899,86 JO	30 hari
Marine evacuation system	2	685 kg	1370 kg		
Davit	4	900 kg	3600 kg		
Life boat	4	2300 kg	9200 kg		
Liferaft	12	185 kg	2220 kg		
CO ₂	7	113 kg	791 kg		
	•		Total	5917.54 JO	63 hari

Total JO pemasangan outfitting:

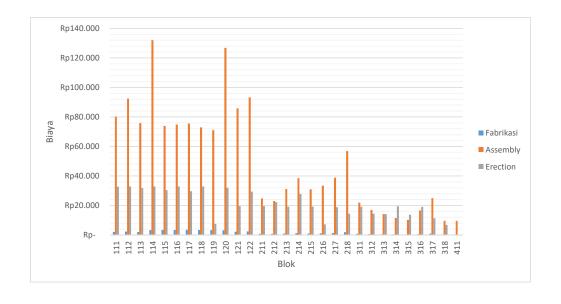
Zone Outfitt	Fabrikasi	Instalasi
On Unit	507 JO	363 JO
On Block	9693,48 JO	12927,82 JO
On Board	-	5917,54 JO
Total	10200 JO	19208 JO

LAMPIRAN PERHITUNGAN EKONOMIS *ON BOARD OUTFITTING*

Tabel Perhitungan Gaji Karyawan Organik PT. X.

No	Bagian	Jumlah		Karyawan Bulan)		Pengeluaran Arian (x1000) Masa Kerja (hari)		Total (x1000)	
1	Keselamatan	6	Rp	3.900	Rp	780	403	Rp	314.340
2	Umum	1	Rp	3.900	Rp	130	403	Rp	52.390
3	Fashar-Peralatan	13	Rp	3.900	Rp	1.690	403	Rp	681.070
4	Fashar-Listrik	8	Rp	3.900	Rp	1.040	403	Rp	419.120
5	Pelayanan Dok	61	Rp	3.900	Rp	7.930	403	Rp	3.195.790
6	Konstruksi	51	Rp	3.900	Rp	6.630	403	Rp	2.671.890
7	Perlengkapan-Pipa	17	Rp	3.900	Rp	2.210	403	Rp	890.630
8	Perlengkapan-Ventilasi	20	Rp	3.900	Rp	2.600	403	Rp	1.047.800
9	Perlengkapan-Akomodasi	61	Rp	3.900	Rp	7.930	403	Rp	3.195.790
10	Mekanik-Mesin	15	Rp	3.900	Rp	1.950	403	Rp	785.850
11	Mekanik-Propulsi	17	Rp	3.900	Rp	2.210	403	Rp	890.630
12	Mekanik-Bengkel	1	Rp	3.900	Rp	130	403	Rp	52.390
	Jumlah	271						Rp	14.197.690

	erial Kapal Penumpang Barang 2000 GT	T		Price		s dolar		14 dlm ribi	
No.	ITEM & EQUIPMENT	VOL.	Rp.		US:	\$	Maker		Total
	Third Party Service								
	Clas Supervision and Certificate	1		500.000			-	Rp	500.000
	Flag State and Certificate	1	Rp	150.000	<u> </u>		-	Rp	150.000
	Commissioning	1	Rp	350.000			-	Rp	350.000
	Dock Trial	1	•	300.000	<u> </u>		-	Rp	300.000
	Launching and sea trial	1		350.000			-	Rp	350.000
	Joy Sailing Training and Familirization	1	Rp Rp	200.000 100.000	-		-	Rp Rp	200.000
	Delivery	1		50.000			-	Rp	50.000
	Insurance	1		80.000			_	Rp	80.000
<u></u>	Hull Construction and Consumable	_	тър	00.000				ıτρ	00.000
	Plate	344,21	Rp	14.000				Rp	4.818.886
	Profile	239,26		10.000				Rp	2.392.598
	Electrode	17,50							
4	Oxygen	58,35							
5	LPG	58,35							
III	Surface Protection and Painting								
1	Sandblasting		Rp	81				Rp	1.691.410
		4	Rp	10,0	<u> </u>			Rp	208.816
	AC coating	4	Rp	10,0	L			Rp	208.816
	AF Coating	20881,6	Rp	10,0	<u> </u>			Rp	208.816
	FP Coating	,	Rp	10,0	_			Rp	208.816
	Epoxy coating	-	Rp	10,0	1			Rp	208.816
	BTP coating		Rp	10,0	-			Rp	208.816
	Deck painting	15	Rp	10,0				Rp	208.816
12 IV	Anode Protection Main Propulsion and Machinery	15	Rp	272				Rp	4.080
	Main Propulsion and Machinery Main engine 1400 HP 1650 rpm	2			\$	155,000	Cummins KTA38-P1400	Rp	4.340.000
	Genset 280kW, 1500 rpm	3			\$		Newtech CCFJ N855-DM	Rp	1.050.000
	Harbour Generator 350 kVA	1			\$		Cummins NTA855-DM	Rp	364.000
	Fuel oil transfer pump 5m3/h 30m	1			\$		Qiangheng YCB 2.5 - 0.6	Rp	2.660
	Hand pump for fuel oil	1			\$		Fill Rite FR112	Rp	1.960
	Sewage pump 10m3/h 15m	1			\$		Shuangbao IH65-50-125	Rp	6.160
	Air compressor 185L/m 10k 0.75kW	1			\$	300	Sinewy	Rp	4.200
8	Hydrophore sprinkler pump 84 m3/h 50m	1			\$	1.650	Shuangbao IH65-65-200	Rp	23.106
9	Hydrophore sprinkler 1400 m3	2			\$	652	Keepwin	Rp	18.268
10	Emergency Fi-Fi pump 40m3/h 50m	1			\$	906	Shuangbao IH65-50-200	Rp	12.678
11	S.W. Hydrophore 200 L	1			\$	309	Keepwin	Rp	4.321
	S.W. pump 3m3/h 20m	2			\$	440	Shuangbao IH65-35-125	Rp	12.320
	S.W hand pump	1			\$		Fill Rite FR112	Rp	1.960
	Bilge pump 34 m3/h 34m	1			\$		Shuangbao IH65-50-200	Rp	11.256
	Ballast pump 34 m3/h 34m	3			\$		Shuangbao IH65-50-200	Rp	33.767
	Fire pump 34 m3/h 34m	2			\$		Shuangbao IH65-50-201	Rp	22.511
	F.W. Hydrophore 200L	1			\$		Keepwin	Rp	4.321
	F.W. pump 3m3/h 20m	2			\$		Shuangbao IH65-35-125	Rp	12.320
	F.W. hand pump	1			\$		Fill Rite FR112 Lushun LS-YWC-1	Rp	1.960
	OWS 15 ppm OWS bilge pump 1 m3/h 20m	1 1	-		\$		Shuangbao IH65-35-125	Rp	182.000 6.160
	OWS hand pump 1 m3/n 20m	1	1		\$		Fill Rite FR112	Rp Rp	1.960
	Seawage treatment plant	1	1		\$		AGI Marine STP	Rp	84.000
V	Deck Machinery and Equipment	+			ڔ	0.000	AGE Marine 311	ıνρ	04.000
1	Windlass	2			\$	25 000	Aicrane	Rp	700.000
	Vertical Winch	1			\$	2.000		Rp	28.000
	Emergency Genset	1			\$		Newtech CCFJ N855-DM	Rp	350.000
	Crane SWL 2.5 ton, 3.5 - 11 m	1			\$	120.000		Rp	1.680.000
	Roller	2			\$		Deyuan Marine	Rp	3.360
8	Bollard	12			\$		Yushuo	Rp	50.400
	Fairled	5			\$		Tianhong	Rp	14.000
11	Mushroom vent. Head	12			\$	200	Yaosen Marine	Rp	33.600
	Expansion tank for FW	2	Rp	1.150			Karya sarana drumindo	Rp	2.300
VI	Safety Equipment			-	oxdot				
	•	2			\$		GR Single Slide Escape Chute	Rp	336.000
	Davit	4			\$		Gathering	Rp	2.240.000
	Life boat	4			\$		Suptrue	Rp	3.360.000
	Life raft	12			\$	500		Rp	84.000
5	CO2	7			\$	150		Rp	14.700
							TOTAL	Rp	27.546.93


Perlengkapan Kapal

Biaya per JO: Rp 18.571

Sistem	Berat (ton)	JO yang d	ibutuhkan		Biaya ((x1000)		
Sistem	Berat (ton)	Fabrikasi	Instalasi	Fá	abrikasi	Ir	nstalasi	
Lubricating Oil	0,206	72	872	Rp	1.337	Rp	16.185	
Oil water separator	0,425	104	901	Rp	1.931	Rp	16.733	
Sewage	0,537	320	3302	Rp	5.943	Rp	61.323	
Fresh water cooling	1,046	474	532	Rp	8.796	Rp	9.880	
Sea water sanitary	1,690	765	2634	Rp	14.215	Rp	48.917	
Fresh water sanitary	2,603	1179	3963	Rp	21.896	Rp	73.599	
Bilge ballast	3,044	2159	3498	Rp	40.096	Rp	64.963	
Sea water cooling	3,194	651	3049	Rp	12.090	Rp	56.624	
Sounding	3,390	1256	4109	Rp	23.326	Rp	76.310	
Exhaust	3,967	1826	4044	Rp	33.911	Rp	75.103	
Scupper	4,594	207	1856	Rp	3.844	Rp	34.469	
Fire fighting	4,602	440	2636	Rp	8.171	Rp	48.954	
Drainage	5,062	121	2755	Rp	2.247	Rp	51.155	
Engine room machinery	11,875	0	1693	Rp	-	Rp	31.435	
Deck Machinery	6,974	0	994	Rp	-	Rp	18.462	
Deck outfitting	1,275	0	182	Rp	-	Rp	3.375	
Safety Equipment	17,181	0	2449	Rp	-	Rp	45.481	
Jumlah		9574	39468	Rp	177.804	Rp	732.968	
Biaya S	Sub Perlengkap	an		Rp	•		910.772	

Konstruksi Kapal Biaya per JO: Rp 18.571

Blok	Berat (ton)		Ja	ım Orang				Bia	ya (x1000)		
DIOK	Berat (ton)	Fabrikasi	Assembly	Sequence	Erection	Fa	brikasi	Α	ssembly	E	rection
111	30,395	106,38 JO	4315,78 JO	114 ke 115	1755,07 JO	Rp	1.976	Rp	80.150	Rp	32.594
112	35,034	122,62 JO	4974,48 JO	116 ke 115	1768,80 JO	Rp	2.277	Rp	92.383	Rp	32.849
113	28,751	100,63 JO	4082,35 JO	113 ke 114	1709,20 JO	Rp	1.869	Rp	75.815	Rp	31.742
114	50,045	175,16 JO	7105,89 JO	117 ke 116	1767,73 JO	Rp	3.253	Rp	131.966	Rp	32.829
115	51,264	179,42 JO	3976,08 JO	112 ke 113	1635,33 JO	Rp	3.332	Rp	73.842	Rp	30.370
116	51,913	181,70 JO	4026,42 JO	118 ke 117	1766,73 JO	Rp	3.374	Rp	74.776	Rp	32.811
117	52,403	183,41 JO	4064,42 JO	111 ke 112	1595,13 JO	Rp	3.406	Rp	75.482	Rp	29.624
118	50,572	177,00 JO	3922,41 JO	119 ke 118	1765,47 JO	Rp	3.287	Rp	72.845	Rp	32.787
119	49,316	172,61 JO	3824,99 JO	217 ke 118	400,00 JO	Rp	3.206	Rp	71.036	Rp	7.429
120	48,081	168,28 JO	6827,02 JO	120 ke 119	1721,60 JO	Rp	3.125	Rp	126.788	Rp	31.973
121	32,512	113,79 JO	4616,38 JO	216 ke 117	1049,20 JO	Rp	2.113	Rp	85.733	Rp	19.485
122	35,361	123,76 JO	5020,91 JO	121 ke 120	1582,20 JO	Rp	2.298	Rp	93.245	Rp	29.384
211	11,878	41,57 JO	1327,83 JO	215 ke 116	1049,27 JO	Rp	772	Rp	24.660	Rp	19.486
212	11,057	38,70 JO	1236,05 JO	122 ke 121	1197,87 JO	Rp	719	Rp	22.955	Rp	22.246
213	14,977	52,42 JO	1674,27 JO	214 ke 115	1028,47 JO	Rp	974	Rp	31.094	Rp	19.100
214	18,523	64,83 JO	2070,67 JO	218 ke 119	1496,07 JO	Rp	1.204	Rp	38.455	Rp	27.784
215	14,885	52,10 JO	1663,98 JO	213 ke 114	1030,67 JO	Rp	968	Rp	30.903	Rp	19.141
216	16,058	56,20 JO	1795,11 JO	314 ke 214	381,27 JO	Rp	1.044	Rp	33.338	Rp	7.081
217	18,699	65,45 JO	2090,35 JO	212 ke 113	1009,00 JO	Rp	1.215	Rp	38.821	Rp	18.739
218	27,344	95,70 JO	3056,76 JO	315 ke 215	774,40 JO	Rp	1.777	Rp	56.768	Rp	14.382
311	10,52	36,82 JO	1176,02 JO	211 ke 112	1026,57 JO	Rp	684	Rp	21.840	Rp	19.065
312	8,124	28,43 JO	908,18 JO	316 ke 216	774,40 JO	Rp	528	Rp	16.866	Rp	14.382
313	6,752	23,63 JO	754,80 JO	313 ke 213	757,00 JO	Rp	439	Rp	14.018	Rp	14.059
314	5,494	19,23 JO	614,17 JO	317 ke 217	1040,80 JO	Rp	357	Rp	11.406	Rp	19.329
315	4,914	17,20 JO	549,33 JO	312 ke 212	735,67 JO	Rp	319	Rp	10.202	Rp	13.662
316	7,97	27,90 JO	890,96 JO	318 ke 218	1022,73 JO	Rp	518	Rp	16.546	Rp	18.994
317	11,989	41,96 JO	1340,24 JO	311 ke 211	606,20 JO	Rp	779	Rp	24.890	Rp	11.258
318	4,559	15,96 JO	509,65 JO	411 ke 311	366,97 JO	Rp	296	Rp	9.465	Rp	6.815
411	4,559	15,96 JO	509,65 JO			Rp	296	Rp	9.465	Rp	-
Ju	Jumlah 2498,82 JO 78925,16 JO			32813,80 JO	Rp	46.407	Rp	1.465.753	Rp	609.399	
			Total Biaya Sub	Konstruksi	Rp				2	.121.559	

BIAYA PEMBANGUNAN KAPAL

Fixed Cost	Gaji Karyawan PT. X	Rp	14.197.690
Variabel Cost	Biaya Material	Rp	27.546.933
variabei Cost	Biaya Sub Kontraktor	Rp	3.032.330
	Jumlah	Rp	44.776.954

LAMPIRAN PERHITUNGAN EKONOMIS ADVANCED OUTFITTING SYSTEM

Tabel Perhitungan Gaji Karyawan Organik PT. X.

No	Bagian	Jumlah		Karyawan Bulan)		engeluaran rian (x1000)	Masa Kerja (hari)	То	tal (x1000)
1	Keselamatan	6	Rp	3.900	Rp	780	357	Rp	278.460
2	Umum	1	Rp	3.900	Rp	130	357	Rp	46.410
3	Fashar-Peralatan	13	Rp	3.900	Rp	1.690	357	Rp	603.330
4	Fashar-Listrik	8	Rp	3.900	Rp	1.040	357	Rp	371.280
5	Pelayanan Dok	61	Rp	3.900	Rp	7.930	357	Rp	2.831.010
6	Konstruksi	51	Rp	3.900	Rp	6.630	357	Rp	2.366.910
7	Perlengkapan-Pipa	17	Rp	3.900	Rp	2.210	357	Rp	788.970
8	Perlengkapan-Ventilasi	20	Rp	3.900	Rp	2.600	357	Rp	928.200
9	Perlengkapan-Akomodasi	61	Rp	3.900	Rp	7.930	357	Rp	2.831.010
10	Mekanik-Mesin	15	Rp	3.900	Rp	1.950	357	Rp	696.150
11	Mekanik-Propulsi	17	Rp	3.900	Rp	2.210	357	Rp	788.970
12	Mekanik-Bengkel	1	Rp	3.900	Rp	130	357	Rp	46.410
	Jumlah							Rp	12.577.110

Bill of Material Kapal Penumpang Barang 2000 GT	Kurs dolar	14 dlm ribu

Bill of Mate	erial Kapal Penumpang Barang 2000 GT					rs dolar		14 dlm rib	u
No.	ITEM & EQUIPMENT	VOL.	Rp.	Price	US	\$	Maker		Total
	Third Party Service								
1	Clas Supervision and Certificate	1	Rp	500.000			-	Rp	500.000
	Flag State and Certificate	1		150.000			_	Rp	150.000
	Commissioning	1		350.000			1_	Rp	350.000
	Dock Trial	1					<u>-</u>		
				300.000	-		-	Rp	300.000
	Launching and sea trial	1		350.000			-	Rp	350.000
	Joy Sailing	1	Rp	200.000			-	Rp	200.000
7	Training and Familirization	1	Rp	100.000			-	Rp	100.000
8	Delivery	1	Rp	50.000			-	Rp	50.000
9	Insurance	1	Rp	80.000			-	Rp	80.000
	Hull Construction and Consumable								
1	Plate	344,21	Rp	14.000				Rp	4.818.886
	Profile	239,26		10.000	-				2.392.59
				10.000				Rp	2.592.596
	Electrode	17,50							
	Oxygen	58,35							
5	LPG	58,35							
I	Surface Protection and Painting								
1	Sandblasting		Rp	81				Rp	1.691.410
2	Primer coating		Rp	10,0				Rp	208.816
	AC coating	-	Rp	10,0	t			Rp	208.816
	AF Coating	-1		10,0	1			Rp	208.816
	-	20881,6	Rp		1				
	FP Coating	4	Rp	10,0	├			Rp	208.816
	Epoxy coating		Rp	10,0	ـــــ			Rp	208.816
7	BTP coating		Rp	10,0	L			Rp	208.816
8	Deck painting		Rp	10,0				Rp	208.816
12	Anode Protection	15	Rp	272				Rp	4.080
,	Main Propulsion and Machinery								
	Main engine 1400 HP 1650 rpm	2			\$	155,000	Cummins KTA38-P1400	Rp	4.340.000
	·	3			_				1.050.000
	Genset 280kW, 1500 rpm				\$		Newtech CCFJ N855-DM	Rp	
	Harbour Generator 350 kVA	1			\$		Cummins NTA855-DM	Rp	364.000
4	Fuel oil transfer pump 5m3/h 30m	1			\$	190	Qiangheng YCB 2.5 - 0.6	Rp	2.660
5	Hand pump for fuel oil	1			\$	140	Fill Rite FR112	Rp	1.960
6	Sewage pump 10m3/h 15m	1			\$	440	Shuangbao IH65-50-125	Rp	6.160
	Air compressor 185L/m 10k 0.75kW	1			\$	300	Sinewy	Rp	4.200
	Hydrophore sprinkler pump 84 m3/h 50m	1			\$	1.650		Rp	23.106
	Hydrophore sprinkler 1400 m3	2	-		\$	652	Keepwin	Rp	18.26
	Emergency Fi-Fi pump 40m3/h 50m	1			\$	906	Shuangbao IH65-50-200	Rp	12.67
	S.W. Hydrophore 200 L	1			\$	309	Keepwin	Rp	4.32
12	S.W. pump 3m3/h 20m	2			\$	440	Shuangbao IH65-35-125	Rp	12.320
13	S.W hand pump	1			\$	140	Fill Rite FR112	Rp	1.960
	Bilge pump 34 m3/h 34m	1			\$	804	Shuangbao IH65-50-200	Rp	11.256
	Ballast pump 34 m3/h 34m	3			\$	804		Rp	33.76
	Fire pump 34 m3/h 34m	2			\$	804			22.51:
								Rp	
	F.W. Hydrophore 200L	1			\$	309		Rp	4.32
	F.W. pump 3m3/h 20m	2			\$		Shuangbao IH65-35-125	Rp	12.32
19	F.W. hand pump	1	\perp		\$	140	Fill Rite FR112	Rp	1.960
20	OWS 15 ppm	1		-	\$	13.000	Lushun LS-YWC-1	Rp	182.000
	OWS bilge pump 1 m3/h 20m	1			\$		Shuangbao IH65-35-125	Rp	6.160
	OWS hand pump	1			\$		Fill Rite FR112	Rp	1.96
	Seawage treatment plant	1 1			خ		AGI Marine STP	Rp	84.00
		1			Ş	0.000	AGI MINITE STE	νþ	84.00
1	Deck Machinery and Equipment	-	<u> </u>		ļ.,			\bot	
	Windlass	2			\$		Aicrane	Rp	700.000
2	Vertical Winch	1	\perp		\$	2.000	GT	Rp	28.000
	Emergency Genset	1			\$	25.000	Newtech CCFJ N855-DM	Rp	350.000
	Crane SWL 2.5 ton, 3.5 - 11 m	1			\$	120.000		Rp	1.680.000
	Roller	2			\$		Deyuan Marine	Rp	3.360
	Bollard	12			\$		Yushuo	Rp	50.400
	Fairled	5			\$	200		Rp	14.000
	Mushroom vent. Head	12	<u></u>		\$	200		Rp	33.60
12	Expansion tank for FW	2	Rp	1.150			Karya sarana drumindo	Rp	2.30
ı	Safety Equipment		Ė		T		İ	1	
	Marine evacuation system	2	 		\$	12 000	GR Single Slide Escape Chute	Rp	336.00
	Davit	_	-		\$		Gathering		
		4			_		Ü	Rp	2.240.00
	Life boat	4			\$		Suptrue	Rp	3.360.00
	Life raft	12	Щ.		\$	500		Rp	84.00
5	CO2	7			\$	150	SEFIC	Rp	14.70
							TOTAL	Rp	27.546.93

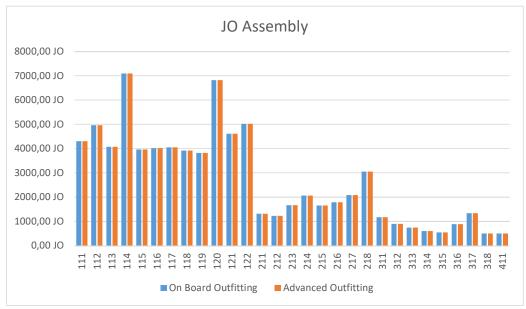
Perlengkapan Kapal Biaya per JO: Rp 18.571

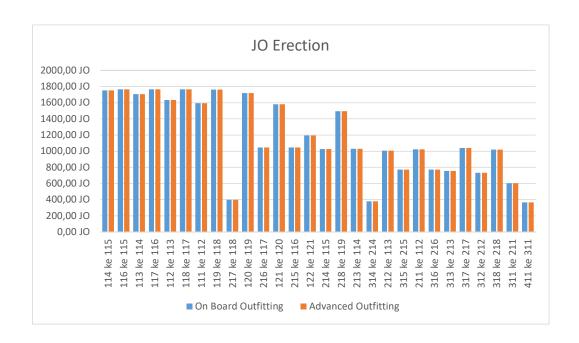
Zone Outfitting	Berat (ton)	JO On	Board	Efisiensi ZOFM	JO yang di	butuhkan		Biaya	(x1000)	
Zone Outnitting	Berat (ton)	Fabrikasi	Instalasi	LIISIEIISI ZOFIVI	Fabrikasi	Instalasi	Fabr	ikasi	Inst	alasi
Unit Outfitting										
Unit 1	0,082	223,53 JO	82,35 JO	17%	38,00 JO	14,00 JO	Rp	706	Rp	260
Unit 2	0,15	182,35 JO	176,47 JO	17%	31,00 JO	30,00 JO	Rp	576	Rp	557
Unit 3	0,082	223,53 JO	129,41 JO	17%	38,00 JO	22,00 JO	Rp	706	Rp	409
Unit 4	0,631	911,76 JO	1341,18 JO	17%	155,00 JO	228,00 JO	Rp	2.879	Rp	4.234
Unit 5	1	1441,18 JO	405,88 JO	17%	245,00 JO	69,00 JO	Rp	4.550	Rp	1.281
Block Outfitting										
112	0,07	18,34 JO	40,65 JO	37%	6,79 JO	15,04 JO	Rp	126	Rp	279
113	3,14	2794,69 JO	3207,92 JO	37%	1034,04 JO	1186,93 JO	Rp	19.204	Rp	22.043
114	5,28	5448,54 JO	5729,74 JO	37%	2015,96 JO	2120,00 JO	Rp	37.439	Rp	39.371
115	4,99	4854,80 JO	6833,50 JO	37%	1796,28 JO	2528,40 JO	Rp	33.359	Rp	46.956
116	6,37	5108,08 JO	6211,45 JO	37%	1889,99 JO	2298,24 JO	Rp	35.100	Rp	42.682
117	3,48	1538,67 JO	2797,02 JO	37%	569,31 JO	1034,90 JO	Rp	10.573	Rp	19.220
118	2,55	854,96 JO	1751,76 JO	37%	316,33 JO	648,15 JO	Rp	5.875	Rp	12.037
119	2,87	1005,07 JO	2030,88 JO	37%	371,87 JO	751,43 JO	Rp	6.906	Rp	13.955
120	2,36	1280,62 JO	2112,92 JO	37%	473,83 JO	781,78 JO	Rp	8.800	Rp	14.519
121	2,06	1533,28 JO	2021,90 JO	37%	567,31 JO	748,10 JO	Rp	10.536	Rp	13.893
122	0,49	676,84 JO	470,93 JO	37%	250,43 JO	174,24 JO		4.651	Rp	3.236
214	0,34	107,44 JO	203,22 JO	37%	39,75 JO	75,19 JO	Rp	738	Rp	1.396
215	0,49	237,82 JO	379,15 JO	37%	87,99 JO	140,28 JO	Rp	1.634	Rp	2.605
216	0,63	375,07 JO	558,01 JO	37%	138,78 JO	206,46 JO	Rp	2.577	Rp	3.834
217	0,38	102,45 JO	211,84 JO	37%	37,91 JO	78,38 JO	Rp	704	Rp	1.456
218	0,4	261,92 JO	379,16 JO	37%	96,91 JO	140,29 JO	Rp	1.800	Rp	2.605
Board Outfitting							Rp	-	Rp	-
ER Machinery	9,63	0 10	1625 JO	100%	0,00 JO	1625,38 JO	Rp	-	Rp	30.186
Deck Machinery	6,974	0 10	1177 JO	100%	0,00 JO	1177,09 JO	Rp	-	Rp	21.860
Deck Outfitting	1,275	0 10	215 JO	100%	0,00 JO	215,20 JO	Rp	-	Rp	3.997
Safety equipment	17,181	0 10	2900 JO	100%	0,00 JO	2899,86 JO	Rp	-	Rp	53.855
Jumlah		29181 JO	42993 JO	100%	10200,48 JO	19208,36 JO	Rp	189.437	Rp	356.727
		Biay	/a Sub kontrakt	or			Rp			546.164

Konstruksi Kapal Biaya per JO: Rp 18.571

Blok	Parat (tar)		Ja	m Orang				Bia	ya (x1000)		
вюк	Berat (ton)	Fabrikasi	Assembly	Sequence	Erection	Fa	brikasi	Α	ssembly	E	rection
111	30,395	106,38 JO	4315,78 JO	114 ke 115	1755,07 JO	Rp	1.976	Rp	80.150	Rp	32.594
112	35,034	122,62 JO	4974,48 JO	116 ke 115	1768,80 JO	Rp	2.277	Rp	92.383	Rp	32.849
113	28,751	100,63 JO	4082,35 JO	113 ke 114	1709,20 JO	Rp	1.869	Rp	75.815	Rp	31.742
114	50,045	175,16 JO	7105,89 JO	117 ke 116	1767,73 JO	Rp	3.253	Rp	131.966	Rp	32.829
115	51,264	179,42 JO	3976,08 JO	112 ke 113	1635,33 JO	Rp	3.332	Rp	73.842	Rp	30.370
116	51,913	181,70 JO	4026,42 JO	118 ke 117	1766,73 JO	Rp	3.374	Rp	74.776	Rp	32.811
117	52,403	183,41 JO	4064,42 JO	111 ke 112	1595,13 JO	Rp	3.406	Rp	75.482	Rp	29.624
118	50,572	177,00 JO	3922,41 JO	119 ke 118	1765,47 JO	Rp	3.287	Rp	72.845	Rp	32.787
119	49,316	172,61 JO	3824,99 JO	217 ke 118	400,00 JO	Rp	3.206	Rp	71.036	Rp	7.429
120	48,081	168,28 JO	6827,02 JO	120 ke 119	1721,60 JO	Rp	3.125	Rp	126.788	Rp	31.973
121	32,512	113,79 JO	4616,38 JO	216 ke 117	1049,20 JO	Rp	2.113	Rp	85.733	Rp	19.485
122	35,361	123,76 JO	5020,91 JO	121 ke 120	1582,20 JO	Rp	2.298	Rp	93.245	Rp	29.384
211	11,878	41,57 JO	1327,83 JO	215 ke 116	1049,27 JO	Rp	772	Rp	24.660	Rp	19.486
212	11,057	38,70 JO	1236,05 JO	122 ke 121	1197,87 JO	Rp	719	Rp	22.955	Rp	22.246
213	14,977	52,42 JO	1674,27 JO	214 ke 115	1028,47 JO	Rp	974	Rp	31.094	Rp	19.100
214	18,523	64,83 JO	2070,67 JO	218 ke 119	1496,07 JO	Rp	1.204	Rp	38.455	Rp	27.784
215	14,885	52,10 JO	1663,98 JO	213 ke 114	1030,67 JO	Rp	968	Rp	30.903	Rp	19.141
216	16,058	56,20 JO	1795,11 JO	314 ke 214	381,27 JO	Rp	1.044	Rp	33.338	Rp	7.081
217	18,699	65,45 JO	2090,35 JO	212 ke 113	1009,00 JO	Rp	1.215	Rp	38.821	Rp	18.739
218	27,344	95,70 JO	3056,76 JO	315 ke 215	774,40 JO	Rp	1.777	Rp	56.768	Rp	14.382
311	10,52	36,82 JO	1176,02 JO	211 ke 112	1026,57 JO	Rp	684	Rp	21.840	Rp	19.065
312	8,124	28,43 JO	908,18 JO	316 ke 216	774,40 JO	Rp	528	Rp	16.866	Rp	14.382
313	6,752	23,63 JO	754,80 JO	313 ke 213	757,00 JO	Rp	439	Rp	14.018	Rp	14.059
314	5,494	19,23 JO	614,17 JO	317 ke 217	1040,80 JO	Rp	357	Rp	11.406	Rp	19.329
315	4,914	17,20 JO	549,33 JO	312 ke 212	735,67 JO	Rp	319	Rp	10.202	Rp	13.662
316	7,97	27,90 JO	890,96 JO	318 ke 218	1022,73 JO	Rp	518	Rp	16.546	Rp	18.994
317	11,989	41,96 JO	1340,24 JO	311 ke 211	606,20 JO	Rp	779	Rp	24.890	Rp	11.258
318	4,559	15,96 JO	509,65 JO	411 ke 311	366,97 JO	Rp	296	Rp	9.465	Rp	6.815
411	4,559	15,96 JO	509,65 JO			Rp	296	Rp	9.465	Rp	-
Ju	ımlah	2498,82 JO	78925,16 JO		32813,80 JO	Rp	46.407	Rp	1.465.753	Rp	609.399
			Total Biaya Sub	Konstruksi	Rp				2.	.121.559	


BIAYA PEMBANGUNAN KAPAL

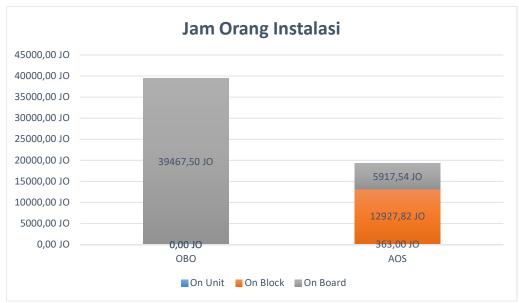

	Jumlah	Rp	42.791.766
variabei Cost	Biaya Sub Kontraktor	Rp	2.667.723
Variabel Cost	Biaya Material	Rp	27.546.933
Fixed Cost	Gaji Karyawan PT. X	Rp	12.577.110


LAMPIRAN PERBANDINGAN JO, WAKTU, DAN BIAYA PEMBANGUNAN ANTAR METODE

Perbandingan Jam Orang Pekerjaan Konstruksi

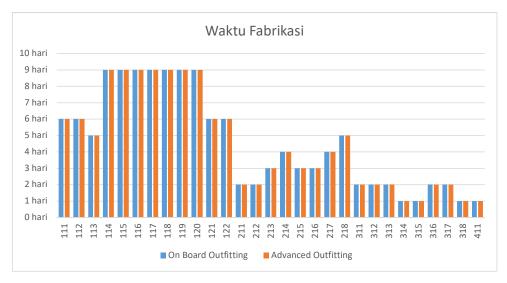
Blok	Fabr	ikasi	Asse	mbly	Common	Erec	tion
DIOK	ОВО	AOS	ОВО	AOS	Sequence	ОВО	AOS
111	106,38 JO	106,38 JO	4315,78 JO	4315,78 JO	114 ke 115	1755,07 JO	1755,07 JO
112	122,62 JO	122,62 JO	4974,48 JO	4974,48 JO	116 ke 115	1768,80 JO	1768,80 JO
113	100,63 JO	100,63 JO	4082,35 JO	4082,35 JO	113 ke 114	1709,20 JO	1709,20 JO
114	175,16 JO	175,16 JO	7105,89 JO	7105,89 JO	117 ke 116	1767,73 JO	1767,73 JO
115	179,42 JO	179,42 JO	3976,08 JO	3976,08 JO	112 ke 113	1635,33 JO	1635,33 JO
116	181,70 JO	181,70 JO	4026,42 JO	4026,42 JO	118 ke 117	1766,73 JO	1766,73 JO
117	183,41 JO	183,41 JO	4064,42 JO	4064,42 JO	111 ke 112	1595,13 JO	1595,13 JO
118	177,00 JO	177,00 JO	3922,41 JO	3922,41 JO	119 ke 118	1765,47 JO	1765,47 JO
119	172,61 JO	172,61 JO	3824,99 JO	3824,99 JO	217 ke 118	400,00 JO	400,00 JO
120	168,28 JO	168,28 JO	6827,02 JO	6827,02 JO	120 ke 119	1721,60 JO	1721,60 JO
121	113,79 JO	113,79 JO	4616,38 JO	4616,38 JO	216 ke 117	1049,20 JO	1049,20 JO
122	123,76 JO	123,76 JO	5020,91 JO	5020,91 JO	121 ke 120	1582,20 JO	1582,20 JO
211	41,57 JO	41,57 JO	1327,83 JO	1327,83 JO	215 ke 116	1049,27 JO	1049,27 JO
212	38,70 JO	38,70 JO	1236,05 JO	1236,05 JO	122 ke 121	1197,87 JO	1197,87 JO
213	52,42 JO	52,42 JO	1674,27 JO	1674,27 JO	214 ke 115	1028,47 JO	1028,47 JO
214	64,83 JO	64,83 JO	2070,67 JO	2070,67 JO	218 ke 119	1496,07 JO	1496,07 JO
215	52,10 JO	52,10 JO	1663,98 JO	1663,98 JO	213 ke 114	1030,67 JO	1030,67 JO
216	56,20 JO	56,20 JO	1795,11 JO	1795,11 JO	314 ke 214	381,27 JO	381,27 JO
217	65,45 JO	65,45 JO	2090,35 JO	2090,35 JO	212 ke 113	1009,00 JO	1009,00 JO
218	95,70 JO	95,70 JO	3056,76 JO	3056,76 JO	315 ke 215	774,40 JO	774,40 JO
311	36,82 JO	36,82 JO	1176,02 JO	1176,02 JO	211 ke 112	1026,57 JO	1026,57 JO
312	28,43 JO	28,43 JO	908,18 JO	908,18 JO	316 ke 216	774,40 JO	774,40 JO
313	23,63 JO	23,63 JO	754,80 JO	754,80 JO	313 ke 213	757,00 JO	757,00 JO
314	19,23 JO	19,23 JO	614,17 JO	614,17 JO	317 ke 217	1040,80 JO	1040,80 JO
315	17,20 JO	17,20 JO	549,33 JO	549,33 JO	312 ke 212	735,67 JO	735,67 JO
316	27,90 JO	27,90 JO	890,96 JO	890,96 JO	318 ke 218	1022,73 JO	1022,73 JO
317	41,96 JO	41,96 JO	1340,24 JO	1340,24 JO	311 ke 211	606,20 JO	606,20 JO
318	15,96 JO	15,96 JO	509,65 JO	509,65 JO	411 ke 311	366,97 JO	366,97 JO
411	15,96 JO	15,96 JO	509,65 JO	509,65 JO			

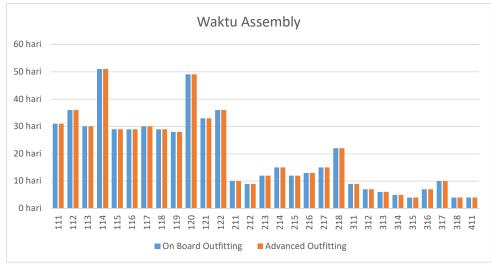


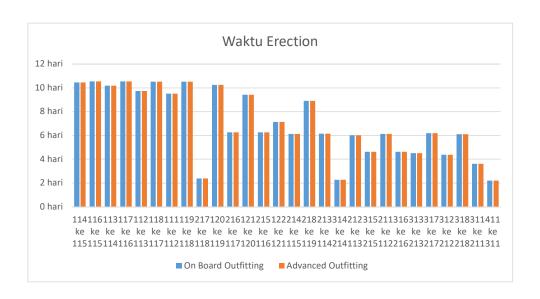


Perbandingan Jam Orang Pekerjaan Outfitting

Zone	Jam Oran	g Fabrikasi*	Jam Orang Instalasi			
Outfitting	ОВО	AOS	ОВО	AOS		
On Unit	0,00 JO	507,00 JO	0,00 JO	363,00 JO		
On Block	0,00 JO	9693,48 JO	0,00 JO	12927,82 JO		
On Board	9574,05 JO	0,00 JO	39467,50 JO	5917,54 JO		

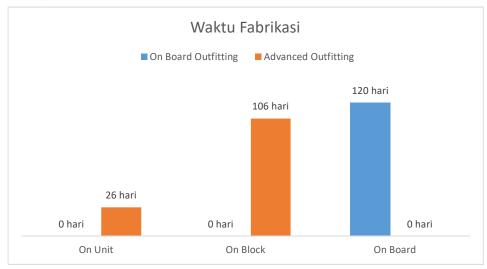

^{*} jam orang perakitan untuk on unit

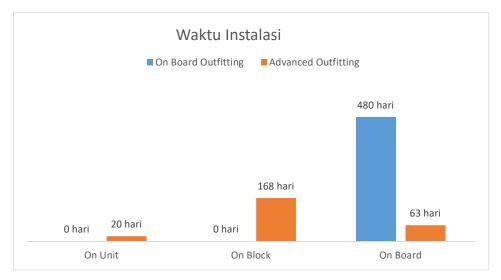




Perbandingan Waktu Pekerjaan Konstruksi

Diele	Fabri	ikasi	Asse	embly	Common	Erec	tion
Blok	ОВО	AOS	ОВО	AOS	Sequence	ОВО	AOS
111	6 hari	6 hari	31 hari	31 hari	114 ke 115	10 hari	10 hari
112	6 hari	6 hari	36 hari	36 hari	116 ke 115	11 hari	11 hari
113	5 hari	5 hari	30 hari	30 hari	113 ke 114	10 hari	10 hari
114	9 hari	9 hari	51 hari	51 hari	117 ke 116	11 hari	11 hari
115	9 hari	9 hari	29 hari	29 hari	112 ke 113	10 hari	10 hari
116	9 hari	9 hari	29 hari	29 hari	118 ke 117	11 hari	11 hari
117	9 hari	9 hari	30 hari	30 hari	111 ke 112	9 hari	9 hari
118	9 hari	9 hari	29 hari	29 hari	119 ke 118	11 hari	11 hari
119	9 hari	9 hari	28 hari	28 hari	217 ke 118	2 hari	2 hari
120	9 hari	9 hari	49 hari	49 hari	120 ke 119	10 hari	10 hari
121	6 hari	6 hari	33 hari	33 hari	216 ke 117	6 hari	6 hari
122	6 hari	6 hari	36 hari	36 hari	121 ke 120	9 hari	9 hari
211	2 hari	2 hari	10 hari	10 hari	215 ke 116	6 hari	6 hari
212	2 hari	2 hari	9 hari	9 hari	122 ke 121	7 hari	7 hari
213	3 hari	3 hari	12 hari	12 hari	214 ke 115	6 hari	6 hari
214	4 hari	4 hari	15 hari	15 hari	218 ke 119	9 hari	9 hari
215	3 hari	3 hari	12 hari	12 hari	213 ke 114	6 hari	6 hari
216	3 hari	3 hari	13 hari	13 hari	314 ke 214	2 hari	2 hari
217	4 hari	4 hari	15 hari	15 hari	212 ke 113	6 hari	6 hari
218	5 hari	5 hari	22 hari	22 hari	315 ke 215	5 hari	5 hari
311	2 hari	2 hari	9 hari	9 hari	211 ke 112	6 hari	6 hari
312	2 hari	2 hari	7 hari	7 hari	316 ke 216	5 hari	5 hari
313	2 hari	2 hari	6 hari	6 hari	313 ke 213	5 hari	5 hari
314	1 hari	1 hari	5 hari	5 hari	317 ke 217	6 hari	6 hari
315	1 hari	1 hari	4 hari	4 hari	312 ke 212	4 hari	4 hari
316	2 hari	2 hari	7 hari	7 hari	318 ke 218	6 hari	6 hari
317	2 hari	2 hari	10 hari	10 hari	311 ke 211	4 hari	4 hari
318	1 hari	1 hari	4 hari	4 hari	411 ke 311	2 hari	2 hari
411	1 hari	1 hari	4 hari	4 hari			

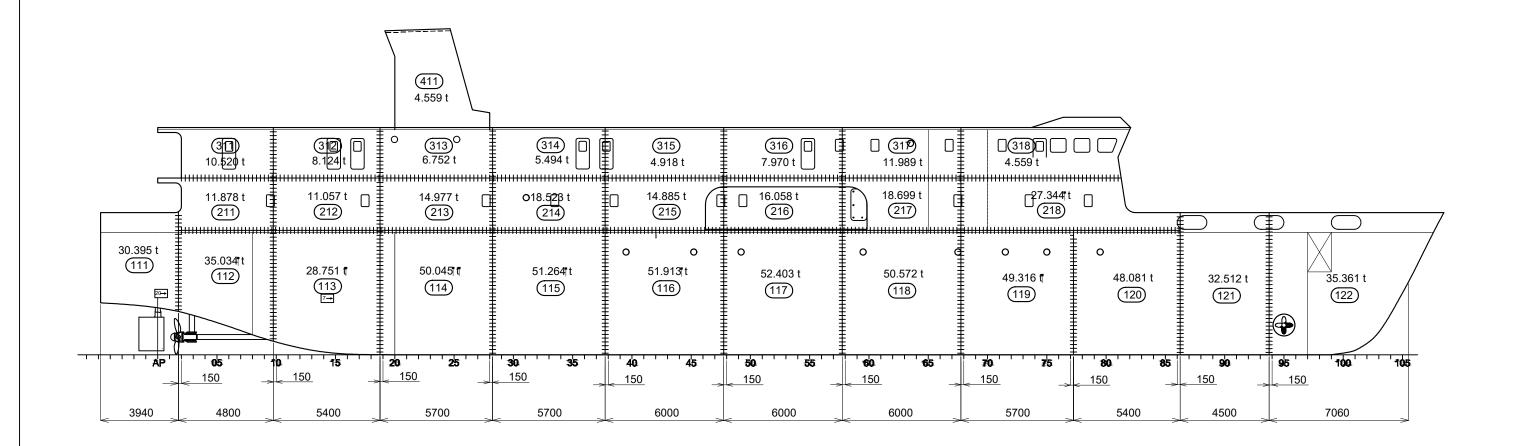




Perbandingan Waktu Pekerjaan Outfitting

Zone	Jam Orang Fabrikasi*		Jam Orang Instalasi		
Outfitting	ОВО	AOS	ОВО	AOS	
On Unit	0 hari	26 hari	0 hari	20 hari	
On Block	0 hari	106 hari	0 hari	168 hari	
On Board	120 hari	0 hari	480 hari	63 hari	

^{*} jam orang perakitan untuk on unit

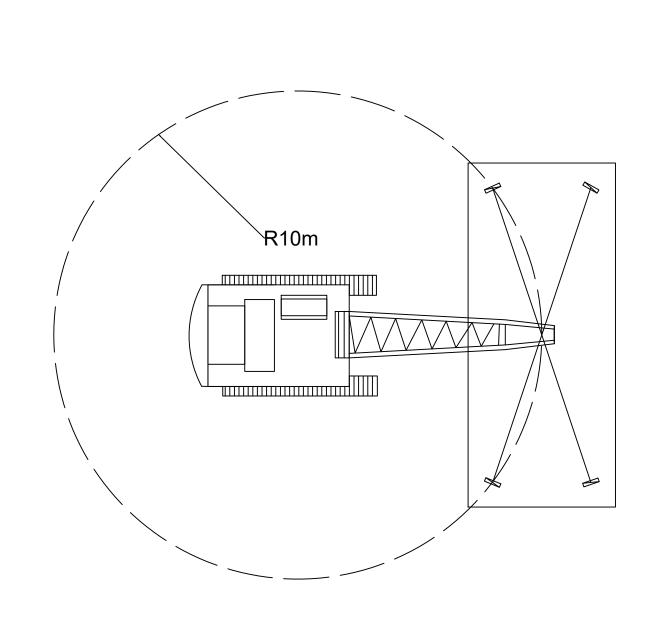


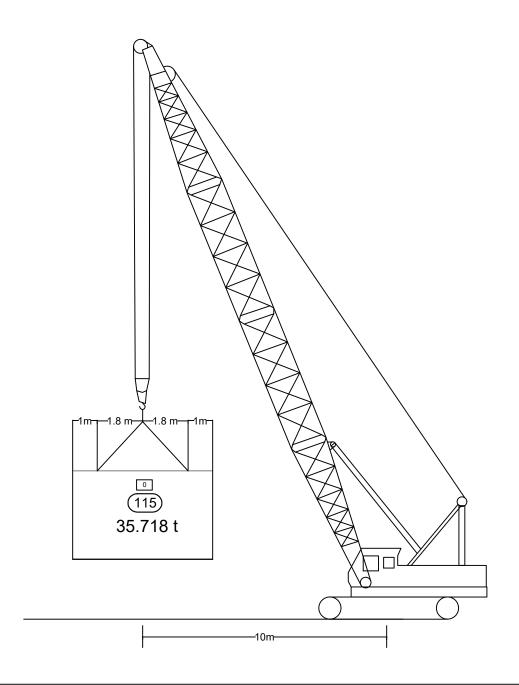
Perbandingan Biaya Pembangunan Kapal

lonic biovo	Uraian	Jumlah (x1000)				
Jenis biaya	Ordian	On Bo	On Board Outfitting		Advanced Outfitting	
Fixed Cost	Gaji Karyawan PT. X	Rp	14.197.690	Rp	12.577.110	
Variabel Cost	Biaya Material	Rp	27.546.933	Rp	27.546.933	
variabei cost	Biaya Sub Kontraktor	Rp	3.032.330	Rp	2.719.634	
Jumlah		Rp	44.776.954	Rp	42.843.677	
	Saving	Rp			1.933.277	

LAMPIRAN BLOCK DIVISION

PRINCIPAL DIMENSIONS				
SHIP TYPE	FERRY			
LENGTH OVERALL (Loa)	68.5 m			
LENGTH BETWEEN PERPENDICULAR (Lpp)	63 m			
BREADTH (B)	14 m			
HEIGHT (H)	6.2 m			
DRAUGHT (T)	2.9 m			
SPEED SERVICE (Vs)	12,000 knots			
POWER	2 x 1400 HP			

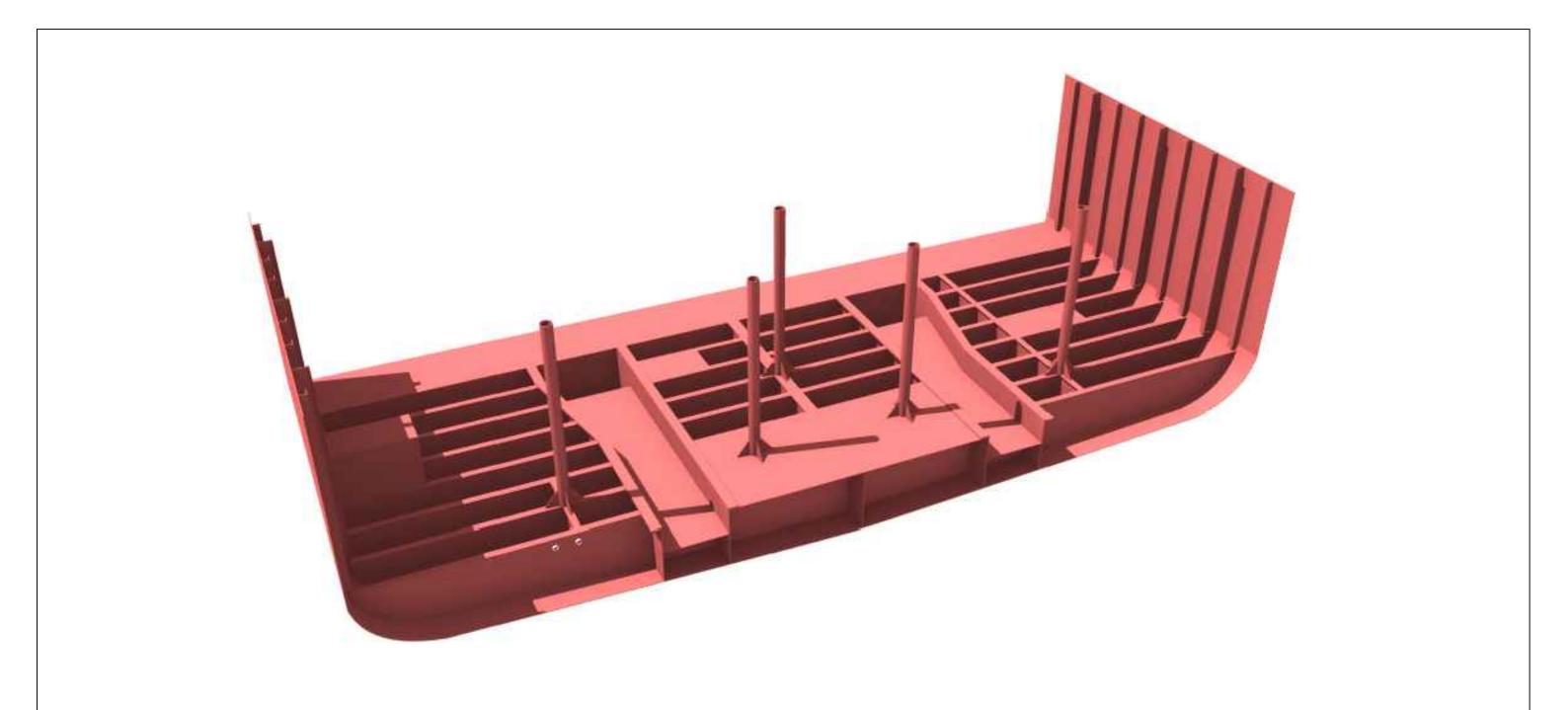



KAPAL PENUMPANG BARANG 2000 GT

BLOCK DIVISION

SCALE	-	SIGNATURE	DATE	REMARK
DRAWN	Muhammad Naufal Aziz			04111540000052
APPROVED	Ir. Triwilaswandio Wuruk Pribadi, M.Sc.			A3

LAMPIRAN LIFTING PLAN

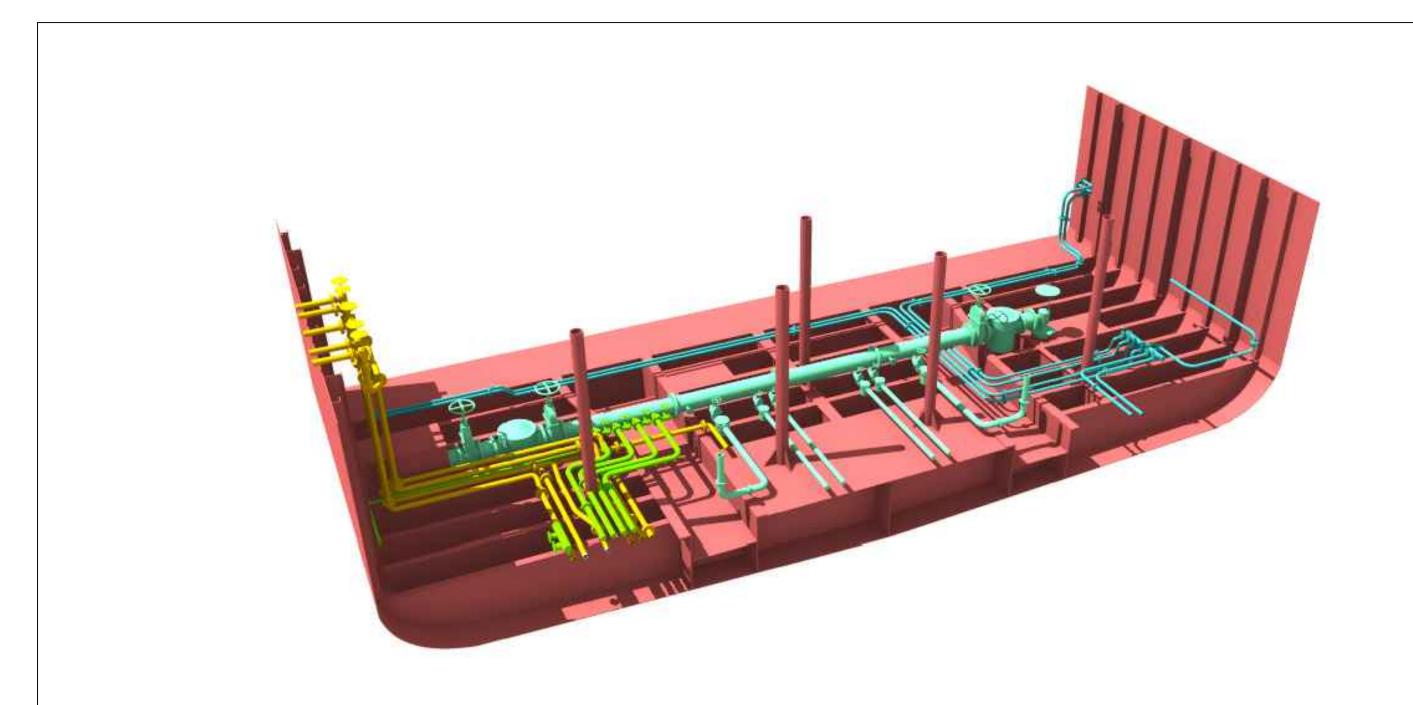


KAPAL PENUMPANG BARANG 2000 GT

LIFTING PLAN

SCALE	-	SIGNATURE	DATE	REMARK
DRAWN	Muhammad Naufal Aziz			04111540000052
APPROVED	Ir. Triwilaswandio Wuruk Pribadi, M.Sc.			A3

LAMPIRAN 3D BLOCK ON BOARD OUTFITTING

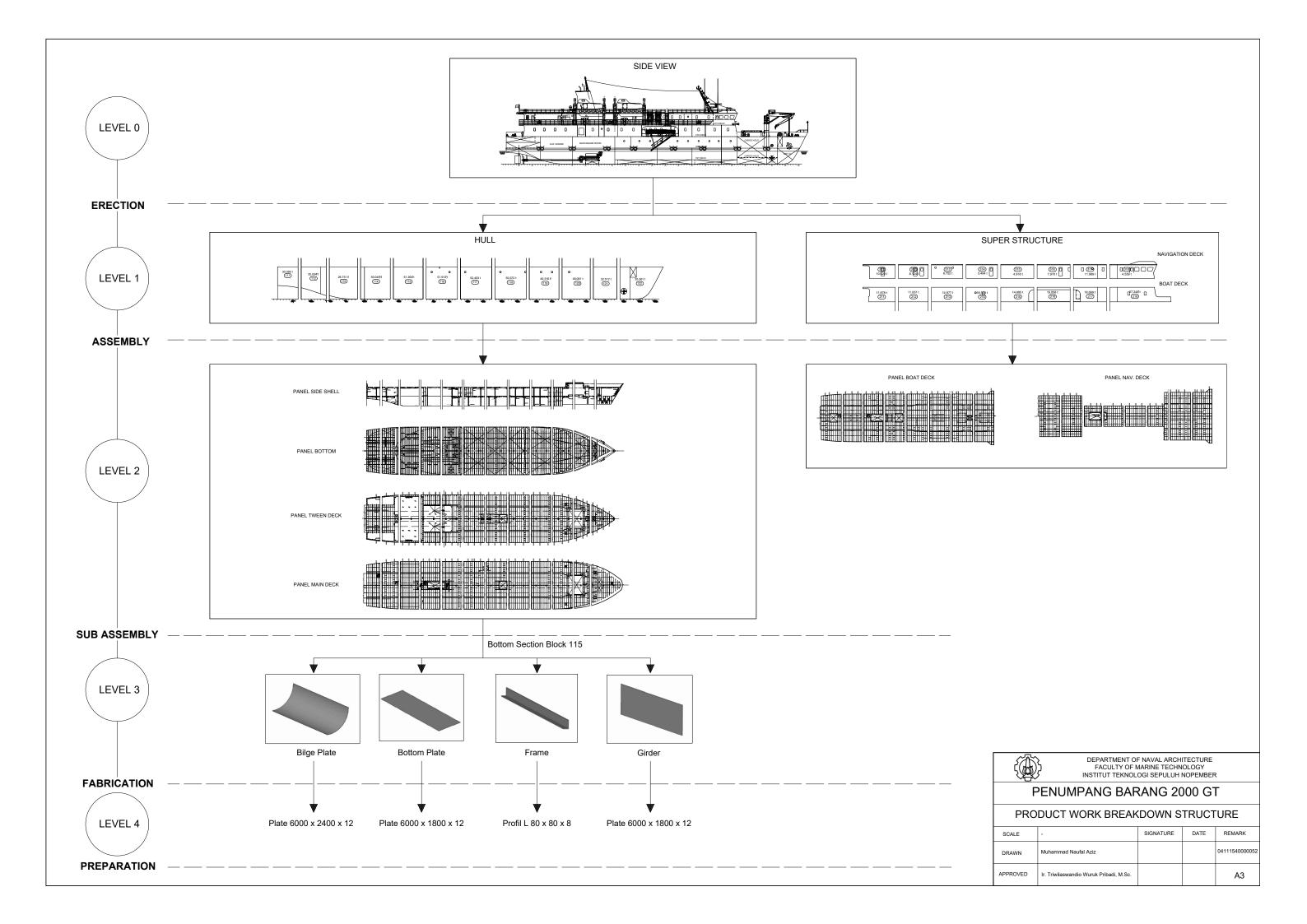


KAPAL PENUMPANG BARANG 2000 GT

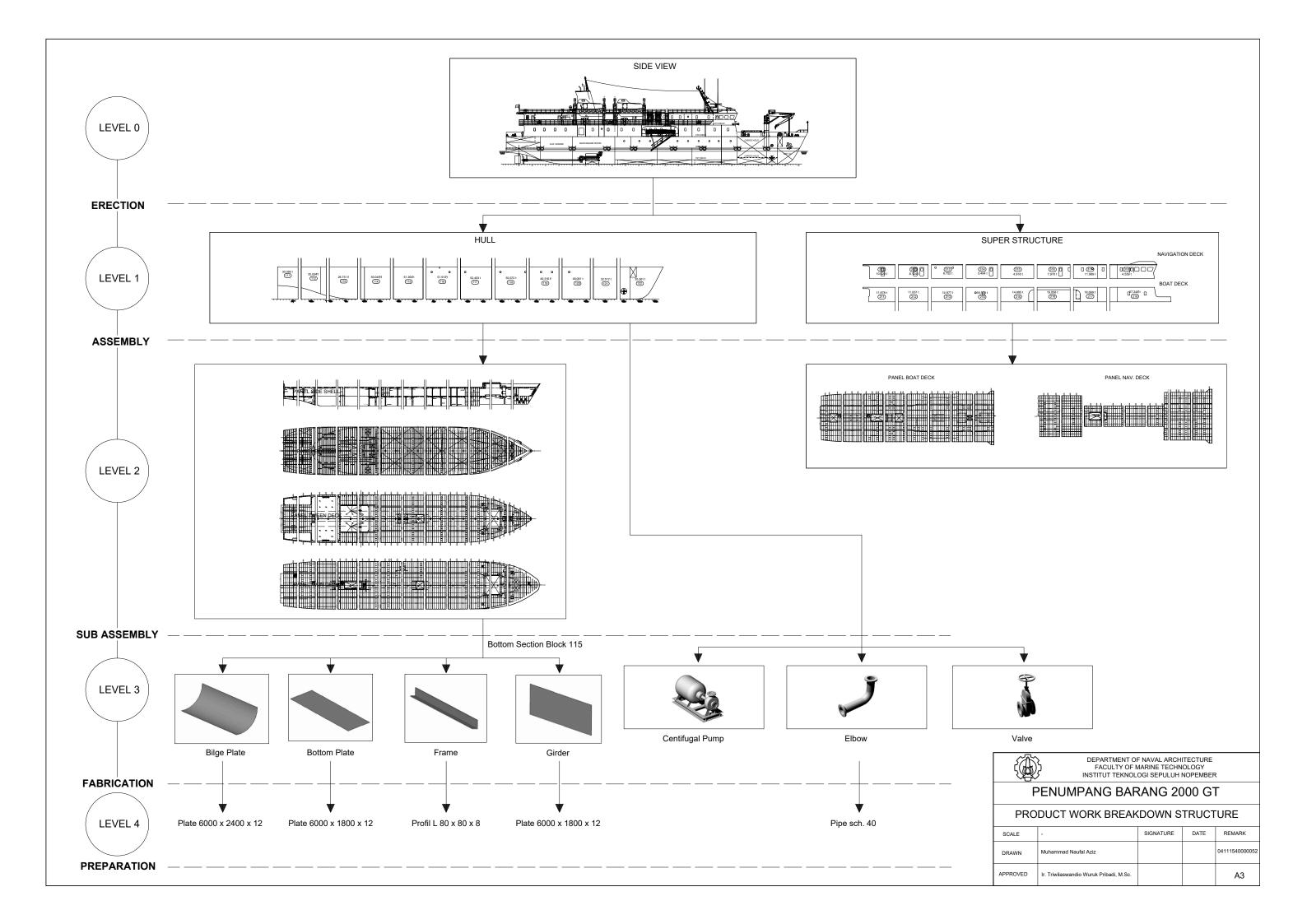
3D BLOCK ON BOARD OUTFITTING

SCALE	-	SIGNATURE	DATE	REMARK
DRAWN	Muhammad Naufal Aziz			04111540000052
APPROVED	Ir. Triwilaswandio Wuruk Pribadi, M.Sc.			A3

LAMPIRAN 3D BLOCK ADVANCED OUTFITTING SYSTEM

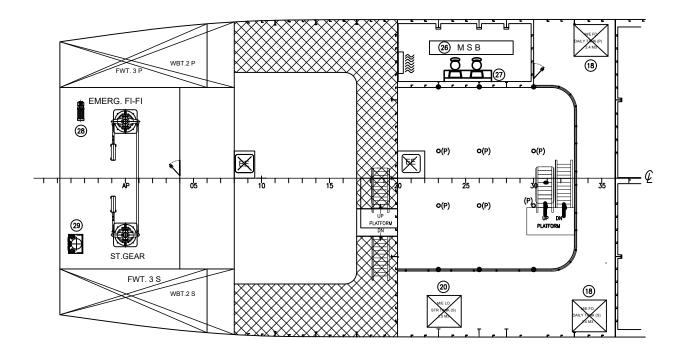


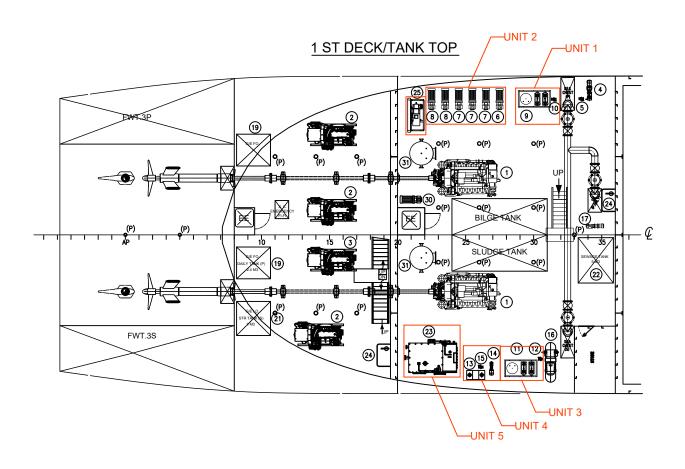
KAPAL PENUMPANG BARANG 2000 GT


3D BLOCK ADVANCED OUTFITTING

SCALE	-	SIGNATURE	DATE	REMARK
DRAWN	Muhammad Naufal Aziz			04111540000052
APPROVED	Ir. Triwilaswandio Wuruk Pribadi, M.Sc.			A3

LAMPIRAN PRODUCT WORK BREAKDOWN ON BOARD OUTFITTING



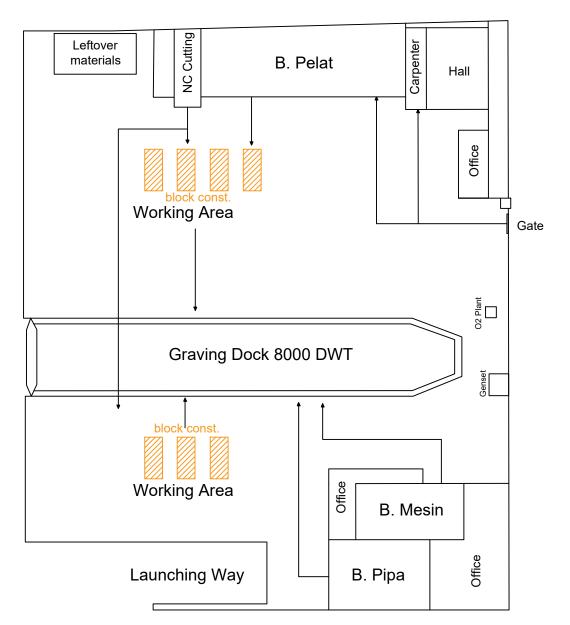

LAMPIRAN PRODUCT WORK BREAKDOWN ADVANCED OUTFITTING SYSTEM

LAMPIRAN UNIT OUTFIT PLAN

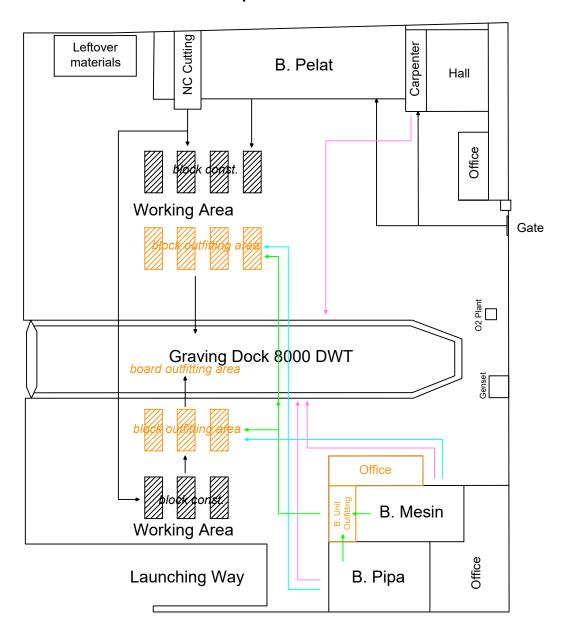
2 ND DECK/TWEEN DECK

UNIT SPECIFICATION						
Name	Qnty	Specification				
Unit 1 S.W. Hydrophore						
S.W. Hydrophore	1	200 L				
S.vv. Pump	2	200 L Cent. Self Priming 3 m3/h 20m 1.1 kW				
S.W Hand Pump	1	_				
Unit 2						
Bilge Pump	1	Cent. Self Priming 34 m3/h 34m 5.5 kW				
Ballast Pump	3	Cent. Self Priming 34 m3/h 34m 5.5 kW				
Fire/G.S. Pump	2	Cent. Self Priming 34 m3/h 34m 5.5 kW				
Unit 3 F.W. Hydrophore						
F.W. Hydrophore	1	200 L				
F.W. Pump	2	200 L Cent. Self Priming 3 m3/h 20m 1.1 kW				
F.W Hand Pump	1	_				
Unit 4						
Unit 4 Oily Water Separator (OWS)	1	≤15ppm				
Bilge Pump for OWS	1	Cent. Self Priming 1 m3/h 20m				
Hand Pump for OWS	11	_				
Unit 5	Unit 5					
Seawage Treatment Plant	1	Cap. 3.5 ton/h				

DEPARTMENT OF NAVAL ARCHITECTURE FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER


KAPAL PENUMPANG BARANG 2000 GT

UNIT OUTFIT PLAN


		<u> </u>	i	
SCALE	-	SIGNATURE	DATE	REMARK
DRAWN	Muhammad Naufal Aziz			04111540000052
APPROVED	Ir. Triwilaswandio Wuruk Pribadi, M.Sc.			A3

LAMPIRAN RENCANA PENGEMBANGAN GALANGAN

Existing

Development Plan

DEPARTMENT OF NAVAL ARCHITECTURE FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER

LAYOUT GALANGAN PT. X.

RENCANA PENGEMBANGAN

SCALE	-	SIGNATURE	DATE	REMARK
DRAWN	Muhammad Naufal Aziz			04111540000052
APPROVED	Ir. Triwilaswandio Wuruk Pribadi, M.Sc.			A3