

PROYEK AKHIR - VE 180626

RANCANG BANGUN MESIN PENCETAK SIRKUIT PCB BERBASIS MIKROKONTROLLER ATMEGA 328P

Alwan Arib Rohmat NRP 10311600000066

Dosen Pembimbing Ir. Arif Musthofa, M.T. Ciptian Weried Priananda, S.ST. M.T.

DEPARTEMEN TEKNIK ELEKTRO OTOMASI Fakultas Vokasi Institut Teknologi Sepuluh Nopember Surabaya 2020

FINAL PROJECT - VE 180626

DESIGN OF MACHINE PRINTING OF PCB(PRINTED CIRCUIT BOARD) BASED ON ATMEGA 328P

Alwan Arib Rohmat NRP 10311600000066

Supervisor Ir. Arif Musthofa, M.T. Ciptian Weried Priananda, S.ST. M.T.

DEPARTMENT OF ELECTRICAL AUTOMATION ENGINEERING Vocational Faculty Institut Teknologi Sepuluh Nopember Surabaya 2020

PERNYATAAN KEASLIAN PROYEK AKHIR

Dengan ini kami menyatakan bahwa isi sebagian maupun keseluruhan Proyek Akhir kami dengan judul "RANCANG BANGUN MESIN PENCETAK SIRKUIT PCB BERBASIS MIKROKONTROLLER AT MEGA 328P"adalah benar-benar hasil karya intelektual mandiri, diselesaikan tanpa menggunakan bahan-bahan yang tidak diijinkan dan bukan merupakan ya pihak lain yang kami akui sebagai karya sendiri.

Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap pada daftar pustaka.

Apabila ternyata pernyataan ini tidak benar, kami bersedia menerima sanksi sesuai peraturan yang berlaku.

Surabaya, Januari 2020

Alwan Arib Rohmat NRP 10311600000066

RANCANG BANGUN MESIN PENCETAK SIRKUIT PCB BERBASIS MIKROKONTROLLER ATMEGA 328P

LEMBAR PENGESAHAN **PROYEK AKHIR**

Diajukan Guna Memenuhi Sebagian Persyaratan Untuk Memperoleh Gelar Ahli Madya Pada Departemen Teknik Elektro Otomasi Fakultas Vokasi Institut Teknologi Sepuluh Nopember

Menyetujui

Dosen Pembimbing, P. Sendidikan

NOPEMBER

TAS VORAS

2020

Ir. Arif Musthofa, M. DEPARTEM Ciptian Weried/Priananda, S.ST. M.T. NIP.196608111992031004 NIP.1990201711060

> **SURABAYA JANUARI**, 2020

> > vii

RANCANG BANGUN MESIN PENCETAK SIRKUIT PCB BERBASIS MIKROKONTROLLER ATMEGA 328P

Nama : Alwan Arib R. Pembimbing : Ir. Arif Musthofa, M.T. Ciptian Weried Priananda, S.ST. M.T.

ABSTRAK

Mesin pencetak sirkuit PCB pada dasarnya adalah mesin yang menggunakan prinsip yang sama seperti mesin CNC, dalam hal ini pemanfaatannya mesin CNC di gunakan sebagai salah satu cara alternatif mencetak sirkuit PCB, dan mengurangi penggunaan bahan kimia FeCl3 sebagai bahan pelarut PCB. Berdasarkan permasalahan yang ada, salah satu solusi yang di tawarkan adalah mesin CNC pencetak sirkuit PCB berbasis mikrokontroller AT Mega 328P.

Cara kerja alat ini adalah dengan cara mengonversi hasil desain sirkuit PCB pada software eagle yang ber format Jpeg menjadi file yang berformat Scalable Vector Graphic (SVG) yaitu file berformat vektor menggunakan software Inkscape untuk di konversi menjadi G-Code, sebelum di lakukan pengerjaan sirkuit PCB di perlukan proses kalibrasi terhadap motor stepper pada mesin CNC tersebut menggunakan software Grbl.

Mesin pencetak PCB di lengkapi dengan sensor FSR (Force Sensing Resistor) sebagai sensor tekanan, sensor ini gunakan untuk menentukan kekuatan bahan yang akan di lakukan proses grafir oleh mesin CNC. Pada hasil pembacaan sensor FSR di dapatkan hasil bahwa papan PCB berbahan *Fiber* mempunyai kekerasan yang lebih tinggi di bandingkan papan PCB berbahan *phenolic paper*. Serta presentase keberhasilan mencetak jalur PCB sebesar 70%,presentase kegagalan sebesar 30% dari 10 percobaan, serta pembuatan sirkuit pada papan PCB masih belum memenuhi target. Kata Kunci: CNC, G-Code, Software Grbl, AT Mega 328P,FSR Sensor, Proses Etching PCB

DESIGN OF MACHINE PRINTING OF PCB(PRINTED CIRCUIT BOARD) BASED ON ATMEGA 328P

Nama : Alwan Arib R. Pembimbing : Ir. Arif Musthofa, M.T. Ciptian Weried Priananda, S.ST. M.T.

ABSTRACT

PCB circuit molding machines are basically machines that use the same principles as CNC machines, in this case the use of CNC machines is used as an alternative way of printing PCB circuits, and reduces the use of FeCl3 chemicals as PCB solvents. Based on the existing problems, one of the solutions offered is a CNC machine that prints AT 328P microcontroller based microcontroller circuit.

The way this tool works is by converting the results of the design of the PCB circuit in eagle software with Jpeg format into a file format in Scalable Vector Graphic (SVG) format, which is a vector format file using Inkscape software to be converted into G-Code. So that the CNC machine can print the results according to what we want with a high level of precision. For this reason, before doing the PCB circuit, calibration of the stepper motor on the CNC machine requires Grbl software.

PCB printing machine is equipped with an FSR sensor (Force Sensing Resistor) as a pressure sensor, this sensor is used to determine the strength of the material to be engraved by a portable CNC machine. On the FSR sensor readings, the result is that the PCB board made from fiber has a higher hardness compared to the PCB board made from phenolic paper. As well as the percentage of success in printing PCB lines by 70%, the percentage of failure by 30% from 10 trials. and the manufacturing of circuits on the PCB board has still not met the target.

Keywords: CNC, G-Code, Grbl Software, AT Mega 328P, FSR Sensor, PCB Etching Process

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT yang selalu memberikan rahmat dan hidayah-Nya sehingga Proyek Akhir ini dapat terselesaikan dengan baik. Shalawat serta salam semoga selalu dilimpahkan kepada Rasulullah Muhammad SAW, keluarga, sahabat, dan umat muslim yang senantiasa meneladani beliau.

Proyek Akhir ini disusun untuk memenuhi sebagian persyaratan guna menyelesaikan pendidikan Diploma-3 pada Bidang Studi Komputer Kontrol, Departemen Teknik Elektro Otomasi, Fakultas Vokasi, Institut Teknologi Sepuluh Nopember Surabaya dengan judul:

RANCANG BANGUN MESIN PENCETAK SIRKUIT PCB BERBASIS MIKROKONTROLLER ATMEGA 328P

Penulis mengucapkan terima kasih kepada Ibu dan Bapak penulis yang memberikan berbagai bentuk doa serta dukungan tulus tiada henti, Bapak Ir. Arif Musthofa, M.T. dan Ciptian Weried Priananda, S.ST. M.T. atas segala bimbingan ilmu, moral, dan spiritual dari awal hingga terselesaikannya Proyek Akhir ini. Penulis juga mengucapkan banyak terima kasih kepada semua pihak yang telah membantu baik secara langsung maupun tidak langsung dalam proses penyelesaian Proyek Akhir ini.

Penulis menyadari dan memohon maaf atas segala kekurangan pada Proyek Akhir ini. Akhir kata, semoga Proyek Akhir ini dapat bermanfaat dalam pengembangan keilmuan di kemudian hari.

Surabaya, 18 Desember 2020

Penulis

DAFTAR ISI

HALA	MAN JUDUL	iii
HALA	MAN JUDUL	iii
PERN	YATAAN KEASLIAN PROYEK AKHIR	v
ABST	RAK	ix
ABSTI	RACT	xi
KATA	A PENGANTAR	.xiii
DAFT	AR ISI	xv
DAFT	AR GAMBAR	.xix
DAFT	AR TABEL	xiii
BAB I	PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Perumusan Masalah	2
1.3	Batasan Masalah	3
1.4	Maksud dan Tujuan	4
1.5	Sistematika Laporan	4
1.6	Relevansi	5
BAB I	I LANDASAN TEORI	7
2.1	PCB (Printed Circuit Board)	7
2.1.1	Lapisan Substrat PCB (Lapisan Landasan)	7
2.1.2	Lapisan Tembaga (Copper)	8
2.1.3	Lapisan Soldermask	8
2.1.4	Silkscreen	8
2.2	Jenis-jenis PCB berdasarkan Jumlah Lapisannya	9
2.2.1	Single Sided PCB	9
2.2.2	Double Sided PCB	10
2.3	Jenis-jenis PCB berdasarkan Fleksibilitasnya	10
2.3.1	Rigid PCB	10
2.3.2	<i>Flex</i> PCB	11
2.4	Larutan <i>FeCl3</i>	11
2.5	Etching PCB	12
2.6	FSR (Force Sensing Resistor)	12
2.7	Mesin CNC (Computer Numerical Control) Portable	14
2.8	AT Mega328P	14

2.9	Stepper Motor Driver A4988	15
2.10	Motor Stepper Bipolar	16
2.11	Motor Spindle 400W	18
2.12	Universal Spindle Motor Driver	19
2.13	Software CAD/CAM	20
2.13.1	Inkscape	20
2.13.2	Jscut	23
2.14	G-Code v1.0.9	27
2.14	Sistem Inkremental	27
2.15	Sistem Absolute	28
2.16	Timing Pulley	29
2.17	Timing Belt	30
2.18	Pitch Screw	30
2.19	Penggunaan Mata Bor	31
BAB I	II PERANCANGAN DAN IMPLEMENTASI	33
3.1	Bentuk Mekanik Mesin CNC Portable	34
3.1.1	Bentuk Mekanik Sumbu x Mesin CNC Portable	34
3.1.2	Bentuk Mekanik Sumbu y Mesin CNC Portable	34
3.1.3	Bentuk Mekanik Sumbu z Mesin CNC Portable	35
3.2	Perancangan Elektrik	35
3.2.1	Perancangan Elektrik Sumbu x Mesin CNC	35
3.2.2	Perancangan Elektrik Sumbu y Mesin CNC	38
3.2.3	Perancangan Elektrik Sumbu z Mesin CNC	41
3.2.4	Perancangan Elektrik Motor Spindle	44
3.2.5	Perancangan Elektrik Sensor FSR (Force Sensing	
	Resistor)	47
3.2.6	Perancangan Elektrik LCD	48
3.3	Pemilihan Mata Bor	49
3.4	Proses Desain PCB Pada Software CAD	50
3.3.1	Proses Desain PCB Pada Software Eagle	50
3.3.2	Proses Tracing Bitmap Pada Software Inkscape	51
3.5	Perancangan Software CAM	52
3.5.1	Pengaturan Desain Pada Software Jscut	52
3.5.2	Proses Import Desain Pada Program G-Code	53
3.5.3	Proses Program G-Code Dalam Software Grbl	54
	—	

3.6	Konfigurasi Keseluruhan Sistem CNC Portable	59
3.5.1	Perancangan Blok Sistem Kerja Keseluruhan	60
3.5.2	Flowchart Pengerjaan Mesin CNC Portable	61
BAB 1	V HASIL PENGUJIAN DAN ANALISA	63
4.1	Perbandingan Metode New Step Dengan Spesififikasi	
	Mekanik Pada Sumbu x	63
4.2	Pengujian Perpindahan x Axis	65
4.2.1	Pengujian x Axis Sebelum Kalibrasi	66
4.2.2	Pengujian x Axis Sesudah Kalibrasi	68
4.3	Pengujian Perpindahan y Axis	71
4.3.1	Pengujian y Axis Sebelum Kalibrasi	71
4.3.1	Pengujian y Axis Sesudah Kalibrasi	74
4.4	Pengujian Perpindahan z Axis	77
4.4.1	Pengujian z Axis Sebelum Kalibrasi	77
4.4.2	Pengujian z Axis Sesudah Kalibrasi	80
4.5	Pengujian Sistem Absolute	83
4.6	Pengujian Sistem Inkremental	84
4.7	Pengujian Tegangan Motor Stepper x, y, z	86
4.8	Pengujian Pembuatan Ketebalan Jalur 1 mm Pada Papa	n
	PCB	87
4.9	Pengujian Membuat Driver Motor Stepper A4988	92
4.10	Hasil Pengujian Sensor FSR	95
4.11	Pengujian Keseluruhan Sistem	97
4.11.1	Pengujian Alat	97
BAB '	V PENUTUP	101
5.1	Kesimpulan	101
5.2	Saran	102
DAFT	AR PUSTAKA	103
LAM	PIRAN A	105
LAM	PIRAN B	111
DAFT	AR RIWAYAT HIDUP	117

DAFTAR GAMBAR

Gambar 2.1 Lapisan – Lapisan PCB	9
Gambar 2.2 Single Sided PCB	9
Gambar 2.3 Double Sided PCB	10
Gambar 2.4 <i>Rigid</i> PCB	10
Gambar 2.5 Flex PCB	11
Gambar 2.6 Serbuk FeCl3	12
Gambar 2.7 Skematik FSR Sensor	13
Gambar 2.8 FSR Sensor	13
Gambar 2.9 CNC Portable	14
Gambar 2.10 AT Mega 328P	15
Gambar 2.11 Driver A4988	16
Gambar 2.12 Cara Kerja Motor Stepper	18
Gambar 2.13 Motor Stepper Bipolar	18
Gambar 2.14 Motor Spindle	19
Gambar 2.15 Universal Spindle Motor Driver	20
Gambar 2.16 Tampilan Inkscape	21
Gambar 2.17 Trace Bitmap	22
Gambar 2.18 Kotak Dialog Penyimpanan Dalam (*SVG)	23
Gambar 2.19 Menu Bar Jscut	24
Gambar 2.20 Pengaturan Material	24
Gambar 2.21 G-Code Conversion Jscut	25
Gambar 2.22 Pengaturan tool Jscut	26
Gambar 2.23 Tampilan Pengaturan Mode Operation Jscut	26
Gambar 2.24 Tampilan Software G-Code	27
Gambar 2.25 Sistem Inkremental	28
Gambar 2.26 Sistem Absolute	28
Gambar 2.27 Timing Pulley	29
Gambar 2.28 Timing Belt	30
Gambar 2.29 Pitch Screw	31
Gambar 2.30 Mata Bor v Shape	31
Gambar 2.31 Mata Bor Twist Bist	32
Gambar 3.1 Bentuk Mekanik CNC Portable x Axis	34
Gambar 3.2 Bentuk Mekanik CNC Portable y Axis	34

Gambar 3.3 Bentuk Mekanik CNC Portable z Axis	35
Gambar 3.4 Flowchart Sumbu x CNC	36
Gambar 3.5 Konfigurasi Elektrik Sumbu x CNC	38
Gambar 3.6 Flowchart Sumbu y CNC	39
Gambar 3.7 Konfigurasi Elektrik Sumbu y CNC	41
Gambar 3.8 Flowchart Sumbu y CNC	42
Gambar 3.9 Konfigurasi Elektrik Sumbu z CNC	44
Gambar 3.10 Flowchart Motor Spindle CNC	45
Gambar 3.11 Konfigurasi Elektrik Motor Spindle CNC	46
Gambar 3.12 Konfigurasi Sensor FSR	47
Gambar 3.13 Konfigurasi LCD	48
Gambar 3.14 Bentuk Mata Bor v Shape	49
Gambar 3.15 Rangkaian Skematik Driver Motor Stepper	50
Gambar 3.16 Routing Driver Motor Stepper A4988	50
Gambar 3.17 Tampilan Awal Software Inkscape	51
Gambar 3.18 Proses Tracing Bitmap	51
Gambar 3.19 Proses Pengaturan Pada Software Jscut	52
Gambar 3.20 Proses Simulasi dan Menyimpan G-Code	53
Gambar 3.21 Keseluruhan Sistem Kerja Mesin CNC Portable	60
Gambar 3.22 Flowchart Pengerjaan Mesin CNC Portable	62
Gambar 4.1 Jarak Sebenarnya 1 mm Sebelum Kalibrasi	67
Gambar 4.2 Jarak Sebenarnya 10 mm Sebelum Kalibrasi	67
Gambar 4.3 Jarak Sebenarnya 20 mm Sebelum Kalibrasi	68
Gambar 4.4 Hasil 1 mm Sesudah Kalibrasi	70
Gambar 4.5 Hasil 10 mm Sesudah Kalibrasi	70
Gambar 4.6 Hasil 20 mm Sesudah Kalibrasi	71
Gambar 4.7 Jarak Sebenarnya 1 mm Sebelum Kalibrasi	73
Gambar 4.8 Jarak Sebenarnya 10 mm Sebelum Kalibrasi	73
Gambar 4.9 Jarak Sebenarnya 20 mm Sebelum Kalibrasi	73
Gambar 4.10 Hasil 1 mm Sesudah Kalibrasi	76
Gambar 4.11 Hasil 10 mm Sesudah Kalibrasi	76
Gambar 4.12 Hasil 20 mm Sesudah Kalibrasi	76
Gambar 4.13 Jarak Sebenarnya 1 mm Sebelum Kalibrasi	78
Gambar 4.14 Jarak Sebenarnya 10 mm Sebelum Kalibrasi	79
Gambar 4.15 Jarak Sebenarnya 15 mm Sebelum Kalibrasi	79

Gambar 4.16 Hasil 1 mm Sesudah Kalibrasi	82
Gambar 4.17 Hasil 10 mm Sesudah Kalibrasi	82
Gambar 4.18 Hasil 15 mm Sesudah Kalibrasi	83
Gambar 4.19 Ilustrasi Dari Sistem Absolute	84
Gambar 4.20 Ilustrasi Dari Sistem Inkremental	85
Gambar 4.21 Desain Lebar Jalur PCB 1mm	87
Gambar 4.22 Simulasi Gambar Lebar Jalur PCB 1mm	88
Gambar 4.23 Hasil Gambar Ketebalan Jalur Pada PCB	88
Gambar 4.24 Desain A4988 Pada Software Inkscape	92
Gambar 4.25 Simulasi Gambar A4988 Pada Software Jscut	92
Gambar 4.26 Vektor A4988 Mode Outside	93
Gambar 4.27 Hasil Gambar Driver A4988	94
Gambar 4.28 Tampilan Awal LCD	95
Gambar 4.29 Tekanan Pada Papan PCB Berbahan Fiber	96
Gambar 4.30 Papan PCB Berbahan Fiber	96
Gambar 4.31 Tekanan Papan PCB Berbahan Phenolic Paper	97
Gambar 4.32 Papan PCB Berbahan Phenolic Paper	97

DAFTAR TABEL

Tabel 3.1 Konfigurasi G-Code	53
Tabel 3.2 Konfigurasi G-Code (Lanjutan)	. 54
Tabel 3.3 Kode dalam Pengaturan G-Code	55
Tabel 4.1 Perhitungan Sumbu x Dengan Metode New Step	64
Tabel 4.2 Hasil Kalibrasi Sumbu x Metode New Step	64
Tabel 4.3 Hasil Kalibrasi Sumbu x Metode Mekanik	65
Tabel 4.4 Pengujian Sumbu x Sebelum Kalibrasi	66
Tabel 4.5 Pengujian Sumbu x Sesudah Kalibrasi	69
Tabel 4.6 Pengujian Sumbu y Sebelum Kalibrasi	71
Tabel 4.7 Pengujian Sumbu y Sebelum Kalibrasi	75
Tabel 4.8 Pengujian Sumbu z Sebelum Kalibrasi	77
Tabel 4.9 Pengujian Sumbu z Sebelum Kalibrasi	81
Tabel 4.10 Pengujian Sistem Absolute	83
Tabel 4.11 Pengujian Sistem Inkremental	85
Tabel 4.12 Pengujian Tegangan Motor Stepper	86
Tabel 4.13 Pengujian Lebar Jalur Papan PCB	89
Tabel 4.14 Pengujian Pada Sumbu x y z	98
Tabel 4.15 Pengujian Pembuatan Ketebalan Jalur PCB 1 mm	98
Tabel 4.16 Pengujian Pembuatan Sirkuit PCB	99
Tabel 4.17 Pengujian Sensor FSR (Force Sensing Resistor)	99

BAB I PENDAHULUAN

1.1 Latar Belakang

PCB adalah singkatan dari Printed Circuit Board yang dalam bahasa Indonesia sering diterjemahkan menjadi papan rangkaian cetak atau papan sirkuit cetak. PCB adalah papan yang digunakan untuk menghubungkan komponen elektronika dengan lapisan jalur konduktornya. Proses pembuatan sirkuit PCB sendiri pada PCB polos (PCB yang belum ada desain rangkaian) umumnya di buat dengan menggunakan cara manual yaitu menggunakan larutan FeCl3. Awal proses pembuatan di awali dengan cara mendesain rangkaian elektronik yang di desain pada software eagle, untuk kemudian di cetak pada selembar kertas kemudian di sablon di atas permukaan pcb polos sebagai penanda bagian mana yang akan di larutkan, karena bagian yang tertutup oleh desain sablon tidak akan terlarutkan oleh larutan FeCl3 yang biasa di sebut dengan proses etching. Larutan FeCl3 sendiri adalah bahan kimia pelarut tembaga dimana dalam penggunaannya dapat mengakibatkan pencemaran lingkungan. Untuk mengatasi permasalahan itu, maka di gunakan lah mesin pencetak PCB berbasis mikrokontroller AT Mega 328P sebagai alternatif lain untuk mengurangi penggunaan bahan kimia pelarut tembaga yang di gunakan untuk melarutkan tembaga pada PCB polos.

Di Departemen Teknik Elektro Otomasi ITS sebelumnya sudah ada yang membuat proyek akhir mengenai CNC tetapi dalam pembahasan mengenai proyek akhir sebelumnya berfokus pada proses kalibrasi dan pengambilan data pada sumbu x mesin CNC serta pengerjaan proyek akhir sebelumnya juga lebih berfokus pada pembuatan desain pada papan kayu. Sehingga pada proyek akhir kali ini saya mencoba melanjutkan proyek akhir sebelumnya yang mengguanakan media berupa papan kayu dan menggantinya dengan papan PCB polos berukuran 20*10 cm. Membuat sirkuit PCB mengunakan mesin CNC tersebut dengan ukuran papan PCB yang lebih kecil membutuhkan tingkat keakuratan yang tinggi, dan diperlukan proses kalibrasi yang lebih akuran dengan meggunakan metode persamaan mekanik dari *timing pulley* dan *timing belt*. Dalam proyek akhir sebelumnya juga belum terdapat cara untuk membedakan kekerasan bahan antara papan kayu yang satu dengan lainnya. Untuk proyek akhir saya kali ini juga akan menentukan perbedaan kekerasan bahan pada papan PCB polos berbahan *"phenolic Paper"* dan papan PCB polos berbahan *"fiber"*.

Dengan beberapa masalah yang di temui, saya mencoba menambahkan sebuah sensor, yaitu sensor FSR (Force Sensing *Resistor*) sebagai pendekteksi tingkat kekerasan bahan yang akan di lakukan proses grafir pada papan PCB polos yang akan di cetak menjadi rangkaian sirkuit PCB, yang sebelumnya sudah di lakukan proses desain menggunakan beberapa software vaitu, software eagle, dan Inkscape. Agar kita dapat mengurangi beban pada mata bor agar lebih ringan dalam melakukan proses grafir pada papan PCB polos untuk menghasilkan sirkuit PCB yang lebih bagus, pada proyek akhir ini,saya berfokus pada pengambilan dan pengujian di keseluruhan sumbu x,y,z, dengan memakai metode perhitungan spesifikasi dari timing pulley, timing belt sehingga memperoleh hasil kalibrasi yang lebih akurat, serta melakukan pengambilan data sensor FSR (Force Sensing Resistor)dengan cara pengambilan data pada saat mata bor melubangi papan PCB polos sedalam 1 mm, untuk mengetahui kekerasan PCB berbahan "phenolic paper" dan PCB berbahan "fiber". Pada proyek akhir ini juga di lakukan perbandingan perhitungan kalibrasi motor stepper dengan metode sebelumnya yang menggunakan metode hasil perbandingan antara target dan actual pada motor stepper di bandingkan dengan persamaan mekanik dari timing pulley sehingga menghasilkan perpindahan mesin CNC lebih akurat. Di Departemen Teknik Elektro Otomasi kedepannya alat ini bisa di kembangkan lagi dan bermanfaat bagi orang-orang di sekitar kita.

1.2 Perumusan Masalah

Bagaimana cara kita dalam mengimplementasikan cara pembuatan sirkuit pcb yang berukuran kecil sehingga di perlukan 2

tingkat presisi yang tinggi, serta bagaimana cara kita melakukan pengambilan data sensor *FSR (Force Sensing Resistor)* yang mempunyai range yang kecil yaitu sekitar 1 kg - 50 Newton. sehingga mempunyai keterbatasan dalam pemgambilan data, dan dalam ketersediaan suku cadang yang tersedia sebagai pelapis mesin pencetak pcb apabila terdapat beberapa komponen yang rusak.

1.3 Batasan Masalah

Pada proyek akhir ini penulis memiliki beberapa batasan masalah dalam pengerjaannya. Beberapa batasan masalah tersebut diantaranya:

- 1. Mesin yang digunakan sebagai studi kasus adalah mesin CNC 3 aksis.
- 2. Mikrokontroller yang di gunakan adalah AT Mega 328P.
- 3. Motor yang di gunakan adalah motor stepper *bipolar* 1.8 *degree/step* bertipe "Sanyo Denki 1031775" untuk y axis, sedangkan untuk x axis menggunakan motor stepper 1.8 degree/step dengan tipe "Nema 86HY6340A8,86HY9240A8", untuk z axis menggunakan motor dengan tipe "4H5618S0404".
- 4. *Driver* motor sepper menggunakan *driver* A4998 untuk tiap tiap motor stepper.
- 5. Menggunakan software G-Code sebagai penggerak 3 axis.
- 6. Pada proses CAD(*Computer Aided Design*)menggunakan *software* eagle, dan Inkscape serta proses CAM(*Computer Aided Manufacturing*) menggunakan *software* Jscut dengan bentuk keluaran gambar berupa (*.G-code).
- 7. *Operating system* yang digunakan pada studi kasus ini berupa Atmega 328P sebagai pengendali mesin CNC 3 aksis.
- 8. Bidang kerja yang di gunakan maksimal 10 cm dikarenakan menggunakan CNC *portable*
- 9. Penggunaan mata bor sebesar 1 mm.
- 10. Penggunaan timing pulley GT2 3mm.
- 11. Penggunaan timing belt 3mm.
- 12. Penggunaan sensor tekanan (FSR 402)

 Pembacaan sensor *FSR* dalam range yang terbatas. Yaitu 1 Newton – 50 Newton.

1.4 Maksud dan Tujuan

Maksud dan tujuan dari pembuatan proyek akhir ini adalah sebagai berikut:

- 1. Mengetahui tingkat kekerasan bahan PCB dengan menggunakan sensor *FSR (Force Sensing Resistor)* untuk mengetahui kekerasan bahan dengan cara membedakan berapa tekanan yang di butuhkan mata bor untuk melubangi 2 jenis papan PCB polos yang berbeda bahan sedalam 1 mm dan mengetahui bahan PCB mana yang lebih mudah untuk di lakukan proses grafir.
- 2. Merancang ulang penggunaan *timing pulley* dan *timing belt* sebagai penggerak dari mesin pencetak sirkuit PCB.
- 3. Memberikan kemudahan dalam pengerjaan sirkuit PCB tanpa proses etching PCB (proses melarutkan PCB menggunakan bahan kimia *FeCl3*).

1.5 Sistematika Laporan

Sistematika laporan dalam penyusunan buku Proyek Akhir ini dibagi menjadi 5 (lima) Bab adalah sebagai berikut:

Bab I PENDAHULUAN

Bab ini berisi latar belakang, perumusan masalah, batasan masalah, maksud dan tujuan, sistematika laporan, relevansi

Bab II TEORI DASAR

Bab ini menjelaskan tentang tinjauan pustaka, konsep dari PCB,Sensor tekanan *FSR* (*Force Sensing Resistor*), Mesin CNC, Pemrograman Atmega 328P, *software* untuk CAD/CAM,Motor stepper serta penggunaan *Software* G-Code sender

Bab III PERANCANGAN DAN IMPLEMENTASI

Bab ini membahas mengenai perancangan sensor *FSR (Force Sensing Resistor),timing belt* beserta *timing pulley* untuk menambah tingkat presisi dari pergerakan dari mesin CNC *portable* yang di gunakan untuk mencetak sirkuit PCB, konfigurasi keseluruhan sistem mesin pencetak sirkuit PCB, konfigurasi elektrik.

Bab IV PENGUJIAN DAN ANALISA

Bab ini berisi tentang pengujian serta pengambilan data dari sensor *FSR (Force Sensing Resistor)*, dan sumbu x,y,z dari mesin pencetak PCB tersebut.

Bab V PENUTUP

Bab ini berisikan kesimpulan dan saran dari hasil keseluruhan proses penyusunan proyek akhir, dan saran yang berguna untuk pengembangan alat ini.

1.6 Relevansi

Relevansi proyek akhir ini dengan kebutuhan di kalangan mahasiswa akan perlunya proses mencetak PCB secara efisien, ramah lingkungan dan ekonomis maka di butuhkan sebuah solusi untuk megatasi hal tersebut, yaitu dengan menggunakan mesin pencetak sirkuit PCB berbasis mikrokontroller AT Mega 328P sebagai solusi dari pembuatan rangkaian elektronik di papan PCB.

BAB II LANDASAN TEORI

Pada bab 2 ini dibahas mengenai dasar-dasar dari teori yang mendukung proyek akhir "Rancang Bangun Mesin Pencetak Sirkuit PCB Berbasis AT Mega 328P". Teori penunjang tersebut diantaranya adalah dari proyek akhir sebelumnya dengan judul " Perancangan Tampilan Antar muka Serta Kalibrasi sumbu x Mesin CNC Portable", *PCB (Printed Circuit Board)*, Larutan *FeCl3*, Etching,CNC(*Computer Numerical Control*),Sistem Program yang terdiri dari sistem incremental serta sistem *absolute*, *Software* untuk CAD/CAM yang terdiri dari *Inkscape* serta *Jscut*, Motor Stepper, serta G-Code.

2.1 PCB (Printed Circuit Board)

PCB adalah singkatan dari *Printed Circuit Board* yang dalam bahasa Indonesia sering diterjemahkan menjadi papan rangkaian cetak atau papan sirkuit cetak.PCB adalah Papan yang digunakan untuk menghubungkan komponen-komponen elektronika dengan lapisan jalur konduktornya. Secara struktur, pcb seperti kue lapis yang terdiri dari beberapa lapisan dan dilaminasi menjadi satu kesatuan yang disebut dengan PCB. Ada PCB yang berlapis satu lapisan tembaga (*Single Sided*), ada juga yang berlapis dua lapisan tembaga atau sering disebut dengan *multilayer* PCB. Berikut ini adalah penjelasan bagian dari pcb pada gambar 2.1 [1]

2.1.1 Lapisan Substrat PCB (Lapisan Landasan)

Lapisan dasar (landasan) PCB biasanya disebut dengan Substrat. Bahan Substrat yang paling umum digunakan adalah FR2 dan FR4. FR2 atau *Flame Resistant* 2 adalah kertas bonding resin sintetis (*synthetic resin bonded paper*) yaitu bahan komposit yang terbuat dari bahan kertas yang diresapi resin plastic formaldehida fenol (*plasticized phenol formaldehyde resin*). Sedangkan FR4 atau *Flame Resistant* 4 adalah anyaman *fiberglas* yang dilapisi dengan resin epoksi (*epoxy resin*). FR4 memiliki daya serap air yang rendah, properti isolasi yang bagus serta tahan suhu panas hingga 140 derajat *celcius*. Namun, PCB yang berbahan FR4 lebih mahal jika dibandingkan dengan PCB berbahan FR2 seperti gambar 2.1.

2.1.2 Lapisan Tembaga (Copper)

Lapisan PCB berikutnya adalah lapisan tembaga tipis yang dilaminasi ke lapisan substrat dengan suhu tinggi tertentu dan perekat. Tergantung pada jenis PCB-nya, lapisan tembaga tipis ini hanya akan dilapisi pada satu sisi substrat untuk jenis Single Sided PCB. Sedangkan double sided PCB terdapat lapisan tembaga tipis di dua sisi Substrat. Seiring dengan perkembangan Teknologi manufakturing PCB saat ini, PCB telah dapat dibuat hingga 16 lapisan atau bahkan lebih dari 16 lapisan tergantung pada perancangan PCB dan rangkaian yang diinginkan. Contoh lapisan tembaga dapat di lihat pada gambar 2.1.

2.1.3 Lapisan Soldermask

Soldermask adalah lapisan diatas lapisan tembaga yang berfungsi melindungi tembaga atau jalur konduktor dari hubungan atau kontak yang tidak disengaja. Lapisan soldermask ini hanya terdapat pada bagian-bagian PCB yang tidak disolder, sedangkan bagian yang akan disolder tidak ditutupi oleh lapisan soldermask. Lapisan soldermask ini juga dapat membantu para pengguna PCB untuk menyolder tepat pada tempatnya sehingga mencegah solder short (hubung singkat solder). Lapisan soldermask ini biasanya berwarna hijau, namun ada juga yang berwarna lain seperti warna biru dan merah. Lapisan soldermask bisa dilihat pada gambar 2.1.

2.1.4 Silkscreen

Lapisan setelah *soldermask* adalah lapisan *silkscreen* yang biasanya berwarna putih atau hitam. Namun ada juga silkscreen yang berwarna lain seperti warna abu-abu, warna merah dan bahkan ada berwarna kuning keemasan. *Silkscreen* merupakan cetakan huruf, angka dan simbol pada PCB. *Silkscreen* ini berfungsi sebagai tanda atau indikator untuk komponen-komponen

elektronika pada PCB sehingga mempermudah orang dalam merakitnya. Lapisan *silkscreen* bisa di lihat seperti gambar 2.1.

1. Lapisan Substrat	17 /
2. Lapisan Tembaga	
3. Lapisan Soldermask	
4. Lapisan Silkscreen	

Gambar 2.1 Lapisan-Lapisan PCB (https://teknikelektronika.com/pengertian-pcb-printed-circuit-boardjenis-jenis-pcb/)

2.2 Jenis-jenis PCB berdasarkan Jumlah Lapisannya

Berdasarkan jumlah lapisannya, PCB dapat dibagi menjadi single sided PCB, double sided PCB dan *multilayer* PCB berikut ini adalah jenis jenis papan PCB berdasarkan jumlah lapisannya [2]

2.2.1 Single Sided PCB

Single Sided PCB atau papan rangkaian cetak satu sisi adalah jenis PCB yang hanya terdiri dari satu lapisan tembaga yang tertempel di satu sisi substrat PCB seperti pada gambar 2.2. PCB jenis ini biasanya digunakan pada rangkaian elektronik yang sederhana dan biaya produksinya juga relatif lebih murah. Gambar 2.2 menunjukkan bagian bagian dari *single sided* pada papan PCB.

Gambar 2.2 Single Sided PCB

(https://teknikelektronika.com/pengertian-pcb-printed-circuit-board-jenis-jenis-pcb/)

2.2.2 Double Sided PCB

Double Sided PCB atau papan rangkaian. Cetak dua sisi adalah jenis PCB yang terdiri dari dua lapisan tembaga. Lapisan Tembaga tersebut tertempel di kedua sisi *substrat* PCB seperti pada gambar 2.3. Lubang pada PCB double sided PCB juga berfungsi sebagai jalur penghubung antar satu lapisan tembaga di sisi lainnya

Gambar 2.3 Double Sided PCB (https://teknikelektronika.com/pengertian-pcb-printed-circuit-boardjenis-jenis-pcb/)

2.3 Jenis-jenis PCB berdasarkan Fleksibilitasnya

Selain jumlah lapisan, papan PCB juga dapat dibedakan berdasarkan fleksibilitasnya. Berikut ini adalah jenis-jenis nya [3]

2.3.1 Rigid PCB

Jika diterjemahkan ke dalam bahasa Indonesia, rigid berarti kaku. Jadi yang dimaksud dengan rigid PCB adalah papan rangkaian cetak yang kaku seperti pada gambar 2.4. *Rigid* PCB terbuat dari bahan substrat yang padat dan kaku seperti *fiberglass* sehingga memang sengaja dibuat untuk tidak dapat di lipat/tekuk.

Gambar 2.4 *Rigid* PCB (https://teknikelektronika.com/pengertian-pcb-printed-circuit-boardjenis-jenis-pcb/)

2.3.2 Flex PCB

Flex PCB atau *flexible* PCB adalah PCB yang substrat-nya terbuat dari bahan plastik yang *fleksible* seperti pada gambar 2.5

Gambar 2.5 Flex PCB (https://teknikelektronika.com/pengertian-pcb-printed-circuit-boardjenis-jenis-pcb/)

2.4 Larutan FeCl3

Besi(III) klorida, atau feri klorida, adalah suatu senyawa kimia yang merupakan komoditas skala industri, dengan rumus kimia FeCl₃. Senyawa ini umum digunakan dalam pengolahan limbah, produksi air minum maupun sebagai katalis, baik di industri maupun di laboratorium. Warna dari kristal besi(III) *klorida* tergantung pada sudut pandangnya dari cahaya pantulan ia berwarna hijau tua, tetapi dari cahaya pancaran ia berwarna ungumerah. Besi(III) klorida bersifat deliquescent, berbuih di udara lembap, karena munculnya HCl, yang terhidrasi membentuk kabut. Bila dilarutkan dalam air, mengalami hidrolisis merupakan reaksi yang (menghasilkan panas). Hidrolisis ini menghasilkan larutan yang coklat. Larutan FeCl3 ini juga biasanya sering digunakan sebagai pengetsa untuk logam berbasis-tembaga pada papan sirkuit cetak (PCB). Besi(III) klorida memiliki titik lebur yang relatif rendah, mendidih pada 315 °C. Besi(III) klorida seperti pada gambar 2.6 apabila di gunakan dalam skala yang lebih besar maka dapat menyebabkan pencemaran lingkungan, sehingga di perlukan sebuah cara yang lebih efisien dan ramah lingkungan, sebagai pengganti dari larutan FeCl3 sebagai pelarut tembaga di PCB [4].

Gambar 2.6 Serbuk *FeCl3* (https://en.wikipedia.org/wiki/Iron(III)_chloride)

2.5 Etching PCB

Etching PCB adalah proses dengan menggunakan asam kuat untuk mengikis bagian permukaan logam yang tak terlindungi oleh desain rangkaian elektronika untuk menciptakan desain pada logam atau PCB [5]

2.6 FSR (Force Sensing Resistor)

FSR adalah sensor yang memungkinkan kita mendeteksi tekanan dan berat. Pada gambar 2.7 adalah sensor FSR tipe Interlink 402. Bagian bundar berdiameter 1.5 cm adalah bagian yang sensitif sebagai bagiang yang di gunakan sebagai pembacaan tekanan. FSR sensor terbuat dari 2 lapisan yang dipisahkan oleh spacer. Semakin banyak satu penekanan, semakin banyak titik-titik yang menyentuh semikonduktor dan itu membuat resistansi dari sensor FSR tersebut turun. FSR pada dasarnya adalah sebuah resistor yang mengubah nilai resistifnya (dalam ohm Ω) tergantung pada seberapa banyak ia ditekan. Ketika tidak ada tekanan, sensor FSR terlihat seperti resistor tanpa batas (Open sirkuit), ketika tekanan meningkat akan mengakibatkan resistansi turun dan naiknya pembacaan tegangan pada sensor tersebut. Sensor FSR (Force Sensing Resistor) mengukur tekanan tidak dalam satuan gram maupun kilogram. Melainkan di ukur menggunakan Newton. Gambar 2.8 merupakan bentuk sebenarnya dari sensor FSR (Force
Sensing Resistor). Sensor FSR sendiri juga mempunyai beberapa spesifkasi yang akan di jelaskan di dalam keterangan di bawah [6]. **Spesifikasi:**

- Panjang Sensor 65 mm
- Diameter area aktif setebal 12.7 mm
- Diameter Keseluruhan sensor 1.5 cm
- Sensitifitas Tekanan 1 Newton 50 Newton
- Diameter Sensor 18.25 mm
- Resistansi Stand Off sebesar 10k Ohm

Gambar 2.7 Skematik *FSR* Sensor (https://www.trossenrobotics.com/productdocs/2010-10-26-DataSheet-FSR402)

Gambar 2.8 FSR Sensor (https://www.trossenrobotics.com/productdocs/2010-10-26-DataSheet-FSR402)

2.7 Mesin CNC (Computer Numerical Control) Portable

Mesin CNC *portable* adalah sebuah mesin perkakas yang mempunyai sistem mekanik dan kontrol berbasis komputer. Mesin CNC *portable* hanya dapat membaca kode berformat G-Code apabila kita meggunakan software tampilan antar muka berupa G-Code juga, mesin CNC *portable* yang di gunakan dalam proyek akhir ini merupakan mesin CNC berjenis mesin CNC *milling* dengan 3 aksis yang memiliki tujuan untuk melakukan proses *carving* pada PCB dan mempunyai bentuk mekanik lebih kecil jika dibandingkan dengan mesin CNC pada skala industri, dengan panjang meknik sumbu "y" sebesar 60 cm, lebar sumbu "x" sebesar 41 cm dan panjang sumbu "z" sebesar 28 cm. dengan bidang kerja yang mampu untuk di lakukan proses cetak PCB sebesar 10 cm. untuk panjangnya dan lebar pada mesin CNC *portable* [7]

Gambar 2.9 CNC *Portable* (https://www.ripublication.com/ijaer18/ijaerv13n12_34.pdf)

2.8 AT Mega328P

Atmega 328P merupakan mikrokontroler yang diproduksi oleh Atmel dengan arsitektur processor 8-bit RISC (Reduced instruction Set Computer). Mikrokontroler Atmega 328P seperti di tunjukkan pada gambar 2.10 AT Mega 328P dikembangkan oleh Atmel Corporation yang di kembangkan mulai dari tahun 1984 dan sebelum di akuisisi oleh Mikrochip Technology di tahun 2016. Terdapat beberapa produk termasuk mikrokontroller (AVR 8-*bit*, AVR 32-*bit*, berbasis ARM 32-bit). Atmel memasok perangkatnya sebagai produk standar, sirkuit terintegrasi khusus aplikasi (ASICs), atau produk standar spesifik aplikasi (ASSP), tergantung pada persyaratan pelanggan. AT Mega 328 juga di lengkapi dengan port serial SPI, konverter A / D 6-*channel* 10-*bit* (paket 8-*channel* dalam paket TQFP dan QFN / MLF) dan lima mode output tegangan yang dapat dipilih untuk di hubungkan pada perangkat lunak.At Mega sendiri bekerja diantara tegangan1,8-5,5 VDC [8]. **Spesifikasi:**

- Mempunyai 32 kbytes flash memory.
- Spesifikasi Arsitektur: 8-bit RISC AVR, Tegangan kerja : 1,8- 5,5V
- Ukuran memori program : 32 Kbytes
- Kecepatan : 20 Mhz
- SRAM Memory 2 Kbytes
- EEPROM 1 Kbytes
- Maksimal pin I/O 23

Gambar 2.10 AT Mega 328P (https://www.microchip.com/wwwproducts/en/ATmega328)

2.9 Stepper Motor Driver A4988

A4988 *microstepping bipolar* stepper *driver* motor adalah pengendali motor stepper bipolar yang bisa di gunakan untuk mengatur putaran motor sebanyak 1 putaran penuh, 1/2 putaran, 1/8 putaran, dan sebagainya. A4988 juga merupakan fitur pembatas arus yang dapat di atur sesuai dengan yang kita butuhkan, tetapi driver motor stepper A4988 hanya mempunyai kapasitas output arus 2 *ampere*. *Driver* motor stepper A4988 juga mempunyai perlindungan arus berlebih dan suhu berlebih. *Driver* Ini beroperasi dari 8VDC hingga 35VDC, sumber tegangan ini di dapat dari power supply, driver motor stepper A4988 dapat mendistribusikan arus maksimal 2 *ampere*, dan kita bisa mengatur tegangan keluaran melalui resistor variable yang ada pada A4988 driver. *Driver* motor stepper bipolar A4988 driver dapat di lihat pada gambar 2.11. [9]

Spesifikasi:

- Tegangan Input: 8 to 35V
- Tegangan Input Logic 0.3 to 5V
- Arus Output $\pm 2A$
- Tegangan Referensi 5.5V
- Bipolar Stepper Supporting
- Frame size 42mm*42mm

Gambar 2.11 A4988 Driver Stepper Motor

(https://iknowvations.in/id/Arduino/a4988-stepper-motor-driverarduino)

2.10 Motor Stepper Bipolar

Motor stepper adalah perangkat elektromekanis yang bekerja dengan mengubah pulsa *elektronis* menjadi gerakan mekanik. Motor stepper bergerak berdasarkan urutan pulsa yang diberikan kepada motor. Oleh karena itu, untuk menggerakkan motor stepper diperlukan pengendali motor stepper yang membangkitkan pulsapulsa *periodic* seperti pada gambar 2.12 di bawah ini. Penggunaan motor stepper memiliki beberapa keunggulan dibandingkan dengan penggunaan motor dc biasa. Keunggulannya antara lain adalah sudut rotasi motor proporsional dengan pulsa masukan sehingga lebih mudah diatur.Motor dapat langsung memberikan torsi penuh pada saat mulai bergerak. Posisi dan pergerakan repetisinya dapat ditentukan secara presisi memiliki respon yang sangat baik terhadap mulai, stop dan berbalik (perputaran).Sangat realibel karena tidak adanya sikat yang bersentuhan dengan rotor seperti pada motor DC. Dapat menghasilkan perputaran yang lambat sehingga beban dapat dikopel langsung ke porosnya. Frekuensi perputaran dapat ditentukan secara bebas dan mudah pada range yang luas. Motor stepper bipolar pada gambar 2.13 biasanya di pasangkan dengan driver motor A4988. Motor stepper sendiri mempunyai beberapa tipe dan juga mempunyai spesifikasi khusus seperti motor stepper unipolar rangkaian pengendali motor stepper unipolar lebih mudah dirancang karena hanya memerlukan satu switch / transistor setiap lilitannya. Untuk menjalankan dan menghentikan motor ini cukup dengan menerapkan pulsa digital yang hanya terdiri atas tegangan positif dan nol (ground) pada salah satu terminal lilitan (wound) motor sementara terminal lainnya dicatu dengan tegangan positif konstan (VM) pada bagian tengah (*center* tap) dari lilitan. Untuk motor stepper dengan lilitan bipolar, diperlukan sinyal pulsa yang berubah-ubah dari positif ke negatif dan sebaliknya. Jadi pada setiap terminal lilitan (A & B) harus dihubungkan dengan sinyal yang mengayun dari positif ke negatif dan sebaliknya. Karena itu dibutuhkan rangkaian pengendali yang lebih kompleks daripada rangkaian pengendali untuk motor unipolar. Dan Motor stepper bipolar sendiri memiliki keunggulan dibandingkan dengan motor stepper unipolar dalam hal torsi yang lebih besar untuk ukuran yang sama. Oleh karena itu pada proyek akhir ini kita menggunakan motor stepper bipolar dengan tipe, spesifikasi yang akan di jelaskan lebih lanjut [10]

Spesifikasi:

- Tegangan *Output*: 4.7V

- Ampere Output 0.65A
- Putaran motor 1.8 derajat tiap 1 pulsa

Gambar 2.12 Cara KerjaMotor Stepper (http://elektronika-dasar.web.id/motor-stepper/)

Gambar 2.13 Motor Stepper Bipolar (http://elektronika-dasar.web.id/motor-stepper/)

2.11 Motor Spindle 400W

Motor *Spindle* adalah bagian dari mesin yang menjadi rumah cutter. Spindle inilah yang mengatur putaran dan pergerakkan mata bor. Spindle pada dasarnya mempunyai prinsip kerja yang mirip dengan motor dc. Motor dc ini menghasilkan sejumlah putaran per menit atau biasanya dikenal dengan istilah *RPM (Revolutions per minute)* dan dapat dibuat berputar searah jarum jam maupun berlawanan arah jarum jam apabila polaritas listrik yang diberikan pada Motor dc tersebut dibalikan. Motor listrik dc tersedia dalam berbagai ukuran rpm dan bentuk. Kebanyakan Motor Listrik dc seperti pada gambar 2.14 memberikan kecepatan rotasi sekitar 3000 *rpm* hingga 8000 *rpm* dengan tegangan operasional dari 1,5V hingga 24V.Pada saat Motor listrik dc berputar tanpa beban, hanya sedikit arus listrik atau daya yang digunakannya, namun pada saat diberikan beban, jumlah arus yang digunakan akan meningkat hingga ratusan persen bahkan hingga 1000% atau lebih (tergantung jenis beban yang diberikan). Oleh karena itu, produsen motor dc biasanya akan mencantumkan *Stall Current* pada motor dc. *Stall Current* adalah arus pada saat poros motor berhenti karena mengalami beban maksimal. [11]

Gambar 2.14 Motor Spindle (https://fr.banggood.com/400W-12000rpm-ER11-Chuck-CNC-Brushless-Spindle-Motor-with-Driver-Speed-Controller-and-Clamp-p-1149321.html?cur_warehouse=CN)

2.12 Universal Spindle Motor Driver

Universal spindle motor driver seperti pada gambar 2.15 adalah sebuah driver motor yang berguna untuk membantu menggerakkan motor spindle sesuai kebutuhan yang ada pada motor spindle tersebut, mulai dari spindle motor dengan supply sebesar 12VDC – 48VDC dengan kapasitas output arus sebesar 10A memungkinkan kinerja motor spindle dengan optimal di karenakan kapasitas dari driver yang besar sesuai dengan kebutuhan motor spindle untuk proses CNC Miling. [12].

Spesifikasi:

- Di dukung Input AC maupun DC
- Arus *Output* sebesar $\pm 10A$
- Lingkup tegangan yang tersedia 12VDC 48VDC

Gambar 2.15 *Universal Spindle* Motor *Driver* (https://www.aliexpress.com/item/1856673043.html)

2.13 Software CAD/CAM

CAD (Computer Aided Design) adalah program komputer yang memungkinkan seorang perancang (designer) untuk mendisain gambar rekayasa (design engineering) dengan mentransformasikan gambar geometris secara cepat. Sedangkan CAM (Computer Aided Manufacturing) adalah sistem manufaktur yang mengoptimalkan kemampuan program komputer untuk menterjemahkan desain rekayasa yang dibuat oleh CAD sehingga dapat mengontrol mesin CNC. Dengan adanya software CAD dan CAM akan mempermudah proses mencetak sirkuit PCB tanpa harus melakukan proses etching menggunakan bahan kimia [13].

2.13.1 Inkscape

Inkscape pada gambar 2.16 adalah sebuah software yang berperan penting sebagai proses CAD (Computer Aided Design) pada mesin CNC ini .Software inkscape ini merupakan sebuah aplikasi editor grafis vektor yang hampir sama dengan CorelDraw menggunakan Vector Graphics standar W3C Scalable Vector Graphics atau (SVG) format file. Dalam pemilihan format .SVG dipilih untuk mengubah gambar dari software Inkscape agar dapat digunakan dalam membuat gambar vektor dalam berbagai kebutuhan, misalnya untuk membuat gambar ilustrasi pada web, ikon untuk smartphone, gambar kartun atau animasi, membuat garis sederhana, kaligrafi, logo, brosur, dan masih banyak lagi. Gambar vektor adalah gambar yang dibuat dari unsur garis dan kurva. Kumpulan dari beberapa garis dan kurva ini akan membentuk suatu obyek atau gambar. Gambar vektor memiliki beberapa kelebihan diantaranya gambar tetap jelas ketika diperbesar, ukuran file yang dihasilkan kecil, kualitas grafis tidak tergantuk dengan banyaknya pixels. Pada tampilan software Inkscape terdapat beberapa peralatan yang dipergunakan untuk membuat sebuah gambar yang perlu untuk diketahui diantaranya terdapat kanvas sebagai tempat atau media desain yang dibuat, menu bar sebagai pengaturan umum Inkscape, command bar sebagai short cut atau jalur pintas pada beberapa aksi, tool bar sebagai peralatan yang digunakan untuk bekerja misalnya untuk menyeleksi, menggambar atau mengubah objek, tool control sebagai pengaturan lebih lanjut terhadap objek yang sudah diatur, *color pallete* berfungsi untuk memilih warna yang akan digunakan. status bar yang berfungsi untuk memberikan informasi terhadap aktivitas yang terjadi pada objek, penggaris yang menunjukkan ordinat (x)dan absis (y) dari objek serta *scroll bar* digunakan untuk menggeser bidang kerja apabila ada bagian objek yang tidak terlihat. Secara keseluruhan software inkscape.

Gambar 2.16 Tampilan *Inkscape* (https://inkscape.org/)

Setelah desain dibuat dilakukan langkah *trace bitmap* yang berfungsi untuk mengubah gambar bitmap menjadi vektor. Gambar Vektor memiliki kualitas yang bagus, ketika diperbesar atau diperkecil gambar tidak pecah.Ini karena Vektor merupakan gambar yang dibentuk dari gabungan titik yang membentuk sebuah objek. Sementara *Bitmap* adalah representasi dari citra grafis, terdiri dari titik-titik yang tersusun dan tersimpan di dalam memori komputer.Pada gambar 2.17 dapat dilihat mengenai cara *trace bitmap* pada *software Inkscape* yaitu pada menu bar dipilih tapak>>jejak bitmap>>OK. Contoh desain yang diambil adalah sebuah persegi dengan panjang rusuk sebesar 50mm.

Gambar 2.17 Trace Bitmap pada Software Inkscape (https://inkscape.org/)

Setelah melakukan proses *trace bitmap* seperti yang terdapat pada gambar 2.17 dilakukan proses penyimpanan file ke dalam bentuk (*.SVG) dengan cara membuka berkas pada menu bar pilih save atau save as, sehingga akan muncul kotak dialog seperti pada Gambar 2.18. Kemudian isikan nama file yang ingin disimpan ke dalam bentuk format *Inkscape SVG* (*.SVG) . SVG adalah sebuah format gambar vektor berbasis *Extensible Markup Language* (*XML*) untuk grafik dua dimensi dengan dukungan untuk interaktivitas dan animasi. Spesifikasi SVG adalah standar terbuka yang dikembangkan oleh *World Wide Web Consortium* (*W3C*). Pada proyek akhir ini desain file sirkuit PCB di ubah kedalam vektor menggunakan file berformat *Scaleable Vector Graphics*.

Save in: Downloads	- G 🕸 📂 📰-	
Name 🗠	Date modified Type	Size 🔹
Lompressed	11/20/2019 11:1 File folder	
Documents	11/26/2019 8:56 File folder	
퉬 Music	11/23/2019 4:14 File folder	
Dicture 🖉	11/26/2019 3:40 File folder	
Programs	11/20/2019 1:55 File folder	
퉬 Video	11/8/2019 2:00 AM File folder	
ALWAN	11/20/2019 10:4 SVG Document	12 KB
€]FIX	11/20/2019 5:55 SVG Document	128 KB
€]PCB	11/20/2019 5:35 SVG Document	135 KB
ile name: PCB		Save
ave as type: Inkscape SVG (*.svg)		Cancel
îtle:		

Gambar 2.18 Kotak Dialog Penyimpanan dalam (*.SVG) (https://inkscape.org/)

2.13.2 Jscut

Jscut merupakan software Computer Aided Manufacture yang digunakan untuk menterjemahkan format file gambar berupa SVG menjadi G-Code. Mesin CNC hanya bisa membaca kode G-Code sehingga diperlukan penerjemahan file ini. Keunggulan dari Software Jscut adalah pengguna dapat mengatur kedalaman pemotongan yang diinginkan, pengguna dapat memilih jenis pemotongan yang diinginkan serta pengguna dapat menyesuaikan mata bor yang dipakai dengan ukuran gambar. Pilihan menu yang disediakan pada software ini terdiri dari open SVG, open settings, save settings serta save G-Code. Open SVG berfungsi untuk membuka gambar yang telah didesain pada software CAD serta berformat .SVG. Save G-Code berfungsi untuk menyimpan file dalam bentuk (*.Gcode). Detail menu bar yang disediakan di software ini dapat dilihat pada gambar 2.19. Software ini juga bisa di dapatkan secara gratis dengan mengakses jscut.org.

jscut			
Open SVG -	Open Settings -	Save Settings	Save GCODE

Gambar 2.19 Menu Bar Jscut (http://jscut.org/jscut.html#)

Pengaturan material berfungsi sebagai pengaturan seberapa ketebalan dari benda , pengatur posisi Z0 serta seberapa tinggi alat bergerak di atas material. Detail pengaturan dari material dapat dilihat pada gambar 2.20. Untuk mempermudah dalam pengaturan keseluruhan buat semua satuan dari pengaturan menjadi mm dengan cara tekan tulisan "make all mm" pada pengaturan material gambar 2.20 di bawah ini.

0.100 0.000 -1.000 Make all mm Make all inch Units Inch •
0.100
0.000
-1.000 Make all mm Make all inch Units inch •
Make all mm Make all inch Units inch •
Units Inch •
Units inch •
Thickness 1.0
Z Origin Top 🔻
Clearance 0.1

Gambar 2.20 Pengaturan Material Jscut (http://jscut.org/jscut.html#)

Gcode *Conversion* pada tampilan seperti gambar 2.21. digunakan untuk mengatur posisi sumbu *x* ataupun sumbu *y* pada batas koordinat minimal berapa serta koordinat maksimal berapa serta dapat mengatur pengembalian posisi sumbu *x* dan sumbu *y* ke titik 0,0. *X Offset* dan *Yoffset* digunakan untuk mengatur titik awal dan titik akhir pada sumbu *x* dan sumbu *y*. Agar dapat kembali ke titik "0",agar mempermudah proses pengaturan pengerjaan selanjutnya.

Gambar 2.21 G-code Conversion Jscut (http://jscut.org/jscut.html#)

Pada pengaturan tools seperti pada gambar 2.22 (shared for all operations) memiliki beberapa pilihan diantaranya pengaturan diameter untuk menyesuaikan diameter mata bor vang dipergunakan, *angle* digunakan untuk derajat dari mata bor yang dipergunakan pada umumnya 180 derajat, pass depth digunakan untuk kedalaman pemotongan, step over untuk mengetahui seberapa bagian kecil dari diameter mata bor yang harus diinjak setiap kali satu putaran nilai yang lebih kecil menghasilkan potongan yang lebih baik tetapi memakan waktu lebih lama dalam menyelesaikannya, rapid pergerakan kecepatan mata bor ketika tidak melakukan pemotongan, *plunge* merupakan jatuhnya kecepatan mata bor ke dalam materi, serta cut sebagai pergerakan kecepatan mata bor secara horizontal selama proses pemotongan. Tampilan dari pengaturan Tools. Yang ada di dalam software jscut.

Unitsinch ▼Diameterinch0.125Angledegrees180Pass Depthinch0.125Step Over(0, 1]0.4Rapidinch/min100	Tool (shared for all operations)					
Diameterinch0.125Angledegrees180Pass Depthinch0.125Step Over(0, 1]0.4Rapidinch/min100	Units	inch •				
Angle degrees 180 Pass Depth inch 0.125 Step Over (0, 1] 0.4 Rapid inch/min 100	Diameter	inch	0.125			
Pass Depth inch 0.125 Step Over (0, 1] 0.4 Rapid inch/min 100	Angle	degrees	180			
Step Over (0, 1] 0.4 Rapid inch/min 100	Pass Depth	inch	0.125			
Rapid inch/min 100	Step Over	(0, 1]	0.4			
	Rapid	inch/min	100			
Plunge inch/min 5	Plunge	inch/min	5			
Cut inch/min 40	Cut	inch/min	40			

Gambar 2.22 Pengaturan Tool Jscut (http://jscut.org/jscut.html#)

Pada pengaturan *operations* digunakan untuk memilih *mode* pemotongan yang digunakan. Terdapat 4 pilihan *mode* yang dapat dipergunakan yaitu *mode pocket, mode inside, mode outside* serta *mode engrave*. Pada *mode pocket* digunakan untuk pemotongan objek secara luasnya, pada *mode inside* hanya pemotongan bagian tepi dalam dari gambar tersebut, *mode outside* digunakan untuk pemotongan bagian tepi terluar dari keliling gambar, sementara *mode engrave* merupakan pemotongan dari keliling dari gambar. Tampilan Pengaturan dari *Mode Operations Software* Jscut, sperti pada gambar 2.23.

Operations		
px per inch	96]
Create Operation		
► 🗹 Pocket 🔻 0.125	Deep	Generate

Gambar 2.23 Tampilan Pengaturan Mode Operations Jscut (http://jscut.org/jscut.html#)

2.14 G-Code v1.0.9

G-Code adalah nama umum dari ISO 6983, merupakan bahasa pemrograman untuk mengontrol mesin-mesin *Computer Numerical Control* (CNC). G-Code yang berorientasi pada mesin yaitu berfokus pada jejak titik pusat pahat (*tool center path*) pada sumbu mesin untuk pemrogramannya seperti gambar 2.24 [14].

2.14 Sistem Inkremental

Pada sistem inkremental titik awal penempatan yang digunakan sebagai acuan adalah selalu berpindah sesuai dengan titik *actual* yang dinyatakan terakhir. Jadi pada saat mesin CNC beroperasi menggunakan sistem ini, titik referensi selalu berubah selama operasi berlangsung. Sistem inkremental biasa dituliskan dengan kode G-Code G91. Prinsip kerja dari sistem inkremental adalah jika mesin CNC portable bergerak kea rah x+ sejauh 10 mm dan setelah sampai 10 mm, di berikan perintah lagi untuk bergerak kearah 10 mm tanpa harus kembali ke titik semula, yaitu titik"0,0", dan cara kerja dari sistem incremental dan karakteristik dari sistem incremental sudah dapat di lihat dan di jelaskan pada gambar 2.25.

Gambar 2.25 Sistem Inkremental (http://desainmanufaktur.bayuwiro.net/index.php/2015/11/050)

2.15 Sistem Absolute

Pengoperasian mesin dengan menggunakan sistem absolute, yaitu menentukan suatu koordinat/perpidahan mesin CNC sebagai referensi awal, yaitu di mana proses pergerakan dari mesin CNC di awali dari koordinat 0,0 dan biasanya operator dapat menentukan titik referensi awal sesuai keinginan. Selama proses operasi mesin berlangsung, yang menjadi acuan koordinat merupakan titik referensi awal mesin. Dimana setiap pergerakan selalu di mulai dari titik awal "0,0" maka dari itu di sebut sebagai sistem absolute. Sistem absolute sendiri dapat dituliskan dengan kode G-Code G90 pada software Grbl CNC. Prinsip kerja dari sistem absolute sendiri sudah tergambarkan dan sangat jelas pada gambar 2.26 berikut ini.

Gambar 2.26 Sistem *Absolute* (http://desainmanufaktur.bayuwiro.net/index.php/2015/11/050)

28

2.16 Timing Pulley

Timing pulley pada gambar 2.27 adalah suatu alat mekanis yang di gunakan sebagai penyambung gerakan dari motor stepper ke menanik CNC *portable*, dimana pada motor stepper umumnya tidak di lengkapi oleh *timing pulley* sebagai roda gerigi, dengan bantuan timing belt sebagai jalur gerakan dari motor stepper. Timing pulley juga sering digunakan untuk mengubah arah dari gaya yang diberikan dari motor stepper, dan memudahkan dalam proses gerak rotasi mesin CNC. Timing pulley tipe I dan II memungkinkan pengulangan siklus tanpa akumulasi dalam toleransi yang tepat. Dalam *timing pulley* terdapat pengulangan gerakan atau repeatability, repeatability adalah kemampuan langkah pada timing pulley untuk melakukan rotasi berturut-turut dari sabuk untuk kembali ke posisi semula, dalam toleransi yang ditentukan, dalam sistem penggerak gesekan, katrol bergerak sedikit lebih cepat daripada timing belt. Jika tidak dikontrol, akan menyebabkan hilangnya proses pengulangan, yang mempengaruhi ketepatan dari gerakan mesin CNC portable. Ada beberapa faktor penting yang perlu dipertimbangkan ketika merancang timing *pulley* untuk di aplikasikan dalam mesin CNC, tetapi yang paling penting adalah diameter katrol dan jumlah gerigi dari *timing pulley* untuk meningkatkan tingkat keakuratan gerakan mesin tersebut.

Gambar 2.27 Timing Pulley (https://www.belttechnologies.com/products/pulleys/timing-pulleys/)

2.17 Timing Belt

Timing belt seperti gambar 2.28 adalah sebuah sabuk waktu dirancang untuk berfungsi dengan katrol waktu/ *timing pulley* untuk menjamin pergerakan dari mesin CNC *portable*. *Timing Belt* mempunyai gerigi di bagian dalam dari sabuk tersebut sebagai penyambung gerakan dari mesin CNC *portable* tersebut, dimana tiap gerigi mempunyai panjang yang berbeda beda tergantung dari kebutuhan dari penggunaan dan jenis mesin CNC seperti apa yang ingin di gunakan oleh pengguna mesin tersebut. Pada proyek akhir ini penggunaan *timing belt* di gunakan pada bagian sumbu x, serta y, sebagai pengkonversi gerakan rotasi yang di hasilkan oleh motor

Gambar 2.27 Timing Belt (https://www.belttechnologies.com/products/pulleys/timing-belt/)

2.18 Pitch Screw

Pitch Screw pada gambar 2.29 adalah alat yang berbentuk tabung memanjang yang mempunyai ulir di setiap bagian permukaan nya, yang digunakan untuk mengkonversi gerakan rotasi dari motor stepper dan kemudian di transfer menggunakan *pitch screw* sehingga menghasilkan gerakan secara *liniear*. Pitch screw, atau ulir, bagian penting dari mesin CNC sebagai penggerak dari motor stepper dan dalam penggunaan proyek akhir ini *pitch screw* di letakkan pada bagian sumbu z mesin CNC *portable* serta sebagai penyambung gerakan dari motor stepper sumbu z .

Gambar 2.29 *Timing Pulley* (https://en.wikipedia.org/wiki/Screw_thread)

2.19 Penggunaan Mata Bor

Pada gambar 2.30, 2.31 akan di tunjukkan mengenai perbedaan spesifikasi dari mata bor, penggunaan mata bor perlu memperhatikan beberapa aspek, seperti penggunaan mata bor untuk material kayu mempunyai spesifikasi mata bor tersendiri, serta penggunaan mata bor untuk bahan *phenolic paper* maupun bahan *fiber* sebagai bahan dasar pembuat papan PCB juga mempunyai spesifikasi tersendiri. Berikut ini adalah penjelasan mengenai tipe mata bor, spesifikasi mata bor, serta kegunaan mata bor itu [15].

Gambar 2.30 Mata Bor v Shape (https://www.bosch-pt.co.id/id/id/standard-for-resin -v ocs-ac/)

Pada gambar 2.30 adalah gambar mata bor dengan tipe "v shape" di bawah ini akan di jelaskan mengenai spesifikasi, dan penggunaan mata bor tipe" v shape" untuk proses grafir pada PCB: **Spesifikasi:**

- Shank diameter : 5 mm
- *Cutting Edge Length (Flute Length)* : 0.1mm
- Type : V-shape
- Degree : 10
- Material : solid carbide
- Digunakan untuk material pada : Nylon, Resin, ABS (Acrylonitrile butadiene styrene), Acrylic

Pada gambar 2.31 adalah gambar mata bor dengan tipe "*twist bist*" di bawah ini akan di jelaskan mengenai spesifikasi dari mata bor, dan penggunaan dari mata bor tipe "*twist bist*":

Spesifikasi:

- Shank diameter : 5 mm
- *Cutting Edge Length (Flute Length)* : 1 mm
- Type : Twist Bist
- Degree : 45
- Material : Steel
- Di gunakan untuk material pada : Kayu, PVC (Polyvinyl chloride)

Gambar 2.31 Mata Bor *Twist Bist* (https://en.wikipedia.org/wiki/Twist_Bist)

BAB III PERANCANGAN DAN IMPLEMENTASI

Pada bab perancangan dan implementasi pada proyek akhir ini di lakukan proses penambahan sensor tekanan vaitu sensor FSR (Force Sensing Reisitor) sebagai pembeda dengan proyek akhir sebelumnya. Sensor FSR tersebut berguna sebagai sensor untuk mendeteksi kekerasan bahan, dimana apabila semakin keras suatu bahan, maka akan membutuhkan tekanan yang lebih besar dari mata bor untuk melubangi papan PCB polos, sehingga mengurangi pergerakan dari mesin CNC tersebut dan mengurangi ke akuratan pergerakan dari mesin CNC tersebut, bahan PCB yang akan di gunakan sebagai bahan uji dalam proyek akhir ini merupakan PCB berbahan "Phenolic Paper" dan papan PCB polos berbahan "Fiber" . Papan PCB berbahan phenolic paper merupakan PCB yang sering di gunakan oleh masyarakat umum dikarenakan harganya yang relative murah. Pada proyek akhir ini mesin CNC portable yang di gunakan, adalah mesin CNC yang dahulu sudah pernah di pakai pada pengerjaan proyek akhir sebelumnya, tetapi membutuhkan perbaikan pada banyak komponen. Seperti bearing, timing pulley, timing belt, dan motor stepper yang tidak berfungsi seperti seharusnya. Dalam bab perancangan dan implementasi ini di lakukan pembahasan mengenai bentuk dari mesin CNC *portable*, perancangan elektrik dari sumbu x motor stepper, sumbu y motor stepper, sumbu z motor stepper, motor spindle, perancangan elektrik sensor FSR, perancangan desain dari sirkuit PCB di lakukan perancangan menggunakan beberapa metode, yaitu menggunakan perancangan software CAD (Computer Aided Desain)menggunakan software inkscape, dan menggunakan software eagle, perancangan software CAM (Computer Aided Manufactur), menggunakan software jscut, dan software G-Code sebagai penggerak motor stepper, konfigurasi keseluruhan kerja dari mesin CNC portable dari proses desain hingga terbentuk PCB.

3.1 Bentuk Mekanik Mesin CNC Portable

3.1.1 Bentuk Mekanik Sumbu x Mesin CNC Portable

Bentuk mekanik sumbu x dari mesin CNC *portable* bisa di lihat pada gambar 3.1 dengan panjang rangka sebesar 50 cm serta *liniear shaft* sepanjang 50 cm sebagai jalur gerakan sumbu x secara *horizontal*, beserta *timing belt* yang berguna sebagai penyambung gerakan dari motor stepper dari *timing pulley*. Seperti gambar 3.1.

Gambar 3.1 Bentuk Mekanik CNC Portable x Axis

3.1.2 Bentuk Mekanik Sumbu y Mesin CNC Portable

Bentuk mekanik sumbu y dari mesin CNC *portable* bisa di lihat pada gambar 3.2 dengan panjang besi 62 cm serta *liniear shaft* sepanjang 62 cm, sebagai jalur sumbu y, yang bergerak *horizontal*, dan *timing belt* berguna sebagai penyambung gerakan dari motor setepper. Bentuk mekanik sumbu y dapat di lihat pada gambar 3.2.

Gambar 3.2 Bentuk Mekanik CNC Portable y Axis

3.1.3 Bentuk Mekanik Sumbu z Mesin CNC Portable

Bentuk mekanik sumbu z dari mesin CNC portable bisa di lihat pada gambar 3.3 dengan rangka berbahan akrilik sepanjang 26 cm, serta liniear shaft sepanjang 26 cm, untuk menggerakan sumbu z secara vertikal keatas dan kebawah , mesin CNC *portable* menggunakan *pitch screw* sebagai penyambung gerakan dari motor stepper ke mekanik mesin CNC *portable* seperti pada gambar 3.3.

Gambar 3.3 Bentuk Mekanik CNC Portable z Axis

3.2 Perancangan Elektrik

Menjalankan sebuah mesin CNC *portable* membutuhkan beberapa konfigurasi elektrik yang dapat menunjang performa kerja dari mesin CNC tersebut. Pada sub bab ini akan membahas mengenai perancangan rangkaian konfigurasi sensor *FSR (Force Sensing Resistor)*, rangkaian konfigurasi sumbu *x*, *y*, dan *z* mesin CNC *portable*, konfigurasi rangkaian motor *spindle*, beserta *flowchart* dari masing masing konfigurasi rangkaian yang di buat.

3.2.1 Perancangan Elektrik Sumbu x Mesin CNC

Flowchart pada perancangan elektrik sumbu x mesin CNC digunakan untuk menjalankan sumbu x mesin CNC agar berjalan sesuai dengan yang kita harapkan dan berfungsi secara optimal. Berikut ini adalah penjelasan mengenai flowchart dari perancangan elektrik sumbu x mesin CNC pada gambar 3.4. Awal mula di mulainya perintah menjalankan motor stepper sumbu *x* mesin CNC

portable di awali oleh *software Grbl* yang meminta perpindahan motor stepper berpindah sejauh 1 mm kearah x+ kemudaian mikrokontroller At Mega 328P melakukan proses penerjemahan kode G-Code yang ada di dalam *software Grbl* untuk di lakukan eksekusi berupa perpindahan jarak sebesar 1 mm kearah x+. At Mega 328P yang melakukan penerjemahan kode G-Code akan menghasilkan *output enable* serta *output step* dan *direction* untuk menggerakkan motor stepper tersebut, proses pengendalian motor stepper sumbu x bisa di lihat pada gambar *flowchart* di gambar 3.4.

Gambar 3.4 Flowchart sumbu x Pada Mesin CNC

Pada gambar 3.5 akan dijelaskan mengenai konfigurasi pin AT Mega 328P terhadap motor stepper sumbu *x*. Terdapat sebuah motor stepper yang mengatur pergerakan dari mesin CNC *portable* ke arah x+ maupun x-, sumbu x ini bergerak secara *horizontal*. Berikut ini adalah penjelasan mengenai gambar 3.5. Penjelasan konfigurasi elektrik sumbu x mesin CNC portable pada gambar 3.5. Pin yang di gunakan pada At Mega 328P dan pin pada driver motor stepper A4988 adalah sebagai berikut :

- 1. Pin VMOT pada *driver* motor stepper A4988 di hubungkan pada sumber + DC *power supply*.
- 2. Pin GND pada *driver* motor stepper A4988 di hubungkan pada sumber DC *power supply*
- 3. Pin 1A pada *driver* motor stepper A4988 di hubungkan pada A+ motor stepper *bipolar*
- 4. Pin 1B pada *driver* motor stepper A4988 di hubungkan pada A- motor stepper *bipolar*
- 5. Pin 2A pada *driver* motor stepper A4988 di hubungkan pada B+ motor stepper *bipolar*
- 6. Pin 2A pada *driver* motor stepper A4988 di hubungkan pada B- motor stepper *bipolar*
- 7. Pin VDD pada *driver* motor stepper A4988 di hubungkan pada VCC 5V pada At Mega 328P
- 8. Pin GND pada *driver* motor stepper A4988 di hubungkan pada GND At Mega 328P
- 9. Pin Direction pada *driver* motor stepper A4988 di hubungkan pada pin nomor 5 pada At Mega 328P
- 10. Pin Step pada *driver* motor stepper A4988 di hubungkan pada pin nomor 2 pada At Mega 328P
- Power supply di hubungkan pada sumber tegangan AC 220V menghasilkan output tegangan DC sebesar 24V untuk tegangan A4988. Tegangan dari motor stepper diambil dari Pin VCC mikrokontroller At Mega 328P.

Gambar 3.5 Konfigurasi Elektrik Sumbu x CNC

3.2.2 Perancangan Elektrik Sumbu y Mesin CNC

Flowchart pada perancangan elektrik sumbu y mesin CNC digunakan untuk menjalankan sumbu y mesin CNC agar berjalan sesuai dengan yang kita harapkan dan berfungsi secara optimal, pada sumbu y di gunakan driver motor stepper A4988, dimana driver tersebut membutuhkan sumber tegangan DC sebesar 24V dari power supply, dan untuk sumber motor stepper sendiri di butuhkan tegangan dari pin VCC 5V mikrokontroller At Mega 328P. Berikut ini adalah penjelasan mengenai flowchart dari perancangan elektrik sumbu y mesin CNC pada gambar 3.6. Awal di mulainya perintah menjalankan motor stepper sumbu y mesin CNC di awali oleh perintah oleh software Grbl yang meminta perpindahan motor stepper berpindah 1 mm kearah y+ kemudaian mikrokontroller At Mega 328P melakukan proses penerjemahan kode G-Code yang ada di dalam software Grbl untuk di lakukan eksekusi berupa perpindahan jarak sebesar 1 mm kearah y+. At Mega 328P yang melakukan penerjemahan kode G-Code akan menghasilkan output enable serta output step dan direction untuk menggerakkan motor stepper tersebut, proses pengendalian motor stepper sumbu y axis bisa di lihat pada *flowchart* pada gambar 3.6.

Gambar 3.6 Flowchart Sumbu y Pada Mesin CNC

Pada gambar 3.7 dijelaskan mengenai konfigurasi pin AT Mega 328P terhadap motor stepper sumbu *y*. Terdapat 2 buah motor stepper yang mengatur pergerakan dari mesin CNC *portable* ke arah y+ maupun y-, sumbu y ini bergerak secara horizontal. Berikut ini adalah penjelasan mengenai gambar 3.7. Penjelasan konfigurasi elektrik sumbu y mesin CNC portable pada gambar 3.7. Pin yang di gunakan pada At Mega 328P dan pin pada *driver* motor stepper A4988 adalah sebagai berikut :

- 1. Pin VMOT pada *driver* motor stepper A4988 di hubungkan pada sumber + DC *power supply*.
- 2. Pin GND pada *driver* motor stepper A4988 di hubungkan pada sumber DC *power supply*
- 3. Pin 1A pada *driver* motor stepper A4988 di hubungkan pada A+ dan B+ motor stepper *bipolar*
- 4. Pin 1B pada *driver* motor stepper A4988 di hubungkan pada A- dan B- motor stepper *bipolar*
- 5. Pin 2A pada *driver* motor stepper A4988 di hubungkan pada B+ dan A+ motor stepper *bipolar*
- 6. Pin 2A pada *driver* motor stepper A4988 di hubungkan pada B- dan A- motor stepper *bipolar*
- 7. Pin VDD pada *driver* motor stepper A4988 di hubungkan pada VCC 5V pada At Mega 328P
- 8. Pin GND pada *driver* motor stepper A4988 di hubungkan pada GND At Mega 328P
- 9. Pin *Direction* pada *driver* motor stepper A4988 di hubungkan pada pin nomor 6 pada At Mega 328P
- 10. Pin *Step* pada *driver* motor stepper A4988 di hubungkan pada pin nomor 3 pada At Mega 328P
- Power supply di hubungkan pada sumber tegangan AC 220V menghasilkan output tegangan DC sebesar 24V untuk tegangan A4988. Tegangan dari motor stepper diambil dari Pin VCC mikrokontroller At Mega 328P.

Gambar 3.7 Konfigurasi Elektrik Sumbu y Mesin CNC

3.2.3 Perancangan Elektrik Sumbu z Mesin CNC

Flowchart pada perancangan elektrik sumbu z mesin CNC digunakan untuk menjalankan sumbu z mesin CNC, driver motor stepper A4988 juga di gunakan di sumbu z motor stepper, driver tersebut membutuhkan sumber tegangan DC sebesar 24V dari *power supply*, dan untuk sumber motor stepper sendiri di butuhkan tegangan dari pin VCC 5V mikrokontroller At Mega 328P. Berikut ini penjelasan mengenai flowchart dari perancangan elektrik sumbu z mesin CNC pada gambar 3.8. Awal di mulainya perintah menjalankan motor stepper sumbu z mesin CNC di awali oleh perintah oleh software Grbl yang meminta perpindahan motor stepper berpindah 1 mm kearah z+ kemudaian mikrokontroller At Mega 328P melakukan proses penerjemahan kode G-Code yang ada di dalam software Grbl untuk di lakukan eksekusi berupa perpindahan jarak sebesar 1 mm kearah z+. At Mega 328P yang melakukan penerjemahan kode G-Code akan menghasilkan output enable serta output step dan direction untuk menggerakkan motor stepper. Gambar *flowchart* sumbu z bisa di lihat pada gambar 3.8.

Gambar 3.8 Flowchart Sumbu z Pada Mesin CNC

Pada gambar 3.9 dijelaskan mengenai konfigurasi pin AT Mega 328P terhadap motor stepper sumbu *z*. Terdapat 1 buah motor stepper yang mengatur pergerakan dari mesin CNC *portable* ke arah z+ maupun z-, sumbu z ini bergerak secara vertikal. Berikut ini adalah penjelasan mengenai gambar 3.9. Penjelasan konfigurasi elektrik sumbu z mesin CNC portable pada gambar 3.9. Pin yang di gunakan pada At Mega 328P dan pin pada *driver* motor stepper A4988 adalah sebagai berikut :

- 1. Pin VMOT pada *driver* motor stepper A4988 di hubungkan pada sumber + DC *power supply*.
- 2. Pin GND pada *driver* motor stepper A4988 di hubungkan pada sumber DC *power supply*
- 3. Pin 1A pada *driver* motor stepper A4988 di hubungkan pada A+ motor stepper *bipolar*
- 4. Pin 1B pada *driver* motor stepper A4988 di hubungkan pada A- motor stepper *bipolar*
- 5. Pin 2A pada *driver* motor stepper A4988 di hubungkan pada B+ motor stepper *bipolar*
- 6. Pin 2A pada *driver* motor stepper A4988 di hubungkan pada B- motor stepper *bipolar*
- 7. Pin VDD pada *driver* motor stepper A4988 di hubungkan pada VCC 5V pada At Mega 328P
- 8. Pin GND pada *driver* motor stepper A4988 di hubungkan pada GND At Mega 328P
- 9. Pin Direction pada *driver* motor stepper A4988 di hubungkan pada pin nomor 7 pada At Mega 328P
- 10. Pin Step pada *driver* motor stepper A4988 di hubungkan pada pin nomor 4 pada At Mega 328P
- Power supply di hubungkan pada sumber tegangan AC 220V menghasilkan output tegangan DC sebesar 24V untuk tegangan A4988. Tegangan dari motor stepper diambil dari Pin VCC mikrokontroller At Mega 328P.

Gambar 3.9 Konfigurasi Elektrik Sumbu z CNC

3.2.4 Perancangan Elektrik Motor Spindle

Flowchart pada perancangan elektrik motor spindle mesin CNC digunakan untuk melakukan proses grafir pada papan PCB maupun melubangi papan PCB untuk mencetak sirkuit PCB. Berikut ini penjelasan mengenai flowchart dari perancangan elektrik motor spindle mesin CNC seperti pada gambar 3.10. Awal di mulainya perintah menjalankan motor spindle mesin CNC di awali oleh mikrokontroller At Mega 328P dengan memberikan output sinyal PWM pada pin 9 pada mikrokontroller At Mega 328P. Output PWM tersebut akan memberikan masukan berupa trigger untuk mengatur kecepatan dari putaran motor *spindle*. Untuk tegangan eksternal dari motor spindle di butuhkan tegangan dari power supply sebesar 48VDC untuk menggerakkan motor spindle. Motor *spindle* sendiri di letakkan menempel pada sumbu z mesin CNC portable kegunaan sumbu z motor stepper sendiri untuk mengatur kedalaman dari bahan yang akan di lakukan proses mencetak sirkuit PCB, serta melubangi papan PCB sesuai dengan desain yang di buat sebelumnya menggunakan software inkscape. Gambar *flowchart* dapat di lihat pada gambar 3.10.

Gambar 3.10 Flowchart Motor Spindle Pada Mesin CNC

Pada gambar 3.11 dijelaskan mengenai konfigurasi pin AT Mega 328P terhadap motor spindle mesin CNC. Berikut ini adalah penjelasan mengenai gambar 3.11. Gambar 3.11 di bawah ini merupakan konfigurasi elektrik dari rangkaian motor spindle mesin CNC portable.Pin yang akan di gunakan pada mikrokontroller At Mega 328P dan koneksi pada motor spindle adalah sebagai berikut:

- 1. Pin VCC pada mikrokontroller At Mega 328P di hubungkan pada *driver* motor spindle +.
- 2. Pin GND pada mikrokontroller At Mega 328P di hubungkan pada *driver* motor spindle -.
- 3. Pin nomor 9 pada mikrokontroller At Mega 328P di hubungkan pada pin *PWM driver* motor spindle.
- 4. *Power supply* di hubungkan pada sumber tegangan AC 220V menghasilkan *output* tegangan DC sebesar 48V untuk tegangan *eksternal* motor *spindle*. Tegangan internal dari motor spindle diambil dari Pin *PWM* mikrokontroller At Mega 328P.
- 5. Kaki positif motor *spindle* di hubungkan dengan pin + driver motor spindle. Dan kaki *negative* di hubungkan pin *driver* motor *spindle* seperti pada gambar 3.11.

Gambar 3.11 Konfigurasi Elektrik Motor Spindle Motor CNC

3.2.5 Perancangan Elektrik Sensor FSR (Force Sensing Resistor)

Pada gambar 3.12 adalah sebuah rangkaian sensor *FSR* dengan At Mega 328P, Force Resistive Resistor atau kerap disebut sebagai FSR ini merupakan sebuah sensor tekanan yang akan memiliki resistansi yang berubah-ubah sesuai dengan besarnya *pressure* atau tekanan yang diberikan pada area sensornya. *FSR* sensor mempunyai banyak variasi ukuran, diantaranya ada yang memiliki area sensor berukuran hanya 0.16 inch atau sekitar 4mm. Semakin besar tekanan yang diberikan maka akan semakin kecil output resistansi dari sensor ini. Saat tidak ada tekanan diberikan, biasanya resistansi sensor ini lebih dari 1 Mega ohm, sedangkan pada tekanan penuh resistansinya bisa sampai 1 Kilo ohm bahkan kurang. Kali ini akan dijelaskan mengenai konfigurasi pin AT Mega 328P terhadap sensor *FSR*. Penjelasan konfigurasi adalah :

- 1. Pin VCC pada mikrokontroller At Mega 328P di hubungkan pada kaki sebelah kanan pada sensor *FSR* (*Force Sensing Resistor*)
- 2. Pin GND pada mikrokontroller At Mega 328P di hubungkan dengan kaki sebelah kiri sensor *FSR* dan di hubungkan secara paralel dengan resistor sebesar 10K Ohm sebagai pembanding *output* tegangan yang di hasilkan.

Gambar 3.12 Konfigurasi Sensor FSR (http://arduinolearning.com/code/force-sensitive-resistor-example.php)

3.2.6 Perancangan Elektrik LCD

Pada gambar 3.13 adalah sebuah rangkaian *LCD* (*Liquid Crystal Display*) dengan At Mega 328P, LCD (*Liquid Crystal Display*) 16x2 adalah jenis media tampilan atau Display dari bahan cairan kristal sebagai penampil utama.LCD 16x2 dapat menampilkan sebanyak 32 karakter yang terdiri dari 2 baris dengan tiap baris menampilkan 16 karakter.Pada Arduino untuk mengendalikan LCD Karakter 16x2 untuk librarynya secara default sudah ada librarynya yaitu LiquidCrystal.h. LCD ada bermacam-macam ukuran 8x1, 16x1, 16x2, 16x4, 20x4. Perbedaannya hanya pada inisialisasi jumlah kolom dan baris. Pada bagian ini akan dijelaskan mengenai konfigurasi pin AT Mega 328P terhadap LCD penjelasan mengenai konfigurasi pin pada mikrokontroller At Mega adalah :

- 1. Pin VCC pada mikrokontroller At Mega 328P di hubungkan pada kaki + LCD
- 2. Pin GND pada mikrokontroller At Mega 328P di hubungkan dengan kaki LCD
- 3. Pin SDA pada LCD di hubungkan pada pin A4 mikrokontroller At Mega 328P.
- 4. Pin SCL pada LCD di hubungkan pada pin A5 mikrokontroller At Mega 328P.

Gambar 3.13 Konfigurasi LCD (http://indomaker.com/index.php/2018/12/17/cara-cepat-memakai-lcd-i2c)
3.3 Pemilihan Mata Bor

Dalam pembuatan sirkuit PCB di perlukan penggunaan mata bor dengan tipe "*v Shape*" dimana pemilihan mata bor di tentukan oleh beberapa aspek yaitu :

- 1. Menetukan material yang akan di lakukan proses grafir.
- 2. Diameter dari mata bor
- 3. Bahan dari mata bor itu sendiri
- 4. Ketajaman / (sudut) dari mata bor.

Pada gambar 3.14 menunjukkan gambar mata bor tipe "v Shape" yang di gunakan untuk mencetak jalur pada papan PCB, mata bor tipe "v Shape" sendiri mempunyai beberapa spesifikasi antara lain:

- 1. Shank diameter : 5 mm
- 2. Cutting Edge Length (Flute Length): 0.1mm
- 3. Type : V-shape
- 4. *Degree* : 10
- 5. Material : solid carbide
- 6. Digunakan untuk material pada : Nylon, Resin, ABS (Acrylonitrile butadiene styrene), Acrylic

Gambar 3.14 Bentuk Mata Bor v Shape

3.4 Proses Desain PCB Pada Software CAD

3.3.1 Proses Desain PCB Pada Software Eagle

Software Eagle adalah software yang berisi editor skematik, untukmendesain diagram sirkuit. Skema disimpan dalam file dengan ekstensi .Sch, pada proses perancangan desain PCB hal pertama yang di lakukan adalah memilih komponen yang ada pada library *software eagle*, dan merangkainya, dalam hal ini kita akan men desain *driver* motor stepper A4988. Seperti pada gambar 3.15.

Gambar 3.15 Rangkaian Skematik *Driver* Motor Stepper A4988 (https://learn.sparkfun.com/tutorials/using-eagle-board-layout/all)

Setelah proses merangkai rangkaian skematik selesai, selanjutnya kita melakukan *switch board* untuk melakukan *routing* rangkain. Seperti yang di tunjukkan pada gambar 3.16 di bawah ini

Gambar 3.16 Routing *Driver* Motor Stepper A4988 (https://learn.sparkfun.com/tutorials/using-eagle-board-layout/all)

3.3.2 Proses Tracing Bitmap Pada Software Inkscape

Inkscape adalah editor *grafis* yang berguna untuk merubah file ber format *jpeg* untuk di rubah menjadi vektor.Pada gambar 3.16 adalah tampilan awal aplikasi *inkscape*. Aplikasi ini dapat di unduh secara gratis, dan dapat digunakan untuk membuat atau mengedit grafik vektor seperti ilustrasi, diagram, garis seni, grafik, logo dan lukisan kompleks. Format grafik vektor utama *Inkscape* adalah *Scalable Vector Graphics (SVG)*. Seperti pada gambar 3.17

Gambar 3.17 Tampilan Awal Software Inkscape (https://inkscape.org/)

Pada gambar 3.18 dilakukan proses tracing bitmap pada software inkscape dimana proses tersebut berguna mengubah file ber format Jpeg menjadi vektor dimana vektor tersebut akan menandakan bagian mana yang akan di grafir pada CNC portable.

Gambar 3.18 Proses Tracing Bitmap (https://inkscape.org/)

3.5 Perancangan Software CAM

3.5.1 Pengaturan Desain Pada Software Jscut

Jscut adalah salah satu *software CAM (Computer Aided Machine)* dimana *software Jscut* berguna untuk merubah file ber format SVG yang berisikan vektor, menjadi jalur pemotongan pada mesin CNC, serta di lengkapi simulasi pemotongan yang akan di lakukan oleh mesin CNC mulai dari ketebalan pemotongan, hingga kecepatan vertical dan *horizontal*. Pada gambar 3.19 adalah proses pengaturan pada *software Jscut* untuk menentukan bagian mana yang akan di lakukan proses *carving*, serta menentukan kedalaman.

Gambar 3.19 Proses Pengaturan Pada Software Jscut (http://jscut.org/jscut.html#)

Setelah selesai melakukan pengaturan berupa kedalaman mata bor, ketebalan jalur, serta pengaturan pada proses setelah mesin CNC melakukan proses grafir, yaitu *return to zero*. Langkah selanjutnya adalah melakukan proses menentukan mode apa yang akan kita gunakan. Terdapat beberapa opsi dalam menentukan metode grafir, mulai dari mode *pocket, inside, outside* dan kita juga dapat melihat simulasi 360 ,untuk mengetahui desain PCB. Setelah menentukan metode yang akan di gunakan maka langkah selanjutnya adalah megubah vektor ke dalam format G-Code, dan melihat simulasi pada *software Jscut*, seperti yang di tunjukkan pada gambar 3.20. 52

Gambar 3.20 Proses Simulasi dan Menyimpan G-Code (http://jscut.org/jscut.html#)

3.5.2 Proses Import Desain Pada Program G-Code

G-code adalah nama umum untuk bahasa pemrograman kontrol numerik (NC) yang paling banyak digunakan, biasanya di gunakan dalam pembuatan sebuah benda dengan bantuan komputer untuk mengendalikan peralatan mesin otomatis. G-code adalah sebuah fungsi yang digunakan dalam bahasa pemrograman Numerical Control yang mengandung informasi posisi sebuah alat untuk melakukan sebuah pekerjaan. Walaupun G-code adalah istilah yang biasanya digunakan untuk Numerical Control (NC), sebenarnya G-code hanyalah sebuah komponen dan bekerja bersama dengan kode-kode lainnya untuk melakukan tugas-tugas yang seharusnya. Versi standar G-code dikenal sebagai RS-274D. Versi-versi lainnya juga ada untuk mesin CNC dengan masalah kompatibilitas. Karena G-code adalah kode persiapan, dalam program CNC mereka mulai dengan huruf G dan mengarahkan mesin. Tindakan-tindakan yang umumnya diarahkan G-code meliputi: mengubah sebuah pallet, gerakan cepat, serangkaian gerakan feed yang terkontrol, menghasilkan potongan barang, lubang dibor atau bentuk dekoratif, untuk mengontrol gerakan feed.

3.5.3 Proses Program G-Code Dalam Software Grbl

Grbl merupakan software kontrol CNC berbasis AT Mega 328P, yang memiliki fungsi dasar yang sama seperti software kontrol CNC lainnya, yaitu mengirimkan Gcode kedalam mesin CNC. Grbl diperuntukkan untuk mesin CNC berbasis AT Mega 328P atau microcontroller sejenisnya. Grbl adalah software alternatif kontrol CNC yang masih di kembangkan hingga kini. Sebelum kita menjalankan CNC portable kita perlu melakukan kalibrasi dengan cara kita masukkan kode \$\$ pada menu command dan menekan tombol enter agar Grbl menampilkan pesan bantuan. Selanjutnya lihat pada tampilan antarmuka, akan muncul konfigurasi-konfigurasi tertentu untuk mengatur Grbl At Mega 328P, seperti terlihat pada tabel 3.1, dan tabel 3.2 di bawah ini.

KODE	FUNGSI
\$\$	Setelan Grbl
\$#	# parameter
\$G	Parser state
\$I	Build info
\$N	Startup blocks
\$x=nilai	Save grb1 setting
\$Nx=line	Save startup block

Tabel 3.1 Konfigurasi G-Code

\$C	Check gcode mode
\$X	Kill alrm lock
\$H	Run homing cycle
~	Cycle start
!	Feed hold
?	Current status
Ctrl-x	Reset grbl

Tabel 3.2 Konfigurasi G-Code (Lanjutan)

Perintah '\$\$' adalah perintah sistem Grbl yang digunakan untuk menampilkan pengaturan, melihat atau mengubah keadaan dan mode Grbl, dan memulai siklus homing. Empat perintah '\$' terakhir adalah perintah kontrol realtime yang dapat dikirim kapan saja, tidak peduli apa yang sedang dilakukan oleh software Grbl, maka perintah ini akan segera mengubah perilaku software Grbl yang sedang berjalan atau segera mencetak laporan data realtime. Selain menampilkan default mode dari settingan awal G-Code terdapat berbagai macam settingan default lainnya seperti \$100 yang menandakan x axis atau bisa juga di sebut x stepper, \$101 menandakan y axis atau bisa juga di sebut y stepper, \$101 menandakan z axis atau bisa juga di sebut z stepper. Pada tabel 3.3 menunjukkan pengaturan pada software grbl, dan berisi berbagai perintah serta fungsi yang berbeda-beda. Penjelasan tersebut akan di jelaskan secara singkat pada tabel 3.3 yang ada di bawah ini.

Kode	Fungsi
\$0	Step Pulsa, mikrodetik
\$1	Step idle delay, mikrodetik
\$21	Hard limit
\$100	X axis step /mm
\$101	Y axis step/mm
\$102	Z axis step/mm
\$110	X max rate mm/min
\$111	Y max rate mm/min
\$112	Z max rate mm/min

 Tabel 3.3 Kode dalam Pengaturan G-Code

a. \$0 = Langkah Pulsa mikrodetik

Driver stepper telah diberi sebuah nilai dengan panjang pulsa langkah minimum tertentu. Memeriksa bagian atau mencoba menambah beberapa nilai yang ingin dimasukkan ke tampilan antarmuka. Dan jika menginginkan pulsa terpendek yang dapat dikenali oleh driver stepper, maka beri nilai kecil sesuai dengan yang di inginkan. Jika pulsa terlalu panjang, maka akan mengalami masalah saat menjalankan sistem dengan tingkat tertentu dan denyut step yang sangat tinggi, karena setiap langkah pulsa bisa 56 mulai saling tumpang tindih karena pada software Grbl sendiri telah merekomendasikan setiap motor stepper di berikan suplai sekitar 10 mikrodetik, yang merupakan nilai default-nya.

b. \$ 1 = Langkah Idle Delay m/sec

Setiap saat motor stepper menyelesaikan sebuah gerakan dan berhenti, Grbl akan menunda penonaktifan steppers dengan nilai tertentu. Atau, pengguna selalu dapat menjaga agar sumbu dapat diaktifkan (bertenaga sehingga dapat menahan posisi) dengan menetapkan nilai yang telah ditetapkan secara maksimal sekitar 255 milidetik. Dan apabila hanya untuk mengulanginya, pengguna dapat menjaga agar semua sumbu selalu diaktifkan dengan pengaturan \$1=255.

c. \$ 21 = Hard Limits

Kerja hard limit pada dasarnya sama dengan soft limit, tapi penggunaan hanya sebatas *physical switches* saja. Pada dasarnya pengguna perlu memasang beberapa switch (mekanis, magnetik, atau optik) di mana limit switch ini diletakan pada bagian akhir pergerakan setiap sumbu, atau di mana pun yang merasa mungkin ada masalah jika program pengguna bergerak terlalu jauh ke tempat yang seharusnya tidak diinginkan, maka perlu pemasangan limit switch. Saat saklar dipicu, akan segera menghentikan semua gerakan, mematikan pendingin dan spindle (jika terhubung), dan masuk ke mode alarm, yang memaksa pengguna untuk memeriksa mesin dan mengatur ulang semuanya.

Untuk menggunakan *hard limits* dengan Grbl, pin batas dipasang dengan menggabungkan resistor pull-up internal, jadi yang harus dilakukan hanyalah memasang kabel pada saklar yang biasanya terbuka dengan pin dan ground dan memungkinkan *hard limits* \$21=1.(\$21= 0 Nonaktifkan dengan). Jadi pengguna Grbl lainnya sangat menganjurkan untuk melakukan tindakan pencegahan gangguan listrik. Jika pengguna menginginkan batas

kedua pada ujung pergerakan satu sumbu, cukup menggunakan dua saklar secara paralel dengan pin dan ground, jadi jika salah satu dari mereka melakukan perjalanan, pergerakan yang menuju limit switchs akan memicu batas dari mesin CNC nya.

d. \$ 100 = x axis step mm/min

Grbl perlu tahu seberapa jauh setiap langkah akan mengambil alat dalam real time. Untuk menghitung langkah / mm untuk sumbu mesin, perlu di ketahui: mm perjalanan per putaran motor stepper. Ini tergantung pada roda penggerak sabuk Anda atau pitch screw timah. Langkah penuh per revolusi steppers Anda (biasanya 200) Langkah mikro per langkah. Dengan pengaturan (biasanya 1, 2, 4, 8, atau 16 bit). Ada beberapa cara untuk menghitung langkah motor stepper menggunakan belt, da nada cara perhitungan menggunakan pitch screw. \$100 adalah settingan untuk x axis, dan bisa di lakukan kalibrasi terlebih dahulu untuk menemukan hasil yang akurat.

e. \$ 101 = y axis step mm/min

\$101 adalah settingan untuk y axis dan kita bisa melakukan kalibrasi terlebih dahulu untuk menemukan hasil yang akurat. Dan sesuai antara langkah motor stepper dengan program

f. \$ 102 = z axis step mm/min

\$102 adalah settingan untuk z axis dan kita bisa melakukan kalibrasi terlebih dahulu untuk menemukan hasil yang akurat. Dan sesuai antara langkah motor stepper dengan program

g. \$ 110 = x axis max rate mm/min

\$110 ini adalah settingan yang menetapkan tingkat maksimum setiap sumbu dapat bergerak pada x axis. Kapan pun Grbl merencanakan gerakan, ia memeriksa apakah gerakan tersebut menyebabkan x axis ini melebihi tingkat maksimumnya. Jika demikian, itu akan memperlambat gerakan untuk memastikan tidak ada sumbu yang melebihi batas kecepatan maksimalnya. Berarti bahwa x axis memiliki kecepatan independennya sendiri. Cara paling sederhana untuk menentukan nilai-nilai ini adalah dengan menguji setiap gerakan selangkah demi selangkah.

h. \$ 111 = y axis max rate mm/min

\$111 ini adalah settingan yang menetapkan tingkat maksimum setiap sumbu dapat bergerak pada y axis. Kapan pun Grbl merencanakan gerakan, ia memeriksa apakah gerakan tersebut menyebabkan y axis ini melebihi tingkat maksimumnya. Jika demikian, itu akan memperlambat gerakan untuk memastikan tidak ada sumbu yang melebihi batas kecepatan maksimalnya. Berarti bahwa y axis memiliki kecepatan independennya sendiri. Cara paling sederhana untuk menentukan nilai-nilai ini adalah dengan menguji setiap gerakan selangkah demi selangkah.

i. \$ 112 = z axis max rate mm/min

\$112 ini adalah settingan yang menetapkan tingkat maksimum setiap sumbu dapat bergerak pada z axis. Kapan pun Grbl merencanakan gerakan, ia memeriksa apakah gerakan tersebut menyebabkan z axis ini melebihi tingkat maksimumnya. Jika demikian, itu akan memperlambat gerakan untuk memastikan tidak ada sumbu yang melebihi batas kecepatan maksimalnya. Berarti bahwa z axis memiliki kecepatan independennya sendiri.

Cara paling sederhana untuk menentukan nilai-nilai ini adalah dengan menguji setiap gerakan selangkah demi selangkah.

3.6 Konfigurasi Keseluruhan Sistem CNC Portable

Keseluruhan dari sistem mesin CNC *Portable* ini terdiri dari dua sub sub bab yang akan dibahas yaitu perancangan bloksistem kerja keseluruhan perancangan proses pengerjaan desain PCB dengan *CAD/CAM* mesin CNC, *flowchart* pengerjaan mesin CNC.

3.5.1 Perancangan Blok Sistem Kerja Keseluruhan

Dalam merealisasikan mesin CNC *Portable* diperlukan sebuah konsep atau sistem konfigurasi yang benar agar mesin CNC Portable berjalan dengan semestinya, yaitu dapat menggerakkan empat motor stepper dengan keadaan yang sinkron dan melakukan proses pengeboran seperti halnya yang dilakukan mesin CNC*milling*. Pada gambar 3.21 merupakan keseluruhan system kerja mesin CNC portable.

Gambar 3.21 Keseluruhan Sistem Kerja Mesin CNC Portable

Dari gambar 3.20 di jelaskan, langkah awal memulai proses dilakukan dengan melakukan proses desain menggunakan software eagle untuk melakukan desain sirkuit rangkaian elektronika, dengan output berformat jpeg. Pada proses selanjutnya di lakukan proses tracing bitmap menggunakan software Inkscape untuk merubah file berformat jpeg menjadi Scalable vector Graphics (svg), setelah ddilakukan penyimpanan file dalam format svg. Maka langkah selanjutnya kita melakukan pengaturan dalam menentukan kedalaman bidang yang akan di ukir hingga merubah file berformat svg ke dalam format G-Code agar bisa di terjemahkan oleh software Grbl. Proses selanjutnya adalah memasukkan program G-Code ke dalam software grbl dan akan di terjemahkan oleh software Grbl kemudian di proses pada mikrokontroller AT Mega 328P, proses ini berfungsi untuk mengendalikan setiap motor stepper melalui driver motor A4988 untuk menghasilkan sirkuit PCB. Pada proyek akhir ini kita menggunakan desain sirkuit PCB driver motor stepper A4988.

3.5.2 Flowchart Pengerjaan Mesin CNC Portable

Proses flowchart pengerjaan dimulai dari objek benda yang ingin diukir diletakkan pada mesin CNC, pada proyek akhir ini kita menggunakan PCB sebagai media/ bahan yang akan di ukir, pada software Grbl yang sudah terinstall di pc kemudian di masukkan kode *g-code* atau bisa menggunakan gambar yang sudah didesain terlebih dahulu dengan *software CAD* dan *CAM*, AT Mega 328P akan memproses kode *g-code* yang dimasukkan, motor stepper dan motor *spindle* akan berputar, jika tidak berputar maka AT Mega 328P akan memproses kembali kode *g-code* yang dimasukkan. Jika motor stepper dan motor spindle berputar maka atmega 328P akan mengeluarkan sinyal *enable*, AT Mega 328P mengeluarkan sinyal *step* dan *direction n*untuk mengontrol motor stepper yang menggerakkan motor spindle dan bidang cetak pada setiap sumbu, stepper dan motor spindle mulai bekerja. Jika tidak melakukan proses *milling* maka AT Mega 328P akan kembali memproses kode *G-Code* yang dimasukkan. Jika proses *milling* dilakukan ketiga motor stepper sumbu *x*, *y*, dan zakan mengendalikan bidang kerja. Proses *milling* akan berjalan sesuai dengan input yang diberikan, jika sudah selesai pembacaan G-Code maka proses carving akan berhenti secara otomatis.Setelah selesai proses maka baru bisa di peroleh hasil ukiran PCB tersebut. Proses *flowchart* pengerjaan pada mesin CNC secara keseluruhan di lihat pada gambar 3.22.

Gambar 3.22 Flowchart Pengerjaan Mesin CNC Portable

BAB IV HASIL PENGUJIAN DAN ANALISA

Pada bab ini dibagi menjadi beberapa pengujian antara lain:

- 1. Perbandingan perhitungan metode *new step* dengan menggunakan spesifikasi mekanik pada sumbu x.
- 2. Pengujian perpindahan posisi x *axis* sebelum di lakukan kalibrasi.
- 3. Pengujian perpindahan posisix *axis* setelah di lakukan kalibrasi.
- 4. Pengujian perpindahan poisis y *axis* sebelum di lakukan kalibrasi.
- 5. Pengujian perpindahan posisi y *axis* setelah di lakukan kalibrasi.
- 6. Pengujian perpindahan posisi z *axis* sebelum di lakukan kalibrasi.
- 7. Pengujian perpindahan posisi z *axis* setelah di lakukan kalibrasi.
- 8. Pengujian sistem *absolute* mesin CNC *portable*.
- 9. Pengujian sistem incremental mesin CNC portable.
- 10. Pengujian tegangan motor stepper x,y,z pada *oscilloscope*.
- 11. Pengujian pembuatan desain ketebalan jalur 1 mm pada papan PCB.
- 12. Pengujian pembuatan rangkaian driver motor stepper A4988.
- 13. Pengujian Sensor FSR (Force Sensing Resistor)

4.1 Perbandingan Metode *New Step* Dengan Spesififikasi Mekanik Pada Sumbu x

Pada pengerjaan proyek akhir sebelumnya perhitungan di lakukan dengan metode *new step* dengan melakukan per bandingan antara target yang di capai oleh perpindahan mesin CNC *portable*

dangan *actual* perpindahan CNC *portable*. Di ketahui dengan persamaan sebagai berikut.

$$Hasil Perbandingan = \frac{Target (mm)}{Actual (mm)}$$
[4.1]

Setelah mendapatkan hasil perbandingan maka dilakukan langkah untuk mencari nilai *step* yang baru dengan rumus seperti di bawah ini. Untuk mencari kalibrasi sumbu x. seperti pada tabel 4.1.

```
Hasil Perbandingan \times Current Step = New Step \quad [4.2]
```

 Tabel 4.1 Perhitungan Sumbu x Dengan Metode New Step

Target	Actual	Hasil Perbandingan	Current Step	New Step
1 mm	12 mm	0.083	50 step	4.16

Tabel 4.2 Hasil Kalibrasi Sumbu x Dengan Metode New Step

New step	Target	Actual	Error
4,195 steps/mm	1 mm	1,5 mm	11 %
4,195 steps/mm	2 mm	2,5 mm	11 %
4,195 steps/mm	3 mm	3,5 mm	11 %
4,195 steps/mm	4 mm	4,5 mm	11 %
4,195 steps/mm	5 mm	5,5 mm	11 %

Hasil yang di bandingkan dengan pengujian mekanik dapat di lihat pada sub sub bab 4.2.2 pengujian x axis sesudah kalibrasi, hasil yang di peroleh dengan hasil perhitungan perpindahan dengan perhitungan mekanik menjadi lebih akurat Seperti di tunjukkan pada tabel 4.2. Rumus perhitungan mekanik dapat di lihat di bawah

$$\frac{Sref * Nf * fm}{Nm * \pi Dr}$$
[4.3]

Keterangan Rumus :

Srev	= Jumlah langkah per satu putaran dari Stepper
Nf	= Lebar dari timer pulley
fm	= 8 * mikrostepping/ 8 bit
Nm	= Jumlah gerigi pada pulley
Dr	= Diamter pulley

Perhitungan:

 $\frac{Srev * Nf * fm}{Nm * \pi Dr} = \frac{200 \text{ step } * 3mm * 8microstepping}{28 \text{ gerigi} * \pi * 13mm}$ $= \frac{4.800}{1.144}$ = 4.195 Step/mm

Target Actual Error New step 4,195 steps/mm 1,1 mm 9 % 1 mm 4,195 steps/mm 2 mm 2,1 mm 9% 4,195 steps/mm 3 mm 3.1 mm 9% 4,1 mm 4,195 steps/mm 4 mm 9% 4,195 steps/mm 5 mm 5,1 mm 9%

Tabel 4.3 Hasil Kalibrasi Sumbu x Dengan Metode Perhitungan Mekanik

Dari hasil pengujian menggunakan metode perhitungan mekanik di peroleh hasil perpindahan yang lebih akurat daripada metode perhitungan new step pada proyek akhir sebelumnya. Pengujian pergerakan dilakukan di sumbu x,y mesin CNC*portable*.

4.2 Pengujian Perpindahan x Axis

Pengujian perpindahan posisi motor stepper sumbu x untuk mengetahui tingkat presisi dari mesin CNC. Hasil perpindahan sumbu x sebelum kalibrasi dan sesudah ada pada tabel 4.4 dan 4.5.

4.2.1 Pengujian x Axis Sebelum Kalibrasi

Langkah-langkah untuk menguji perpindahan sumbu *x* adalah dengan memberikan kode G-Code pada tampilan antarmuka dari parameter 1mm sampai dengan 20 mm seperti pada tabel 4.4 kemudian pada bidang kerja mesin CNC diberikan sebuah penggaris 30 cm yang diletakkan tepat dibawah mata pahat mesin CNC *portable*. Penguji hanya mencocokkan apakah jarak yang diberikan pada tampilan *software Grbl code* sudah sesuai dengan jarak sebenarnya, dan di ukur perpindahan yang di hasilkan x *axis*.

Current Step	Target	Actual	Error
10 steps/mm	1 mm	2,4 mm	58 %
10 steps/mm	2 mm	4,4 mm	58 %
10 steps/mm	3 mm	6,4 mm	58 %
10 steps/mm	4 mm	8,4 mm	58 %
10 steps/mm	5 mm	10,4 mm	58 %
10 steps/mm	6 mm	12,4 mm	58 %
10 steps/mm	7 mm	14,4 mm	58 %
10 steps/mm	8 mm	16,4 mm	58 %
10 steps/mm	9 mm	18,4 mm	58 %
10 steps/mm	10 mm	20,4 mm	58 %
10 steps/mm	11 mm	22,4 mm	58 %
10 steps/mm	12 mm	24,4 mm	58 %
10 steps/mm	13 mm	26,4 mm	58 %
10 steps/mm	14 mm	28,4 mm	58 %
10 steps/mm	15 mm	30,4 mm	58 %
10 steps/mm	16 mm	32,4 mm	58 %
10 steps/mm	17 mm	34,4 mm	58 %
10 steps/mm	18 mm	36,4 mm	58 %
10 steps/mm	19 mm	38,4 mm	58 %
10 steps/mm	20 mm	40,4 mm	58 %
	Rata-rata Nilai Error		58 %

Tabel 4.4 Pengujian Sumbu x Sebelum Kalibrasi

Tabel 4.4 merupakan hasil pengujian sebelum sumbu *x* di kalibrasi sehingga terdapat nilai *error* yang besar dari jarak yang diinginkan. Pada saat penguji melakukan pengujian terhadap nilai *target* 10 mm didapatkan ketidakpresisian. Jarak sebenarnya tidak tepat 10 mm atau sebesar 20,4 mm seperti pada gambar 4.1, 4.2, 4.3. di bawah ini. Nilai *error* yang didapatkan masih cukup tinggi untuk mencapai nilai yang presisi. Sehingga perlu dilakukan proses kalibrasi untuk meredam nilai *error* yang dihasilkan dari perpindahan sumbu x CNC *portable* sebelum di lakukan kalibrasi.

Gambar 4.1 Jarak Sebenarnya 1 mm Sebelum Kalibrasi

Gambar 4.2 Jarak Sebenarnya 10 mm Sebelum Kalibrasi

Gambar 4.3 Jarak Sebenarnya 20 mm Sebelum Kalibrasi

4.2.2 Pengujian x Axis Sesudah Kalibrasi

Menghitung langkah / mm menggunakan sabuk dan *timing pulley* di mesin CNC, dapat di lakukan perhitungan dengan mengetahui beberapa spesifikasi dari timing pulley serta *belt* dari CNC tersebut sehingga bisa di ketahui nilai yang akan di hasilkan. Kita menggunakan *belt* dan *timing pulley* untuk menggerakkan CNC *portable. Belt* dan *timing pulley* ini tersedia dalam berbagai bentuk dan ukuran, tetapi satu standar yang telah ada adalah standar GT2. Sabuk dan katrol GT2 tersedia dalam (setidaknya) tiga ukuran berbeda: *pitch* 2 mm, 3 mm, dan 5 mm, pada mesin CNC yang kita buat sekarang menggunakan *belt* dan *timing pulley* 3 mm.Inilah persamaan sederhana yang dapat anda gunakan untuk menghitung langkah per mm untuk gerakan *liniear* motor setepper *,belt, timing pulley*.Sebagai pembanding proyek akhir sebelumnya.

$$\frac{Sref * Nf * fm}{Nm * \pi Dr}$$

Keterangan Rumus :

Srev	= Jumlah langkah per satu putaran dari Stepper
Nf	= Lebar dari timer pulley
fm	= 8 * mikrostepping/ 8 bit

68

Perhitungan:

 $\frac{Srev * Nf * fm}{Nm * \pi Dr} = \frac{200 \text{ step } * 3mm * 8microstepping}{28 \text{ gerigi } * \pi * 13mm}$ $= \frac{4.800}{1.144}$ = 4.195 Step/mm

Dari pengujian pada tabel 4.5 terlihat perpindahan dari mesin CNC *portable*, dimana saat kita melakukan kalibrasi akan di hasilkan perpindahan yang akurat di bandingkan dengan tabel 4.4.

New step	Target	Actual	Error	
4,195 steps/mm	1 mm	1 mm	0 %	
4,195 steps/mm	2 mm	2 mm	0 %	
4,195 steps/mm	3 mm	3 mm	0 %	
4,195 steps/mm	4 mm	4 mm	0 %	
4,195 steps/mm	5 mm	5 mm	0 %	
4,195 steps/mm	6 mm	6 mm	0 %	
4,195 steps/mm	7 mm	7mm	0 %	
4,195 steps/mm	8 mm	8 mm	0 %	
4,195 steps/mm	9 mm	9 mm	0 %	
4,195 steps/mm	10 mm	10 mm	0 %	
4,195 steps/mm	11 mm	11 mm	0 %	
4,195 steps/mm	12 mm	12 mm	0 %	
4,195 steps/mm	13 mm	13 mm	0 %	
4,195 steps/mm	14 mm	14 mm	0 %	

Tabel 4.5 Perpindahan Sumbu x Sesudah Kalibrasi

4,195 steps/mm	15 mm	15 mm	0 %	
4,195 steps/mm	16 mm	16 mm	0 %	
4,195 steps/mm	17 mm	17mm	0 %	
4,195 steps/mm	18 mm	18 mm	0 %	
4,195 steps/mm	19 mm	19 mm	0 %	
4,195 steps/mm	20 mm	20 mm	0 %	
	Rata-rata Nilai Error		0,0 %	

Pada Tabel 4.5 dapat dilihat bahwa rata-rata nilai *error* dapat meredam setelah dilakukan kalibrasi. Setelah diberikan nilai 1 mm, 10 mm, 20 mm, hasil yang didapatkan setelah dilakukan proses kalibrasi adalah nilai-nilai yang mendekati atau tepat dengan nilai yang diberikan seperti yang di tunjukkan pada gambar 4.4, 4.5, 4.6.

Gambar 4.4 Hasil 1 mm Setelah Proses Kalibrasi

Gambar 4.5 Hasil 10 mm Setelah Proses Kalibrasi

Gambar 4.6 Hasil 20 mm Setelah Proses Kalibrasi

4.3 Pengujian Perpindahan y Axis

Pengujian perpindahan posisi motor stepper sumbu y dilakukan untuk mengetahui seberapa presisi atau seberapa akurat perpindahan motor stepper sumbu y pada mesin CNC. Pengujian ini dilakukan secara manual dengan menggunakan penggaris 30 cm

4.3.1 Pengujian y Axis Sebelum Kalibrasi

Langkah-langkah untuk menguji perpindahan sumbu yadalah dengan memberikan kode G-Code pada tampilan antarmuka dari parameter 1 mm sampai dengan 20 mm seperti pada tabel 4.6 kemudian pada bidang kerja mesin CNC diberikan sebuah penggaris 30 cm yang diletakkan tepat dibawah mata pahat mesin CNC. Penguji hanya mencocokkan apakah jarak yang diberikan pada tampilan *software* G-Code sudah sesuai dengan hasil riil nya.

Current Step	Target	Actual	Error
10 steps/mm	1 mm	1,4 mm	28 %
10 steps/mm	2 mm	3,4 mm	41 %
10 steps/mm	3 mm	5,4 mm	41 %
10 steps/mm	4 mm	7,4 mm	41 %
10 steps/mm	5 mm	10,4 mm	41 %
10 steps/mm	6 mm	11,4 mm	41 %

Tabel 4.6 Pengujian Sumbu y Sebelum Kalibrasi

10 steps/mm	7 mm	13,4 mm	41 %
10 steps/mm	8 mm	15,4 mm	41 %
10 steps/mm	9 mm	17,4 mm	41 %
10 steps/mm	10 mm	19,4 mm	41 %
10 steps/mm	11 mm	21,4 mm	41 %
10 steps/mm	12 mm	23,4 mm	41 %
10 steps/mm	13 mm	25,4 mm	41 %
10 steps/mm	14 mm	27,4 mm	41 %
10 steps/mm	15 mm	29,4 mm	41 %
10 steps/mm	16 mm	31,4 mm	41 %
10 steps/mm	17 mm	33,4 mm	41 %
10 steps/mm	18 mm	35,4 mm	41 %
10 steps/mm	19 mm	37,4 mm	41 %
10 steps/mm	20 mm	39,4 mm	41 %
	Rata-rata Nilai Error		39 %

Tabel 4.6 merupakan hasil pengujian sebelum sumbu y di lakukan proses kalibrasi sehingga terdapat nilai error yang besar dari jarak yang diinginkan. Pada saat penguji melakukan pengujian terhadap nilai target 10 mm didapatkan ketidakpresisian. Jarak sebenarnya tidak tepat 9,4 mm atau sebesar 19,4 mm. Seperti pada gambar 4.7, 4.8, 4.9 di bawah ini. Nilai error yang didapatkan masih cukup tinggi untuk mencapai nilai yang presisi. Sehingga perlu dilakukan proses kalibrasi untuk meredam nilai error dari pengujian ini. Pada pengujian perpindahan 1 mm di peroleh hasil actual perpindahan mesin CNC portable sebesar 1,4 mm dengan nilai error perpindahan sebesar 28%, pada target perpindahan 2 mm di peroleh hasil actual sebesar 3,4 mm, dengan error perpindahan sebesar 41%, pada pengujian perpindahan 3 mm di peroleh perpindahan actual sebesar 5,4 mm dengan presentase error perpindahan sebesar 41%. Meningkatnya presentase error di sebabkan oleh factor output PWM yang kurang stabil dari At Mega.

Gambar 4.7 Jarak Sebenarnya 1 mm Sebelum Kalibrasi

Gambar 4.8 Jarak Sebenarnya 10 mm Sebelum Kalibrasi

Gambar 4.9 Jarak Sebenarnya 20 mm Sebelum Kalibrasi

4.3.1 Pengujian y Axis Sesudah Kalibrasi

Menghitung langkah / mm menggunakan sabuk dan timing pulley di mesin CNC, dapat di lakukan perhitungan dengan mengetahui beberapa spesifikasi dari *timing pulley* serta *belt* dari CNC tersebut sehingga bisa di ketahui nilai yang akan di hasilkan. Kita menggunakan *belt* dan *timing pulley* untuk menggerakkan CNC *portable. Belt* dan *timing pulley* ini tersedia dalam berbagai bentuk dan ukuran, tetapi satu standar yang telah ada adalah standar GT2. Sabuk dan katrol GT2 tersedia dalam (setidaknya) tiga ukuran berbeda: *pitch* 2 mm, 3 mm, dan 5 mm, pada mesin CNC yang kita buat sekarang menggunakan *belt* dan *timing pulley* 3 mm.Inilah persamaan sederhana yang dapat anda gunakan untuk menghitung langkah per mm untuk gerakan *liniear* motor stepper, *timing pulley*, dan pergerakan dari *timing belt* mesin CNC *portable*.

$$\frac{Sref*Nf*fm}{Nm*\pi Dr}$$

Keterangan Rumus :

Srev	= Jumlah langkah per satu putaran dari Stepper
Nf	= Lebar dari timer pulley
fm	= 8 * mikrostepping/ 8 bit
Nm	= Jumlah gerigi pada pulley
Dr	= Diamter pullev

Perhitungan:

$$\frac{Srev * Nf * fm}{Nm * \pi Dr} = \frac{200 \text{ step } * 3mm * 8microstepping}{28gerigi * \pi * 13mm}$$
$$= \frac{4.800}{1.144}$$
$$= 4.195 \text{ Step/mm}$$

Dari pengujian pada tabel 4.7 terlihat perpindahan dari mesin CNC *portable*, dimana saat kita melakukan kalibrasi akan di hasilkan perpindahan yang akurat di bandingkan dengan tabel 4.6.

New step	Target	Actual	Error	
4,195 steps/mm	1 mm	1 mm	0 %	
4,195 steps/mm	2 mm	2 mm	0 %	
4,195 steps/mm	3 mm	3 mm	0 %	
4,195 steps/mm	4 mm	4 mm	0 %	
4,195 steps/mm	5 mm	5 mm	0 %	
4,195 steps/mm	6 mm	6 mm	0 %	
4,195 steps/mm	7 mm	7mm	0 %	
4,195 steps/mm	8 mm	8 mm	0 %	
4,195 steps/mm	9 mm	9 mm	0 %	
4,195 steps/mm	10 mm	10 mm	0 %	
4,195 steps/mm	11 mm	11 mm	0 %	
4,195 steps/mm	12 mm	12 mm	0 %	
4,195 steps/mm	13 mm	13 mm	0 %	
4,195 steps/mm	14 mm	14 mm	0 %	
4,195 steps/mm	15 mm	15 mm	0 %	
4,195 steps/mm	16 mm	16 mm	0 %	
4,195 steps/mm	17 mm	17mm	0 %	
4,195 steps/mm	18 mm	18 mm	0 %	
4,195 steps/mm	19 mm	19 mm	0 %	
4,195 steps/mm	20 mm	20 mm	0 %	
	Rata-rata Nilai Error		0,0 %	

Tabel 4.7 Perpindahan Sumbu y Sesudah Kalibrasi

Pada Tabel 4.7 dapat dilihat bahwa rata-rata nilai *error* dapat meredam setelah dilakukan kalibrasi. Setelah diberikan nilai 1 mm, 10 mm, 20 mm, hasil yang didapatkan setelah dilakukan proses kalibrasi adalah nilai-nilai yang mendekati tepat dengan nilai yang diberikan, seperti yang di tunjukkan pada gambar 4.10, 4.11, 4.12.

Gambar 4.10 Hasil 1 mm Setelah Proses Kalibrasi

Gambar 4.11 Hasil 10 mm Setelah Proses Kalibrasi

Gambar 4.12 Hasil 20 mm Setelah Proses Kalibrasi

4.4 Pengujian Perpindahan z Axis

Pengujian perpindahan posisi motor stepper sumbu z dilakukan untuk mengetahui seberapa presisi atau seberapa akurat perpindahan motor stepper sumbu z pada mesin CNC *portable*. Pengujian ini dilakukan secara manual dengan memakai penggaris.

4.4.1 Pengujian z Axis Sebelum Kalibrasi

Langkah-langkah untuk menguji perpindahan sumbu *z* adalah dengan memberikan kode G-Code pada tampilan antarmuka dari parameter 1mm sampai dengan 20 mm, kemudian pada bidang kerja mesin CNC diberikan sebuah penggaris 30 cm yang diletakkan tepat dibawah mata pahat mesin CNC. Penguji hanya mencocokkan apakah jarak yang diberikan pada tampilan *software* G-Code sudah sesuai dengan jarak sebenarnya pada CNC *portable*.

Current Stan	Tanaat	Actual	Ennon
Current step	Targei	Actual	EIIOI
1000 steps/mm	1 mm	2 mm	50 %
1000 steps/mm	2 mm	4 mm	50 %
1000 steps/mm	3 mm	6 mm	50 %
1000 steps/mm	4 mm	8 mm	50 %
1000 steps/mm	5 mm	10 mm	50 %
1000 steps/mm	6 mm	12 mm	50 %
1000 steps/mm	7 mm	14 mm	50 %
1000 steps/mm	8 mm	16 mm	50 %
1000 steps/mm	9 mm	18mm	50 %
1000 steps/mm	10 mm	20 mm	50 %
1000 steps/mm	11 mm	22 mm	50 %
1000 steps/mm	12 mm	24 mm	50 %
1000 steps/mm	13 mm	26 mm	50 %
1000 steps/mm	14 mm	28 mm	50 %
1000 steps/mm	15 mm	30 mm	50 %
1000 steps/mm	16 mm	32 mm	50 %
1000 steps/mm	17 mm	34 mm	50 %

Tabel 4.8 Pengujian Sumbu z Sebelum Kalibrasi

1000 steps/mm	18 mm	36 mm	50 %
1000 steps/mm	19 mm	38 mm	50 %
1000 steps/mm	20 mm	40 mm	50 %
Rata-rata Nilai Error			

Tabel 4.8 merupakan hasil pengujian sebelum sumbu z di kalibrasi sehingga terdapat nilai *error* yang besar dari jarak yang di hasilkan. Pada saat penguji melakukan pengujian terhadap nilai *target* 10 mm didapatkan ketidakpresisian. Jarak sebenarnya tidak tepat 10 mm atau sebesar mm seperti pada gambar 4.13, 4.14, 4.15 di bawah ini. Nilai *error* yang didapatkan masih tinggi untuk mencapai nilai yang presisi sehingga perlu dilakukan kalibrasi untuk mengurangi nilai *error* dari sumbu z mesin CNC *portable*.

Gambar 4.13 Jarak Sebenarnya 1 mm Sebelum Kalibrasi

Gambar 4.14 Jarak Sebenarnya 10 mm Sebelum Kalibrasi

Gambar 4.15 Jarak Sebenarnya 15 mm Sebelum Kalibrasi

4.4.2 Pengujian z Axis Sesudah Kalibrasi

Menghitung langkah / mm menggunakan *pitch screw* 2 mm dan timing pulley di mesin CNC, dapat di lakukan perhitungan dengan mengetahui beberapa spesifikasi dari *timing pulley* serta *pitch screw* dari CNC tersebut sehingga bisa di ketahui nilai yang akan di hasilkan. Kita menggunakan *screw* dan *timing pulley* untuk menggerakkan CNC *portable*. Pada mesin CNC yang kita buat sekarang menggunakan *pitch screw* 200 mm/putaran dan.Inilah persamaan sederhana yang dapat Anda gunakan untuk menghitung langkah per mm untuk gerakan liniear dengan pitch screw dan timing pulley. Proses perhitungan langkah tiap putaran dapat di hitung dengan cara kita mengetahui spesifikasi dari mekanik CNC

1. Awal perhitungan dengan satuan Inci

 $\frac{Step/rev}{Lead\ Screw\ Pitch\ Step/rev} = \frac{200\ Step/rev}{0.002\ Inch\ Step/rev}$

$$= 1000 \frac{Step}{Inch}$$

2. Konversi ke mm

$$\frac{1000 Step}{Inch} * \frac{1}{25,4mm} = 39,37 \frac{Step}{mm}$$

3. Di kalikan 8 mikrostepping

$$39,37 \frac{Step}{mm} * 8 microstepping = 314,961 Step/mm$$

New step	Target	Actual	Error	
314,961 steps/mm	1 mm	1 mm	0 %	
314,961 steps/mm	2 mm	2 mm	0 %	
314,961 steps/mm	3 mm	3 mm	0 %	
314,961 steps/mm	4 mm	4 mm	0 %	
314,961 steps/mm	5 mm	5 mm	0 %	
314,961 steps/mm	6 mm	6 mm	0 %	
314,961 steps/mm	7 mm	7mm	0 %	
314,961 steps/mm	8 mm	8 mm	0 %	
314,961 steps/mm	9 mm	9 mm	0 %	
314,961 steps/mm	10 mm	10 mm	0 %	
314,961 steps/mm	11 mm	11 mm	0 %	
314,961 steps/mm	12 mm	12 mm	0 %	
314,961 steps/mm	13 mm	13 mm	0 %	
314,961 steps/mm	14 mm	14 mm	0 %	
314,961 steps/mm	15 mm	15 mm	0 %	
314,961 steps/mm	16 mm	16 mm	0 %	
314,961 steps/mm	17 mm	17mm	0 %	
314,961 steps/mm	18 mm	18 mm	0 %	
314,961 steps/mm	19 mm	19 mm	0 %	
314,961 steps/mm	20 mm	20 mm	0 %	
Rata-rata Nilai Error				
314,961 steps/mm20 mm20 mmRata-rata Nilai Error				

Tabel 4.9 Perpindahan Sumbu z Sesudah Kalibrasi

Pada tabel 4.9 dapat dilihat bahwa rata-rata nilai *error* dapat meredam setelah dilakukan kalibrasi. Setelah diberikan nilai 10 mm hasil yang didapatkan setelah dilakukan proses kalibrasi adalah nilai yang mendekati atau tepat dengan nilai yang diberikan yaitu pada posisi 10 mm sesuai dengan perintah yang di berikan oleh *software grbl* seperti pada gambar 4.16, 4.17, 4.18. pada pengujian perpindahan sebesar 20 mm di peroleh hasil perpindahan sebesar 20 mm sesuai dengan perintah *software grbl*, perpindahan lainnya juga menunjukkan hasil yang sesuai dengan *software grbl*

Gambar 4.16 Hasil 1 mm Setelah Proses Kalibrasi

Gambar 4.17 Hasil 10 mm Setelah Proses Kalibrasi

Gambar 4.18 Hasil 15 mm Setelah Proses Kalibrasi

4.5 Pengujian Sistem Absolute

Pengujian kode G-Code terhadap Sumbu *x* memiliki tujuan untuk membandingkan operasi mesin CNC dengan sistem inkremental serta sistem *absolute*. Pengujian dimulai dengan membuka tampilan antarmuka mesin CNC dan mengetikkan kode masukan G90 untuk sistem absolute serta G90 untuk sistem inkremental, kemudian diikuti dengan jarak sumbu *x* yang ditempuh. Berikut adalah pengujian terhadap sistem *absolute* CNC

Titik	Kode G-Code	Perpindahan	Titik
Awal		(mm)	Akhir
(mm)			(mm)
0 mm	G90 X10	10 mm	10 mm
0 mm	G90 X20	20 mm	30 mm

 Tabel 4.10 Pengujian Sistem Absolute

0 mm	G90 X30	30 mm	60 mm
0 mm	G90 X40	40 mm	100 mm
0 mm	G90 X50	50 mm	150 mm
0 mm	G90 X60	60 mm	210 mm
0 mm	G90 X70	70 mm	310 mm
0 mm	G90 X80	80 mm	390 mm
0 mm	G90 X90	90 mm	480 mm
0 mm	G90 X100	100 mm	580 mm

Pada tabel 4.10 pengoperasian mesin dengan sistem *absolute* yaitu menentukan suatu koordinat sebagai titik referensi awal. Jadi pada saat mesin CNC beroperasi menggunakan sistem ini, titik awal atau titik referensi tidak berubah selama operasi berlangsung Ilustrasi gambar sistem absolute dapat dilihat pada gambar 4.19.

Gambar 4.19 Ilustrasi dari Sistem Absolute

4.6 Pengujian Sistem Inkremental

Pengujian kode G-Code terhadap Sumbu *x* memiliki tujuan untuk membandingkan operasi mesin CNC dengan sistem inkremental serta sistem absolute. Pengujian dimulai dengan membuka tampilan antarmuka mesin CNC dan mengetikkan kode masukan G90 untuk sistem *absolute* serta G91 untuk sistem
inkremental, kemudian diikuti dengan jarak sumbu x yang ingin ditempuh .Berikut ini merupakan sistem inkremental mesin CNC.

Titik	Kode G-	Perpindahan	Titik
Awal	Code	(mm)	Akhir
(mm)			(mm)
0 mm	G91 X10	10 mm	10 mm
10 mm	G91 X10	10 mm	20 mm
20 mm	G91 X10	10 mm	30 mm
30 mm	G91 X10	10 mm	40 mm
40 mm	G91 X10	10 mm	50 mm
30 mm	G91 X-10	-10 mm	40 mm
20 mm	G91 X-10	-10 mm	30 mm
10 mm	G91 X-10	-10 mm	20 mm
0 mm	G91 X-10	-10 mm	10 mm
-10 mm	G91 X-10	-10 mm	0 mm

Tabel 4.11 Pengujian Sistem Inkremental

Pada tabel 4.11 dapat dilihat bahwa pada sistem inkremental titik awal penempatan yang digunakan sebagai acuan selalu berpindah sesuai dengan titik *actual* yang dinyatakan terakhir. Jadi pada saat mesin CNC beroperasi menggunakan sistem ini, titik awal atau titik referensi selalu berubah selama operasi berlangsung. Ilustrasi dari sistem inkremental dilihat pada gambar 4.20 berikut.

Gambar 4.20 Ilustrasi dari Sistem Inkremental

4.7 Pengujian Tegangan Motor Stepper x, y, z.

Pengujian tegangan pada motor stepper untuk masing masing sumbu x,y,z, di lakukan untuk mengetahui kinerja motor stepper apakah terdapat *loses* tegangan yang mengakibatkan motor stepper tidak dapat berputar. Untuk itu di lakukan pengujian tegangan menggunakan *Oscilloscope digital* untuk mengetahui berapa tegangan yang masuk pada motor stepper. Seperti tabel 4.12.

Motor Stepper	Keterangan	Gambar Oscilloscope
Motor Stepper x	2vpp*2 volt = 4volt $F = 1/T$ $= 1/1ms*4div$ $= 1/4$	
	= 1/0.004ms = 2,500Hz	
Motor Stepper y	2vpp*1 volt = 2volt F = 1/T = 1/1ms*2div = 1/2 = 1/0.002ms = 500Hz	
Motor Stepper z	2vpp*2 volt = 4volt F = 1/T = 1/1ms*4div = 1/4 = 1/0.004ms = 2,500Hz	

Tabel 4.12 Pengujian Tegangan Motor Stepper

4.8 Pengujian Pembuatan Ketebalan Jalur 1 mm Pada Papan PCB

Pengujian dilakukan dengan membuat desain bangun datar berbentuk persegi pada *software Inkscape*. Langkah-langkah dalam pembuatan terdapat pada teori penunjang sub sub bab 3.4.2 proses *tracing bitmap* pada *Software Inkscape*. Hanya saja pada pengambilan data ini menggunakan bangun datar berbentuk jalur selebar 1 mm. Pada *Inkscape* dipilih *tool* dengan bentuk mengular seperti pada gambar 4.21.Panjang dari desain keseluruhan yang di inginkan sepanjang 38 mm. Gambar 4.21 adalah bentuk dari desain jalur yang telah didesain pada *Software Inkscape*.Dan lebar 16 mm

Gambar 4.21 Desain Jalur PCB berbentuk mengular

gambar 4.22 di bawah ini merupakan simulasi gambar persegi yang telah di *edit* dengan menggunakan *software* jscut. Jika kita menggunakan *mode engrave outside* maka yang dipahat hanya keliling nya saja, dengan kedalaman sebesar 0.2 mm serta dimulai dari 2 mm dari atas PCB. Dengan ketebalan jalur pada papan PCB sebesar 1 mm, pada proses pengaturan dalam *software CAM* pada *software jscut* terdapat beberapa pengaturan yang tidak bisa di aplikasikan secara presisi seperti pngaturan terhadap ketinggian sumbu z, proses mencetak sirkuit PCB di perlukan pengaturan secara manual untuk menyesuaikan ketinggian dari sumbu z CNC

Gambar 4.22 Simulasi Gambar Jalur PCB

Hasil dari eksekusi gambar ketebalan jalur 1 mm dapat dilihat pada gambar 4.23 dapat di lihat pada pengambilan data pembuatan ketebalan jalur selebar 1 mm seperti pada gambar 4.23 di bawah ini. Pada beberapa sisi masih terdapat beberapa perbedaan ketebalan yang di hasilkan di karenakan salah satu respon dari motor stepper yang tidak optimal melakukan pembacaan sinyal *PWM*.Selain hasil cetak jalur PCB setebal 1 mm di lakukan pengambilan data berupa proses melakukan cetak jalur PCB sebanyak 10 kali dan di hitung presentase *error* yang di peroleh dari proses melakukan proses cetak ketebalan jalur. Dan hasil dari proses pengambilan data dapat di lihat pada tabel 4.9 di bawah ini

Gambar 4.23 Hasil Gambar Ketebalan Jalur Pada PCB

Percobaan	Lebar Jalur	Keterangan	Gambar
1	1 mm	Mencetak Jalur PCB Selebar 1 mm Berhasil.	INN
2	1 mm	Mencetak Jalur PCB Selebar 1 mm Berhasil.	2 AAA
3	1 mm	Mencetak Jalur PCB Selebar 1 mm Gagal.	*NUS
4	1 mm	Mencetak Jalur PCB Selebar 1 mm Gagal.	ANN h
5	1 mm	Mencetak Jalur PCB Selebar 1 mm Berhasil.	
6	1 mm	Mencetak Jalur PCB Selebar 1 mm Berhasil.	6ANNI
7	1 mm	Mencetak Jalur PCB Selebar 1 mm Berhasil.	MM
8	1 mm	Mencetak Jalur PCB Selebar 1 mm Berhasil.	8 AAAA
9	1 mm	Mencetak Jalur PCB Selebar 1 mm Gagal.	enne

 Tabel 4.13
 Tabel Pengujian Ketebalan Jalur PCB

10	1 mm	Mencetak	
		Jalur PCB	10
		Selebar 1 mm	
		Berhasil.	

Hasil pengujian pada tabel 4.9 di ketahui bahwa pada proses pembuatan ketebalan jalur pada papan PCB terdapat beberapa hasil grafir yang kurang presisi pada beberapa bagian. Muali dari ketebalan yang kurang konsisten di beberapa bagian hasil pahat da nada juga beberapa mengalami perbedaan ketebalan pahatan dari mesin CNC portable. Berikut ini adalah penjelasan gambar 1-10 :

- 1. Pada percobaan 1 di hasilkan pahatan pada papan PCB yang sesuai dengan desain yang di tetapkan ,terdapat penyempitan jalur PCB pada lengkungan ke 5 dengan ketebalan jalur sebesar 0.5 mm, rata-rata jalur PCB 1mm
- 2. Pada percobaan 2 di hasilkan pahatan pada papan PCB yang sesuai dengan desain yang di tetapkan ,terdapat penyempitan jalur PCB pada lengkungan ke 5 dengan ketebalan jalur sebesar 0.5 mm, rata rata jalur PCB 1mm
- 3. Pada percobaan 3 di hasilkan pahatan pada papan PCB yang kurang sesuai dengan desain yang di tentukan, terdapat penyempitan jalur PCB pada lengkungan ke 3,4,5 serta terdapat garis yang terpotong tetapi tidak semua jalur PCB terpotong, ada beberapa jalur PCB sudah sesuai dengan desain yang di inginkan yaitu 1mm.
- 4. Pada percobaan 4 di hasilkan pahatan pada papan PCB yang kurang sesuai dengan desain yang di tentukan, terdapat penyempitan jalur PCB pada lengkungan ke 2,3 serta terdapat garis yang terpotong tetapi tidak semua jalur PCB terpotong, ada beberapa jalur PCB sudah sesuai dengan desain yang di inginkan yaitu 1mm.
- 5. Pada percobaan 5 di hasilkan pahatan pada papan PCB yang sesuai dengan desain yang di tentukan, terdapat

jalur yang terpotong pada PCB, di lengkungan ke 3 dengan ketebalan jalur pada papan PCB sebesar 1 mm.

- 6. Pada percobaan 6 di hasilkan pahatan pada papan PCB yang sesuai dengan desain yang di tentukan, terdapat penyempitan jalur PCB pada lengkungan ke 3 dengan ketebalan jalur 0.5mm, serta rata rata ketebalan jalur pada papan PCB yang di hasilkan yaitu sebesar 1 mm.
- Pada percobaan 7 di hasilkan pahatan pada papan PCB yang sesuai dengan desain yang di tetapkan ,terdapat penyempitan jalur PCB pada lengkungan ke 1 dengan ketebalan jalur sebesar 0.5 mm, rata rata jalur PCB 1mm
- Pada percobaan 8 di hasilkan pahatan pada papan PCB yang sesuai dengan desain yang di tetapkan ,terdapat penyempitan jalur PCB pada lengkungan ke 5 dengan ketebalan jalur sebesar 0.5 mm, rata rata jalur PCB 1mm
- 9. Pada percobaan 9 di hasilkan pahatan pada papan PCB yang kurang sesuai dengan desain yang di tentukan, terdapat penyempitan jalur PCB pada lengkungan ke 4,5,6,7 serta terdapat garis yang terpotong tetapi tidak semua jalur PCB terpotong, ada beberapa jalur PCB sudah sesuai dengan apa yang kita inginkan yaitu sebesar 1mm.
- 10. Pada percobaan 10 di hasilkan pahatan pada papan PCB yang sesuai dengan desain yang di tentukan, terdapat penyempitan jalur PCB pada lengkungan ke 5 dengan ketebalan jalur 0.5mm, serta rata - rata ketebalan jalur pada papan PCB yang di hasilkan yaitu sebesar 1 mm.

Dari percobaan pengambilan data di atas dapat di ambil kesimpulan bahwa dalam melakukan proses *grafir* di atas PCB jika mata pahat melakukan *grafir* terlalu dalam akan mempengaruhi hasil dari proses *grafir* itu sendiri, tidak konsisten nya gerakan yang di hasilkan motor stepper berpengaruh pada perpindahan dari CNC

4.9 Pengujian Membuat Driver Motor Stepper A4988

Pengujian dilakukan dengan membuat desain bangun datar berbentuk *driver* motor stepper pada *software Inkscape*. Langkah -langkah dalam pembuatan terdapat pada teori penunjang sub sub Bab 3.4.2 proses *tracing bitmap* pada *Software inkscape*. Pada pengambilan data ini menggunakan bangun datar berbentuk *driver* motor A4988. Bidang kerja yang akan di pahat sebesar 40 mm sesuai dengan desain yang ada di *software Inkscape*, gambar 4.24.

Gambar 4.24 Desain A4988 Pada Software Inkscape

Gambar 4.25 di bawah ini merupakan simulasi gambar *driver* A4988 yang telah di *edit* dengan menggunakan *software* jscut.org.

Gambar 4.25 A4988 Pada Software Jscut

Pada gambar 4.26 merupakan vektor desain driver A4988 dimana pada garis berwarna biru merupakan jalur yang akan di lakukan proses *grafir* di papan PCB dengan menggunakan *software Jscut*.

Gambar 4.26 Vektor A4988 Mode Outside

Hasil dari eksekusi gambar driver A4988 dapat dilihat pada gambar 4.27 Hasil uji yang didapatkan dari proses grafir menggunakan mode outside pada software Jscut di peroleh hasil, bahwa terdapat banyak sekali bagian yang tidak sesuai dengan desai sebelumnya dimana pada bagian atas dari desain driver A4988 terdapat jalur yang terlalu lebar dari desain awal, serta tidak konsisten nya gerakan dari sumbu z pada mesin CNC portable. Dimana terdapat kelemahan dalam hal konversi gambar Jpeg dari software eagle untuk di rubah ke dalam bentuk vektor garis menggunakan software Inkscape, dimana kekurangan dari konversi gambar ber format Jpeg pada software eagle yang kurang detail sehingga mengakibatkan desain yang di konversi menjadi vektor tidak sesuai ketika di lakukan proses tracing bitmap pada software Inkscape. Faktor lain yang mengakibatkan hasil cetakan pada papan PCB tidak sesuai dengan yang di harapkan adalah kurangnya daya pada motor *spindle*, apabila putaran yang di hasilkan oleh motor *spindle* tidak sesuai maka akan menghambat dari gerakan dari proses grafir pada papan PCB sehingga perlu dilakukan upgrade pada motor spindle, serta alternatif software untuk desain sirkuit PCB agar memperoleh hasil cetak sirkuit PCB yang sesuai dengan desain yang di buat dan berhasil di realisasikan. Pada gambar 4.27 merupakan hasil cetak PCB dengan menggunakan mata bor "*v shape*", dan pada gambar 4.28 merupakan hasil cetak PCB menggunakan mata bor ber tipe "*twist bist*". Dimana pada gambar 4.27 di dapatkan hasil yang lebih bagus daripada hasil cetak PCB pada gambar 4.28, penggunaan mata bor dengan tipe *v shape* dengan diameter mata bor sebesar 0,1 mm menjadi salah satu cara untuk meningkatkan keberhasilan dalam membuat sirkuit PCB yang mempunyai ukuran dan lebar jalur PCB yang lebih kecil.

Gambar 4.27 Hasil Gambar Driver A4988 Dengan v Shape

Gambar 4.28 Hasil Gambar Driver A4988 Dengan Twist Bist

4.10 Hasil Pengujian Sensor FSR

Pada gambar 4.29 di tunjukkan dari *LCD* (*Liquid Crystall Device*), berupa tampilan awal dari sensor *FSR* (*Force Sensing Resistor*).ketika belum mendeteksi tekanan mata bor mesin CNC.

Gambar 4.29 Tampilan Awal LCD

Pada gambar 4.29 menunjukkan gambar tampilan LCD, LCD merupakan suatu jenis media display atau (tampilan) yang menggunakan kristal cair (liquid crystal) untuk menghasilkan gambar yang terlihat. Teknologi Liquid Crystal Display (LCD) atau penampil kristal cair sudah banyak digunakan pada produkproduk seperti layar laptop, layar Ponsel, layar kalkulator, layar jam digital, monitor komputer, dan produk-produk elektronik lainnya. LCD atau Liquid Crystal Display pada dasarnya terdiri dari dua bagian utama yaitu bagian backlight (Lampu Latar Belakang) dan bagian Liquid Crystal (kristal cair). Seperti yang disebutkan sebelumnya, LCD tidak memancarkan pencahayaan apapun, LCD hanya merefleksikan, mentransmisikan cahaya yang melewatinya. Oleh karena itu, *LCD* memerlukan backlight untuk sumber cahayanya. Cahaya backlight tersebut pada umumnya adalah berwarna putih. Pada gambar 4.30 adalah tampilan dari LCD berupa nilai tekanan yang di hasilkan oleh mata bor ketika melubangi papan PCB berbahan fiber dengan menunjukkan nilai pressure sebesar 20 Siemens (Satuan konduktansi), dimana semakin kecil konduktansi maka semakin besar pula tekanan yang di hasilkan. Hasil pembacaan sensor tekanan FSR (Force Sensing *Resistor*) pada PCB *fiber* bisa di lihat pada gambar 4.30 di bawah.

Gambar 4.30 Tekanan Pada Papan PCB Berbahan Fiber.

Gambar 4.31 Papan PCB Berbahan Fiber

Pada gambar 4.32 menunjukkan pembacaan tekanan sensor *FSR* terhadap papan PCB berbahan *phenolic paper* dimana pada pembacaan sensor yang di tampilkan pada LCD menunjukkan nilai konduktansi sebesar 54 *Siemens* (Satuan konduktansi), dimana semakin besar nilai konduktansi maka semakin kecil tekanan yang di berikan oleh mata bor, dan bisa menunjukkan tingkat kekerasan bahan, apabila semakin besar tekanan maka semakin keras pula bahan yang akan di lakukan proses grafir oleh mesin CNC portable. Hasil dari pembacaan sensor *FSR* (*Force Sensing Resistor*) pada PCB berbahan *phenolic paper* bisa di lihat pada gambar 4.32, dimana pada tampilan *LCD* menunjukkan nilai dari *pressure* sebagai nilai dari konduktansi, akibat hasil dari tekanan mata bor dari mesin CNC *portable* ketika melubangi papan PCB berbahan *phenolic paper* sedalam 1mm menggunakan matabor tipe"v *shape*"

Gambar 4.32 Tekanan Pada Papan PCB Berbahan Phenolic Paper

Gambar 4.33 Papan PCB Berbahan Phenolic Paper

4.11 Pengujian Keseluruhan Sistem

Hasil pengujian keseluruhan sistem di awali dengan melakukan proses kalibrasi terhadap masing masing sumbu x,y,z pada mesin CNC *portable*, melakukan percobaan pembuatan jalur 1 mm, melakukan percobaan membuat rangkaian *driver* motor stepper A4988, dan melakukan percobaan membedakan kekerasan bahan pada 2 jenis PCB, yaitu PCB *fiber* dan PCB *phenolic paper*.

4.11.1 Pengujian Alat

Hasil dari pengujian perpindahan sumbu x,y,z di tunjukkan pada tabel 4.14,hasil pengujian berupa pembuatan jalur PCB pada tabel 4.15,hasil pengujian pembuatan sirkuit PCB *driver* motor stepper A4988 pada tabel 4.16,serta hasil pengujian sensor tekanan *FSR* (*Force Sensing Resistor*) yang di tunjukkan pada tabel 4.17.

	Sebelum Kalibrasi			Sesudah Kalibrasi		
Target	Sumbu	Sumbu	Sumbu	Sumbu	Sumbu	Sumbu
	Х	у	Z	Х	у	Z
10 mm	20,4 mm	19,4 mm	20 mm	10 mm	10 mm	10 mm
20 mm	40,4 mm	39,4 mm	40 mm	20 mm	20 mm	20 mm

Tabel 4.14 Pengujian Pada Sumbu x,y,z

Pada tabel 4.14 menunjukkan hasil dari perpindahan mesin CNC *portable* pada saat sebelum di lakukan kalibrasi, dan sesudah di lakukan kalibrasi dan menunjukkan hasil perpindahan yang lebih akurat di bandingkan dengan perpindahan mesin CNC *portable* tanpa dilakukan proses kalibrasi terlebih dahulu. Pengambilan data pengujian alat pada sumbu x,y,z di lakukan pada tanggal 7/01/2020

 Tabel 4.15 Pengujian Pembuatan Ketebalan Jalur PCB 1 mm

NO	Target	Desain	Realisasi	Keterangan
1	1 mm		NN	7 Desain Berhasil
2	1 mm		M	3 Desain Gagal

Pada tabel 4.15 adalah hasil pengujian dari pembuatan ketebalan jalur PCB selebar 1 mm, dan pada hasil pengujian di dapatkan hasil kurang memuaskan, pada tabel 4.13 sebelumnya sudah di jelaskan bahwa terdapat 10 kali percobaan dimana ada 7 kali keberhasilan, 3 kali kegagalan. Pengambilan data pembuatan ketebalan jalur selebar 1 mm di lakukan pada tanggal 11/01/2020. 98

Tabel 4.16 Pengujian Pembuatan Sirkuit PCB

Pada tabel 4.16 menunjukkan hasil pengujian pembuatan sirkuit PCB pada papan PCB dimana masih ditemukan banyak kekurangan di dalam proses pembuatan sirkuit PCB diantaranya :

- 1. Proses konversi gambar berformat *Jpeg* dari software eagle kedalam format *SVG* (*Scalable Vector Graphics*) untuk kemudian di rubah kedalam bentuk vektor, masih kurang maksimal dikarenakan format *Jpeg* dari *software eagle* mempunyai kekurangan di dalam kualitas gambar.
- 2. Penggunaan dari motor spindle dari mesin CNC yang di gunakan kurang memenuhi daya yang di perlukan untuk memotong dan menggores dari papan PCB berbahan *fiber* maupun papan PCB berbahan *phenolic paper*, sehingga mengakibatkan gerakan motor stepper dari masing masing sumbu mesin CNC *portable* menjadi terhambat. Pengambilan data pembuatan rangkaian sirkuit pada papan PCB di lakukan di tanggal 15/12/2020

Bahan PCB	Keterangan	Gambar Tampilan LCD
	Tegangan = 1.7mV	
PCB Fiber	Pressure = 54 Siemens	U = 1764 mV Pressure = 54 FSR Ohm = 1834425 Newton = 0
	Resistansi =103k Ω	

 Tabel 4.17 Pengujian Sensor FSR (Force Sensing Resistor)

	Tegangan = 0.8mV	
PCB Phenolic Paper	Pressure = 20 Siemens	0 = 855 mV Pressure = 20 FSR Ohm = 48479000 Newton = 0
	Resistansi = $48k\Omega$	

Pada tabel 4.17 adalah pengujian sensor FSR (Force Sensing Resistor) terhadap bahan PCB berbahan fiber dan PCB berbahan phenolic paper di mana pada pengujian tersebut nilai yang di tunjukkan oleh LCD pada papan PCB berbahan fiber mempunyai niali resistansi yang lebih besar di bandingkan dengan papan PCB berbahan phenolic paper yaitu 103K Ohm pada PCB fiber, dan 48K Ohm pada PCB phenolic paper. Menurut datasheet dari sensor FSR sendiri apabila nilai output resistansi dari sensor FSR semakin kecil maka nilai dari tekanan yang di hasilkan dari mata bor yang melubangi papan PCB semakin besar, dan jika mata bor kesulitan melubangi papan PCB maka tingkat kekerasan pada PCB tersebut lebih keras dari bahan PCB lainnya. Dapat di simpulkan bahwa kekerasan bahan berbanding lurus dengan tekanan yang di hasilkan oleh mata bor yang melubangi papan PCB tersebut, dan dapat di simpulkan juga bahwa papan PCB berbahan fiber mempunyai bahan yang lebih keras dibandingkan dengan PCB phenolic paper.

BAB V PENUTUP

Setelah di lakukan perancangan dan pembuatan alat serta pengujian, analisa dapat ditarik kesimpulan dan saran dari kegiatan yang di lakukan untuk pengembangan proyek akhir lebih lanjut.

5.1 Kesimpulan

Dari seluruh tahapan yang sudah dilaksanakan pada penyusunan proyek akhir ini, mulai dari studi literatur,perancangan dan pembuatan sampai pada pengujiannya maka dapat disimpulkan bahwa:

- Hasil pengujian dan analisa perangkat mekanik yaitu didapatkan kesimpulan pada saat mesin CNC belum di lakukan kalibrasi maka yang terjadi adalah terjadinya error yang sangat besar antara software G-Code dengan realita pengukuran yang di lakukan oleh mesin CNC. Ketika software G-Code memberikan perintah 1 mm dan pada mesin CNC merespon jarak dengan menunjukkan jarak 12 mm, ini terjadi pada sumbu x, ketika kita sudah melakukan kalibrasi pada mesin CNC keakuratan mesin CNC menjadi bertambah dengan perintah 1 mm, maka di apatkan hasil 1 mm juga, hal ini terjadi pada pengujian sumbu x.
- 2. Hasil pengujian terhadap sumbu y juga di dapatkan hasil dengan perintah 1 mm sebelum kalibrasi di dapatkan hasil perpindahan sebesar 10 mm dan ketika kita sudah melakukan kalibrasi pada sumbu y maka di dapatkan hasil dengan perintah 1 mm dan di dapatkan perpindahan sebesar 1 mm juga, dengan perhitungan mekanik di dapatkan ke presisian dan hasil yang akurat sesuai dengan Inkscape.
- 3. Hasil pengujian yang di peroleh oleh sumbu z sebelum kalibrasi juga di dapatkan error yang tidak terlalu signifikan dengan perintah perpindahan 1 mm di dapatkan perpindahan

sebesar 2 mm dan di perlukan kalibrasi untuk meningkatkan ke akuratan perpindahan dalam sumbu z.

- 4. Hasil pengujian yang di peroleh ketika melakukan pengujian pembuatan lebar jalur 1 mm pada papan PCB dan di dapatkan presentase keberhasilan sebanyak 70%, dan presentase kegagalan sebesar 30%. Untuk mengurangi dari presentase *error* di perlukan *upgrade* dari motor *spindle* mesin CNC *portable* di karenakan perputaran motor *spindle* yang kurang akan menghambat dari pergerakan mesin CNC *portable* untuk melakukan proses grafir pada papan PCB.
- 5. Hasil pengujian A4988 di dapatkan hasil yang kurang sesuai di karenakan kita membutuhkan file berukuran yang lebih baik di karenakan untuk di lakukan konversi menjadi vektor memerlukan file berukuran besar, serta penggunaan mata bor tipe "v shape" akan meningkatkan ke akuratan dari pembuatan sirkuit PCB daripada menggunakan mata bor ber tipe "twist bist" yang menggunakan diameter mata bor 1 mm
- 6. Dari percobaan pengambilan data tekanan pada papan PCB di peroleh bahwa papan PCB berbahan *Fiber* mempunyai kekerasan bahan yang lebih padat daripada papan PCB berbahan *Phenolic Paper*.

5.2 Saran

Dari seluruh tahapan yang dilaksanakan, dapat disimpulkan:

- 1. Pada proses pemilihan bahan CNC portable harus di lakukan pemilihan bahan yang ringan seperti alumunium agar berat total mesin CNC portable tidak terlalu berat.
- 2. Pada pengujian tegangan motor stepper di harapkan kedepannya bisa di lakukan monitoring tegangan dan arus motor stepper, dan pembacaan PWM agar dapat mengurangi kemungkinan terjadinya error pada stepper.

DAFTAR PUSTAKA

- Jenis- Jenis PCB https://teknikelektronika.com/pengertianpcb-printed-circuit-board-dan-jenis-jenis-pcb/ 10 Oktober 2019
- [2] Lapisan PCB https://www.nesabamedia.com/pengertianfungsi-dan-jenis-jenis-pcb/10 Oktober 2019
- [3] Flexible Printed Circuits Design Guide *https://www.tech-etch.com/flex/flex_design_guide.pdf* / 10 Oktober 2019
- [4] Larutan FeCl3 (Feri klorida) https://id.wikipedia.org/wiki/Besi(III)_klorida/ 10 Oktober 2019
- [5] Etching Your Own PC *boards http://www.electronics-diy.com/pdf/Etching_Your_Own_PC_boards.pdf* Electus Distribution, 2002
- [6] Datasheet FSR Sensor (Force Sensing Resistor) 402 https://www.trossenrobotics.com/productdocs/2010-10-26-DataSheet-FSR402-Layout2.pdf
- [7] HNC Electric, CNC (Computer Numerical Control) Controller.
 2014.http://www.hncelectric.com/en_product_list.aspx?ca tegory_id=36
- [8] Kadir, Abdul, Panduan Praktis Mempelajari Aplikasi Mikrokontroler Dan Pemrogramannya Menggunakan Arduino, Andi Yogyakarta, 2013.
- [9] DMOS Microstepping Driver with Translator And Overcurrent Protection https://www.pololu.com/file/0J450/a4988_DMOS_microst epping driver with translator.pdf
- [10] Datasheet Stepping Motors Catalogue. http://www.tme.eu/en/Document/48ac9f8512124ec9a791 d3759c517a64/sanyo-motor.pdf

- [11] Spindle motor https://www.solectro.se/Archive/Documents/Delkatalog/sp indle-motors-en-71020510-01.pdf
- [12] Universal Motor Spindle Driver DC-AC Controller https://www.ebay.com/itm/DC-AC-Motor-Speed-Driver-Controller-PWM-MCH3-Spindle-Governor-15-160V-12-110V-/172994543141
- [13] BAB II Landasan Teori CAD/CAM, http://library.binus.ac.id/eColls/eThesisdoc/Bab2/BAB296 -23.pdf
- [14] G-Code Manual https://machmotion.com/documentation/Software/Mach4/ Mach4-G-and-M-Code-Reference-Manual.pdf
- [15] V-Shape https://www.tokopedia.com/murmerstorecrb/mata-bor-vshape-carbide-0-1mm-30-degree-board-bit-vshape-cncrouter

LAMPIRAN A

#include <LiquidCrystal_I2C.h>

//#include <SPI.h>

#include <Wire.h>

/* FSR testing sketch.

Connect one end of FSR to power, the other end to Analog 0. Then connect one end of a 10K resistor from Analog 0 to ground

int fsrPin = 0; int fsrReading; int fsrVoltage; unsigned long fsrResistance; unsigned long fsrConductance; long fsrForce;

LiquidCrystal_I2C lcd(0x27, 20, 4);

void setup() {

lcd.init();

lcd.init();

```
lcd.backlight();
//lcd.clear();
Serial.begin(9600);
}
```

void loop(void) {
fsrReading = analogRead(fsrPin);
Serial.print("Analog reading = ");
Serial.println(fsrReading);

maps to 0V to 5V (= 5000 mV)

fsrVoltage = map(fsrReading, 0, 1023, 0, 5000);

Serial.print("Voltage reading in mV = ");

lcd.setCursor(0, 0);

lcd.print("V = ");

Serial.print(fsrVoltage);

lcd.setCursor(4, 0);

lcd.print(fsrVoltage);

Serial.println("mV");

lcd.setCursor(9, 0);

lcd.print("mV");

if (fsrVoltage == 0) { Serial.println("No pressure"); lcd.setCursor(0, 1); lcd.print("No Pressure"); } else { fsrResistance = 5000 - fsrVoltage; so 5V = 5000mVfsrResistance *= 10000; fsrResistance /= fsrVoltage; Serial.print("FSR resistance in ohms = "); lcd.setCursor(0, 2); lcd.print("FSR Ohm = "); Serial.println(fsrResistance); lcd.print(fsrResistance); fsrConductance = 1000000;fsrConductance /= fsrResistance; Serial.print("Conductance in microMhos: ");

lcd.setCursor(0, 1);

lcd.print("Pressure = ");

Serial.println(fsrConductance);

lcd.print(fsrConductance);

//lcd.clear();

if (fsrConductance <= 1000) { fsrForce = fsrConductance / 80; Serial.print("Force in Newtons: "); lcd.setCursor(0, 3); lcd.print("Newton = "); Serial.println(fsrForce); lcd.setCursor(9, 3); lcd.print(fsrForce); } else { fsrForce = fsrConductance - 1000; fsrForce = 30; Serial.print("Force in Newtons: "); lcd.setCursor(0, 3); lcd.print("Newton = "); Serial.println(fsrForce); lcd.setCursor(12, 3); lcd.print(fsrForce); } }

Serial.println("-----");
delay(1000);
}

-----Halaman ini sengaja dikosongkan-----

LAMPIRAN B

Datasheet A4988

A4988

DMOS Microstepping Driver with Translator And Overcurrent Protection

Features and Benefits

- Low R_{DS(ON)} outputs
- · Automatic current decay mode detection/selection
- Mixed and Slow current decay modes
- · Synchronous rectification for low power dissipation
- Internal UVLO
- · Crossover-current protection
- · 3.3 and 5 V compatible logic supply
- · Thermal shutdown circuitry
- · Short-to-ground protection
- · Shorted load protection
- · Five selectable step modes: full, 1/2, 1/4, 1/8, and 1/16

Package:

Description

The A4988 is a complete microstepping motor driver with built-in translator for easy operation. It is designed to operate bipolar stepper motors in full-, half-, quarter-, eighth-, and sixteenth-step modes, with an output drive capacity of up to 35 V and ± 2 A. The A4988 includes a fixed off-time current regulator which has the ability to operate in Slow or Mixed decay modes.

The translator is the key to the easy implementation of the A4988. Simply inputting one pulse on the STEP input drives the motor one microstep. There are no phase sequence tables, high frequency control lines, or complex interfaces to program. The A4988 interface is an ideal fit for applications where a complex microprocessor is unavailable or is overburdened.

During stepping operation, the chopping control in the A4988 automatically selects the current decay mode, Slow or Mixed. In Mixed decay mode, the device is set initially to a fast decay for a proportion of the fixed off-time, then to a slow decay for the remainder of the off-time. Mixed decay current control results in reduced audible motor noise, increased step accuracy, and reduced power dissipation.

Continued on the next page ...

Typical Application Diagram

4988-DS, Rev. 5

Description (continued)

Internal synchronous rectification control circuitry is provided to improve power dissipation during PWM operation. Internal circuit protection includes: thermal shutdown with hysteresis, undervoltage lockout (UVLO), and crossover-current protection. Special power-on sequencing is not required. The A4988 is supplied in a surface mount QFN package (ES), 5 mm \times 5 mm, with a nominal overall package height of 0.90 mm and an exposed pad for enhanced thermal dissipation. It is lead (Pb) free (suffix –T), with 100% matte tin plated leadframes.

Selection Guide

Part Number	Package	Packing
A4988SETTR-T	28-contact QFN with exposed thermal pad	1500 pieces per 7-in. reel

Absolute Maximum Ratings

Characteristic	Symbol	Notes Rating		Units
Load Supply Voltage	Van		35	V
Output Current	lour		±2	Α
Logic Input Voltage	VIN		-0.3 to 5.5	V
Logic Supply Voltage	V _{DD}		-0.3 to 5.5	V
Motor Outputs Voltage			-2.0 to 37	V
Sense Voltage	VSENSE		-0.5 to 0.5	V
Reference Voltage	VREF		5.5	V
Operating Ambient Temperature	TA	Range S	-20 to 85	*C
Maximum Junction	T_(max)		150	*C
Storage Temperature	Tatg		-55 to 150	*C

DMOS Microstepping Driver with Translator And Overcurrent Protection

Characteristics	Symbol	Test Conditions	Min.	Typ. ²	Max.	Units
Output Drivers					·	
Load Supply Voltage Range	V _{BB}	Operating	8	-	35	V
Logic Supply Voltage Range	V _{DD}	Operating	3.0	-	5.5	V
Outend On Resistance		Source Driver, I _{OUT} = -1.5 A	-	320	430	mΩ
Output On Resistance	RDSON	Sink Driver, IOUT = 1.5 A	-	320	430	mΩ
Redy Diado Ferward Vallage	v	Source Diode, I _F = -1.5 A	-	-	1.2	V
Body Diode Forward Voltage	VF	Sink Diode, I _F = 1.5 A	-	-	1.2	V
Mater Supely Current		f _{PWM} < 50 kHz	-	-	4	mA
Motor Supply Current	'88	Operating, outputs disabled	-	-	2	mA
Logic Supply Current		f _{PWM} < 50 kHz	-	-	8	mA
Logic Supply Guirent	'00	Outputs off	-	-	5	mA
Control Logic						
Logia Innut Voltage	V _{IN(1)}		V _{DD} ×0.7	-	-	V
Logic input voltage	V _{IN(0)}		-	-	V _{DD} ×0.3	V
Logic legal Current	I _{IN(1)}	$V_{IN} = V_{DD} \times 0.7$	-20	<1.0	20	μA
Logic input Current	I _{IN(0)}	$V_{IN} = V_{DD} \times 0.3$	-20	<1.0	20	μA
	R _{MS1}	MS1 pin	-	100	-	kΩ
Microstep Select	R _{MS2}	MS2 pin	-	50	-	kΩ
	R _{MS3}	MS3 pin	-	100	-	kΩ
Logic Input Hysteresis	V _{HYS(IN)}	As a % of V _{DD}	5	11	19	%
Blank Time	1 _{BLANK}		0.7	1	1.3	μs
Eined Off Time	LOFF	OSC = VDD or GND	20	30	40	μs
rixed On-Time		R _{OSC} = 25 kΩ	23	30	37	μs
Reference Input Voltage Range	VREF		0	-	4	V
Reference Input Current	REF		-3	0	3	μA
		V _{REF} = 2 V, %I _{TripMAX} = 38.27%	-	-	±15	%
Current Trip-Level Error ³	err	V _{REF} = 2 V, %I _{TripMAX} = 70.71%	-	-	±5	%
		V _{REF} = 2 V, %I _{TripMAX} = 100.00%	-	-	±5	%
Crossover Dead Time	tor		100	475	800	ns
Protection						
Overcurrent Protection Threshold ⁴	I _{OCPST}		2.1	-	-	Α
Thermal Shutdown Temperature	T _{TSD}		-	165	-	°C
Thermal Shutdown Hysteresis	TISOHYS		-	15	-	°C
VDD Undervoltage Lockout	VDDUVLO	V _{DD} rising	2.7	2.8	2.9	V
VDD Undervoltage Hysteresis	V DDUVLOHYS		-	90	-	mV

ELECTRICAL CHARACTERISTICS¹ at T_A = 25°C, V_{BB} = 35 V (unless otherwise noted)

For input and output current specifications, negative current is defined as coming out of (sourcing) the specified device pin.

²Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions. Performance may vary for individual units, within the specified maximum and minimum limits.

³V_{ERR} = [(V_{REF}/8) - V_{SENSE}] / (V_{REF}/8).

4Overcurrent protection (OCP) is tested at T_a = 25°C in a restricted range and guaranteed by characterization.

Datasheet FSR 402

FSR 402 Data Sheet

FSR 400 Series Round Force Sensing Resistor

Description

Features and Benefits

- Actuation Force as low as 0.1N and sensitivity range to 10N.
- Easily customizable to a wide range of sizes
- Highly Repeatable Force Reading; As low as 2% of initial reading with repeatable actuation system
- Cost effective
- Ultra thin; 0.45mm
- · Robust; up to 10M actuations
- Simple and easy to integrate

Interlink Electronics FSR[™] 400 series is part of the single zone Force Sensing Resistor[™] family. Force Sensing Resistors, or FSRs, are robust polymer thick film (PTF) devices that exhibit a decrease in resistance with increase in force applied to the surface of the sensor. This force sensitivity is optimized for use in human touch control of electronic devices such as automotive electronics, medical systems, and in industrial and robotics applications.

The standard 402 sensor is a round sensor 18.28 mm in diameter. Custom sensors can be manufactured in sizes ranging from 5mm to over 600mm. Female connector and short tail versions can also be ordered.

Industry Segments

- Game controllers
- Musical instruments
- Medical device controls
- Remote controls
- Navigation Electronics
- Industrial HMI
- Automotive Panels
- Consumer Electronics

Contact Us

United States Corporate Offices

Interlink Electronics, Inc. 546 Flynn Road Camarillo, CA 93012, USA Phone: +1-805-484-8855 Fax: +1-805-484-9457 Web: www. interlinkelectronics.com Sales and support: fr@interlinkelectronics.com

Japan

Japan Sales Office Phone: +81-45-263-6500 Fax: +81-45-263-6501 Web: www.interlinkelec.co.jp

Korea

Korea Sales Office Phone: +82 10 8776 1972 For specific application needs please contact Interlink Electronics support team. An integration guide is also available.

For a simple force-to-voltage conversion, the FSR device is tied to a measuring resistor in a voltage divider configuration (see Figure 3). The output is described by the equation:

$$V_{OUT} = \frac{R_M V +}{(R_M + R_{ESP})}$$

In the shown configuration, the output voltage increases with increasing force. If $R_{\rm rea}$ and $R_{\rm w}$ are swapped, the output swing will decrease with increasing force.

The measuring resistor, $R_{\mu\nu}$ is chosen to maximize the desired force sensitivity range and to limit current. Depending on the impedance requirements of the measuring circuit, the voltage divider could be followed by an op-amp.

A family of force vs. V_{cut} curves is shown on the graph below for a standard FSR in a voltage divider configuration with various $R_{_{\rm N}}$ resistors. A (V+) of +5V was used for these examples.

Figure 3

DAFTAR RIWAYAT HIDUP

Nama	:	Alwan Arib Rohmat
TTL	:	Tuban, 15 Oktober 1998
Jenis Kelamin	:	Laki-laki
Agama	:	Islam
Alamat Rumah	:	Ds Sembung Kec Parengan Kab Tuban
Nomor HP	:	085235662291
E-mail	:	alwanaribrohmad@ gmail.com

RIWAYAT PENDIDIKAN

- 2001-2003
- 2003-2009
- 2009-2012
- 2012-2015
- 2016 sekarang
- : TK Nurul Islam Sembung Parengan
- : SDN 1 Sembung
- : SMP Negeri 1 Singgahan
- : SMA Negeri 1 Bojonegoro
- : Program Departemen Teknik Elektro Otomasi, Fakiultas Vokasi, ITS

PENGALAMAN MAGANG

• Magang di PT PAL Indonesia (Persero)

PENGALAMAN KEPANITIAAN

- IARC 2017,2018.
- ITS Open 2016,2017,2018.
- LKMM PRA-TD
- Kepala Departemen PSDA UKM Badminton ITS
-----Halaman ini sengaja dikosongkan-----