

SINTESIS DAN KARAKTERISASI LISTRIK MATERIAL FERROELEKTRIK BEBAS TIMBAL 0,8(Ka_{0,5}Na_{0,5}NbO₃)-0,2(Ba_{0,8}Sr_{0,2}TiO₃) DENGAN METODE GABUNGAN REAKSI PADAT – KOPRESIPITASI OKSALAT

Nama Mahasiswa

: Ersa Desmelinda : 1113201002

NRP

Pembimbing

: Prof. Dr. Suasmoro, DEA

ABSTRAK

Material ferroelektrik bebas timbal dengan struktur ABO₃ perovskite (A = $K_{0.4}$, Na_{0.4}, $Ba_{0,16}$, $Sr_{0,04}$ and $B = Nb_{0,8}$, $Ti_{0,2}$) telah berhasil disintesis dengan menggunakan metode gabungan reaksi padat dan kopresipitasi oksalat. K_{0.5}Na_{0.5}NbO₃ (KNN) yang disintesis dengan metode reaksi padat dan Ba_{0.8}Sr_{0.2}TiO₃ (BST) berupa prekursor dan bubuk ka lsinasi yang disintesis dengan metode kopresipitasi oksalat dicampur dengan perbandingan mol 0,8KNN dan 0,2BST dengan dua rute sintesis yaitu: KNN (kalsinasi) - BST (kalsinasi) sebagai rute pertama dan KNN (kalsinasi) – BST (tanpa kalsinasi) sebagai rute kedua. Bubuk (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ dari setiap rute dikalsinasi berdasarkan hasil analisis termal (DTA-TGA). Fasa tunggal dari (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ terbentuk dengan kalsinasi 1100°C selama 2 jam untuk rute pertama dan 700°C selama 2 jam untuk rute kedua. Perlakuan sintering dilakukan berdasarkan hasil dilatometri. Pelet yang telah disinter menunjukkan pemadatan yang bagus dengan sintering pada suhu 1200°C selama 2 jam. Terkait dengan volatilitas dari unsur alkali, dilakukan penambahan 4% mol K - 16% mol Na untuk rute pertama dan 2% mol K - 8% mol Na untuk rute kedua sehingga fasa tunggal (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ dalam bentuk pelet berhasil terbentuk. Setelah dilakukan analisis struktur dengan metode Rietveld refinement, diketahui bahwa bubuk K NN berstruktur perovskite orthorombik dengan a=3,572027 Å, b=3,570713 Å, c=3,565755 Å dan bubuk BST berstruktur perovskite tetragonal dengan a=b=3,983412 Å, c=3,995775 Å. Diketahui pula bahwa sampel (K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O₃ dalam bentuk pelet dari kedua rute sintesis berstruktur perovskite tetragonal dengan parameter kisi a=b=3,956166 Å, c=3,981212 Å dari rute pertama dan a=b=3,949728 Å, c=3,965926 Å dari rute kedua. Karakterisasi listrik dari kedua sampel diidentifikasi dengan impedance analyser. (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ dari rute pertama memiliki suhu Curie ~440°C sedangkan dari rute kedua memiliki suhu Curie ~420°C. Terdapat dua daerah energi aktivasi berbeda untuk kedua sampel yaitu: 0.9297 eV (~200°C - ~400°C) dan 1,4271 eV (~450°C - ~850°C) untuk sampel dari rute pertama dan 0,6419 eV (~200°C - ~400°C) dan 1,0397 eV (~450°C - ~850°C) untuk sampel dari rute kedua.

Key words: dielektrisitas, kopresipitasi, perovskite, oksalat

SYNTHESIS AND ELECTRICAL PROPERTIES OF LEAD FREE FERROELECTRIC MATERIAL 0.8(Ka_{0.5}Na_{0.5}NbO₃)-0.2(Ba_{0.8}Sr_{0.2}TiO₃) USING COMBINATION OF SOLID STATE REACTION-OKSALAT COPRECIPITATION METHOD

Name NRP Supervisor : Ersa Desmelinda : 1113201002 : Prof. Dr. Suasmoro, DEA

ABSTRACT

Lead free ferroelectric material behave ABO₃ perovskite structure (A = $K_{0.4}$, Na_{0.4}, $Ba_{0.16}$, $Sr_{0.04}$ and $B = Nb_{0.8}$, $Ti_{0.2}$) has been successfully synthesized using a combination of solid state reaction and oxalate coprecipitation method. A batch of $K_{0.5}Na_{0.5}NbO_3$ (KNN) synthesized through solid state reaction and a batch of $Ba_{0.8}Sr_{0.2}TiO_3$ (BST) precurcor-calcined prepared via oxalate coprecipitation were mixed by 0.8 mol KNN and 0.2 mol BST for sample synthesis into two different routes: KNN(calcined)-BST(calcined) as first route and KNN(calcined)-BST (non calcined) as second route. (K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O₃ powders from each route were calcined based on thermal analysis (DTA-TGA). Single phase of (K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O₃ was formed by calcinations at 1100°C-2 hours for first route and at 700°C-2 hours for second route. The study of sintering was conducted by mean dilatometry. Sinter pellet sample shows good densification when sintering was took place at 1200°C for 2 hours. Due to volatility of alkaline element, K and Na were taken essesively by increasing 4% mol K - 16% mol Na for first route and 2% mol K - 8% mol Na for second route. Single phase of (K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O₃ pellet has been obtained successfully. After structure analysis using Rietveld refinements, known that KNN powder behave perovskite orthorombic structure with a=3.572027 Å, b=3.570713 Å, c=3.565755 Å and BST powder behave perovskite tetragonal structure with a=b=3.983412 Å, c=3.995775 Å. It also known that (K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O₃ pellets from both routes behave perovskite tetragonal structure with lattice parameter a=b=3.956166 Å, c=3.981212 Å for first route and a=b=3.949728 Å, c=3.965926 Å for second route. Electrical properties was identified by impedance analyzer. Curie temperature of $(K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O_3$ from first route is ~440°C and ~420°C for second route. There are two activation energy region of both sample: -0.9297 eV (~200°C - ~400°C) and 1.4271 eV (~450°C - ~850°C) for sample by first route and 0.6419 eV (~200°C - ~400°C) and 1.0397 eV (~450°C - ~850°C) for sample by second route.

Keywords: dielectricity, coprecipitation, perovskite, oxalate

KATA PENGANTAR

Alhamdulillahirabbil'alamin. Puji syukur kepada Allah SWT yang Maha Pengasih dan Penyayang penulis ucapkan karena hanya dengan izin-Nya penulis dapat menyelesaikan penelitian yang berjudul "Sintesis dan Karakterisasi Listrik Material Ferroelektrik Bebas Timbal 0,8(Ka_{0,5}Na_{0,5}NbO₃)-0,2(Ba_{0,8}Sr_{0,2}TiO₃) dengan Metode Gabungan Reaksi Padat-Kopresipitasi Oksalat".

Pada kesempatan ini penulis juga ingin menyampaikan terima kasih banyak kepada semua pihak yang telah banyak membantu penulis dalam penyelesaian tugas ini, diantaranya:

- 1. Prof. Dr. Suasmoro selaku dosen wali sekaligus dosen pembimbing tesis yang senantiasa memberikan bimbingan, wawasan, dan motivasi sejak awal penulis menjadi mahasiswa beliau hingga kini.
- Prof. Drs. Suminar Pratapa, M.Sc., Ph.D selaku dosen penguji yang telah banyak memberikan masukan positif bagi penelitian dan penulisan laporan penelitian ini.
- 3. Dr. Drs. M. Zainuri, M.Si selaku dosen penguji yang telah banyak memberikan masukan positif bagi penelitian dan penulisan laporan penelitian ini.
- 4. Rekan satu tim penelitian: Bapak Imam Rofi'i, Mbak Rizki Noviani, Mas Anthon Thoim, adinda Dian Agustinawati, adinda Amalia Ma'rifatul Maghfiroh dan adinda Nur Lailiyah Isnaini yang telah mendampingi pelaksanaan penelitian sehingga dapat tersusunnya tesis ini.
- 5. Teman-teman satu angkatan Magister Fisika 2013 ya ng senantiasa memberi motivasi kepada penulis.

Penulis menyadari, bahwa proposal tesis ini tentunya banyak memiliki kekurangan di sana sini karena kurangnya pengalaman dan pengetahuan penulis sendiri. Oleh karena itu, kritik dan saran yang bersifat membangun terutama dari dosen pembimbing dan dosen-dosen penguji sangat penulis harapkan demi perbaikan di masa akan datang.

DAFTAR ISI

ABSTRACT. ii KATA PENGANTAR. ii DAFTAR ISI ii DAFTAR GAMBAR v DAFTAR TABEL v DAFTAR TABEL v DAFTAR IAMPIRAN ii BAB 1 PENDAHULUAN 1 1.1. Latar Belakang 1 1.2. Perumusan Masalah 2 1.3. Tujuan Penelitian 2 1.4. Manfaat Penelitian 2 BAB 2 LANDASAN TEORI 3 2.1. Struktur Material Berbasis Niobat dan Titanat 3 2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 1 3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 3.4. Metode Karakterisasi 1 4.1. Sintesis KNN-BST 1	ABSTRAK	ü
KATA PENGANTAR. i DAFTAR ISI. v DAFTAR GAMBAR. v DAFTAR TABEL. v DAFTAR TABEL. v DAFTAR LAMPIRAN i BAB 1 PENDAHULUAN 1 1.1. Latar Belakang 1 1.2. Perumusan Masalah 2 1.3. Tujuan Penelitian 2 1.4. Manfaat Penelitian 2 2.1. Struktur Material Berbasis Niobat dan Titanat 3 2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 8 BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Akat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 4.1. Sintesis KNN-BST 1	ABSTRACT.	
DAFTAR ISI. v DAFTAR GAMBAR v DAFTAR TABEL v DAFTAR TABEL v DAFTAR LAMPIRAN i BAB 1 PENDAHULUAN 1 1.1. Latar Belakang 1 1.2. Perumusan Masalah 2 1.3. Tujuan Penelitian 2 1.4. Manfaat Penelitian 2 1.4. Manfaat Penelitian 3 2.1. Struktur Material Berbasis Niobat dan Titanat 3 2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 8 BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Akt dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 HASIL DAN PEMBAHASAN 1 4.1. Sintesis KNN-BST 1	KATA PENGANTAR	iv
DAFTAR GAMBAR v DAFTAR TABEL v DAFTAR LAMPIRAN i BAB 1 PENDAHULUAN 1 1.1. Latar Belakang 1 1.2. Perumusan Masalah 2 1.3. Tujuan Penelitian 2 1.4. Manfaat Penelitian 2 BAB 2 LANDASAN TEORI 3 2.1. Struktur Material Berbasis Niobat dan Titanat 3 2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 8 BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 BAB 4 HASIL DAN PEMBAHASAN 1 4.1. Sintesis KNN-BST 1	DAFTAR ISI	v
DAFTAR TABEL v DAFTAR LAMPIRAN ii BAB 1 PENDAHULUAN 1 1.1. Latar Belakang 1 1.2. Perumusan Masalah 2 1.3. Tujuan Penelitian 2 1.4. Manfaat Penelitian 2 BAB 2 LANDASAN TEORI 3 2.1. Struktur Material Berbasis Niobat dan Titanat 3 2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 8 BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 HASIL DAN PEMBAHASAN 1 4.1. Sintesis KNN-BST 1	DAFTAR GAMBAR	vi
DAFTAR LAMPIRAN ii BAB 1 PENDAHULUAN 1 1.1. Latar Belakang 1 1.2. Perumusan Masalah 2 1.3. Tujuan Penelitian 2 1.4. Manfaat Penelitian 2 BAB 2 LANDASAN TEORI 3 2.1. Struktur Material Berbasis Niobat dan Titanat 3 2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 8 BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 HASIL DAN PEMBAHASAN 1 4.1. Sintesis KNN-BST 1	DAFTAR TABEL	vi
BAB 1 PENDAHULUAN 1 1.1. Latar Belakang 1 1.2. Perumusan Masalah 2 1.3. Tujuan Penelitian 2 1.4. Manfaat Penelitian 2 BAB 2 LANDASAN TEORI 3 2.1. Struktur Material Berbasis Niobat dan Titanat 3 2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 8 BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 4.1. Sintesis KNN-BST 1	DAFTAR LAMPIRAN	ix
1.1. Latar Belakang 1 1.2. Perumusan Masalah 2 1.3. Tujuan Penelitian 2 1.4. Manfaat Penelitian 2 BAB 2 LANDASAN TEORI 3 2.1. Struktur Material Berbasis Niobat dan Titanat 3 2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 8 BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 4.1. Sintesis KNN-BST 1	BAB 1 PENDAHULUAN	
1.2. Perumusan Masalah 2 1.3. Tujuan Penelitian 2 1.4. Manfaat Penelitian 2 BAB 2 LANDASAN TEORI 3 2.1. Struktur Material Berbasis Niobat dan Titanat 3 2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 8 BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 4.1. Sintesis KNN-BST 1	1.1. Latar Belakang	1
1.3. Tujuan Penelitian 2 1.4. Manfaat Penelitian 2 BAB 2 LANDASAN TEORI 3 2.1. Struktur Material Berbasis Niobat dan Titanat 3 2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 8 BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 4.1. Sintesis KNN-BST 1	1.2. Perumusan Masalah	2
1.4. Manfaat Penelitian 2 BAB 2 LANDASAN TEORI 3 2.1. Struktur Material Berbasis Niobat dan Titanat 3 2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 8 BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 BAB 4 HASIL DAN PEMBAHASAN 1 4.1. Sintesis KNN-BST 1	1.3. Tujuan Penelitian.	2
BAB 2 LANDASAN TEORI 3 2.1. Struktur Material Berbasis Niobat dan Titanat 3 2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 8 BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi. 1 BAB 4 HASIL DAN PEMBAHASAN 1 4.1. Sintesis KNN-BST 1	1.4. Manfaat Penelitian	2
BAB 2 LANDASAN TEORI 3 2.1. Struktur Material Berbasis Niobat dan Titanat 3 2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 8 BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 BAB 4 HASIL DAN PEMBAHASAN 1 4.1. Sintesis KNN-BST 1		
2.1. Struktur Material Berbasis Niobat dan Titanat 3 2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 8 BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 BAB 4 HASIL DAN PEMBAHASAN 1 4.1. Sintesis KNN-BST 1	BAB 2 LANDASAN TEORI	3
2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material 8 BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 BAB 4 HASIL DAN PEMBAHASAN 1 4.1. Sintesis KNN-BST 1	2.1. Struktur Material Berbasis Niobat dan Titanat	
BAB 3 METODE PENELITIAN 1 3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 BAB 4 HASIL DAN PEMBAHASAN 1 4.1. Sintesis KNN-BST 1	2.2. Karakterisasi Dielektrisitas dan Konduktivitas Material	8
3.1. Material 1 3.2. Alat dan Bahan 1 3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 BAB 4 HASIL DAN PEMBAHASAN 1 4.1. Sintesis KNN-BST 1	BAB 3 METODE PENELITIAN	
3.2. Alat dan Bahan	3.1. Material	1
3.3. Metode Sintesis 1 3.4. Metode Karakterisasi 1 BAB 4 HASIL DAN PEMBAHASAN 1 4.1. Sintesis KNN-BST 1	3.2. Alat dan Bahan	1
3.4. Metode Karakterisasi. 1 BAB 4 HASIL DAN PEMBAHASAN 1 4.1. Sintesis KNN-BST. 1	3.3. Metode Sintesis	1
BAB 4 HASIL DAN PEMBAHASAN	3.4. Metode Karakterisasi	1
BAB 4 HASIL DAN PEMBAHASAN		
4.1. Sintesis KNN-BST	BAB 4 HASIL DAN PEMBAHASAN	1
	4.1. Sintesis KNN-BST	

BAB 5 KESIMPULAN DAN SARAN	
5.1. Kesimpulan	
5.2. Saran	
DAFTAR PUSTAKA	
LAMPIRAN	
BIODATA PENULIS	5777

DAFTAR GAMBAR

Gambar 2.1. Struktur Perovskite	3
Gambar 2.2. Karakteristik Piezoelektrik dan Permitivitas Relatif (Saito)	4
Gambar 2.3. Pola XRD KNN dan BST	5
Gambar 2.4. Suhu Transisi dan Tetragonalitas $Ba_{1-x}Sr_xTiO_3$	5
Gambar 2.5. Pola XRD dan SEM KNN-BCT	6
Gambar 2.6. Permitivitas Relatif dan Tangen loss KNN-BCT	7
Gambar 2.7. Variasi konstanta dielektrik dan loss terhadap frekuensi	8
Gambar 2.8. Plot konstanta dielektrik sebagai fungsi frekuensi	9
Gambar 2.9. Plot Cole-Cole impedansi Z'-Z''	10
Gambar 3.1. Diagram alir sintesis KNN	14
Gambar 3.2. Diagram alir sintesis BST	15
Gambar 3.3. Diagram Alir Penelitian.	16
Gambar 4.1. Pola XRD KNN dan BST (Kalsinasi 700°C-2 Jam)	19
Gambar 4.2. Kurva TGA-DTA	21
Gambar 4.3. Volatilitas Unsur Alkali	22
Gambar 4.4. Pola XRD serbuk KNN-BST	22
Gambar 4.5. Hasil Uji Dilatometri	25
Gambar 4.6. Pola XRD Pelet KNN-BST	26
Gambar 4.7. Struktur Perovskite KNN-BST	27
Gambar 4.8. Hubungan Permitivitas Relatif dan Suhu	28
Gambar 4.9. Hubungan Permitivitas Relatif dan Frekuensi	30
Gambar 4.10. Plot Cole-Cole (K _{0,4} Na _{0,4} Ba _{0,16} Sr _{0,04})(Nb _{0,8} Ti _{0,2})O ₃ (K-K)	31
Gambar 4.11. Plot Cole-Cole (K _{0,4} Na _{0,4} Ba _{0,16} Sr _{0,04})(Nb _{0,8} Ti _{0,2})O ₃ (K-NK)	32
Gambar 4.12. Faktor Disipasi (K _{0,4} Na _{0,4} Ba _{0,16} Sr _{0,04})(Nb _{0,8} Ti _{0,2})O ₃	33
Gambar 4.13. Konduktivitas KNN-BST	34

DAFTAR TABEL

Tabel 1.Struktur Kristal dan Parameter Kisi KNN dan BST	20
Tabel 2.Parameter Kisi Serbuk (K _{0,4} Na _{0,4} Ba _{0,16} Sr _{0,04})(Nb _{0,8} Ti _{0,2})O ₃	24
Tabel 3.Data Jari-Jari Ion	24
Tabel 4.Parameter Kisi Pelet (K _{0,4} Na _{0,4} Ba _{0,16} Sr _{0,04})(Nb _{0,8} Ti _{0,2})O ₃	26
Tabel 5. Densitas $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$	27
Tabel 6.Suhu Curie	28
Tabel 7. Energi Aktivasi $(K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O_3$	

DAFTAR LAMPIRAN

Lampiran	A.Hasil Analisis Kualitatif dengan Software Match!	41
Lampiran	B.COD	42
Lampiran	C.Data Unsur-Unsur	46
Lampiran	D.Rekapitulasi Parameter Refinement	46
Lampiran	F.Pola XRD Hasil Refinement	47
Lampiran	G.Perhitungan Energi Aktivasi	53

BAB I PENDAHULUAN

1.1.Latar Belakang

Material ferroelektrik merupakan salah satu jenis material yang memiliki peranan penting di dunia sains dan industri. Sebut saja beberapa contoh pemanfaatan material ferroelektrik pada rangkaian elektronik seperti: varator pada rangkaian *microwave*, modulator elektro-optik, bahan dielektrik yang baik untuk kapasitor, *FeRAM (ferroelectrik RAM), ferroelectric tunnel junction,* bahan *multiferroic,* tansduser piezoelektrik, detektor piroelektrik, PTC (*positive temperature coefficient*) dan sensor infra merah (Suasmoro, et al, 2000 dan Fu, J.S., 2009).

Material ferroelektrik yang telah digunakan secara meluas di dunia industri piranti elektronik adalah material berbasis timbal (Pb), khususnya PZT. Material berbasis timbal disukai oleh dunia industri karena sifat kelistrikannya yang unggul yaitu dengan temperatur Curie berkisar pada daerah 250-400°C dengan d_{33} berkisar pada 400-500 pC/N (Saito, Y., et al, 2004).

Fakta mengejutkan muncul saat diketahui bahwa industri timbal menimbulkan polusi yang berbahaya bagi kesehatan manusia dan lingkungan. Fakta ini memotivasi pencarian material ferroelektrik pengganti yang bebas timbal dan lebih ramah lingkungan. Banyak penelitian yang telah dilakukan sebagai bentuk upaya memenuhi kebutuhan ini. Sampai saat ini, berbagai macam material masih dikembangkan untuk mencari solusi yang paling tepat.

Pada penelitian ini akan disintesis material ferroelektrik berbasis niobat yaitu $Ka_{0,5}Na_{0,5}NbO_3-Ba_{0,8}Sr_{0,2}TiO_3$ (selanjutnya akan ditulis KNN-BST). Material keramik berbasis KaNaNbO₃ memiliki tanda-tanda sebagai material ferroelektrik. Hal ini diketahui dari banyak penelitian yang telah dilakukan sebelumnya. Wang, dkk melaporkan bahwa bahan keramik $0,7(K_{0,48}Na_{0,52})NbO_3-0,058(K_{2,9}Li_{1,95}Nb_{5,15}O_{15,3})$ yang disintesis dengan metode reaksi padat memiliki suhu Curie 495°C dengan permitivitas relatif yang cukup baik, yaitu $\varepsilon_r = 478$ pada suhu ruang dengan ε_r maksimum bernilai 5067.

Di dalam penelitian lain, Hongliang Du, et al (2009) menemukan nilai maksimum permitivitas Ka_{0,5}Na_{0,5}NbO₃-Ba_{0,5}Sr_{0,5}TiO₃ mendekati 2500 pa da rentang suhu 100°C-250°C dengan dielektrik *loss* kurang dari 4%.

Golmohammad, et al (2012) menemukan nilai konstanta dielektrik untuk bahan $Ba_{0,7}Sr_{0,3}TiO_3$ yang disintesis dengan metode sol gel pada suhu ruang berada pada rentang 6357 hingga 9447 pada frekuensi antara 120 Hz hingga 10 kHz.

Berdasarkan fakta- fakta yang telah dipaparkan, maka kami memutuskan untuk menyintesis material ferroelektrik berstruktur *perovskite* ABO₃ dengan A = K, Na, Ba, Sr dan B = Nb, Ti dan komposisi ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)(Nb_{0,8}Ti_{0,2})O₃. Hal ini dilakukan sebagai upaya untuk mendapatkan material ferroelektrik fasa tunggal berstruktur *perovskite* yang tangguh secara mekanik dan memiliki sifat listrik yang unggul.

1.2.Perumusan Masalah

Permasalahan yang mendasari penelitian ini adalah sebagai berikut:

- Bagaimana struktur *perovskite* fasa tunggal ABO₃ dengan A = K, Na, Ba, Sr dan B = Nb, Ti yang disintesis dengan metode gabungan reaksi padatkopresipitasi oksalat.
- 2. Bagaimana sifat listrik, khususnya dielektrisitas dan suhu Curie dari material bebas timbal fasa tunggal ABO_3 dengan A = K, Na, Ba, Sr dan B = Nb, Ti yang disintesis dengan metode gabungan reaksi padat-kopresipitasi oksalat.

1.3. Tujuan Penelitian

Penelitian ini dilakukan dengan tujuan:

- 1. Menyintesis material bebas timbal berstruktur *perovskite* fasa tunggal ABO_3 dengan A = K, Na, Ba, Sr dan B = Nb, Ti menggunakan metode gabungan reaksi padat-kopresipitasi oksalat.
- 2. Melakukan karakterisasi sifat listrik, khususnya dielektrisitas dan suhu Curie dari material yang disintesis.

1.4.Manfaat Penelitian

Penelitian ini diharapkan mampu menghasilkan material ferroelektrik ramah lingkungan dengan sifat listrik yang baik sehingga dapat digunakan sebagai material alternatif pada berbagai aplikasi elektronik.

BAB II LANDASAN TEORI

1.1.Struktur Material Berbasis Niobat dan Titanat

Material berbasis niobat dan titanat diketahui memiliki struktur perovskite. Perovskite merupakan sebutan bagi kristal dengan rumus umum ABO₃. Model struktur perovskite standar berbasis kubik dengan atom oksigen berada di setiap muka kubus, atom A berada di setiap pojok kubus dan atom B berada di pusat kubus. Namun, material berstruktur perovskite dapat memiliki basis kisi kubik, tetragonal, orthorombik

dan sebagainya.

Gambar 2.1. Struktur Perovskite: a. pada fasa kubik, b. pada fasa tetragonal (Chiang, Y.M., 1997)

Bahan ferroelektrik memiliki struktur perovskite. Material berstruktur perovskite ini dapat menjadi penyimpan muatan listrik yang baik akibat terbentukya polarisasi pada bahan. Mekanisme terbentuknya polarisasi dapat dijelaskan akibat adanya transisi fasa kubik menjadi tetragonal pada suhu tertentu yang dikenal dengan suhu Curie. Sehingga dengan pemberian medan listrik yang relatif kecil saja, akan terjadi pergeseran kation di pusat kisi akibat interaksi Coulomb sehingga terjadi polarisasi pada bahan. Polarisasi akan menimbulkan distorsi kristal yang membuatnya bersifat dipol sehingga pada skala makroskopis terjadi pemisahan muatan positif dan negatif atau dengan kata lain material bersifat dielektrik.

Dengan karakteristik dielektriknya, material perovskite memiliki potensi aplikasi yang cukup luas seperti pada kapasitor, termistor, peralatan elektro-optik, *nonvolatile* DRAM (*dynamic random access memory*), aplikasi ultrasonik, *transducer* dan sebagainya. (Suasmoro, et al, 2000) Ada banyak jenis metode sintesis material keramik seperti metode reaksi padat, sol-gel, *molten salt*, kopresipitasi, hidrotermal, CVD dan sebagainya, namun secara umum metode sintesis ini terbagi menjadi dua jenis yaitu *top-down process* dan *bottom-up process*. Metode reaksi padat adalah salah satu metode sintesis yang disukai karena prosedur dan pemilihan bahan dasarnya yang relatif lebih mudah. Metode reaksi padat tergolong kepada *top-down process*. Kopresipitasi (pengendapan) merupakan salah satu jenis dari *bottom up pr ocess*. Kopresipitasi oksalat adalah proses pengendapan dengan bantuan asam oksalat sebagai agen pengendap. Keunggulan metode sintesis jenis *bottom up pr ocess* adalah di dapat hasil sintesis yang lebih homogen dengan ukuran partikel yang lebih kecil.

Gambar 2.2. Karakteristik piezoelektrik (a) konstanta d_{31} ($K_{0,5}Na_{0,5}$)_{1-x} Li_x)(Nb_{1-y}Ta_y)O₃ sebagai fungsi komposisi Li dan Ta dengan LF1 (x=0,06;y=0), LF2 (x=0,04;y=0,10), LF3 (x=0,03;y=0,2) dan (b) konstanta d_{33} berbagai material sebagai fungsi temperatur curie (Saito, Y., et al, 2004)

Dari perkembagan penelitian yang dilakukan, diketahui bahwa material berstruktur perovskite tidak hanya diperoleh dari kation bervalensi +2 pada situs A dan +4 pada situs B seperti pada BaTiO₃. Kation bervalensi +1 seperti Li, K, Na juga dapat berada di situs A perovskite dengan kation bervalensi +5 seperti Nb, Ta, Sb pada situs B. Penelitian yang dikembangkan oleh Saito dkk (2004) menghasilkan material dengan komposisi MPB (*morphotropic phase boundary*) yang terdiri dari fasa tetragonal dan orthorombik dengan variasi komposisi Li dan Ta.

Melalui penelitiannya, Saito,dkk berhasil menemukan material LF4T dengan komposisi $(K_{0,44}Na_{0,52}Li_{0,04})(Nb_{0,84}Ta_{0,10}Sb_{0,06})O_3$ yang memiliki karakteristik piezoelektrik (d_{33}) unggul dan hampir setara dengan yang dimiliki material PbZrTiO₃ (Gambar 2.2). Hasil penelitian tersebut menjadi pemicu dikembangkannya material berbasis niobat lainnya.

Gambar 2.3. Pola XRD (a). KNN (Rohmah, N.A., 2014) (b). BST (S. Suasmoro, S. Pratapa, D. Hartanto, D. Setyoko dan U.M. Dani, 2000)

Gambar 2.4. Suhu Transisi dan Tetragonalitas Ba_{1-x}Sr_xTiO₃ (S. Suasmoro, S. Pratapa, D. Hartanto, D. Setyoko dan U.M. Dani, 2000)

Dari penelitian yang telah dilakukan oleh Rohmah, N.A., kristal K_{0,5}Na_{0,5}NbO₃ fasa tunggal yang disintesis dengan metode reaksi padat terbentuk pada suhu kalsinasi 700°C selama 2 jam dengan struktur tertagonal *perovskite* dengan a=b=3,9587 Å dan c=4,0137 Å.

Kristal fasa tunggal $Ba_{1-x}Sr_xTiO_3$ berstruktur perovskite yang disintesis dengan metode kopresipitasi oksalat terbentuk pada suhu 700°C selama 2 jam (Suasmoro, et alS. Pratapa, D. Hartanto, D. Setyoko dan U.M. Dani, 2000). Dari penelitian tersebut juga ditemukan fakta bahwa tetragonalitas berkurang dengan peningkatan konsentrasi ion Sr^{2+} yang berada di situs Ba^{2+} , dimana selanjutnya diketahui bahwa suhu transisi berbanding lurus terhadap tetragonalitas.

Gambar 2.5. (a). Pola XRD $(1-x)K_{0,5}Na_{0,5}NbO_3-xBa_{0,5}Ca_{0,5}TiO_3$ (b). Hasil SEM dan pola difraksi bidang 200 yang diperbesar sehingga menunjukkan perubahan fasa (Cho, C.W. et al, 2012)

Hongliang Du telah menyintesis material KNN berstruktur *perovskite* orthorombik, namun dengan penambahan $(Ba_{0.5}Sr_{0.5})TiO_3$ terjadi perubahan struktur menjadi perovskite tetragonal, pseudokubik lalu kubik. Hasil serupa juga didapat oleh Cho, C.W. et al yang menyintesis $(1-x)K_{0,5}Na_{0,5}NbO_3$ -xBa_{0,5}Ca_{0,5}TiO₃. Pada suhu ruang K_{0,5}Na_{0,5}NbO₃ memiliki struktur orthorombik perovskite dengan parameter kisi a=5,635 Å, b=3,938 Å dan c=5,667 Å sedangkan KNaNbO₃ dengan struktur yang sama memiliki parameter kisi a=5,697 Å, b=3,971 Å dan c=5,721 Å. Dengan penambahan Ba_{0,5}Ca_{0,5}TiO₃. Sistem kristal berstruktur tetragonal untuk x=0,05, pseudokubik

untuk x=0,10 dan 0,15. D engan x=0,20, terbentuk kristal dengan struktur kubik perovskite (Cho, C.W., et al, 2012).

Perubahan struktur akibat penambahan $Ba_{0,5}Ca_{0,5}TiO_3$ ini berhubungan dengan perbedaan ukuran dari jari-jari ion. Jari-jari ion rerata di situs A lebih kecil daripada $K_{0,5}Na_{0,5}NbO_3$ atau dengan kata lain jari-jari ion rerata di situs B lebih besar daripada $K_{0,5}Na_{0,5}NbO_3$. Penambahan $Ba_{0,5}Ca_{0,5}TiO_3$ ke sistem $K_{0,5}Na_{0,5}NbO_3$ mengurangi perbedaan jari-jari ion rerata antara ion di situs A dan ion di situs B sehingga menurunkan tingkat asimetri sistem kristal (Cho,C.W.et al, 2012).

Gambar 2.6. Pengaruh suhu terhadap permitivitas dielektrik dan tangent *loss* dari (1-x)K_{0,5}Na_{0,5}NbO₃-xBa_{0,5}Ca_{0,5}TiO₃ pada frekuensi 1 MHz (Cho,C.W.et al, 2012)

 $K_{0,5}Na_{0,5}NbO_3$ memiliki dua puncak dielektrik yang berhubungan dengan transisi fasa orthorombik-tetragonal pada suhu sekitar 200°C dan transisi tetragonalkubik pada suhu sekitar 400°C. Penambahan $Ba_{0,5}Ca_{0,5}TiO_3$ ke sistem KNN menimbulkan terbentuknya hanya satu puncak dielektrik dan dapat menurunkan suhu Curie. Konstanta dielektrik maksimum untuk $(1-x)K_{0,5}Na_{0,5}NbO_3$ -xBa_{0,5}Ca_{0,5}TiO₃ bernilai ~4500 dengan komposisi x=0,05 dan suhu curie ~313 °C. Untuk komposisi x $\ge 0,10$ konstanta dielektrik maksimum sampel berkisar di daerah ~1000. Penambahan komposisi BCT menurunkan suhu Curie dan konstanta dielektrik.

1.2.Karakterisasi Dielektrisitas dan Konduktivitas Material

Sifat listrik material dielektrik ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃ sebagai fungsi frekuensi dapat diperoleh dengan menggunakan *impedance analyzer* ataupun LCR meter. Parameter berupa nilai kapasitansi yang diperoleh dari hasil pengukuran listrik dapat digunakan untuk menentukan nilai permitivitas relatif atau konstanta dielektrik (k) material pada berbagai frekuensi dengan menggunakan persamaan:

$$k = \frac{Cd}{\varepsilon_0 A} \tag{2.1}$$

dengan C adalah nilai kapasitansi, d adalah tebal material dielektrik yang memisahkan dua plat sejajar atau elektroda, ε_o adalah permitivitas ruang hampa dan A adalah luas penampang material dielektrik. Selain frekuensi, konstanta dielektrik juga dipengaruhi oleh suhu yang menuruti hukum Curie-Weiss:

$$k = \frac{A}{T - \theta_c}$$
(2.2)

dimana A adalah tetapan yang bergantung pada jenis material dan θ_c adalah temperatur yang mendekati temperatur curie T_c . Berdasarkan persamaan 2.2, konstanta dielektrik mengalami peningkatan seiring bertambahnya temperatur dan mencapai maksimum ketika T mendekati θ_c . Hal ini terkait dengan polarisasi maksimum yang terjadi di sekitar temperatur kritis tersebut akibat adanya perubahan fasa.

Gambar 2.7. Variasi konstanta dielektrik terhadap frekuensi (atas) dan

variasi dielektrik loss terhadap frekuensi (bawah)

Terdapat beberapa jenis polarisasi yang mungkin terjadi pada material dielektrik yaitu polarisasi elektronik, atomik, dipolar, dan muatan ruang. Sebagaimana ditunjukkan pada Gambar 2.7, masing-masing jenis polarisasi ini akan memberikan respon terhadap frekuensi yang berbeda domainnya (Suasmoro, 2012). Persamaan polarisasi bergantung waktu untuk polarisasi dipolar yaitu:

$$P_d^* = k_s exp\left(-\frac{t}{T}\right) + \frac{(k_s - k_{\infty})}{1 + j\omega\tau} E_o \exp(j\omega\tau)$$
(2.3)

dimana k_s dan k_{∞} secara berturut-turut merupakan konstanta dielektrik frekuensi rendah dan tinggi, τ adalah tetapan waktu relaksasi dan ω adalah frekuensi. Dari persamaan polarisasi tersebut diperoleh konstanta dielektrik sebagai besaran kompleks yang memenuhi persamaan:

Gambar 2.8. Plot konstanta dielektrik $\varepsilon_r' - \varepsilon_r''(k' - k'')$ sebagai fungsi frekuensi ω

Dari besaran kompleks tersebut dapat dijabarkan komponen real dan imajinernya (persamaan 2.5 da n 2.6) sedangkan plot konstanta dielektrik kk'-kk''berbentuk semisirkel atau plot Cole-Cole (Gambar 2.8). Bila pada plot dihasilkan suatu semisirkel sempurna, ini berarti hanya ada satu polarisasi pada material dielektrik. Bila pada plot terdapat ekor maka hal ini mengindikasikan lebih dari satu polarisasi pada material dan menunjukkan adanya *loss factor*. Adanya *loss factor* (δ) merupakan akibat dari disipasi energi listrik menjadi panas dan biasanya ditampilkan sebagai faktor disipasi (tan δ) yang merupakan rasio antara konstanta dielektrik imajiner dan riil (persamaan 2.7).

$$k' = k_{\infty} + \frac{k_s - k_{\infty}}{1 + \omega^2 \tau^2}$$
(2.5)

$$k'' = (k_s - k_{\infty}) \frac{\omega \tau}{1 + \omega^2 \tau^2}$$
(2.6)

$$\tan \delta = \frac{k''}{k'} = \frac{(k_s - k_{\infty})\omega\tau}{k_s + k_{\infty}\omega^2\tau^2}$$
(2.7)

Disamping dielektrisitas, dapat pula dilakukan analisis impedansi kompleks pada material $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$. Dalam hal ini, bahan dielektrik dimodelkan sebagai rangkaian listrik ekivalen dari rangkaian seri-paralel resistor dan kapasitor dari plat sejajar seperti diilustrasikan pada Gambar 2.9. Plat sejajar yang berisi bahan dielektrik kemudian dihubungkan dengan LCR meter untuk memperoleh respon impedansi kompleks terhadap sumber arus bolak-balik.

Gambar 2.9. Model Rangkaian Bahan Ferroelektrik dan Plot Cole-Cole

Dari model rangkaian pada Gambar 2.9 tersebut akan diperoleh plot Cole-Cole impedansi ZZ'-ZZ'' berupa kurva setengah lingkaran (*semicircle*) dimana tiap semisirkel merupakan respon dari sebuah rangkaian paralel R-C (Suasmoro, 2012) dimana semisirkel pertama berkaitan dengan kontribusi butir (*bulk*) pada frekuensi tinggi dan semisirkel kedua berkaitan dengan kontribusi batas butir (*grain boundary*) pada frekuensi rendah. Respon listrik tersebut memenuhi persamaan berikut:

$$Z^* = R(1 - j\omega RC) / (1 + \omega^2 R^2 C^2)$$
(2.8)

Sebagai material dielektrik, $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ memiliki konduktivitas yang cukup kecil yaitu berkisar antara 10^{-10} hingga 10^{-20} (Ω .m)⁻¹ dan nilainya dapat diperoleh dari pengukuran diameter *semicircle* Z' - Z'' plot Cole-Cole impedansi. Konduktivitas juga dipengaruhi oleh temperatur dan memenuhi persamaan Arhenius:

$$\sigma = \sigma_o \exp\left(-\frac{\Delta E}{kT}\right) \tag{2.9}$$

dimana σ_0 adalah tetapan yang tidak bergantung temperatur, k tetapan Boltzmann (1,38×10⁻²³ J/K) dan ΔE adalah energi aktivasi yang dapat dihitung dari gradien persamaan pada grafik plot log σ terhadap 1/T.

"Halaman ini sengaja dikosongkan"

BAB III METODE PENELITIAN

3.1.Material

Material yang akan disintesis adalah bahan keramik $K_{0,5}Na_{0,5}NbO_3$ dan $Ba_{0,8}Sr_{0,2}TiO_3$ dengan perbandingan mol 0,8 mol $K_{0,5}Na_{0,5}NbO_3$ dan 0,2 mol $Ba_{0,8}Sr_{0,2}TiO_3$ sehingga membentuk keramik larutan padat $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ dengan struktur perovskite.

3.2.Alat dan Bahan

Peralatan yang digunakan pada penelitian ini diantaranya adalah:

- 1. Laboratory planetary milling "Pulverisette 5" (Fritsch GmbH)
- 2. Evaporator rotatif "VV Micro" (Heidolph)
- 3. Oven (pengering sampel) dan furnace
- 4. Spatula, mortal dan gelas baker
- 5. Timbangan digital
- 6. Magnetik stirrer
- 7. Termometer
- 8. Crucible dan plat alumina
- 9. Cetakan pelet diameter 13 mm

Bahan-bahan yang digunakan pada penelitian ini adalah:

- 1. K_2CO_3 , Na_2CO_3 dan Nb_2O_5
- 2. Asam oksalat $(H_2C_2O_4)$
- 3. Titanium Klorida (TiCl₄)
- 4. $BaCl_2.2H_2O$ dan $SrCl_2.2H_2O$
- 5. Akuades
 - 6. Alkohol

Sedangkan untuk karakterisasi digunakan:

- 1. Thermal Gravimetry Analysis dan Differential Scanning Calorimetry (TGA/DSC) Dog Dog Dog Dog Dog Dog Dog Dog
- 2. X-Ray Diffractometer (XRD)
- 3. Dilatometer
- 4. Impedance Analyzer Solartron

3.3.Metode Sintesis

3.3.1. Sintesis KNN

Metode yang digunakan untuk menyintesis $K_{0,5}Na_{0,5}NbO_3$ adalah metode reaksi padat. Secara lebih rinci dapat dilihat pada diagram alir pada gambar berikut:

3.3.2. Sintesis BST

Material $Ba_{0,8}Sr_{0,2}TiO_3$ disintesis dengan metode kopresipitasi oksalat. Pada proses sintesis $Ba_{0,8}Sr_{0,2}TiO_3$ dengan metode ini, dilakukan penyiapan beberapa larutan. Langkah-langkah sintesis $Ba_{0,8}Sr_{0,2}TiO_3$ adalah:

1. Penyiapan larutan A: larutan asam oksalat

Asam oksalat dilarutkan di dalam akuades pada suhu 40°C dengan bantuan magnetik *stirrer*. Perbandingan: 170 ml akuades untuk setiap 50,5 gr asam oksalat.

2. Penyiapan larutan B: larutan TiOCl₂

Cairan TiCl₄ dicampur ke dalam akuades dengan perbandingan 2 mol TiCl₄ untuk setiap liter akuades.

 $TiCl_4 + H_2O \rightarrow TiOCl_2 + 2HCl$

Gambar 3.2. Diagram alir sintesis BST (Suasmoro, 2012)

3. Larutan C: prekursor $Ba_{0,8}Sr_{0,2}TiO_3$

Penambahan serbuk BaCl₂.2H₂O dan serbuk SrCl₂.2H₂O ke dalam larutan B dengan perbandingan 1 mol untuk setiap 0,5 liter larutan B. Kemudian encerkan dengan penambahan akuades sebanyak 1600 ml untuk setiap mol penambahan BaCl₂.2H₂O maupun SrCl₂.2H₂O. Lakukan pelarutan dengan menjaga suhu antara 40°C-45°C hingga bening.

- 4. Bila telah bening, tambahkan larutan A ke dalam larutan C. Biarkan dalam keadaan tetap diaduk dan tetap dipanaskan hingga terbentuk penggumpalan berwarna putih yang telah jenuh.
- 5. Saring dan cuci berkali-kali untuk menghilangkan ion Cl. Lakukan uji AgNO₃ untuk melihat apakah masih terdapat ion Cl pada endapan atau tidak.

3.3.3. Sintesis (Ka_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃

Bubuk KNN dan BST yang telah dikalsinasi ditimbang sesuai perbandingan stoikiometri, lalu dicampur menggunakan *planetary milling* dengan medium alkohol selama 2 jam dengan kecepatan putar 150 rpm untuk memperoleh campuran 0,8KNN-0,2BST. Medium *milling* alkohol diuapkan dengan bantuan rotatif evaporator dan dikeringkan di dalam oven. Hasil sintesis yang diharapkan adalah bahan keramik larutan padat (Ka_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃.

A-B untuk variasi 1 dan A-C untuk variasi 2

3.4.Metode Karakterisasi

- Bahan yang telah disintesis akan dikarakterisasi dengan beberapa metode yaitu:
- 1. Analisis termal melalui uji TGA-DTA. Hal ini dilakukan untuk memperoleh informasi mengenai perubahan massa yang terjadi pada rentang temperatur tertentu (analisis TGA) serta fenomena endotermik atau eksotermik (analisis DTA) yang menyertai perubahan massa tersebut. Selanjutnya hasil analisis termal TGA-DTA menjadi landasan untuk menentukan temperatur kalsinasi suatu bahan.
- 2. Difraksi sinar-X dilakukan untuk memperoleh pola XRD yang selanjutnya dianalisis untuk mengetahui fasa yang terkandung dalam suatu bahan. Pengujian difraksi sinar-X menggunakan difraktometer tipe *Philips X'Pert* MPD (Multi Purpose Diffractometer) di Laboratorium Difraksi Sinar-X RC (Research Center) LPPM ITS Surabaya atau di Laboratorium Teknik Material ITS. Pengukuran dilakukan pada tegangan 40 kV dan arus 30 mA dengan logam target Cu (λ=1,54056 Å). Analisis fasa dari pola XRD dilakukan dengan menggunakan program Match!. Dari data XRD juga dapat diperoleh parameter kisi bahan yang dilakukan melalui penghalusan pola terhitung dan terukur menggunakan program Rietica yang berbasis metode pencocokan Rietvield.
- 3. Kajian dilatometri dilakukan untuk mengetahui karakteristik penyusutan (*shrinkage*) suatu bahan dalam bentuk *green compact* pada rentang temperatur tertentu. Hasil analisis dilatometri dapat dijadikan pertimbangan dalam tahap densifikasi bahan.
- 4. Pengukuran densitas dilakukan dengan menggunakan metode Archimedes yaitu dengan mengukur massa kering, massa basah dan massa di dalam air dari pelet sampel. Nilai densitas sampel ρ dihitung dengan persamaan:

ρ

$$=\frac{m_k}{m_b-m_a}x\ \rho_a \tag{3.1}$$

dengan m_k adalah massa sampel saat kering, m_b adalah massa sampel saat basah, m_a adalah massa sampel saat berada di dalam air dan ρ_a adalah massa jenis air.

5. Karakterisasi listrik dilakukan dengan menggunakan alat *Impedance Analyzer* Solartron. Penyiapan sampel sebelum karakterisasi listrik adalah pelapisan sampel pelet dengan pasta perak sebagai elektroda. Pemanasan dilakukan untuk menguapkan koloid toluena yang digunakan sebagai pengencer pasta perak. Pelet yang telah dilapisi elektroda dikarakterisasi sifat listriknya dengan *impedance analyzer* Solartron dengan data keluaran berupa:

- a. Impedansi real (Z)
- b. Impedansi kompleks (Z^*)
- a. Konstanta dielektrik (k)
- b. Faktor disipasi $(\tan \delta)$

sebagai fungsi suhu dan frekuensi tegangan AC. Variasi suhu dilakukan dari suhu ruang ~27°C hingga ~850°C dengan rentang pengukuran 50°C pada suhu < 200°C dan 10°C pada suhu > 200°C. Variasi frekuensi tegangan AC dilakukan dari 0,1 Hz hingga 3,2 x 10⁷ Hz. Dari pengolahan data keluaran selanjutnya akan diperoleh:

- a. Suhu Curie (dari plot $k \operatorname{dan} T$)
- b. Konduktivitas listrik σ (dari pengukuran diameter *semicircle Z' Z''*)
- c. Energi aktivasi (dari plot log σ terhadap 1/T) sesuai persamaan 2.9

BAB IV HASIL DAN PEMBAHASAN

4.1.Sintesis KNN-BST

Penelitian ini dimulai dengan menguji ulang informasi bahwa fasa tunggal kristal $Ka_{0,5}Na_{0,5}NbO_3$ yang disintesis dengan metode reaksi padat dan fasa tunggal kristal $Ba_{0,8}Sr_{0,2}TiO_3$ yang disintesis dengan metode kopresipitasi oksalat terbentuk dengan kalsinasi pada suhu 700°C selama 2 jam (Suasmoro, 2012 dan Rohmah, N.A., 2014).

Analisis kualitatif dilakukan terhadap pola difraksi kedua sampel menggunakan software Match! dan diketahui bahwa telah terbentuk kristal $Ka_{0,5}Na_{0,5}NbO_3$ dan $Ba_{0,8}Sr_{0,2}TiO_3$ dengan struktur perovskite (KNN: 00-077-0037 dan BST: 00-044-0093). Namun, pada kedua sampel masih terdapat sejumlah kecil fasa yang tidak teridentifikasi yaitu pada ($2\theta = 27,6^{\circ}$ dan $29,3^{\circ}$ untuk KNN dan $2\theta = 24,1^{\circ}$ untuk BST). Dengan metode Rietveld *refinement* diketahui bahwa kristal $Ka_{0,5}Na_{0,5}NbO_3$ memiliki struktur kristal perovskite orthorombik dan kristal $Ba_{0,8}Sr_{0,2}TiO_3$ memiliki struktur kristal perovskite tetragonal dengan parameter kisi pada Tabel 1.

No	Material	Para	a <mark>mete</mark> r Kisi	(Å)	Struktur, Kristal
110	Materia	Α	В	C	
1	KNN	3,572027	<mark>3,57</mark> 0513	3,565755	perovskite orthorombik
2	BST	3,983412	3,983412	3,995775	perovskite tetragonal

 Tabel 1. Struktur Kristal dan Parameter Kisi KNN dan BST Hasil Analisis Struktur

 Menggunakan Software Rietica dengan Metode Rietveld Refinement

Kristal Ka_{0,5}Na_{0,5}NbO₃ yang disintesis dengan reaksi padat berhasil terbentuk dengan pemberian panas yang mengakibatkan penguapan gas CO₂ dengan reaksi pembentukan (Rohmah, N.A., 2014):

$$K_2CO_3 + Na_2CO_3 + 2Nb_2O_5 \rightarrow 4Ka_{0,5}Na_{0,5}NbO_3 + 2CO_2$$

Metode kopresipitasi oksalat digunakan pada penyiapan prekursor $Ba_{0,8}Sr_{0,2}TiO_3$. Reaksi kimia yang menyertai proses kopresipitasi oksalat adalah (Suasmoro, 2012):

 $TiCl_4 + H_2O \rightarrow TiOCl_2 + 2HCl + panas$

 $0,8\text{BaCl}_2 + 0,2\text{SrCl}_2 + \text{TiOCl}_2 + \text{H}_2\text{C}_2\text{O}_4 + x\text{H}_2\text{O} + 2\text{HCl} \rightarrow \\Ba_{0,8}\text{Sr}_{0,2}\text{TiO}(\text{C}_2\text{O}_4)_2.2\text{H}_2\text{O}\downarrow + 6\text{HCl}$

AgNO₃ ditambahkan pada air sisa pencucian untuk melihat apakah masih terdapat ion Cl pada sampel. Reaksi kimia yang terjadi pada pengujian AgNO₃ adalah:

$$AgNO_3 + HCl \rightarrow AgCl + HNO_3$$

Pada saat kalsinasi di suhu 700°C selama 2 j am, terjadi penguapan hidrat, oksigen dan gas CO_2 dari prekursor oksalat sehingga membentuk kristal $Ba_{0,8}Sr_{0,2}TiO_3$ dengan reaksi dekomposisi (Suasmoro, 2012):

 $Ba_{0,8}Sr_{0,2}TiO(C_2O_4)_2.2H_2O \rightarrow Ba_{0,8}Sr_{0,2}TiO_3 + 4CO_2 + \frac{1}{2}O_2 + 2H_2O$

Analisis termal TGA-DTA dilakukan untuk mengetahui terjadinya reaksi yang diindikasikan oleh adanya pengurangan massa dan fenomena baik endotermik maupun eksotermik yang menyertainya pada rentang suhu tertentu. Gambar 4.2 menampilkan hasil analisis termal DTA-TGA 0,8KNN-0,2BST dari kedua rute.

dan 0,8KNN(K)-0,2BST(NK) (bb')

Fenomena termal tidak terdeteksi pada sampel dengan bahan dasar KNN (kalsinasi) - BST (kalsinasi). Oleh karena itu, sampel dikalsinasi selama 2 jam pada beberapa suhu yang berbeda yaitu: 700°C, 900°C dan 1100°C. Suhu optimal untuk pembentukan ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃ adalah 1100°C. Namun, terdapat fase sekunder yang diduga terbentuk akibat volatilitas dari unsur alkali seperti pada gambar 4.3 sebagaimana yang dilaporkan oleh Wang, Y.L., et al, 2012. Oleh karena itu dilakukan penambahan unsur K⁺ dan Na⁺ pada saat sintesis KNN. Gambar 4.4d menunjukkan bahwa fasa tunggal s erbuk ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃ terbentuk dengan jumlah excess 2% molar K and 8% molar Na.

Gambar 4.4. Pola XRD dari serbuk (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ setelah dikalsinasi dari kedua rute sintesis: a. K-K pada 700°C; b.K-K pada 900°C; c.K-K pada 1100°C; d. K-K pada 1100°C dengan persentase excess 2 mol % K dan 8 mol % Na; e. K-NK pada 700°C

Gambar 4.2.bb' menunjukkan bahwa pada sampel KNN-BST rute sintesis kedua terdapat tiga fenomena termal. Fenomena termal yang pertama, yaitu di bawah suhu 250°C berhubungan dengan penguapan air yang terperangkap di rongga dan proses dehidrasi untuk membentuk Ba/SrTi(C_2O_4)₂. Fenomena termal kedua berhubungan dengan pemutusan ikatan oksalat dan pelepasan gas CO₂. Fenomena termal yang terakhir terkait dengan dekarbonasi (Suasmoro, 2012). Fenomena termal berakhir pada suhu sekitar 700°C. Gambar 4.4e menunjukkan terbentuknya fasa tunggal (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ dengan kalsinasi pada suhu 700°C selama 2 jam.

Membandingkan kedua rute sintesis ini, diketahui bahwa material $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ lebih sulit terbentuk dengan rute sintesis pertama (KNN kalsinasi-BST kalsinasi). Hal ini diduga akibat kedua material awal $K_{0.5}Na_{0.5}NbO_3$ dan $Ba_{0.8}Sr_{0.2}TiO_3$ telah berada di keadaan stabil dengan struktur perovskite. Sehingga ketika ingin dibentuk larutan padat (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃, dibutuhkan energi lebih agar atom Ba dan Sr dapat terlepas dari struktur perovskite Ba_{0.8}Sr_{0.2}TiO₃ dan menggantikan posisi atom K dan atom Na di situs A. Begitu pula saat atom Ti harus menggantikan posisi atom Nb di situs B. Dalam hal ini pemberian energi dalam bentuk panas tersebut digunakan untuk melepaskan ikatan kimia atom-atom di kristal perovskite agar saling mensubstitusi membentuk larutan padat $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$. Hal ini dapat dilihat pada pola XRD Gambar 4.4a dengan suhu kalsinasi 700°C terlihat bahwa material $K_{0.5}Na_{0.5}NbO_3$ dan $Ba_{0.8}Sr_{0.2}TiO_3$ masih berdiri sendiri-sendiri, artinya energi panas yang diberikan belum cukup untuk pelepasan atom dan pergerakannya sehingga belum bisa terjadi peristiwa substitusi.

Dengan rute sintesis kedua (KNN kalsinasi-BST non kalsinasi), larutan padat $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ dapat lebih mudah terbentuk. Hal ini diduga akibat prekursor oksalat $Ba_{0,8}Sr_{0,2}TiO_3$ yang masih berada dalam keadaan amorf masih lebih mudah untuk bergerak menyusun diri. Dengan keadaan $K_{0,5}Na_{0,5}NbO_3$ yang telah berada dalam kondisi kristalin berstruktur perovskite, dimana atom K dan Na adalah atom alkali yang bersifat *volatile* atau relatif tidak stabil sehingga lebih mudah tergantikan oleh atom Ba dan Sr.

Gambar 4.4b da n 4.4c memperlihatkan kemunculan fasa sekunder akibat volatilitas unsur alkali di atas suhu 900°C. Karena penguapan unsur K dan Na pada struktur kristal perovskite mengganggu keseimbangan muatan dan gaya yang awalnya telah terbentuk. Hal ini memaksa atom-atom kembali menyusun diri membentuk struktur kristal baru.

Pada kristal perovskite ABO₃ ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃, ion Ba²⁺, Sr^{2+} , K^+ dan Na⁺ berada di situs A sedangkan ion Ti⁴⁺ dan Nb⁵⁺ berada di situs B. Rietveld refinement, analisis bahwa serbuk Setelah diketahui (K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O₃ dari kedua rute memiliki struktur tetragonal perovskite dengan parameter kisi dapat dilihat di Tabel 2. Memperhatikan hasil analisis Rietveld refinement, teramati bahwa terjadi pergeseran parameter kisi menjadi lebih besar bila dibandingkan dengan K_{0.5}Na_{0.5}NbO₃. Hal ini berkaitan dengan jari-jari ion Ba²⁺, Sr²⁺ yang lebih besar daripada jari-jari ion K⁺, Na⁺ dan jari-jari ion Ti⁴⁺ yang juga lebih besar daripada jari-jari ion Nb5+. Penambahan BST ke dalam KNN juga menurunkan tingkat asimetri struktur kristal. Hal serupa juga ditemukan oleh Cho, C.W., et al (2012).

	No	Puto Sintogia	Parameter Kisi (Å)			Sistom Kristal
N	INU	Rule Sillesis	a=b	С	c/a	Sistem Kilsta
10	1	KNN (kalsinasi)- BST (kalsinasi)	3,983805	3,999475	1,0039	perovskite tetragonal
N	2	KNN (kalsinasi)- BS <mark>T (n</mark> on kalsi <mark>nas</mark> i)	3,9 <mark>8484</mark> 4	4,022710	1,0095	perovskite tetragonal

Tabel 2. Parameter kisi dari serbuk $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$

T110	DA	т · т ·	т	181
Tabel 3.	Data	Jari-Jari	lon	(A)

Ion	Jari-Jari Ion (Å)
K ⁺	0,138
Na ⁺	0,102
Ba ²⁺	0,135
Sr ²⁺	0,118
Ti ⁴⁺	0,086
Nb ⁵⁺	0,064

Serbuk yang telah dikalsinasi dan berhasil membentuk fasa tunggal dikompaksi dengan tekanan 350 N/cm² selama 10 detik lalu dilanjutkan dengan 650 N/cm² selama 2 detik. Untuk mendapatkan sampel pelet dengan densitas yang baik, perlakuan sintering harus diberikan kepada sampel. Pengujian dilatometri dilakukan untuk mengetahui prilaku penyusutan bahan. Gambar 4.5 merupakan kurva dilatometri yang menunjukkan terjadinya perlambatan penyusutan bahan pada suhu 1050°C - 1150°C. Hal ini diduga sebagai akibat dari penguapan unsur alkali. Dari hasil uji ini juga diketahui bahwa penyusutan sampel telah optimal pada suhu 1200°C. Oleh karena itu pelet (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ disinter pada suhu 1200°C selama 2 jam.

Gambar 4.5. Hasil uji dilatometri dari $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ Rute ke 1 dengan excess 2% K dan 8% Na

Sehubungan dengan volatilitas dari unsur alkali (Wang, Y.L., et al. 2012), dilakukan penambahan fraksi mol K dan Na agar dapat menggantikan sebagian kecil unsur alkali yang menguap. Dengan persentase excess 2 % mol Na dan 8 % mol K, masih terdapat fase sekunder, maka persentase excess digandakan menjadi 4 % mol Na dan 16 % mol K pada sampel rute pertama. Gambar 4.6b memperlihatkan bahwa dengan peningkatan persentase excess unsur alkali, fasa tunggal kristal perovskite $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ dari rute pertama berhasil terbentuk. Gambar 4.6c memperlihatkan bahwa persentase excess yang terbaik untuk sampel rute kedua adalah 2 % mol Na dan 8 % mol K.

Gambar 4.6. Pola XRD Pelet: a. K-K exc 2%K-8%Na; b. K-K exc 4%K-16%Na; c. K-NK exc 2%K-8%Na; d. K-NK exc 3%K-12%Na; e. K-NK exc 1%K-4%Na

Analisis struktur kristal dilakukan dengan metode Rietveld *refinement* dengan hasil ditampilkan pada Tabel 4. Gambar 4.7 memperlihatkan sampel (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ memiliki struktur perovskite tetragonal. Dalam hal ini dapat dikonfirmasi bahwa atom Ba dan Sr telah berhasil mensubtitusi atom K dan Na dan atom Ti telah berhasil mensubtitusi atom Nb. Sehingga material ferroelektrik bebas timbal KNN-BST yang disintesis telah mencapai fasa tunggal perovskite tetragonal.

No	Rute Sintesis	Para	meter Kisi ((Å)	Sistem Kristal
110	Rue Sinesis	a=b	C	c/a	obteni Kistar
1	K-K	3,956166	3,981212	1,0063	perovskite tetragonal
2	K-NK	3,949728	3,965926	1,0041	perovskite tetragonal

Tabel 4. Parameter Kisi dari (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ setelah disinter

Pengukuran densitas dilakukan dengan metode Archimedes. Hasil pengukuran densitas ditampilkan pada Tabel 5. Hasil pengukuran densitas dibandingkan dengan densitas teoritis. Pengaruh densitas bahan $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ terhadap karakterisasi listrik dibahas pada sub bab 4.2.

Tabel 5. Densitas $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ dengan Sintering 1200°C - 2 jam

Rute Sintesis	Densitas Archimedes	Perbandingan Terhadap Densitas Teoritis
K-K	4,3369 gr/cc	89,28%
K-NK	4,1752 gr/cc	85,34%

Sampel yang akan dilanjutkan pada pengujian sifat listrik adalah sampel pelet fasa tunggal ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃ yang disinter pada suhu 1200°C selama 2 jam dengan persentase excess 4 % mol Na dan 16 % mol K untuk sampel ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃ yang disintesis dengan rute pertama (Kalsinasi-Kalsinasi) dan persentase excess 2 % mol Na dan 8 % mol K untuk sampel ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃ yang disintesis dengan rute kedua (Kalsinasi-Kalsinasi) dan persentase excess 2 % mol Na dan 8 % mol K untuk sampel ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃ yang disintesis dengan rute kedua (Kalsinasi-Non Kalsinasi) dengan pola XRD terlihat pada Gambar 4.6b dan 4.6c. Terdapat perbedaan pola XRD struktur perovskite 4.6c dengan pola XRD struktur perovskite pada gambar 4.6 lainnya yaitu intensitas yang lebih tinggi dari hamburan bidang kristal 100 dan 200.
Hal ini diduga akibat adanya bidang kristal 100 dan 200 yang dominan pada permukaan sampel pelet yang diuji XRD.

4.2.Karakterisasi Listrik Keramik Padat KNN-BST

Karakterisasi listrik material $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ meliputi analisis dielektrik, impedansi kompleks dan konduktivitas. Gambar 4.8 menunjukkan hubungan permitivitas relatif sampel terhadap suhu.

Gambar 4.8. Hubungan Permitivitas Relatif terhadap Suhu dari sampel $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ pada Frekuensi 12739,43 Hz

Tabel	6	Suhu	Curie
rubbi	υ.	Dunu	Cuic

1	Sampel	KNN	KNN(K)-BST(K)	KNN(K)-BST(NK)
	Suhu Surie	310°C dan 450°C	440°C	420°C

Pada temperature Curie diyakini terjadi optimasi polarisasi akibat perubahan fasa dari tetragonal (fasa ferroelektrik) ke kubik (fasa paraelektrik) yang mengakibatkan dielektrisitas material mencapai maksimum kemudian turun pada temperatur yang lebih tinggi sesuai dengan hukum Curie-Weiss (Kittel, 2005). Suhu Curie dari sampel ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃ rute kedua lebih rendah. Hal ini diprediksi berhubungan dengan nilai tetragonalitasnya yang lebih rendah bila dibandingkan dengan sampel ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃ dari rute pertama.

Hal ini sesuai dengan hasil penelitian Suasmoro, et al. (2000) bahwa suhu Curie berbanding lurus dengan tetragonalitas bahan $Ba_{1-x}Sr_xTiO_3$.

Dielektrisitas pada bahan ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃ terjadi karena terdapatnya dipol pada struktur kristal perovskite akibat pergeseran atom pada situs B yang menjadi searah saat berada dalam pengaruh medan listrik. Dari Gambar 4.8 terlihat bahwa sampel $K_{0,5}Na_{0,5}NbO_3$ memiliki permitivitas relatif yang lebih tinggi daripada sampel ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃. Hal yang sama juga ditemukan oleh Cho,C.W., et al., (2012). Hal ini diprediksi akibat valensi kation di situs B pada bahan $K_{0,5}Na_{0,5}NbO_3$ yaitu +5 bernilai lebih besar daripada valensi kation di situs B pada bahan $Ba_{0,8}Sr_{0,2}TiO_3$ yaitu +4 sehingga menghasilkan polarisasi total bahan yang lebih besar pada $K_{0,5}Na_{0,5}NbO_3$.

Kajian permitivitas relatif menunjukkan material $K_{0,5}Na_{0,5}NbO_3$ (KNN) memiliki dua suhu Curie yaitu di ~310°C dan ~450°C. Hasil serupa ditemukan oleh Cho, C.W., et al (2012) dan dijelaskan bahwa hal tersebut terkait dengan transisi fasa orthorombik menuju tetragonal dan transisi fasa tetragonal menuju kubik. Dengan penambahan 20% mol Ba_{0,8}Sr_{0,2}TiO₃ (BST) terjadi penurunan suhu Curie pada sampel (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ menjadi 440°C untuk rute pertama dan 420°C untuk rute kedua. Fenomena Curie pada (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ terkait dengan transisi fasa tetragonal menjadi kubik. Penurunan suhu Curie pada material (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ dapat dipahami sebagai akibat penambahan material Ba_{0,8}Sr_{0,2}TiO₃ yang memiliki suhu Curie yang relatif jauh lebih rendah bila dibandingkan dengan material K_{0,5}Na_{0,5}NbO₃ yaitu ~80°C (Suasmoro, et al., 2000).

Hubungan permitivitas relatif dan frekuensi tegangan AC untuk kedua sampel dapat dilihat pada Gambar 4.9. Untuk kedua sampel berperilaku sama yaitu permitivitas relatif meningkat seiring dengan penurunan frekuensi tegangan AC. Permitivitas relatif sampel ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃ dengan rute kalsinasi-kalsinasi lebih tinggi bila dibandingkan dengan sampel dari rute kalsinasi-non kalsinasi. Hal ini sesuai dengan hasil pengukuran densitas kedua sampel (Tabel 5). Sampel dengan densitas yang tinggi dapat menghasilkan rapat polarisasi yang lebih besar sehingga memiliki permitivitas relatif yang lebih besar pula. Sebagai perbandingan, pada frekuensi 0,1 Hz sampel ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃ dari rute sintesis kalsinasi-kalsinasi memiliki permitivitas relatif maksimum ~9 x 10⁸ sedangkan sampel dari rute sintesis kalsinasi-kalsinasi

Gambar 4.9. Hubungan Permitivitas Relatif dan Frekuensi: a. Sampel Rute Pertama

(K-K) dan b. Sampel Rute Kedua (K-NK)

Gambar 4.9 memperlihatkan bahwa pada frekuensi yang tinggi (~32 MHz hingga ~10 Hz), nilai permitivitas relatif tidak banyak mengalami perubahan. Pada daerah ini tipe polarisasi yang terjadi adalah polarisasi dipol. Namun pada frekuensi yang lebih rendah yaitu dengan frekuensi < ~10 Hz terjadi peningkatan permitivitas relatif yang besar pada kedua sampel. Hal ini terjadi akibat ikut terpolarisasinya muatan-muatan ruang pada sampel dengan pemberian tegangan AC frekuensi rendah tersebut (Moulson, A.J dan Herbert, J.M., 2003).

Gambar 4.9 juga memperlihatkan bahwa pada suhu tinggi muatan ruang pada sampel menjadi lebih mudah terpolarisasi. Terlihat pada suhu 800°C muatan-muatan ruang telah ikut terpolarisasi pada frekuensi <10 Hz. Namun pada suhu 600°C dan 400°C muatan-muatan ruang hanya dapat terpolarisasi bila diberi tegangan AC berfrekuensi < 1 Hz. Bahkan pada suhu 200°C polarisasi muatan-muatan ruang baru teramati dengan pemberian tegangan AC ~0,1 Hz.

Selanjutnya dari Gambar 4.9 dapat diamati bahwa terjadi peningkatan permitivitas relatif seiring dengan peningkatan suhu. Hal ini dapat dipahami sebagai konsekuensi dari peningkatan konsentrasi defek instrinsik pada suhu yang lebih tinggi (Chiang, Y.M., 1997).

Gambar 4.10. Plot Cole-Cole Sampel (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃

Gambar 4.11. Plot Cole-Cole Sampel (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ dari Rute Sintesis Kedua (Kalsinasi-Non Kalsinasi)

Rentang frekuensi tegangan AC yang diberikan pada pengukuran ini adalah dari 0,1 Hz hingga 3,2 x 10^7 Hz. Gambar 4.10 dan 4.11 memperlihatkan hanya terdapat satu semisirkel untuk kedua sampel. Hal ini menandakan pada rentang frekuensi ini hanya terjadi polarisasi pada *grain*. Sedangkan polarisasi pada *grain boundary* belum terdeteksi dimana secara teori akan terjadi pada frekuensi tegangan AC yang lebih rendah. Plot Cole-Cole sampel (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ dari rute sintesis kedua (kalsinasi-non kalsinasi) memiliki 'ekor' yang lebih panjang. Kehadiran 'ekor' pada plot Cole-Cole menunjukkan hampir terjadinya lebih dari satu tipe polarisasi bahan. Artinya, pada bahan hampir terjadi polarisasi pada *grain boundary*. Selain itu 'ekor' plot Cole-Cole juga mengindikasikan adanya *loosy factor* (Suasmoro, 2012).

Plot Cole-Cole pada Gambar 4.10 dan 4.11 menunjukkan bahwa kedua sampel menunjukkan perilaku yang sama yaitu diameter semisirkel menjadi lebih kecil pada suhu yang semakin tinggi. Hal ini menunjukkan resistivitas bahan berkurang seiring dengan meningkatnya suhu atau dengan kata lain bahan $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ memiliki konduktivitas yang meningkat seiring dengan meningkatnya suhu.

Peningkatan konduktivitas pada suhu tinggi dapat dipahami sebagai konsekuensi peningkatan konsentrasi defek intrinsik pada bahan. Konduktivitas menjadi lebih besar pada suhu tinggi sehingga terjadi peningkatan rapat arus pada bahan dan material menjadi semakin konduktif. Dalam hal ini suhu menjadi gaya penggerak tambahan selain medan listrik. Untuk aplikasi bahan ferroelektrik, dapat dipahami pula bahwa faktor disipasi akan semakin besar pada suhu tinggi akibat meningkatnya kebocoran arus pada bahan ferroelektrik (Barsoum, 2003). Hal ini dapat teramati pada Gambar 4.12 d imana faktor disipasi meningkat seiring dengan meningkatnya suhu. Pada daerah transisi struktur kristal tetragonal-kubik juga terjadi peningkatan faktor disipasi. Hal ini menunjukkan kualitas bahan $(K_{0,4}Na_{0,4}Ba_{0,1}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ sebagai penyimpan muatan listrik berkurang pada suhu tinggi.

Analisis konduktivitas selanjutnya dilakukan untuk melengkapi analisis impedansi kompleks. Gambar 4.13 menampilkan plot hubungan konduktivitas (σ) dan

temperature (1/T) untuk bahan ($K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04}$)($Nb_{0,8}Ti_{0,2}$)O₃ pada rentang suhu

Dari plot hubungan konduktivitas dan temperature tersebut diperoleh fenomena berbeda pada temperature di bawah dan di atas ~425°C. Berdasarkan hal ini analisis konduktivitas dibagi menjadi dua rezim, rezim pertama pada rentang temperature 200°C-400°C dan rezim kedua pada rentang temperature 450°C-850°C.

Hasil konduktivitas yang diperoleh memiliki kemiripan dengan penelitian Rohmah, N.A yang menyintesis $0.8K_{0.5}Na_{0.5}NbO_3-0.2Ba_{0.5}Ca_{0.5}Zr_{0.5}Ti_{0.5}O_3$ dan dijelaskan bahwa perubahan konduktivitas terkait dengan mobilitas dan pembawa muatan dalam bahan. Energi aktivasi dihitung dari persamaan hukum aktivasi termal arhenius dengan hasil pada Tabel 7.

Tabel 7. Energi Aktivasi Keramik (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃

Kentang Sunu Kute I (Kaisinasi – Kaisinasi) Kute 2 (Kaisinasi – No
--

~200°C - ~400°C	0,9297 eV	0,6419 eV
~450°C - ~850°C	1,4271 eV	1,03965 eV

Energi aktivasi pada suhu rendah untuk kedua sampel relatif rendah bila dibandingkan dengan energi aktivasi pada suhu tinggi. Perubahan energi aktivasi terjadi pada suhu ~400°C - ~450°C yaitu bertepatan dengan daerah transisi fasa dari tetragonal menuju kubik. Grafik 4.13 memberikan informasi bahwa kemungkinan terdapat perbedaan pembawa muatan pada sampel untuk dua daerah suhu yang berbeda tersebut yang dalam hal ini belum dapat diketahui jenisnya.

"Halam<mark>an i</mark>ni seng<mark>aja d</mark>ikoson<mark>gkan</mark>"

BAB V KESIMPULAN DAN SARAN

5.1. Kesimpulan

Berdasarkan hasil analisis sintesis dan sifat listrik material bebas timbal $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ diperoleh kesimpulan sebagai berikut:

- 1. Material perovskite fasa tunggal ABO₃ dengan A=K_{0,4}, Na_{0,4}, Ba_{0,16}, Sr_{0,04} dan B=Nb_{0,8}, Ti_{0,2} telah berhasil disintesis dengan gabungan metode reaksi padat dan kopresipitasi oksalat. Hasil ini dicapai untuk komposisi dengan alkali berlebih sebesar 4% mol K dan 16% mol Na untuk rute pertama dan 2% mol K dan 8% mol Na untuk rute kedua melalui densifikasi pada suhu 1200°C selama 2 jam.
- 2. Material $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ yang disintesis memiliki suhu Curie ~440°C untuk sampel rute sintesis 1 dan ~420°C untuk sampel dari rute sintesis 2.
- 3. Pada material (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ terjadi peningkatan permitivitas relatif, faktor disipasi dan konduktivitas listrik seiring dengan pertambahan suhu.
- 4. Pada material (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ terdapat dua rezim konduktivitas yang menunjukkan perbedaan tipe pembawa muatan listrik untuk masing-masing rezim.

5.2. Saran

Hasil penelitian ini dapat dikembangkan lebih lanjut baik dari segi modifikasi sifat kelistrikannya dengan pengubahan kombinasi material, optimalisasi sintesis material maupun pada tahap pengaplikasian material ferroelektrik bebas timbal $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ itu sendiri.

Ada beberapa bagian pada pembahasan penelitian ini yang masih berupa dugaan sementara. Dapat dilakukan kajian lebih lanjut untuk menguji kebenaran dugaan-dugaan sementara pada penelitian ini.

Karakterisasi sifat kelistrikan dari sampel $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ yang dilakukan pada penelitian ini dilakukan pada lingkungan udara bebas. Untuk mempelajari lebih lanjut tipe pembawa muatan listrik pada material $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ dapat dilakukan karakterisasi sifat listrik dengan variasi tekanan oksigen yaitu dengan pengaliran gas *inert*.

THESIS SF092006

SYNTHESIS AND ELECTRICAL PROPERTIES OF LEAD FREE FERROELECTRIC MATERIAL 0,8(Ka_{0,5}Na_{0,5}NbO₃)-0,2(Ba_{0,8}Sr_{0,2}TiO₃) USING COMBINATION OF SOLID STATE REACTION -OKSALAT COPRECIPITATION METHOD

Ersa Desmelinda NRP 1113201002

Advisor Prof. Dr. Suasmoro, DEA

MASTER PROGRAM STUDY OF MATERIAL SCIENCES DEPARTMENT OF PHYSICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2015

TESIS SF092006

SINTESIS DAN KARAKTERISASI LISTRIK MATERIAL FERROELEKTRIK BEBAS TIMBAL 0,8(Ka_{0,5}Na_{0,5}NbO₃)-0,2(Ba_{0,8}Sr_{0,2}TiO₃) DENGAN METODE GABUNGAN REAKSI PADAT – KOPRESIPITASI OKSALAT

Ersa Desmelinda NRP 1113201002

Dosen Pembimbing Prof. Dr. Suasmoro, DEA

PROGRAM MAGISTER BIDANG KEAHLIAN MATERIAL JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2015

DAFTAR PUSTAKA

Barsoum, M.W., 2003. Fundamental of Ceramics. IOP Publishing.

- Blennow, P., Hagen, A., Hansen, K.K., Wallenberg, L.R. and Mogensen, M., 2008.
 Defect and Electrical Transport Properties of Nb-doped SrTiO₃. Solid State Ionics 179: 2047-2058.
- Cho, C.W., Cha, M.R., Jang, J.Y., Lee, S.H., Kim, D.J., Park, S., Bae, J.S., Bu, S.D., Lee, S. and Huh, J., 2012. F erroelectric Relaxor Properties of (1x)K_{0.5}Na_{0.5}NbO₃-xBa_{0.5}Ca_{0.5}TiO₃ Ceramics. Current Applied Physics 12 1266-1271.
- Chiang, Y.M., 1997. Principles for Ceramic Science and Enginering. Dunbar Birnie 3, W. David Kingery: John Willey and Son.
- Du, H., Zhou, W., Luo, F., Zhu, D., Qu, S. dan Pei, Z., 2009. Phase structure, dielectric properties, and relaxor behavior of (K_{0.5}Na_{0.5})NbO₃-(Ba_{0.5}Sr_{0.5})TiO₃ lead-free solid solution for high temperature applications. Journal of Applied Physics, 105, 124104.
- Fu, J. S., 2009. F erroelectric materials and their applications in electronic circuits. Taiwan: National Central University Press.
- Golmohammad, M., Nemati, A. dan Sani, M.A.F., 2012. Shynthesis and Dielectric Properties of Nanocrystalline BaSrTiO₃. International Journal of Modern Physics: Conference Series Vol.5-188-195.
- Kittel, C., 2005. Introduction to Solid State Physics. John Wiley and Sons.
- Li, Y., Chen, W., Zhou, J., Xu, Q., Sun, H. dan Xu, R., 2004. Dielectric and piezoelectric properties of lead-free (Na_{0.5}Bi_{0.5})TiO₃-NaNbO₃ ceramics. Material Science and Engineering B 112 (5-9)
- Moulson, A.J dan Herbert, J.M., 2003. Electroceramics: Material, Properties and Aplications Second Edition. England: John Wiley and Sons.
- Rohmah, N.A., 2014. S intesis dan Karakterisasi Material 0,8K_{0,5}Na_{0,5}NbO₃-0,2Ba_{0,5}Ca_{0,5}Zr_{0,5}Ti_{0,5}O₃ Bebas Timbal dengan Metode Reaksi Padat. Tesis Jurusan Fisika Institut Teknologi Sepuluh Nopember.
- Saito,Y., Takao, H., Tani, T., Nonoyama, T, Takatori, K., Homma, T., Nagaya, T. dan Nakamura, M., 2004. Lead-Free Piezoceramics. Nature, 432, 84–87.

- S. Suasmoro, S. Pratapa, D. Hartanto, D. Setyoko dan U.M. Dani, 2000. The characterization of mixed titanate $Ba_{1-x}Sr_xTiO_3$ phase formation from oxalate coprecipitated precursor. Journal of European Ceramic Society 20 309-314.
- Suasmoro, 2012. Feroelektrik Barium Strontium Titanat $Ba_{1-x}Sr_xTiO_3$ Struktur, Synthesis, Karakteristik Elektrik. Surabaya: ITS Press.
- Wang, Y. L., Lu, Y. Q., Wu, M. J., Wang, D. dan Li, Y.X., 2012. Low-temperature sintering and electrical properties of (K,Na)NbO₃ based lead-free ceramics with high curie temperature. Ceramics International, 38S S295-S299.
- Wang, K. dan Li, J.F., 2012. (K, Na)NbO₃-Bades Lead-Free Piezoceramics: Phase Transition, Sintering and Property Enhancement. Journal of Advanced Ceramics ISSN 2226-4108.

LAMPIRAN B. COD

Perovskite Tetragonal:

```
#-----
  K SYNC
#$Date: 2013-12-28 13:58:47 +0000 (Sat, 28 Dec 2013) $
#$Revision: 91933 $
#$URL:
file:///home/coder/svn-repositories/cod/cif/2/10/42/2104294.cif $
#
# This file is available in the Crystallography Open Database
(COD),
# http://www.crystallography.net/. The original data for this entry
# were provided by IUCr Journals, http://journals.iucr.org/.
#
# The file may be used within the scientific community so long as
# proper attribution is given to the journal article from which the
# data were obtained.
#
data_2104294
loop_
publ author name
'Baker, D. W.'
'Thomas, P. A.'
'Zhang, N.'
'Glazer, A. M.'
_publ_section_title;
 Structural study of K~<i>x~</i>Na~1{-~<i>x</i>}NbO~3~ (KNN) for
compositions in the range <i>x</i> = 0.24--0.36;
journal_issue
                                1
_journal_name_full
                                'Acta Crystallographica Section B'
_journal_page_first
                                22
                               28
_journal_page_last
_journal_volume
                               65
journal year
                                2009
_chemical_formula_iupac
                               'K0.3 Na0.7 Nb 03'
_chemical_formula_moiety
                               'Nb 03, 8(K0.0375 Na0.0875)'
                               'K0.3 Na0.7 Nb 03'
<u>_chemical_formula_sum</u>
_chemical_formula_weight
                               168.73
_space_group_crystal_system
                               tetragonal
_space_group_IT_number
                               99
                              'P 4 -2'
_symmetry_space_group_name_Hall
_symmetry_space_group_name_H-M
                               'P 4 m m'
_cell_angle_alpha
                                90
_cell_angle_beta
                                90
                               90
_cell_angle_gamma
_cell_formula_units_Z
                                1
                                3.950920(10)
_cell_length_a
                               3.950920(10)
_cell_length_b
_cell_length_c
                               4.00852(2)
_cell_measurement_temperature
                               523
_cell_volume
                                62.5721(4)
```

```
_diffrn_ambient_temperature
                                  523
_diffrn_measurement_device_type
                                  HRPD
_diffrn_radiation_source
                                  spallation
_diffrn_radiation_type
                                  neutron
_exptl_crystal_density_diffrn
                                  4.478
                                  78.4
_exptl_crystal_F_000
_refine_ls_goodness_of_fit_all
                                  0.526
refine ls number parameters
                                  24
[local]_cod_data_source_file
                                  kd5027.cif
_[local]_cod_data_source_block
                                  523K
_[local]_cod_chemical_formula_sum_orig 'K0.30 Na0.70 Nb O3'
_cod_database_code
                                  2104294
loop_
_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz
1 x,y,z
2 -y,x,z
3 -x,-y,z
4 y,-x,z
5 - x, y, z
6 -y,-x,z
7 x,-y,z
8 y,x,z
loop
_atom_site_type_symbol
<u>_atom_site_label</u>
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_occupancy
Na Nal 0 0 0 0.0357 0.7
K K1 0 0 0 0.0357 0.3
Nb Nb1 0.5 0.5 0.492(11) 0.0114 1
0 01 0.5 0.5 0.038(10) 0.0241 1
0 02 0.5 0 0.539(10) 0.0221 1
loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
atom site aniso U 12
_atom_site_aniso_U_13
_atom_site_aniso_U_23
Nal 0.0307(11) 0.0307(11) 0.046(3) 0 0 0
K1 0.0307(11) 0.0307(11) 0.046(3) 0 0 0
Nb1 0.0101(4) 0.0101(4) 0.014(3) 0 0 0
01 0.0248(8) 0.0248(8) 0.023(3) 0 0 0
02 0.0175(7) 0.0175(7) 0.031(3) -0.0014(6) 0 0
loop
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
geom bond site symmetry 1
_geom_bond_site_symmetry_2
_geom_bond_distance
_geom_bond_publ_flag
Nb1 01 . . 1.82(6) y
Nb1 02 . . 1.984(6) y
```

```
loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_2
_geom_angle_site_symmetry_3
_geom_angle_ubl_flag
01 Nb1 01 1_556 . . 180 y
02 Nb1 02 2_555 . 2_655 169.(3) y
02 Nb1 02 1_555 . 1_565 169.(3) y
_journal_paper_doi 10.1107/S0108768108037361
```

Perovskite Orthorombik:

#

```
#------
#$Date: 2015-01-27 19:58:39 +0000 (Tue, 27 Jan 2015) $
#$Revision: 130149 $
#$URL:
repositories/cod/cif/1/00/00/1000022.cif $
#-----
```

```
# This file is available in the Crystallography Open Database
(COD),
# http://www.crystallography.net/
#
# All data on this site have been placed in the public domain by
the
# contributors.
#
##data calcium titanate
data_1000022
loop_
_publ_author_name
'Beran, A'
'Libowitzky, E'
'Armbruster, T'
_publ_section_title;
A single-crystal infrared spectroscopic and X-ray diffraction study
of
untwinned San Benito perovskite containing O H groups;
_journal_coden_ASTM
                                 CAMIA6
_journal_name_full
                                  'Canadian Mineralogist'
_journal_page_first
                                 803
                                 809
_journal_page_last
                                 34
_journal_volume
journal year
                                 1996
chemical compound source;
from Benitoite Gem mine, San Benito Co., California, USA;
                                'Ca (Ti O3)'
_chemical_formula_structural
_chemical_formula_sum
                                 'Ca 03 Ti'
<u>_chemical_name_mineral</u>
                                 Perovskite
_chemical_name_systematic
                                 'Calcium titanate'
```

```
62
_space_group_IT_number
_symmetry_cell_setting
                                   orthorhombic
_symmetry_Int_Tables_number
                                   62
__symmetry_space_group_name_Hall
                                   '-P 2c 2ab'
                                   'Pbnm'
_symmetry_space_group_name_H-M
                                   90
_cell_angle_alpha
_cell_angle_beta
                                   90
cell angle gamma
                                   90
_cell_formula_units_Z
                                   4
cell length a
                                   5.380(1)
_cell_length_b
                                   5.440(1)
                                   7.639(1)
_cell_length_c
                                   223.6
_cell_volume
_exptl_crystal_density_meas
                                   4.03
                                   0.027
_refine_ls_R_factor_all
_cod_database_code
                                   1000022
loop_
_symmetry_equiv_pos_as_xyz
x,y,z
1/2-x, 1/2+y, 1/2-z
-x,-y,1/2+z
1/2+x,1/2-y,-z
-x,-y,-z
1/2+x, 1/2-y, 1/2+z
x,y,1/2-z
1/2-x, 1/2+y, z
loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_12
_atom_site_aniso_U_13
atom site aniso U 22
_atom_site_aniso_U_23
_atom_site_aniso_U_33
Til 0.0059(2) .0000(1) .0000(1) 0.0052(2) 0.00025(9) 0.0045(2)
Cal 0.0082(2) 0.0016(2) 0. 0.0083(2) 0. 0.0079(2)
01 \ 0.0082(6) \ 0.0002(5) \ 0. \ 0.0086(7) \ 0. \ 0.0045(5)
02 \ 0.0065(4) \ 0.0020(4) \ -0.0008(3) \ 0.0060(4) \ -0.0010(3) \ 0.0095(4)
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_symmetry_multiplicity
_atom_site_Wyckoff_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy
_atom_site_attached_hydrogens
_atom_site_calc_flag
Til Ti4+ 4 b 0. 0.5 0. 1. 0 d
Cal Ca2+ 4 c 0.00648(8) 0.0356(1) 0.25 1. 0 d
01 02- 4 c 0.5711(3) -0.0161(3) 0.25 1. 0 d
02 02- 8 d 0.2897(2) 0.2888(2) 0.0373(2) 1. 0 d loop
_atom_type_symbol
_atom_type_oxidation_number
Ti4+ 4.000
Ca2+ 2.000
02- -2.000
```

```
45
```

Unsur (Nomor	Nomor (()	Valensi
	Atom	Massa	Ion
K	19	39,102	+1
Na	11	22,9898	+1
Ba	56	137,34	+2
Sr	38	87,62	+2
Nb	41	92,906	+5
Ti	22	47,90	+5
0	8	15,9994	-2

LAMPIRAN C. DATA UNSUR-UNSUR

LAMPIRAN D. REKAPITULASI PARAMETER REFINEMENT

Sampel	a (Å)	b (Å)	c (Å)	Rp	Rwp	GoF	R-Bragg
KNN	3.572027	3.570713	3.565755	11,423	10,302	0,264	0,52
BST	3.983412	3.983412	3.995775	9,588	6,838	0,104	0,21
KNN-BST Serbuk Rute Sintesis 1	3.983805	3.983805	3.999475	9,441	9,314	0,143	0,28
KNN-BST Serbuk Rute Sintesis 2	3.984844	3.984844	4.022710	10,186	9,298	0,120	0,42
KNN-BST Pelet Rute Sintesis 1	3.956166	3.956166	3.981212	9,386	8,878	0,439	0,82
KNN-BST Pelet Rute Sintesis 2	3.949728	3.949728	3.96 <mark>5926</mark>	13,800	13,9 <mark>65</mark>	2,057	0,36

LAMPIRAN E. POLA XRD HASIL REFINEMENT

LAMPIRAN F. PERHITUNGAN ENERGI AKTIVASI

Sampel Rute 1 (Kalsinasi-Kalsinasi):

I	1/T	Ln Konduktivitas
200	0.002114165	-21.38532243
250	0.001912046	-19.91764712
300	0.001745201	-17.83221649
350	0.001605136	-16.4 <mark>7337</mark> 897
400	0.001485884	-14.58320247
450	0.001383126	-14.81647982
500	0.001293661	-13. <mark>92629</mark> 72
550	0.001215067	-12.86906545
600	0.001145475	-11.73382144
650	0.001071811	-10.50728562
700	0.001027749	-9.61 <mark>7802</mark> 457
750	0.000977517	-8.559922699
800	0.000931966	-7.690954145
850	0.000890472	-6.87 <mark>3087</mark> 047

Sampel Rute 2 (Kalsinasi-Non Kalsinasi):

T	1/T	Ln Konduktivitas	
200	0.002114165	-19.62 <mark>4653</mark> 55	
250	0.001912046	-18.37089008	
300	0.001745201	-16.85768282	
350	0.001605136	-16.14 <mark>3413</mark> 46	
400	0.001485884	-14.89255867	
450	0.001383126	-13.92000113	
500	0.001293661	-13.09743997	
550	0.001215067	-12.61 <mark>4619</mark> 42	
600	0.001145475	-11.78850452	
650	0.001083424	-10.98919644	
700	0.001027749	-10.20496295	
750	0.000977517	-9.365633258	
800	0.000931966	-8.703267099	
850	0.000890472	-8.056 <mark>7214</mark> 55	

Energi aktivasi dihitung dengan persamaan:

(E_a)
$o = o_o \exp\left(-\frac{1}{kT}\right)$
E_a
$Lh o = Lh o_o - \frac{1}{kT}$

 $E_a = \tan \theta x konstanta Boltzman$

Sampel	Rentang Suhu	Tan θ	Energi Aktivasi
Duto 1 V V	200°C – 400°C	10779	0,9297 eV
Rute I K-K	450°C – 850°C	16546	1,4271 eV
Dute 2 K NK	200°C – 400°C	7443	0,6419 eV
Kule 2 K-INK	450°C – 850°C	12054	1,03965 eV

BIODATA PENULIS

Ersa Desmelinda, lahir pada tanggal 22 D esember 1990 di Desa Pulau Jambu, Kec. Bangkinang Barat, Kampar-Riau. Anak pertama dari bapak Saleh dan ibu Eryani. Penulis menempuh pendidikan formal di TK Aisyah Kec. Tebing Tinggi, SD Muallimin Kec. Tebing Tinggi (kelas 1 – kelas 4), SDN 1 Kec. Tebing Tinggi (kelas 5 – kelas 6), SMPN 1 Kec. Tebing Tinggi, SMAN Plus Prop. Riau, S1 Pendidikan Fisika

Universitas Riau dan S2 Fisika Institut Teknologi Sepuluh Nopember tahun 2013 dengan NRP 1113201002. Di jurusan Fisika ITS penulis mengambil konsentrasi di bidang fisika material. Publikasi penelitian ini pernah dilakukan di ICRIEMS 2015 di UNY Yogjakarta. Kritik dan saran dapat ditujukan ke email: e.desmelinda@yahoo.com.

X-Ray Characterization of Lead Free Ferroelectric Material (K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O₃ Prepared by Solid State Reaction and Oxalate Coprecipitation Method

E. Desmelinda (speaker), S. Suasmoro* Department of Physics, Institut Teknologi Sepuluh Nopember, Indonesia

*Corresponding author: suasm@its.ac.id

Lead free ferroelectric material behave ABO₃ structure (A= $K_{0.4}$, Na_{0.4}, Ba_{0.16}, Sr_{0.04} and $B=Nb_{0.8}$, $Ti_{0.2}$) has been successfully synthesized using a combination of solid state reaction and oxalate coprecipitation method. A batch of $K_{0.5}Na_{0.5}NbO_3$ (KNN) synthesized through solid state reaction and a batch of Ba_{0.8}Sr_{0.2}TiO₃ (BST) precurcor-calcined prepared via oxalate coprecipitation were mixed by 0.8 mol KNN and 0.2 mol BST for sample synthesis into two different routes: KNN(calcined)-BST(calcined) as first route and KNN(calcined)-BST (non calcined) as second route. $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ powders from each route were calcined based on thermal analysis. Single phase of (K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O₃ was formed by calcinations at 1100°C-2 hours for first route and at 700°C-2 hours for second route. The study of sintering was conducted by mean dilatometry. Sinter pellet sample shows good densification when sintering was took place at 1200°C for 2 hours. Due to volatility of alkaline element, K and Na were taken essesively by increasing 4% mol K-16% mol Na for first route and 2% mol K-8% mol Na for second route. Single phase of (K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O₃ pellet has been obtained successfully. After rietvield refinements, known that KNN powder behave perovskite tetragonal structure with a=b=3.9118 Å, c=3.9413 Å and BST powder behave perovskite tetragonal structure with a=b=3.9341 Å, c=3.9493 Å. It also known that $(K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O_3$ pellets from both routes behave perovskite tetragonal structure with lattice parameter a=b=3.9191 Å, c=3.9434 Å for first route and a=b=3.9062 Å, c=3.9263 Å for second route.

Keywords: oxalate coprecipitation, solid state reaction, non lead ferroelectric, XRD analysis

Introduction

Ferroelectric material having high performance such as dielectric and piezoelectric properties has important applications in electronical devices such as capacitor, sensor, actuator, integrated circuit and electro-mechanic system (Fu, J.S., 2009 and Suasmoro, 2012). In the major case, ferroelectric material for piezoelectric application contains lead material up to 60 %Wt such as PZT. Unfortunately, lead based material is a dangerous material. That is the reason to find another material that can replace the function of lead based material as ferroelectric material.

Saito, et al (2004) reported that perovskite material has been synthesized using +1 cation such as Li, K, Na for A site and +5 cation such as Nb, Ta for B site. Saito prepared $(K_{0,44}Na_{0,52}Li_{0,04})(Nb_{0,84}Ta_{0,10}Sb_{0,08})O_3$ MPB (morphotropic phase boundary) with tetragonal and orthorhombic phase successfully and it behaves great piezoelectric properties similar to lead based material. This motivate other niobate based ferroelectric material. In literature, titanate based material BaTiO₃ has low Curie temperature but high relative permittivity. Contrary KNaNbO₃ has high Curie temperature but low dielectric property. Combining both type of above material should produce new composition of ferroelectric material with low Curie temperature and high performance of ferroelectric material. Li, Y., et al (2004) reported that $(Na_{0.5}Bi_{0.5})TiO_3$ -NaNbO₃ as titanate and niobate based ferroelectric material exhibited excellent electrical properties, piezoelectric constant $d_{33} = 80-88$ pC/N and electromechanical planar coupling coefficient $k_p = 17,92\%$.

Suasmoro, et al (2000) reported that $(Ba,Sr)TiO_3$ prepared through oxalate coprecipitation was formed after calcinations at 700°C for 2 hour s. Beside, Rohmah, et al reported that $K_{0,5}Na_{0,5}NbO_3$ was formed after calcinations at 700°C for 2 hours from K_2CO_3 , Na_2CO_3 and Nb_2O_3 . The same calcinations temperature of both $K_{0,5}Na_{0,5}NbO_3$ and $(Ba,Sr)TiO_3$ motivate us to use this two combination method to synthesize $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$.

Recalling the ionic radius (table 1) of K, Na, Ba and Sr are close each other. Furthermore, ionic radius of Ti and Nb are close each other too. Therefore it is probable to perform $(K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O_3$.

Ion	Ionic Radius (Å)	Possible Site
K ⁺	0,138	
Na ⁺	0,102	
Ba ²⁺	0,135	A
Sr ²⁺	0,118	
Nb ³⁺	0,064	D
Ti ⁴⁺	0,086	В

Main purpose of this research is to synthesize ferroelectric material with ABO₃ structure (A=K_{0.4}, Na_{0.4}, Ba_{0.16}, Sr_{0.04} and B=Nb_{0.8}, Ti_{0.2}) by solid state reaction and oxalate coprecipitation method then perform ceramic pellet having single phase characterized by XRD.

Research method

Niobate and titanate based material with composition $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ was prepared through solid state reaction and oxalate coprecipitation method. $K_{0,5}Na_{0,5}NbO_3$ (KNN) were prepared by solid state reaction using raw material K_2CO_3 , Na_2CO_3 and Nb_2O_5 powders. Raw material then weighted properly to make stoichiometric $K_{0,5}Na_{0,5}NbO_3$ and milled using planetary milling 150 rpm for 2 hours before calcinations. Reagent grade raw material TiCl_4, BaCl_2.2H_2O, SrCl_2.2H_2O and H_2C_2O_2 were used to prepared (Ba/Sr)TiO(C_2O_4)_2.4H_2O precursor through oxalate coprecipitation method as describe elsewhere (Bernier, J.C., et al., 1986). $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0.04})(Nb_{0,8}Ti_{0,2})O_3$ powder was prepared by solid state reaction using two different routes:

- 1. KNN(calcined)-BST(calcined), abbreviated C-C
- 2. KNN(calcined)-BST (non calcined), abbreviated C-NC

Experimental studies of reactions to form $(K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O_3$ have been conducted by differential thermal analyses (DTA) and thermo gravimetric analysis (TGA). To find out the sintering temperature, dilatometry test was taken from room temperature up to 1300°C. Ceramic pellets after sintering then studied using XRD. Formed phase identified by crystalline data match.

Results and Discussion

This research was started with definite crystalline phase of KNN and BST. These phase were formed after calcinations at 700°C for 2 hours (Suasmoro, et al., 2000 and Rohmah, N.A., 2014). XRD pattern of both sample can be seen in figure 1. It can be noted that in both samples the undetected trace phase still exist ($2\theta = 27,6^{\circ}$ and $29,3^{\circ}$ for KNN and $2\theta=24,1$ for BST). After rietvield refinements, it was known that KNN and BST behave tetragonal perovskite structure with lattice parameter as described in table 2.

Table 2. Lattice parameter of KNN and BST

No	Material	Lattice Parameter (Å)			Crystal
110	Waterial	а	b	С	System
1	KNN	3.9118	3.9118	<u>3.94</u> 13	perovskite tetragonal
2	BST	3.9341	3.9341	3.9493	perovskite tetragonal

Thermogravimetry analysis DTA-TGA of powder mixture through route 1 and route 2 are displayed in figure 2. In calcined - calcined route, weight loss were not detected. Because of that, samples were calcined for 2 hours at some temperatures: 700° C, 900° C and 1100° C. Optimum calcinations temperature to form (K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O₃ was 1100°C. Unfortunately, secondary phase still detected. The secondary phase should be caused by volatility of K and Na as reported by W ang, Y.L, et al, 2011. Therefore, K⁺ and Na⁺ number must be taken excessively. Single phase of (K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O₃ powder can be obtained practically by excess 2 mol % K and 8 mol % Na (figure 3d)

In other side, calcined - non calcined route shows three thermal events. First thermal event under 250°C is due to evaporation of trapped water in cavity and dehydration process to form Ba/SrTi(C_2O_4)₂ was formed. Second thermal event is due to breaking-off oxalate bonding and released CO gas. Last thermal event is due to decarbonation. Thermal events finished after 700°C. Because of that, the calcination was carried out at 700°C for 2 hours and it was successfully form (K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O₃ (figure 3e)

Figure 3. XRD Pattern of calcined $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ from both route a. C-C at 700°C; b.C-C at 900°C; c.C-C at 1100°C; d. C-C at 1100°C by excess 2 mol % K and 8 mol % Na; e. C-NC at 700°C

This XRD result shows that ions Ba^{2+} , Sr^{2+} , K^+ , Na^+ incorporated in A site and ions Ti^{4+} , Nb^{5+} incorporated in B site to form perovskite structure ABO₃. After rietvield refinements, it was known that $(K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O_3$ powder from both routes behave tetragonal perovskite structure with lattice parameter described in table 3.

No	Routes	Lattice Parameter (Å)			Crystal
		a	b	С	System
1	calcined KNN- calcined BST	3.9321	3.9321	3.9373	perovskite tetragonal
2	calcined KNN- non calcined BST	3.9196	3.9196	3.9474	perovskite tetragonal

Table 3. lattice parameter of $(K_{04}Na_{04}Ba_{016}Sr_{004})(Nb_{08}Ti_{02})O_3$ powder

Dilatometry curve shows that maximum shrinkage has been performed after 1200°C. Therefore $(K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O_3$ pellets were sintered at 1200°C for 2 hours. Due to volatility of alkaline element (Wang, Y.L., et al. 2011), the mol fraction of K and Na was increased by 2 mol % K and 8 mol % Na refered to Rohmah, N.A., 2014.

By excess 2 mol % Na and 8 mol % K, undetected trace phase still exist. Then the number of excess was taken to be 4 mol % Na and 16 mol % K for first route. Increasing this excessive to first route was successfully form single phase perovskite $(K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O_3$ (figure 5b). The optimum excess for second route is 2 mol % K and 8 m ol % Na (figure 5c). After rietvield refinement, structure of sintered $(K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O_3$ was known as described in table 4. Comparing this two routes, known that second route (calcined-non calcined) is better in degree of packing.

No	Routes	Lattice Parameter (Å)			Crystal
		a	b	C	System
1	calcined KNN- calcined BST	3.9191	3.9191	3.9434	perovskite tetragonal
2	calcined KNN- non calcined BST	3.9062	3.9062	3.9263	perovskite tetragonal

Table 4. Lattice parameter of sintered (K_{0.4}Na_{0.4}Ba_{0.16}Sr_{0.04})(Nb_{0.8}Ti_{0.2})O₃

Conclusion

Single phase of $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ has been obtained successfully using the combination of solid state reaction and oxalate coprecipitation method with two routes: calcined KNN - calcined BST and calcined KNN - non calcined BST. For first route, single phase $(K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O_3$ was obtained successfully by calcination at 1100°C for 2 hours with excess 2 mol % K and 8 mol % Na. However for second route, the same result was obtained by calcinations at 700°C for 2 hours.

Due to volatility of K and Na, to preserve single phase of sintered pellet samples, more excessive K and Na was required. For first route, it needs $4 \mod \%$ K and $16 \mod \%$ Na. However for second route required $2 \mod \%$ K and $8 \mod \%$ Na. Both calcined powder and sintered pellet show that cell parameter from second route was more compact than the first route.

Bibliography

- Ceramics International, 38S S295-S299. (2011). Low-temperature sintering and electrical properties of (K,Na)NbO₃ based lead-free ceramics with high curie temperature. Wang, Y. L., Lu, Y. Q., Wu, M. J., et all.
- 2. Current Applied Physics 12 1266-1271. (2012). *Ferroelectric Relaxor Properties of (1-x)* $K_{0.5}Na_{0.5}NbO_3$ - $xBa_{0.5}Ca_{0.5}TiO_3$ Ceramics. Cho, C.W., Cha, M.R., Jang, J.Y., et all.
- 3. ITS Press. (2012). *Feroelektrik Barium Strontium Titanat Ba*_{1-x}Sr_xTiO₃ Struktur, Synthesis, *Karakteristik Elektrik*. Surabaya: Suasmoro.
- 4. John Willey and Son . (1997). Principles for Ceramic Science and Engineering. Dunbar Birnie 3, W. David Kingery: Chiang, Y.M.
- 5. Journal of European Ceramic Society 20 309-314. (2000). *The characterization of mixed titanate Ba*_{1-x}Sr_xTiO₃ phase formation from oxalate coprecipitated precursor. Suasmoro, S., Pratapa, S., Hartanto, S., et all.
- 6. Material Science and Engineering B 112 (5-9). (2004). Dielectric and piezoelectric properties of lead-free (Na_{0.5}Bi_{0.5})TiO₃-NaNbO₃ ceramics. Li, Y., Chen, W., Zhou, J., et al.
- 7. National Central University Press. (2009). *Ferroelectric materials and their applications in electronic circuits*. Taiwan: Fu, J. S.
- 8. Nature, 432, 84–87. (2004). Lead-Free Piezoceramics. Saito, Y., Takao, H., Tani, T., Nonoyama, T, et al.
- 9. Tesis ITS. (2014). Sintesis dan K arakterisasi Material 0,8K_{0,5}Na_{0,5}NbO₃-0,2Ba_{0,5}Ca_{0,5}Zr_{0,5}Ti_{0,5}O₃ Bebas Timbal Dengan Metode Reaksi Padat. Surabaya: Rohmah, N.A.

Pembimbing: Prof. Dr. Suasmoro, DEA

Ersa Desmelínda NRP. 1113201002

Sintesis dan Karakterisasi Listrik Material Ferroelektrik Bebas Timbal 0,8(Ka_{0,5}Na_{0,5}NbO₃)-0,2(Ba_{0,8}Sr_{0,2}TiO₃) dengan Metode Gabungan Reaksi Padat-Kopresipitasi Oksalat

PENDAHULUAN

METODE RISET

HASIL DAN PEMBAHASAN

Material berstruktur perovskite

PEMANFAATAN MATERIAL FERROELEKTRIK BERSTRUKTUR PEROVSKITE

- Kapasitor
- FeRAM (Ferroelektrik RAM)
- Elektro-Optik Modulator
- Transduser (Sifat Piezoelektrik)
- Sensor Suhu
- Solar Cell
- Transistor
- PTC (positive temperature coefficient)

Ward Line

PZT

60% Wt

Penelitian Terdahulu

(Saito, et al, 2004)

0,8(Ka_{0,5}Na_{0,5}NbO₃)-0,2(Ba_{0,8}Sr_{0,2}TiO₃)

Reaksi Padat

KNN_750C

Kopresipitasi Oksalat

KNN 700C

KNN_650C

Metode Penelitian

Sintesis KNN

K₂CO₃ Na₂CO₃ Nb₂O₅

Pencampuran dengan Planetary Ballmill (150 rpm, 1 Jam)

Menghilangkan Alkohol Dengan Evaporator

> Kalsinasi 700°C, 2 Jam

Sintesis BST

Larutan TiOCl₂, BaOCl₂ dan SrOCl₂

Pencucian, Uji AgNO3 dan Pengeringan (Ba,Sr)Ti-Oksalat Presipitat

Kalsinasi 700°C,

 $(Ba,Sr)TiO(C_2O_4)_2.4H_2O$

2 Jam

Karakterisasi

- Analisis termal melalui uji TGA-DTA
- Difraksi sinar-X
- Kajian dilatometri
- Pengukuran densitas
- Impedance Analyzer Solartron

HASIL DAN PEMBAHASAN

Hasil XRD Raw Material

Reaksi Pembentukan KNN

$\frac{K_2CO_3 + Na_2CO_3 + 2Nb_2O_5}{\rightarrow 4Ka_{0,5}Na_{0,5}NbO_3 + 2CO_2}$

Reaksi Pembentukan BST

 $TiCl_4 + H_2O \rightarrow TiOCl_2 + 2HCl + Panas$

 $0,8BaCl_{2} + 0,2SrCl_{2} + TiOCl_{2} + H_{2}C_{2}O_{4} + xH_{2}O + 2HCl \rightarrow Ba_{0.8}Sr_{0.2}TiO(C_{2}O_{4})_{2}.nH_{2}O\downarrow + 6HCl$

 $AgNO_3 + HC1 \rightarrow AgC1 \downarrow + HNO_3$

 $Ba_{0,8}Sr_{0,2}TiO(C_2O_4)_2.nH_2O \rightarrow Ba_{0,8}Sr_{0,2}TiO_3 + 4CO_2 + 0,5O_2 + nH_2O$

Sintesis $0,8(Ka_{0,5}Na_{0,5}NbO_3)-0,2(Ba_{0,8}Sr_{0,2}TiO_3)$

Prekursor **KNN** BST **KNN** BST Pencampuran dengan Pencampuran dengan **Planetary Milling Planetary** Milling 150 rpm, 2 Jam 150 rpm, 2 Jam Kalsinasi Kalsinasi Rute 1 Rute 2

Hasil analisis termal

а

b

200 400 600 800 1000 1200 1400 Temperature (°C)

aa': Rute 1 (Kalsinasi-Kalsinasi) bb': Rute 2 (Kalsinasi-Non Kalsinasi)

HASIL UJI DILATOMETRI

 ΔL

L

Sintering Temperature

0 200 400 600 800 1000 1200

Temperature (°C)

Densitas Sampel

 m_k

 $m_b - m_a$

 $x \rho_a$

Densitas	Rute K-K	Rute K-NK
Archimedes	4,3369 gr/cc	4,1752 gr/cc
Dimensional	3,4603 gr/cc	3,4022 gr/cc
Teoritis	4,8577 gr/cc	4,8924 gr/cc

Karakterisasi Listrik **KNN-BST**

KNN-BST

Ag

KapasitansiImpedansi

Impedance Analyzer

Permitivitas relatif

Suhu Curie KNN-BST

Sampel Suhu Curie Tetragonalitas

 Rute 1
 ~440 °C
 1.0063

 Rute 2
 ~420 °C
 1.0041

Suhu Curie KNN

Plot Cole-Cole dan Faktor disipasi

Konduktivitas KNN-BST

Energi Aktivasi KNN-BST

$\sigma = \sigma_o \exp\left(-\frac{\Delta E}{LT}\right)$

Kesimpulan

- Material perovskite fasa tunggal (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ telah berhasil disintesis dengan gabungan metode reaksi padat dan kopresipitasi oksalat.
- Material (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ yang disintesis memiliki suhu Curie ~440°C untuk sampel rute sintesis 1 dan ~420°C untuk sampel dari rute sintesis 2.
- Terjadi peningkatan permitivitas relatif, faktor disipasi dan konduktivitas listrik seiring dengan pertambahan suhu.
- Terdapat dua rezim konduktivitas yang menunjukkan perbedaan tipe pembawa muatan listrik untuk masingmasing rezim.

SARAN

- Material (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ telah dipelajari sifat kelistrikannya. Hasil penelitian ini dapat dikembangkan lebih lanjut baik dari segi modifikasi sifat kelistrikannya dengan pengubahan kombinasi material maupun pada tahap pengaplikasian material ferroelektrik bebas timbal (K_{0,4}Na_{0,4}Ba_{0,16}Sr_{0,04})(Nb_{0,8}Ti_{0,2})O₃ itu sendiri.
- Ada beberapa bagian pada pembahasan penelitian ini yang masih berupa dugaan sementara. Dapat dilakukan kajian lebih lanjut untuk menguji kebenaran dugaan-dugaan sementara pada penelitian ini.

