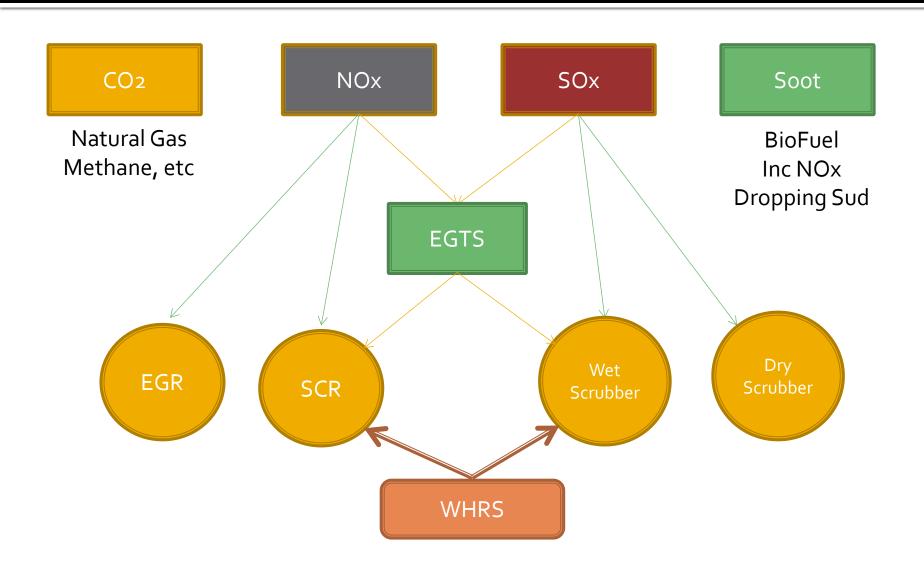


Bachelor Thesis Presentation Christian Laksmono


Background of Thesis

Environmental and WHRS Issues

Exhaust Gas Pollution

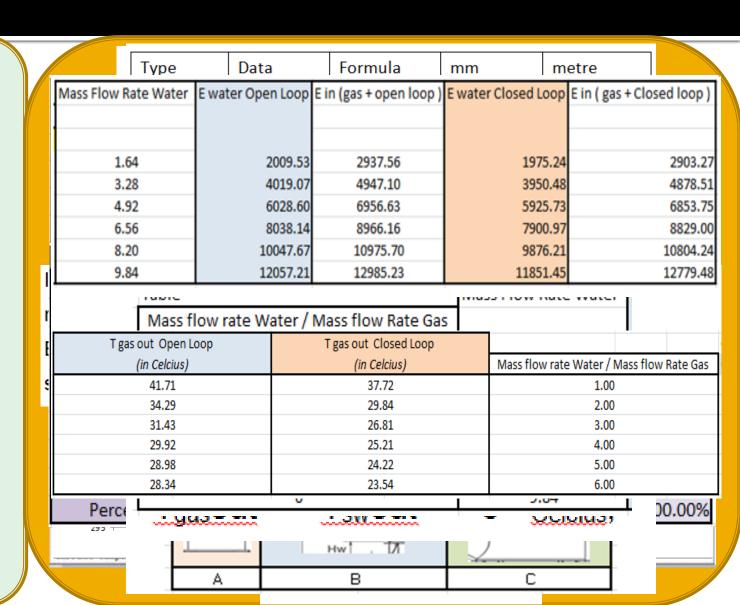
Bachelor Thesis Title:

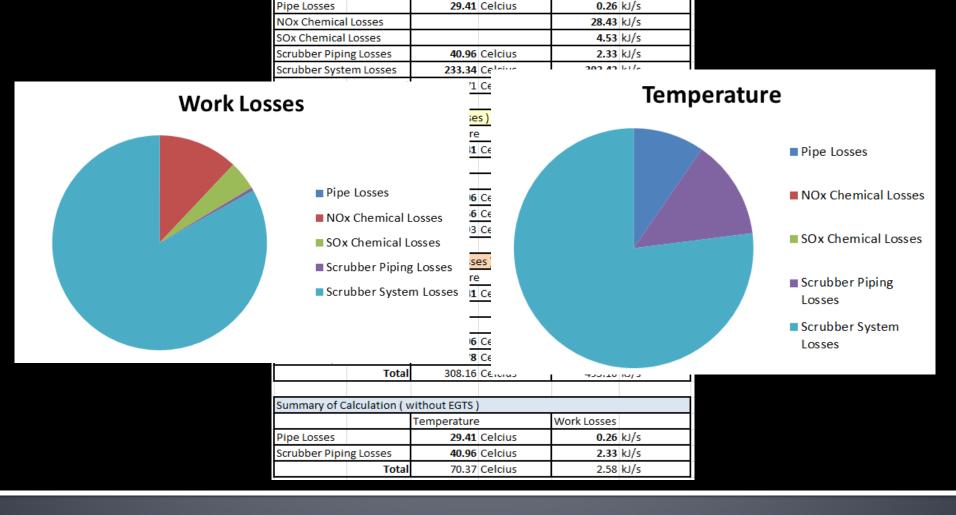
THE INFLUENCE OF EXHAUST GAS TREATMENT SYSTEM TO THE POSSIBLE EXHAUST GAS HEAT RECOVERY

Using 960 Kw Machinery in Hochschule Wismar

Task + Hypothesis

- 1. Characterisation of different technical and operational systems to meet the SO_x and NO_x emission limits
- 2. Detailed description of influence of different exhaust gas treatment systems regarding the heat recovery potential
- 3. Appointment of exhaust gas heat recovery potential in an example
- 4. Evaluation of results


TASK


Hypothesis

- Different EGTS Installment = Different WHRS Potential
 - 2. Scrubber Influence WHRS
 - 3. WHRS + EGTS = Improvable

Steps through Processing

- Pipe Calculation
- Pipe Calculation (using Program)
- Chemical LossesCalculation
- Losses in Scrubber Piping
- 5. Scrubbing System Losses
- Mass Flow Rate Water : Gas

Work Losses

Summary of Calculation (Best Losses)

Temperature

Complete Summary

Conclusion

	Scrubber A	nalysis pre SOx Scrubber		
		, ,		
Summary of Calculatio	n (Best Losses)			
		Temperature		Work Losses
Pipe Losses		29.41	Celcius	0.26 kJ/s
NOx Chemical Losses				28.43 kJ/s
SOx Chemical Losses				0.00 kJ/s
Scrubber Piping Losses	5	0.00	Celcius	0.00 kJ/s
Scrubber System Losse	<u> </u>	0.00	Celcius	0.00 kJ/s
	Total	29.41	Celcius	28.69 kJ/s
Summary of Calculatio	n (Average Losses)			
		Temperature		Work Losses
Pipe Losses		29.41	Celcius	280.75 kJ/s
NOx Chemical Losses				56.88 kJ/s
SOx Chemical Losses				0.00 kJ/s
Scrubber Piping Losses	5	0.00	Celcius	0.00 kJ/s
Scrubber System Losse	<u> </u>	0.00	Celcius	0.00 kJ/s
	Total	29.41	Celcius	337.63 kJ/s
Summary of Calculatio	n (Maximus Losses)			
		Temperature		Work Losses
Pipe Losses		29.41	Celcius	280.75 kJ/s
NOx Chemical Losses				63.52 kJ/s
SOx Chemical Losses				0.00 kJ/s
Scrubber Piping Losses	5	0.00	Celcius	0.00 kJ/s
Scrubber System Losse	25	0.00	Celcius	0.00 kJ/s
	Total	29.41	Celcius	344.27 kJ/s
Summary of Calculatio	n (without EGTS)			I
		Temperature		Work Losses
Pipe Losses			Celcius	280.75 kJ/s
Scrubber Piping Losses			Celcius	0.00 kJ/s
	Total	29.41	Celcius	280.75 kJ/s

EGTS does not affect WHRS

Best Installment of EGTS?

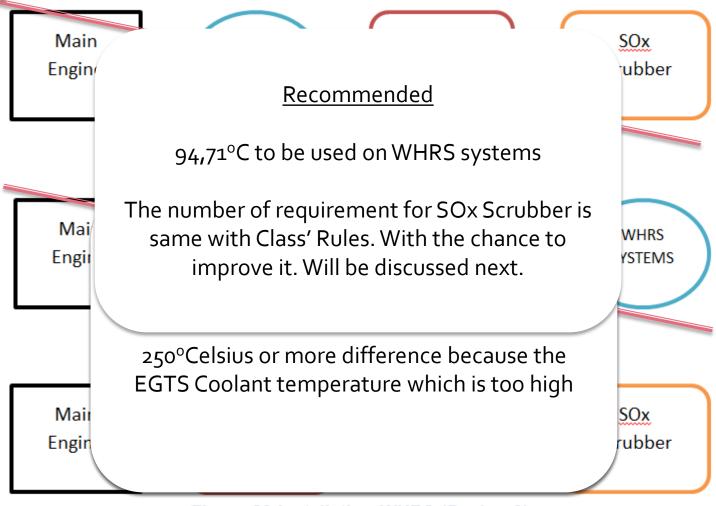


Figure 20 Installation WHRS (Design 3)

Using Better Heat Resistance Material

Summary of Calculation (Best Losses)							
	Temperature	Work Losses					
Pipe Losses	20.1521 Celcius	0.256	kJłs				
NOx Chemical Losses		28.43	kults				
SOx Chemical Losses		4.53	kJłs				
Scrubber Piping Losses	40.9676 Celcius	2.32805773	kJłs				
Scrubber System Losses	233.341 Celcius	392.415313	kulis				
Total	294.4603 Celcius	427.9593709	kJłs				

Differences:				
	Temperat	ire	Work Losses Co	omparison
Best Losses	9.252717	Celcius	1.000000115	
Average Losses	9.252717	Celcius	1.195701456	
Maximum Losses	9.252717	Celcius	1.240546739	
without EGTS	9.252717	Celcius	1.000019001	

Summary of Calculation (Maximus	Losses)		
	Temperature		Work Losses	
Pipe Losses	20.1521	Celcius	0.256	kulls
NOx Chemical Losses			0	kJłs
SOx Chemical Losses			0	kJłs
Scrubber Piping Losses	40.9676	Celcius	2.32805773	kulls
Scrubber System Losses	237.784	Celcius	396.513788	kulis
Total	298.904	Celcius	399.0978461	kJls
Summary of Calculation (without E0	aTS)		
	Temperature		Work Losses	
Pipe Losses 20.1521 Celcius		0.256	kulis	
Scrubber Piping Losses	40.9676	Celcius	2.32805773	kulis
Total	61,1197	Celcius	2.584057729	kJłs

Shorter Pipe to Reduce Heat Loss

$$Q = \frac{T \infty 1 - T \infty 2}{Rtotal}$$
 and $Rcond = \frac{\ln(\frac{rh+1}{rn})}{2\pi k L}$

Putting Consideration into Chemical Products

Table of Comparison								
		Ca(OH)2	Ca(OH)2 Mg(OH) 2		Sea Water:	CaCO3		
	Enthalpy	-161.798	-349.25	-245.57	-313.9	5 -48.738		
	Losses (kJ/kg DO)	-15.047214	-32.48025	-22.83801	-29.1973	5 -4.532634		
Losses A	Analysis							
				Temperature		Work Losses		
Best Losses				303.71 Celcius		427.96 kJłs	\$	
Average Losses				305.93 Celcius		474.75 kJ/s	\$	
Maximus Losses			308.16 Celcius		495.10 kJ/s	\$		
Without EGTS			70.37 Celcius 2.58		2.58 kJłs	\$		

Combination	Pure + Nitro1	Pure+Nitro2	Aqu + Nitro1	Aqu + Nitro2	Fast Nitro
Losses (kJ/kg DO)	-67.874171	-65.653479	-62.340682	-60.1199897	-28.430928
Comparison	2.387335744	2.3092274	2.19270654	2.114598206	1
Percentage	238.73%	230.92%	219.27%	211.46%	100.00%

Using the Acid-Free Material on Scrubber Piping System

No Regulation for Minimum Temperature.. Acid Rain -> Non-Acid Material

Reducing 180 degree to 70 degree We can boost up WHRS from 11% to 18.26%

If this possible than EGTS installation will boost up WHRS possibility

Thank You for Your Attention

Christian Laksmono @2016. Rostock