

TURBOCHARGER CHARACTERISTIC ANALYSIS OF 93KW MARINE DIESEL ENGINE

PROPOSED BY: ARVIAN PRADANA 42 12 101 024

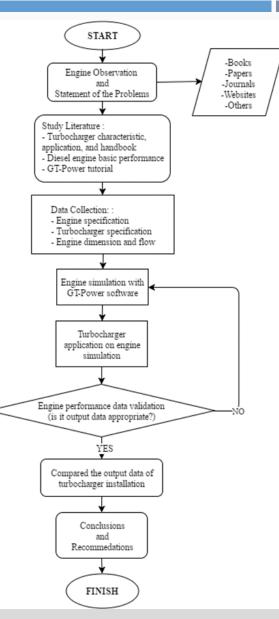
DOUBLE DEGREE PROGRAM OF MARINE ENGINEERING DEPARTMENT FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER 2016

OUTLINE

- Background
- Problem Formulation and Scope
- Methodology
- Discussion and Results
- Conclusions

BACKGROUND

- Fishing vessels with a size of 30 GT is under development
- Development carried out for fishing vessels are design, economical, and performance
- Improvement of engine performance can be done by installation of turbocharger
- The aim of its installation is to increase power output and efficiency engine
- Study of the results must be done for the further result


PROBLEM FORMULATION & SCOPE

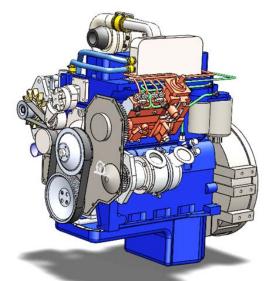
- Problem Formulation
 - How to select a turbocharger for marine diesel engine with 93 kW of power output?
 - 2. How to match the engine with a turbocharger?

Scope of Problem

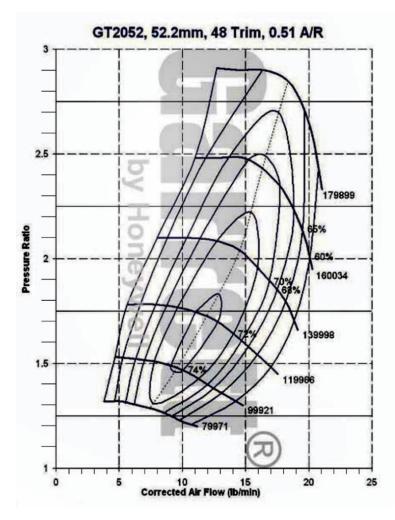
- 1. The simulation using simulation modeling software
- 2. Simulation only used to find the performance of the engine which had been installed by turbocharger
- 3. The experiment will be done to compare the efficiency and performance of the engine which had been installed by turbocharger with a different specification

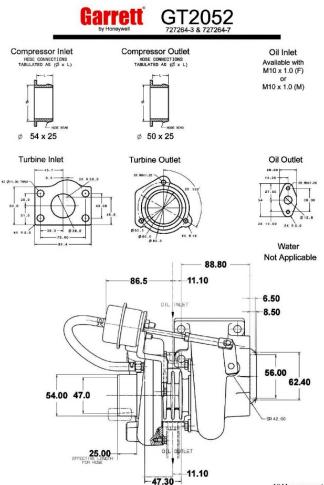
DISCUSSION AND RESULTS

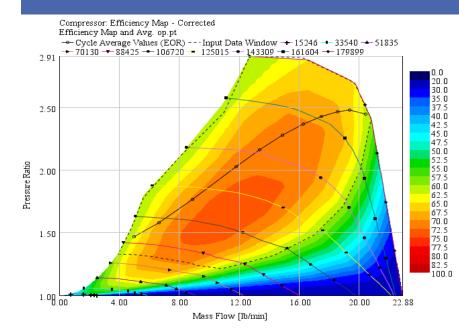
SIMULATION PROCESS USING SOFTWARE


There are a few step of simulation process, as follows:

- Collecting data of engine flow and arrangement
- Enviroment input object
- Compressor object
- Intake valve object
- Cylinder object
- Exhaust valve object
- Injection system object
- Turbine object
- Cranktrain object

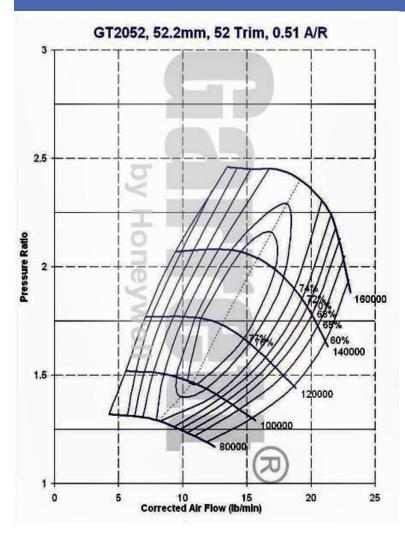

ENGINE DATA

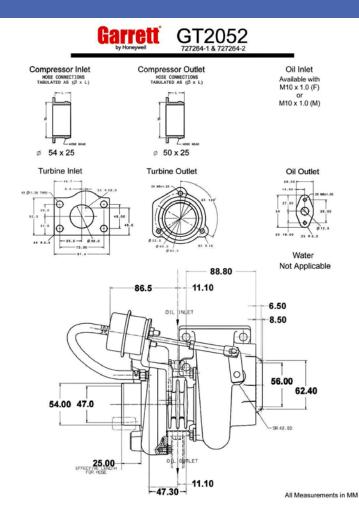

- Engine Specification Data (designed by Juniono Raharjo, 2015)
 - No. of Cylinder : 4
 - Displacement : 3.9 L
 - Bore : 102 mm
 - Stroke : 120 mm
 - Inlet Valve :45 mm (clearance = 0.25 mm)
 - Outlet Valve :43 mm (clearance = 0.51 mm)
 - Compression Ratio : 16.5 : 1
 - Firing Order : I-3-4-2


TURBOCHARGER I DATA

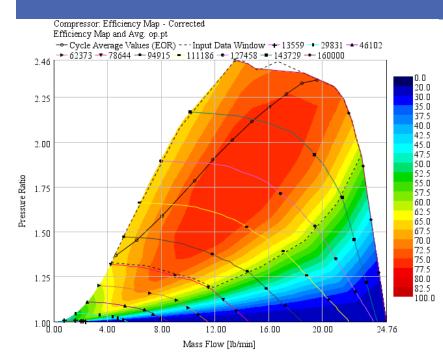


All Measurements in MM

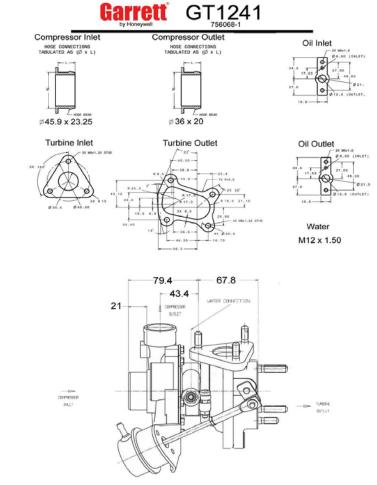



Type of Device	Compressor	Turbine
Speed [RPM]	178662	178662
Pressure Ratio (static)	2.48	2.48
Pressure Ratio	2.45	2.54
Mass Flow Rate [kg/s]	0.15	0.15
Power [kW]	21.1	23.6
Efficiency [%]	61.4	72.1
Inlet Pressure [bar]	0.94	3.01
Outlet Pressure [bar]	2.34	1.21
Inlet Temperature [K]	297	898
Outlet Temperature [K]	437	766
Map PR Exceeded/Stalled ?	NO	NO
PR less than 1.0?	NO	NO

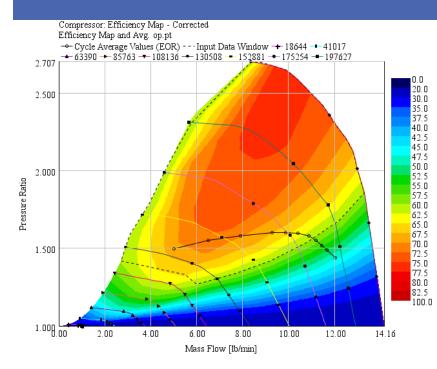
RPM	Brake Power (kW)	SFOC (g/kWh)	TORQUE (Nm)
2200	96.823	228.023	420.269

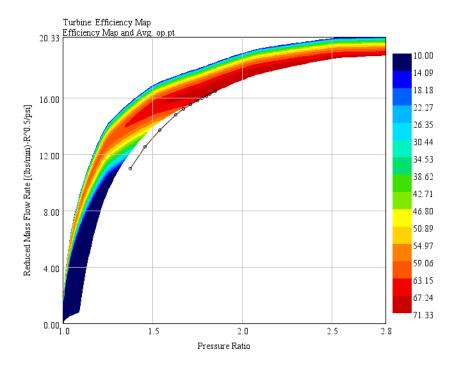



TURBOCHARGER II DATA


Type of Device	Compressor	Turbine
Speed [RPM]	165365	165365
Pressure Ratio (static)	2.38	2.41
Pressure Ratio	2.35	2.46
Mass Flow Rate [kg/s]	0.14	0.15
Power [kW]	16	22.1
Efficiency [%]	73.9	72
Inlet Pressure [bar]	0.95	2.89
Outlet Pressure [bar]	2.25	1.2
Inlet Temperature [K]	297	896
Outlet Temperature [K]	408	768
Map PR Exceeded/Stalled ?	NO	NO
PR less than 1.0?	NO	NO

RPM	Brake Power (kW)	SFOC (g/kWh)	TORQUE (Nm)
2200	93.622	228.489	406.374




TURBOCHARGER III DATA

GT1241, 41mm, 50 Trim, 0.33 A/R 2.5 Pressure Ratio 2 65% 220000 60% 200000 1.5 180000 160000 140000 120000 1 -0 5 10 15 20 Corrected Air Flow (ib/min)

Type of Device	Compressor	Turbine
Speed [RPM]	194046	194046
Pressure Ratio (static)	1.43	1.82
Pressure Ratio	1.44	1.85
Mass Flow Rate [kg/s]	0.09	0.09
Power [kW]	6.2	8.9
Efficiency [%]	47.4	67.7
Inlet Pressure [bar]	0.97	1.97
Outlet Pressure [bar]	1.38	1.08
Inlet Temperature [K]	298	879
Outlet Temperature [K]	365	793
Map PR Exceeded/Stalled ?	NO	NO
PR less than 1.0?	NO	NO

RPM	Brake Power (kW)	SFOC (g/kWh)	TORQUE (Nm)
2200	51.929	254.828	225.401

CONCLUSIONS

- 1. Turbocharger match results known from operating line turbocharger to the engine performance. From the first turbocharger (GT2052-3), maximum power output value is 96.823 kW at 2200 RPM. Obtained torque value by 420.269 Nm, with a specific fuel oil consumption by 228.02 g/kWh. The second turbocharger (GT2052-1), maximum power output value is 93.622 kW at 2200 RPM. Obtained torque value by 406.374 Nm, with a specific fuel oil consumption by 228.389 g/kWh. The third turbocharger (GT1241), maximum power output value is 51.929 kW at 2200 RPM. Obtained torque value by 225.401 Nm, with a specific fuel oil consumption by 254.828 g/kWh. Turbocharger can be considered match if the efficiency level turbocharger >80%. So turbocharger selected is GT2502-1 with highest efficiency at full load.
- Maximum load of the engine at 2200 RPM installed with GT2502-Iturbocharger, power generated value is 93.662 kW. Efficiency of the selected turbocharger compressor map is 73.933%, and turbine efficiency map 72.022%. Compressor and turbine revolution is at 165365 RPM. Boost pressure generated at highest point of this turbocharger used is 2.247 bar, with a temperature of 408.01 K.

REFERENCES

- Rautenberg M., Mobarak A., Molababic M. (1983) Influence of heat transfer between turbine and compressor on the performance of small turbochargers, JSME Paper 83-Tokyo-IGTC-73, International Gas Turbine Congress.
- Jung M., Ford R.G., Glover K., Collings N., Christen U., Watts M.J. (2002) Parameterisation and Transient Validation of a Variable Geometry Turbocharger for Mean-Value Modelling at Low and Medium Speed-Load Points, SAE paper 2002-01-2729.
- Riegler C. (1999) Correlations to include heat transfer in gas turbine performance calculations, Aerospace Technology 5, 281-292.
- Guzovic Z., Matijasevic B., Rusevljan M. (2001) Generalised Correlations for heat transfer determination in turbine cascades, Strojniski Vestnik. 47, 8.
- Keshaverzi Hamid. 2005. Selection and Matching Turbocharger to Large Propullsion Diesel Engine Performance. Ph.D Dissertation. Liverpool Jhon Moores University.
- Tancrez M. 2010. Turbine Adapted Maps for Turbocharger Engine Matching. M.Sc Thesis. Universidad Politécnica de Valencia, Spain.

THANK YOU FOR YOUR ATTENTION