

TUGAS AKHIR - KI141502

REKONSTRUKSI JALAN PADA CITRA SAPPORO MAP MENGGUNAKAN CURVE FITTING

ILHAM ZUHRI NRP 5109 100 038

Dosen Pembimbing I Dr.Eng Darlis Herumurti, S.Kom., M.Kom.

JURUSAN TEKNIK INFORMATIKA Fakultas Teknologi Informasi Institut Teknologi Sepuluh Nopember Surabaya 2016

UNDERGRADUATE THESES - KI141502

ROAD CONSTRUCTION FROM IMAGE OF SAPPORO'S MAP USING CURVE FITTING

ILHAM ZUHRI NRP 5109 100 108

First Advisor
Darlis Herumurti, S.Kom., M.Kom.

DEPARTMENT OF INFORMATICS Faculty of Information Technology Sepuluh Nopember Institute of Technology Surabaya 2016

LEMBAR PENGESAHAN

REKONSTRUKSI JALAN PADA CITRA MAP SAPPORO DENGAN MENGGUNAKAN CURVE FITTING

TUGAS AKHIR

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer pada

Bidang Studi Komputasi Cerdas dan Visualisasi Program Studi S-1 Jurusan Teknik Informatika Fakultas Teknologi Informasi Institut Teknologi Sepuluh Nopember

SURABAYA JULI, 2016

REKONSTRUKSI JALAN PADA CITRA MAP SAPPORO DENGAN MENGGUNAKAN CURVE FITTING

Nama Mahasiswa : Ilham Zuhri NRP : 5109 100 108

Jurusan : Teknik Informatika FTIF-ITS
Dosen Pembimbing 1 : Darlis Herumurti, S.Kom., M.Kom.

Abstrak

Citra atau gambar (image) sudah menjadi hal yang umum dan menjadi bagian dalam kehidupan masyarakat sehari-hari. Dalam suatu kepentingan tertentu, citra (gambar) digunakan sebagai alat untuk mengungkapkan berbagai macam perasaan yang bagi beberapa orang sulit untuk diungkapkan melalui katakata. Seperti menjelaskan suatu alasan, interpretasi, ilustrasi, komunikasi, ingatan, pendidikan, evaluasi, hiburan, dan lain-lain. Kemudian konsep citra dan pengolahannya ini dihubungkan dengan pengubahan maupun perbaikan citra (image). Meskipun sebuah citra kaya informasi, namun seringkali citra yang kita miliki mengalami penurunan mutu (degradasi), misalnya mengandung cacat atau derau (noise), warnanya terlalu kontras, kurang tajam, kabur (blurring), dan sebagainya.

Pada tugas akhir ini akan merekonstruksi citra map sapporo agar menjadi lebih jelas dan lebih mudah untuk dibaca. Metode yang digunakan dalam tugas akhir ini preprocessing citra dengan menggunakan morphologi dan curve fitting.

Kemudian hasil tugas akhir ini akan diuji berdasarkan fungsionalitasnya. Hasil pengujian menunjukkan bahwa dalam merekonstruksi jalan pada citra map Sapporo berjalan dengan baik dengan rata-rata waktu proses rekonstruksi citra adalah

0,7468 detik. Citra hasil rekonstruksi lebih mudah digunakan untuk pengolahan selanjutnya.

Kata kunci: morphology, curve fitting, rekonstruksi jalan.

ROAD CONSTRUCTION FROM IMAGE OF SAPPORO'S MAP USING CURVE FITTING

Student's Name : Ilham Zuhri Student's ID : 5109 100 108

Department : Informatics Engineering, FTIF-ITS First Advisor : Darlis Herumurti, S.Kom., M.Kom.

Abstract

Image or picture has become a common thing and become people's evereday lives. In particular interest, image (picture) is used as tool to exspress intese feelings for some people it's difficult to be expressed trough words. As explained reason, interpretation, illustrastion, communication, memory, education, evaluation, entertaubment, and others. Then the concept of image and it's processing is associated with alteration and improvement of the image (picture). Despite a rich image information, but often the image that we have a degrade (degradation), for example, contains a defect or noise, the color is too much contrast, less sharp, blur (blurring), and so forth.

This final project will reconstruct image of the road in order to be cleaer and easier to read. The method used in this final project by using morphological image preprocessing and curve fitting.

The result of this final project will be tested based on the functionality. The results show that in reconstructing the road in the image of sapporo's map goes well with an average time of road construction process is 0,7468 seconds. Image reconstruction resuts will be easier to use for the next processing.

Keywords: morphology, curve fitting, road construction

DAFTAR ISI

LEMB	AR PENGESAHAN	V
Abstrak	ζ	vii
Abstrac	ct	ix
KATA	PENGANTAR	xi
DAFTA	AR ISI	.xiii
DAFTA	AR GAMBAR	xv
	AR TABEL	
DAFTA	AR KODE SUMBER	xx
	PENDAHULUAN	
1.1	Latar Belakang	1
1.2	Rumusan Permasalahan	2
1.3	Batasan Masalah	2
1.4	Tujuan	
1.5	Manfaat	3
1.6	Metodologi	3
1.7	Sistematika Penulisan	
BAB II	DASAR TEORI	7
2.1	Pengenalan Citra Digital	7
	2.1.1 Citra Biner	7
	2.1.2. Citra Grayscale	8
2.2	Pra-pengolahan Suatu Citra	8
	2.2.1 Morphologi Erosi (<i>Erode</i>)	
	2.2.2 Morphologi Close	
	2.2.3 Deteksi Tepi Canny	
2.3	Pembentukan Jalan	
BAB II	I DESAIN DAN PERANCANGAN	15
3.1	Desain Metode Secara Umum	15
3.2	Arsitektur Umum Sistem	16
3.3	Perancangan Data	16
	3.3.1 Data Masukan	
	3.3.2 Data Keluaran	16
3.4	Diagram Alir Sistem Utama	17
	Perancangan Pra-Pengolahan Citra	

3.5.1 Morphology Erode dan Closing	21
3.5.2 Deteksi Tepi Canny	
3.6 Perancangan Pendeteksian dan Pengenalan Jalan	22
3.7 Perancangan Pembentukan Jalan	28
BAB IV IMPLEMENTASI	37
4.1 Lingkungan Pembangunan	37
4.1.1 Lingkungan Pembangunan Perangkat Keras.	37
4.1.2 Lingkungan Pembangunan Perangkat Lunak	37
4.2 Implementasi Proses Perangkat Lunak	37
4.2.1 Implementasi Pra-pengolahan Suatu Citra	38
4.2.2 Implementasi Pendeteksian dan Pengenalan J	alan
	40
4.2.3 Implementasi Pembentukan Jalan	42
DAD VIIII CODA DANIEVALUACIE D. I. I.	
BAB V UJI COBA DAN EVALUASIError! Bookmark	not
defined.	not
defined.	45
defined. 5.1 Lingkungan Uji Coba	45 45
defined. 5.1 Lingkungan Uji Coba	45 45
defined. 5.1 Lingkungan Uji Coba	45 45 45
defined. 5.1 Lingkungan Uji Coba	45 45 46 47
defined. 5.1 Lingkungan Uji Coba	45 45 45 46 47
defined. 5.1 Lingkungan Uji Coba	45 45 46 47 47
defined. 5.1 Lingkungan Uji Coba	45 45 46 47 51 51
defined. 5.1 Lingkungan Uji Coba 5.2 Data Pengujian 5.3 Skenario Uji Coba 5.3.1 Pengujian Skenario 1 dan Evaluasi 5.3.2 Pengujian Skenario 2 dan Evaluasi 5.3.3 Pengujian Skenario 3 dan Evaluasi BAB VI PENUTUP 6.1 Kesimpulan 6.2 Saran DAFTAR PUSTAKA	45 45 46 47 51 51
defined. 5.1 Lingkungan Uji Coba	45 45 46 47 51 51 53 53

DAFTAR GAMBAR

Gambar 2. 1	Contoh proses morphologi erosi1	0
Gambar 2. 2	Contoh proses morphologi close1	0
Gambar 2. 3	Ilustrasi fungsi garis hough1	
Gambar 2. 4	Citra preprocessing dan hasil proses roipoly1	
Gambar 3. 1	Diagram Alir Utama1	7
Gambar 3. 2	Diagram Alur Pra-Pengolahan1	
Gambar 3. 3	Pseudocode morphology erode2	1
Gambar 3. 4	Pseudocode morphology erode2	1
Gambar 3. 5	Pseudocode memperhalus citra2	2
Gambar 3. 6	Diagram Alir Pendeteksian dan Pengenalan Jala	n
	2	4
Gambar 3. 7	Pseudocode proses penentuan titik dan pengenala	
	jalan2	7
Gambar 3. 8	Diagram Alir Pembentukan Jalan2	9
Gambar 3. 8	Pseudocode proses pembentukan jalan3	3
Gambar 3. 9	Pseudocode proses masking jalan3	5
Gambar 5.1	Citra Pra Pengolahan Menggunakan morpholog	у
	erode dan close4	7
Gambar 5. 5	Hasil Pendeteksian dan pengenalan jalan4	8
Gambar 5. 6	Pengecekan dengan batas jalan terdekat4	9
Gambar 5.7	Perbandingan Citra dengan awal dengan has	
	rekonstruksi5	

DAFTAR TABEL

Tabel 3.1	Daftar Variabel yang Digunakan Pada Pseudocode
m 1 100	Perancangan Pra-pengolahan Citra20
Tabel 3.2	Daftar Fungsi yang Digunakan Pada Pseudocode
	Perancangan Pra-pengolahan Citra (Bagian Pertama)20
Tabel 3.3	Daftar Fungsi yang Digunakan Pada <i>Pseudocode</i> 21
Tabel 3.4	Daftar Variabel yang Digunakan Pada Pseudocode
	Penentuan Titik dan Pengenalan Jalan (Bagian
	Pertama)
Tabel 3.5	Daftar Variabel yang Digunakan Pada Pseudocode
	Penentuan Titik dan Pengenalan Jalan (Bagian
	Kedua)26
Tabel 3.6	Daftar Fungsi yang Digunakan Pada Pseudocode
	Perancangan Pengenalan Target26
Tabel 3.7	Daftar Variabel yang Digunakan Pada Pseudocode
	Pembentukan Jalan (Bagian Pertama)30
Tabel 3.8	Daftar Variabel yang Digunakan Pada Pseudocode
	Pembentukan Jalan (Bagian Kedua)31
Tabel 3.9	Daftar Fungsi yang Digunakan Pada Pseudocode
	Perancangan Pembentukan Jalan32
Tabel 3.10	Daftar Variabel yang Digunakan Pada Pseudocode
	Masking jalan (Bagian Pertama)33
Tabel 3.11	Daftar Variabel yang Digunakan Pada Pseudocode
	Masking jalan (Bagian Kedua)34
Tabel 3.12	Daftar Fungsi yang Digunakan Pada Pseudocode
	Masking Jalan34
Tabel A.1	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Pertama)55
Tabel A.2	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Kedua)56
Tabel A.3	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Ketiga)57

Tabel A.4	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Keempat)58
Tabel A.5	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Kelima)59
Tabel A.6	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Keenam)60
Tabel A.7	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Ketujuh)61
Tabel A.8	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Kedelapan)62
Tabel A.9	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Kesembilan)63
Tabel A.10	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Kesepuluh)64
Tabel A.11	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Kessebelas)65
Tabel A.12	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Kedua Belas)66
Tabel A.13	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Ketiga Belas)67
Tabel A.14	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Keempat Belas)68
Tabel A.15	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Kelima Belas)69
Tabel A.16	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Keenam Belas)70
Tabel A.17	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Ketujuh Belas)71
Tabel A.18	Hasil Uji Coba Citra Masukan dan Citra Hasil Pra
	Pengolahan (Bagian Kedelapan Belas)72
Tabel A.19	Hasil Uji Coba Citra Pengenalan Jalan dan Citra
	Pembentukan (Bagian Pertama)73
Tabel A.20	Hasil Uji Coba Citra Pengenalan Jalan dan Citra
	Pembentukan (Bagian Kedua)

Tabel A.21	Hasil Uji Coba Citra Pengenalan Jalan dan Ci	
	Pembentukan (Bagian Ketiga)	
Tabel A.22	Hasil Uji Coba Citra Pengenalan Jalan dan Ci	tra
	Pembentukan (Bagian Keempat)	76
Tabel A.23	Hasil Uji Coba Citra Pengenalan Jalan dan Ci	
	Pembentukan (Bagian Kelima)	
Tabel A.24	Hasil Uji Coba Citra Pengenalan Jalan dan Ci	tra
	Pembentukan (Bagian Keenam)	
Tabel A.25	Hasil Uji Coba Citra Pengenalan Jalan dan Ci	
	Pembentukan (Bagian Ketujuh)	
Tabel A.26	Hasil Uji Coba Citra Pengenalan Jalan dan Ci	tra
	Pembentukan (Bagian Kedelapan)	
Tabel A.27	Hasil Uji Coba Citra Pengenalan Jalan dan Ci	
	Pembentukan (Bagian Kesembilan)	81
Tabel A.28	j C	
	Pembentukan (Bagian Kesepuluh)	
Tabel A.29		
	Pembentukan (Bagian Kesebelas)	83
Tabel A.30	Hasil Uji Coba Citra Pengenalan Jalan dan Ci	
	Pembentukan (Bagian Kedua Belas)	84
Tabel A.31	Hasil Uji Coba Citra Pengenalan Jalan dan Ci	tra
	Pembentukan (Bagian Ketiga Belas)	85
Tabel A.32	Hasil Uji Coba Citra Pengenalan Jalan dan Ci	
	Pembentukan (Bagian Keempat Belas)	
Tabel A.33	Hasil Uji Coba Citra Pengenalan Jalan dan Ci	
	Pembentukan (Bagian Kelima Belas)	
Tabel A.34	Hasil Uji Coba Citra Pengenalan Jalan dan Ci	
	Pembentukan (Bagian Keenam Belas)	
Tabel A.35	Hasil Uji Coba Citra Pengenalan Jalan dan Ci	
	Pembentukan (Bagian Ketujuh Belas)	
Tabel A.36	Hasil Uji Coba Citra Pengenalan Jalan dan Ci	
	Pembentukan (Bagian Kedelapan Belas)	90
Tabel A.37	3	
	Pembentukan (Bagian Kesembilan Belas)	91

Tabel A.38	Hasil Uji Coba Citra Pengenalan Jalan dan Citra
	Pembentukan (Bagian Kedua Puluh)92
Tabel A.39	Hasil Uji Coba Citra Pengenalan Jalan dan Citra
	Pembentukan (Bagian Kedua Puluh Satu)93
Tabel A.40	Hasil Uji Coba Citra Pengenalan Jalan dan Citra
	Pembentukan (Bagian Kedua Puluh Dua)94
Tabel A.41	Hasil Uji Coba Citra Pengenalan Jalan dan Citra
	Pembentukan (Bagian Kedua Puluh Tiga)95
Tabel A.42	v e
	Pembentukan (Bagian Kedua Puluh Empat)96
Tabel A.43	Hasil Uji Coba Citra Pengenalan Jalan dan Citra
	Pembentukan (Bagian Kedua Puluh Lima)97
Tabel A.44	Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian
	Pertama)98
Tabel A.45	Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian
	Kedua)99
Tabel A.46	Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian
	Ketiga)100
Tabel A.47	Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian
	Ketiga)101
Tabel A.48	
	Keempat)102
Tabel A.49	Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian
	Kelima)103
Tabel A.50	
	Keenam)104
Tabel A.51	Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian
	Ketujuh)105
Tabel A.52	Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian
	Kedelapan) 106

DAFTAR KODE SUMBER

Kode Sumber 4. 1 Implementasi <i>Morphology Erode</i>	38
Kode Sumber 4. 2 Implementasi Morphology Close	39
Kode Sumber 4. 3 Implementasi Konversi Matriks	Ke Citra
Grayscale	40
Kode Sumber 4. 4 Implementasi Transformasi Hough	40
Kode Sumber 4. 5 Implementasi Menentukan	Puncak
Transformasi Hough	41
Kode Sumber 4. 6 Implementasi Pengenalan Garis dan T	itik42
Kode Sumber 4. 7 Implementasi Pengecekan Garis terdel	kat43
Kode Sumber 4. 8 Implementasi Pembentukan Jalan	44

BAB I PENDAHULUAN

Pada bagian ini akan dijelaskan beberapa hal dasar mengenai Tugas Akhir ini meliputi latar belakang, rumusan permasalahan, batasan permasalahan, tujuan, manfaat dari Tugas Akhir, metodologi serta sistematika penulisan Tugas Akhir.

1.1 Latar Belakang

Dalam pengolahan citra, filtering merupakan hal yang penting dikarenakan filtering merupakan suatu metode untuk menonjolkan suatu kenampakan pada citra sehingga lebih mudah dibedakan dengan kenampakan yang lain. Fungsi dari filter pada pemprosesan citra adalah untuk menyeleksi suatu nilai piksel sehingga memiliki variasi nilai yang mampu menggambarkan kenampakan dengan lebih jelas dari citra asli. Untuk dapat menampilkan citra yang lebih jelas daripada citra aslinya maka diperlukan suatu penonjolan dan penyamaran dari nilai piksel. Dengan dilakukan operasi filtering diharapkan interpretasi visual dapat dilakukan dengan lebih mudah karena kenampakan menjadi lebih jelas.

Hasil dari filtering belum tentu dapat membuat citra menjadi lebih jelas, pada proyek ini terdapat citra satellite yang telah difilter, namun dari citra tersebut tidak terlalu jelas untuk membedakan bentuk bangunan dan jalan raya. Sehingga dibutuhkan perbaikan atau rekonstruksi pada citra agar dapat memperjelas bentuk jalan raya dan bangunan.

Curve fitting merupakan salah satu metode yang dapat digunakan dalam memperhalus (*smoothing*) suatu citra. Penggunaan curve fitting dalam penghalusan citra setelah menentukan posisi jalan raya, untuk menentukan objek bangunan dan jalan ini pada citra akan dilakukan pra pengolahan dengan *morphologi erosi* dan *closing*. Selanjutnya deteksi dan pengenalan jalan dengan menentukan titik menggunakan *transformasi hough*. Dan kemudian membentuk jalan dengan masking menggunakan

roipoly. Dengan curve fitting ini diharapkan dapat membantu dalam mengolah gambar jalan raya agar lebih jelas, sehingga akan mempermudah dalam penggunaan selanjutnya.

1.2 Rumusan Permasalahan

Rumusan masalah yang diangkat dalam Tugas Akhir ini dapat dipaparkan sebagai berikut:

- 1. Bagaimana mengimplementasikan morphology *erode*, *close* dan *canny* untuk pra-pengolahan suatu citra?
- 2. Bagaimana proses menjalin suatu tautan antara titik untuk menentukan jalanan dan bangunan?
- 3. Bagaimana proses penentuan pengenalan jalan dengan menggunakan *transformasi hough*?
- 4. Bagaimana mengimplementasikan *curve fitting* untuk bisa melakukan rekonstruksi jalan pada citra?

1.3 Batasan Masalah

Permasalahan yang dibahas dalam Tugas Akhir ini memiliki beberapa batasan, di antaranya sebagai berikut:

- 1. Citra yang digunakan untuk uji coba adalah citra map Sapporo yang input memiiki format .png.
- 2. Eksperimen dilakukan menggunakan MATLAB R2008b.

1.4 Tujuan

Tujuan dari pengerjaan Tugas Akhir ini adalah sebagai berikut:

- 1. Sistem yang mampu melakukan pra-pengolahan suatu citra dengan menggunakan *Morphology Erode* dan *Close* beserta mendeteksi tepi dengan menggunakan metode *canny*.
- 2. Sistem yang mampu melakukan ekstraksi pengenalan jalan dengan menggunakan algoritma *Transformasi Hough*.
- 3. Merekonstruksi citra jalan raya sehingga citra menjadi jelas dan mudah untuk dilihat dengan menggunakan *curve fitting*.

1.5 Manfaat

Tugas Akhir ini dikerjakan dengan harapan dapat memberikan manfaat pada bidang informatika dalam memudahkan untuk melakukan pemprosessan citra selanjutnya. Sehingga dalam pengerjaan selanjutnya tidak menghabiskan waktu dalam perbaikan citra.

1.6 Metodologi

Tahapan-tahapan yang dilakukan dalam pengerjaan Tugas Akhir ini adalah sebagai berikut:

1. Penyusunan proposal Tugas Akhir

Tahap awal untuk memulai pengerjaan Tugas Akhir adalah penyusunan proposal Tugas Akhir. Pada proposal tersebut dijelaskan secara garis besar tentang metode pra-pengolahan suatu citra, ekstraksi fitur secara umum dan lokal serta rekonstruksi menggunakan *curve fitting*..

2. Studi literatur

Tahap ini merupakan tahap pengumpulan informasi dan data-data yang diperlukan untuk pengerjaan Tugas Akhir sekaligus mempelajarinya. Mulai dari pengumpulan literatur, diskusi, pencarian metode yang paling tepat, serta pemahaman topik Tugas Akhir antara lain *morphology*, *deteksi tepi*, *hough*, *masking*, *roipoly*, dan lain-lainnya.

3. Perancangan sistem

Tahap ini merupakan perancangan system rekonstruksi dengan menggunakan studi literatur dan mempelajari konsep yang akan dilakukan. Dengan berbekal teori, metode dan informasi yang sudah terkumpul pada tahap sebelumnya diharapkan dapat membantu dalam proses perancangan sistem.

4. Implementasi perangkat lunak

Implementasi merupakan tahap membangun rancangan sistem yang telah dibuat. Pada tahapan ini merealisasikan apa

yang terdapat pada tahapan sebelumnya, sehingga menjadi sebuah sistem yang sesuai dengan apa yang telah direncanakan

5. Pengujian dan evaluasi

Pada tahap ini dilakukan uji coba terhadap perangkat lunak yang telah dibuat. Pengujian dan evaluasi akan dilakukan dengan melihat kesesuaian dengan perencanaan. Tahap ini dimaksudkan juga untuk mengevaluasi jalannya sistem, mencari masalah yang mungkin timbul dan mengadakan perbaikan jika terdapat kesalahan.

6. Penyusunan buku Tugas Akhir

Pada tahap ini disusun buku yang memuat dokumentasi mengenai pembuatan serta hasil dari implementasi perangkat lunak yang telah dibuat.

1.7 Sistematika Penulisan

Buku Tugas Akhir ini disusun dengan sistematika penulisan sebagai berikut:

BAB I. PENDAHULUAN

Bab yang berisi mengenai latar belakang, tujuan, dan manfaat dari pembuatan Tugas Akhir. Selain itu permasalahan, batasan masalah, metodologi yang digunakan, dan sistematika penulisan juga merupakan bagian dari bab ini.

BAB II. DASAR TEORI

Bab ini berisi penjelasan secara detail mengenai dasardasar penunjang dan teori-teori yang digunakan untuk mendukung pembuatan Tugas Akhir ini.

BAB III. PERANCANGAN PERANGKAT LUNAK

Bab ini berisi tentang desain sistem yang disajikan dalam bentuk *pseudocode*.

BAB IV. IMPLEMENTASI

Bab ini membahas implementasi dari desain yang telah dibuat pada bab sebelumnya. Penjelasan berupa *code* yang digunakan untuk proses implementasi.

BAB V. U.II COBA DAN EVALUASI

Bab ini menjelaskan kemampuan perangkat lunak dengan melakukan pengujian kebenaran dan pengujian kinerja dari sistem yang telah dibuat.

BAB VI. PENUTUP

Bab ini merupakan bab terakhir yang menyampaikan kesimpulan dari hasil uji coba yang dilakukan dan saran untuk pengembangan perangkat lunak ke depannya.

(halaman ini sengaja dikosongkan)

BAB II DASAR TEORI

Bab ini berisi penjelasan teori-teori yang berkaitan dengan algoritma yang diajukan pada pengimplementasian perangkat lunak. Penjelasan ini bertujuan untuk memberikan gambaran secara umum terhadap sistem yang dibuat dan berguna sebagai penunjang dalam pengembangan.

2.1 Pengenalan Citra Digital

Citra digital terdiri dari sekumpulan piksel (elemen terkecil dari sebuah gambar). Setiap piksel merepresentasikan warna (atau tingkat keabuan untuk foto hitam putih) pada wilayah tunggal dalam sebuah gambar. Piksel dapat dikatakan pula sebagai titik kecil dari warna tertentu. Dengan mengukur warna dari sebuah citra dari sebagian besar wilayah gambar, dapat dibuat aproksimasi digital dari gambar dari duplikatnya yang mana dapat dibuat ulang. Sebuah citra digital merupakan susunan array persegi panjang dari piksel-piksel yang kadangkala disebut bitmap [1].

Sebuah gambar dapat didefinisikan sebagai fungsi dua dimensi, f(x,y), dimana x dan y adalah koodinat spasial, dan amplitudo dari f pada setiap pasang koordinat (x,y) yang disebut intesitas (intensity) atau tingkat keabuan ($gray\ level$) dari gambar pada poin tersebut. Ketika x, y, dan nilai amplitudo dari f semuanya memiliki batas, berjumlah diskrit, dapat dikatakan gambar tersebut adalah citra digital. Bidang dari pengolahan citra digital adalah pemroresan citra digital dengan menggunakan komputer digital [2].

2.1.1 Citra Biner

Sebuah citra biner (biasanya disebut juga citra BW atau gambar BW) terbuat dari piksel-piksel yang masing-masing menyimpan satu bit nilai yang berkorespondensi pada tingkat keabuan dari sebuah citra lokasi tertentu. Citra biner ini setiap pikselnya hanya

terdiri dari satu dari dua warna, biasanya hitam atau putih. Ketidakmampuan untuk merepresentasikan pertengahan dari keabuan adalah batas dari fungsinya ketika berhadapan dengan dunia citra fotografi [2].

2.1.2. Citra Grayscale

Citra *grayscale* adalah citra digital yang hanya berisi informasi kecerahan tanpa memiliki unsur warna. Nilai piksel pada citra *grayscale* memiliki kedalaman 8 bit sehingga nilai pikselnya berada pada rentang nilai 0 sampai 255. Semakin piksel mendekati nilai 255, maka warna yang tampil pada citra akan semakin cerah atau mendekati warna putih. Tetapi ketika nilai piksel semakin mendekati nilai 0, maka warna yang tampil pada citra akan semakin gelap atau mendekati warna hitam [1].

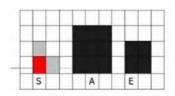
2.2 Pra-pengolahan Suatu Citra

Pra-pengolahan suatu citra merupakan salah satu langkah yang akan digunakan untuk merekonstruksi jalan pada citra map sapporo. Tujuan dari pra-pengolahan suatu citra adalah untuk mengisi ataupun memperjelas perbedaan bangunan dan jalan dan mempersiapkan citra untuk masuk ke proses ekstraksi jalan.

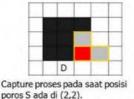
Pra-pengolahan suatu citra dilakukan sebelum proses rekonstruksi jalan. Noise yang terdapat pada citra dapat mempersulit pada langkah ekstraksi jalan sehingga tahapan pra-pengolahan suatu citra ini sangat penting. Pada Tugas Akhir ini dibahas sebuah algoritma yang menggabungkan beberapa proses dalam satu rangkaian tahapan pra-pengolahan suatu citra. Beberapa proses tersebut adalah erosi (*morphologi erode*), *close (morphology close*)

Pada subbab ini akan dijelaskan lebih lanjut mengenai objek yang digunakan, yaitu citra berderajat keabuan atau citra *grayscale* serta proses yang merupakan bagian dari pra-pengolahan suatu citra, yaitu melakukan *morphology erosi*, mengisi lubang pada citra dengan *morphology closing*.

2.2.1 Morphologi Erosi (*Erode*)


Proses erosi merupakan bagian dari tahapan pra-pengolahan suatu citra. Proses ini bertujuan untuk memperkecil ukuran citra. Proses ini sangat penting dilakukan agar pada hasil tahap rekonstruksi jalan pada citra memiliki target yang lebih jelas.

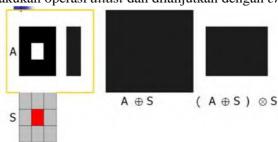
Pada Tugas Akhir ini akan dilakukan erosi untuk mengecilkan citra. Erosi adalah operasi morphologi yang akan mengurangi pixel pada batas antar objek dalam suatu citra digital. roses ini akan membuat ukuran sebuah citra menjadi lebih kecil. Apabila erosi dilakukan maka yang dikerjakan adalah memindahkan piksel pada batasan-batasan objek yang akan di erosi. Jumlah dari piksel yang ditambah atau dihilangkan bergantung pada ukuran dan bentuk dari struktur element yang digunakan untuk memproses image tersebut [3].


Cara kerja dari erosi in adalah sebagai berikut :

$$E(A,S) = A \otimes S \tag{2.1}$$

Untuk setiap titik pada *A*, letakkan titik poros *S* pada titik *A*. Jika ada bagian dari *S* yang berada di luar *A*, maka titik poros akan dihapus atau dijadikan latar.

Posisi poros ((x,y)∈A)	S _{xy}	Ko de
(0,0)	{(0,0),(1,0),(0,1)}	1
(0,1)	{(0,1),(1,1),(0,2)}	1
(0,2)	{(0,2),(1,2),(0,3)}	0
(2,2)	{(2,2),(2,3),(3,2)}	0



poros S ada di (2,2). Titik (2,2) akan dihapus karena ada bagian dari S yang berada di luar A

Gambar 2. 1 Contoh proses morphologi erosi

2.2.2 Morphologi Close

Proses *close* ini digunakan untuk menutup lubang lubang pada citra, menggabungkan objek objek yang berdekatan dan secara umum menghaluskan batas dari objek besar tanpa mengubah area objek secara signifikan. Proses *closing* ini merupakan kombinasi dimana suatu citra dilakukan operasi *dilasi* dan dilanjutkan dengan *erosi* [4].

Gambar 2. 2 Contoh proses morphologi close

2.2.3 Deteksi Tepi Canny

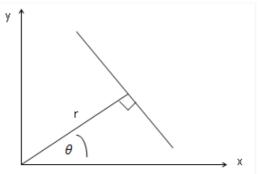
Deteksi tepi *canny* adalah teknik untuk mengekstrak informasi sturktural dari objek yang berbeda dan secara dramatis mengurangi jumlah data yang akan diproses. Deteksi tepi *canny* dapat mendeteksi tepian yang sebenarnya dengan tingkat error yang minimum dan optimal [5].

Ada beberapa kriteria pendeteksi tepian paling optimum yang dapat dipenuhi oleh algoritma Canny:

- Mendeteksi dengan baik
 - Kemampuan untuk meletakkan dan menandai semua tepi yang ada sesuai dengan pemilihan parameter-parameter konvolusi yang dilakukan. Sekaligus juga memberikan fleksibilitas yang sangat tinggi dalam hal menentukan tingkat deteksi ketebalan tepi sesuai yang diinginkan.
- Melokalisasi dengan baik Dengan *canny* di mungkinkan dihasilkan jarak yang minimum antara tepi yang di deteksi dengan tepi yang asli.
- Respon yang jelas Hanya ada satu respon untuk tiap tepi. Sehingga mudah dideteksi dan tidak menimbulkan kerancuan pada pengolahan citra selanjutnya.

2.3 Pembentukan Jalan

Proses penentuan titik jalan bertujuan untuk mendapatkan titik-titik jalan pada citra map. Proses ini sangat dibutuhkan untuk kebutuhan di proses selanjutnya, yaitu proses pembentukan dan deteksi jalan.


Pada Tugas Akhir ini proses pendeteksian dan pembentukan jalan menggunakan metode *transformasi hough*. Data yang dibutuhkan adalah citra masukan. Citra yang digunakan adalah citra map yang telah dilakukan pra pengolahan dengan *morphology erode* dan *close* yang telah dilakukan deteksi tepi canny.

Hough Transform adalah teknik transformasi citra yang dapat digunakan untuk mengisolasi atau dengan kata lain memperoleh fitur dari sebuah citra. Karena tujuan dari sebuah transformasi adalah mendapatkan suatu fitur yang lebih spesifik, Classical Hough Transform merupakan teknik yang paling umum digunakan untuk mendeteksi objek yang berbentuk kurva seperti garis, lingkaran, elips dan parabola. Keuntungan utama dari transformasi Hough adalah dapat mendeteksi sebuah tepian dengan celah pada batas fitur dan secara relatif tidak dipengaruhi oleh derau atau noise [6].

Pada Tugas Akhir ini transformasi hough yang diterapkan adalah menggunakan fungsi garis untuk pendeteksian dan penentuan titik jalan pada citra.

$$x\cos\theta + y\sin\theta = r \tag{2.4}$$

Dengan x dan y merupakan titik koordinat yang menyusun objek garis tersebut, sedangkan teta adalah sudut yang dibentuk antara objek garis dengan sumbu x, dan r merupakan jarak antara garis dengan titik pusat (0,0). Untuk lebih jelasnya dapat diilustrasikan dengan menggunakan gambar berikut.

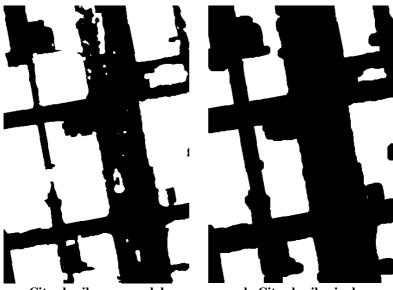
Gambar 2. 3 Ilustrasi fungsi garis hough

2.4 Membentuk Jalan

Pembentukan persegi dari koordinat dan proses deteksi garis menggunakan *transdormasi hough* merupakan bagian dari proses pembentukan jalan. Proses ini dilakukan agar mempermudah dalam membentuk jalan dikarenakan pada citra akan menentukan daerah yang merupakan jalan.

Sebelum dilakukannya curve fitting dengan masking *roipoly*, citra hasil pendeteksi dan pengenalan jalan dilakukan pengecekan dengan garis terdekat. Kemudian dilakukan pembentukan persegi sehingga bentuk jalan lebih jelas dengan menghubungkan garis. Setelah membentuk persegi kemudian dilakukanlah *masking* dengan menggunakan *roipoly*.

2.4.1 Curve Fitting


Curve fitting adalah proses membangun sebuah kurva, atau fungsi matematika, yang paling cocok untuk serangkaian titik data. Curve fitting dapat melibatkan interpolasi, dimana fit yang tepat untuk data yang diperlukan, atau smoothing, yang mana fungsi "smooth" dibangun sesuai dengan data. Topik yang berkaitan dengan curve fitting adalah analisis regresi, yang lebih berfokus kepada pertanyaan inferensi statistic seperti banyanya ketidakpastian dalam kurva yang cocok untuk data yang diamati dengan kesalahan acak [7].

Curve fitting merupakan proses data-smoothin, yakni proses pendekatan terhadap kecenderungan data-data dalam bentuk persamaan model matematika. Proses ini juga dapat digunakan untuk keperluan interpolasi data. Misalkan tersedia data-data y pada berbagai x (sejumlah n pasang), maka dicari suatu persamaan y = f(x) yang memberikan hubungan y dengan x yang mendekati data. Proses ini disebut curve fitting.

2.4.2 Roipoly

Roipoly adalah adalah fungsi MATLAB untuk memilih daerah poligonal kepentingan dalam sebuah gambar. Roipoly mengembalikan citra biner yang dapat anda gunakan sebagai mask untuk mask yang sudah difilter [8].

Proses *roipoly* merupakan bagian dari proses pembentukan jalan. Pada Tugas Akhir ini menggunakan *roipoly*. Pada proses sebelumnya telah didapatkan koordinat titik-titik yang menentukan letak jalan pada citra. Dengan menggunakan koordinat tersebut dilakukanlah *roipoly* sehingga mendapatkan dan membentuk jalan yang lebih jelas.

a. Citra hasil pra pengolahan

b. Citra hasil roipoly

Gambar 2. 4 Citra preprocessing dan hasil proses roipoly

BAB III DESAIN DAN PERANCANGAN

Pada bab ini akan dijelaskan desain dan perancangan rekonstruksi jalan pada map sapporo. Desain perancangan akan dibagi menjadi tiga proses utama yaitu proses proses untuk melakukan pra-pengolahan citra, proses pendeteksian dan pengenalan jalan, dan proses pembentukan jalan. Selain itu juga akan dijelaskan perancangan sistem rekonstruksi jalan dengan diagram alir. Untuk masing-masing proses utama akan dibagi menjadi proses-proses kecil yang terlibat di dalamnya. Baik untuk proses utama maupun proses-proses kecil yang terlibat di dalamnya akan disajikan dalam bentuk *pseudocode* untuk mempermudah memahami jalannya program.

3.1 Desain Metode Secara Umum

Pada tugas akhir ini akan melakukan rekonstruksi jalan pada citra map Sapporo agar terlihat lebih jelas dan lebih mudah dibaca. Metode yang digunakan dalam merekonstruksi jalan ini adalah metode *curve fitting*.

Metode *curve fitting* digunakan untuk memperhalus jalan pada citra, yang sebelumnya telah dilakukan preprosessing. Pada awalnya dipilih sebuah gambar map. Yang kemudian gambar tersebut akan dilakukan morphologi untuk mempermudah dalam ekstraksi jalan. Dalam preprosessing ini dilakukan erosi dan closing. Erosi dilakukan agar dapat memperkecil objek pada citra yang mana bentuk bangunan pada citra tidak jelas dan tidak dapat menentukan yang mana berupa jalan. Setelah itu dilakukanlah closing yang berguna untuk mengisi lubang-lubang yang ada pada citra sehingga citra menjadi jelas dan semakin halus.

3.2 Arsitektur Umum Sistem

Mempertimbangkan terbatasnya waktu dalam pengerjaan tugas akhir, implementasi perangkat lunak harus dibuat secara cepat dan efisien. Dengan fleksibilitas dan kemudahan dalam penggunaan, MATLAB R2008b merupakan solusi sebagai alat dalam implementasi. Selain itu juga MATLAB R2008b memiliki kelebihan untuk membuat antarmuka pengguna yang mudah dipahami namun tetap sesuai dengan kebutuhan. Gambar yang akan dimasukkan ke dalam aplikasi berasal dari dalam komputer yang sama yang menjalankan aplikasi.

3.3 Perancangan Data

Perancangan data merupakan bagian yang penting dalam proses pengoperasian perangkat lunak. Data yang benar membuat perangkat lunak dapat beroperasi dengan benar. Data yang dibutuhkan dalam proses pengoperasian perangkat lunak adalah data masukan (*input*), serta data keluaran (*output*) yang memberikan hasil dari operasi perangkat lunak bagi pengguna.

3.3.1 Data Masukan

Data masukan adalah data yang akan diolah oleh sistem untuk mendapatkan hasil keluaran yang sudah ditentukan sistem. Pada aplikasi ini, data masukan berupa gambar map sapporo dengan format .png serta ukuran gambar baru yang diinginkan pengguna. Data masukan berasal dari komputer yang menjalankan aplikasi dan dipilih oleh pengguna. Untuk ukuran gambar baru ditentukan oleh user sesuai dengan keinginan user.

3.3.2 Data Keluaran

Data keluaran adalah data yang dihasilkan dari proses yang berjalan pada aplikasi. Pada aplikasi ini, data yang dihasilkan adalah sebuah gambar. Gambar tersebut merupakan gambar yang berasal dari gambar masukan dengan hasil rekonstruksi.

3.4 Diagram Alir Sistem Utama

Pada proses utama dalam aplikasi ini membutuhkan masukan berupa gambar map sapporo diinginkan oleh pengguna. Gambar tersebut kemudian akan direkonstruksi dengan melakukan morphology erode dan morphology closing kemudian diolah dengan metode transformasi hough untuk mengenali dan membentuk gambar dan kemudian dilanjutkan dengan curve fitting. Hasil dari proses ini adalah gambar dengan ukuran yang baru. Gambar 3.1 memperlihatkan diagram alir dari sistem aplikasi.

Gambar 3. 1 Diagram Alir Utama

3.5 Perancangan Pra-Pengolahan Citra

Salah satu proses utama yang ada pada aplikasi ini adalah proses pra-pengolahan citra. Pada proses ini terdapat satu program utama yang bertujuan untuk memanggil secara keseluruhan program-program lain yang lebih kecil yang berisi proses-proses yang lebih kecil untuk dijalankan.

Pada subbab-subbab berikutnya akan dijelaskan *pseudocode* masing-masing program. Diagram alir perancangan pra-pengolahan citra dapat dilihat pada Gambar 3.2. Tabel 3.1 berisi variabel-variabel yang akan digunakan sedangkan pada Tabel 3.2 dan Tabel 3.3 berisi fungsi-fungsi yang akan dipakai pada *pseudocode* program.

Gambar 3. 2 Diagram Alur Pra-Pengolahan

Tabel 3. 1 Daftar Variabel yang Digunakan Pada *Pseudocode* Perancangan Pra-pengolahan Citra

No.	Nama Variabel	Tipe Data	Penjelasan
1.	image	uint8	Gambar masukan berupa citra map Sapporo
2.	BW	logical	Citra hasil konversi menjadi citra binary
3.	Se	strel	Element penataan berbentuk disk dengan jumlah element penataan adalah 10
4.	erosi	logical	Citra hasil proses morphology erode
5.	morphology	logical	Citra hasil proses morphology close
6.	canny	logical	Citra hasil proses <i>edge</i> detection menggunakan canny.

Tabel 3. 2 Daftar Fungsi yang Digunakan Pada *Pseudocode* Perancangan Pra-pengolahan Citra (Bagian Pertama)

No.	Nama Fungsi	Penjelasan
1.	imread	Fungsi untuk mendapatkan gambar.
2.	im2bw	Fungsi untuk melakukan proses binerisasi.
3.	imerode	Mengubah citra menjadi citra yang telah erosi
4.	imclose	Mengubah citra menjadi citra yang telah <i>closing</i>
5.	erode	Fungsi untuk melakukan proses erosi.
6.	close	Fungsi untuk melakukan proses <i>closing</i> .

Tabel 3. 3 Daftar Fungsi yang Digunakan Pada *Pseudocode* Perancangan Pra-pengolahan Citra (Bagian Kedua)

No.	Nama Fungsi	Penjelasan	
7.	strel	Objek yang merepresentasikan sebuah struktur elemen <i>morphological</i> .	
8.	edge	Mencari tepi dalam intensitas gambar.	
9.	canny	Fungsi untuk melakukan proses <i>edge</i> detection canny.	

3.5.1 Morphology Erode dan Closing

Program *erode* merupakan program yang melakukan morphology *erode* pada citra masukan. Sebuah citra masukan akan dilakukan proses *erode* untuk mengecilkan objek sehingga terlihat perbedaan pada citra. Setelah didapatkan citra keluaran dari proses *erode*, kemudian dilakukanlah proses *closing* yang merupakan *morphology close* agar menutup lubang-lubang kecil pada citra dan secara tidak langsung memperhalus citra. *Pseudocode* proses *erode* ditunjukkan pada Gambar 3.3 dan *closing* pada Gambar 3.4.

Masukan	Citra setelah dikonversi	
	menjadi citra binari	
	(variabel BW)	
Keluaran	Citra hasil proses erosi	
	(variabel BW_erode)	
1. se = strel(disk, radius);		
2. erosi = imerode(BW,se);		

Gambar 3. 3 Pseudocode morphology erode

Masukan	Citra hasil proses erosi (variabel BW_erode)
Keluaran	Citra hasil proses closing (variabel BW_close)
<pre>1. se = strel(disk, radius); 2. morphology = imclose(BW erode, se);</pre>	

Gambar 3. 4 Pseudocode morphology erode

3.5.2 Deteksi Tepi Canny

Setelah mendapatkan citra hasil proses *morphology erode* dan *close*, maka akan dilakukan proses *edge detection canny*. Citra masukan berupa citra biner dari hasil *morphology erode* dan *close* harus diubah ke *grayscale* terlebih dahulu sebelum masuk ke proses *smoothening*. Selanjutnya akan dilakukan proses deteksi tepi *canny*. Pada Gambar 3.5 menunjukkan *pseudocode* proses memperhalus suatu citra yang menghasilkan citra keluaran.

Masukan	Citra hasil proses morphology	
	<pre>closing (variabel BW_close)</pre>	
Keluaran	Citra hasil proses deteksi tepi	
	<pre>canny (variabel BW_canny)</pre>	
<pre>1. se = strel(disk, radius);</pre>		
<pre>2. canny = edge(BW_close, metode canny);</pre>		

Gambar 3. 5 Pseudocode memperhalus citra

3.6 Perancangan Pendeteksian dan Pengenalan Jalan

Pada subbab ini akan menjelaskan perancangan pengaturan untuk deteksi titik-titik pengenalan jalan. Pendeteksian ini dilakukan sebelum citra masukan masuk ke proses pembentukan jalan. Data masukan yang digunakan adalah citra hasil dari proses deteksi tepi *canny*. Penjelasan proses deteksi titik dan pengenalan jalan akan dijelaskan dengan *pseudocode* unruk memudahkan memahami jalannya program. Tabel 3.4 dan Tabel 3.5 berisi variabel-variabel yang akan digunakan pada proses pendeteksi titik dan pengenalan jalan. Tabel 3.6 berisi fungsifungsi yang dipakai pada *pseudocode* proses pendeteksi titik dan pengenalan jalan.

Langkah pertama yang dilakukan adalah menginisialisasi *Standard Hough Transform* (SHT) dari citra masukan. Kemudian menghitung SHT menggunakan fungsi *hough* yang dirancang untuk mendeteksi garis. Fungsi menggunakan representasi parametrik garis : rho = x * cos (theta) + y * sin (theta).

Fungsi mengembalikan rho, jarak dari asal ke garis sepanjang vektor tegak lurus terhadap garis, dan theta, sudut dalam derajat antara sumbu x dan vektor ini. Fungsi ini juga mengembalikan Standard Hough Transform, H, yang merupakan matriks ruang parameter yang baris dan kolom sesuai dengan rho dan theta nilai masing-masing.

Setelah mendapatkan SHT maka akan dilakukan pencarian puncak (peaks) pada matriks H transformasi hough dengan menggunakan fungsi houghpeaks. Proses pertama yang dilakukan adalah menginisialisasi puncak kemudian mencari nilai puncak dan jumlah puncak yang akan dicari.

Dengan nilai puncak yang telah didapatkan maka dilanjutkan dengan menemukan titik yang menentukan jalan pada citra dengan menggunakan fungsi *houghlines*. Sebelum mencari titik, dilakukan inisialisai line untuk menyimpan titik hasil *houghlines*. Kemudian mengekstrak segmen garis dalam citra hasil deteksi tepi.

Setelah mendapatkan nilai titik maka akan dilakukan plotting terhadap data masukan agar dapat menampilkan titik dan garis pada proses selanjutnya. Diagram alir perancangan prapengolahan citra dapat dilihat pada Gambar 3.6. Sedangkan untuk *pseudocode* perancangan pendeteksi dan pengenalan jalan ditunjukkan pada Gambar 3.7.

Gambar 3. 6 Diagram Alir Pendeteksian dan Pengenalan Jalan

Tabel 3. 4 Daftar Variabel yang Digunakan Pada *Pseudocode* Penentuan Titik dan Pengenalan Jalan (Bagian Pertama)

No	Penentuan 11tik dan Nama Variabel	Tipe Data	Penjelasan
110	Ivallia variabei	Tipe Data	Hough transform
1	Н	double	matriks
			(theta) sudut antara x-
2.	T	double	axis dan rho vektor
			(rho) jarak dari asal ke
			garis sepanjang vektor
3.	R	double	tegak lurus terhadap
			garis
			Kolom dan baris
			menyimpan koordinat
4.	P	double	dari puncak yang
			ditemukan
			Garis yang ditemukan,
			dikembalikan sebagai
	lines	struct	struktur array yang
5.			panjangnya sama
			dengan jumlah
			gabungan segmen garis
			yang ditemukan
	-	1 11	Jarak maksimal atau
6.	max_len	double	paling panjang dari len
			Jarak antara titik yang
7.	Len	double	ditemukan pada hasil
			deteksi garis
8.	b	double	Nilai variansi Fuzzy
٥.	k	double	Geometrical Features.
0		double	Titik koordinat x dan y
9.	ху	double	hasil dari deteksi garis

Tabel 3. 5 Daftar Variabel yang Digunakan Pada *Pseudocode* Penentuan Titik dan Pengenalan Jalan (Bagian Kedua)

No	Nama Variabel	Tipe Data	Penjelasan
10.	xy_long	double	Titik koordinat dengan jarak maksimum hasil dari deteksi garis
11.	X	double	Nilai puncak pada titik x
12.	Y	double	Nilai puncak pada titik y

Tabel 3. 6 Daftar Fungsi yang Digunakan Pada *Pseudocode* Perancangan Pengenalan Target

No.	Nama Fungsi	Penjelasan Penjelasan
1.	hough	Fungsi mendapatkan <i>transformasi</i> hough
2.	houghpeaks	Fungsi mendapatkan puncak pada transformasi hough.
3.	houghlines	Fungsi untuk mendapatkan pendeteksi garis yang telah didapatkan dari penentuan puncak
4.	axis	Fungsi untuk menetapkan batas titik dan tampilannya
5.	hold	Fungsi untuk mempertahankan plot pada saat menambahkan plot baru
6.	norm	Fungsi menormalisasikan vektor dan matriks
7.	plot	Fungsi untuk membuat 2D plot

Masukan			a has Label 1			si	tepi	canny
Keluaran			dinat anjang		tik		ngan	jarak
1.	Tnici		si SHT					
Ι .			untuk				_	
			matrik		-		_	
2.							nasukan	
•	_	_	apatka			a n	iabanan	
3.			dalam			lor	rman	
4.			lisasi			,101	тар	
5.	_		punca	_		iinc	rsi	
	_	npeaks	-	0.0			,	
6.	Hough	-						
7.	_	eaks =	5					
8.	-		= 0,5*	max(H(:))			
9.		peaks (,	. , ,			
10.	y= R(peaks(:,1))							
11.	_	plot x,y pada colormap						
12.	_	Inisialisasi lines						
13.	Mengh	nitung	lines	men	ggunak	an	fungsi	
	hough	nlines						
14. Fillgap		gap =	20					
15.	MinLe	ength	= 40					
16.	Max_]	len =	0					
17.	For	$\zeta = 1$:	lenght	(lin	es)			
18.	xy =	[line	s(k).p	oint]			
19.	plot(xy) pada gambar BW close							
20.		itung endpoint dari line terpanjang						
21.						ıe (k	:).poin	t1
			line(k		int2			
22.			max_le	n)				
23.	_	len =						
24.	xy_lo	ong =	ху					

Gambar 3. 7 Pseudocode proses penentuan titik dan pengenalan jalan

3.7 Perancangan Pembentukan Jalan

subbab ini akan menjelaskan perancangan Pada pembentukan jalan dengan membentuk sebuah persegi setelah ditemukan titik-titik dalam pengenalan jalan.. Data masukan yang digunakan adalah titik yang menghasilkan jarak terpanjang pada proses pengenalan jalan yang menggunakan transformasi hough. Penjelasan proses deteksi titik dan pengenalan jalan akan dijelaskan dengan pseudocode unruk memudahkan memahami jalannya program. Tabel 3.7 dan 3.8 berisi variabel-variabel yang akan digunakan pada proses pembentukan jalan. Tabel 3.9 berisi fungsi-fungsi yang dipakai pada pseudocode proses pembentukan jalan. Untuk diagram alir pembentukan jalan ditunjukkan pada Gambar 3.8. Sedangkan untuk *pseudocode* perancangan pembentukan jalan ditunjukkan pada Gambar 3.9.

Gambar 3. 8 Diagram Alir Pembentukan Jalan

Tabel 3. 7 Daftar Variabel yang Digunakan Pada *Pseudocode* Pembentukan Jalan (Bagian Pertama)

No	Nama Variabel	Tipe Data	Penjelasan
1	20110	double	Baris menyimpan
1	rows	double	ukuran x citra masukan
2.	columns	double	Kolom menyimpan
۷.	COTUIIIIS	double	ukuran y citra masukan
			Nilai x dari koordinat
3.	x1	double	pertama garis
			maksimum deteksi jalan
			Nilai x dari koordinat
4.	x2	double	kedua garis maksimum
			deteksi jalan
			Koordinat x yang
5.	x3	double	dilewati untuk
٥.	A.J	double	pengecekan garis
			terdekat
6.	x3	double	Jarak maksimal atau
		404010	paling panjang dari len
_	_		Nilai x untuk garis
7.	x4	double	terdekat dengan x1
			deteksi garis
	_		Nilai x untuk garis
8.	x5	double	terdekat dengan x2
			deteksi garis
	1	1 11	Nilai y dari koordinat
9.	у1	double	pertama garis
			maksimum deteksi jalan
1.0			Nilai y dari koordinat
10.	у2	double	pertama garis
			maksimum deteksi jalan

Tabel 3. 8 Daftar Variabel yang Digunakan Pada *Pseudocode* Pembentukan Jalan (Bagian Kedua)

No	Nama Variabel	Tipe Data	Penjelasan
			Koordinat y yang
11.	у3	double	dilewati untuk
11.	10	dodoic	pengecekan garis
			terdekat
			Nilai y untuk garis
12.	у4	double	terdekat dengan x1
			deteksi garis
			Nilai y untuk garis
13.	у5	double	terdekat dengan x2
			deteksi garis
			Perulangan untuk
14.	I	double	pengecekan garis
			terdekat
			ukuran kemiringan dari
15.	slope	double	koordinat garis
			terpanjang.
16.	a	double	Menyimpan nilai x4 dan
10.	10. a double	double	y4
17.	b	double	Menyimpan nilai x5 dan
1/.	D	uouoie	y5
			Menyimpan koordinat
18.	line_result	double	hasil pengecekan yaitu a
			dan b

Tabel 3. 9 Daftar Fungsi yang Digunakan Pada *Pseudocode* Perancangan Pembentukan Jalan

No.	Nama Fungsi	Penjelasan
1.	size	Fungsi mendapatkan dimensi array
2.	axis	Fungsi untuk menetapkan batas titik dan tampilannya
3.	hold	Fungsi untuk mempertahankan plot pada saat menambahkan plot baru
4.	norm	Fungsi menormalisasikan vektor dan matriks
5.	plot	Fungsi untuk membuat 2D plot

```
Masukan
           Citra hasil
                           pra-pengolahan
                                             dan
            koorninat
                           hasil
                                        deteksi
           jalan(variabel morph dan line)
Keluaran
           Koordinat
                           titik
                                       (variabel
           line result)
   1. Inisialisasi ukuran citra pra pengolahan
   2. [rows, columns] = mendapatkan ukuran
      citra (morph);
   3. Inisialisasi x1 = line(1,1); y1 =
      line (1, 2);
   4. x2 = line(2,1); y2 = line(2,2);
   5. x3 = 0;
   6. y3 = y1;
   7. for i = x1:kolom
   8. jika y1 pada citra morph dan i == 1
   9. break
   10.
            end
   11.
            tampilkan i;
            x3 = i;
   12.
            end
   14. inisialisasi slope = (y2-y1)/(x2-x1);
   15. inisialisasi nilai x4;
   16. inisialisasi nilai x5;
   17. mendapatkan y4 = slope * (x4 - x3) +
       y3;
```

```
18. mendapatkany5 = slope * (x5 - x3) + y3;
19. plot([x1,x2],[y1,y2];
20. plot([x4,x5],[y4,y5]);
21. plot([x3,x4],[y3,y4]);
22. a = [x4,y4];
23. b = [x5,y5];
24. koordinat final = [a,b];
```

Gambar 3. 9 Pseudocode proses pembentukan jalan

Setelah didapatkan koordinat dalam untuk pembentukan jalan. Selanjutnya dilakukan *masking* dengan menggunakan *roipoly* dari koordinat yang didapatkan. Penjelasan proses *masking* akan dijelaskan dengan *pseudocode* unruk memudahkan memahami jalannya program. Tabel 3.10 dan Tabel 3.11 berisi variabel-variabel yang akan digunakan pada proses pembentukan jalan. Tabel 3.12 berisi fungsi-fungsi yang dipakai pada *pseudocode* proses pembentukan jalan. Sedangkan untuk *pseudocode* perancangan pembentukan jalan ditunjukkan pada Gambar 3.9.

Tabel 3. 10 Daftar Variabel yang Digunakan Pada *Pseudocode*Masking jalan (Bagian Pertama)

No	Nama Variabel	Tipe Data	Penjelasan
			Variabel menyimpan
1.	lineOne	double	hasil reshape koordinat
			line_result
2.	lineOnevecX	double	Nilai x dari line_result
3.	lineOnevecY	double	Nilai y dari line_result
4.	lineDetectvecX	double	Nilai x dari line
5.	lineDetectvecY	double	Nilai x dari line
			Koordinat x dari
6.	maskOne	double	lineOnevecX dan
			lineDetectvecX

Tabel 3. 11 Daftar Variabel yang Digunakan Pada *Pseudocode* Masking jalan (Bagian Kedua)

No	Nama Variabel	Tipe Data	Penjelasan
7.	maskTwo	double	Koordinat y dari lineOnevecX dan lineDetectvecX
8.	fixImage	logical	Citra hasil masking
9.	finalImage	logical	citra hasil burn masking ke citra hasil pra pengolahan

Tabel 3. 12 Daftar Fungsi yang Digunakan Pada *Pseudocode*Masking Jalan

No.	Nama Fungsi	Penjelasan	
1.	Reshape	Merubah ukuran matrix	
2.	roipoly	Fungsi masking berdasarkan koordinat	

Masukan		Citra hasil pra-pengolahan (variabel			
		morphing), koordinat hasil deteksi			
		jalan (variabel line), koordinat			
		pembentukan jalan (variabel			
		line result)			
Kelu	aran	Citra hasil masking (variabel			
		finalImage)			
1.	lineC	ne =Merubah ukuran matrik dari			
	line_	result			
2.	lineC	nevecX = mendapatkan nilai x dari			
	lineC	ne			
3.	lineC	nevecY = mendapatkan nilai y dari			
	lineC	ne			
4.	lineD	DetecvecX = mendapatkan nilai x dari			
	line				
5.	lineD	etecvecY = mendapatkan nilai y dari			
	line				
6.	maskC	ne = menggabungkan nilai x sebagai			
	koord	linat masking			
7.					
	koord	linat masking			
8. fixIr		age = roipoly citra morph dengan			
	maskC	ne dan maskTwo			
9.	final	Image = burn masking ke citra hasil			
	pra p	engolahan			

Gambar 3. 10 Pseudocode proses masking jalan

(Halaman ini sengaja dikosongkan)

BAB IV IMPLEMENTASI

Pada bab ini akan dibahas mengenai implementasi yang dilakukan berdasarkan rancangan yang telah dijabarkan pada bab sebelumnya. Sebelum penjelasan implementasi akan ditunjukkan terlebih dahulu lingkungan untuk melakukan implementasi.

4.1 Lingkungan Pembangunan

Dalam membangun aplikasi ini digunakan beberapa perangkat pendukung baik perangkat keras maupun perangkat lunak. Lingkungan pembangunan dijelaskan sebagai berikut.

4.1.1 Lingkungan Pembangunan Perangkat Keras

Perangkat keras yang dipakai dalam pembuatan aplikasi ini memiliki spesifikasi sebagai berikut.

- 1. Prosesor Intel(R) CoreTM i3-3120M CPU @ 2,50GHz.
- 2. Memori (RAM) 4,00 GB.

4.1.2 Lingkungan Pembangunan Perangkat Lunak

Spesifikasi perangkat lunak yang digunakan untuk membuat aplikasi ini yakni sebagai berikut.

- 1. MATLAB R2008b Version 7.7.0.471.
- 2. Windows 10 Ultimate 64 bit sebagai sistem operasi.

4.2 Implementasi Proses Perangkat Lunak

Pada subbab ini akan dijelaskan implementasi setiap subbab yang terdapat pada bab sebelumnya yaitu bab desain dan perancangan. Pada bagian implementasi ini juga akan dibagi menjadi 3 bagian seperti pada Gambar 3.1, yaitu pra-pengolahan citra, pendeteksian titik dan pengenalan jalan dan pembentukan

jalan. Ketiga bagian tersebut akan dijelaskan pada subbab-subbab tersendiri.

4.2.1 Implementasi Pra-pengolahan Suatu Citra

Pada bagian ini akan dijelaskan implementasi dari proses pra-pengolahan suatu citra. Pada proses pra-pengolahan suatu citra ini memiliki beberapa tahap yaitu mengurangi *noise* (*denoising*), memperhalus suatu citra (*smoothening*), dan pendeteksian tepi.

4.2.1.1 Morphologi *Erosi (Erode)*

Citra masukan akan dilakukan proses mengurangi dan memperkecil citra menggunakan proses *Erosi*. Proses ini sangat penting dilakukan agar pada hasil tahap rekonstruksi jalan pada citra memiliki target yang lebih jelas.

Pada proses ini citra akan dilakukan proses *erosi*. Setelah menginisialisasi citra dan melakukan konversi citra menjadi citra biner citra tersebut dilakukan proses *erosi* untuk mendapatkan citra yang akan digunakan untuk proses selanjutnya. Implementasi pada MATLAB dilakukan memanggil fungsi erode untuk *erosi*. Implementasi dalam MATLAB ditunjukkan pada Kode Sumber 4.1

1	<pre>function erosi = erode(BW)</pre>
2	<pre>se = strel('disk',7);</pre>
3	erosi = imerode(BW,se);
4	End

Kode Sumber 4. 1 Implementasi Morphology Erode

4.2.1.2 Morphology Close (Closing)

Citra yang sudah dilakukan proses memperkecil dan mengurangi citra akan menjadi masukan untuk proses Proses close ini digunakan untuk menutup lubang lubang pada citra, menggabungkan objek objek yang berdekatan dan secara umum menghaluskan batas dari objek besar tanpa mengubah area objek secara signifikan. Proses closing ini merupakan kombinasi dimana suatu citra dilakukan operasi *dilasi* dan dilanjutkan dengan *erosi*.

Hasil proses *close* ini akan digunakan sebagai masukan pada proses selanjutnya. Implementasi proses pada bagian ini dalam MATLAB menggunakan fungsi close untuk melakukan proses *morphology close* dan proses ini ditunjukkan pada Kode Sumber 4.2.

1	<pre>function closing = close(BW_erode)</pre>		
2	se = strel('disk',7);		
3	<pre>closing =imclose(BW erode,se);</pre>		
4	End		

Kode Sumber 4. 2 Implementasi Morphology Close

4.2.1.3 Pendeteksian Tepi

Pada bagian ini akan dilakukan proses pendeteksian tepi. Citra masukan yang digunakan adalah hasil dari proses memperhalus suatu citra. Proses pendeteksian tepi ini menggunakan metode *canny*.

Citra masukan dari proses ini adalah citra hasil dari proses *morphology close*. Implementasi dari proses deteksi tepi pada citra ditunjukkan pada Kode Sumber 4.3. Proses ini menggunakan fungsi dari MATLAB yaitu *canny* untuk pendeteksian tepi citra.

1	<pre>function BW_canny = canny(BW_close)</pre>
2	<pre>BW_canny = edge(BW_close,'canny');</pre>
3	end

Kode Sumber 4. 3 Implementasi Konversi Matriks Ke Citra *Grayscale*

4.2.2 Implementasi Pendeteksian dan Pengenalan Jalan

Pada bagian ini akan dijelaskan implementasi pendeteksian dan pengenalan jalan sebelum masuk ke proses pembentukan jalan pada citra. Pada subbab ini akan fokus menjelaskan dalam implementasi pengenalan garis untuk mendapatkan nilai titik-titik jalan yang akan digunakan dalam pembentukan jalan. Untuk pengenalan jalan pada citra ini menggunakan *transformasi hough*.

Citra masukan yang digunakan pada proses ini adalah citra hasil proses deteksi tepi *canny*. Proses utama pada pendeteksian jalan ini adalah pada penentuan puncak dari *transformasi hough* yang mana hasil dari proses itu dapat menentukan jalan pada citra.

Implementasi dari proses pendeteksian jalan dan penentuan titik ini menggunakan fungsi *linedetection* pada MATLAB yang berfungsi dalam melakukan menentukan garis dan titik. Langkah pertama adalah inisialisasi nilai variansi dari *Hough Transform Matriks*, *rho*, dan *teta* dengan menggunakan fungsi *hough*. Ketika telah didapatkan nilai dari masing-masing variabel. Selanjutnya menampilkan plotting dari *hough*. Implementasi ini ditunjukkan pada Kode Sumber 4.4

1	[H,T,R] = hough(BW_canny);
2	<pre>imshow(H,[],'XData',T,'YData',R,</pre>
3	'InitialMagnification','fit');
4	<pre>xlabel('\theta'), ylabel('\rho');</pre>
5	axis on, axis normal, hold on;
6	<pre>colormap('hot');</pre>

Kode Sumber 4. 4 Implementasi Transformasi Hough

Implementasi pencarian puncak dari transformasi hough fungsi houghpeaks pada MATLAB. Langkah pertama adalah inisialisasi nilai variansi dari puncak, trenshold, dan banyak

puncak pada di proses sebelumnya. Ketika nilai puncak telah didapatkan, selanjutkan menampilkan plotting dari penentuan puncak. Implementasi ini ditunjukkan pada Kode Sumber 4.5

1	P =
	houghpeaks(H,5,'threshold',0.5*max(H(:)));
2	x = T(P(:,2)); y = R(P(:,1));
3	<pre>plot(x,y,'s','color','white');</pre>

Kode Sumber 4. 5 Implementasi Menentukan Puncak Transformasi Hough

Implementasi pengenalan dan titik jalan adalah fungsi houghlines pada MATLAB. Langkah pertama adalah inisialisasi variansi dari garis, panjang garis antara titik, dan panjang maksimum garis antara titik. Ketika nilai puncak telah didapatkan, selanjutkan menampilkan plotting dari titik dan garis pengenalan jalan. Implementasi ini ditunjukkan pada Kode Sumber 4.6

1	<pre>lines=houghlines(BW_canny,T,R,P,'FillGap',20</pre>
	,'MinLength',20);
2	<pre>figure, imshow(BW_close);</pre>
3	axis on, axis normal, hold on
4	$max_len = 0;$
5	<pre>for k = 1:length(lines)</pre>
6	<pre>xy = [lines(k).point1; lines(k).point2];</pre>
7	<pre>plot(xy(:,1),xy(:,2),'LineWidth',3,'Color','</pre>
,	blue')
8	plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Colo
O	r','yellow');
9	plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Colo
J	r','red');
10	<pre>len = norm(lines(k).point1-lines(k).point2);</pre>
11	<pre>if (len > max_len)</pre>
12	<pre>max_len = len;</pre>
13	xy_long = xy;
14	end

15 end

Kode Sumber 4. 6 Implementasi Pengenalan Garis dan Titik

4.2.3 Implementasi Pembentukan Jalan

Pada bagian ini akan dijelaskan implementasi pembentukan pada citra map sapporo. Setelah mendapatkan hasil dari pengenalan jalan. Didapatkanlah garis dan titik dari citra. Selanjutnya titik dan garis ini akan diproses agar dapat membentuk sebuah persegi untuk menentukan posisi jalan dengan membentuk sebuah persegi.

Pada proses ini garis yang telah didapatkan akan melakukan pengecekan terhadap citra, menentukan posisi deteksi garis terdekat ataupun yang bersebelahan dengan garis. Implementasi ini ditunjukkan pada Kode Sumber 4.7

1	<pre>function line_result=accrossLineDetection(morphing,Li neConstruct)</pre>		
2	<pre>[rows, columns] = size(morphing);</pre>		
3	<pre>figure, imshow (morphing);</pre>		
4	axis on, axis normal, hold on		
5	<pre>x1=LineConstruct(1,1); y1=LineConstruct(1,2);</pre>		
6	<pre>x2=LineConstruct(2,1); y2=LineConstruct(2,2);</pre>		
7	x3 = 0;		
8	y3 = y1;		
9	<pre>for i = x1+10:columns</pre>		
10	<pre>if (morphing (y1, i) ==1)</pre>		
11	break		
12	end		
13	disp(i);		
14	x3 = i;		
15	end		
16	slope = (y2 - y1) / (x2 - x1);		

4.0	4.0	
17	x4=0;	
18	x5=400;	
19	y4 = slope * (x4 - x3) + y3;	
20	y5 = slope * (x5 - x3) + y3;	
21		
22	<pre>plot([x1,x2],[y1,y2],'LineWidth', 3,'Color','blue');</pre>	
23	<pre>plot([x4,x5],[y4,y5],'LineWidth', 3,'Color','blue');</pre>	
24	<pre>plot([x3,x4],[y3,y4],'LineWidth', 3,'Color','blue');</pre>	
25		
26	a =[x4,y4];	
27	b = [x5, y5];	
28	line_result =[a,b];	
29	end	

Kode Sumber 4. 7 Implementasi Pengecekan Garis terdekat

Setelah mendapatkan koordinat titik dan pembentukan persegi maka akan dilakukan proses masking untuk memperjelas letak jalanan pada citra. Metode masking yang digunakan adalah *roipoly*. Tahap yang dilakukan adalah koordinat titik dari pembentukan roipoly. Implementasi proses *Roipoly* menggunakan fungsi roipoly ditunjukkan pada Kode Sumber 4.8.

1	<pre>function finalImage = masking(LineDetect, LineConstruct, morphing)</pre>	
2	lineOne= reshape(LineConstruct,[2,2]);	
3	<pre>lineOnevecX = [lineOne(1,1), lineOne(1,2)];</pre>	
4	<pre>lineOnevecY = [lineOne(2,1), lineOne(2,2)];</pre>	
5	LineDetectvecX=	
J	[LineDetect(1,1),LineDetect(2,1)];	
6	LineDetectvecY=	
O	[LineDetect(1,2),LineDetect(2,2)];	
7	<pre>maskOne=[lineOnevecX,LineDetectvecX];</pre>	
8	<pre>maskTwo=[lineOnevecY,LineDetectvecY];</pre>	
9	%masking	

10	fixImage	=
	<pre>roipoly(morphing,maskOne,maskTwo);</pre>	
11	<pre>finalImage = morphing;</pre>	
12	<pre>finalImage(fixImage) = 0;</pre>	
	End	

Kode Sumber 4. 8 Implementasi Pembentukan Jalan

BAB V UJI COBA DAN EVALUASI

Pada bab ini akan dijelaskan uji coba yang telah dilakukan pada aplikasi yang telah dikerjakan serta analisa dari uji coba yang telah dilakukan. Pembahasan pengujian meliputi lingkungan uji coba, skenario uji coba yang meliputi uji kebenaran uji kinerja serta analisa setiap pengujian.

5.1 Lingkungan Uji Coba

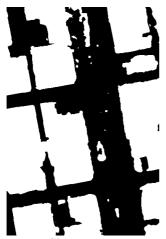
Lingkungan uji coba menjelaskan lingkungan yang digunakan untuk menguji implementasi pembuatan aplikasi pengenalan sidik jari pada Tugas Akhir ini. Lingkungan uji coba meliputi perangkat keras dan perangkat lunak yang dijelaskan sebagai berikut:

- 1. Perangkat keras
 - a. Prosesor: Intel® CoreTM i3-3120QM CPU @ 2 50GHz
 - b. Memori(RAM): 4 GB
 - c. Tipe sistem: 64-bit sistem operasi
- 2. Perangkat lunak
 - a. Sistem operasi: Windows 10 Pro
 - b. Perangkat pengembang: MATLAB (R2008b)

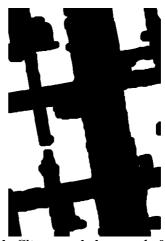
5.2 Data Pengujian

Data masukan pada uji coba ini berupa gambar map sapporo dengan format data berupa .png, berjumlah total 50 citra map Sapporo. Citra yang telah diproses akan ditunjukkan pada Tabel A.1 sampai Tabel A.3 dan Tabel A.27 sampai Tabel A.50 di lampiran.

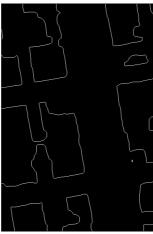
5.3 Skenario Uji Coba


Skenario pengujian yang dilakukan adalah sebagai berikut.

1. Pengujian skenario 1. Berupa perbandingan hasil citra prapengolahan data dengan citra sebenarnya.

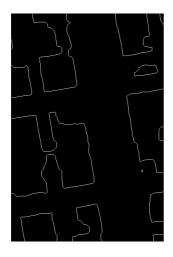

- 2. Pengujian skenario 2. Berupa menemukan titik koordinat yang akan menjadi pengenalan jalan pada citra.
- 3. Pengujian skenario 3. Berupa membentuk jalanan dengan membuat masking pada jalan yang telah dikenali.

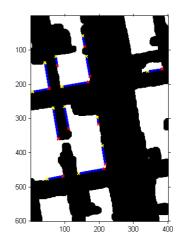
5.3.1 Pengujian Skenario I dan Evaluasi


Pada pengujian skenario 1 ini akan dilakukan proses perbandingan hasil citra pra-pengolahan dengan citra masukan sebenarnya. Pra-pengolahan yang diterapkan adalah *morphology erode dan close*. Untuk hasil uji coba dapat terlampir pada tabel A.1 sampai dengan tabel A.18. Sebagai pembanding, hasil pra-pengolahan dan citra masukan dapat dilihat pada gambar 5.1.

a. Citra masukan

b. Citra morphology *erode* & *close*


c. Citra deteksi tepi canny

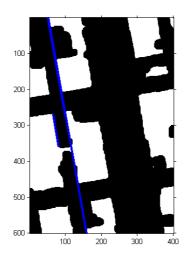

Gambar 5. 1 Citra Pra Pengolahan

Dari gambar diatas terlihat perbedaan antara gambar masukan dan setelah dilakukan pra-pengolahan. Namun dari pra-pengolahan *morphology erode dan close* tidak terlalu terlihat perbedaan. Apabila diperhatikan lebih teliti hasil dari morphology close lebih halus dan kemudian utuk melakukan proses selanjutnya dibutuhkan deteksi tepi *canny*.

5.3.2 Pengujian Skenario 2 dan Evaluasi

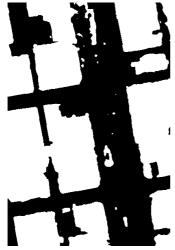
Pada pengujian skenario 2 ini akan dilakukan uji coba untuk mengetahui bagaimana hasil dari pendeteksian titik dan pendeteksian garis untuk pengenalan jalan dengan menggunakan transformasi hough. Gambar yang akan dijadikan data uji adalah Gambar 5.5 Untuk hasil uji coba terlampir pada tabel A.19 sampai dengan tabel A.43.

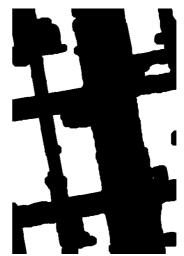
a. Citra deteksi tepi canny


b. Citra pendeteksian dan pengenalan jalan

Gambar 5. 2 Hasil Pendeteksian dan pengenalan jalan

Hasil pendeteksian dengan *transformasi hough* ini menampilkan pendeteksian garis lurus pada citra yang didapatkan dari gambar a. Metode ini cukup baik dalam pengenalan garis, namun dalam pengenalan garis tidak dapat mengenali garis yang melengkung. Namun garis yang didapatkan sudah mencukupi dalam pembentukan jalan.


5.3.3 Pengujian Skenario 3 dan Evaluasi


Pada pengujian skenario 3 ini akan dilakukan uji coba untuk pembentukan jalan dengan melakukan pengecekan dengan batas jalan terdekat. Gambar yang akan dijadikan data uji adalah Gambar 5.3. Untuk hasil uji coba terlampir pada tabel A.14 sampai dengan tabel A.52.

Gambar 5. 3 Pengecekan dengan batas jalan terdekat

Pada gambar 5.6 dapat dilihat dilakukan pengecekan terhadap tepi jalan terdekat dengan pendeteksian sebelumnya. Hasil pengecekan ini sudah cukup untuk membantu pembentukan jalan.

a. Citra awal masukan b. Citra hasil rekonstruksi Gambar 5. 4 Perbandingan Citra dengan awal dengan hasil rekonstruksi

Pembentukan persegi merupakan proses yang akan menentukan dan membentuk jalan. Sehingga dapat mempermudah membandingkan dan menghaluskan citra dengan memasking persegi yang didapat.

Nilai yang akan dihitung pada uji coba ini adalah nilai ratarata waktu yang dibutuhkan setiap citra map sapporo dalam proses rekonstruksi dalam satuan detik. Formula yang digunakan untuk mendapatkan rata-rata waktu yang dibutuhkan adalah pada Persamaan 5.1.

$$rata - rata \ waktu = \frac{\sum waktu \ proses \ setiap \ citra}{total \ citra}$$
 (5.1)

Waktu yang dibutuhkan untuk melakukan proses dari prapengolahan sampai dengan pembentukan jalan membutuhkan waktu 0,7468 detik. Untuk hasil pra-pengolahan dan pembentukan jalan dapat dilihat pada LAMPIRAN A.

LAMPIRAN A

Tabel A. 1 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Pertama)

Citra masukan	Citra Pra Pengolahan
'sapporo_rg_01.png'	'sapporo_rg_01.png'
'sapporo_rg_02.png'	'sapporo_rg_02.png'
'sapporo_rg_03.png'	'sapporo_rg_03.png'

Tabel A. 2 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Kedua)

Citra masukan	Citra Pra Pengolahan
'sapporo_rg_04.png'	'sapporo_rg_04.png'
'sapporo_rg_05.png'	'sapporo_rg_05.png'
'sapporo_rg_06.png'	'sapporo_rg_06.png'

Tabel A. 3 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Ketiga)

Citra masukan	Citra Pra Pengolahan
'sapporo_rg_07.png'	'sapporo_rg_07.png'
'sapporo_rg_08.png'	'sapporo_rg_08.png'
'sapporo_rg_09.png'	'sapporo_rg_09.png'

Tabel A. 4 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Keempat)

Citra masukan	Citra Pra Pengolahan
'sapporo_rg_10.png'	'sapporo_rg_10.png'
'sapporo_rg_11.png'	'sapporo_rg_11.png'
'sapporo_rg_12.png'	'sapporo_rg_12.png'

Tabel A. 5 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Kelima)

Citra masukan	Citra Pra Pengolahan
'sapporo_rg_13.png'	'sapporo_rg_13.png'
'sapporo_rg_14.png'	'sapporo_rg_14.png'
'sapporo_rg_15.png'	'sapporo_rg_15.png'

Tabel A. 6 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Keenam)

Citra masukan	Citra Pra Pengolahan
'sapporo_rg_16.png'	'sapporo_rg_16.png'
'sapporo_rg_17.png'	'sapporo_rg_17.png'
'sapporo_rg_18.png'	'sapporo_rg_18.png'

Tabel A. 7 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Ketujuh)

Citra masukan	Citra Pra Pengolahan
'sapporo_rg_19.png'	'sapporo_rg_19.png'
'sapporo_rg_20.png'	'sapporo_rg_20.png'
'sapporo_rg_21.png'	'sapporo_rg_21.png'

Tabel A. 8 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Kedelapan)

Citra masukan	Citra Pra Pengolahan
'sapporo_rg_22.png'	'sapporo_rg_22.png'
'sapporo_rg_23.png'	'sapporo_rg_23.png'
'sapporo_rg_24.png'	'sapporo_rg_24.png'

Tabel A. 9 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Kesembilan)

Citra masukan	Citra Pra Pengolahan
'sapporo_rg_22.png'	'sapporo_rg_22.png'
'sapporo_rg_23.png'	'sapporo_rg_23.png'
'sapporo_rg_24.png'	'sapporo_rg_24.png'

Tabel A. 10 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Kesepuluh)

Citra masukan	Citra Pra Pengolahan
'sapporo_rg_25.png'	'sapporo_rg_25.png'
'sapporo_rg_26.png'	'sapporo_rg_26.png'
'sapporo_rg_27.png'	'sapporo_rg_27.png'

Tabel A. 11 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Kessebelas)

Citra masukan	Citra Pra Pengolahan
'sapporo_rg_28.png'	'sapporo_rg_28.png'
'sapporo_rg_29.png'	'sapporo_rg_29.png'
'sapporo_rg_30.png'	'sapporo_rg_30.png'

Tabel A. 12 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Kedua Belas)

Citra masukan	Citra Pra Pengolahan
'sapporo_rg_31.png'	'sapporo_rg_31.png'
'sapporo_rg_32.png'	'sapporo_rg_32.png'
'sapporo_rg_33.png'	'sapporo_rg_33.png'

Tabel A. 13 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Ketiga Belas)

Citra masukan	Citra Pra Pengolahan
'sapporo_rg_34.png'	'sapporo_rg_34.png'
'sapporo_rg_35.png'	'sapporo_rg_35.png'
'sapporo_rg_36.png'	'sapporo_rg_36.png'

Tabel A. 14 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Keempat Belas)

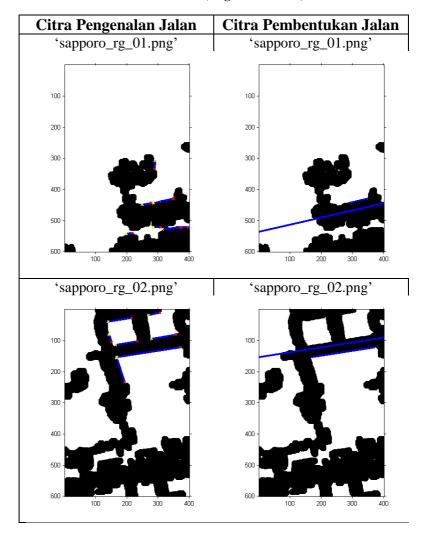
Citra masukan	Citra Pra Pengolahan
'sapporo_rg_37.png'	'sapporo_rg_37.png'
'sapporo_rg_38.png'	'sapporo_rg_38.png'
'sapporo_rg_39.png'	'sapporo_rg_39.png'

Tabel A. 15 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Kelima Belas)

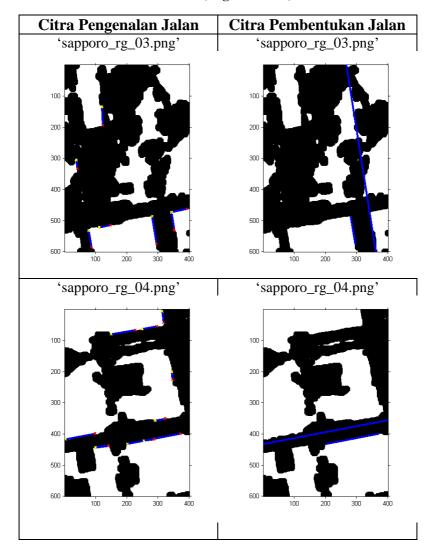
Citra masukan	Citra Pra Pengolahan
'sapporo_rg_40.png'	'sapporo_rg_40.png'
'sapporo_rg_41.png'	'sapporo_rg_41.png'
'sapporo_rg_42.png'	'sapporo_rg_42.png'

Tabel A. 16 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Keenam Belas)

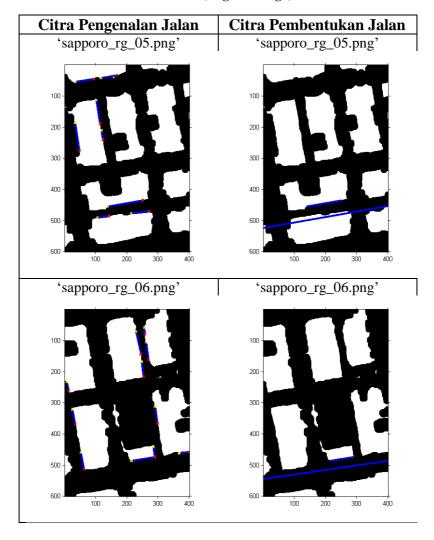
Citra masukan	Citra Pra Pengolahan
'sapporo_rg_43.png'	'sapporo_rg_43.png'
'sapporo_rg_44.png'	'sapporo_rg_44.png'
'sapporo_rg_45.png'	'sapporo_rg_45.png'

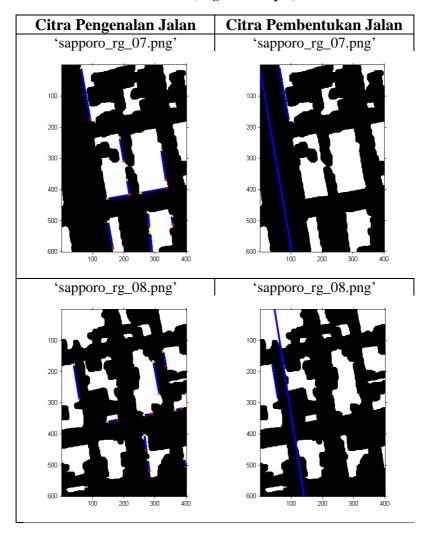

Tabel A. 17 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Ketujuh Belas)

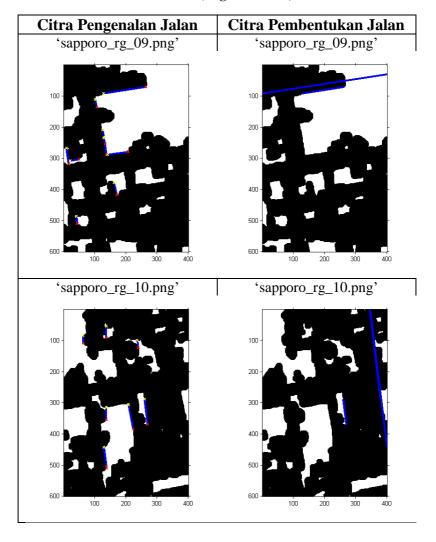
Citra masukan	Citra Pra Pengolahan
'sapporo_rg_46.png'	'sapporo_rg_46.png'
'sapporo_rg_47.png'	'sapporo_rg_47.png'
'sapporo_rg_48.png'	'sapporo_rg_48.png'

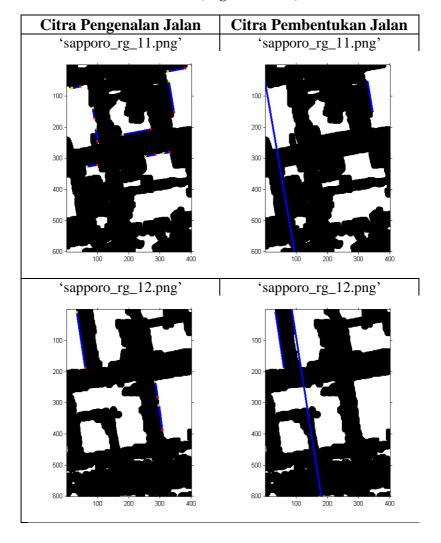

Tabel A. 18 Hasil Uji Coba Citra Masukan dan Citra Hasil Pra Pengolahan (Bagian Kedelapan Belas)

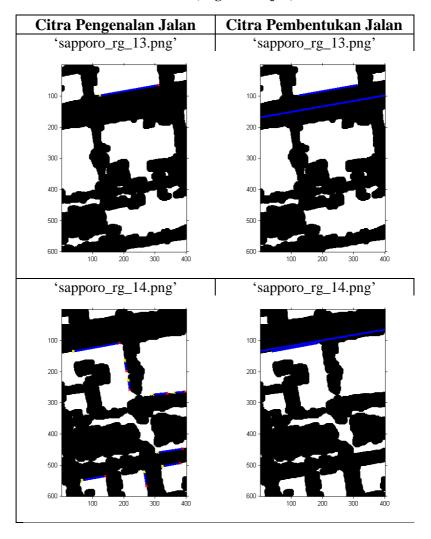
Citra masukan	Citra Pra Pengolahan
'sapporo_rg_49.png'	'sapporo_rg_49.png'
'sapporo_rg_50.png'	'sapporo_rg_50.png'

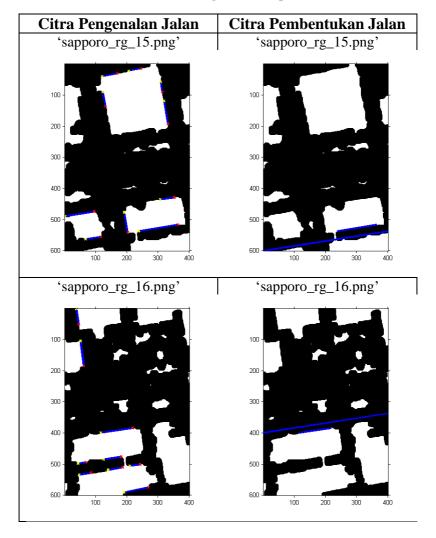

Tabel A. 19 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Pertama)

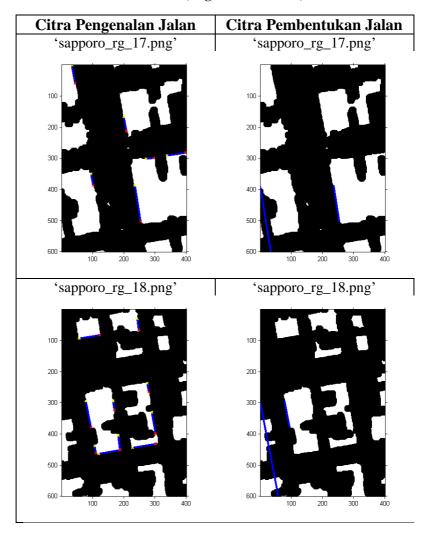

Tabel A. 20 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kedua)

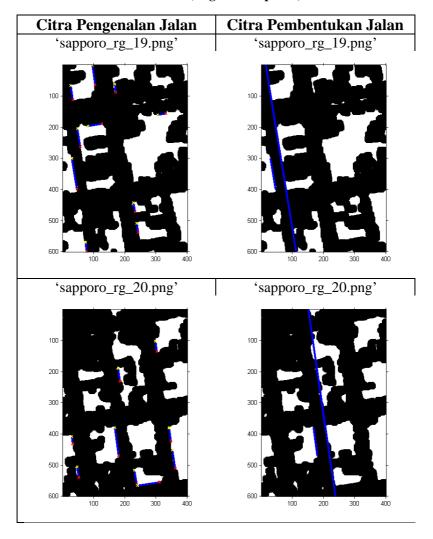

Tabel A. 21 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Ketiga)

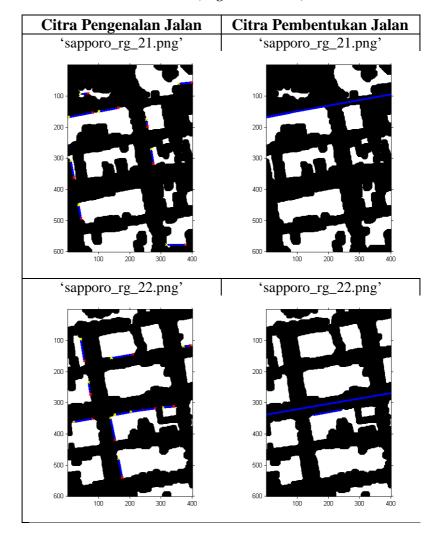

Tabel A. 22 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Keempat)

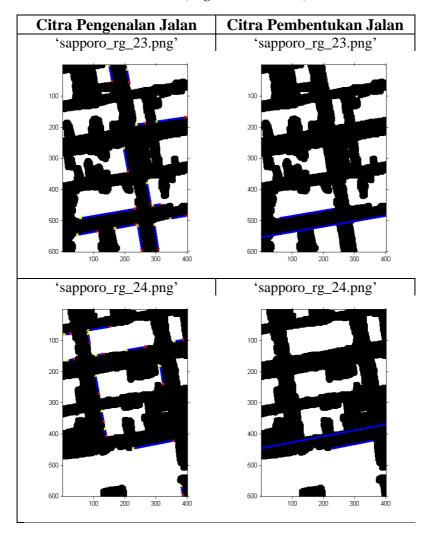

Tabel A. 23 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kelima)

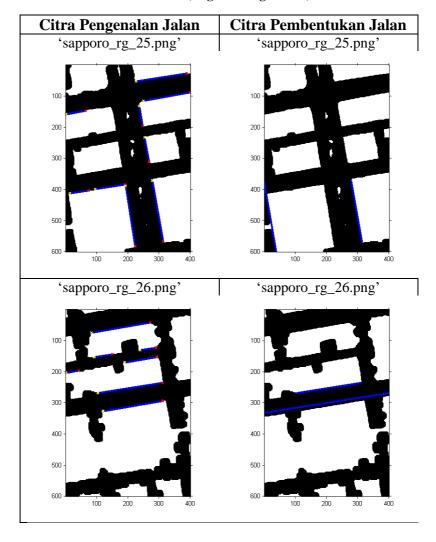

Tabel A. 24 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Keenam)

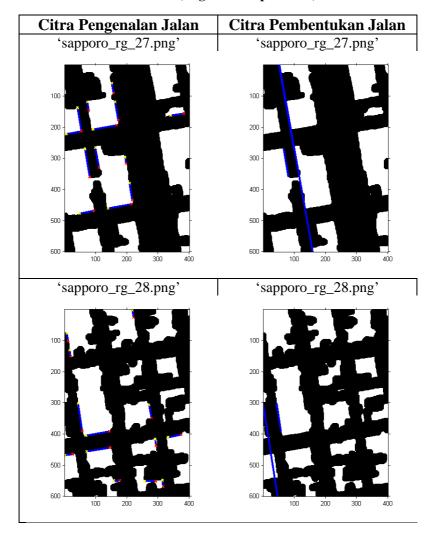

Tabel A. 25 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Ketujuh)

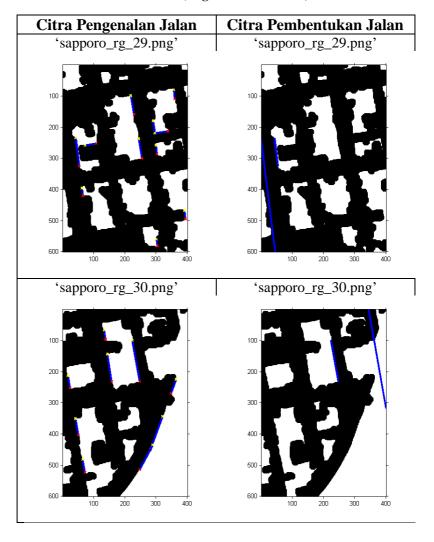

Tabel A. 26 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kedelapan)

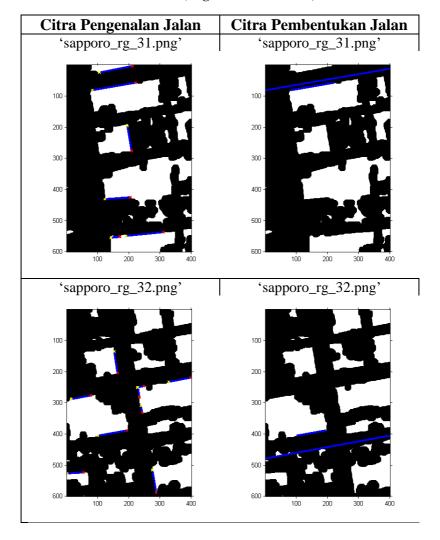

Tabel A. 27 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kesembilan)

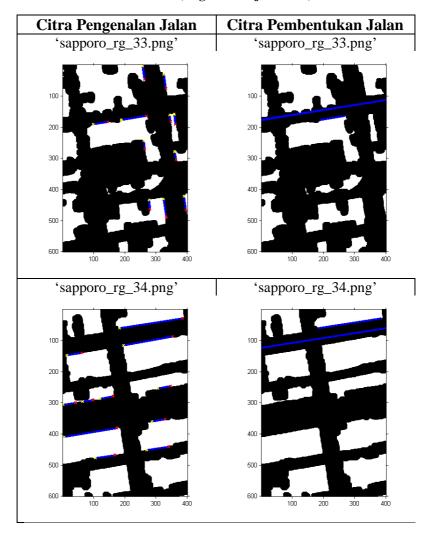

Tabel A. 28 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kesepuluh)

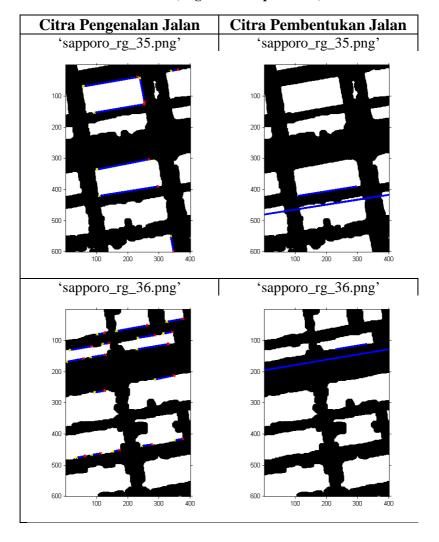

Tabel A. 29 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kesebelas)

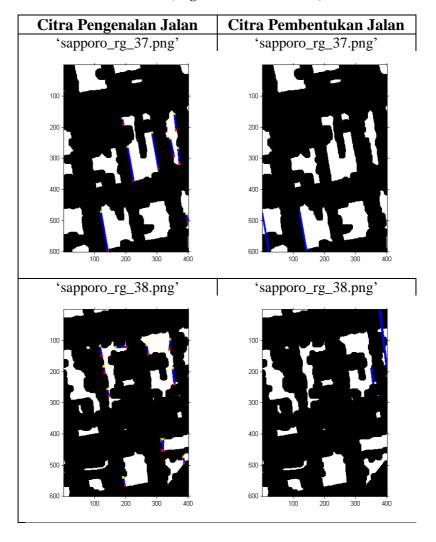

Tabel A. 30 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kedua Belas)

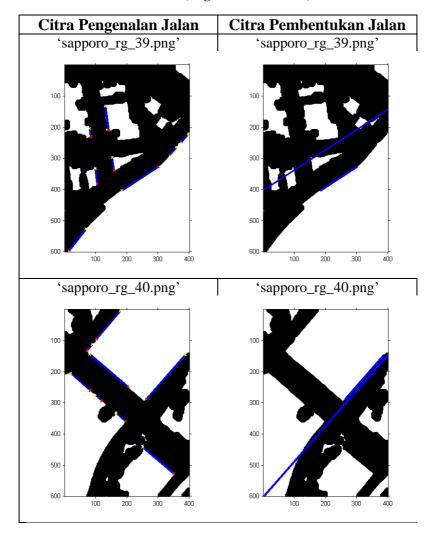

Tabel A. 31 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Ketiga Belas)

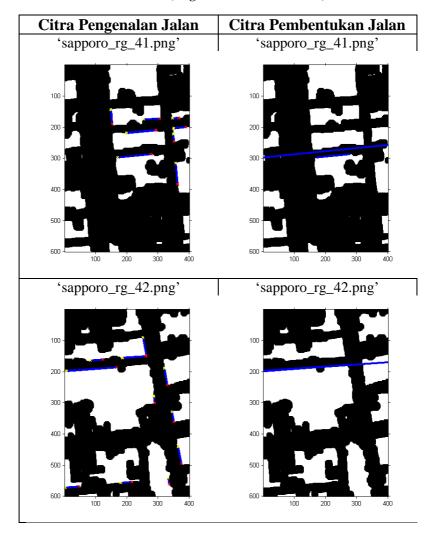

Tabel A. 32 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Keempat Belas)

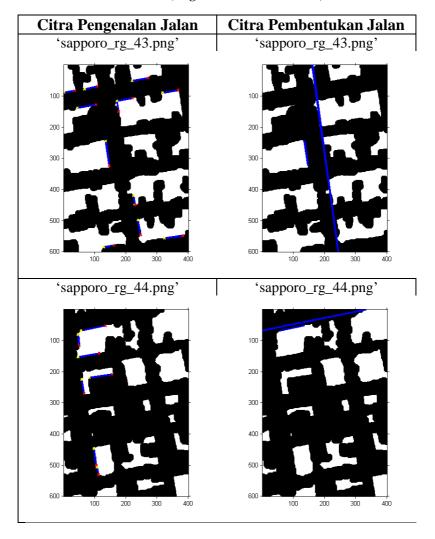

Tabel A. 33 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kelima Belas)

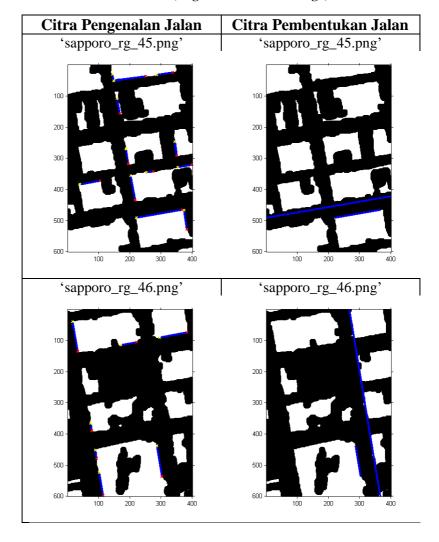

Tabel A. 34 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Keenam Belas)

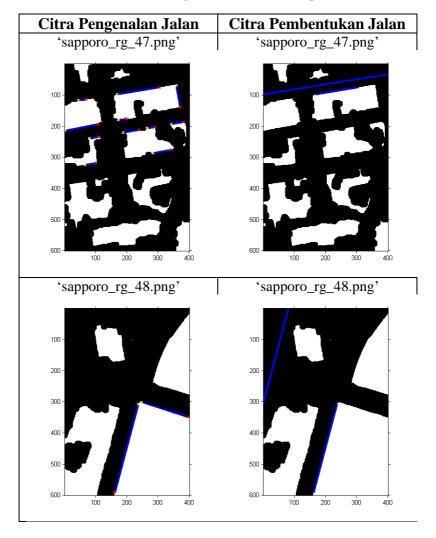

Tabel A. 35 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Ketujuh Belas)

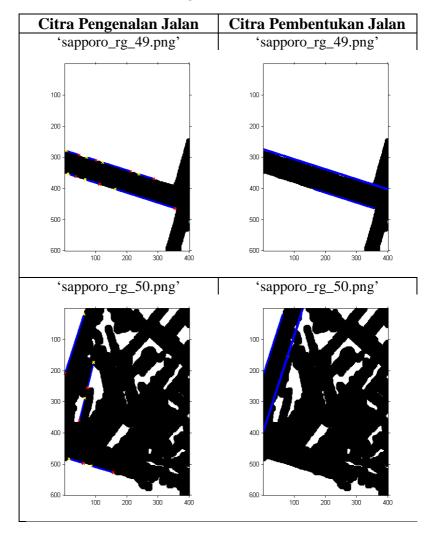

Tabel A. 36 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kedelapan Belas)

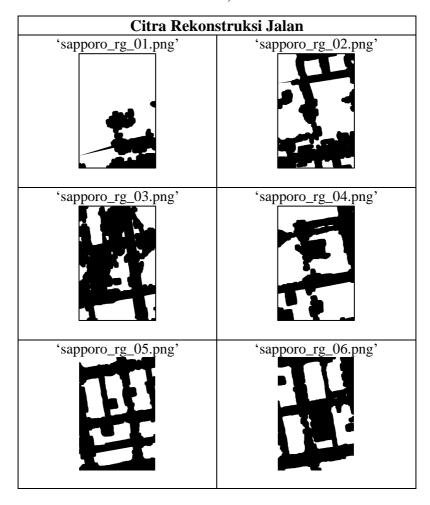

Tabel A. 37 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kesembilan Belas)

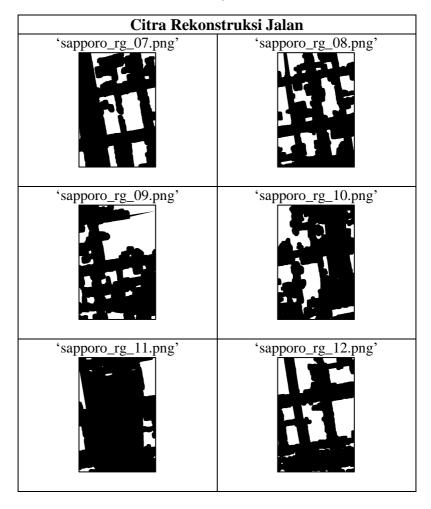

Tabel A. 38 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kedua Puluh)

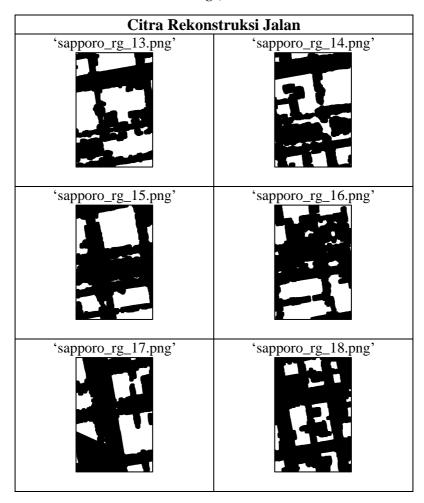

Tabel A. 39 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kedua Puluh Satu)

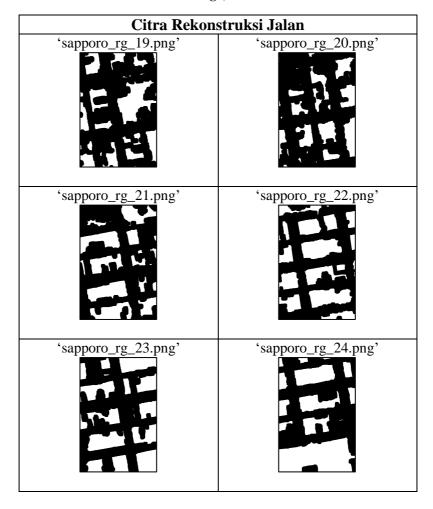

Tabel A. 40 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kedua Puluh Dua)

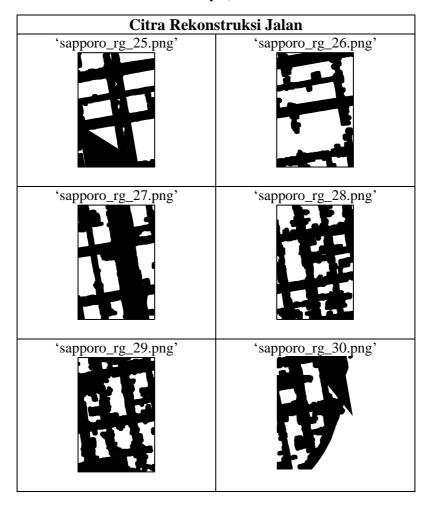

Tabel A. 41 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kedua Puluh Tiga)

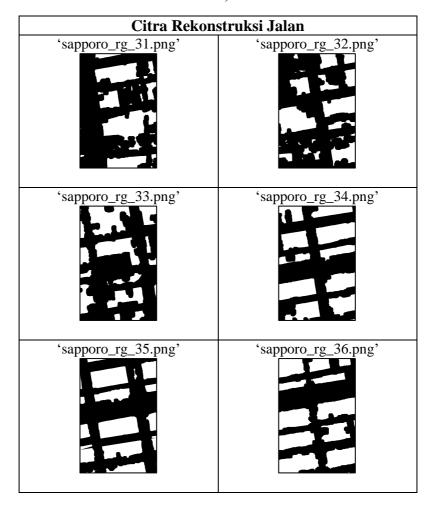

Tabel A. 42 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kedua Puluh Empat)

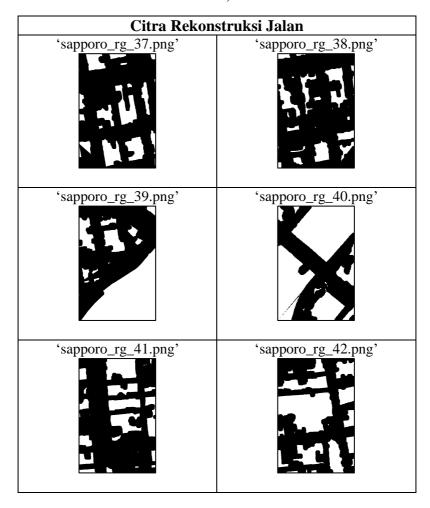

Tabel A. 43 Hasil Uji Coba Citra Pengenalan Jalan dan Citra Pembentukan (Bagian Kedua Puluh Lima)

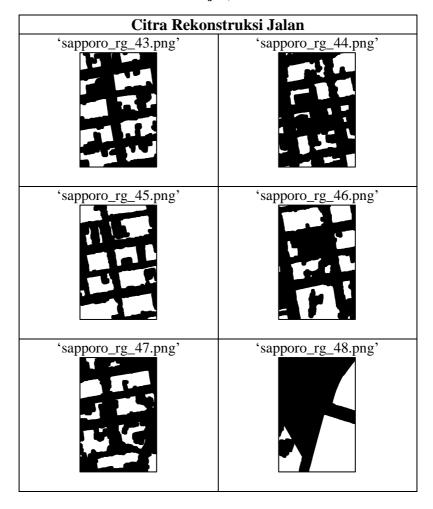

Tabel A. 44 Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian Pertama)


Tabel A. 45 Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian Kedua)


Tabel A. 46 Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian Ketiga)


Tabel A. 47 Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian Ketiga)


Tabel A. 48 Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian Keempat)


Tabel A. 49 Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian Kelima)

Tabel A. 50 Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian Keenam)

Tabel A. 51 Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian Ketujuh)

Tabel A. 52 Hasil Uji Coba Citra Rekonstruksi Jalan (Bagian Kedelapan)

BAB VI PENUTUP

Bab ini membahas mengenai kesimpulan yang dapat diambil dari hasil uji coba yang telah dilakukan sebagai jawaban dari rumusan masalah yang dikemukakan. Selain kesimpulan, juga terdapat saran yang ditujukan untuk pengembangan perangkat lunak lebih lanjut.

6.1 Kesimpulan

Dari hasil uji coba yang telah dilakukan terhadap pembuatan rekonstruksi jalan pada citra sapporo map menggunakan sistem *curve fitting* dapat diambil kesimpulan sebagai berikut:

- 1. Sistem yang dibangun pada tugas akhir ini dapat menentukan dan membentuk jalan, yang mana dibutuhkan dalam rekonstruksi jalan pada citra.
- 2. Sistem ini dapat mencari titik koordinat garis yang menentukan jalan dengan semi automatis dengan menggunakan *transformasi hough*.
- 3. Pengecekan garis terdekat untuk pembentukan jalan dengan menggunakan persegi cukup efektif.
- 4. Waktu yang diperlukan dalam proses rekonstruksi jalan ini membutuhkan 0,7468 detik.

6.2 Saran

Adapun saran yang ingin disampaikan penulis untuk pengembangan lebih lanjut dari Tugas Akhir antara lain:

- 1. Dalam metode pra-pengolahan diperlukan metode yang lebih baik sehingga citra lebih mudah untuk diperbaiki.
- 2. Diperlukan suatu cara supaya dalam pendeteksian jalan agar dapat dicari secara automatis menggunakan metode lainnya.
- 3. Perbaikan metode pada ekstraksi jalan supaya fitur pada pengenalan target dapat lebih baik.
- 4. Dalam pengenalan jalan diperlukan metode yang lebih baik agar dapat mengenali jalanan yang melengkung.

DAFTAR PUSTAKA

- [1] Jonathan Sachs. (1999) Digital Image Basics.
- [2] Rafael C. Gonzalez and Richard E. Woods, *Digital Image Processing*, 2nd ed.: Prentice Hall, 2002.
- [3] "Wikipedia," Erotion [Online]. Available: https://en.wikipedia.org/wiki/Erosion_(morphology) [Accessed 10 April 2016].
- [4] "Wikipedia," Closing [Online]. Available: https://en.wikipedia.org/wiki/Closing_(morphology) [Accessed 10 April 2016].
- [5] "Wikipedia," Canny [Online]. Available: https://en.wikipedia.org/wiki/Canny_edge_detector. [Accessed 10 April 2016].
- [6] "Wikipedia," Hough Transform [Online]. Available: https://en.wikipedia.org/wiki/Hough_transform. [Accessed 13 April 2016].
- [7] "Wikipedia," Curve Fitting [Online]. Available: https://en.wikipedia.org/wiki/Curve_fitting. [Accessed: 2 April 2016.].
- [8] "Mathworks," Roipoly [online]. Available: http://www.mathworks.com/help/matlab/ref/roipoly.html [Accessed: 2 April 2016.].

BIODATA PENULIS

Ilham Zuhri lahir di Penyasawan 27 Oktober 1992 yang merupakan anak pertama dari dua bersaudara dari pasangan Muhammad Jais dan Yusmaniar. Penulis telah menempuh pendidikan formal dimulai dari SD Muhammadiah Penyasawan (1997-2003), SMP Negeri 1 Bangkinang (2003-Negeri 2006), **SMA** Bangkinang (2006-2009) dan terakhir sebagai mahasiswa Teknik Informatik a ITS Surabaya (2009-2016). Di

Teknik Informatika ITS, penulis mengambil bidang minat Komputasi Cerdas dan Visualisasi (KCV). Komunikasi dengan penulis dapat melalui email: iamilhamzuhri@gmail.com.