

TUGAS AKHIR – MO 141326

ANALISIS KONFIGURASI RIGGING DAN PADEYE PADA SAAT PROSES INSTALLATION DECK STRUCTURE UL.A PLATFORM DENGAN CARA LIFTING

ACHMAD RIZKY YANSAH NRP. 4312 100 139

DOSEN PEMBIMBING : Ir. Handayanu, M.Sc, Ph.D. Ir. J.J. Soedjono, M.Sc.

JURUSAN TEKNIK KELAUTAN Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya 2016

FINAL PROJECT – MO 141326

RIGGING CONFIGURATION AND PADEYE ANALYSIS ON PROCESS INSTALLATION DECK STRUCTURE UL.A PLATFORM WITH LIFTING METHOD

ACHMAD RIZKY YANSAH NRP. 4312 100 139

SUPERVISORS :

Ir. Handayanu, M.Sc, Ph.D. Ir. J.J. Soedjono, M.Sc.

DEPARTMENT OF OCEAN ENGINEERING Faculty Of Marine Technology Sepuluh Nopember Institute Of Technology Surabaya 2016

ANALISIS KONFIGURASI RIGGING DAN PADEYE PADA SAAT PROSES INSTALLATION DECK STRUCTURE UL.A PLATFORM DENGAN CARA LIFTING

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat memperoleh Gelar Sarjana Teknik pada program Studi S-1 Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan

Institut Teknologi Sepuluh Nopember

Oleh:

ACHMAD RIZKY YANSAH

NRP. 4312 100 139

Disetujui oleh :

(Pembimbing 1) 1. Ir. Handayanu, M.Sc, Ph.D. .. (Pembimbing 2) 2. Ir. J.J. Soedjono, M.Sc. utt ..(Penguji 1) 3. Suntoyo, S.T., M.Eng, Ph.D. (Penguji 2) 4. Sholihin, S.T, M.T. (Penguji 3) 5. Agro Wisudawan, S.T, M.T.(Penguji 4) 6. Sujantoko, S.T. M.T.

Surabaya, Juli 2016

ANALISIS KONFIGURASI RIGGING DAN PADEYE PADA SAAT PROSES INSTALLATION DECK STRUCTURE UL.A PLATFORM DENGAN CARA LIFTING

Name	:	Achmad Rizky Yansah
NRP	:	4312 100 064
Jurusan	:	Teknik Kelautan FTK – ITS
Dosen Pembimbing	:	Ir. Handayanu, M.Sc, Ph.D
		Ir. J. J. Soedjono, M.Sc

ABSTRAK

Instalasi deck structure dengan metode Lifting adalah kegiatan memindahkan ataupun pengangkatan suatu barang (komponen anjungan lepas pantai) dengan bantuan crane ataupun *crane vessels*. Dalam tugas akhir ini dilakukan analisis tegangan dari variasi desain rigging untuk menghasilkan gaya sling dan unity check paling minimum. Variasi desain rigging meliputi tanpa spreader bar, satu spreader bar, dua spreader bar, dan spreader frame. Dari hasil running SACS 5.7 spreader frame mendapatkan nilai sling force 453,3826 kips dan unity check 0,465, sehingga nilai sling force dari speader frame digunakan untuk analisis tegangan pada struktur padeye dengan software ANSYS Workbench. Selanjutnya, sling force digunakan untuk analisis tegangan struktur padeye. Hasil dari ANSYS Workbench didapatkan tegangan von-mises pada padeye koneksi 80,32 MPa, shear stress sebesar 30,034 MPa, dan deformation maksimal sebesar 0,23581 mm. Untuk pemodelan hanya dilakukan pada desain spreader frame karena menghasilkan tegangan paling minimum. Untuk mendukung operasi instalasi dengan metode *lifting*, diperlukan juga analisis stabilitas dan ballasting pada crane vessel dengan software moses v.7. Hasil dari software Moses v.7 didapatkan stabilitas sudah memenuhi standar dari international maritime organization (IMO). Sedangkan untuk analisis ballasting dengan setiap tangki terdapat pompa maka hanya diperlukan waktu 23,07 menit dengan volume ballast sebesar 3845,76 m³ pada step kedua dan ketiga. Sedangkan untuk step keempat ballasting memerlukan waktu 24,87 menit dengan pengurangan volume ballast 4145,67 m³.

Kata-kata Kunci: deck structure, , lifting, crane vessels, padeye.

RIGGING CONFIGURATION AND PADEYE ANALYSIS ON PROCESS INSTALLATION DECK STRUCTURE UL.A PLATFORM WITH LIFTING METHOD

Name	:	Achmad Rizky Yansah
NRP	:	4312 100 064
Department	:	Teknik Kelautan FTK – ITS
Supervisors	:	Ir. Handayanu, M.Sc, Ph.D
		Ir. J. J. Soedjono, M.Sc

ABSTRACT

Installation of deck structure with Lifting method is transferring the activities or the removal of an item (a component of offshore platforms) with the help of cranes or crane vessels. In this final task performed stress analysis of rigging design variations to produce sling force and unity check minimum. Rigging design variations include no spreader bars, one spreader bar, two spreader bars, and the spreader frame. From the results of running SACS 5.7 spreader frames to get the value of sling force 453.3826 kips and unity check 0.465, so the value sling force of speader frame is used for stress analysis on the structure padeye with ANSYS Workbench. Furthermore, sling force used for stress analysis padeye structure. The results obtained from the ANSYS Workbench von-mises stress in connection padeye 80.32 MPa, shear stress of 30.034 MPa, and a maximum deformation of 0.23581 mm. For the modeling is only done on the spreader frame design for produce the minimum stress. To support the operation of the installation with a lifting method, also required the analysis of stability and ballasting the crane vessel with software Moses v.7. The results of the software Moses v.7 obtained stability to meet the standard of international maritime organization (IMO). The results of the Moses software v.7 stability obtained fulfill the standard criteria of international maritime organization (IMO). While for analysis to ballasting with each tank of the pump contained only takes 23.07 minutes with ballast volume amounted to 3845.76 m3 in the second and third step. While for the fourth step ballasting takes 24.87 minutes with a reduction in the volume of ballast 4145.67 m3.

Keywords: deck structure, , lifting, crane vessels, padeye.

KATA PENGANTAR

Assalamualaikum Wr. Wb

Puji syukur penulis ucapkan kepada Allah SWT yang telah memberikan segala rahmat, hidayah dan karuni-Nya sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul, "Analisis Konfigurasi *Rigging* dan *padeye* pada saat proses *Installation deck structure ULA platform* dengan cara *lifting*" ini dengan tepat waktu dan tanpa halangan yang berarti.

Tugas Akhir ini disusun sebagai syarat untuk mendapatkan gelar sarjana (S-1) di Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember Surabaya. Tugas Akhir ini berisi tentang mencari design *rigging* yang menghasilkan nilai gaya sling dan *unity check* yang paling minimum selanjutnya dilakukan pemodelan dan check lokal pada struktur *padeye*. Dan juga dilakukan analisis *ballasting* dan stabilitas pada *crane vessel* ketika proses pengangkatan.

Penulis mengharapkan saran dan kritik dari para pembaca demi perbaikan dan kesempurnaan penyusunan dan penulisan berikutnya. Semoga Tugas Akhir ini bermanfaat bagi perkembangan teknologi di bidang rekayasa kelautan, bagi pembaca pada umumnya dan bagi penulis sendiri pada khususnya.

Wassalamualaikum Wr. Wb

Surabaya, 6 Juli 2016

penulis

UCAPAN TERIMA KASIH

Penyelesaian Tugas Akhir ini tidak lepas dari bantuan dan dukungan berbagai pihak. Oleh karena itu, dalam kesempatan ini penulis mengucapkan terima kasih kepada:

- 1. Allat SWT yang telah memberi petunjuk dan kemudahan sehingga penulis mampu menyelesaikan Tugas Akhir ini.
- 2. Kedua orang tua penulis yang senantiasa mendoakan dan memberi dukungan baik moril maupun materiil.
- Bapak Ir. Handayanu, M.Sc, Ph.D. dan Bapak Ir. J.J Soedjono, M.Sc. selaku dosen pembimbing pertama dan kedua yang selalu membimbing penulis dalam menyelesaikan Tugas Akhir ini.
- Bapak Sholihin, S.T, M.T selaku dosen wali yang selalu membimbing penulis dalam penentuan pengambilan mata kuliah selama penulis menjalani studi di Teknik Kelautan FTK ITS ini.
- 5. Bapak Syamsul dan Mas Arifta yang membantu memberi masukan sehingga Tugas Akhir ini dapat diselesaikan dengan baik.
- 6. Semua rekan-rekan Varuna L-30, Teknik Kelautan FTK ITS.
- 7. Adekku yang selalu memberi semangat dan menjadi motivasi dalam menyelesaikan tugas akhir ini.
- 8. Semua pihak yang tidak dapat penulis sebutkan satu persatu yang telah membantu penulis sehingga Tugas Akhir ini dapat selesai dengan baik.

Halama	n Judul		i
Lembar	Penges	ahan	iii
Abstrak			iv
Abstrac	t		V
Kata Pe	ngantar		vi
Ucapan	Terima	Kasih	vii
Daftar I	si		viii
Daftar (Gambar		xi
Daftar 7	Fabel		xiii
Daftar l	ampirai	1	XV
BAB I I	PENDA	HULUAN	
1.	1. Lat	ar Belakang	1
1.	2. Per	umusan Masalah	3
1.	3. Tuj	uan Penelitian	3
1.	4. Ma	nfaat Penelitian	3
1.	5. Bat	asan Masalah	3
BAB II	TINJA	UAN PUSTAKA DAN DASAR TEORI	
2.	1. Tin	jauan Pustaka	5
2.	2. Das	sar Teori	6
	2.2	1. Deck	6
	2.2	2. Lifting	7
	2.2	3. Analisis Gerakan Crane Vessel	7
	2.2	4. Spektrum Gelombang	11
	2.2	5. Respone Amplitude Operator	12

	2.2.6.	Kondisi Pem	bebanan	14
		2.2.6.1 Be	ban Statis	14
		2.2.6.2 Be	ban Dinamis	14
		2.2.6.3 Be	ban Angin	15
	2.2.7.	Teori dan Fo	rmula <i>Rigging</i>	16
	2.2.8.	Desain Sling		20
	2.2.9.	Desain Shacl	kle	20
	2.2.10	. Desain Pade	/e	21
	2.2.11	. Stabilitas Cra	ane Vessel	27
BAB III M	IETOD	OLOGI PENE	LITIAN	
3.1.	Diagra	am Alir Peneli	tian	29
3.2.	Prosec	dur Penelitian		30
BAB IV A	NALIS	SIS DATA DA	N PEMBAHASAN	
4.1.	Data			35
	4.1.1.	Data Struktu	r	35
	4.1.2.	Beban Strukt	ur	35
	4.1.3.	Data Crane	/essel	37
4.2.	Pemoo	delan		37
	4.2.1.	Pemodelan C	Srane Vessel AEGIR	37
	4.2.2.	Pemodelan L	Deck Structure UL.A Platform	40
		4.2.2.1	Perhitungan Konfigurasi Rigging	40
		4.2.2.2	Load Case	45
		4.2.2.3	Load Combination	46
	4.2.3	Pemodelan d	engan ANSYS Workbench	48
4.3.	Gerak	an <i>Crane Vess</i>	el AEGIR	52
4.4.	Stabili	itas dan Ballas	ting saat Instalasi	57

	4.5.	Hasil Analisis dengan Software SACS 5.7	64
		4.5.1 Unity Check	65
		4.5.2 Sling Force	65
	4.6.	Perhitungan Dimensi Sling, Shackle, dan Padeye	66
	4.7.	Pengecekan Spreader Bar	68
	4.8.	Analisis Tegangan dengan ANSYS Workbench	71
BAB	V PE	NUTUP	
	5.1.	Kesimpulan	73
	5.2.	Saran	74
DAF	TAR	PUSTAKA	75
LAM	IPIRA	Ν	
BIO	GRAF	I	

DAFTAR GAMBAR

Gambar 1.1.	Komponen lifting	2
Gambar 2.1.	Deck UL.A platform	7
Gambar 2.2.	Moda gerakan crane vessel	11
Gambar 2.3.	Konfigurasi rigging dengan crane tunggal tanpa spreader	18
Gambar 2.4.	Konfigurasi Rigging dengan Satu Transversal Spreader Bar	19
Gambar 2.5.	Konfigurasi Rigging dengan dua Paralel Spreader Bar	19
Gambar 2.6.	Konfigurasi Rigging dengan Spreader Frame	19
Gambar 2.7.	Bentuk sling	20
Gambar 2.8.	Shacke	21
Gambar 2.9.	Padeye	22
Gambar 2.10.	Detail padeye tampak X-Z dan Y-Z (PHE ONWJ)	22
Gambar 2.11.	Detail stiffner (PHE ONWJ)	22
Gambar 2.12.	Desain shackle (PT.Technip Indonesia)	23
Gambar 2.13.	Padeye tampak samping	23
Gambar 2.14.	Shear failure pada padeye	24
Gambar 2.15.	Tension failure sepanjang cheek plate pada padeye	24
Gambar 2.16.	Tension failure pada padeye	25
Gambar 2.17.	Padeye connection	25
Gambar 2.18.	Definisi Titik Tengah dan Gaya (journee and Massie,2001)	27
Gambar 2.19.	Righting moment dan heeling moment	28
Gambar 3.1.	Diagram alir pengerjaan Tugas Akhir	29
Gambar 3.2.	Diagram alir pengerjaan Tugas Akhir (Lanjutan)	30
Gambar 3.3.	General arrangement kapal AEGIR	33
Gambar 4.1.	Struktur deck platform	35
Gambar 4.2.	Pemodelan lambung pada software maxsurf	37
Gambar 4.3.	Pemodelan pada software Moses 7.0	38
Gambar 4.4.	Pemodelan deck structure di SACS 5.7	40
Gambar 4.5.	Pemodelan deck tanpa spreader bar	41
Gambar 4.6.	Pemodelan deck dengan satu spreader bar	42
Gambar 4.7.	Pemodelan deck dengan dua spreader bar	43
Gambar 4.8.	Pemodelan deck dengan spreader frame	44

Gambar 4.9. Pemodelan 3D padeye	49
Gambar 4.10. Input pemodelan geometri padeye pada ANSYS Workbench	49
Gambar 4.11. Support dan force pada padeye	50
Gambar 4.12. Grafik dari mesh sentivity	51
Gambar 4.13. Model padeye dengan Mesh 12 mm	51
Gambar 4.14. RAO roll	52
Gambar 4.15. RAO gerakan <i>pitch</i>	53
Gambar 4.16. RAO gerakan <i>heave</i>	54
Gambar 4.17. RAO gerakan sway	54
Gambar 4.18. RAO gerakan <i>surge</i>	55
Gambar 4.19. RAO gerakan Yaw	55
Gambar 4.20. Ilustrasi instalasi tahap pertama deck ke <i>jacket</i>	58
Gambar 4.21. Ilustrasi instalasi tahap kedua deck ke <i>jacket</i>	58
Gambar 4.22. Grafik hasil intact stability	59
Gambar 4.23. Ilustrasi instalasi tahap ketiga deck ke <i>jacket</i>	60
Gambar 4.24. Grafik hasil intact stability	61
Gambar 4.25. Ilustrasi instalasi tahap keempat deck ke jacket	62
Gambar 4.26. Grafik hasil intact stability	63
Gambar 4.27. Unity check pada Struktur	65
Gambar 4.28. Diagram body dari gaya pada spreader bar	69
Gambar 4.29. Tegangan pada <i>padeye</i>	72

DAFTAR TABEL

Tabel	2.1.	Amplitudo dan tinggi gelombang pada spektrum	11
Tabel	2.2.	Nilai faktor DAF (Guideline Noble Denton-marine lifting)	15
Tabel	2.3.	Koefisien bentuk (API RP 2A, 2005)	15
Tabel	2.4.	Formulasi konfigurasi rigging tanpa speader dan satu spreader bar	17
Tabel	2.5	Formulasi konfigurasi rigging dua speader bar dan satu spreader frame	18
Tabel	2.6.	Keterangan gambar padeye dan stiffner	23
Tabel	3.1.	Data beban pada setiap deck	31
Tabel	3.2.	Data karakteristik AEGIR	32
Tabel	4.1.	Data beban struktur	36
Tabel	4.2.	Hasil hidrostatis model	39
Tabel	4.3.	Hasil perhitungan tanpa spreader bar	41
Tabel	4.4.	Hasil perhitungan satu spreader bar	42
Tabel	4.5.	Hasil perhitungan dua spreader bar	43
Tabel	4.6.	Hasil perhitungan spreader frame	44
Tabel	4.7.	Load case	45
Tabel	4.8.	DAF sesuai lift weight	46
Tabel	4.9.	Beban kombinasi untuk dead load	47
Tabel	4.10.	Beban kombinasi	50
Tabel	4.11.	Mesh sensitivity	50
Tabel	4.12.	RAO gerakan maksimum setiap arah gelombang	56
Tabel	4.13.	Output maximum single amplitude accelerations	56
Tabel	4.14.	Hasil faktor dinamis akibat gerakan kapal	57
Tabel	4.15.	Hasil ballasting pada kondisi kedua	59
Tabel	4.16.	Stability Review Kondisi kedua	60
Tabel	4.17.	Hasil ballasting kondisi ketiga	61
Tabel	4.18.	Review stability kondisi ketiga	62
Tabel	4.19.	Hasil ballasting kondisi keempat	63
Tabel	4.20.	Review stability kondisi keempat	64
Tabel	4.21.	Unity check maksimum	65
Tabel	4.22.	Maksimum <i>sling force</i>	66

Tabel	4.23. Dimensi padeye	67
Tabel	4.24. Unity check dari padeye	68
Tabel	4.25. Hasil tegangan perhitungan dan ANSYS Workbench	71
Tabel	4.26. Input gaya pada ANSYS	71

DAFTAR LAMPIRAN

- Lampiran 1 Data Crane Vessel dan Layout Instalasi
- Lampiran 2 Input Pemodelan di Software Moses 7.0
- Lampiran 3 Input RAO, Ballasting, dan Stability di Software Moses 7.0
- Lampiran 4 Output RAO, Ballasting, dan Stability di Software Moses 7.0
- Lampiran 5 Pemodelan Deck Structure dengan SACS 5.7
- Lampiran 6 Perhitungan COG Shift dan Desain Padeye
- Lampiran 7 Output SACS 5.7
- Lampiran 8 Pemodelan Lokal Struktur Padeye dengan ANSYS Workbench

(halaman ini sengaja dikosongkan)

BAB I

PENDAHULUAN

1.1. Latar Belakang Masalah

Bangunan lepas pantai jenis *jacket structure* terdiri dari komponen utama yaitu deck, jacket, dan pile yang diproduksi di suatu *fabrication yard*. Setelah proses fabrikasi di yard maka akan dilanjutkan ke tahap instalasi ke *field* (tempat instalasi). Instalasi sebuah platform terdiri dari loadout dan transportasi dari beberapa komponen platform ke *installation site*, memposisikan platform pada *installation site* dan perakitan beberapa komponen struktur menjadi struktur yang lengkap sesuai dengan desain dan spesifikasinya (API RP 2A-WSD).Salah satu metode yang dipakai untuk instalasi *sebuah deck structure* adalah dengan metode lifting. Lifting adalah kegiatan memindahkan barang ataupun struktur dengan bantuan *crane* ataupun *crane vessel*. Lifting dengan menggunakan *specialized Crane Vessel* merupakan salah satu kegiatan yang paling penting di laut, menyangkut kriteria berikut , *Review of Weight Report, Assesment of Cppritical Elevation, Assesment Feasible Crane Vessel, Spreader frame, Spreader bars, Shackles, Padeyes , and Trunnions* (Soegiono , 2004).

Dalam proses instalasi *deck structure* maka hal utama yang diperhatikan adalah tidak terjadi kegagalan atau kerusakan pada *deck structure*. Padahal masih sering ditemui ketika proses *lifting* terjadi beberapa kendala, seperti kegagalan struktur atau patahnya *member frame* (Novanda,2012). Ketika proses instalasi di area lepas pantai sangat dipengaruhi oleh perilaku gelombang dan angin. Sehingga beban dinamis pada gerakan *crane vessel* dan *deck structure* akan mempengaruhi besarnya *tension* pada *sling* dan *padeye*. Tugas akhir ini hanya memperhitungkan akibat gaya angin terhadap pengangkatan *deck structure* dan gerakan *crane vessel* akibat gelombang operasi. Gaya angin setiap waktu akan berubah karena setiap jam kecepatan angin bisa berubah, sehingga menyebabkan gerakan *deck structure* ketika diangkat. Gerakan *crane vessel* ketika instalasi yang disebabkan oleh gelombang sangat diperhitungkan. Karena kenaikan tension sebagai fungsi tinggi gelombang signifikan dan beban gelombang yang mengenai luasan badan kapal (Rifta,2014). Gerakan yang diakibatkan dari gelombang dan angin menyebabkan *deck structure* bergerak fluktuatif. Tegangan akibat beban tambah dari gelombang dan angin pada *sling* dan *padeye* akan menyebabkan kegagalan pada proses *installation*.

Gambar 1.1. Komponen lifting

Skenario lifting suatu deck structure akan berhubungan dengan konfigurasi rigging yang digunakan, dan berkaitan erat dengan penentuan *lifting point* serta spreader bar (Ludfianto, 2012). Sehingga penempatan *padeye* atau *lifting point* sangat berpengaruh terhadap titik berat dari objek struktur yang diangkat. Penentuan jumlah dan letak dari *padeye* mempengaruhi kestabilan objek yang diangkat karena ketika beban dari struktur tidak terbagi secara merata akan menyebabkan overstress atau kegagalan pada salah satu member. Dalam tugas akhir yang telah diselesaikan oleh Ludfianto pada tahun 2012, penggunaan spreader bar akan mempengaruhi tegangan yang terjadi pada sling saat objek diangkat. Proses lifting dengan menggunakan spreader bar akan memperkecil tegangan yang terjadi. Menurut DNV pt2 Ch5-Lifting fungsi dari spreader bar adalah untuk mengurangi gaya compressive pada objek yang diangkat, mengurangi ketidakakuratan panjang sling, dan menghindari benturan antara sling dan objek yang diangkat. Selain *lifting* terdapat juga proses yang dikenal dengan stabilitas operasi lifting. Stabilitas operasi lifting merupakan analisis simulasi stabilitas yang dilakukan pada crane vessel ketika melakukan operasi pengangkatan beban berupa struktur yang berlangsung ditengah laut. Proses instalasi ketika ada pengangkatan deck structure dari barge ke jacket harus diperhatikan stability dan ballasting akibat penambahan dari berat deck.

Sesuai latar belakang yang dijabarkan maka dalam tugas akhir ini akan dilakukan analisis konfigurasi *rigging* terhadap kekuatan lokal *padeye* dan *stability* dari *crane vessel* pada proses *installation deck structure* dengan cara *lifting*.

1.2. Perumusan Masalah

Permasalahan yang diangkat dalam Tugas Akhir ini adalah:

- 1) Bagaimana ballasting dan stability dari crane vessel ketika proses installation?
- 2) Bagaimana desain konfigurasi rigging yang sesuai untuk proses instalasi deck structure?
- Berapa besarnya tegangan yang terjadi pada struktur *padeye* akibat perubahan konfigurasi rigging ?

1.3. Tujuan Penelitian

Berdasarkan perumusahan masalah diatas,tujuan yang ingin dicapai dari tugas akhir ini adalah sebagai berikut:

- 1) Mengetahui ballasting dan stability dari crane vessel ketika proses installation.
- 2) Mengetahui desain konfigurasi rigging yang sesuai untuk proses instalasi deck structure.
- Menghitung besarnya tegangan yang terjadi pada struktur *padeye* akibat perubahan konfigurasi *rigging*.

1.4. Manfaat Penelitian

Manfaat dari penulisan tugas akhir ini yaitu dapat dijadikan bahan pertimbangan dalam menentukan desain konfigurasi *rigging* pada saat proses *installation deck structure* dengan cara *lifting* dan mengetahui kekuatan local pada *padeye* saat proses *installation deck structure*.

1.5. Batasan Masalah

- Objek penelitian ini didapat dari project dari UL.A Platform yang dikerjakan oleh PT ZEE Indonesia.
- Data Crane vessel yang digunakan Kapal AEGIR dengan sarat operasi 10.5-11 m dan displacement 78489 ton.
- Analisis yang digunakan adalah analisis tegangan pada saat dilakukan proses lifting (*lifting stress analysis*).
- 4) Analisis tegangan dilakukan pada *deck structure* dan padeye dengan perubahan desain jumlah spreader bar dan spreader frame.
- 5) Material spreader bar yang digunakan tidak dianalisis dan diasumsikan sudah memenuhi kriteria yang ditetapkan.
- 6) Beban lingkungan yang diperhitungkan adalah dengan tinggi gelombang 2-2,5 m dan kecepatan angin 20 knot didapatkan dari standart operasi di code DNV dan noble denton.
- Pengelasan pada sambungan *deck leg* dan *padeye* diasumsikan tanpa cacat dan telah sesuai standart dan code yang digunakan.
- 8) Analisis ini tidak memperhitungkan tegangan yang terjadi pada mooring line.
- 9) Analisis gerakan relatif antara *crane vessel* ditinjau hanya gerakan vertikal saja yaitu *roll, heave*, dan *pitch*.
- 10) Boom crane dianggap struktur rigid, dynamic posittioning system tidak dimodelkan, dan struktur kapal tidak dilakukan pengkajian kekuatan.

(halaman ini sengaja dikosongkan)

BAB II

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 Tinjauan Pustaka

Lifting Operating adalah satu metode yang digunakan untuk instalasi sebuah anjungan lepas pantai. Pada proses *lifting* sendiri terkadang masih menemui beberapa kendala, seperti kegagalan atau patahnya *member frame* struktur.. hal ini seringkali ditemui karena pada saat analisis, yang dilakukan hanya sekedar analisis statis tanpa mempertimbangkan motion dari deck struktur itu sendiri ketika diangkat (Novanda, 2012).

Instalasi bangunan lepas pantai ketika menggunakan *crane vessel* maka akan sangat dipengaruhi oleh gelombang. Karena ketika proses instalasi *crane vessel* mengalami gerakan yang diakibatkan gelombang dan menyebabkan *tension* pada sling ketika *lifting*. Badan kapal mengalami beban gelombang paling besar akibat luasan badan kapal yang terkena tekanan gelombang juga besar, hal ini akan berimplikasi kepada harga tension yang dialami *sling* juga membesar seiring tingginya osilasi atau gerakan dari kapal.

Gerakan saat proses *lifting* salah satunya disebabkan oleh gaya angin sehingga ketika mengenai *deck structure* pada proses pengangkatan menyebabkan ayunan yang fluktuatif. Telah dilakukan penelitian bahwa respon dinamis dari struktur yang disebabkan beban angin adalah berupa fenomena ayunan (Pramita,2013). Ayunan ini bisa menyebabkan kegagalan pada struktur ketika proses pengangkatan karena adanya tegangan berlebih pada proses *lifting*. Untuk mengurangi tegangan berlebih maka harus ada penentuan *lifting point* pada titik terkuat struktur dan beban struktur bisa terbagi secara merata disetiap *lifting point*.

Telah dijelaskan oleh Pramita pada tahun 2013 bahwa untuk penempatan titik angkat perlu memperhatikan *lifting force*. Apabila struktur itu rentan, pada umumnya diberikan penguat pada titik angkat tersebut, guna mengurangi deformasi yang akan terjadi.

Selain dalam penentuan *lifting point* yang tepat, untuk mengurangi tegangan pada proses *lifting* maka bisa dengan penambahan *spreader bar* atau *spreader frame*. Telah dijelaskan oleh Ludfianto pada tahun 2012 bahwa nilai tegangan semakin kecil dengan penambahan *spreader bar* ataupun *spreader frame* dibanding pada proses *lifting* tanpa *spreader bar*. Thesis dari Li Liang pada tahun

2004 juga menjelaskan bahwa konfigurasi *rigging* merupakan salah satu faktor penting dalam analisis tegangan yang terjadi pada struktur yang diangkat, dan juga penentuan sudut angkat. Pemilihan *rigging* mempengaruhi sudut angkat *sling*, tinggi *hook* diatas struktur, tinggi *spreader* diatas struktur, dan susunan dari *spreader* itu sendiri.

Lifting stability merupakan analisis simulasi stabilitas yang dilakukan pada *crane vessel* ketik melakukan operasi pengangkatan beban berupa struktur yang berlaangsung di tengah laut (Rizal, 2013). Dalam analisa *lifting stability* selama proses pengangkatan yang perlu diperhatikan adalah stabilitas dan *ballasting* dari *crane vessel* ketika ada penambahan beban yang menyebabkan bergesernya titik berat kapal. Karen adanya pergeseran titik berat *crane vessel* maka perlu dilakukan penambahan ballast sesuai berat struktur yang dingkat.

Tegangan yang terjadi ketika proses *installation* pada *deck structure* yang tidak hanya disebabkan oleh beban statis tapi juga mempertimbangkan beban dinamik yang salah satunya akibat gaya angina dan gerakan kapal akibat gelombang. Karena sering kali analisis gerakan objek yang diangkat diasumsikan dengan nilai faktor dari DAF (*Dynamic Aplication Factor*). Dan jua perlu dilakukan perhitungan ballasting dan mengetahui stabilitas kapal selama proses instalasi.

2.2 Dasar Teori

2.2.1 Deck

Komponen ini berfungsi untuk menyokong peralatan, pengeboran dan kegiatan yang dikerjakan diatas air. *Deck* bisa dibagi-bagi menjadi beberapa tingkat sesuai dengan kebutuhan dan fungsi yang dibutuhkan. Beberapa tingkatan *deck* tersebut adalah:

- *Main deck (deck utama)*
- Cellar deck
- Mezzanine deck
- Upper Deck

Deck tidak menjadi satu kesatuan dengan *jacket* pada waktu saat pembuatan dan *launching, deck* disatukan dengan *jacket* pada saat *jacket* telah pada posisi terpancang.

Gambar 2.1. Deck UL.A platform

2.2.2 Lifting

Dalam sebuah proses instalasi maupun fabrikasi, *lifting* merupakan sebuah metode yang sangat dibutuhkan. *Lifting* dibutuhkan untuk memindahkan barang , menjaga posisi suatu plat, dan kegunaan lainnya. Proses *lifting* terdiri dari sebuah *crane, crane vessel, transport vessel* dan objek yang diangkat. *Crane vessel* pada proses *lifting* dibagi menjadi dua yaitu *light lift* dan *heavy lift*. *Light lift* beban yang diangkat maksimal 1-2 % dari *displacement crane vessel* sehingga tidak ada gerakan dari *vessel* yang mempengaruhi objek yang diangkat. Sedangkan untuk *heavy lift*, beban yang mampu diangkat minimal 1-2% dari *displacement crane vessel* dan tipikal beratnya beratnya lebih dari 1000 ton sehingga ada pengaruh beban dinamis dari *vessel* yang mempengaruhi objek ketika diangkat. Tipe *crane vessel* yang seri dipakai dalam pengangkatan di area lepas pantai. Tipe barge yaitu *crane vessel* dengan perandingan panjang kapal dibagi lebar kapal tidak lebih dari 3 dan mempunyai draft dangkal. Sedangkan tipe semi-submersible yaitu tipe memiliki konfigurasi struktur yang agak rumit dan secara umum mempunyai draft operasional yang lebih dalam daripada tipe barge.

2.2.3 Analisis Gerakan Crane Vessel

Gelombang sebagaimana halnya dengan fluida dinamis yang lain dapat dipandang sebagai aliran fluida cair yang mempunyai pola khas, yang dapat diformulasikan secara matematis dengan kaidah-kaidah hukum tertentu. Perumusan paling sederhana yaitu dalam bentuk osilasi sinusoidal yang dijelaskan pada buku " Perilaku dan Operabilitas bangunan laut diatas gelombang acak"

yaitu teori sinusoidal didasarkan pada asumsi bahwa tinggi gelombang adalah relatif kecil bila dibandingkan dengan panjang gelombang ataupun kedalaman perairan dimana gelombang berpropagasi. Propagasi gelombang yang merupakan aliran fluida secara umum dapat diidentifikasi oleh kecepatan partikel pada sembarang titik disuatu saat tertentu, sebagai berikut persamaannya:

 $\mathbf{V}(x,y,z,t) = \mathbf{u}(x,y,z,t)\mathbf{i} + \mathbf{v}(x,y,z,t)\mathbf{j} + \mathbf{w}(x,y,z,t)\mathbf{k}$(2.1)

Dimana

V = vektor kecepatan total,

x = sumbu kearah memanjang, dan posisi pada arah ini diukur dari titik awalnya,

y = sumbu kearah melintang, dan posisi pada arah ini diukur dari titik awalnya,

z = sumbu kearah vertikal, dan posisi pada arah ini diukur dari titik awalnya, yang dalam hal ini terletak dipermukaan air,

u = komponen kecepatan pada arah sumbu-x,

v = komponen kecepatan pada arah sumbu-y,

w = komponen kecepatan pada arah sumbu z,

i, **j**, **k** = vektor kecepatan pada arah sumbu-x, sumbu-y dan sumbu-z,

Karena fluida tidak bisa dimampatkan atau *incompressible* sehingga kecepatan pada sembarang titik dimedan alirannya V=(u,v,w) harus memenuhi persamaan kontinyuitas, yaitu sebagai berikut:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.$$
 (2.3)

Selanjutnya fluida diasumsikan sebagai partikel fluida tidak berotasi, sehingga setiap komponen kecepatan dapat dituliskan sebagai berikut:

$$u = \frac{\partial \phi}{\partial x}, v = \frac{\partial \phi}{\partial y}, w = \frac{\partial \phi}{\partial z}.$$
(2.4)

Potensial kecepatan ϕ merupakan fungsi matematis tertentu bila diturunkan secara sebagian terhadap salah satu sumbu koordinat akan memberikan kecepatan pada arah tersebut. Potensial kecepatan dibagi dua yaitu potensial kecepatan steady ϕ_s dan potensial kecepatan unsteady ϕ_T . Sedangakan untuk potensial kecepatan *unsteady*

Dimana $\phi_I \, dan \, \phi_D \, adalah$ potensial kecepatan dari gelombang insiden dan difraksi yang dipengaruhi elevasi gelombang. Sedangkan ϕ_j potensial kecepatan radiasi yang timbul akibat mode gerakan ke j. ζ adalah elevasi gelombang. Untuk setiap potensial kecepatan harus memenuhi syarat batas linier berikut:

1. Potensial steady pada posisi lambung rata-rata :

Pada permukaan bebas:

$$U^{2} \frac{\partial^{2} \phi_{s}}{\partial x^{2}} + \frac{\partial \phi_{s}}{\partial z} = 0$$
(2.7)

2. Potensial gelombang insiden dan potensial difraksi pada posisi lambung rata-rata :

$$\frac{\partial \phi_I}{\partial n} + \frac{\partial \phi_D}{\partial n} = 0 \tag{2.8}$$

Pada permukaan bebas:

$$\left[\left(i\omega - U\frac{\partial}{\partial x}\right)^2 + g\frac{\partial}{\partial z}\right](\phi_I\phi_D) = 0$$
(2.9)

3. Potensial kecepatan radiasi ϕ_j (j=1,2,3,4,5,6) pada posisi lambung rata-rata :

$$\frac{\partial \phi_j}{\partial n} = i\omega n_j + Um_j$$

Pada permukaan bebas:

$$\left[\left(i\omega - U\frac{\partial}{\partial x}\right)^2 \phi_j + g\frac{\partial}{\partial z}\phi_j\right] = 0....(2.10)$$

Setelah didapatkan syarat batas dai potensial kecepatan, maka selanutnya mencri gaya-gaya dan momen hidrodinamis dengan mengacu pada persamaan bernoulli:

$$p = -\rho \left(\frac{\partial \phi}{\partial t} + \frac{1}{2} \left| \nabla \phi \right|^2 + gz \right).$$
 (2.11)

Jika posisi lambung tidak terganggu dan tekanan dilinierisasi dengan memasukkan komponen orde-1 dalam ϕ_s dan ϕ_T maka didapatkan tekanan sebagai berikut:

Jadi jika P_k adalah tekanan pada permukaan lambung akibat gerakan pada arah tertentu, sehingga gaya pada arah j diperoleh dari:

$$F_j = \iint_{s} P_k n_j ds$$
 j,k = 1,2,...,6(2.13)

Dimana P_k adalah suku tekanan kompleks dan besaran F_j secara umum adalah matrik gaya 6 x 6 dalam bentuk kompleks.

Dengan asumsi gerakan osilasi adalah linier dan harmonik pada gelombang reguler, maka enam persamaan diferensial gerakan kopelnya dapat dituliskan sebagai berikut:

$$\sum_{n=1}^{6} \left[\left(M_{jk} + A_{jk} \right) \ddot{\zeta}_{k} + B_{jk} \dot{\zeta}_{k} + K_{jk} \zeta_{k} \right] = F_{j} e^{i\omega t}; j,k = 1....6$$
(2.14)

Dimana M_{jk} adalah matrik massa dan momen inersia massa bangunan laut, A_{jk} adalah matriks koefisien-koefisien massa tambah hidrodinamik. B_{jk} adalah matriks koefisien-koefisien redaman hidrodinamik, dan K_{jk} adalah matriks koefisien-koefisien kekakuan. F_j adalah matriks gaya eksitasi yang menyebabkan gerakan surge, sway, heave dan momen eksitasi yang menyebabkan gerakan gerakan roll, pitch, yaw. Sedangkan untuk ζ_k adalah elevasi percepatan gerak pada mode ke k, ζ_k adalah elevasi kecepatan gerak pada mode ke k, dan untuk ζ adalah elevasi gerakan pada mode ke k. Gerakan osilasi ini terdiri enam macam gerakan dengan tiga gerakan translasional dan tiga gerakan rotasional dalam tiga arah. Macam-macam gerakan ini meliputi:

- a. Gerakan Translasi
 - Surge, gerakan transversal arah sumbu x
 - Sway, gerakan transversal arah sumbu y
 - Heave, gerakan transversal arah sumbu z
- b. Gerakan Rotasional
 - Roll, gerakan rotasional arah x
 - Pitch, gerakan rotasional arah y
 - Yaw, gerakan rotasional arah z

Gambar 2.2. Moda gerakan crane vessel

2.2.4 Spektrum Gelombang

Pemilihan spektrum energi gelombang didasarkan pada kondisi real laut yang ditinjau. Bila tidak ada maka dapat digunakan model spektrum yang dikeluarkan oleh berbagai institusi dengan mempertimbangkan kesamaan fisik lingkungan. Dari spektrum gelombang dapat diketahui parameter-parameter gelombang :

Profil Gelombang	Amplitudo	Tinggi
Gelombang Rata-rata	$1,25\sqrt{m_0}$	$2,5\sqrt{m_0}$
Gelombang Signifikan	$2,00\sqrt{m_0}$	$4,00\sqrt{m_0}$
Rata-rata 1/10 Gelombang Tertingi	$2,55\sqrt{m_0}$	$5,00\sqrt{m_0}$
Rata-rata 1/1000 Gelombang Tertingi	$3,44\sqrt{m_0}$	$6,67\sqrt{m_0}$

Tabel 2.1. Amplitudo dan tinggi gelombang pada spektrum

dimana :

$$m_0 = \text{Luasan dibawah kurva spektrum (zero moment)} = \int_{0}^{\infty} S(\omega) d\omega$$
(2.15)

Spektrum gelombang yang dipakai dalam tugas akhir ini adalah spektrum JONSWAP. Persamaan spektrum JONSWAP merupakan modifikasi dari persamaan spektrum Pierson-Morkowitz yang disesuaikan dengan kondisi laut yang ada. Persamaan spektrum JONSWAP dapat ditulis sebagai berikut :

dimana :

- γ = parameter puncak (peakedness)
- τ = parameter bentuk (shape parameter)

untuk $\omega \le \omega_0 = 0.07$ dan $\omega \ge \omega_0 = 0.09$

 $\alpha = 0,0076 (X_0)^{-0,22}$, untuk X₀ tidak diketahui $\alpha = 0,0081$

$$\omega_0 = 2\pi \left(\frac{g}{U_\omega}\right) (X_0)^{-0.33}$$

$$X_0 = \frac{g X}{U_{\omega}}$$

Sedangkan nilai dari parameter puncak (γ) dapat ditentukan dengan menggunakan rumus Toursethaugen (1985) sebagai berikut :

dimana :

 T_p = Periode puncak spektra ; H_s = tinggi gelombang

Dalam penentuan parameter puncak (γ) untuk perairan Indonesia dalam bukunya Djatmiko tentang "Perilaku dan Operabilitas Bangunan Laut di atas gelombang acak " maka secara umum menggunakan harga γ antara 2 sampai dengan 2.5. hal ini untuk mengurangi dominasi energy yang dikontribusikan oleh frekuensi tertentu saja.

2.2.5 Response Amplitude Operator

Response Amplitude Operator (RAO) atau disebut juga dengan *Transfer Function* merupakan fungsi respon gerakan dinamis struktur yang disebabkan akibat gelombang dengan rentang frekuensi tertentu. RAO merupakan alat untuk mentransfer gaya gelombang menjadi respon gerakan dinamis struktur. Menurut Chakrabarti (1987), persamaan RAO dapat dicari dengan rumus sebagai berikut :

$$RAO(\omega) = \frac{X_p(\omega)}{\eta(\omega)}$$
(2.18)

dimana :

$$X_p(\omega)$$
 = amplitudo struktur dan $\eta(\omega)$ = amplitudo gelombang

Spektrum respons didefinisikan sebagai respons kerapatan energi pada struktur akibat gelombang. Spektrum respons merupakan perkalian antara spektrum gelombang dengan RAO kuadrat, secara matematis dapat ditulis sebagai berikut :

$$S_R = [RAO(\omega)]^2 S(\omega)$$
(2.19)

dimana :

$$S_R = \text{spektrum respons (m^2-sec)}$$
 $S(\omega) = \text{spektrum gelombang (m^2-sec)}$
 $RAO(\omega) = \text{transfer function}$ $\omega = \text{ferkuensi gelombang (rad/sec)}$

Response spectra didefinisikan sebagai *response energy density* pada struktur akibat gelombang, dalam hal ini berupa *energy density spectrum*. Untuk sistem linier, fungsi dari RAO merupakan fungsi kuadrat. *Response spectra* itu sendiri merupakan perkalian antara spektrum gelombang dengan RAO kuadrat. Response spectra dapat digunakan untuk mengetahui besarnya respon maksimum yang mungkin terjadi dalam suatu rentang waktu tertentu. Respon *extreme* maksimum yang terjadi dengan tingkat probabilitas dari suatu kejadian sebesar 62,3% dapat dicari dengan persamaan (Chakrabarti, 1987) sebagai berikut :

Sedangkan respon extreme maksimum yang mungkin terjadi pada saat proses perancangan dapat dicari berdasarkan persamaan diatas dengan mempertimbangkan faktor peluang terlampauinya suatu kejadian α sebagai berikut :

dimana :

T = lama kejadian badai (storm propagation) = 3 jam

 α = tingkat keyakinan/batas toleransi pada saat perancangan (1% - 5%)

- m₀ = zeroth moment (luasan di bawah kurva) $\int_0^\infty S_{(\omega)} d\omega$
- m₂ = second moment $\int_0^\infty \omega^2 S_{(\omega)} d\omega$

2.2.6 Kondisi Pembebanan

Pada dasarnya beban pada proses *lifting* yang harus diperhitungkan meliputi beban statis, beban lingkungan, beban dinamis, dll.

2.2.6.1 Beban Statis

Beban statis merupakan beban mati dari struktur dek pada proses *lifting*. Beban statis ini bisa dimodelkan dalam pemodelan dan ada juga hanya ditransformasikan dalam bentuk beban. Untuk beban yang tidak dimodelkan seperti beban structural, *grating, safety net, plating, handrails, stairs, crane,* dan beban peralatan meliputi beban *electrical, piping,* dan *mechanical*. Sehingga semua beban tersebut ditransformasikan menjadi beban yang bekerja pada *main beam* dan *secondary beam*. Sedangkan untuk *main beam, secondary beam,* dan *leg* akan dimodelkan dalam pemodelan struktur dek, sehingga menjadi beban struktur ataupun *deadload*.

2.2.6.2 Beban Dinamis

Dalam proses *lifting* efek dinamis akan mempengaruhi proses *lifting* dikarenakan akibat pergerakan dari *crane vessel*, pergerakan *barge*, dan pergerakan objek yang diangkat. Sudah dijelaskan pada DNV pt2 Ch5-lifting bahwa beban dinamis dalam proses *lifting* sangat diengaruhi oleh parameter dari susunan rigging, kondisi *crane*, berat struktur, dan beban lingkungan. Untuk beban dinamis ini dijadikan beban statis dengan memberi nilai faktor yang disebut *Dynamic*

Amplification Factor (DAF). Nilai DAF dalam Noble Denton untuk proses *lifting* dengan *crane* tunggal berdasarkan berat objek yang diangkat dan lokasi *lifting* sesuai tabel dibawah ini.

Cross weight W	DAF			
(tonnes)	Offshore	Floating	Onshore	
		Inshore	Moving	Static
W ≤100	1.30	1.15		1.00
100 < W <u><</u> 500	1.25	1.10		1.00
500 < W <u><</u> 1,000	1.20	1.10		1.00
1,000 < W ≤ 2,500	1.15	1.05		1.00
2,500 < W <u><</u> 10,000	1.10	1.05		1.00

Tabel 2.2. Nilai faktor DAF (Guideline Noble Denton-marine lifting)

2.2.6.3 Beban Angin

Beban angin akan sangat berpengaruh pada proses *lifting* yang menggunakan *crane vessel*. Gaya angin ditentukan dari data kecepatan angin dan arah yang berdasarkan waktu dan elevasi. Gaya angin yang bekerja pada saat proses *lifting* diperhitungkan dari kecepatan angin. Persamaan untuk menghitung gaya angin yang yang mengenai objek ketika diangkat menurut Dawson adalah sebagai berikut.

 $F = (\rho/2) Cs A (V)^2$(2.22)

Dimana F adalah gaya angin, p adalah massa jenis udara (suhu dan tekanan standart), Cs adalah koefisien bentuk dari struktur yang terkena gaya angin, A adalah luasan struktur yang terkena angin. Sedangkan V adalah kecepatan angin berdasarkan kecepatan per jam yang terjadi. Sedangkan nilai koefisien bentuk ditentukan berdasarkan API RP 2A WSD sebagai berikut.

 Tabel 2.3. Koefisien bentuk (API RP 2A WSD,2005)

Struktur	Cs
Beam	1.5
Cylinder	0.5
Sides of Building	1.5
Projected Area of Platform	1.0

2.2.7 Teori dan Formula rigging

Desain dari sistem *rigging* sling bergantung pada *lift point* (titik terkuat di modul), ketersediaan sling, struktur spreader, dan hook point. Dengan kata lain, semua komponen dari *lift point* ke *hook point* sangat dipertimbangkan. Susunan *rigging* secara umum, sistem sling dapat terdiri dari tiga, empat, enam, delapan atau lebih *lift point*, dan spreader bar atau frame digunakan untuk melindungi modul dari gaya *compressive* atau benturan antara peralatan lain. Konfigurasi *rigging* sangat menentukan beban dan gaya untuk mendesain semua komponen *lifting* seperti dimensi sling, *shackle, padeye*, dan spreader bar atau frame. Konfigurasi *rigging* juga salah satu faktor yang menentukan dalam analisis tegangan modul dan menentukan sudut angkat.

Konfigurasi *rigging* yang mana dipengaruhi oleh *lift point*, panjang sling *rigging*, dan bentuk spreader dapat ditentukan dengan formula matematis dan *hook point*. Hook dapat ditentukan berapa yang dibutuhkan satu (*main* atau *jib hook*) atau dua-duanya (*main* dan *jib hook*). Formulasi matematis juga dapat menentukan sudut *sling*, tinggi *hook* diatas modul, tinggi *spreader* diatas modul, dan tinggi hook diatas *spreader*.

Parameter bentuk dalam menentukan konfigurasi rigging sebagai berikut (Li Liang, 2004):

- H₄ = Tinggi *hook* dari titik modul teratas tanpa struktur *spreader* ataupun tinggi dari *spreader* dari atas modul dengan spreader.
- H_5 = Tingi hook dari atas spreader (dengan spreader) atau 0 (tanpa spreader)
- Li = panjang sling
- Θ_i = sudut sling terhadap horizontal
- (X_c,Y_c) = lokasi dari *centre of gravity* (COG) dari modul
- W_m,L_m,H_m= lebar, panjang, dan tinggi dari modul

 $W_h,L_h = lebar dan panjang hook$

- W_{sp},L_{sp} = lebar dan panjang spreader
- Sistem Rigging sling dengan empat lift point

Sistem *rigging sling* dengan empat *lift point* sering digunakan pada instalasi modul di lepas pantai yang mana *lift point* dapat ditempatkan di *leg* dari modul ataupun komponen struktur terkuat.

• Menggunakan *crane* tunggal

Rencana tipikal *rigging* terhadap posisi *hook* sangat tergantung pada posisi COG dengan konfigurasi empat sling yang sama, dua pasang sling yang sama, dan empat sling yang tidak sama.Sedangkan *spreader* berfungsi untuk menghindari gaya tekan yang luas dalam modul untuk melindungi modul atau peralatan dari kerusakan. dalam aplikasi yang sebenarnya, struktur *spreader* dapat terdiri dari *spreaders bar* atau *spreader frame*. Tiga tipe penyusunan struktur *spreader* yaitu satu *spreader bar*, dua *spreader bar* disusun secara parallel, dan *spreader frame*. Menurut Li liang pada tahun 2004 formulasi matematis untuk parameter geometris dari keempat tipe desain berdasarkan tabel 2.4. dan tabel 2.5. sebagai berikut :

Tipe konfigurasi	Parameter dan formulasi
rigging	
Tanpa <i>spreader</i> bar	$\theta_{i} = \cos^{-1} \left(\frac{\sqrt{(D_{x}/2 - W_{h}/2 + x_{i})^{2} + (D_{y}/2 - L_{h}/2 + y_{i})^{2}}}{L_{i}} \right)$ $(i = 1,2,3,4) \text{ di mana}$ $x_{1} = x_{2} = x_{c}, x_{3} = x_{4} = -x_{c};$ $y_{1} = y_{2} = y_{c}, y_{3} = y_{4} = -y_{c}$ $H_{4} = \sqrt{(L_{1})^{2} - (D_{x}/2 - W_{h}/2 - x_{c})^{2} + (D_{y}/2 - L_{h}/2 + y_{c})^{2}}$
Satu spreader bar	$\theta = \cos^{-1}\left(\frac{\sqrt{(D_x/2)^2 + (D_y/2 - L_{sp}/2)^2}}{L'}\right)$ $H_4 = \sqrt{(L')^2 - (D_x/2)^2 - (D_y/2 - L_{sp}/2)^2}$ $\gamma = \cos^{-1}\left(\frac{\sqrt{(L_{sp}/2 - L_h/2)^2}}{L''}\right)$ $H_5 = \sqrt{(L'')^2 - (L_{sp}/2 - L_h/2)^2}$

Tabel 2.4. Formulasi konfigurasi rigging tanpa speader dan satu spreader bar

Tipe konfigurasi	Parameter dan formulasi
rigging	
Dua spreader bar	$(D_y - L_h)/2$
secara paralel	$\psi = \cos \left(\frac{1}{\sqrt{(L')^2 - (D_X/2 - W_{sp}/2)^2}} + \sqrt{(L'')^2 - (D_X/2 - W_{sp}/2)^2} \right)$
	$H_4 = \sqrt{(L')^2 - (D_x / 2 - W_{sp} / 2)^2} \sin(\phi)$
	$H_5 = \sqrt{(L'')^2 - (W_{sp} / 2 - W_h / 2)^2} \sin(\phi)$
	$D_{sp} = D_x - 2\sqrt{(L')^2 - (D_x/2 - W_{sp}/2)^2} \cos(\phi)$
	$\theta = \cos^{-1}\left(\frac{\sqrt{(D_x/2 - W_{sp}/2)^2 + (D_y/2 - D_{sp}/2)^2}}{L'}\right)$
	$\gamma = \cos^{-1}\left(\frac{\sqrt{(W_{sp} / 2 - W_h / 2)^2 + (D_{sp} / 2 - L_h / 2)^2}}{L''}\right)$
Spreader frame	$\theta = \cos^{-1}\left(\frac{\sqrt{(D_x/2 - W_{sp}/2)^2 + (D_y/2 - L_{sp}/2)^2}}{L'}\right)$
	$H_4 = \sqrt{(L')^2 - (D_x/2 - W_{sp}/2)^2 - (D_y/2 - L_{sp}/2)^2}$
	$\gamma = \cos^{-1}\left(\frac{\sqrt{(W_{sp} / 2 - W_h / 2)^2 + (L_{sp} / 2 - L_h / 2)^2}}{L''}\right)$
	$H_5 = \sqrt{(L'')^2 - (W_{sp}/2 - W_h/2)^2 - (L_{sp}/2 - L_h/2)^2}$

Tabel 2.5. Formulasi konfigurasi rigging dua speader bar dan satu spreader frame

Gambar 2.3. Konfigurasi rigging dengan crane tunggal tanpa spreader (Li Liang,2004)

Gambar 2.4. Konfigurasi Rigging dengan Satu Transversal Spreader Bar (Li Liang, 2004)

Gambar 2.5. Konfigurasi Rigging dengan dua Paralel Spreader Bar (Li Liang, 2004)

Gambar 2.6. Konfigurasi Rigging dengan Spreader Frame (Li Liang, 2004)

Didalam gambar 2.3. sampai gambar 2.6. menunjukkan sketsa desain dari setiap konfigurasi *rigging*. Dimana θ dan γ adalah sudut dari sling dibawah dan diatas *spreader* terhadap bidang horizontal, untuk ϕ adalah sudut antara bidang nyata sling dan bidang horizontal, D_{sp} adalah jarak antara dua *spreader bar*. Untuk L' dan L'' adalah panjang dari sling di bawah dan diatas *spreader*.

2.2.8 Desain Sling

Sling adalah salah satu perlengkapan yang digunakan dalam proses *lifting*. *Sling* berguna untuk memudahkan proses *lifting*, karena berfungsi sebagai penyambung dari *hook crane* ke *shackle* pada *padeye* yang terdapat pada benda yang akan di*lifting*. *Sling* biasanya berbentuk tali atau kawat baja silindris dengan kekuatan maksimal tertentu sesuai dengan kriteria dan spesifikasi pembuat sling tersebut. Akan tetapi, beberapa proses *lifting* juga bisa memakai *polyester sling* atau *webbing sling*. Jenis *sling* tersebut dipakai dalam proses *lifting* barang yang tidak terlalu berat dan tidak terlalu rumit pemasangannya.

Untuk mengetahui jenis *sling* yang kita gunakan, perlu mencari *sling design load* atau beban yang akan diangkut oleh *sling*. *Sling design load* dapat dicari dengan persamaan berikut:

Sling Design Load (SWL) = (safety factor X SSL (termasuk Skew factor X DAF)).....(2.23) Dimana:

SSL = *maximum static sling load*, yaitu kapasitas beban terberat yang akan diangkat oleh sling tersebut.

Safety factor = sebuah angka koefisien keamanan. Angka ini bergantung dari *code* atau *standard* yang dipakai oleh klien.

Setelah mendapatkan *sling design load*, kita dapat mencari jenis *sling* yang akan digunakan dari beberapa jenis katalog dengan melihat *nominal strength* dari *sling* tersebut. Bentuk komponen *sling* dapat dilihat pada gambar 2.7, *sling* terdiri beberapa wire yang menjadi satu.

Gambar 2.7. Bentuk sling

2.2.9 Desain Shackle

Shackle adalah sebuah logam berbentuk U yang memiliki pengaman berupa pin dengan baut, atau *loop* besi yang aman, ataupun dengan mekanisme *quick-release locking pin. Shackle* adalah bagian utama dari proses *rigging*. Pada kapal, *shackle* biasanya berfungsi sebagai penghubung utama
rantai jangkar kapal, ataupun pada penambat. Pada proses *lifting, shackle* berguna untuk menghubungkan *sling* dari *crane* dengan *padeye* yang ada pada beban yang diangkat atau pada *spreader bar*. Dalam memilih jenis *shackle* yang akan digunakan, kita perlu mencari *shackle design load* atau biasa disebut *working load limit* dengan persamaan berikut:

WLL = SSL (termasuk DAF dan Skew load).....(2.24)

Dimana:

SWL (WLL)= Working Load Limit, yaitu kapasitas terberat yang
dapat diangkat atau ditahan oleh shackle.

Nilai safety factor tidak dimasukkan karena ketika dalam pembuatan shackle sudah ada nilai *safety factor* sendiri. Setelah didapatkan nilai WLL, kita dapat memilih jenis *shackle* dari katalog-katalog yang ada, seperti *Crosby*, *Green Pin*, *Balmoral*, dan jenis lain sesuai permintaan dari klien. Sebagai berikut contoh bentuk shackle dapat dilihat pada gambar 2.8.

Gambar 2.8. Shackle

2.2.10 Desain Padeye

Padeye merupakan perangkat yang berguna untuk memudahkan proses lifting. Biasanya *padeye* berada di benda yang akan diangkat, seperti plat pada kapal maupun *platform*. Selain bersifat permanen, *padeye* ada yang bersifat sementara. Pemasangan *padeye* biasanya dengan cara dilas, sedangkan pada *padeye* yang bersifat sementara bisa dihilangkan atau dibuang setelah proses *lifting* selesai. *Padeye* merupakan sebuah *lifting point*, atau titik pusat *lifting*, karena *padeye* berfungsi untuk menghubungkan benda yang akan di-*lift* dengan *shackle* dan *sling* yang terhubung dengan *crane*. Oleh karena itu, perlu banyak perhitungan secara detail mengenai kekuatan dari *padeye* agar tidak terjadi kegagalan saat proses *lifting* berlangsung.

Pada gambar 2.9 adalah contoh gambar antara *padeye* dan *deckleg*. Beberapa hal yang masuk pertimbangan dalam mendesain sebuah *padeye* adalah menghitung diameter dari *padeye*, perlu atau tidaknya *cheek plate*, tebal plat, dan perhitungan beban *stress* yang mampu diterima oleh *padeye* tersebut. Gaya yang diterima oleh padeye terdiri dari beban statis dan beban dinamis.

Gambar 2.9. Padeye

Prosedur desain *Padeye* berdasarkan PHE ONWJ *guidance* (PHE ONWJ-C-PRC-006, section 9.5.7)

• Data

Skew load factor	= SKL
Dynamic Amplification Factor	= DAF
Consequence Factor	= CF
Sudut <i>sling</i> , deg	$= \theta$
Static Sling Force, KN	= Pd

Gambar 2.10. Detail Padeye tampak X-Z dan Y-Z

Gambar 2.11. Detail Stiffner

Keterangan	Main plate	Cheek plate	Stiffner
Ketebalan (mm)	Tm	Tc	ts
Jari-jari (mm)	r _m	r _c	
Panjang total (mm)	Lm		Ws
Tinggi (mm)	H _m		Hs
Yield strength (MPa)	Fy	Fy	Fy

 Tabel 2.6. Keterangan gambar padeye dan stiffner

Gambar 2.12. Desain shackle

Keterangan gambar:

Safe Working Load, Ton	= SWL
Diameter pin, mm	$= \mathbf{D}_{sk}$
Padeye Hole, mm	= Dh
Static Sling Load, Ton	= SSL
Diameter Sling, mm	$= D_{sl}$
Prosedur design <i>padeye</i> :	
• <i>Padeye</i> design load (Pd)	= SSL (termasuk DAF,SKL) x CF(2.25)
Material yield strength	$= F_{V}$

Cek kekuatan padeye around hole

Gambar 2.13. Padeye tampak samping

• Cek Pin bearing :

Diameter pin, mm	= d	
Tebal main plate dan cheek plate,mm	= Tt	
Luasan <i>Bearing</i> , mm ²	= Tt x d	(2.26)
Allowable bearing stress (Fp), MPa	= 0.9 Fy	(2.27)
Actual bearing stress (fp), MPa	= Pd / Ap	(2.28)
Stress Ratio, (SR)	$= \mathbf{f}_{\mathbf{p}} / \mathbf{F}_{\mathbf{p}}$	(2.29)

Gambar 2.14. Shear failure pada padeye

Cek Pin Pullout:

Jari-jari main plate, mm	$= r_m$
Tebal main plate, mm	$= T_m$
Jari-jari <i>cheek plate</i> , mm	$= r_c$
Tebal cheek plate, mm	$= T_c$
Diameter lubang, mm	= Dh
Shear area (A_v), mm ²	$= 2[t_m(r_m-Dh/2)+2t_c(r_c-Dh/2)](2.30)$
Allowable shear stress (F _v), MPa	= 0.4Fy(2.31)
Actual tensile stress (ft), MPa	= Pd/Av(2.32)
Stress Ratio, (SR)	$= \mathbf{f}_{\mathbf{t}} / \mathbf{F}_{\mathbf{v}}(2.33)$

Gambar 2.15. *Tension failure* sepanjang *cheek plate* pada *padeye*

• Cek Tension failure pada bagian cheek plate

Tebal <i>main plate</i> , mm	$= T_m$
Jari-jari <i>cheek plate</i> , mm	$= r_c$

$=1,25\pi$
= Lt1 T _m r _c (2.34)
= 0.6 Fy(2.35)
= Pd/At(2.36)
$= \mathbf{f}_{\mathbf{t}} / \mathbf{F}_{\mathbf{t}}(2.37)$

Gambar 2.16. Tension failure pada padeye

•	Cek Tension Failure pada pinhole	
	Allowable tension, (Ft)	= 0.45Fy(2.38)
	Panjang bagian tensile failure,	=Lt2
	Luasan Tensile	$= (t_m x(R_m - D_h/2)) + (2(r_c - D_h/2)t_c)(2.39)$
	Actual tension stress, (ft)	= Pd / At(2.40)
	Stress Ratio,(SR)	$= f_t / F_t$ (2.41)

Cek Kekuatan Padeye connection

Gaya tarik,	$= P_t$
Gaya geser	$= P_v$
• Cek <i>shear stress</i>	

 $= 0.40 F_y$(2.42) Allowable shear stress, (F_v)

Panjang mainplate
Ketebalan mainplate
Shear Area, (A _v)
Actual Shear Stress, (fv (inplane))
Stress Ratio

- Cek Tensile Stress
 - Allowable Tensile Stress, (Ft) Tensile Area, Actual Tensile Stress, (ft) Stress Ratio
- Cek Inplane Bending Stress

Allowable Bending Stress, Fb Moment , Actual Bending stress, (fb) Stress Ratio

• Cek Out of Plane Bending Stress

Allowable Bending Stress, Fb Out of Plne force Moment , Actual Bending stress, (fb) Stress Ratio

• Cek tegangan Von- Mises

Allowable stress,(Fvon misses) Actual Stress, fx fv (outplane) tx

Tegangan von-mises, fvm

$= L_m$	
$= T_m$	
$= (L_m x T_m)$	(2.43)
$= P_v / A_v$	(2.44)
$= f_v / F_v$	(2.45)

= 0.60 F _y	(2.46)
$= (t_m L_m) + 2(W_s x T_s)$	(2.47)
$= \mathbf{P}_t / \mathbf{A}_t$	(2.48)
$= \mathbf{f}_t / \mathbf{F}_t$	(2.49)

$= 0.6 \text{ x F}_{\text{y}}$	(2.50)
$= P_{v} x H_{s} - P_{t} x (Lm - Xc)$	(2.51)
= Moment / moment inertia x-x	(2.52)
$= (f_b / F_b)$	(2.53)

= 0,6 x F _y	(2.54)
= 5% x Pd	(2.55)
= force x ($H_s + 0.5$ Dh)	(2.56)
= <i>Moment / moment inertia</i> y-y	(2.57)
$= (f_b / F_b)$	(2.58)

$$= 0,9 F_y$$
(2.59)

= ft + fb (inpln) + fb (outln)	(2.60)
= out of plane force / A	(2.61)
$= \sqrt{[f(inplane)^2 + f(outplane)^2]}$	(2.62)

=
$$\sqrt{[f_v(inplane)^2 + f_v(outplane)^2]...(2.62)}$$

$$= \sqrt{[f_x^2 + (3\tau_x^2)]}....(2.63)$$

2.2.11 Stabilitas Crane Vessel

Pada saat air tenang *crane vessel* memiliki titik berat dan gaya *bouyancy* (gaya apung) yang tetap dan tidak ada gerakan. Namun jika ada massa tambah yang terjadi akibat proses pengangkatan, maka akan terjadi perubahan titik berat dan terjadi gerakan *crane vessel*. Gaya hidrostatik dan momen dikarenakan lingkungan seperti gelombang berinteraksi dengan kapal. *Volume bouyancy* yang tercelup adalah volume kapal yang terendam yang berada dibawah garis air dan memiliki titik *bouyancy*. Titik berat (*center of gravity*) adalah titik berat kapal dalam keadaan statik (Journee dan Massie, 2001).

Gambar 2.18. Definisi titik tengah dan gaya (journee and Massie,2001)

Kapal atau bangunan apung dikatakan dalam keadaan kesetimbangan atau *balance* yaitu ketika resultan semua gaya dan resultan semua momen sama dengan nol. Tiga perbedaan keadaan kesetimbangan atau tipe stabilitas dapat dibedakan berdasarkan gangguan pada posisi kesetimbangan, yaitu:

- 1. Jika, terjadi gangguan, struktur kembali ke posisi kesetimbangan maka bisa disebut struktur tersebut dalam keadaan *stable equilibrium* atau memiliki stabilitas positif.
- 2. Jika, terjadi gangguan, struktur tetap dalam posisi tidak terjadi perubahan maka bisa disebut struktur dalam keadaan *neutral equilibrium* atau memiliki stabilitas netral.
- 3. Jika, terjadi gangguan, struktur mengalami penyimpangan dari keadaan kesetimbangan cenderung meningkat, sehingga struktur bisa disebut dalam keadaan *unstable equilibrium* atau memiliki stabilitas negativ.

-Parameter IMO Untuk Intact Stability

Untuk menjamin keselamatan kapal dalam hal *intact stability*, maka standar IMO yang harus dipenuhi:

Gambar 2.19. Righting moment dan heeling moment

Pada gambar 2.19 menunjukkan kurva *rigting moment* dan *heeling moment* dari kapal,bisa dijelaskan sebagai berikut :

- 1. Luasan dibawah kurva GZ sampai dengan 40° tidak boleh kurang dari 0,09 meter-radian atau 5,16 meter-degree.
- 2. Tinggi metasentra awal (GM) tidak boleh kurang dari 0.15 meter.
- 3. Jarak lengan momen pengembali (GZ) tidak boleh lebih kecil dari 0,15 m pada saat kemiringan kapal sama dengan atau lebih dari 30⁰.

BAB III

METODOLOGI PENELITIAN

3.1. Diagram Alir Penelitian

Metode penelitian yang digunakan didalam menyelesaikan Tugas Akhir ini akan dijelaskan dalam *flow chart* berikut:

Gambar 3.1. Diagram alir pengerjaan Tugas Akhir

Gambar 3.2. Diagram alir pengerjaan Tugas Akhir (Lanjutan)

3.2. Prosedur Penelitian

Adapun prosedur dan langkah-langkah penelitian dalam Tugas Akhir ini dijelaskan sebagai berikut:

1. Identifikasi dan Perumusan Masalah

Dalam melakukan sebuah penelitian tahap awal yang perlu dilakukan adalah mengidentifikasi masalah yang akan diangkat dalam topik tugas akhir. Identifikasi merupakan suatu pernyataan bahwa terdapat suatu permasalahan yang akan dijelaskan penyebabnya serta bagaimana langkah penyelesaiannya. Dari perumusan masalah kemudian ditetapkan tujuan penelitian agar penelitian menjadi jelas dan terarah. Selanjutnya dilakukan studi literatur dan studi lapangan untuk mencari referensi serta penelitian terdahulu yang kemudian dapat dijadikan perbandingan mengenai gap yang ditemukan.

2.Studi Literatur

Untuk membantu dalam penulisan tugas akhir ini diperlukan banyak literatur-literatur yang mendukung seperti buku, *codes*, dan jurnal yang terkait, hal ini berfungsi sebagai pengembangan wawasan dan analisis.

3.Pengumpulan Data

Pada tahap ini dilakukan pengumpulan data yang diperlukan sebagai bahan untuk mendukung hipotesa dari penelitian. Data yang akan diolah berkaitan dengan proses lifting deck structure ULA. Data yang diperlukan antara lain:

a. Data ULA Platform beban pada setiap deck.

Tabel 3.1. Data beban pada setiap deck

Description	Basic Weight (kips)	total load (kips)
Structural Dead Load	183.54	
Non Generated Dead Load – Main Deck	41.96	
Non Generated Dead Load – Cellar Deck	19.13	
Non Generated Dead Load – Subcellar Deck	8.78	205.94
Non Generated Dead Load – Wellhead Deck	6.29	303.84
Non Generated Dead Load – Deck Misc.	44.91	
Installation Aid (Cradle Weight)	1.25	
Sub Total : Dead Load	305.84	
Equipment Dry Load – Main Deck	62.69	
Equipment Dry Load – Cellar Deck	18.77	
Equipment Dry Load – Subcellar Deck	3.41	128.96
Crane Self Weight	44.10	
Sub Total : Equipment Dry Load	128.96	
Piping Dry Load – Main Deck	46.99	
Piping Dry Load – Cellar Deck	43.62	
Piping Dry Load – Wellhead Mezzanine Deck	5.56	99.80
Piping Dry Load – Sub Cellar Deck	3.63	
Sub Total : Piping Operating Load	99.80	
Electrical & Instrument Load – Main Deck	11.04	
Eletrical & Instrument Load – Cellar Deck	9.26	20.30
Sub Total : Electrical & Instrument Load	20.30	
TOTAL	554.90	554.90

b.Data *crane vessel*

Data kapal mengacu pada data kapal AEGIR data meliputi data ukuran utama kapal dan *General Arrangement*.

Dimensi	Nilai	satuan
Panjang keseluruhan (LOA)	211.48	m
Panjang diantara 2 garis tegak (LPP)	197.6	m
Lebar (B)	46.2	m
Tinggi (H)	16.1	m
Sarat operasi (T)	10.5	m
Displasemen Operasi	78489	ton
Volume displasemen	76575	m ³
Luas bidang garis air	8161.9	m ²
Posisi titik berat (COG) dengan crane up		
LCG (dari stern)	97.07	m
TCG (positif <i>portside</i>)	-0.16	m
VCG (dari lunas)	13.36	m
Tinggi Metacentra		
GMT	9.6	m
GML	310.49	m

Tabel 3.2. Data karakteristik AEGIR

Gambar 3.3. General arrangement kapal AEGIR

- 4. Pemodelan
 - a. Pemodelan deck structure UL.A pada software SACS dengan desain rigging.
 - b. Pemodelan crane vessel pada software MOSES.
- 5. Perhitungan meliputi berat struktur, COG deck structure, pergeseran COG, dan desain rigging.
- 6. Hasil analisis *crane vessel* dengan *software moses* menghasilkan RAO (*Respone Amplitide Operator*), percepatan *crane boom*, *ballasting*, dan *Stability*.
- 7. Menentukan *dynamic amplification factor* dari percepatan gerakan *crane boom* dan membandingkan dengan nilai *dynamic aplification factor* dari code Noble denton-*marine lifting*.
- 8. Penggabungan model deck structure dengan penambahan beban angin.
- 9. Penentuan sling design load, shackle design load, ukuran shackle, dan desain padeye.
- 10. Analisis kekuatan struktur *padeye* pada software ANSYS meliputi *shear stress, deformation, von-mises stress.*
- 11. Kesimpulan hasil analisis.

(halaman ini sengaja dikosongkan)

BAB IV

ANALISIS DATA DAN PEMBAHASAN

4.1 Data

4.1.1 Data Struktur

Data struktur yang digunakan dalam tugas akhir ini adalah data UL.A Platform berlokasi pada UL *field* . Struktur akan berfungsi sebagai Wellhead Platform dengan beberapa level deck.

- 1. Main Deck elevasi (+) 58'-0"
- 2. Wellhead Mezzanine Deck elevasi.(+) 41'-8"
- 3. Cellar Deck elevasi (+) 33'-0"
- 4. Subcellar Deck Elev. (+) 23'-0"

Gambar 4.1. Struktur deck platform

4.1.2. Beban Struktur

Pada tugas akhir ini dalam pembebanan model struktur dek yaitu dengan beban statis meliputi beban yang dimodelkan dan beban hanya ditranformasikan pada struktur. Untuk *main beam, secondary beam,* dan *Deck leg* akan dimodelkan dalam pemodelan struktur dek, sehingga menjadi

beban struktur ataupun *deadload*. Untuk beban yang tidak dimodelkan seperti beban structural, *grating, safety net, plating, handrails, stairs, crane,* dan beban peralatan meliputi beban *electrical, piping,* dan *mechanical*. Sehingga semua beban tersebut ditransformasikan menjadi beban yang bekerja pada *main beam* dan *secondary beam*.

Description	Basic Weight (kips)	total load (kips)
Structural Dead Load	183.54	
Non Generated Dead Load – Main Deck	41.96	
Non Generated Dead Load – Cellar Deck	19.13	
Non Generated Dead Load – Subcellar Deck	8.78	305 84
Non Generated Dead Load – Wellhead Deck	6.29	505.04
Non Generated Dead Load – Deck Misc.	44.91	
Installation Aid (Cradle Weight)	1.25	
Sub Total : Dead Load	305.84	
Equipment Dry Load – Main Deck	62.69	
Equipment Dry Load – Cellar Deck	18.77	
Equipment Dry Load – Subcellar Deck	3.41	128.96
Crane Self Weight	44.10	
Sub Total : Equipment Dry Load	128.96	
Piping Dry Load – Main Deck	46.99	
Piping Dry Load – Cellar Deck	43.62	
Piping Dry Load – Wellhead Mezzanine Deck	5.56	99.80
Piping Dry Load – Sub Cellar Deck	3.63	
Sub Total : Piping Operating Load	99.80	
Electrical & Instrument Load – Main Deck	11.04	
Eletrical & Instrument Load – Cellar Deck	9.26	20.30
Sub Total : Electrical & Instrument Load	20.30	
ΤΟΤΑΙ	554.90	554.90

Tabel 4.1. Data beban struktur

4.1.3 Data Crane Vessel

Crane *vessel* yang digunakan dalam proses instalasi yaitu menggunakan AEGIR dengan kapasitas angkat cranenya paling besar pada *main hoist* sebesar 4000 mton. Berdasarkan *Load chart* dari data crane AEGIR telah memenuhi dalam melakukan proses instalasi. *Load chart* dapat dilihat pada lampiran "load chart crane".

4.2 Pemodelan

Pemodelan yang dilakukan dengan pemodelan crane vessel AEGIR dan struktur dek Wellhead Platform. Pertama melakukan pemodelan crane vessel AEGIR dengan bantuan software maxsurf sesuai acuan gambar General Arrangement (GA) dan principal dimension. Setelah dilakukan pemodelan di MOSES untuk mendapatkan stabilitas statis, ballasting setiap tahap instalasi, respone amplitude operator (RAO), dan gaya pada ujung boom crane. Pada pemodelan ketiga melakukan pemodelan struktur dek dengan software SACS 5.7 untuk mendapatkan self weight, COG struktur, Sling force, dan stress ratio pada member dek. Kemudian dilakukan pemodelan lokal pada struktur padeye dari struktur dek dengan bantuan software ANSYS workbench.

4.2.1 Pemodelan Crane Vessel AEGIR

Hasil pemodelan lambung pada software maxsurf ditunjukkan gambar 4.2:

Gambar 4.2. Pemodelan lambung pada software maxsurf

Setelah pemodelan lambung di *software* Maxsurf maka dilakukan pemodelan di *software* Moses 7.0. Pada pemodelan di Moses menggunakan hasil koordinat offset yang didapatkan di pemodelan lambung pada Maxsurf. Pemodelan di Moses 7.0 dilakukan pemodelan beserta *Crane* yang sesuai dengan *General Arrangement* (GA).

Gambar 4.3. Pemodelan pada software Moses 7.0

Gambar 4.3 menunjukkan model lambung dari kapal yang di modelkan pada *software* Moses dan Maxsurf akan divalidasi dengan data yang didapatkan dari data kapal sebenarnya dan dari tugas akhir sebelumnya. Sehingga dengan syarat yang telah sesuai dengan DNV yaitu jika koreksi/selisih antara model numerik dibandingkan data kurang dari 2%.

Parameter	data	maxsurf	moses	satuan	koreksi maxsurf(%)	koreksi moses(%)
					interiouri (70)	110505(70)
LOA	211,48	211,48	211,48	m	0	0
Lebar	46,2	46,2	46,2	m	0	0
Tinggi	16,1	16,1	16,1	m	0	0
Tinggi sarat operasi	10,5	10,5	10,5	m	0	0
displacement operasi	78489	78511	78049.41	ton	0.03	-0.56
volume displacement	76575	76595	76145.77	m ³	0.03	-0.56
water plane area	8161.9	8327.708	8304	m ²	1.98	1.74
GMT	9.69	9.76	9.8	m	0.72	1.22
GML	310.5	307.014	305.96	m	-1.14	-1.46
KMT		23.169	23.28	m		
KML		320.414	319.29	m		
BMT		17.459	17.52	m		
BML		314.703	313.54	m		
KB		5.71	5.75	m		
Cb		0.768				
Cm		0.996				
Cw		0.877				

 Tabel 4.2. Hasil hidrostatis model

Menurut DNV hasil model lambung kapal memenuhi karena nilai koreksi tidak melebihi dari 2%.

4.2.2 Pemodelan Struktur Dek UL.A Platform

Pemodelan yang dilakukan adalah pemodelan global dari struktur dek *UL.A platform* untuk mendapatkan *self weight*, COG struktur, *sling force*, dan *unity check* pada member dek. Setelah itu langkah pertama yaitu menentukan COG struktur dek dan *self weight*. Sehingga untuk *self weight* dari struktur dek sebesar 183,53634 kips dan beban yang diangkat sebesar 740,436 kips (335,8561 mton). Posisi COG struktur dek adalah X = -1,816 ft, Y = -15,26 ft, dan Z = 43,328 ft.

Gambar 4.4. Pemodelan struktur dek di SACS 5.7

4.3 Perhitungan Konfigurasi Rigging

Langkah selanjutnya, pemodelan struktur dek beserta konfigurasi rigging bertujuan untuk mendapatkan nilai *sling force*, dan *stress ratio* dari *member* dek. Dengan menggunakan formula perhitungan konfigurasi rigging dari "thesis Li Liang". Dalam perhitungan yang ditinjau adalah dimensi tinggi hook, panjang *sling*, sudut angkat *sling*, panjang dan lebar *spreader bar* maka didapatkan sebagai berikut.

Wmn (panjang deck arah x) = 41,251 ft

Lmn (lebar deck arah y) = 41,813 ft

Dx (jarak antara *deck leg*) = 30 ft

Dy (jarak antara *deck leg*) = 25,98 ft

Lh (Lebar hook) = 1 ft

Wsp (Panjang spreader bar) = 30 ft

Sudut angkat minimum $= 60^{\circ}$

1. Perhitungan tanpa spreader bar

formula	Dimensi
$\theta_{i} = \cos^{-1}\left(\frac{\sqrt{(D_{x}/2 - W_{h}/2 + x_{i})^{2} + (D_{y}/2 - L_{h}/2 + y_{i})^{2}}}{L_{i}}\right)$	$ heta_1 = 62,9^0$ $ heta_2 = 60^0$
$(i = 1, 2, 3, 4) \dim ana$	$\theta_3 = 60^\circ$
$x_1 = x_2 = x_c, x_3 = x_4 = -x_c$	$\theta_4 = 61^0$
$y_1 = y_2 = y_c, y_3 = y_4 = -y_c$	
$H_{4} = \sqrt{(L_{1})^{2} - (D_{x}/2 - W_{h}/2 - x_{c})^{2} + (D_{y}/2 - L_{h}/2 + y_{c})^{2}}$	$H_4 = 28 ft$

Tabel 4.3. Hasil perhitungan tanpa spreader bar

Gambar 4.5. Pemodelan struktur dek tanpa *spreader bar*

Sudut angkat minimum yang digunakan sesuai standart code DNV *marine lifting* dan Noble Denton yaitu sebesar 60^0 maka didapatkan tinggi minimum titik angkat yaitu 28 ft dari atas main deck.

2. Perhitungan dengan satu spreader bar

 Tabel 4.4. Hasil perhitungan satu spreader bar

Gambar 4.6. Pemodelan struktur dek dengan satu spreader bar

Sudut angkat minimum yang digunakan sesuai standart code DNV *marine lifting* dan Noble Denton yaitu sebesar 60^0 maka didapatkan tinggi minimum titik angkat yaitu 62,338 ft dari atas main deck.

3. Perhitungan dengan dua spreader bar

Dengan estimasi panjang sling L' dan L" secara berurutan sebesar 24 ft dan 28 ft. Sehingga didapatkan hasil perhitungan sebagai berikut:

formula	Dimensi
$\phi = \cos^{-1}\left(\frac{(D_y - L_h)/2}{\sqrt{(L')^2 - (D_x/2 - W_{sp}/2)^2} + \sqrt{(L'')^2 - (D_x/2 - W_{sp}/2)^2}}\right)$	φ=79,8576°
$H_{4} = \sqrt{(L')^{2} - (D_{x}/2 - W_{sp}/2)^{2}} \sin(\phi)$	H ₄ = 25,745 ft
$H_{5} = \sqrt{(L'')^{2} - (W_{sp} / 2 - W_{h} / 2)^{2}} \sin(\phi)$	$H_5 = 44,07 \text{ ft}$
$D_{sp} = D_x - 2\sqrt{(L')^2 - (D_x/2 - W_{sp}/2)^2} \cos(\phi)$	$D_{sp} = 16.8 \text{ ft}$
$\theta = \cos^{-1}\left(\frac{\sqrt{(D_x/2 - W_{sp}/2)^2 + (D_y/2 - D_{sp}/2)^2}}{L'}\right)$	$\theta = 66846^{\circ}$
$\gamma = \cos^{-1}\left(\frac{\sqrt{(W_{sp} / 2 - W_h / 2)^2 + (D_{sp} / 2 - L_h / 2)^2}}{L''}\right)$	$\gamma = 78,36^{\circ}$

· · · ·	Tabel 4.5. Hasil	perhitungan	dua s	spreader	bar
---------	------------------	-------------	-------	----------	-----

Gambar 4.7. Pemodelan struktur dek dengan dua spreader bar

Sudut angkat minimum yang digunakan sesuai standart code DNV *marine lifting* dan Noble Denton yaitu sebesar 60⁰ tapi dalam perhitungan mendapatkan efisiensi sudut angkat 66,846⁰ maka didapatkan tinggi minimum titik angkat yaitu 69,819 ft dari atas main deck.

4. Perhitungan dengan spreader frame

Dengan estimasi panjang sling L' dan L" secara berurutan sebesar 26 ft dan 60 ft. Sehingga didapatkan hasil perhitungan sebagai berikut:

Tabel 4.6. Hasil perhitungan spreader frame

Hook point

Spreader frame

Gambar 4.8. Pemodelan struktur dek dengan spreader frame

Sudut angkat minimum didapatkan yaitu sebesar 85,61⁰ maka tinggi minimum titik angkat yaitu 83,191 ft dari atas main deck.

Dari keempat desain konfigurasi rigging melalui *software* SACS 5.7 akan didapatkan nilai *sling force* dan *unity check* member dek dengan masing-masing. *Sling force* akan digunakan untuk menentukan dimensi besarnya *sling* dan mendesain *padeye*. *Unity check* member dek digunakan untuk mengecek member dari struktur dek mampu menahan tegangan yang terjadi selama proses instalasi dengan metode *lifting*.

4.4 Load Case

Г

Load case adalah beban yang mengenai struktur yang dimodelkan. Sehingga dalam pembebanan pada *software* SACS 5.7 *load case* yang digunakan sebagai berikut:

Load Case	Deskripsi
1	Structural Dead Load
21	Non Generated Dead Load – Main Deck
22	Non Generated Dead Load – Cellar Deck
23	Non Generated Dead Load – Subcellar Deck
24	Non Generated Dead Load – Wellhead Deck
25	Non Generated Dead Load – Deck Misc.
30	Installation Aid (Cradle Weight)
101	Equipment Load – Main Deck
102	Equipment Load – Cellar Deck
103	Equipment Load – Subcellar Deck
501	Crane Self Weight
201	Piping Load – Main Deck
202	Piping Load – Cellar Deck
203	Piping Load – Wellhead Mezzanine Deck
204	Piping Load – Sub Cellar Deck
301	Electrical & Instrument Load – Main Deck
302	Electrical & Instrument Load – Cellar Deck
401	Wind load - 0^0
402	Wind load - 90°
CGV1	CoG Shift Dummy Loads (+X+Y)
CGV2	CoG Shift Dummy Loads (+X-Y)
CGV3	CoG Shift Dummy Loads (-X+Y)
CGV4	CoG Shift Dummy Loads (-X-Y)

Tabel 4.7. Load case

4.5 Load Combination

Load combination adalah kombinasi dari pembebanan beban-beban yang mengenai ke struktur ketika proses instalasi dengan metode *lifting*. *Load combination* dalam analisa ini terdiri dari beban statis dan beban dinamis. *Load case* yang sudah ditetapkan tadi dikombinasi dengan faktor yang telah ditetapkan. Kombinasi dari *load case* dan faktor beban ini nantinya akan menjadi beban yang mengenai struktur. Beban statis pada struktur dek terdiri dari beban *selfweight* sedangkan beban dinamis pada struktur terdiri dari beban statis, beban angin, dan faktor dinamis akibat pergerakan kapal.

Beban statis merupakan beban dari struktur dek di udara, termasuk didalamnya beban struktural, *grating, handrails, plating, stairs,* beban *mechanical,* beban *electrical,* beban perpipaan, dan *crane* sesuai data utama dek yang akan ditransformasikan menjadi beban ke setiap beam-beam . Sedangkan *main beam, secondary beam, deck leg* dimodelkan dalam pemodelan.

Beban dinamis akibat beban lingkungan selama proses lifting akan ditransformasikan sebagai faktor dinamis. Beban gerakan akibat gelombang akan ditransformasikan menjadi faktor beban pada beban statis. Faktor beban dinamis yang di aplikasikan sesuai dengan code Noble Denton (*guidelines for lifting operating by floating crane*) sebagai berikut

Companying the UK	DAF						
(tonnes)	Offeboro	Floating	Onshore				
	Unshore	Inshore	Moving	Static			
W ≤100	1.30	1.15		1.00			
100 < W ≤ 500	1.25	1.10		1.00			
500 < W <u><</u> 1,000	1.20	1.	1.10				
1,000 < W ≤ 2,500	1.15	1.05		1.00			
2,500 < W < 10,000	1.10	1.	05	1.00			

Tabel 4.8. DAF sesuai lift weight

Beban Akibat Pergeseran *Center of Gravity* berdasarkan pada dokumen *lifting*, beban ini akibat ayunan struktur dek ketika diangkat sehingga titik angkat bergeser. Sehingga terjadi pertambahan beban pada salah satu sisi strukrur pada proses pengangkatan. Dengan pendekatan matematis dari terdistribusinya beban statis pada setiap *deck leg* maka akan diketahui beban disetiap pergeseran titik angkat. Menurut dokumen *lifting*, COG awal akan digeser sejauh 1~2 meter kearah +X+Y, +X-Y, -X+Y, dan –X+Y. Dari nilai beban statis dan COG awal struktur dek akan didapatkan reaksi disetiap *deck leg* untuk pergeseran titik COG. Selanjutnya nilai reaksi tersebut dimasukkan sebagai

inputan beban pada setiap titik pergeseran COG. Untuk perhitungan reaksi beban pergeseran COG terdapat pada lampiran 6 " perhitungan COG dan Desain *padeye*".

Load Combination dan Faktornya

Load combination adalah beban-beban yang akan diaplikasikan ke struktur dek selama proses *lifting*. Beban kombinasi pada *software* SACS 5.7 sebagai berikut:

	Basic Load Description	Pre Load Combination Factor DEAD		
1	Structual Dead Load	1.07		
21	Non Generated Dead Load – Main Deck	1.07		
22	Non Generated Dead Load – Cellar Deck	1.07		
23	Non Generated Dead Load – Subcellar Deck	1.07		
24	Non Generated Dead Load – Wellhead Deck	1.07		
25	Non Generated Dead Load – Deck Misc.	1.07		
101	Equipment Dry Load – Main Deck	1.12		
102	Equipment Dry Load – Cellar Deck	1.12		
103	Equipment Dry Load – Subcellar Deck	1.12		
201	Piping Dry Load – Main Deck	1.12		
202	Piping Dry Load – Cellar Deck	1.12		
203	Piping Dry Load – Wellhead Mezzanine Deck	1.12		
204	Piping Dry Load – Subcellar Deck	1.12		
301	Electrical & Instrument Load – Main Deck	1.20		
302	Electrical & Instrument Load – Cellar Deck	1.20		
401	Wind load arah 0 ⁰	1		
402	Wind load arah 90 ⁰	1		
501	Crane Selfweight	1.12		
CGV*	CoG Shift Dummy Loads	1		

 Tabel 4.9. Load combination untuk dead load

	Load Combination Factor	
2000	DAF load = Dead load x DAF (Dynamic amplication factor)	1.25
3000	Skew load = DAF load x SKL (skew load factor)	1.1
4000	Static hook load = dead load + additional load	1
4500	Dynamic hook load = static hook load x DAF	1.25
7000	Lift point design load = skew load x Consequence factor	1.35
ENV0	Sling load = static hook load + wind load - 0^0	1
ENV9	Sling load = static hook load + wind load - 90°	1
PAD0	Global check = Lift point design load + (wind load - $0^0 \times 1,35$)	1
PAD9	Global check = Lift point design load + (wind load - 90° x 1,35)	1

Tabel 4.10. Load combination

Untuk kondisi pembebanan yang diaplikasikan distruktur dek pada *software* SACS 5.7 yaitu ENV0, ENV9, PAD0, dan PAD9. Kondisi pembebanan ENV0 dan ENV9 adalah beban mati dari struktur ditambah dengan beban lingkungan angin disetiap arah X dan Y. Dan digunakan untuk menentukan berapa besar sling *tension* yang terjadi pada setiap sling. Sedangkan PAD0 dan PAD9 adalah kombinasi beban mati yang sudah dikalikan beberapa faktor meliputi faktor dinamis, faktor skew load, dan *consequence factor* dan ditambahkan beban lingkungan berupa angin. Kondisi pembebanan pada kode PAD digunakan untuk mengecek secara global kekuatan dari struktur dek selama proses instalasi terutama pada titik angkatnya dan mendapatkan gaya untuk mendesain dimensi padeye.

4.2.3 Pemodelan dengan ANSYS Workbench

Hasil dari analisis di *software* SACS 5.7 pada setiap model akan didapatkan nilai *sling force* untuk *lift point*. Nilai *sling force* terkecil pada *lift point* dari semua model konfigurasi rigging akan digunakan pada perhitungan dimensi sling,shackle, dan *padeye*. Komponen *padeye* pada proses pengangkatan sangat perlu ditinjau karena beban angkat akan bertumpu pada komponen ini. Sehingga desain padeye harus didesain mampu menahan beban yang diangkat.

Gambar 4.9. Pemodelan 3D padeye

Dengan menggunakan autocad 3D dilakukan pemodelan padeye yang akan dianalisis pada *software* ANSYS Workbench. Pada analisis *padeye* di ANSYS Workbench dengan static structural bertujuan untuk mendapatkan tegangan *von-mises*, tegangan geser, dan deformasi. Dari semua pemodelan konfigurasi *rigging* nilai *sling force* terkecil yang digunakan sebagai inputan beban pada *padeye*. *Padeye* perlu dilakukan analisis lokal karena merupakan komponen penting dalam proses *lifting*. Semua beban angkat akan bertumpu pada *padeye* sehingga harus didesain kuat dan safety dalam proses *lifting*.

Gambar 4.10. Input pemodelan geometri padeye pada ANSYS Workbench

Dalam gambar 4.10 merupakan hasil inputan model padeye dari autocad 3D ke geometri ANSYS Workbench. Selanjutnya menentukan *support* terlebih dahulu yaitu dengan menggunakan *fixed support* terdapat pada bagian *padeye* yang dianggap fix dan tidak mengalami deformasi. Kemudian nilai *sling force* digunakan sebagai beban pada struktur *padeye*. *Force* pada analisis menggunakan komponen *force* dalam arah X Y Z.

Gambar 4.11. Support dan force pada padeye

Gambar 4.11 bagian kiri menunjukkan letak support pada komponen padeye yang dianggap tetap atau tidak mengalami deformasi. Sedangkan gambar sebelah kanan menunjukkan gaya yang menjadi beban pada komponen *padeye* yang diinputan secara komponen X Y Z pada luasan *eye*. Gaya yang diinput secara komponen X Y Z akan membentuk gaya dengan sudut Θ terhadap sumbu horisontal.

Langkah selanjutnya menentukan kerapatan meshing, dengan metode tetrahedron dan besarnya meshing dilakukan *mesh sensitivity*. *Mesh sensitivity* merupakan variasi kerapatan meshing untuk memperoleh tegangan yang konstan pada titik yang sama. Dari hasil tegangan yang dihasilkan, yaitu *equivalent stress* didapatkan selisih hasil kurang dari 5%. Ketika mendapatkan ukuran meshing dengan nilai tegangan yang konstan maka model akan digunakan untuk analisis selanjutnya. Dengan nilai *sling force* yang dinputkan sebesar 453,3826 kips (205.651 mton) dan iterasi ukuran meshing disajikan pada tabel 4.11 dibawah ini.

ukuran meshing(mm)	14	13	12	11	10	9	8	7
tegangan(Mpa)	180,2	181,9	180,67	180,2	194,2	206,2	204,02	225,5

Gambar 4.12. Grafik dari mesh sentivity

Dari grafik pada gambar 4.12 dapat diketahui bahwa dari ukuran kerapatan meshing yang semakin bertambah tegangan yang dihasilkan semakin menurun. Dan ketika nilai kerapatan meshing 11 – 14 mm tegangan yang dihasilkan menjadi konstan pada titik tertentu.

Gambar 4.13. Model padeye dengan Mesh 12 mm

Gambar 4.13 menunjukkan visualisasi mesh ukuran 12 mm pada pemodelan *padeye*. Selanjutnya tahap terakhir melakukan *running* untuk mendapatkan hasil *equivalent von-mises, shear stress, normal stress,* dan *total deformtion*.

4.3 Gerakan Crane vessel AEGIR

Perhitungan beban gelombang dilakukan untuk mendapatkan gerakan kapal yang berupa *Response Amplitude Operator* (RAO) dan *single amplitude accelerations*. Karakteristik kapal ketika terapung bebas (*free floating*) maka akan mode gerakan vertikal akan lebih dominan dibanding dengan gerakan horizontal. Gerakan vertikal yang dimaksud adalah *heave, pitch*, dan *roll* sedangkan untuk gerakan horizontal didefinisikan untuk gerakan *surge, sway*, dan *yaw. Running* model dilakukan dengan Moses 7.0 untuk mendapatkan *amplitude* respon gerakan masing-masing kapal pada kondisi *free floating* untuk arah pembebanan 0⁰ (buritan kapal), 45⁰ (perempat buritan kapal), 90⁰ (sisi kapal), 135⁰ (perempat haluan kapal) dan 180⁰ (haluan kapal). Grafik fungsi transfer (RAO) kapal dari setiap arah pembebanan dapat dilihat dari grafik pada gambar 4.4 dan seterusnya. Dari grafik RAO dapat dilihat bahwa sumbu x menunjukkan fungsi frekuensi (ω) dan sumbu y menunjukkan fungsi RAO. Untuk yang pertama dibahas adalah mode gerakan vertikal yaitu sebagai berikut.

Untuk RAO gerakan *roll* seperti terlihat pada gambar 4.14, pada frekuensi 0,4189 rad/s terjadi RAO *Roll* mempunyai harga 6,22 deg/m untuk sudut pembebanan 90^o . Pada frekuensi rendah 0,2513 rad/s mempunyai harga RAO gerakan 3,936 deg/m. Setelah mengalami kenaikan tajam pada frekuensi 0,4189 rad/s setelah itu mengalami penurunan tajam nilai RAO gerakan *Roll* sampai bertahap seiring bertambahnya frekuensi.

Gambar 4.14. RAO gerakan roll

Pada gambar 4.14 untuk nilai RAO gerakan *Roll* pada sudut pembebanan arah 45^o dan 135^o juga cukup tinggi tapi masih dibawah sudut pembebanan arah 90^o. Nilai tertinggi pada arah pembebanan 45^o terjadi pada frekuensi 0.4189 rad/sec dengan nilai RAO gerakan *Roll*nya 3,603 deg/m dan 3,899 deg m. Arah pembebanan diseperempat haluan dan buritan akan cenderung

mendekati sama tergantung bentuk badan kapal yang terkena gelombang. Sedangkan untuk arah pembebanan 0⁰ dan 180⁰ nilai RAO gerakan *Roll* tidak terlalu signifikan.

Gerakan *pitch* kapal pada saat *free floating* memiliki nilai RAO gerakan sekitar 1 derajad pada amplitudo eksitasi gelombang satu meter. Pada gambar 4.15 menunjukkan untuk arah gelombang 90⁰ lebih kecil nilai RAO gerakannya dibandingkan dengan arah pembebanan yang lainnya. Pada sudut pembebanan 180⁰ dan 135⁰ mendapatkan nilai puncak RAO gerakan *pitch* secara berurutan sebesar 1.097 deg/m dan 1,041 deg/m tapi terjadi pada frekuensi yang berbeda. Dan pada sudut pembebanan arah 45⁰ juga mempunyai niilai RAO gerakan yang cukup tinggi yaitu 0,874 deg/m terjadi pada frekuensi 0,4189 rad. Pada sudut pembebanan 0⁰ dan 180⁰ titik puncak nilai RAO gerakanya terjadi pada frekuensi yang sama yaitu 0.4833 rad/s.

Gambar 4.15. RAO gerakan pitch

Gerakan *heave* saat kapal mengapung bebas dengan tidak ada kecepatan. Gambar 4.16 dapat dilihat pada arah 90⁰ atau arah sisi kapal mempunyai nilai RAO gerakan awal sebesar 1,006 m/m dan nilai terbesar terjadi pada frekuensi 0,5712 rad/s dengan RAO gerakan 1,051 m/m. Nilai RAO gerakan *heave* naik secara bertahap sampai frekuensi 0,5712 rad/s setelah itu mengalami penurunan tajam sampai frekuensi 1,3963 rad/s dan naik lagi nilainya pada frekuensi 1,5708 rad/s tapi tidak terlalu signifikan. Untuk arah dari haluan dan buritan kapal besar nilai RAO nya mendekati 1 m/m dan mengalami penurunan tajam sampai frekuensi 0,6976 rad/s tapi pada gelombang arah haluan mengalami kenaikan lagi pada frekuensi 1,0472 rad/s sebesar 0042 m/m. Pada gelombang arah 45⁰ atau perempat sisi kapal nilai RAO gerakannya lebih besar dibandingkan arah gelombang dari haluan dan buritan, pada arah perempat sisi kapal gelombang mengalami penurunan sampai dengan frekuensi 1,1424 rad/s. Gerakan heave terjadi pada setiap arah pembebanan kapal.

Gambar 4.16. RAO gerakan heave

Untuk gerakan arah horizontal yaitu *surge, sway,* dan *Yaw* nilai RAO gerakan akan cenderung mendekati nilai 1 pada frekuensi rendah ataupun frekuensi nol. Sehingga dalam frekuensi nol dimaksudkan sama dengan air tenang karena periode gelombang tak terhingga, menurut (Djatmiko,2012) sehingga tidak pernah dan tidak perlu lagi dibahas. Untuk gerakan *sway,* terlihat seperti pada gambar 4.17 nilai RAO gerakan paling besar terjadi pada arah gelombang dari sisi kapal. Nilai RAO gerakan yang terjadi adalah sebesar 1,774 m/m pada frekuensi 0,25 rad/s dan selanjutnya arah gelombang dari perempat sisi kapal bagian haluan dan buritan nilai RAO gerakan sebesar 0,843 m/m dan 0,907 m/m terjadi pada frekuensi rendah yaitu 0,25 rad/s juga. Pada arah buritan dan haluan kapal untuk nilai RAO gerakan *sway* secara teoritis tidak akan terjadi tapi dalam komputasi masih ada nilai walaupun sangatlah kecil.

Gambar 4.17. RAO gerakan sway

Meninjau pada gerakan *surge*, seperti halnya dengan gerakan heave dan pitch akan didominasi oleh gelombang buritan diikuti gelombang perempat haluan dan haluan. Dapat dilihat pada gambar 4.18, arah gelombang buritan dan perempat buritan mempunyai nilai RAO *surge* yang sama yaitu sebesar 1,091 m/m pada frekuensi renda yaitu 0,2513 rad/s dan selanjutnya mengalami penurunan

tajam sampai nilai RAO gerakan mendekati nol. Seperti arah gelombang dar buritan kapal terjadi juga pada arah gelombang haluan dan gelombang perempat haluan yaitu nilai tertinggi secara berurutan sebesar 0,77 m/m dan 0,824 m/m semua terjadi pada frekuensi 0,251 rad/s, dan mengalami penurunan tajam setelah itu. Pada gelombang sisi berpengaruh sangat kecil dan tidak signifikan.

Gambar 4.18. RAO gerakan surge

Memperhatikan kurva RAO gerakan *yaw* dalam gambar 4.19, gelombang pada perempat haluan dan perempat buritan sangatlah signifikan untuk nilai RAO gerakan yaitu sebesar 0,888 deg/m dan 0,788 deg/m terjadi pada frekuensi 0,503 rad/s. Pada frekuensi 0,251 rad/s mengalami penurunan tajam nilai RAO gerakannya. Pada umumnya gelombang-gelombang menyilang atau *oblique waves* akan menyebabkan terjadinya gerakan akan menyebabkan terjadinya gerakan *yaw*. Namun gerakan yaw akan semakin mengecil pada saat gelombang berpropagasi mendekati arah gelombang sisi atau 90^o yaitu dengan nilai tertinggi 0,209 deg/m dikarenakan faktor simetri memanjang kapal. Gerakan *yaw* pada arah haluan dan buritan secara teori tidak akan terjadi karena faktor simetri kapal kearah melintang yaitu nilai RAO gerakan terbesar secara berurutan sebesar 0,025 deg/m dan 0,048 deg/m.

Gambar 4.19. RAO gerakan Yaw

Untuk nilai RAO gerakan maksimum disetiap arah gelombang bisa dilihat pada tabel 4.12 dibawah ini.

Moda Gerakan	unit		Max				
		0 deg	45 deg	90 deg	135 deg	180 deg	
surge	m/m	0,77	0,824	0,167	1,091	1,091	1,091
sway	m/m	0,07	0,843	1,774	0,907	0,091	1,774
heave	m/m	0,401	0,655	1,068	0,606	0,275	1,068
roll	deg/m	0,835	3,603	6,22	3,899	0,965	6,22
pitch	deg/m	0,803	0,874	0,229	1,041	1,097	1,097
yaw	deg/m	0,031	0,888	0,209	0,788	0,058	0,888

 Tabel 4.12. RAO gerakan maksimum setiap arah gelombang

Tabel 4.13 menunjukkan hasil dari analisis *maximum single amplitude accelerations* dengan MOSES 7.0 adalah

heading							
	surge	sway	heave	roll	pitch	yaw	Mag
0	0,284	0,003	0,211	0,001	0,109	0,001	0,354
45	0,23	0,207	0,28	0,073	0,117	0,055	0,417
90	0,175	0,857	0,467	0,242	0,104	0,126	0,991
135	0,256	0,196	0,2	0,058	0,16	0,09	0,379
180	0,178	0,001	0,102	0,001	0,091	0,001	0,205

 Tabel 4.13. Output maximum single amplitude accelerations

Nilai pada tabel 4.13 adalah *output single amplitude accelerations* akan digunakan untuk perhitungan faktor dinamis akibat gerakan kapal yang terkena gelombang. Gerakan vertikal sangat berpengaruh pada efek dinamis pada *crane vessel* seperti gerakan heave dan pitch yang saling mempengaruhi. Maka untuk *single amplitude vertical accelaration* pada point tertentu. Maka untuk percepatan vertikal nilai heave akan ditambah dengan percepatan nilai pitch sehingga
didapatkan nilai percepatan vertikal $((\ddot{z}_{\xi})_a = (\ddot{z}_a)^2 + \xi^2 (\ddot{z})_a (\ddot{0})_a^2 + 2(\ddot{z})_a (\ddot{0})_a \xi \cos \varepsilon)$. Sehingga dalam mencari load factor dinamik bisa dirumuskan sebagai berikut.

Load factor =
$$1 + \frac{(\ddot{z}_{\xi})_a}{g}$$

Dengan nilai g adalah grafitasi bumi sebesar 9,81 m/s². Maka dapat ditentukan nilai load factor disetiap sudut pembebanan pada *crane vessel* dan akan dibandingkan dengan nilai DAF (*dynamic amplification factor*) sesuai code noble denton (*guideline for marine lifting*). Didapatkan nilai faktor dinamis sebagai berikut :

heading	g	faktor dynamic
0	9,81	1,036085627
45	9,81	1,042507645
90	9,81	1,101019368
135	9,81	1,038634047
180	9,81	1,020897044

Tabel 4.14. Hasil faktor dinamis akibat gerakan kapal

Dari hasil perhitungan pada tabel 4.14 didapatkan nilai faktor dinamis terbesar 1,101, sehingga berdasarkan Noble Denton (*guideline for marine lifting*) nilai tersebut sudah memenuhi. Nilai DAF yang ditetapkan pada code Noble Denton (*guideline for marine lifting*) yaitu 1,25 yang berdasarkan berat objek lifting dan letak operasinya.

4.4. Stabilitas dan Ballasting saat Instalasi

Pada tahap instalasi deck ke jacket dengan metode lifting harus memenuhi syarat *safety* sesuai DNV yaitu:

- a. Jarak minimal antara objek yang diangkat dengan crane boom harus lebih dari 3 meter.
- b. Jarak minimal antara objek yang diangkat dengan struktur yang lain seperti transportasi barge harus lebih dari 5 meter.

- c. Kondisi gelombang yaitu dengan tinggi gelombang signifikan 2 meter sampai 2,5 meter.
- d. Kondisi angin dengan kecepatan maksimal 20 knot.
- e. Transportasi barge di mooring line dan crane vessel dengan system dynamic positioning.

Dalam instalasi posisi boa barge 21 di *mooring line* dibelakang *crane vessel*, metode *lifting* terdapat beberapa kondisi operasi sebagai berikut :

 Kondisi pertama yaitu deck masih terletak pada boa barge 21 dan semua komponen *rigging* sudah terpasang pada *hook crane* tapi deck belum terangkat dari boa barge 21. Sehingga belum dilakukan ballasting pada crane *vessel* karena belum ada penambahan beban (gambar detail pada lampiran).

Gambar 4.20. Ilustrasi instalasi tahap pertama deck ke jacket

2. Kondisi kedua yaitu *deck* terangkat setinggi 10 m dari barge sehingga mulai terjadi penambahan beban yang diterima *crane vessel* yang akan diikuti ballasting, sehingga *crane vessel* akan tetap berada posisi even keel. Ilustrasi gambar bisa dilihat dibawah ini.

Gambar 4.21. Ilustrasi instalasi tahap kedua deck ke jacket

Pada step ini *ballasting* berlangsung selama 23,07 menit dengan kapasitas pompa untuk 2 tanki sebesar 2000 m³/jam. Hasil ballasting dari *software* Moses 7 dapat dilihat pada tabel berikut ini.

Tanks	Contents (%)	Δ (%)	berat ballast (mTon)
1P	0	14,3	371
1S	0	12	310,6
2P	0	15,1	391,2
2S	0	12,8	331,4
3P	0	15,9	411,7
38	0	13,6	352
4P	0	17,8	463,1
4S	0	15,5	403,3
5P	0	18,6	483,7
58	0	16,3	423,9
	TOTAL BAL	LAST=	3941,9

Tabel 4.15. Hasil *ballasting* pada kondisi kedua

Gambar 4.22. Grafik hasil intact stability

Dengan kondisi intact :

Sarat air	= 11 m	VCG	= 13,2	1 m
Roll	= 0,00 deg	Axis Angle	= 0,00	deg
Pitch	= 0,00 deg	Kecepatan an	gin	= 20 knot

Tabel 4.16. St	ability Review	Kondisi kedua
----------------	----------------	---------------

	Kriteria <i>stability</i> yang dibutuhkan	Hasil <i>stability</i>	keterangan
Area Ratio	≥ 1,4 (DNV)	65.78	memenuhi
Max Right Arm Height	≥ 0 (IMO)	2,79 m	memenuhi
Angle @Max Right Arm	\geq 0 deg (IMO)	22 deg	memenuhi
GM	\geq 0,15 m (IMO)	9,16 m	memenuhi
Arm Area @Max Right Arm	\geq 3,15 m*deg (IMO)	37,23 m*deg	memenuhi
Arm Area @ Downflood	\geq 3,15 m*deg (IMO)	90,59 m*deg	memenuhi
Arm Area @ 40 Degrees	\geq 5,16 m*deg (IMO)	79,79 m*deg	memenuhi
Static Heel Due to Wind	\leq 5 deg (IMO)	0,2 deg	memenuhi
Downflood Angle	$\geq 0 \text{ deg (IMO)}$	54 deg	memenuhi

3. Kondisi ketiga yaitu deck diputar kearah starbord *crae vessel* sebesar 90 derajad dengan ketinggian yang sama seperti kondisi kedua sehingga crane dan objek yang diangkat berada diatas *jacket platform*. Setelah itu diturunkan sampai *deck leg* tepat berada dan tersambung di *jacket platform*. Pada kondisi ketiga masih teriadi ballasting karena ada pergeseran objek yang diangkat.

Gambar 4.23. Ilustrasi instalasi tahap ketiga deck ke jacket

Pada step ini *ballasting* berlangsung selama 23,07 menit dengan kapasitas pompa untuk 2 tanki sebesar 2000 m³/jam. Hasil *ballasting* dari *software* Moses 7 dapat dilihat pada tabel berikut ini.

Tanks	Contents (%)	Δ (%)	berat ballast (mTon)
1P	14,3	3,11	451,6
1S	11,98	-6,88	132,1
2P	15,08	3,78	489,2
28	12,78	-6,1	173,2
3P	15,88	4,5	528,6
38	13,57	-5,37	212,6
4P	17,78	6,29	627
4S	15,48	-3,54	311
5P	18,57	7,01	666,3
58	16,27	-2,82	350,4
	TOTAL BA	LLAST=	3942

Tabel 4.17. Hasil ballasting kondisi ketiga

Gambar 4.24. Grafik hasil intact stability

Dengan kondisi intact :

Sarat air	= 11 m	VCG	= 13,22 m	
Roll	= 0,00 Deg	Axis Angle	= 0,00 Deg	
Pitch	= 0,00 Deg	Kecepatan an	gin $= 20$	knot

Tabel 4.18. Review stability kondisi ketiga

	Kriteria <i>stability</i> yang dibutuhkan	Hasil <i>stability</i>	keterangan
Area Ratio	≥ 1,4 (DNV)	77	memenuhi
Max Right Arm Height	≥ 0 (IMO)	2,79 m	memenuhi
Angle @Max Right Arm	\geq 0 deg (IMO)	22 deg	memenuhi
GM	≥ 0,15 m (IMO)	9,15 m	memenuhi
Arm Area @Max Right Arm	\geq 3,15 m*deg (IMO)	37,20 m*deg	memenuhi
Arm Area @ Downflood	\geq 3,15 m*deg (IMO)	90,43 m*deg	memenuhi
Arm Area @ 40 Degrees	\geq 5,16 m*deg (IMO)	79,69 m*deg	memenuhi
Static Heel Due to Wind	\leq 5 deg (IMO)	0,16 deg	memenuhi
Downflood Angle	$\geq 0 \operatorname{deg}(\operatorname{IMO})$	54 deg	memenuhi

4. Kondisi keempat yaitu dimana struktur deck di berada pada *jacket platform* sehingga dilakukan *ballasting* supaya nilai draft masih tetap berada pada 11 m pada keadaan tidak melakukan pengangkatan. tahapah 4

Gambar 4.25. Ilustrasi instalasi tahap keempat deck ke jacket

Pada step ini *ballasting* berlangsung selama 24,87 menit dengan kapasitas pompa untuk 2 tanki sebesar 2000 m³/jam. Hasil *ballasting* dari *software* Moses 7 dapat dilihat pada tabel 4.19 berikut ini.

Tanks	Contents (%)	Δ (%)	berat ballast (mTon)
1P	14,3	-16,8	232,9
18	11,98	-4,08	232,7
2P	15,08	-17,9	306,8
28	12,78	-5,82	306,6
3P	15,88	-19,6	380,7
38	13,57	-7,25	380,5
4P	17,78	-20,8	565,5
4S	15,48	-10,8	565,2
5P	18,57	-24,6	639,4
58	16,27	-12,4	639,1
	TOTAL BA	LLAST=	4249,4

Tabel 4.19. Hasil *ballasting* kondisi keempat

Gambar 4.26. Grafik hasil intact stability

Dengan kondisi intact :

Sarat air	= 11 m	VCG	= 12,8	9 m
Roll	= 0,58 deg	Axis Angle	= 0,00	deg
Pitch	= 0,00 deg	Kecepatan an	gin	= 20 knot

	Kriteria <i>stability</i> yang dibutuhkan	Hasil <i>stability</i>	keterangan
Area Ratio	≥ 1,4 (DNV)	78,58	memenuhi
Max Right Arm Height	≥ 0 (IMO)	2,8 m	memenuhi
Angle @Max Right Arm	\geq 0 deg (IMO)	22 deg	memenuhi
GM	≥ 0,15 m (IMO)	3,85 m	memenuhi
Arm Area @Max Right Arm	\geq 3,15 m*deg (IMO)	36,88 m*deg	memenuhi
Arm Area @Downflood	\geq 3,15 m*deg (IMO)	93,65 m*deg	memenuhi
Arm Area @ 40 Degrees	\geq 5,16 m*deg (IMO)	80,52 m*deg	memenuhi
Static Heel Due to Wind	\leq 5 deb g (IMO)	0,78 deg	memenuhi
Downflood Angle	$\geq 0 \operatorname{deg}(\operatorname{IMO})$	56,58 deg	memenuhi

Tabel 4.20. Review intact stability kondisi keempat

4.5 Hasil Analisis dengan Software SACS 5.7

Pemodelan *software* SACS 5.7 digunakan dalam analisis secara global pada struktur member pada dek. Sehingga hasil dari *running* menggunakan *software* SACS 5.7 didapatkan *stress* yang terjadi akibat adanya pembebanan pada member struktur dek. Dan juga didapatkan nilai gaya pada setiap sling untuk perhitungan dimensi sling, shackle, dan padeye.

Tugas akhir ini akan menganalisis beberapa parameter pada proses lifting meliputi *unity check* maksimum pada member struktur dek, besarnya *sling force*, dan tegangan pada *padeye* setiap variasi dari *rigging*.

4.5.1 Unity Check

Unity check adalah perbandingan antara beban yang diberikan pada struktur dibandingkan beban izin yang diterima setiap member, *unity check* maksimum yang didapatkan dari *running software* SACS 5.7 sebagai berikut :

member	unity check maksimum				
	tanpa spreader	satu spreader bar	dua spreader bar	spreader frame	
5806 - 5804	0,732	0,732	0,732	0,596	
5001 - 0005	0,981	0,616	0,507	0,465	

Tabel 4.21. Unity check maksimum

Hasil dari running di *software* SACS 5.7 *unity check* yang didapatkan semakin kecil nilainya dari variasi spreader. Sehingga *spreader frame* mempunyai nilai *unity check* lebih kecil dibandingkan dari satu *spreader bar* dan dua *spreader bar*. Sedangkan nilai *unity check* untuk keseluruhan member nilai yang dihasilkan dibawah satu. Sehingga mengindikasikan bahwa setiap variasi konfigurasi rigging dalam proses lifting tegangan yang dihasilkan tidak melebihi tegangan izin dari struktur.

Gambar 4.27. Unity check pada Struktur

4.5.2 Sling Force

Sling force dihasilkan dari input beban struktur pada *software* SACS sehingga diperoleh gaya pada setiap ujung sling dengan variasi *spreader bar*. Hasil *sling force* yang dihasilkan dari SACS sebagai berikut:

beban aksial maksimum pada sling yang terkoneksi pada <i>padeye</i> (mton)							
member end	LC	tanpa <i>spreader</i>	satu <i>spreader bar</i>	dua <i>spreader bar</i>	spreader frame		
0004	ENV0	167,729	156,19	149,027	110,787		
0004	PAD0	352,32	288,93	275,762	205,651		
	beban aksial maksimum pada sling yang terkoneksi pada hook point (mton)						
0006	ENV0	-	225,57	143,2	118,66		
0006	PAD0	-	417,13	264,98	220,26		

Tabel 4.22. Maksimum sling force

Pada tabel diatas menunjukkan nilai gaya pada sling yang semakin menurun secara signifikan. Sling force menurun disebabkan gaya terdistribusi pada spreader bar sehingga nilai tegangan secara signifikan menurun juga.

4.6 Perhitungan Dimensi Sling, Shackle, dan Padeye

Perhitungan Dimensi Sling

Setelah running di *software* SACS 5.7 dengan kombinasi beban statis dan dinamis, sehingga didapatkan *sling force* untuk menghitung dimensi sling. Nilai *sling force* yang digunakan adalah nilai yang terkecil dari beberapa variasi konfigurasi rigging. Sehingga nilai *sling force* yang digunakan dari konfigurasi rigging spreader frame karena hasil tegangan yang lebih aman dibandingkan konfigurasi yang lain. Nilai *sling force* dikalikan dengan nilai *safety factor* yang disebut nilai *sling design load*. Sesuai API RP-2A WSD nilai *safety factor* yang digunakan sebesar 4. Untuk perhitungan *sling* menggunakan nilai *sling force* terbesar pada desain *spreader frame*.

Sling design load = static sling force x safety factor = 163,158 mton x 4 = 652,632 mton

Selanjutnya dari nilai sling design load = 652,632 mton maka dengan menggunakan katalog "PM20 Cable Laid Sling", diameter sling yang dipilih 134 mm dengan *minimum breaking load* dari sling sebesar 703 mton. Sehingga diameter sling untuk semua dimensi sling yaitu sebesar 134 mm.

Perhitungan Dimensi Shackle

Selanjutnya dilakukan perhitungan dimensi *shackle* dengan beban *sling force* sebelumnya. Nilai *sling force* akan dikalikan safety factor untuk mendapatkan *shackle safe working load* (SWL), tetapi nilai safety factor dikalikan sebesar 1. Safety factor bernilai 1 dikarenakan dalam produksi shackle sudah menggunakan safety factor minimum bernilai 4.

Shackle Safe Working Load (SWL) = *Static Sling Force* x safety factor

= 152,33 mTon x 1 = 152,33 mTon

Sehingga dari perhitungan SWL selanjutnya dari katalog "green pin heavy duty shackles" didapatkan diameter pin *shackle* 130 mm dan memiliki nilai *shackle safe working load* 200 mTon. Dan untuk *shackle* yang menghubungkan *spreader frame* dengan titik angkat menggunakan dimensi yang sama karena nilai *shackle safe working load* sebesar 163,158 mton masih dibawah 200 mton.

Perhitungan Desain Padeye

Setelah didapatkan dimensi *sling* dan *shackle* dilanjutkan perhitungan desain *padeye* yang menggunakan standar dokumen *lifting*. Maka didapatkan dimensi *padeye* sebagai berikut:

padeye plate					
	main plate	cheek plate			
ketebalan, mm	83,00	41,00			
jari-jari, mm	237	206			
panjang, mm	680,00				
	stiffner				
ketebalan, mm	40				
tinggi, mm	120,00				
panjang, mm	380,00				

Tabel 4.23. Dimensi padeye

Material dari komponen *padeye* menggunakan ASTM A36 dengan *yield strength* sebesar 250 Mpa. Analisis cek tegangan pada struktur *padeye* menggunakan perhitungan matematis pada setiap variasi *spreader bar* dengan input gaya masing-masing. Sebagai berikut hasil perhitungan untuk input gaya dari desain *spreader frame*.

No	Kriteria	Unity
		check
	Cek kekuatan sekitar lubang padeye	
1	Pin bearing	0,42
2	Pin pull out	0,39
3	Tension failure through pinhole	0,35
4	Tension failure around cheek plate	0,20
	cek kekuatan padeye pada titik koneksi padeye	
1	Shear stress	0,31
2	Tensile stress	0,08
3	Inplane bending stress	0,30
4	Out-of-plane bending stress	0,01
5	Combined stress	0,39
6	Von misses criteria	0,35

Tabel 4.24. Unity check dari padeye

Perhitungan lengkap dari padeye dan cek kekuatan padeye dapat dilihat pada lampiran 6 "Perhitungan COG shift dan desain *Padeye*".

4.7 Pengecekan Spreader Bar

Dalam proses lifting untuk mengurangi tegangan yang belebih dalam sling maka bisa menggunakan *speader bar*. *Spreader bar* ditentukan sesuai permintaan kebutuhan dan *spreader bar* sudah tersedia dengan berbagai ukuran. Untuk pengecekan *axial compressive* dari *spreader bar* sebagai berikut:

Gambar 4.28. Diagram body dari gaya pada spreader bar

Diketahui

Diameter	= 13 inch	Thickness	= 1,7 inch
σ _y	= 36 ksi	Е	= 29000 ksi
Gaya Fs2	= -453,3826 kips	Gaya Fs1	= 474,188 kips
Sudut Y	$= 75,6997^{0}$	Sudut O	$=90^{0}$

Dengan menggunakan rumus kesetimbangan didapatkan

 $F_{S1X} = F_{S1} \times Cos (\Upsilon) \qquad F_{S2X} = F_{S2} \times Cos (\Theta)$ $\sum F_X = 0$ $-F_{spb} - F_{S1X} - F_{S2X} = 0$ $F_{spb} = -F_{S1X} - F_{S2X}$ $= -474,188 \times Cos (75,6997) - (-453,3826 \times Cos (90))$ = -117,126 kips

Cek axial compression sesuai API 2A WSD, didapatkan Syarat : $\frac{D}{t} \leq 60$

$$D/t = 13/1,7$$

= 7,647 (memenuhi)

 $\frac{Kl}{r} \leq C_c$

Saat

Maka

Saat

Maka

$$Fa = \frac{\left[1 - \frac{\left(\frac{Kl}{r}\right)^{2}}{2C_{c}^{2}}\sigma y\right]}{\frac{5}{3} + \frac{3}{8}\left(\frac{Kl}{C_{c}}\right) - \left(\frac{\left(\frac{Kl}{r}\right)^{3}}{8C_{c}^{3}}\right)}$$
Saat $\frac{Kl}{r} > C_{c}$
Maka $Fa = \frac{12\pi^{2}E}{23\left(\frac{Kl}{r}\right)^{2}}$

Rasio kerampingan kl/r

Dimana K	= effective length factor
	= 1
L	= panjang efektif
	= 360 inch
r	= radius of gyration
	= 3,9 inch
KL/r	= 92,307
Allowable stre	ess $C_c = \sqrt{\frac{2\pi^2 E}{\sigma y}}$ dimana E = modulus young
$C_c = 126,03$	= 290 ksi
Sehingga dida	$\frac{Kl}{r} < C_c$
Jadi Fa =	$\frac{\left[1 - \frac{\left(\frac{Kl}{r}\right)^2}{2C_e^2}\sigma y\right]}{\frac{5}{2} + \frac{3}{2}\left(\frac{Kl}{r}\right) - \left(\frac{\left(\frac{Kl}{r}\right)^3}{2}\right)}$
Fa	$3 \cdot 8 (C_e) (8C_e^3)$ = 13,9228 ksi
Actual stress	$= \frac{P}{(\pi(r)^{2}) - \pi \left(\frac{D-2t}{2}\right)^{2}}$
	= 1,9418 ksi

Unity check = actual stress / Fa

 $= 0,1395 \le 1$ (memenuhi)

4.8 Analisis Tegangan dengan ANSYS Workbench

Selanjutnya dari analisis di SACS 5.7 dan perhitungan matematis untuk cek tegangan pada *padeye*. Pemodelan *padeye* akan dianalisis dengan bantuan *software* ANSYS Workbench. *Padeye* dimodelkan hanya untuk rigging spreader frame saja, dikarenakan dalam perhitungan tegangan sudah dapat dilihat tegangan semain menurun dan yang terkecil pada *spreader frame*. Sehingga tidak perlu memodelkan padeye dengan gaya masing-masing konfigurasi rigging. Input gaya *padeye* yang dimaksudkan sehingga mendapatkan hasil tegangan. Perhitungan hasil tegangan dengan standar PT.Technip dengan hasil tegangan dari ANSYS Workbench sebagai berikut.

Kriteria	perhitungan	ANSYS
Max von-mises stress, Mpa	-	180,67
von-mises stress pada titik koneksi padeye, Mpa	78,95	80,32
<i>deformation</i> , mm	-	0,23581
shear stress, Mpa	30,94	34,03

 Tabel 4.25. Hasil tegangan perhitungan dan ANSYS Workbench

Gaya yang dimasukkan pada pemodelan *padeye* terdiri dari gaya arah X yaitu *shear force* dan gaya arah Y yaitu *tensile force* sehingga akan didapatkan vektor gaya angkat. Sebagai berikut gaya yang dimasukkan pada pemodelan *padeye*.

Tabel 4.26. Input gaya pada ANSYS

Kriteria	Spreader frame
Padeye design load, KN	2016,72
Shear force, KN	1746,53
Tensile force, KN	1008,36

Sebagai berikut visualisasi hasil tegangan pada padeye setelah analisis di ANSYS Workbench.

Gambar 4.29. Tegangan pada padeye

Pada gambar A yaitu menunjukkan gaya yang diaplikasikan pada *padeye*. Gambar B menunjukkan hasil *shear stress* dan pada gambar C yaitu menunjukkan *deformation* pada *padeye*. Sedangkan pada gambar D menunjukkan tegangan von-mises. Pada gambar B, C, dan D dapat dijelaskan warna merah menunjukkan nilai tegangan yang paling maksimum dan warna biru adalah nilai tegangan minimum.

LAMPIRAN 1 DATA *CRANE VESSEL* DAN LAYOUT INSTALASI

DATA CRANE VESSEL

LAMPIRAN 2 INPUT PEMODELAN DI SOFTWARE MOSES 7.0

Input Pemodelan Cra	ane Vess	sel pada	Moses	end_pgen		0	4.5928	
(AEGIR.dat)				\$=====================================	ec 0.0 0.0 0.0	-Cs_Wind 1.00 1.00		
use_mac stab &Dimen -Save -Dimen METE	RS M-TON	S		0.00-Diftype 3DDIF PLANE 0	-CART	0.16.096	5 0.003.16.1	
&Describe Body AEGIR *cg 120.68 0.00 13.48 #weight *cg 78048.4 -categor &dimen -save -dimen meters r	y lightship n-tons			PLANE 1.5165	-CART	0 1.555 1.57	14.678 \ 16.1 \ 16.1	
\$=====================================				FLANE 5.0291	-CARI	2.852	16.1 \	
Pgen -Perm 1.0 -Loc 0.0 (-Diftype 3DDIF	0.0 0.0 -Cs_	Wind 1.00 1	.00 0.00			2.869	16.1	
PLANE 5.8591	-CART	0 0.9587 1.1208	1.503 \ 2.2485 \ 2.8053 \	PLANE 4.5418	-CART	0 4.081 4.09	11.838 \ 16.1 \ 16.1	
		0.9895 0	3.3060 \ 3.631	PLANE 5.2008	-CART	0 4.578	11.5 \ 16.1 \	
PLANE 6.5177	-CART	0 0.8312 1.3133 1.4872	0.9636 \ 1.5028 \ 2.2485 \ 2.8053 \	PLANE 5.2648	-CART	4.595 0 4.626 4.643	16.1 11.3 \ 16.1 \ 16.1	
PI ANF 7 1764	-CART	1.0419 0	3.7321 \ 4.0356 0.5934 \	PLANE 5.8591	-CART	0	10.7 \	
ILANL /.1/04	-CARI	0.6363 1.086 1.3658	1 \ 1.5028 \ 1.9249 \	PLANE 6.5177	-CART	4.82 5.083 0 0.269	15.816 \ 16.1 9.974 \ 10.5 \	
		1.5559 1.7369 1.8116 1.3665 0	2.5 \ 2.8053 \ 3.2139 \ 3.7321 \ 4.2189			0.269 4.82 5.545 5.545	10.5 \ 14.788 \ 16.1 \ 16.1	
PLANE 7.8351	-CART	0 0.4836 1.17179 1.2590 1.5455 1.7422	0.315 \ 0.5934 \ 1 \ 1.5028 \ 1.9249 \ 2.5 \	PLANE 7.1764	-CART	0 0.716 0.716 4.82 5.993	9.347 \ 10.5 \ 10.5 \ 14.788 \ 16.1 \	
		1.7425 1.9314 1.9130 1.5912 1.1716 0	2.3 \ 2.8053 \ 3.2139 \ 3.7321 \ 4.2189 \ 4.3541	PLANE 7.8351	-CART	6.009 0 1.067 4.82	16.1 8.719 \ 10.5 \ 14.283 \	
PLANE 8.4937	-CART	0 0.3491 0.6041 0.9361 1.6918 1.8967 2.0938	0.113 \ 0.315 \ 0.5934 \ 1 \ 1.5028 \ 1.9249 \ 2.5 \	PLANE 8.4937	-CART	6.442 6.448 0 0 0.743 1.417 4.82 6.86	16.1 \ 16.1 4.472 \ 8.074 \ 8.071 \ 8.4 \ 10.5 \ 13.292 \ 16.1 \	
		2.0802 1.7650 1.3823 2.0218 0.6526 0	2.8053 \ 3.2139 \ 3.7321 \ 4.2189 \ 4.3541 \ 4.4716	PLANE 9.1524	-CART	6.871 0 0 0 0	16.1 4.596 \ 7.405 \ 7.401 \ 7.398 \	
PLANE 9.1524	-CART	$\begin{matrix} 0 \\ 0.2205 \\ 0.6748 \\ 1.0237 \\ 1.5039 \\ 1.6918 \\ 2.0309 \\ 2.2356 \\ 2.2179 \\ 1.9166 \\ 1.5644 \\ 1.5644 \end{matrix}$	0.003 \ 0.113 \ 0.315 \ 0.5934 \ 1 \ 1.5028 \ 1.9249 \ 2.5 \ 2.8053 \ 3.2139 \ 3.7321 \	PLANE 9.8111	-CART	0.989 1.963 4.82 7.265 7.278 0 0 0.104 1.378 2.263 2.363 2.454	8.4 \ 10.5 \ 13.292 \ 16.1 \ 16.1 0 \ 0 \ 6.3 \ 8.4 \ 4.2 \ 2.1 \ 10.5 \	
		1.2408 0.9226 0.6305	4.2189 \ 4.3541 \ 4.4716 \			4.82 7.671	12.804 \ 16.1 \	

		7.772	16.1			$\begin{array}{c} 10.111\\ 10.118 \end{array}$	16.1 \ 16.1
PLANE 10.4697 PLANE 11.1284	-CART -CART	0 0.578 1.587 1.857 2.572 2.938 4.82 8.043 8.053 0	0 \ 0 \ 6.3 \ 8.4 \ 4.2 \ 2.1 \ 10.5 \ 12.32 \ 16.1 \ 16.1 0 \ 0 \	PLANE 24.3018	-CART	0 0 4.82 4.935 6.407 7.603 9.396 9.74 10.025 14.06 14.259 14.262	0 \ 0 \ 2.01 \ 2.1 \ 4.2 \ 6.3 \ 8.4 \ 8.855 \ 10.5 \ 15.773 \ 16.1 \
		0 0.975 1.906 1.949 2.574 3.165 4.82 8.412 8.422	6.3 \ 6.3 \ 8.4 \ 4.2 \ 2.1 \ 10.5 \ 11.839 \ 16.1 \ 16.1	PLANE 34.1818	-CART	0 0 4.82 8.224 9.54 10.023 11.795 13.133	16.1 0 \ 0.999 \ 2.1 \ 3.284 \ 4.2 \ 6.3 \ 8.4 \
PLANE 11.7871	-CART	0 0 1.293 2.141 2.529	0 \ 0 \ 6.3 \ 4.2 \ 8.4 \	PLANE 44.0618	-CART	14.16 14.201 17.399 0	9.919 \ 10.5 \ 16.1
		2.673 3.085 4.82 8.78	2.1 \ 10.5 \ 11.36 \ 16.1			0 4.82 9.44 11.458 14.06	0 \ 0.639 \ 1.468 \ 2.1 \ 4.113 \
PLANE 12.4458	-CART	0 0 1.809 2.536 2.869 2.951 3.897 4.82	0 \ 0 \ 6.3 \ 4.2 \ 2.1 \ 8.4 \ 10.5 \ 10.882 \			14.251 15.984 16.989 17.16 18.68 19.777 19.78	4.2 \ 6.3 \ 8.4 \ 10.5 \ 12.985 \ 16.1 \ 16.1
PLANE 13.1044	-CART	9.119 9.128 0 2.112 2.534 2.766 3.369 4.601 4.601 9.458 9.466	16.1 \ 16.1 0 \ 0 \ 6.3 \ 4.2 \ 2.1 \ 8.4 \ 10.403 \ 10.5 \ 16.1 \ 16.1	PLANE 53.9418	-CART	0 0 4.82 9.44 14.06 14.299 17.859 18.68 19.406 20.182 20.339 21.495 21.496	0 \ 0 \ 0.426 \ 0.955 \ 2.011 \ 2.1 \ 4.2 \ 5.177 \ 6.3 \ 8.4 \ 10.5 \ 16.1 \ 16.1
PLANE 13.7631	-CART	0 0 2.501 2.734 2.736 3.683 4.92 4.997 9.44 9.796	0 \ 0 \ 6.3 \ 4.2 \ 2.1 \ 8.4 \ 9.923 \ 10.5 \ 15.64 \ 16.1	PLANE 63.8218	-CART	0 4.82 9.44 14.06 17.304 18.68 20.032 21.255 21.705 21.84	0 \ 0 \ 0.302 \ 0.673 \ 1.349 \ 2.1 \ 2.919 \ 4.2 \ 6.3 \ 8.4 \ 10.5 \
PLANE 14.4218	-CART	0 0 2.861	0 \ 0 \ 2.1 \			22.337 22.344	16.1 \ 16.1
		2.876 2.938 4.389 4.92 5.086 9.44	6.3 \ 4.2 \ 8.4 \ 9.44 \ 10.5 \ 15.213 \	PLANE 73.7018	-CART	0 0 4.82 9.44 14.06 18.68	0 \ 0 \ 0.224 \ 0.496 \ 0.962 \ 1.915 \

		18.987 21.259 22.062 22.343 22.388 22.726 22.73	2.1 \ 4.2 \ 6.3 \ 8.4 \ 10.5 \ 16.1 \ 16.1			9.44 14.06 18.68 23.077 23.1 23.1 23.1 23.1	0.17 \ 0.17 \ 0.191 \ 2.1 \ 3.201 \ 10.5 \ 4.2 \ 6.3 \
PLANE 83.5818	-CART	0 0 4.82 9.44 14.06 18.68 20.074 21.987 22.505 22.686 22.685 22.94 22.944	0 \ 0 \ 0.169 \ 0.37 \ 0.697 \ 1.305 \ 2.1 \ 4.2 \ 6.3 \ 8.4 \ 10.5 \ 16.1 \ 16.1	PLANE 182.388	-CART	23.1 23.1 23.1 23.1 0 0 4.82 9.44 14.06 18.68 22.245 23.091 23.1 23.1	6.3 \ 8.4 \ 10.5 \ 16.1 1.154 \ 1.154 \ 1.154 \ 1.154 \ 1.154 \ 1.154 \ 4.2 \ 6.3 \ 8.4 \ 10.5 \
PLANE 103.3418	-CART	0 0 4.82 9.44 14.06 18.68 21.578 22.712 22.951 23.037 22.886 23.163	0 \ 0 \ 0.096 \ 0.204 \ 0.365 \ 0.64 \ 2.1 \ 4.2 \ 6.3 \ 8.4 \ 10.5 \ 16.1	PLANE 192.2618	-CART	23.1 0 4.82 9.44 14.06 18.68 21.891 22.99 23.1 23.1 23.1	16.1 2.23 \ 2.23 \ 2.23 \ 2.23 \ 2.23 \ 2.284 \ 4.2 \ 6.3 \ 8.4 \ 10.5 \ 16.1
PLANE 132.9818	-CART	0 0 4.82 9.44 14.06 18.68 22.804 23.0945 23.094 23.0956 23.1	0 \ 0 \ 0.035 \ 0.072 \ 0.12 \ 0.214 \ 2.1 \ 4.2 \ 6.3 \ 8.4 \ 10.5 \ 16.1	PLANE 202.1418	-CART	0 0 4.82 9.44 14.06 18.68 22.796 23.097 23.1 23.1 23.1	3.293 \ 3.293 \ 3.293 \ 3.293 \ 3.293 \ 3.293 \ 3.558 \ 4.2 \ 6.3 \ 8.4 \ 10.5 \ 16.1 2.492 \
PLANE 152.7418	-CART	0 0 4.82 9.44 14.06 18.68 23.059 23.058 23.077 23.086 23.092 23.1	0 \ 0 \ 0.012 \ 0.024 \ 0.038 \ 0.076 \ 2.1 \ 4.2 \ 6.3 \ 8.4 \ 10.5 \ 16.1	PLANE 204.0094 PLANE 205.877	-CART	0 0 4.82 9.44 14.06 18.68 21.575 22.961 23.098 23.1 23.1 0	3.493 \ 3.493 \ 3.493 \ 3.493 \ 3.493 \ 3.493 \ 3.559 \ 4.2 \ 6.3 \ 8.4 \ 10.5 \ 16.1 3.691 \ 2.601 \
PLANE 162.6223	-CART	0 0 4.82 9.44 14.06 18.68 23.057 23.088 23.094 23.096 23.098 23.1	0 \ 0 \ 0.004 \ 0.007 \ 0.012 \ 0.032 \ 2.1 \ 4.2 \ 6.3 \ 8.4 \ 10.5 \ 16.1	PLANE 207.745	-CART	0 4.82 9.44 14.06 18.68 21.13 22.936 23.096 23.1 23.1 0	3.691 \ 3.691 \ 3.691 \ 3.691 \ 3.691 \ 3.759 \ 4.2 \ 6.3 \ 8.4 \ 10.5 \ 16.1 3.889 \
PLANE 172.5018	-CART	0 0 0 4.82	0.17 \ 0.17 \ 0.17 \ 0.17 \			0 0 4.82 9.44 14.06	3.889 \ 3.889 \ 3.889 \ 3.889 \ 3.889 \ 3.889 \

PLANE 209.612 PLANE 211.48	-CART	$\begin{array}{c} 18.68\\ 20.45\\ 22.912\\ 23.094\\ 23.1\\ 23.1\\ 0\\ 0\\ 4.82\\ 9.44\\ 14.06\\ 18.68\\ 19.17\\ 22.982\\ 23.094\\ 23.1\\ 23.1\\ 0\\ 0\\ 4.82\\ 9.44\\ 14.06\\ 18.68\\ 22.94\\ 23.1\\ 23.1\\ 23.1\\ 23.1\\ 23.1\end{array}$	3.959 \ 4.2 \ 6.3 \ 8.4 \ 10.5 \ 16.1 4.087 \ 4.087 \ 4.2 \ 6.3 \ 8.4 \ 9.922 \ 10.5 \ 16.1
END_PGEN \$====================================	====CO	MPARTMI	ENT
\$=- &DESCRIBE COMPARTMEN \$=- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	13 1700 0		D NONE
Pgen IP -PEKM -0.97 -Loc 0.0	-13.17990	.0 -DIFT YI	PNONE
PLANE 44.0618 PLANE 53.9418	-CART -CART	0 2.4600 4 8 0 2.4600 4	2.0\ 2.0\ 2.0\ 13 2.0\ 2.0\ 2.0\
PLANE 63.8218	-CART	8 0 2.4600 4 8	13 2.0\ 2.0\ 2.0\ 13
END_PGEN \$=-			
&DESCRIBE COMPARTMEN \$=- \$	IT 1S		
Pgen 1S -Perm -0.97 -Loc 0.0 1	3.1799 0.0	-DIFTYP N	NONE
PLANE 44.0618	-CART	0 2.4600 4 8	2.0\ 2.0\ 2.0\ 13
PLANE 53.9418	-CART	0 2.4600 4	2.0\ 2.0\ 2.0\ 2.0\
PLANE 63.8218	-CART	8 0 2.4600 4 8	13 2.0\ 2.0\ 2.0\ 13
END_PGEN \$=- &DESCRIBE COMPARTMEN	IT 2P		
\$=- \$ Pgen 2P -Perm -0.97 -Loc 0.0 -	13.0392 0.0	-DIFTYP	NONE
PLANE 63.8218	-CART	0 2.4600	2.0\ 2.0\

		4 8	2.0\ 13
PLANE 73.7018	-CART	0 2.4600 4	2.0\ 2.0\ 2.0\
PLANE 83.5818	-CART	8 0 2.4600 4	13 2.0\ 2.0\ 2.0\
END PGEN		8	13
\$=- &DESCRIBE COMPARTME \$=-	NT 2S		
\$ Pgen 2S -Perm -0.97 -Loc 0	.0 13.0392 0	.0 -DIFTYI	P NONE
PL ANE 63 8218	-CART	0	2 0\
1 LANE 05.0210	-CART	2.4600 4 8	2.0\ 2.0\ 2.0\ 13
PLANE 73.7018	-CART	0 2.4600 4	2.0\ 2.0\ 2.0\
PLANE 83.5818	-CART	8 0 2.4600	13 2.0\ 2.0\
		4 8	2.0\ 13
END_PGEN \$			
&DESCRIBE COMPARTME \$=- \$	NT 3P		
⁵ Pgen 3P -Perm -0.97 -Loc 0	.0 -13.0392).0 -DIFTY	P NONE
PLANE 83.5818	-CART	0 2.4600 4	2.0\ 2.0\ 2.0\
PLANE 103.3418	-CART	8 0 2.4600 4	13 2.0\ 2.0\ 2.0\
END_PGEN		8	13
\$=- &DESCRIBE COMPARTME \$=-	NT 3S		
\$ Pgen 3S -Perm -0.97 -Loc 0.0	13.0392 0.0	-DIFTYP N	IONE
PLANE 83.5818	-CART	0 2.4600 4	2.0\ 2.0\ 2.0\
PLANE 103.3418	-CART	8 0 2.4600 4	13 2.0\ 2.0\ 2.0\
END_PGEN \$_		8	13
یے۔ &DESCRIBE COMPARTME \$=-	NT 4P		
5 Pgen 4P -Perm -0.97 -Loc 0.0	-13.0392 0.0	-DIFTYP	NONE
PLANE 132.9818	-CART	0 3.28657 6.57313	2.0\ 2.0\ 2.0\
PLANE 152.7418	-CART	10 0 3.28657 6.57313	10 2.0\ 2.0\ 2.0\
end_pgen		10	10

\$=- &DESCRIBE COMPARTMENT \$=-	Г 4S		
\$ Pgen 4S -Perm -0.97 -Loc 0.0	13.0392 0.0) -DIFTYP	NONE
PLANE 132.9818 PLANE 152.7418	-CART -CART	0 3.28657 6.57313 10 0 3.28657 6.57313	2.0\ 2.0\ 2.0\ 10 2.0\ 2.0\ 2.0\ 2.0\
end_pgen		10	10
\$=- &DESCRIBE COMPARTMENT \$=- \$	Г 5Р		
^o Pgen 5P -Perm -0.97 -Loc 0.0 -13	3.0392 0.0	-DIFTYP N	IONE
PLANE 152.7418	-CART	0 3.28657 6.57313	2.0\ 2.0\ 2.0\
PLANE 162.6223	-CART	0 3.28657 6.57313	2.0\ 2.0\ 2.0\ 10
PLANE 172.5018	-CART	0 3.28657 6.57313 10	2.0\ 2.0\ 2.0\ 10
end_pgen \$=- &DESCRIBE COMPARTMENT \$=-	Г 58		
\$ Pgen 5S -Perm -0.97 -Loc 0.0 13	.0392 0.0 -1	DIFTYP N	ONE
PLANE 152.7418	-CART	0 3.28657 6.57313	2.0\ 2.0\ 2.0\
PLANE 162.6223	-CART	10 0 3.28657 6.57313	10 2.0\ 2.0\ 2.0\
PLANE 172.5018	-CART	10 0 3.28657 6.57313	10 2.0\ 2.0\ 2.0\
end_pgen		-CDANE D	IU
Pgen -Perm 1.0 -loc 211.48	3-8.4	14.7 16.1 () -90 0
-Cs_wind 1.00 1.00 0 plane 0	-circ	-antype no 0 4	0\ 0 \ 36
plane 0	-circ	0 5 10	0 \ 0 \ 36
plane 20.0	-circ	0 4 10	0 \ 0 \ 36
plane 20.0	-circ	0 4 10	0 \ 0 \ 36
plane 65	-circ	0 2.5 10	0 \ 0 \ 36
plane 65	-circ	0 2.5 10	0 \ 0 \ 36

-rect 0 3 3 0 3 0 END_PGEN finish

END_PGEN

LAMPIRAN 3

INPUT RAO, BALLASTING, DAN STABILITY DI SOFTWARE MOSES 7.0

Input Ballasting dan Intact Stability pada Moses 7.0

&device -oecho n -prima dev -auxin Aegir.dat &dimen -dimen meters M-TON &title stability dan ballasting \$ read model \$ inmodel &instate -condition 1100 medit &compartment -percent 1.025 \ 1P 0 1.025 \ 1S 0 2P 0 1.025 \ 2S 0 1.025 \ 3P 0 1.025 \ 3S 0 1.025 \ 4P 0 1.025 \ 4S 0 1.025 \ 5P 0 1.025 \ 5S 0 1.025 \$ &describe part lift &dimen -dimen meters m-tons *lift 256.3 12.91 77.5 #weight *lift 303.245 end \$ hydrostatic menu \$ hstatics \$++++++step 2++++++++++ &set sub = Case-2 : draft 11 m &subtitle %sub% &status loadg -h &select :comp -select 1P 2P 3P 4P 5P 1S 2S 3S 4S 5S &cmp_bal Aegir :comp equi &status compartment -h &status b_w -h &picture top &picture side &picture bow equi moment

report

plot 1 2 -rax $3 \setminus$

extreme 1 2 3 -hard

-t_x 'longitudinal location(meters)' \

-t_right 'moment (M-tonm)' -no

vlist

save

end

```
intact
          stab_ok 11 5.5 10 -wind 20 -yaw 0 \backslash
          -I_AR_RATIO 1.4 \
          -I_GM 0.15 \
          -I_ARE@MARM 4.58 \
          -I ARE@DFLD 4.58 \
          -I_ARE@40 4.58 \
          -I_ANG@MARM 0 \
          -I_ARM_AR 4.58 \
          -I_RANGE 40 \
          -COEF_WIND 1 \
          -EQUI
&stat -h
&stat comp -h
end
$++++++++++++++++++++++++++++ all is done
&finis
Input RAO pada Moses 7.0
@@@
$
$ #### Response Amplitude Operators #######
$
@@@
$
$
&dimen -remember -DIMEN meters m-tons
&device -oecho no -primary device -auxin AEGIR.dat
&TITLE Response Amplitude Operators
&SUBTITLE TUGAS AKHIR
$
$****** READ MODEL
$
$
           = 0
&SET arah1
&SET arah2
           = 45
&SET arah3
           = 90
&SET arah4
           = 135
&SET arah5
           = 180
&SET iterasi
           = 1e3
&SET draft
           = 10.5
$
INMODEL
$
$******* set transit
$
&INSTATE Aegir -CONDITION %draft%
$
$
&PLTMODEL VESSEL
 PIC ISO
 PIC SIDE
 PIC TOP
END
$
```

\$****** compute weight \$ &WEIGHT -COMPUTE %draft% 22.11 54.97 53.91 &EQUI -iter_max %iterasi% &status b_w hard &status F_connect &status force &dcptime Time for equilibrium \$ \$ **HYDRODYNAMICS** \$ \$ ¶ -m dist 2 g_pressure Aegir -heading %arah1% %arah2% %arah3% %arah4% %arah5% end \$ \$ = 2.5 \$gamma &set gma \$ &data env env sea_1 -depth 24.08 -sea jonswap %arah1% 2 4.7 %gma% \ -wind 20 % arah1% env sea_2 -depth 24.08 -sea jonswap %arah2% 2 4.7 %gma% \ -wind 20 % arah2% env sea_3 -depth 24.08 -sea jonswap %arah3% 2 4.7 %gma% \ -wind 20 %arah3% env sea_4 -depth 24.08 -sea jonswap %arah4% 2 4.7 %gma% \ -wind 20 % arah4% env sea_5 -depth 24.08 -sea jonswap % arah5% 2 4.7 %gma% \ -wind 20 % arah5% end_&data&set post_env = sea_1 sea_2 sea_3 sea_4 sea_5 \$ respons) \$ FREQ_RESP RAO -period 3 3.5 4 4.5 5 \ 5.5 6 6.5 7 7.5 \ 8 8.5 9 9.5 10 \ 10.5 11 11.5 12 12.5 \ 13 13.5 14 14.5 15 \ 15.5 16 16.5 17 17.5 \ 18 \$ processing \$ &loop env %post_env &describe body Aegir

fr_point 202.1418 63.7442 116.5071 report end sp_point %env report end st_point %env report end &endloop END_FREQ_RESP \$ alhamdulillah \$ &FINISH \$ \$

LAMPIRAN 4

OUTPUT RAO, BALLASTING, DAN STABILITY DI SOFTWARE MOSES 7.0

Output Ballasting dan Intact Stability pada Moses 7.0

Page	3		Licensee - Global Maritime						Rev 7.00.018				
		********	******	******	******	*********	*******	*******	*******	********	***************	*****	
		*				***	MOSES	***				*	
		*									19 June, 2016	*	
		*	stability dan	ballastin	g							*	
		*	Case-2 : drat	τ II m								*	
		*******	****	******	******	*******	*******	******	*******	********	*****	*****	
				+++ (ΟΜΡΔ	RTMFN		PFRT	T F S ++	++			
				=====	=========	===========		========	=========	==			
					Result	s Are Repo	orted In B	odv Svst	em				
			Proces	s is DEFAU	LT: Units	Are Degre	ees, Meter	s, and M	-Tons Un]	less Speci	lfied		
				Fill	Specific	/ Ball	last/	/	% Full	/ 9	Sounding		
			Name	Туре	Gravity	Maximum	Current	Max.	Min.	Curr			
			1P	CORRECT	1.0250	2593.4	371.0	14.30	0.00	14.30	2.150		
			15	CORRECT	1.0250	2593.4	310.6	11.98	0.00	11.98	1.825		
			2P	CORRECT	1.0250	2593.4	391.2	15.08	0.00	15.08	2.257		
			25	CORRECT	1.0250	2593.4	331.4	12.78	0.00	12.78	1.938		
			3P	CORRECT	1.0250	2593.4	411.7	15.88	0.00	15.88	2.365		
			35	CORRECT	1.0250	2593.4	352.0	13.57	0.00	13.57	2.049		
			4P	CORRECT	1.0250	2604.9	463.1	17.78	0.00	17.78	1.699		
			45	CORRECT	1.0250	2604.9	403.3	15.48	0.00	15.48	1.489		
			52	CORRECT	1.0250	2604.9	483.7	16.57	0.00	18.57	1.770		
Dago	4		55 Liconsoo	CURRECT	1.0250	2004.9	425.9	10.27	0.00	10.27	1.302		Son614
Fage	4	*******	*************	GIUDAI Mar	*******	********	*******	******	۲ *******	\ev 7.00.0	/10 *******************	*****	361.014
		*				***	MOSES	***				*	
		*									19 June, 2016	*	
		*	stability dan	ballastin	g						,	*	
		*	Case-2 : draf	t 11 m	0							*	
		*										*	
		*******	******	******	*******	********	*******	******	*******	*******	******	*****	
			++	+ B U O Y	ΑΝϹΥ	AND 14	VEIGH	T F O	R AEO	G I R +++			
			==										
			Proces	s is DEFAU	LT: Units	Are Degre	ees, Meter	s, and M	-Tons Un]	less Speci	lfied		
			_		Result	s Are Repo	orted In B	ody Syst	em				
			Dr	aft = 1	1.00	Roll Angle	e = 0.00	Pit	ch Angle	= 0.00			
					Wet	Radii Ot	Gyration	About CG					
				K-X =	5.44	K-Y =	= 13.28	K-Z	= 12.8	34			
					GMT	= 9.16	GML	= 293.0	5 Counding	- %			
				News		/ Center	r of Gravi	τy/	Sounding	g % Full	L		
				Name	weight	A	Y	2			•		
					P	170 69	0 00	13 / 9					
				Conten	+c	120.00	0.00	10.40					
				1P	371 0	53 94	-13 18	3 11	2 1	5 14 30	9		
				15	310.6	53.94	13.18	2.94	1.82	2 11.98	}		
				20	201 2	73 70	_13 0/	3 16	2 26	5 15 08	2		

				25	331	1.4 73	.70 13.04	3.00	1.94	12.78			
				3P	411	1.7 93	.46 -13.04	3.22	2.37	15.88			
				35	352	2.0 93	46 13.04	3.05	2.05	13.57			
				4P	463	3.1 142	.86 -13.04	2.86	1.70	17.78			
				45	40	3.3 142	.86 13.04	2.76	1.49	15.48			
				5P	48	3.7 162	.62 -13.04	2.90	1.77	18.57			
				55	42	3.9 162	.62 13.04	2.79	1.56	16.27			
						Part I	IFT		2150	2012/			
				1.04	AD GRO 303	3 2 256	30 12 91	77 50					
						Part 0	THER IO						
				LOA	AD_GRO 21	1.0 120	.00 0.00	16.10					
				===				======					
				Tot	tal 82314	4.5 120	.66 0.00	13.21					
				Buc	oyancy 82314	4.6 120	.66 0.00	6.01					
Page	8	******	License *******	ee - Glo ********	obal Maritime	e ***********	*****	****	Rev ********	7.00.018	*****	*****	Ser614
		*					*** MOSES	***				*	
		*					M03L3			10	Juno 201	6 *	
		*	ctobili:	tv dan ha	allacting					15	, Julie, 201	*	
		*		21227M F	aiiasting Doof+_11M Dom	NONE						*	
		*	VCG= 15	.21337111		liage= NONE						*	
		· *********	******	*******	*****	*******	*****	*****	*****	*****	******	*******	
					D T	сытты	САРМ	DECILI	тсци				
					+++ K I	<u> </u>	акм 		1 3 TTT				
				Dinacass -		Inite Ang [Degrees Met	enc and M	-Tons Unles	c Specifier			
			r	Momoni	ts DEFAULT. (regrees, rec	and Wind C	-1011S 0111ES	s specified			
				Mollen	t Staieu by a	52514.55, r :+:-1: Poli	1 = 0.00 To	$\sin - 0.00$	peeu = 20 Dog	. KHOLS			
					ل الـــــــــــــــــــــــــــــــــــ	About Avic	V = 0.00, II	100 = 0.00	ccol V				
		/ .	onditio	· /	/ Min L	ADOUL AXIS	/ Pich	eg From Ve	55ET X Hoo	ling /	4000	Not	
		Draft	Poll	Tnim	/ Mill. r	NUL Tight	/ Kigii	Ling/	/ nee	Apop	Potio	Apm	
		Drait	KOII	11.711	Wilght	NW IIght	AFIII	Area	Al·lii	Allea	Kalio	AFIII	
		11.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	-0.020	
		11.08	5.50	-0.06	0.00	0.00	0.89	2.45	0.02	0.11	22.80	0.871	
		10.70	11.00	0.04	0.00	0.00	1.82	9.91	0.02	0.21	46.48	1.802	
		10.33	16.50	0.12	0.00	0.00	2.59	22.03	0.02	0.32	69.72	2.567	
		9.97	22.00	0.29	0.00	0.00	2.79	36.82	0.02	0.42	88.63	2.775	
		9.45	27.50	0.55	0.00	0.00	2.64	51.76	0.02	0.51	101.26	2.625	
		9.46	33.00	0.55	0.00	0.00	2.30	65.34	0.02	0.60	108.43	2.280	
		8.60	38.50	0.96	0.00	0.00	1.76	76.48	0.02	0.69	110.97	1.740	
		8.68	44.00	0.84	0.00	0.00	1.16	84.49	0.01	0.77	109.69	1.142	
		7.90	49.50	1.13	0.00	0.00	0.46	88.93	0.01	0.85	105.19	0.445	
Page	9		license	 Glo	obal Maritime	<u>_</u>		00115	Rev	7 00 018	200120	01115	Ser614
1 ugc	2	*******	******	********	***********	- *********	*****	*******	*********	**********	********	******	501011
		*					*** MOSES	***				*	
		*					10525			10	1 June 201	6 *	
		*	stahili	tv dan ha	allasting					13	, June, 201	*	
		*		21227M F	aiiasting Doof+_11M Dom	MONE						*	
		********	כ⊥ =טיי *******	・∠エンン/『IL *********	ימונ=בדעו חמע ************	nage= NONE	: Iaw= Ю ***********	*****	*****	******	*******	*******	
									· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
					+++ 3		Y		· +++				
Draft = 11.00 MRoll = 0.00 Deg Pitch = 0.00 Deg VCG = 13.21 M= 0.00 Deg Axis Angle Wind Vel = 20.00 Knots Passes All of The Stability Requirements: Area Ratio >= 1.40 RA/HA Ratio >= 0.00 Dfld Height @ Equilibrium >= 0.00 M GM >= 0.15 M Arm Area @ Max Right. Arm >= 4.58 M*Deg Arm Area @ Dfld >= 4.58 M*Deg Arm Area @ 40 Degrees >= 4.58 M*Deg Area Under Righting Arm >= 4.58 M*Deg Static Heel w/o Wind <= 90.00 Deg Static Heel Due to Wind <= 90.00 Deg Range (Second Intercept) >= 40.00 Deg 2nd - 1st Intercepts >= 0.00 Deg Dfld Angle - 1st Interc. >= 0.00 Deg Angle @ Max Righting Arm >= 0.00 Deg Downflood Angle >= 0.00 Deg With The Stability Results: ------Area Ratio = 105.21 Passes RA/HA Ratio = 157.16 Passes Dfld Height @ Equilibrium = 0.00 M Passes GM = 9.16 MPasses Arm Area @ Max Right Arm = 36.79 M*Deg Passes Arm Area @ Dfld = 88.92 M*Deg Passes Arm Area @ 40 Degrees = 78.65 M*Deg Passes = 88.92 M*Deg Passes Area Under Righting Arm Static Heel w/o Wind = 0.00 Deg Passes Static Heel Due to Wind = 0.12 Deg Passes = 49.50 Deg Passes Range 2nd - 1st Intercepts = 49.38 Deg Passes Dfld Angle - 1st Interc. = 49.38 Deg Passes Angle @ Max Right Arm = 22.00 Deg Passes Downflood Angle = 49.50 Deg Passes

Output RAO pada Moses 7.0

****	**********	*******	******	*******	*******	**************************************	****** ***	********	*****	*******	*****	***********	
*	"AEG	IR" RESPONS	E AMPLIT	TUDE OPERA	TOR	1.0010						*	
*	VESSI	EL MOTIONS										*	
*	Draft = 10	.5 Meters			Trim Ar	ngle = 0.0	00 Deg.		GMT =	9.88 Met	ers	*	
*	Roll Gy. Rad	dius = 22.	1 Meters	5	Pitch @	By. Radius ∶	= 55.0	0 Meters	Yaw G	y. Radius =	53.9	Meters *	
*	Heading =	0.00 Deg.			Forward	Speed = (0.00 Kr	nots	Linea	rization Ba	sed on	1/20 *	
****	*******	*******	******	*******	*****	********	*****	*******	*****	*******	*****	*******	
			+++ M O	ΤΙΟΝ	RES	ΡΟΝSΕ	ОРЕ	ERATOR	S +++				
		:	=======										
		_	Of Point	t On Body	AEGIR A	X = 120	.7 Y =	0.0 Z =	13.4	4			
		Process	is DEFA	AULT: Unit	s Are [Degrees, Me	ters, a	and KN Un	less S	pecified			
ENCOU	JNTER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
	Dended	, Wave	Amp1.	, Wave	Amp1.	, Wave	Amp1.	, Wave	Amp1.	, Wave	Amp1.	, Wave	Amp1.
Frequency	(Sec)	//	/ /	/ مسم	/	//	Dhace	//	Dhace	//	/	//	/
-(Rad/Sec)	(Sec)-	Amp1.	Phase	Amp1.	Phase	Amp1.	Phase	Amp1.	Phase	Amp1.	Phase	Amp1.	Phase
0.3491	18.00	0.770	-116	0.031	26	0.401	160	0.164	22	0.803	66	0.016	-43
0.3590	17.50	0.699	-112	0.035	24	0.370	166	0.210	26	0.792	70	0.014	-42
0.3696	5 17.00	0.639	-108	0.040	21	0.345	174	0.292	29	0.790	75	0.013	-38
0.3808	16.50	0.564	-104	0.052	14	0.314	-178	0.458	27	0.767	80	0.009	-47
0.3927	16.00	0.497	-98	0.070	-14	0.294	-169	0.817	0	0.749	86	0.002	-74
0.4054	15.50	0.428	-92	0.051	-75	0.263	-163	0.835	-60	0.720	92	0.009	73
0.4189	15.00	0.376	-86	0.017	-99	0.232	-151	0.455	-89	0.707	98	0.010	53
0.4333	14.50	0.312	-80	0.007	-48	0.203	-139	0.268	-89	0.668	106	0.009	67
0.4488	14.00	0.249	-73	0.010	-5	0.175	-125	0.178	-83	0.620	114	0.008	94
0.4654	13.50	0.191	-65	0.013	5	0.149	-109	0.124	-74	0.565	123	0.010	123
0.4833	13.00	0.138	-56	0.016	9	0.124	-89	0.087	-61	0.502	135	0.013	144
0.5027	12.50	0.092	-44	0.019	12	0.104	-63	0.059	-44	0.437	149	0.017	160
0.5236	5 12.00	0.054	-29	0.021	16	0.092	-34	0.040	-19	0.373	166	0.022	172
0.5464	11.50	0.026	-6	0.022	20	0.089	-1	0.028	19	0.315	-172	0.026	-176
0.5712	11.00	0.011	44	0.024	27	0.097	29	0.024	69	0.269	-146	0.029	-165
0.5984	10.50	0.008	125	0.024	36	0.101	57	0.029	114	0.235	-115	0.031	-153
0.6283	10.00	0.007	-174	0.024	50	0.094	85	0.034	150	0.209	-82	0.031	-138
0.6614	9.50	0.005	-100	0.024	69	0.079	121	0.039	-174	0.188	-44	0.029	-120
0.6981	9.00	0.006	1	0.024	94	0.063	170	0.041	-138	0.165	-4	0.024	-95
0.7392	8.50	0.010	72	0.023	125	0.059	-125	0.039	-98	0.129	39	0.017	-60
0.7854	8.00	0.013	139	0.023	166	0.062	-62	0.032	-51	0.076	95	0.012	-9
0.8378	3 7.50	0.012	-135	0.023	-145	0.056	0	0.021	2	0.031	-158	0.009	58
0.8976	7.00	0.013	-14	0.024	-85	0.035	68	0.008	31	0.041	-16	0.010	114
0.9666	6.50	0.014	117	0.029	-10	0.013	126	0.017	44	0.046	96	0.020	161
1.0472	6.00	0.010	-49	0.041	172	0.012	-40	0.019	-127	0.033	-72	0.024	-24
1.1424	5.50	0.014	-177	0.010	-167	0.009	-14	0.006	-24	0.004	97	0.009	35
1.2566	5.00	0.022	117	0.002	105	0.007	-98	0.003	-93	0.007	139	0.004	-74
1.3963	4.50	0.009	-144	0.003	129	0.002	27	0.002	178	0.004	-155	0.001	-27
1.5708	4.00	0.013	154	0.007	110	0.003	-39	0.004	159	0.002	125	0.006	-71
1.7952	3.50	0.007	177	0.003	103	0.001	14	0.002	-170	0.002	-123	0.003	-73
2.0944	3.00	0.004	-124	0.001	-74	0.002	76	0.002	-113	0.005	-103	0.001	-62

****	*******	******	*****	******	*****	********	*****	******	*****	*******	*****	******	
*					>	*** MOSES	***					*	
*	"AEG	GIR" RESPONS	E AMPLI	TUDE OPERA	TOR							*	
*	VESS	SEL MOTIONS										*	
* D	raft = 10	.5 Meters			Trim Ar	ngle = 0.0	00 Deg.		GMT =	9.88 Met	ers	*	
* R	oll Gy. Ra	adius = 22.	1 Meter	`s I	Pitch (Gy. Radius	= 55.0) Meters	Yaw G	y. Radius =	53.9	Meters *	
* H	eading =	45.00 Deg.			Forward	Speed = (0.00 Kn	ots	Linea	, rization Ba	sed on	1/20 *	
****	********	*********	******	*******	*****	********	******	*******	*****	*******	*****	********	
			+++ M O	TION	RES	PONSE	ОРЕ	RATOR	S +++				
			======		======		======						
			Of Poin	t On Body	AEGIR A	At X = 120	.7 Y =	0.0 Z =	13.4	4			
		Process	is DEF	AULT: Unit	s Are [Degrees, Me [.]	ters, a	nd KN Un	less Sp	pecified			
ENCOU	NTER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
		Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/	/
-(Rad/Sec)-	-(Sec)-	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase
0 3/191	18 00	0 824	-162	0 8/3	-151	0 655	11/	2 061	-142	0 752	21	0 888	-68
0.3491	17 50	0.024	-158	0.049	-149	0.000	117	2.001	-144	0.752	25	0.000	-64
0.3596	17.00	0.775	-154	0.005	-148	0.000	121	2.400	-149	0.700	29	0.007	-60
0.3090	16 50	0.750	-150	0.770	-150	0.022	125	3 316	-162	0.700	22	0.032	-56
0.3000	16 00	0.050	-147	0.707	-154	0.555	129	3 603	179	0.002	36	0.037	-52
0.352/	15 50	0.070	-145	0.551	-154	0.505	134	3 459	157	0.045	38	0.001	-49
0 4189	15.00	0.596	-144	0 264	-141	0.520	143	2 879	136	0.007	39	0.011	-46
0.4333	14.50	0.532	-142	0.212	-112	0.474	151	2.076	120	0.851	42	0.733	-41
0.4488	14.00	0.469	-138	0.213	-94	0.460	159	1,391	118	0.823	47	0.683	- 36
0.4654	13.50	0.410	-134	0.204	-82	0.444	166	0.941	125	0.796	52	0.633	- 30
0.4833	13.00	0.353	-129	0.186	-69	0.423	174	0.648	135	0.763	58	0.580	-23
0.5027	12.50	0.298	-125	0.164	-53	0.397	-177	0.446	148	0.723	65	0.521	-15
0.5236	12.00	0.247	-120	0.144	-35	0.366	-167	0.308	166	0.674	73	0.459	-6
0.5464	11.50	0.197	-114	0.127	-13	0.329	-158	0.208	-170	0.612	81	0.391	3
0.5712	11.00	0.149	-109	0.116	11	0.280	-147	0.137	-135	0.535	92	0.319	15
0.5984	10.50	0.109	-102	0.110	38	0.226	-133	0.109	-90	0.452	106	0.245	31
0.6283	10.00	0.077	-94	0.108	65	0.173	-114	0.109	-45	0.367	123	0.174	51
0.6614	9.50	0.054	-84	0.105	92	0.129	-90	0.116	-5	0.282	145	0.109	79
0.6981	9.00	0.040	-72	0.098	118	0.094	-61	0.119	32	0.198	174	0.060	130
0.7392	8.50	0.031	-54	0.085	146	0.063	-30	0.118	74	0.127	-139	0.051	-147
0.7854	8.00	0.024	-24	0.065	172	0.032	-1	0.111	121	0.104	-72	0.073	-81
0.8378	7.50	0.018	25	0.039	-170	0.011	-38	0.096	177	0.107	-11	0.090	-28
0.8976	7.00	0.012	105	0.029	-172	0.030	-42	0.069	-111	0.086	45	0.087	28
0.9666	6.50	0.011	-132	0.034	-124	0.039	28	0.045	0	0.041	112	0.054	100
1.0472	6.00	0.010	15	0.012	-138	0.016	134	0.035	154	0.023	-46	0.031	-53
1.1424	5.50	0.006	-133	0.023	80	0.002	-105	0.006	-95	0.036	169	0.004	47
1.2566	5.00	0.073	-37	0.010	-76	0.020	59	0.027	135	0.026	7	0.018	99
1.3963	4.50	0.031	65	0.039	-23	0.010	35	0.012	110	0.024	51	0.035	-162
1.5708	4.00	0.012	173	0.020	55	0.005	-76	0.017	114	0.004	-119	0.011	-149
1.7952	3.50	0.004	-169	0.009	46	0.001	-133	0.006	105	0.005	-73	0.005	-163
2.0944	3.00	0.003	-45	0.002	-62	0.004	130	0.003	-35	0.007	-48	0.001	89

*****	********	*******	*****	******	******	*******	*****	******	******	*********	*****	***********	
*					*	** MOSES	***					*	
*	"AEG	GIR" RESPONS	E AMPLI	TUDE OPERA	TOR							*	
*	VESS	SEL MOTIONS				_						*	
* Di	raft = 10	0.5 Meters			Trim An	gle = 0.	00 Deg.		GMT =	9.88 Mete	ers	*	
* R0	oll Gy. Ra	adius = 22.	1 Meter	S	Pitch G	y. Radius	= 55.0	Meters	Yaw Gy	. Radius =	53.9	Meters *	
* He	eading =	90.00 Deg.			Forward	Speed =	0.00 Kn	ots	Linear	ization Bas	sed on	1/20 *	
*			ale ale ale ale ale ale ale							ale de ale de ale de ale de ale de a		*	
****	******	****	******* M O	*********** T T O N	******* D E C	*********** D	******* 0 D E	**********	****** C	******	*****	* * * * * * * * * * * * *	
			=======	=========	к с 3 ======	F U N S E	UP C ======	=========	3 TTT ======				
			Of Poin	t On Body	AEGIR A	t X = 120	.7 Y =	0.0 Z =	13.4				
		Process	is DEF	AULT: Unit	s Are D	egrees, Me	ters, a	nd KN Un	less Sp	ecified			
ENCOUN	NTER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
		Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/	/
-(Rad/Sec)-	-(Sec)-	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase
0.3491	18.00	0.058	121	1.774	80	1.067	-8	3.936	66	0.107	-35	0.139	-164
0.3590	17.50	0.073	115	1.704	77	1.068	-9	4.502	58	0.127	-41	0.151	-164
0.3696	17.00	0.093	107	1.611	74	1.066	-11	5.167	47	0.155	-50	0.167	-166
0.3808	16.50	0.118	95	1.469	70	1.056	-12	5.850	32	0.186	-62	0.187	-171
0.3927	16.00	0.144	80	1.259	66	1.036	-13	6.220	13	0.215	-77	0.204	-178
0.4054	15.50	0.161	62	1.024	67	1.014	-13	6.004	-6	0.229	-95	0.209	171
0.4189	15.00	0.167	46	0.855	74	1.005	-13	5.315	-26	0.228	-111	0.203	163
0.4333	14.50	0.166	32	0.778	83	1.010	-13	4.522	-43	0.222	-125	0.192	156
0.4488	14.00	0.160	20	0.772	90	1.023	-14	3.602	-56	0.212	-135	0.179	151
0.4654	13.50	0.155	11	0.771	93	1.037	-15	2.841	-65	0.208	-144	0.169	148
0.4833	13.00	0.152	1	0.757	95	1.047	-17	2.248	-70	0.209	-153	0.161	146
0.5027	12.50	0.150	-7	0.731	97	1.049	-20	1.797	-72	0.213	-162	0.154	143
0.5236	12.00	0.150	-16	0.697	98	1.043	-22	1.465	-73	0.222	-172	0.147	139
0.5464	11.50	0.144	-27	0.660	99	1.024	-26	1.206	-73	0.223	174	0.136	135
0.5712	11.00	0.133	-42	0.623	101	0.981	-32	0.979	-72	0.212	155	0.122	131
0.5984	10.50	0.119	-56	0.583	103	0.917	-37	0.796	-70	0.197	137	0.105	128
0.6283	10.00	0.101	-71	0.542	105	0.830	-42	0.642	-68	0.171	117	0.086	126
0.6614	9.50	0.081	-85	0.497	107	0.727	-46	0.510	-65	0.137	94	0.066	127
0.6981	9.00	0.061	-97	0.449	110	0.617	-49	0.400	-60	0.101	68	0.045	138
0.7392	8.50	0.043	-109	0.400	114	0.505	-51	0.313	-52	0.066	37	0.035	166
0.7854	8.00	0.028	-118	0.351	119	0.401	-50	0.24/	-43	0.039	0	0.042	-164
0.8378	7.50	0.017	-12/	0.305	126	0.30/	-48	0.193	- 34	0.027	-48	0.055	-151
0.8976	/.00	0.009	-130	0.266	136	0.228	-44	0.145	-24	0.022	- /8	0.064	-144
0.9666	6.50	0.00/	-131	0.232	148	0.161	-37	0.098	-16	0.025	- /2	0.060	-135
1.04/2	6.00	0.011	-148	0.101	160	0.06/	-4	0.0/6	29	0.013	100	0.085	-160
1.1424	5.50	0.004	1/3	0.154	1/7	0.068	-8	0.004	100	0.018	-94	0.0/3	-96
1,2566	5.00	0.04/	62 1 F F	0.088	-138	0.025	83 50	0.019	51	0.013	142	0.058	-96
1.3963	4.50	0.008	-122	0.0/4	-88	0.009	52	0.011	-61	0.011	-110	0.046	-49
1.5/08	4.00	0.009	- / 9	0.020	-114	0.013	117	0.028	-84	0.01/	-11	0.05/	-/
1./95Z	2.50	0.005	-91 110	0.016	-110	0.008	116	0.01/	-91 100	0.011	-31	0.025	-18
2.0944	3.00	0.003	-112	0.013	-121	0.004	110	0.008	- 108	0.00/	- 10 - 5	0.006	- 1 1 8

*****	*******	*********	******	*******	******	********	******	*********	******	******	*****	******	
*					*	*** MOSES	***					*	
*	"AEG	IR" RESPONSI	E AMPLI	TUDE OPERAT	FOR							*	
*	VESS	EL MOTIONS		_								*	
* Dr	raft = 10	.5 Meters			Frim Ar	ngle = 0.0	00 Deg.		GMT =	9.88 Met	ers	*	
* Rc	oll Gy. Ra	idius = 22.3	1 Meter	'S I	Pitch (Gy. Radius	= 55.0) Meters	Yaw Gy	. Radius =	53.9	Meters *	
* He	eading = 1	35.00 Deg.		I	-orward	1 Speed =	0.00 Kr	nots	Linear	ization Ba	sed on	1/20 *	
*****	*****	******	******	********	******	*******	******	*********	******	*****	*****	****	
		-	+++ M O	TION	RES	PONSE	OPE	RATOR	S +++				
		=		======================================	======= \	======================================	======= 7 V _		12 4				
		Decoss	ic DEE	ALL TO LOGY	AEGIK A	AL X = 120	./ Y =	= 2 0.0 nd KN Un	15.4 locc Sn	ocified			
	мтер		IS DEF	AULI. UNIL:	SAPEL	Heave /	ters, a		ress sh	Pitch /		Vau /	
		Julge /	Amp]	Jway /	Amp 1	Have /	Amp 1		Ampl	FICCI /	Amp]		Ampl
Erequency	Period	wave	Ampi.	wave	Ampi.	wave	Ampi.	wave	Ampi.	wave /	Ampi.	wave	Ampi.
(Rad/Sec)-	- (Sec) -	Δmp]	Phase	Δmp1	Phase	, Δmn]	Phase	Δmp]	Phase	Δmp1	Phase	Δmp1	Phase
(100/ 500)	(500)	Ampi.	indse	Amp1.	Thuse	Amp1.	Thuse	Amp1.	Thuse	Aup1.	Thuse	Amp1.	muse
0.3491	18.00	1.091	149	0.907	-43	0.606	-128	2.204	-60	0.971	-34	0.788	-113
0.3590	17.50	1.028	144	0.856	-50	0.583	-133	2.555	-71	0.981	-38	0.763	-117
0.3696	17.00	0.959	139	0.797	-59	0.555	-138	3.034	-87	0.984	-44	0.738	-121
0.3808	16.50	0.880	135	0.693	-71	0.518	-144	3.498	-109	0.974	-49	0.704	-124
0.3927	16.00	0.804	130	0.543	-83	0.470	-149	3.899	-138	0.961	-53	0.680	-126
0.4054	15.50	0.745	127	0.363	-86	0.423	-153	3.663	-171	0.970	-57	0.665	-129
0.4189	15.00	0.704	122	0.276	-72	0.389	-156	3.086	154	1.002	-62	0.667	-133
0.4333	14.50	0.661	115	0.296	-65	0.363	-161	2.260	125	1.033	-69	0.657	-139
0.4488	14.00	0.604	108	0.311	-72	0.332	-167	1.562	104	1.041	-77	0.633	-146
0.4654	13.50	0.542	99	0.298	-83	0.291	-175	1.077	90	1.035	-85	0.601	-152
0.4833	13.00	0.481	91	0.2/1	-95	0.242	175	0.748	/9	1.020	-94	0.565	-160
0.5027	12.50	0.420	81	0.239	-109	0.186	165	0.516	67	0.999	-104	0.525	-168
0.5236	12.00	0.361	70	0.206	-126	0.128	155	0.349	54	0.970	-114	0.479	-176
0.5464	11.50	0.302	56	0.175	-146	0.059	150	0.222	39	0.929	-127	0.428	173
0.5712	11.00	0.240	39	0.151	-170	0.029	-102	0.114	20	0.864	-141	0.370	162
0.5984	10.50	0.178	19	0.134	160	0.099	-92	0.038	-22	0.768	-157	0.307	150
0.6283	10.00	0.122	-6	0.127	128	0.161	-108	0.043	-143	0.636	-1/4	0.239	137
0.0014	9.50	0.0/6	-40	0.126	96	0.202	-129	0.083	150	0.4//	167	0.1/1	123
1050.0 COSC 0	9.00	0.050	- 69	0.120	20	0.216	-175	0.108	1252	0.308	153	0.104	20 201
0.1392	0.00	0.044	-140 170	0.121	סכ ד	0.200	-1/5	0.11/	125	U.1/4 A 170	171 171	929.0 כרמ מ	22 121_
0.7054	7 50	0.044	1/9	0.105	_ 22	0.101	130	0.109	50 64	0.150	170	0.025	-1/5
0.0570	7.50	0.041 0 079	111	0.070 0 021	-22	0.110	107	0.005	30	0.100 0 160	1//	0.075 A AQA	-170
0.0570	6 50	0.020	102	0.034	-44	0.004	13/	0.044	50	0.100	11/	0.090	-1/0
1 0472	6.00	0.000	142	0.025	-96	0.045	57	0.000	-7	0.101	114 20	0.074	141
1 1424	5 50	0.025	72	0.002	- 50 81	0.047	-150	0.041	-, 67	0.031	150	0.005	-176
1 2566	5 00	0.008 0 079	175	0.021 0 007	163	0.00J 0 070	-150	0.002 0 022	-45	0.055 0 016	-92	0.051 0 026	- 170
1 3963	4 50	0.075	-158	0.007	141	0.050	152	0.022	-53	0.010	32	0.020 0 078	63
1.5708	4.00	0.0014	81	0.022	-172	0,007	-176	0.005	-90	0.000	38	0.020	6
1.7952	3,50	0.002	73	0.0012	177	0,002	-127	0.007	-92	0.007	51	0.010	-7
2 0944	3 00	0.002 0 001	-65	0.00J 0 00J	54	0.002 0 002	-108	0.002 0 001	92	0.007 0 005	70	0.010 0 005	-45
2.0944	5.00	0.001	כס-	0.002	54	0.003	-100	0.001	22	200.0	10	0.005	- 2

*****	*******	******	******	*******	******	*******	******	*******	******	*******	******	******	
*					*	** MOSES	***					*	
*	"AEG	IR" RESPONSE	E AMPLI	TUDE OPERA	TOR							*	
*	VESSI	EL MOTIONS										*	
* Dr	raft = 10	.5 Meters			Trim Ar	ngle = 0.0	00 Deg.		GMT =	9.88 Met	ers	*	
* Ro	oll Gy. Rad	dius = 22.1	1 Meter	S	Pitch G	ay. Radius ∶	= 55.0	Meters	Yaw Gy	. Radius =	53.9	Meters *	
* He	ading = 18	80.00 Deg.			Forward	Speed = (0.00 Kn	ots	Linear	ization Ba	sed on	1/ 20 *	
*****	*********	********	******	*******	*****	********	*****	********	*****	******	******	******	
		+	+++ M O	ΤΙΟΝ	RES	PONSE	ОРЕ	RATOR	S +++				
		=											
		(Of Poin	t On Body /	AEGIR A	x = 120	.7Y =	0.0 Z =	13.4				
		Process	is DEF	AULT: Unit	s Are D	Degrees, Met	ters, a	nd KN Un	less Sp	ecified			
ENCOUN	ITER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
		Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/	/
-(Rad/Sec)-	-(Sec)-	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase
0.3491	18,00	1.091	97	0.047	-75	0.267	-167	0.187	-69	1,097	-82	0.011	-165
0.3590	17.50	0.999	91	0.052	-83	0.237	-169	0.242	-78	1.091	-88	0.014	178
0.3696	17.00	0.914	83	0.058	-92	0.205	-172	0.337	-88	1.085	-95	0.016	166
0.3808	16.50	0.817	75	0.070	-108	0.175	-173	0.533	-105	1.063	-103	0.019	147
0.3927	16.00	0.719	66	0.078	-148	0.137	-175	0.923	-147	1.030	-111	0.017	123
0.4054	15.50	0.612	58	0.037	127	0.105	-163	0.965	138	0.977	-118	0.011	151
0.4189	15.00	0.530	48	0.015	-16	0.094	-147	0.540	91	0.944	-127	0.020	148
0.4333	14.50	0.443	37	0.024	-70	0.100	-131	0.328	73	0.893	-136	0.024	130
0.4488	14.00	0.356	24	0.030	-90	0.123	-122	0.226	59	0.825	-146	0.027	115
0.4654	13.50	0.275	10	0.032	-104	0.155	-120	0.166	47	0.746	-157	0.029	101
0.4833	13.00	0.200	-6	0.033	-116	0.191	-125	0.126	35	0.654	-167	0.030	87
0.5027	12.50	0.135	-29	0.032	-127	0.226	-134	0.096	23	0.552	-178	0.030	72
0.5236	12.00	0.087	-62	0.029	-137	0.252	-146	0.072	10	0.444	171	0.028	60
0.5464	11.50	0.060	-114	0.026	-146	0.270	-161	0.052	0	0.330	164	0.026	47
0.5712	11.00	0.061	-172	0.022	-151	0.275	178	0.035	-5	0.234	168	0.023	36
0.5984	10.50	0.068	147	0.020	-151	0.256	157	0.025	-2	0.209	-177	0.021	29
0.6283	10.00	0.066	114	0.020	-151	0.214	135	0.022	3	0.256	-174	0.021	19
0.6614	9.50	0.051	86	0.021	-157	0.158	113	0.024	0	0.304	170	0.021	4
0.6981	9.00	0.029	60	0.022	-166	0.099	95	0.024	-14	0.304	146	0.018	-13
0.7392	8.50	0.007	56	0.022	-176	0.061	90	0.023	-32	0.251	115	0.013	-26
0.7854	8.00	0.013	159	0.023	174	0.047	84	0.023	-52	0.157	82	0.011	-24
0.8378	7.50	0.022	133	0.028	161	0.036	52	0.026	-82	0.059	58	0.013	-18
0.8976	7.00	0.020	94	0.038	135	0.020	-34	0.030	-126	0.030	92	0.024	-34
0.9666	6.50	0.007	90	0.058	107	0.029	-139	0.035	-169	0.009	36	0.045	-72
1.0472	6.00	0.017	91	0.091	178	0.042	-38	0.044	-102	0.033	-37	0.058	-12
1.1424	5.50	0.006	143	0.028	-7	0.015	123	0.015	76	0.017	92	0.019	177
1.2566	5.00	0.017	42	0.005	11	0.010	154	0.005	153	0.006	89	0.005	-172
1.3963	4.50	0.006	101	0.004	91	0.001	-124	0.002	-117	0.003	-123	0.004	-37
1.5708	4.00	0.003	0	0.003	-172	0.001	102	0.002	-129	0.001	54	0.002	14
1.7952	3.50	0.005	21	0.001	172	0.001	-87	0.001	153	0.002	87	0.001	42
2.0944	3.00	0.007	26	0.000	0	0.002	-87	0.001	82	0.004	91	0.001	110

LAMPIRAN 5

PEMODELAN *DECK STRUCTURE* DENGAN SACS 5.7

Gambar pemodelan tanpa spreader bar

Gambar pemodelan dengan satu spreader bar

Gambar pemodelan dengan dua spreader bar

LAMPIRAN 6 PERHITUNGAN COG SHIFT DAN DESAIN PADEYE

radius main plate

=

237

I. SLING, SHACKLE & PADEYE GEOMETRY SELECTION

PENENTUAN PROPERTI SHACKLE			
Shackle ID green pin heavy duty shackles			
Required SWL = SSL X DAF X SKW	275,72 kips	137,86 s.tons	152,33 m.tons
Shackle Safe Working Load (SWL)	361,99 kips	181,00 s.tons	200,00 m.tons
Pin Diameter	5,12 in	130,00 mm	
Jaw Width	6,89 in	175,00 mm	
Inside Length	19,69 in	500,00 mm	

mm

1. Check pin hole diameter		
Padeye hole - pin diameter	3,00 mm	OK!
- Clearance between padeye hole and pin diameter	shall be 3mm for sh	ackle with SWL < 200 MT
2. Check main plate radius		
Required main plate radius	199,50 mm	OK!
- Required main plate radius = max (1.5 * padeye	hole, 3" + padeye ho	ole)
3. Check shackle inside length		
Required shackle inside length	357,05 mm	OK!
- Required Inside length = main pl. radius - 0.5*pi	$n \ diameter + 2'' + di$	ameter of sling
4. Check clearance between padeye & shackle		
0.5*(Jaw Width - Padeye Thk)	5,00 mm	OK!
- Clearance shall be not more than 5mm each side		
5. Check clearance between sling & shackle		
shackle jaw - sling f	41,00 mm	OK!
- Minimum clearance is 0.25"		
II. CEK KEKUATAN PADEVE SEKITAR I URANG		
I. CER REROATAN TABETE SERITAR EUDANO		
Padeye design load, Pd = SSL X DAF X CF X SKW		205,65 MT 2016,72 kN
1. Check Pin Bearing		
Allowable Bearing Stress		
Fp = 0.90 Fv	225.00 MPa	
Bearing Thickness	165.00 mm	
Actual Bearing Stress		PIN DIAMETER
Bearing Area	21450.00 mm2	
fp = Pd / Bearing Area	94,02 MPa	ЦЦІ
$\mathbf{U}\mathbf{C} = \mathbf{f}\mathbf{p} / \mathbf{F}\mathbf{p}$	0,42	
2. Check Pin Pull Out		
Allowable Shear Stress		Pd
Fv = 0.40 Fv	100,00 MPa	.4
Actual Shear Stress	,	X
Shear Area	51263.50 mm2	$\langle 0 \rangle$
fv = Pd / Shear Area	39,34 MPa	
UC = fv / Fv	0,39	<u></u>
		Pd TENSION FAILURE
3. Check Tension Failure at Section Through Pinhole		
Allowable Tension Stress		\mathbf{N}
		Y
Ft = 0.45 Fy	112,50 MPa	
Ft = 0.45 Fy Actual Tension Stress	112,50 MPa	
Ft = 0.45 Fy Actual Tension Stress Tension Area	112,50 MPa 51263,50 mm2	
Ft = 0.45 Fy Actual Tension Stress Tension Area ft = Pd / Tension Area	112,50 MPa 51263,50 mm2 39,34 MPa	
Ft = 0.45 Fy Actual Tension Stress Tension Area ft = Pd / Tension Area UC = ft / Ft	112,50 MPa 51263,50 mm2 39,34 MPa 0,35	TENSION FAILURE
Ft = 0.45 Fy Actual Tension Stress Tension Area ft = Pd / Tension Area UC = ft / Ft	112,50 MPa 51263,50 mm2 39,34 MPa 0,35	TENSION FAILURE APPROX. Pd 136 g PAD DE CHEEK BI
Ft = 0.45 Fy Actual Tension Stress Tension Area ft = Pd / Tension Area UC = ft / Ft 4. Check Tension Failure at Section Around Cheek Plate	112,50 MPa 51263,50 mm2 39,34 MPa 0,35	TENSION FAILURE APPROX. Pd 1.25 π RAD OF CHEEK PL
Ft = 0.45 Fy Actual Tension Stress Tension Area ft = Pd / Tension Area UC = ft / Ft <u>4. Check Tension Failure at Section Around Cheek Plate</u> Allowable Tension Stress	112,50 MPa 51263,50 mm2 39,34 MPa 0,35	TENSION FAILURE APPROX. Pd 1.25 π RAD OF CHEEK PL
Ft = 0.45 Fy Actual Tension Stress Tension Area ft = Pd / Tension Area $UC = ft / Ft$ 4. Check Tension Failure at Section Around Cheek Plate Allowable Tension Stress Ft = 0.60 Fy t = 0.07 Fy	112,50 MPa 51263,50 mm2 39,34 MPa 0,35 150,00 MPa	TENSION FAILURE APPROX. Pd 1.25 # RAD OF CHEEK PL
Ft = 0.45 Fy Actual Tension Stress Tension Area ft = Pd / Tension Area $UC = ft / Ft$ 4. Check Tension Failure at Section Around Cheek Plate Allowable Tension Stress Ft = 0.60 Fy Actual Tension Stress The interval of the section Around Cheek Plate	112,50 MPa 51263,50 mm2 39,34 MPa 0,35 150,00 MPa	TENSION FAILURE APPROX. Pd 1.25 π RAD OF CHEEK PL
Ft = 0.45 Fy Actual Tension Stress Tension Area ft = Pd / Tension Area $UC = ft / Ft$ 4. Check Tension Failure at Section Around Cheek Plate Allowable Tension Stress Ft = 0.60 Fy Actual Tension Stress Tension Area ft = Pd / Tension Area	112,50 MPa 51263,50 mm2 39,34 MPa 0,35 150,00 MPa 67225,17 mm2	TENSION FAILURE APPROX. Pd 1.25 π RAD OF CHEEK PL
Ft = 0.45 Fy Actual Tension Stress Tension Area ft = Pd / Tension Area UC = ft / Ft <u>4. Check Tension Failure at Section Around Cheek Plate</u> Allowable Tension Stress Ft = 0.60 Fy Actual Tension Stress Tension Area ft = Pd / Tension Area UC = ft / Et	112,50 MPa 51263,50 mm2 39,34 MPa 0,35 150,00 MPa 67225,17 mm2 30,00 MPa	TENSION FAILURE APPROX. Pd 1.25 π RAD OF CHEEK PL
Ft = 0.45 Fy Actual Tension Stress Tension Area ft = Pd / Tension Area UC = ft / Ft <u>4. Check Tension Failure at Section Around Cheek Plate</u> Allowable Tension Stress Ft = 0.60 Fy Actual Tension Stress Tension Area ft = Pd / Tension Area UC = ft / Ft	112,50 MPa 51263,50 mm2 39,34 MPa 0,35 150,00 MPa 67225,17 mm2 30,00 MPa 0,20	TENSION FAILURE APPROX. Pd 1.25 π RAD OF CHEEK PL
Ft = 0.45 Fy $Actual Tension Stress$ Tension Area $ft = Pd / Tension Area$ $UC = ft / Ft$ $4. Check Tension Failure at Section Around Cheek Plate$ $Allowable Tension Stress$ $Ft = 0.60 Fy$ $Actual Tension Stress$ $Tension Area$ $ft = Pd / Tension Area$ $UC = ft / Ft$	112,50 MPa 51263,50 mm2 39,34 MPa 0,35 150,00 MPa 67225,17 mm2 30,00 MPa 0,20	TENSION FAILURE APPROX. Pd 1.25 # RAD OF CHEEK PL

III. CEK KEKUATAN PADEYE PADA PADEYE CONNECTION

X-X axis

	Length	Length	Y	Area	AY	AY*Y	I x-x own
Description	(X dir.)	(Y dir.)	(mm)	(mm2)	(mm3)	(mm4)	(mm4)
	(mm)	(mm)					
Stiffener 1	40,00	380,00	190,00	1,52E+04	2,89E+06	5,49E+08	1,83E+08
Stiffener 2	40,00	380,00	190,00	1,52E+04	2,89E+06	5,49E+08	1,83E+08
Main plate	680,00	83,00	231,50	5,64E+04	1,31E+07	3,02E+09	3,24E+07
				8,68E+04	1,88E+07	4,12E+09	3,98E+08

Yc, Distance to centroid of section measured from bottom = summation(AY)/summation(A) 216,97 mm Yc

 $I x-x = summation(I x-x own) + summation(AY*Y) - [{summation(AY)}^2/summation(A)]$ I x-x

4,32E+08 mm4 =

Max distance to edge of section in Y direction

216,97 mm = = 1,99E+06 mm3

Sxx

Y	-Y	axis

UC = fv / Fv

	Length	Length	Х	Area	AX	AX*X	I y-y own
Description	(X dir.)	(Y dir.)	(mm)	(mm2)	(mm3)	(mm4)	(mm4)
	(mm)	(mm)					
Stiffener 1	40,00	380,00	-360,00	1,52E+04	-5,47E+06	1,97E+09	2,03E+06
Stiffener 2	40,00	380,00	360,00	1,52E+04	5,47E+06	1,97E+09	2,03E+06
Main plate	680,00	83,00	0,00	5,64E+04	0,00E+00	0,00E+00	2,17E+09
				8.68E+04	0.00E+00	3.94E+09	2.18E+09

Xc , Distance to centroid of section measured from middle of main plate = summation(AY)/summation(A) 0,00 mm

Xc = $I y-y = summation(I y-y own) + summation(AX*X) - [{summation(AX)}^2/summation(A)]$ I y-y = =

Max distance to edge of section in X direction Syy

6,12E+09 mm4 380,00 mm = 1,61E+07 mm3

Padeye design load, Pd	2016,72 kN	Pt
Sling angle due to horizontal plane, q	60,00 degree	
Tensile force, Pt	1008,36 kN	Lm
Shear force, Pv	1746,53 kN	Pd θ
Yield strength of padeye, Fy	250,00 MPa	Xc
1. Check Shear Stress		Pv
Allowable Shear Stress		·····/·(·③))
Fv = 0.40 Fy	100,00 MPa	
Actual Shear Stress		H\$
panjang mainplate	680,00 mm	\downarrow \parallel \downarrow \downarrow \parallel
Main Plate Thickness	83,00 mm	
Shear Area	56440,00 mm2	i i
fv(inpln) = Pv / Shear Area	30,94 MPa	

0,31

2. Check Tensile Stress		Oh a an Oh a alu	
Allowable Tensile Stress		Shear Check	Tensile
Ft = 0.60 Fv	150.00 MPa		0
Actual Tensile Stress			
Tensile Area	8.68E+04 mm2		
ft = Pt / Tensile Area	11.61 MPa		8 8
IIC = ft / Ft	0.08		
3 Check Inplane Bending Stress	0,00		
Allowable Bending Stress			
Fb = 0.60 Fv	150.00 MPa	Inniana Panding	Chook
Actual Bending Stress	150,00 111 u	Inplane Bending	JCheck
Hs	120.00 mm	пп	
Im	478 63 mm		
Xc	360.00 mm		
Hm - Yc	118 63 mm		
Moment = Pv*H = Pt*(I m - Yc)	9.00F+04 kN-mm		
fh = Moment / Sx-x	45 16 MPa		
IIC = fb / Fb			
A Check Out of Plane Bending Stress	0,50	Out of plane Ben	ding Check
<u>4. Cilcek Out of Franc Bending Stress</u>		•	U
Fb = 0.60 Fv	150.00 MPa		
Actual Banding Strass	150,00 1011 a		
Out of plane force -5% Pd	100.84 kN		
Moment – force * $(H + 0.5 hole)$	18805 87 kN mm		
fh = Moment / Sy y	1 17 MPa		
IO = MOMENT / Sy-y IIC = fb / Fb	1,17 IVIFa		
5 Check Combined Stress	0,01		
$\frac{J.C = UC \text{ tangile} + UC \text{ inpl bending} + UC \text{ outpl}}{UC = UC \text{ tangile} + UC \text{ inpl bending} + UC \text{ outpl}}$	n bonding	0.30	
6 Check Von Misses Vielding Criteria	ii benuing	0,39	
<u>Allowable Stress</u>			
F yon misses $= 0.90$ Fy	225 MPa		
Actual Stress	225 WII a		
$f_x = f_t + f_h (inpln) + f_h (outpln)$	57 94 MPa		
$f_{\rm X} = R + 10 ({\rm mpin}) + 10 ({\rm outpin})$	1 16 MPa		
$1 \vee (\text{outphi}) = \text{out of 1 hat role} / \mathbf{A}$	1,10 MI a		
tx = SQR1(tv(inpln) + tv(outpln))	30,97 MPa		
f von misses = $sqrt(fx^2+3*tx^2)$	78,95 MPa		
UC = f/F	0,35		
7. Check Welding Main/Cheek Plate			
Tensile Strength of E70XX Electrode Design load on cheek plate	70 ksi	482,63 Mpa	
Pw = Sling SWL*min(tc,3/4*tm)/(tm+2*min(tc,3/4*tm))	4*tm))	498,13 kN	
Size of fillet weld required	· · ·	,	
w = Pw/(pi()*rc*0.3*Fuw*0.707)		7.51 mm	
Size of fillet weld provided		,,e.i. mini	
we =		30 mm	
UC = w/we		0.25	
		0,20	

KATALOG SHACKLE

• Finish Certification

Note

Green Pin[®] Heavy Duty Shackles bow shackles with safety bolt

 Material
 Safety Factor : bow and pin alloy steel, Grade 8 quenched and tempered : MBL equals 5 x WLL

: +5% forging tolerance on inside width and length

- - : shackle bow painted silver, pin painted green (120 tons shackle is hot dipped galvanized) : at no extra charges this product can be supplied with a works certificate, certificate of basic raw material, manufacturer test certificate, EC Declaration of Conformity and all shackles starting from 150 tons are supplied with a Lloyd's Register of Shipping Certificate on proof load

working load limit	diameter bow	diameter pin	diameter eye	width eye	width inside	length inside	width bow	length	length bolt	width	thickness nut	weight each
	а	b	С	d	е	f	g	h	1	j	k	
tons	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
120	95	95	215	89	144	381	238	667	440	416	50	110
150	105	108	245	100	165	400	275	702	490	485	60	160
200	120	130	288	110	175	500	290	854	520	530	60	235
250	130	140	308	115	200	540	305	921	560	565	65	285
300	140	150	335	120	200	600	305	1018	575	585	70	340
400	170	175	387	160	225	650	325	1137	690	665	70	560
500	180	185	410	160	250	700	350	1213	710	710	70	685
600	200	205	458	185	275	700	375	1267	810	775	70	880
700	210	215	468	200	300	700	400	1287	850	820	70	980
800	210	220	478	200	300	700	400	1294	870	820	70	1100
900	220	230	500	210	320	700	420	1320	920	860	70	1280
1000	240	240	530	210	340	700	420	1360	940	900	70	1460
1250	260	270	600	225	360	700	450	1430	1020	970	70	1990
1500	280	290	640	225	360	700	450	1480	1060	1010	70	2400

KATALOG SLING

PM20

Heavy Duty Lifting Slings for the Offshore Industry

CABLE LAID SLINGS

Plant and Machinery Series 20 (Rev) OCTOBER 1987

NC RC DV	MINAL PE	UNIT ROPE DIA	WEIGHT (MASS)	MINIMUM BREAKING LOAD
MM	INCH	MM-MM	KG/M	MT
102	4	32-36	31.2	406
108	4.1/4	34-40	34.9	465
114	4.1/2	36-42	38.9	520
120	4.3/4	38-44	43.8	578
128	5	40-46	48.2	640
134	5.1/4	42-48	52.8	703
140	5.1/2	44-50	57.6	770
146	5.3/4	46-52	65.3	840
152	6	48-56	68.8	926
158	6.1/4	50-58	74.3	1002
166	6.1/2	52-60	80.1	1069
172	6.3/4	54-62	92	1174
178	7	56-64	93.2	1260
184	7,1/4	58-66	100	1334
190	7.1/2	60-70	106.7	1455
196	7.3/4	62-72	118	1608
204	8	64-74	121	1705
210	8.1/4	66-76	128	1805
216	8.1/2	68-78	137	1908
222	8.3/4	70-80	145	2010
228	9	72-84	153	2134
236	9.1/4	74-86	162	2244
242	9.1/2	76-88	171	2356
248	9.3/4	78-90	181	2472
254	10	80-92	190	2590
266	10.1/2	84-96	210	2825
280	11	88-102	229	3102
292	11.1/2	92-106	251	3345
304	12	96-110	274	3608
318	12.1/2	100-116	297	3912
330	13	104-120	320	4192
342	13.1/2	108-124	368	4478
356	14	112-128	372	4738
368	14.1/2	116-132	400	5049
380	15	120-140	426	5418
394	15.1/2	124-144	472	5747
406	16	128-148	484	6074
420	16.1/2	132-152	512	6417
432	17	136-156	548	6766
444	17.1/2	140-160	580	7123
458	18	144-168	612	7544

r4	L		
500	7	r3	
	<u> </u>	5009	
T I	T	▲ ¥	
	¥1	I T'	
	X2 ⁴ 1	K1	
←	*• •	→	X
Δ	3 2		
		COG awal	
	Y2	COG EI	nvelope
	\perp		
5001	•	6	
r1	P		
	D		
Dock Prosorvice	Woight	COG dook owol yong didopotk	on dari SACS
Deck Fleselvic	e weight		
Б	-748 555 kinc	$-x_{5dUS} = -1,8161$	1
P =	-746,555 kips	$Y_{Sacs} = -15,2601$	t.
A =	25,980 ft	2 sacs = 11,950 f	t
B =	30,000 ft	X1 = 16,816 1	t (jarak titik COG ke lift point)
		X2 = 13,184 1	it (jarak titik COG ke lift point)
		Y1 = 15,260 f	it (jarak titik COG ke lift point)
		Y2 = 10,720 f	it (jarak titik COG ke lift point)
CoG shift	deck structure		
untuk liftir	ng harus 5% dari panjang dan leb	ar	
5% overa	Il width = 3,280 ft	1,64	
5% overa	Il length = 3.28 ft	1 64	
Y1' – Y1 -	$h = 0.5 \times 5\%$ overall deck length	.,	
11 - 11			
D4 - D0			
KI+KZ		SIIII RI+RZ = $PX FZ$	
	A		
R3+R4	$= \underline{PXY2}$	$R3+R4 = \underline{PXY1}$	
	A	A	
R1	= <u>(R1+R2).X1</u>	, after CoG shift R1	= (R1+R2).X2'
	В		В
R2	= <u>(R1+R2) (X2)</u>	, after CoG shift R2	= (R1+R2) (X1')
	В		В
R3	= <u>(R3+R4) . X2</u>	, after CoG shift R3	$= (R3+R4) \cdot X2'$
	B		B
R4	= (R3+R4). X1	, after CoG shift R4	= (R3+R4). X1'
	<u></u> B	,	<u>B</u>
	Б		5
	21.16		
NO COG S	Shift	COG shift 1 (+X, +Y)	
	45.00		
Y1 =	15,26 ft	Y1' = 13,62 ft	
Y2 =	10,72 ft	Y2' = 12,36 ft	
X1 =	16,82 ft	X1' = 15,18 ft	
X2 =	13,18 ft	X2' = 14,82 ft	
R1+R2	= -439,68 kips	R1+R2 = -392,43 kips	
R3+R4	= -308.87 kips	R3+R4 = -356.13 kins	
reaksina	ta setian deck leg		Couple force vang akan diinput ke deckleg:
	-246.46 king	P1109 52 king	P1 CoC shift - P1 No CoC - 47 040 king
	-240,40 KIPS	INT = -190,02 KIPS	$P_2 C_{00} c_{0} c_{0} c_{1} c_{1} c_{1} c_{1} c_{1} c_{2} c_{2} c_{2} c_{1} c_{1} c_{1} c_{2} c_{2} c_{2} c_{2} c_{1} c_{1} c_{2} c_{2} c_{2} c_{2} c_{1} c_{1} c_{2} c_{2}$
R2 =	-193,23 kips	κ ₂ = -193,91 kips	$R_2 \cup GG \text{ shift} - R_2 \text{ No } \cup GG = -0,687 \text{ kips}$
R3 =	-135,74 kips	R3 = -175,97 kips	R3 CoG shift - R3 No CoG = -40,234 kips
R4 =	-173,13 kips	R4 = -180,15 kips	R4 CoG shift - R4 No CoG = -7,019 kips

CoG shift	2 (+X)	& (-Y)					
		<u></u>				Couple force vang akan diinp	ut ke decklea.
Y1' =	16,90	ft		R1 =	-246.32 kips	R1 CoG shift - R1 No CoG	= 0.132 kips
Y2' =	9,08	ft		R2 =	-240.61 kips	R2 CoG shift - R2 No CoG	= -47.385 kips
X1' =	15 18	ft		R3 =	-129 28 kips	R3 CoG shift - R3 No CoG	= 6.464 kips
X2' =	14.82	ft		R4 =	-132.34 kips	R4 CoG shift - R4 No CoG	= 40.789 kips
	,				102,011,000		<u></u>
R1+R2	=	-486 94	kips				
R3+R4	=	-261.62	kips				
		,					
<u>CoG shift</u>	3 (-X)	<u>& (+Y)</u>					
				R1 =	-241,42 kips	Couple force yang akan diinput k	e deckleg:
Y1' =	13,62	ft		R2 =	-151,01 kips	R1 CoG shift - R1 No CoG	= <u>5,034</u> kips
Y2' =	12,36	ft		R3 =	-137,04 kips	R2 CoG shift - R2 No CoG	= <u>42,219</u> kips
X1' =	18,46	ft		R4 =	-219,09 kips	R3 CoG shift - R3 No CoG	= <u>-1,298</u> kips
X2' =	11,54	ft				R4 CoG shift - R4 No CoG	= <u>-45,955</u> kips
D4 - D2		202.42	l.i.e.e				
R1+R2	=	-392,43	KIPS				
K3+K4	=	-300,13	kips				
<u>CoG shift</u>	: 4 (-X)	<u>& (-Y)</u>					
				R1 =	-299,56 kips	Couple force yang akan diinput k	e deckleg:
Y1' =	16,90	ft		R2 =	-187,37 kips	R1 CoG shift - R1 No CoG	= -53,106 kips
Y2' =	9,08	ft		R3 =	-100,67 kips	R2 CoG shift - R2 No CoG	= 5,853 kips
X1' =	18,46	ft		R4 =	-160,95 kips	R3 CoG shift - R3 No CoG	= 35,068 kips
X2' =	11,54	ft				R4 CoG shift - R4 No CoG	= 12,185 kips
R1+R2	=	-486,94	kips				
R3+R4	=	-261,62	kips				
Coordinate CoC	• ahifi						
Coordinate Coo	<u>5 51111</u>						
diskri	psi		X1	Y1			
CoG or	iginal		-1,82	-15,26			
CoG shift1 (-	+X) & (·	+)Y	-3,46	-16,90			
CoG shift2 (-	+X) & (·	-) Y	-3,46	-13,62			
CoG shift3 (-	·X) & (+	-) Y	-0,18	-16,90			
CoG shift4 (-X) & (-) Y	-0,18	-13,62			

LAMPIRAN 7 OUTPUT SACS 5.7

Maksimum displacement untuk desain tanpa spreader bar

			MAX	IMUM JOINT	DISPLACE	MENTS		
LOAD		DEFL(X)		DEFL(Y)		DEFL(Z)		DEFL(T)
COND	JOINT	(IN)	JOINT	(IN)	JOINT	(IN)	JOINT	(IN)
DEAD	5804	0.749	5804	1.308	5804	-2.496	5804	2.916
ENVØ	5804	0.749	5804	1.308	5804	-2.479	5804	2.901
ENV9	5804	0.749	5804	1.308	5804	-2.490	5804	2.910
PAD0	5804	1.579	5804	2.759	5804	-5.242	5804	6.131
PAD9	5804	1.579	5804	2.760	5804	-5.257	5804	6.143

Sling force untuk desain tanpa spreader bar

MEMBER FORCES AND MOMENTS

			******	kips ******	*****	******	in-kips ****	******
MEMBER	MEMBER	GROUP LOAD	FORCE(X)	FORCE(Y)	FORCE(Z)	MOMENT(X)	MOMENT(Y)	MOMENT(Z)
NUMBER	END	ID COND						
0001-0000	0001	SLG DEAD	116.0593	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	112.5048	-0.0044	-0.0039	0.0000	0.0000	0.0000
		ENV9	113.0561	0.0049	-0.0035	0.0000	0.0000	0.0000
		PAD0	240.0142	-0.0059	-0.0053	0.0000	0.0000	0.0000
		PAD9	240.7585	0.0066	-0.0047	0.0000	0.0000	0.0000
	0000	DEAD	116.0593	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	112.5048	0.0044	0.0039	0.0000	0.0000	0.0000
		ENV9	113.0561	-0.0049	0.0035	0.0000	0.0000	0.0000
		PAD0	240.0142	0.0059	0.0053	0.0000	0.0000	0.0000
		PAD9	240.7585	-0.0066	0.0047	0.0000	0.0000	0.0000
0002-0000	0002	SLG DEAD	246.2948	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	242.1281	0.0041	-0.0041	0.0000	0.0000	0.0000
		ENV9	249.2319	0.0050	0.0033	0.0000	0.0000	0.0000
		PAD0	513.9048	0.0055	-0.0055	0.0000	0.0000	0.0000
		PAD9	523.4951	0.0068	0.0045	0.0000	0.0000	0.0000
	0000	DEAD	246.2948	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	242.1281	-0.0041	0.0041	0.0000	0.0000	0.0000
		ENV9	249.2319	-0.0050	-0.0033	0.0000	0.0000	0.0000
		PAD0	513.9048	-0.0055	0.0055	0.0000	0.0000	0.0000
		PAD9	523.4951	-0.0068	-0.0045	0.0000	0.0000	0.0000
0003-0000	0003	SLG DEAD	192.8243	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	196.1294	-0.0044	0.0039	0.0000	0.0000	0.0000

		ENV9	190.0746	-0.0048	-0.0035	0.0000	0.0000	0.0000
		PADØ	411.2014	-0.0060	0.0052	0.0000	0.0000	0.0000
		PAD9	403.0272	-0.0065	-0.0048	0.0000	0.0000	0.0000
	0000	DEAD	192.8243	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	196.1294	0.0044	-0.0039	0.0000	0.0000	0.0000
		ENV9	190.0746	0.0048	0.0035	0.0000	0.0000	0.0000
		PADØ	411.2014	0.0060	-0.0052	0.0000	0.0000	0.0000
		PAD9	403.0272	0.0065	0.0048	0.0000	0.0000	0.0000
0004-0000	0004	SLG DEAD	365.4683	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	369.7802	0.0038	0.0042	0.0000	0.0000	0.0000
		ENV9	368.1155	-0.0051	0.0031	0.0000	0.0000	0.0000
		PADØ	776.7337	0.0051	0.0057	0.0000	0.0000	0.0000
		PAD9	774.4865	-0.0069	0.0042	0.0000	0.0000	0.0000
	0000	DEAD	365.4683	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	369.7801	-0.0038	-0.0042	0.0000	0.0000	0.0000
		ENV9	368.1156	0.0051	-0.0031	0.0000	0.0000	0.0000
		PAD0	776.7337	-0.0051	-0.0057	0.0000	0.0000	0.0000
		PAD9	774.4865	0.0069	-0.0042	0.0000	0.0000	0.0000

Maksimum displacement untuk desain satu spreader bar

			MAX	IMUM JOINT	DISPLACE	MENTS		
LOAD		DEFL(X)		DEFL(Y)		DEFL(Z)		DEFL(T)
COND	JOINT	(IN)	JOINT	(IN)	JOINT	(IN)	JOINT	(IN)
DEAD	603	1.061	5804	1.308	5804	-3.250	5804	3.583
ENVØ	603	1.208	5804	1.308	5804	-3.209	5804	3.545
ENV9	603	1.066	5804	1.309	5804	-3.246	5804	3.579
PAD0	603	2.168	5804	2.429	5804	-5.977	5804	6.600
PAD9	603	1.976	5804	2.429	5804	-6.027	5804	6.645

Sling force untuk desain satu spreader bar

				MEMBER FORCES AND MOMENTS						
			*****	kips ******	******	*****	in-kips *****	********		
MEMBER NUMBER	MEMBER END	GROUP LOAD ID COND	FORCE(X)	FORCE(Y)	FORCE(Z)	MOMENT(X)	MOMENT(Y)	MOMENT(Z)		
0001-0007	7 0001	SLG DEAD ENVØ ENV9	120.7740 117.5864 117.9145	0.0000 -0.0053 0.0000	0.0000 0.0000 -0.0044	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000		

		PAD0	219.8844	-0.0071	0.0000	0.0000	0.0000	0.0000
		PAD9	220.3271	0.0000	-0.0059	0.0000	0.0000	0.0000
	0007	DEAD	120.7740	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	117.5864	0.0053	0.0000	0.0000	0.0000	0.0000
		ENV9	117.9145	0.0000	0.0044	0.0000	0.0000	0.0000
		PAD0	219.8844	0.0071	0.0000	0.0000	0.0000	0.0000
		PAD9	220.3271	0.0000	0.0059	0.0000	0.0000	0.0000
0002-0007	0002	SLG DEAD	209.6850	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	205.4824	0.0048	0.0000	0.0000	0.0000	0.0000
		ENV9	212.2854	0.0000	0.0044	0.0000	0.0000	0.0000
		PAD0	383.5504	0.0065	0.0000	0.0000	0.0000	0.0000
		PAD9	392.7346	0.0000	0.0059	0.0000	0.0000	0.0000
	0007	DEAD	209.6850	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	205.4824	-0.0048	0.0000	0.0000	0.0000	0.0000
		ENV9	212.2854	0.0000	-0.0044	0.0000	0.0000	0.0000
		PAD0	383.5504	-0.0065	0.0000	0.0000	0.0000	0.0000
		PAD9	392.7346	0.0000	-0.0059	0.0000	0.0000	0.0000
0003-0006	0003	SLG DEAD	175.6495	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	178.5834	-0.0053	0.0000	0.0000	0.0000	0.0000
		ENV9	172.9861	0.0000	-0.0044	0.0000	0.0000	0.0000
		PADØ	330.0108	-0.0071	0.0000	0.0000	0.0000	0.0000
		PAD9	322.4543	0.0000	-0.0059	0.0000	0.0000	0.0000
	0006	DEAD	175.6495	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	178.5834	0.0053	0.0000	0.0000	0.0000	0.0000
		ENV9	172.9861	0.0000	0.0044	0.0000	0.0000	0.0000
		PADØ	330.0108	0.0071	0.0000	0.0000	0.0000	0.0000
		PAD9	322.4543	0.0000	0.0059	0.0000	0.0000	0.0000
0004-0006	0004	SLG DEAD	340.0063	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	344.3427	0.0047	0.0000	0.0000	0.0000	0.0000
		ENV9	342.3727	0.0000	0.0044	0.0000	0.0000	0.0000
		PADØ	636.9889	0.0064	0.0000	0.0000	0.0000	0.0000
		PAD9	634.3293	0.0000	0.0059	0.0000	0.0000	0.0000
	0006	DEAD	340.0063	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	344.3427	-0.0047	0.0000	0.0000	0.0000	0.0000
		ENV9	342.3727	0.0000	-0.0044	0.0000	0.0000	0.0000
		PAD0	636.9889	-0.0064	0.0000	0.0000	0.0000	0.0000
		PAD9	634.3293	0.0000	-0.0059	0.0000	0.0000	0.0000
0006-0000	0006	SLG DEAD	490.4236	0.0000	0.0000	0.0103	0.0000	0.0000

ENV9490.4026-0.00820.00100.01030.0000PAD0919.62310.00110.01040.02020.0000PAD9910.3192-0.01110.00130.01910.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000									
PAD0919.62310.00110.01040.02020.0000PAD9910.3192-0.01110.00130.01910.0000	0.0000 0.0000 0.0000 0.0000 0.0000									
PAD9 910.3192 -0.0111 0.0013 0.0191 0.0000	0.0000 0.0000 0.0000 0.0000									
	0.0000 0.0000 0.0000									
0000 DEAD 490.4236 0.0000 0.0000 0.0103 0.0000	0.0000									
ENV0 497.2944 -0.0008 -0.0077 0.0111 0.0000	0,0000									
ENV9 490.4026 0.0082 -0.0010 0.0103 0.0000	0.0000									
PAD0 919.6231 -0.0011 -0.0104 0.0202 0.0000	0.0000									
PAD9 910.3190 0.0111 -0.0013 0.0191 0.0000	0.0000									
0007-0000 0007 SLG DEAD 309.7653 0.0000 0.0000 0.0101 0.0000	0.0000									
ENVO 302.8740 0.0008 -0.0077 0.0109 0.0000	0.0000									
ENV9 309.7446 0.0082 0.0009 0.0100 0.0000	0.0000									
PAD0 565.6956 0.0011 -0.0104 0.0198 0.0000	0.0000									
PAD9 574.9709 0.0111 0.0013 0.0187 0.0000	0.0000									
0000 DEAD 309.7653 0.0000 0.0000 0.0101 0.0000	0.0000									
ENV0 302.8740 -0.0008 0.0077 0.0109 0.0000	0.0000									
ENV9 309.7445 -0.0082 -0.0009 0.0100 0.0000	0.0000									
PAD0 565.6956 -0.0011 0.0104 0.0198 0.0000	0.0000									
PAD9 574.9708 -0.0111 -0.0013 0.0187 0.0000	0.0000									
Maksimum displacement untuk desain dua spreader bar										

			MAXI	MUM JOINT D	DISPLACEM	IENTS		
LOAD		DEFL(X)		DEFL(Y)		DEFL(Z)		DEFL(T)
COND	JOINT	(IN)	JOINT	(IN)	JOINT	(IN)	JOINT	(IN)
DEAD	603	0.765	601	1.504	5162	-2.625	5804	3.017
ENVØ	603	0.882	601	1.504	5162	-2.635	5804	2.995
ENV9	603	0.770	601	1.583	5162	-2.666	5804	3.008
PAD0	603	1.578	601	2.791	5162	-4.886	5804	5.571
PAD9	603	1.426	601	2.898	5162	-4.928	5804	5.589

Sling force untuk desain dua spreader bar

PIEPIDER FORCES AND PIOPIENT.	MEMBER	FORCES	AND	MOMENTS
-------------------------------	--------	--------	-----	---------

			*******	* kips ******	*****	*****	in-kips **	******
MEMBER	MEMBER	GROUP LOAD	FORCE(X)	FORCE(Y)	FORCE(Z)	MOMENT(X)	MOMENT(Y)	MOMENT(Z)
NUMBER	END	ID COND						
0001-0008	3 0001	SLG DEAD	97.0084	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	93.7515	-0.0031	-0.0041	0.0000	0.0000	0.0000
		ENV9	94.2702	0.0046	-0.0028	0.0000	0.0000	0.0000
		PAD0	175.6757	-0.0042	-0.0056	0.0000	0.0000	0.0000

		PAD9	176.3760	0.0061	-0.0038	0.0000	0.0000	0.0000
	0008	DEAD	97.0084	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	93.7515	0.0031	0.0041	0.0000	0.0000	0.0000
		ENV9	94.2702	-0.0046	0.0028	0.0000	0.0000	0.0000
		PAD0	175.6757	0.0042	0.0056	0.0000	0.0000	0.0000
		PAD9	176.3760	-0.0062	0.0038	0.0000	0.0000	0.0000
0002-0007	0002	SLG DEAD	219.1454	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	215.5527	0.0012	-0.0049	0.0000	0.0000	0.0000
		ENV9	221.7915	0.0052	0.0011	0.0000	0.0000	0.0000
		PADØ	401.9349	0.0016	-0.0066	0.0000	0.0000	0.0000
		PAD9	410.3573	0.0071	0.0015	0.0000	0.0000	0.0000
	0007	DEAD	219.1454	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	215.5527	-0.0012	0.0049	0.0000	0.0000	0.0000
		ENV9	221.7915	-0.0052	-0.0011	0.0000	0.0000	0.0000
		PADØ	401.9349	-0.0016	0.0066	0.0000	0.0000	0.0000
		PAD9	410.3573	-0.0071	-0.0015	0.0000	0.0000	0.0000
0003-0009	0003	SLG DEAD	170.9787	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	174.0262	-0.0031	0.0041	0.0000	0.0000	0.0000
		ENV9	168.5083	-0.0046	-0.0028	0.0000	0.0000	0.0000
		PADØ	321.4942	-0.0042	0.0056	0.0000	0.0000	0.0000
		PAD9	314.0450	-0.0061	-0.0038	0.0000	0.0000	0.0000
	0009	DEAD	170.9787	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	174.0262	0.0031	-0.0041	0.0000	0.0000	0.0000
		ENV9	168.5083	0.0046	0.0028	0.0000	0.0000	0.0000
		PAD0	321.4942	0.0042	-0.0056	0.0000	0.0000	0.0000
		PAD9	314.0450	0.0062	0.0038	0.0000	0.0000	0.0000
0004-0006	0004	SLG DEAD	324.7641	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	328.5498	0.0004	0.0050	0.0000	0.0000	0.0000
		ENV9	327.1422	-0.0053	0.0005	0.0000	0.0000	0.0000
		PADØ	607.9519	0.0006	0.0067	0.0000	0.0000	0.0000
		PAD9	606.0516	-0.0072	0.0007	0.0000	0.0000	0.0000
	0006	DEAD	324.7641	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	328.5498	-0.0004	-0.0050	0.0000	0.0000	0.0000
		ENV9	327.1422	0.0053	-0.0005	0.0000	0.0000	0.0000
		PAD0	607.9519	-0.0006	-0.0067	0.0000	0.0000	0.0000
		PAD9	606.0516	0.0072	-0.0007	0.0000	0.0000	0.0000
0006-0000	0006	SLG DEAD	312.0624	0.0000	0.0000	0.1049	0.0000	0.0000
		ENVØ	315.7030	0.0079	0.0039	0.0820	0.0000	0.0000

		ENV9	314.3496	-0.0036	0.0078	0.1062	0.0000	0.0000
		PAD0	584.1785	0.0106	0.0053	0.1638	0.0000	0.0000
		PAD9	582.3515	-0.0049	0.0106	0.1965	0.0000	0.0000
	0000	DEAD	312.0624	0.0000	0.0000	0.1049	0.0000	0.0000
		ENVØ	315.7029	-0.0079	-0.0039	0.0820	0.0000	0.0000
		ENV9	314.3496	0.0036	-0.0078	0.1062	0.0000	0.0000
		PAD0	584.1783	-0.0107	-0.0053	0.1638	0.0000	0.0000
		PAD9	582.3514	0.0049	-0.0106	0.1965	0.0000	0.0000
0007-0000	0007	SLG DEAD	210.1450	0.0000	0.0000	0.0977	0.0000	0.0000
		ENVØ	206.6969	0.0078	-0.0041	0.0763	0.0000	0.0000
		ENV9	212.6848	0.0039	0.0077	0.0989	0.0000	0.0000
		PAD0	385.4232	0.0105	-0.0056	0.1525	0.0000	0.0000
		PAD9	393.5070	0.0052	0.0104	0.1830	0.0000	0.0000
	0000	DEAD	210.1450	0.0000	0.0000	0.0977	0.0000	0.0000
		ENVØ	206.6970	-0.0078	0.0041	0.0763	0.0000	0.0000
		ENV9	212.6848	-0.0039	-0.0077	0.0989	0.0000	0.0000
		PAD0	385.4234	-0.0105	0.0056	0.1525	0.0000	0.0000
		PAD9	393.5070	-0.0052	-0.0104	0.1830	0.0000	0.0000
0008-0000	0008	SLG DEAD	89.4032	-0.0020	-0.0013	-0.0886	0.6818	0.9469
		ENVØ	86.4200	-0.0107	-0.0081	-0.0679	1.4502	1.9371
		ENV9	86.8777	0.0032	-0.0082	-0.1585	0.6906	0.9429
		PAD0	161.9281	-0.0154	-0.0116	-0.1365	2.3029	3.0945
		PAD9	162.5458	0.0033	-0.0118	-0.2588	1.2775	1.7523
	0000	DEAD	89.4032	-0.0020	-0.0013	-0.0886	-0.0395	-0.1358
		ENVØ	86.4201	0.0030	0.0026	-0.0679	-0.0331	-0.1294
		ENV9	86.8777	-0.0072	0.0056	-0.1585	-0.0321	-0.1399
		PAD0	161.9281	0.0030	0.0028	-0.1365	-0.0648	-0.2436
		PAD9	162.5458	-0.0108	0.0068	-0.2588	-0.0634	-0.2576
0009-0000	0009	SLG DEAD	157.3839	-0.0015	0.0009	-0.0888	-0.5401	0.8146
		ENVØ	160.1714	-0.0104	0.0073	-0.0679	-1.2747	1.8302
		ENV9	155.1070	-0.0064	-0.0062	-0.0211	-0.5387	0.8230
		PAD0	295.9078	-0.0148	0.0103	-0.1366	-1.9944	2.8832
		PAD9	289.0707	-0.0094	-0.0079	-0.0734	-1.0006	1.5234
	0000	DEAD	157.3839	-0.0015	0.0009	-0.0888	-0.0739	0.0194
		ENVØ	160.1714	0.0037	-0.0029	-0.0679	-0.0792	0.0245
		ENV9	155.1071	0.0035	0.0079	-0.0211	-0.0668	0.0218
		PAD0	295.9077	0.0042	-0.0034	-0.1366	-0.1444	0.0431
		PAD9	289.0708	0.0039	0.0112	-0.0734	-0.1276	0.0392

Maksimum displacement untuk desain spreader frame

			MAX	IMUM JOINT	DISPLACE	MENTS		
LOAD		DEFL(X)		DEFL(Y)		DEFL(Z)		DEFL(T)
COND	JOINT	(IN)	JOINT	(IN)	JOINT	(IN)	JOINT	(IN)
DEAD	5804	0.746	5804	1.307	5804	-3.066	5804	3.416
ENVØ	5804	0.747	5804	1.307	5804	-3.066	5804	3.415
ENV9	5804	0.746	5804	1.307	5804	-3.067	5804	3.417
PAD0	5804	1.386	5804	2.425	5804	-5.691	5804	6.340
PAD9	5804	1.386	5804	2.425	5804	-5.693	5804	6.341

Sling force untuk desain spreader frame

MEMBER FORCES AND MOMENTS

			*****	kips ******	*****	*****	in-kips ****	******
MEMBER	MEMBER	GROUP LOAD	FORCE(X)	FORCE(Y)	FORCE(Z)	MOMENT(X)	MOMENT(Y)	MOMENT(Z)
NUMBER	END	ID COND						
0001-0008	8 0001	SLG DEAD	145.5960	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	145.5864	-0.0050	0.0000	0.0000	0.0000	0.0000
		ENV9	145.6569	0.0000	-0.0050	0.0000	0.0000	0.0000
		PAD0	270.2493	-0.0068	0.0000	0.0000	0.0000	0.0000
		PAD9	270.3445	0.0000	-0.0068	0.0000	0.0000	0.0000
	0008	DEAD	145.5960	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	145.5864	0.0050	0.0000	0.0000	0.0000	0.0000
		ENV9	145.6569	0.0000	0.0050	0.0000	0.0000	0.0000
		PAD0	270.2493	0.0068	0.0000	0.0000	0.0000	0.0000
		PAD9	270.3445	0.0000	0.0068	0.0000	0.0000	0.0000
0002-0007	0002	SLG DEAD	183.3232	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	183.3457	0.0050	0.0000	0.0000	0.0000	0.0000
		ENV9	183.2424	0.0000	0.0050	0.0000	0.0000	0.0000
		PAD0	340.3220	0.0068	0.0000	0.0000	0.0000	0.0000
		PAD9	340.1826	0.0000	0.0068	0.0000	0.0000	0.0000
	0007	DEAD	183.3232	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	183.3457	-0.0051	0.0000	0.0000	0.0000	0.0000
		ENV9	183.2424	0.0000	-0.0050	0.0000	0.0000	0.0000
		PAD0	340.3220	-0.0068	0.0000	0.0000	0.0000	0.0000
		PAD9	340.1826	0.0000	-0.0068	0.0000	0.0000	0.0000
0003-0009	0003	SLG DEAD	176.6170	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	176.6135	-0.0050	0.0000	0.0000	0.0000	0.0000

		ENV9	176.6983	0.0000	-0.0050	0.0000	0.0000	0.0000
		PAD0	327.8401	-0.0068	0.0000	0.0000	0.0000	0.0000
		PAD9	327.9546	0.0000	-0.0068	0.0000	0.0000	0.0000
	0009	DEAD	176.6170	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	176.6135	0.0050	0.0000	0.0000	0.0000	0.0000
		ENV9	176.6983	0.0000	0.0050	0.0000	0.0000	0.0000
		PAD0	327.8401	0.0068	0.0000	0.0000	0.0000	0.0000
		PAD9	327.9546	0.0000	0.0068	0.0000	0.0000	0.0000
0004-0006	0004	SLG DEAD	244.3506	0.0000	0.0000	0.0000	0.0000	0.0000
		ENV0	244.3411	0.0050	0.0000	0.0000	0.0000	0.0000
		ENV9	244.2520	0.0000	0.0050	0.0000	0.0000	0.0000
		PADØ	453.5617	0.0068	0.0000	0.0000	0.0000	0.0000
		PAD9	453.4414	0.0000	0.0068	0.0000	0.0000	0.0000
	0006	DEAD	244.3506	0.0000	0.0000	0.0000	0.0000	0.0000
		ENVØ	244.3411	-0.0050	0.0000	0.0000	0.0000	0.0000
		ENV9	244.2520	0.0000	-0.0050	0.0000	0.0000	0.0000
		PAD0	453.5617	-0.0068	0.0000	0.0000	0.0000	0.0000
		PAD9	453.4414	0.0000	-0.0068	0.0000	0.0000	0.0000
0006-0000	0006	SLG DEAD	261.6115	0.0000	0.0000	-0.0284	0.0000	0.0000
		ENVØ	261.6038	0.0065	0.0092	-0.0282	0.0000	0.0000
		ENV9	261.5056	-0.0097	0.0062	-0.0285	0.0000	0.0000
		PAD0	485.6049	0.0088	0.0125	-0.0525	0.0000	0.0000
		PAD9	485.4723	-0.0131	0.0084	-0.0529	0.0000	0.0000
	0000	DEAD	261.6115	0.0000	0.0000	-0.0284	0.0000	0.0000
		ENVØ	261.6038	-0.0066	-0.0093	-0.0282	0.0000	0.0000
		ENV9	261.5056	0.0097	-0.0063	-0.0285	0.0000	0.0000
		PAD0	485.6049	-0.0088	-0.0125	-0.0525	0.0000	0.0000
		PAD9	485.4723	0.0131	-0.0084	-0.0529	0.0000	0.0000
0007-0000	0007	SLG DEAD	198.0388	0.0000	0.0000	0.0447	0.0000	0.0000
		ENVØ	198.0601	0.0064	-0.0093	0.0449	0.0000	0.0000
		ENV9	197.9510	0.0098	0.0061	0.0449	0.0000	0.0000
		PAD0	367.6364	0.0087	-0.0126	0.0832	0.0000	0.0000
		PAD9	367.4892	0.0132	0.0083	0.0832	0.0000	0.0000
	0000	DEAD	198.0388	0.0000	0.0000	0.0447	0.0000	0.0000
		ENVØ	198.0601	-0.0065	0.0093	0.0449	0.0000	0.0000
		ENV9	197.9510	-0.0098	-0.0062	0.0449	0.0000	0.0000
		PAD0	367.6364	-0.0087	0.0126	0.0832	0.0000	0.0000

		PAD9	367.4892	-0.0132	-0.0083	0.0832	0.0000	0.0000
0008-0000	0008	SLG DEAD	159.2155	-0.0002	-0.0034	-0.0066	1.5366	0.0983
		ENVØ	159.2096	-0.0075	-0.0121	-0.0067	2.5945	0.9788
		ENV9	159.2828	0.0090	-0.0103	-0.0065	2.3701	-1.0157
		PADØ	295.5359	-0.0102	-0.0181	-0.0125	4.2803	1.3714
		PAD9	295.6347	0.0121	-0.0156	-0.0122	3.9772	-1.3214
	0000	DEAD	159.2155	-0.0002	-0.0034	-0.0066	-0.9072	-0.0492
		ENVØ	159.2096	0.0071	0.0054	-0.0067	0.1528	0.8339
		ENV9	159.2828	-0.0095	0.0036	-0.0065	-0.0698	-1.1691
		PAD0	295.5359	0.0095	0.0056	-0.0125	-0.2531	1.1011
		PAD9	295.6347	-0.0129	0.0031	-0.0122	-0.5539	-1.6033
0009-0000	0009	SLG DEAD	192.2720	-0.0008	-0.0030	-0.0259	1.3298	0.3882
		ENVØ	192.2641	-0.0082	0.0057	-0.0260	0.2835	1.2794
		ENV9	192.3598	-0.0099	-0.0100	-0.0259	2.1737	1.4884
		PADØ	356.8941	-0.0115	0.0062	-0.0482	1.0561	1.9237
		PAD9	357.0232	-0.0138	-0.0150	-0.0481	3.6079	2.2059
	0000	DEAD	192.2720	-0.0008	-0.0030	-0.0259	-0.8305	-0.1941
		ENVØ	192.2641	0.0066	-0.0117	-0.0260	-1.8791	0.6994
		ENV9	192.3598	0.0084	0.0040	-0.0259	0.0179	0.9122
		PAD0	356.8941	0.0085	-0.0173	-0.0482	-2.9572	0.8459
		PAD9	357.0232	0.0109	0.0040	-0.0481	-0.3961	1.1333

LAMPIRAN 8 PEMODELAN LOKAL STRUKTUR PADEYE DENGAN ANSYS WORKBENCH

1. Input model 3D autocad ke geometry ANSYS Workbench

2. Meshing menggunakan metode tetrahedron dengan ukuran meshing sebesar 12 mm

3. Input gaya dan tumpuan pada struktur padeye

BAB V

PENUTUP

5.1 Kesimpulan

Dari analisis terhadap konfigurasi *rigging* yang akan digunakan pada proses instalasi *deck structure* dengan metode *lifting* maka didapatkan kesimpulan sebagai berikut:

- Analisis Ballasting pada *crane vessel* pada step kedua dan ketiga berlangsung selama 23,07 menit perstepnya dengan volume ballast 3845,76 m³ sedangkan untuk step keempat ballasting terjadi selama 24,87 menit dengan pengurangan volume ballast sebesar 4145,67 m³. Dan untuk analisis Stabilitas pada Crane vessel pada saat proses instalasi deck on jacket berlangsung aman karena nilai stabilitas memenuhi kriteria berdasarkan *International Maritime Organization* (IMO) dan DNV-*Marine operation*.
- 2. Unity check dan sling force pada pemodelan tanpa spreader bar adalah 0,981 dan 776,73 kips, pemodelan dengan satu spreader bar didapatkan nilai unity check dan sling force adalah 0,62 dan 636,99 kips. Sedangkan untuk dua spreader bar mempunyai unity check dan sling force sebesar 0,51 dan 607,95 kips, dan untuk spreader frame mendapatkan unity check dan sling force sebesar 0,47 dan 453,38 kips. Untuk deformasi dari semua struktur dek sekitar sebesar 0,7 untuk arah X dan untuk arah Y sebesar 1,3. Jadi untuk desain konfigurasi rigging spreader frame sangat rekomendasi untuk menghasilkan unity check dan sling force paling minimum pada member struktur dan padeye.
- 3. Hasil tegangan dari perhitungan manual dengan hasil ANSYS Workbench, untuk tegangan von-mises pada koneksi padeye sebesar 78,95 Mpa dan 80,32 Mpa. Sedangkan untuk shear stress secara berurutan hasil dari perhitungan dan ANSYS Workbench yaitu sebesar 30,94 Mpa dan 34,03 Mpa. Dan untuk hasil deformasi maksimum yaitu sebesar 0,236 mm.
5.2 Saran

Adapun saran yang bisa diberikan sehubungan dengan hasil kajian dalam tugas akhir ini adalah yang diharapkan dapat digunakan sebagai acuan studi mengenai salah satu marine operation khususnya proses instalasi dengan metode *lifting* antara lain:

- 1. Untuk mengurangi gerakan pada crane vessel selama proses instalasi, maka harus dihitung jenis dan kekuatan sistem *mooring*.
- 2. Untuk penelitian tugs akhir selanjutnya perlu dilakukan cek lokal pada *spreader bar* karena dalam konfigurasi *rigging* gaya *sling* disalurkan pada *spreader bar*.

DAFTAR PUSTAKA

- AISC ASD, American Institute of Steel Construction, Specification for Structural Steel Building – Allowable Stress Design and Plastic Design.
- API RP-2A WSD 21th Edition. 2005. Recommended Practice for Planning, Designing and Contructing Fixed Offshore Platforms. American Petroleum Institute. Washinton.
- Bhattacharyya. R. 1978. Dynamics of Marine Vehicles. New York: John Wiley & Sons Inc.
- Chakrabarti, S.K.. 1987. **Hydrodynamics of Offshore Structures**. USA: Computational Mechanics Publications Southampton.
- Djatmiko, E. B. 2012, Perilaku dan Operabilitas Bangunan Laut di Atas Gelombang Acak, ITS Press, Surabaya.
- DNV OS H101 . 2006. Marine Operation General, Det Norske Veritas, Norway.
- DNV No.2.22, 2008, Lifting Appliances, Det Norske Veritas, Norway.
- DNV Pt2 Ch5-*Lifting*. 1996. Rules of Planning and Execution of Marine Operation, Det Norske Veritas, Norway.
- GL Noble Denton 0027/ND REV9, 2010, **Guidelines For Marine Lifting Operation**, Technical Policy Board.
- GL Noble Denton 0027/NDI REV5, 2006, Guidelines For Lifting Operations By Floating Crane Vessels, Technical Policy Board.
- Liang Li, 2004, **Heavy Lift Installation Study of Offshore Structure,** Thesis, Department of Civil Engineering, National University of Singapore, Singapore.
- Ludfianto, Bagus R, 2012, **Analisis Konfigurasi Rigging Pada Proses** *Lifting Deck Structure*, Tugas Akhir S-1 Teknik Kelautan, Institut Teknologi Sepuluh Nopember, Surabaya.
- Murtedjo, Mas.. 1999. Handout Teori Bangunan Apung. Surabaya: ITS.
- Novanda, A.Krisna, 2012, Analisis Lifting Topside Platform dengan Pendekatan Dinamik Berbasis Resiko, Tugas Akhir S-1 Teknik Kelautan, Institut Teknologi Sepuluh Nopember, Surabaya.

- OCIMF (1994). **Prediction of Wind and Current Loads on VLCCs**. 2nd Edition. Oil Companies International Marine Forum.
- Pramita, Henny G , 2013, Analisis Lifting Topside Platform dengan Pendekatan Dinamik Berbasis Resiko, Tugas Akhir S-1 Teknik Kelautan, Institut Teknologi Sepuluh Nopember, Surabaya.
- Soegiono, 2004, **Teknologi Produksi dan Perawatan Bangunan Laut**, Airlangga Unirversty Press, Surabaya.
- Yahya, Arifta 2014, Analisis Operabilitas Crane Vessel saat Lowering Riser Support structure Arch di Splash Zone Berbasis Time Domain, Tugas Akhir S-1 Teknik Kelautan, Institut Teknologi Sepuluh Nopember, Surabaya.

BIODATA PENULIS

Achmad Rizky Yansah dilahirkan di Jombang, Jawa Timur pada tanggal 20 Oktober 1993. Penulis merupakan anak pertama dari tiga bersaudara. Penulis menempuh pendidikan dasar di SDN Japanan 3, Jombang. Menginjak pendidikan menengah pertama penulis melanjutkan pendidikan di SMP MOJOWARNO 2 Jombang kemudian pendidikan menengah atas di SMAN MOJOAGUNG, Jombang. Setelah lulus SMA pada tahun 2012 penulis melanjutkan studinya di Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember, Surabaya melalui SMPTN dan mendapatkan beasiswa

bidikmisi. Selama menjadi mahasiswa selain aktif dibidang akademis, penulis juga aktif dalam kegiatan organisasi dan kegiatan nasional maupun internasional. Kegiatan organisasi yang pernah diikuti oleh penulis adalah di Unit Kegiatan Mahasiswa Maritime Challenge ITS. Penulis merupakan salah satu tim Maritime Challenge ITS yang mewakili Indonesia dalam ajang "Atlantic Challenge International" di Vannes,Prancis pada tahun 2014. Pada tahun 2013/2014 penulis memegang amanah sebagai staf produksi dan desain pembangunan kapal layar "Wooden Sailing Boat Project III – Maritime Challenge ITS". Penulis mengakhiri masa perkuliahannya dengan menulis Tugas Akhir dengan judul "Analisis Konfigurasi *Rigging* dan *padeye* pada saat proses *Installation deck structure ULA platform* dengan cara *lifting*

Contact person: rizkyyan20@gmail.com