Evaluasi Unjuk Kerja Sistem Proteksi Water Hammer Pada Sistem Perpipaan (Studi Kasus Di Rumah Pompa Produksi Unit Instalasi Pengolahan Air Minum (Ipam) Karang Pilang 2 Pt Pdam Surya Sembada Surabaya)

Prasetya, Handi (2016) Evaluasi Unjuk Kerja Sistem Proteksi Water Hammer Pada Sistem Perpipaan (Studi Kasus Di Rumah Pompa Produksi Unit Instalasi Pengolahan Air Minum (Ipam) Karang Pilang 2 Pt Pdam Surya Sembada Surabaya). Undergraduate thesis, Institut Teknologi Sepuluh Nopember Surabaya.

[img]
Preview
Text
2113106021-Undergraduate_Thesis.pdf - Published Version

Download (2MB) | Preview

Abstract

Sistem jaringan perpipaan merupakan komponen penting dalam menunjang produksi maupun distribusi pada sektor industri. Jaringan perpipaan mengalami beberapa fenomena seperti distribusi fluida dan water hammer. Water hammer sering terjadi di daerah discharge pompa pada saat pengoperasian pompa maupun pada saat kegagalan operasi pompa. Dampak yang ditimbulkan dari fenomena water hammer akan terjadi seketika itu juga. Dan penanggulangan yang tidak tepat terhadap dampak tersebut dapat mengakibatkan instalasi perpipaan harus dimatikan (shutdown). Beberapa cara untuk mengurangi dampak water hammer adalah dengan cara menambahkan flywheel ataupun gas accumulator pada jaringan perpipaan. Lonjakan tekanan serta aliran balik yang terjadi akibat fenomena water hammer akan dilawan oleh putaran impeller pompa yang dibebani oleh flywheel dan akan memperlambat lonjakan tekanan dalam pipa dan tekanan yang berlebih akan dibuang ke gas accumulator sehingga tekanan dalam pipa berangsur stabil dan tidak akan menyebabkan aliran balik tersebut memutar arah putaran poros pompa ke arah sebaliknya yang akan merusak komponen motor penggerak. Pada penelitian ini, pemodelan sistem perpipaan dilakukan dengan menggunakan perangkat lunak AFT Impulse 4.0. Sistem perpipaan yang disimulasikan merupakan sistem perpipaan dengan rangkaian pompa paralel yang dilengkapi flywheel pada instalasi pompa dan divariasikan dengan penambahan gas accumulator sebagai sistem proteksi water hammer. Analisa yang dilakukan adalah untuk mempelajari fenomena water hammer pada saat kondisi ekstrim yakni ketika sebagian pompa operasi mati dan juga ketika seluruh pompa operasi mati untuk melihat pengaruh variasi ukuran flywheel terhadap fluktuasi tekanan yang terjadi. Ukuran flywheel yang divariasikan adalah flywheel dengan diameter luar 1100mm, 1200mm dan 1300mm dengan tebal masing-masing 300mm, 400mm dan 500mm. Sehingga dengan ukuran flywheel yang berbeda dapat dilihat pengaruh momen inersianya dalam melawan lonjakan tekanan. Serta untuk melihat pengaruh penambahan gas accumulator pada pipa discharge utama dalam meredam fluktuasi tekanan. Hasil yang didapatkan pada simulasi berupa plot grafik dari fluktuasi tekanan yang terjadi pada sistem perpipaan. Pada sistem perpipaan tanpa menggunakan gas accumulator, tekanan maksimum yang terjadi pada discharge pompa mencapai 19,807 bar dari kondisi tekanan kerjanya 5,6 bar. Variasi ukuran flywheel memberi dampak pada perlambatan terjadinya lonjakan tekanan, semakin besar ukuran flywheel akan menunda terjadinya lonjakan tekanan akibat water hammer. Dan penambahan gas accumulator berperan dalam meredam serta mempersingkat waktu terjadinya lonjakan tekanan, sehingga fluktuasi tekanan cenderung berangsur stabil dengan cepat. Serta tebal pipa discharge yang digunakan yakni 9,52 mm mampu menahan tekanan maksimum yang terjadi akibat efek water hammer sesuai dengan perhitungan tebal pipa minimum untuk material steel yang dikeluarkan oleh American Water Works Association (AWWA) Manual M11 ============================================================================================= Piping network system is an important component in supporting the production and distribution of the industrial sector. Piping network experienced some phenomena such as fluid distribution and water hammer. Water hammer often occurs in the discharge area of the pump during operation of the pump or when the pump failures. The impact of water hammer phenomenon will occur instantly. And the wrong countermeasures againts the effect can lead piping installation to the shutdown condition. Some ways to reduce the impact of water hammer is by adding a flywheel or gas accumulator in the pipeline. The pressure fluctuations and backflow which is caused by the phenomenon of water hammer will be opposed by the rotation of the pump impeller which is burdened by the flywheel and it will slow down the surge of pressure in the pipes and excessive pressure will be discharged into the gas accumulator so that the pressure in the pipes gradually stabilized and will not cause a backflow of the rotational direction of pump shaft rotation in the opposite direction which will damage the motor components. In this study, the piping system modeling is done by using the AFT Impulse 4.0 software. Plumbing system that simulated is a piping system with a series of parallel pump incorporates a flywheel on the installation of the pump and the gas accumulator is varied by the addition of a water hammer protection system. The analysis is to study the phenomenon of water hammer during extreme conditions, in example when most of the operating pump is turned off and also when the entire operation of the pump turned off to see the effect of flywheel size variations to the pressure fluctuations that occur. The flywheel size variation is a flywheel with an outer diameter of 1100mm, 1200mm and 1300mm with thickness respectively 300mm, 400mm and 500mm. So that the different sizes of flywheel can be seen the influence of moment of inertia against pressure surges. As well as to see the effect of additional of gas accumulator on the main discharge pipe in dampening the pressure fluctuations. The results obtained in the simulation is a plot graph of pressure fluctuations which occur in piping systems. In piping systems without using gas accumulator, the maximum pressure that occur at discharge pump reaches 19.807 bar of pressure working conditions of 5.6 bar. The flywheel size variations impact on the decelaration of pressure escalation, the greater the size of the flywheel will delay the occurrence of pressure surges due to water hammer. And the addition of gas accumulator is serve as dampening as well as shorten the time of the occurrence of pressure fluctuations, so the pressure fluctuations tends gradually stabilized quickly. And the thickness of the discharge pipe is used with 9.52 mm is able to withstand the maximum pressure caused by water hammer effect in accordance with the calculation of minimum pipe thickness for steel materials issued by the American Water Works Association ( AWWA ) Manual M11 .

Item Type: Thesis (Undergraduate)
Additional Information: RSM 621.867 2 Pra e
Uncontrolled Keywords: water hammer, discharge, AFT Impulse, flywheel, gas accumulator.
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ930 Pipelines (General). Underwater pipelines.
Divisions: Faculty of Industrial Technology > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: EKO BUDI RAHARJO
Date Deposited: 30 Jun 2020 01:49
Last Modified: 30 Jun 2020 01:49
URI: https://repository.its.ac.id/id/eprint/76251

Actions (login required)

View Item View Item