

TUGAS AKHIR - TF 181801

STUDI EFEK KERR TERHADAP KARAKTERISTIK SENSOR SUHU SERAT OPTIK DENGAN KONFIGURASI SMS (SINGLEMODE-MULTIMODE-SINGLEMODE)

UMROATUL FAUZIAH NRP. 02311640000035

Dosen Pembimbing:Agus Muhammad Hatta, S.T., M.Si., Ph.DNIP. 197809022003121002Detak Yan Pratama, S.T., M.ScNIP. 198401012012121002

Departemen Teknik Fisika Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember 2020

FINAL PROJECT - TF 181801

STUDY OF KERR EFFECTS ON CHARACTERISTICS OF OPTICAL FIBER WITH SMS (SINGLEMODE-MULTIMODE-SINGLEMODE) CONFIGURATION AS TEMPERATURE SENSORS

UMROATUL FAUZIAH NRP. 02311640000035

 Supervisors:

 Agus Muhammad Hatta, S.T., M.Si., Ph.D
 NIP. 197809022003121002

 Detak Yan Pratama, S.T., M.Sc
 NIP. 198401012012121002

Department of Engineering Physics Faculty of Industrial Technology and System Engineering Institut Teknologi Sepuluh Nopember 2020

PERNYATAAN BEBAS PLAGIASI

Saya yang bertanda tangan di bawah ini.

Nama	: Umroatul Fauziah
NRP	: 02311640000035
Departemen / Prodi	: Teknik Fisika / S1 Teknik Fisika
Fakultas	: Fakultas Teknologi Industri & Rekayasa Sistem (FT-IRS)
Perguruan Tinggi	: Institut Teknologi Sepuluh Nopember

Dengan ini menyatakan bahwa Tugas Akhir dengan judul "STUDI EFEK KERR TERHADAP KARAKTERISTIK SENSOR SUHU SERAT OPTIK DENGAN KONFIGURASI SMS (SINGLEMODE-MULTIMODE-SINGLEMODE)" adalah benar karya saya sendiri dan bukan plagiat dari karya orang lain. Apabila di kemudian hari terbukti terdapat plagiat pada Tugas Akhir ini, maka saya bersedia menerima sanksi sesuai ketentuan yang berlaku.

Demikian surat pernyataan ini saya buat dengan sebenarnya-benarnya.

Surabaya, 5 Agustus 2020

Yang membuat pernyataan,

Umroatul Fauziah NRP. 02311640000035

LEMBAR PENGESAHAN TUGAS AKHIR

STUDI EFEK KERR TERHADAP KARAKTERISTIK SENSOR SUHU SERAT OPTIK DENGAN KONFIGURASI SMS (*SINGLEMODE-MULTIMODE-SINGLEMODE*)

Oleh:

<u>Umroatul Fauziah</u> NRP. 02311640000035

Surabaya,

Menyetujui, Pembimbing I

Agus M. Hatta, S.T., M.Si., Ph.D NIP. 197809022003121002

Menyetujui, **Pembimbing II**

Detak Yan Pratama, S.T., M.Sc NIP. 198401012012121002

LEMBAR PENGESAHAN

STUDI EFEK KERR TERHADAP KARAKTERISTIK SENSOR SUHU SERAT OPTIK DENGAN KONFIGURASI SMS (*SINGLEMODE-MULTIMODE-SINGLEMODE*)

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Progam Studi S-1 Departemen Teknik Fisika Fakultas Teknologi Industri & Rekayasa Sistem (FT-IRS) Institut Teknologi Sepuluh Nopember

Oleh:

UMROATUL FAUZIAH NRP. 02311640000035

Disetujui oleh Tim Penguji Tugas Akhir:

STUDI EFEK KERR TERHADAP KARAKTERISTIK SENSOR SUHU SERAT OPTIK DENGAN KONFIGURASI SMS (SINGLEMODE-MULTIMODE-SINGLEMODE)

Nama	:	Umroatul Fauziah
NRP	:	02311640000035
Departemen	:	Teknik Fisika FT-IRS - ITS
Dosen Pembimbing	:	Agus Muhammad Hatta, S.T., M.Si., Ph.D
		Detak Yan Pratama, S.T., M.Sc.

ABSTRAK

Perangkat serat optik telah menarik perhatian di bidang metrologi karena biayanya rendah, fabrikasi yang mudah, dan tahan terhadap interferensi elektromagnetik. Serat optik SMS telah banyak digunakan untuk berbagai aplikasi salah satunya adalah sensor suhu. Serat optik yang digunakan memiliki efek nonlinier. Efek nonlinier pada serat optik terjadi karena perubahan pada indeks bias medium dengan intensitas optik dan fenomena hamburan inelastik. Untuk lebih spesifiknya, melalui efek Kerr intensitas cahaya yang kuat dapat mengubah indeks bias medium dimana berkas sinyal merambat. Dalam penelitian ini dibandingkan karakteristik sensor suhu berbasis serat optik SMS dengan konsentrasi mol dan jenis material doping yang berbeda yaitu GeO₂ (6,3%), B₂O₃ (5,2%), dan P₂O₅ (10,5%)dan diperhitungkan pengaruh efek Kerr jika digunakan cahaya berintensitas tinggi untuk rentang suhu 0°C-100°C. Berdasarkan perhitungan numerik pengaruh efek Kerr terhadap karakteristik sensor suhu SMS dapat ditentukan sensitivitas sensor. Hasilnya, akibat dari efek Kerr, sensor suhu berbasis serat optik SMS memiliki sensitivitas yang semakin baik seiring dengan kenaikan intensitas cahaya yang diberikan. Sensitivitas yang paling besar berada pada intensitas cahaya 6.7×10^{12} W/m² yaitu -0,068059 dB/°C dengan *wavelength shift* sebesar -93,17 pm/°C.

Kata Kunci: Efek Kerr, Sensor Suhu, Serat Optik SMS.

STUDY OF KERR EFFECTS ON CHARACTERISTICS OF OPTICAL FIBER WITH SMS (SINGLEMODE-MULTIMODE-SINGLEMODE) CONFIGURATION AS TEMPERATURE SENSORS

Name	: Umroatul Fauziah
NRP	: 02311640000035
Department	: Engineering Physics FT-IRS - ITS
Supervisors	: Agus Muhammad Hatta, S.T., M.Si., Ph.D
	Detak Yan Pratama, S.T., M.Sc.

ABSTRACT

Optical fiber devices have been utilized in the field of metrology because of their low cost, easy fabrication, and resistance to electromagnetic interference. Optical fiber SMS has been used for various applications, for example as temperature sensor. The optical fiber has a nonlinier effect. Nonlinier effects on optical fibers occur due to changes in the refractive index of the medium with optical intensity and the phenomenon of inelastic scattering. To be more specific, through the Kerr effect a strong intensity can change the refractive index of the medium where the signal beam propagates. In this study, the characteristics of optical fiber SMS as temperature sensor with different mole concentration and types of doping material GeO₂ (6.3%), B_2O_3 (5.2%), and P_2O_5 (10.5%) and calculated the effect Kerr if high intensity light is used for the temperature range $0^{0}C$ -100⁰C. Based on numerical calculations the Kerr effect on the temperature sensor characteristics can be determined the sensitivity. As a result of the Kerr effect, the temperature sensor based on optical fiber SMS has improved sensitivity with the increase in the intensity of the light. The greatest sensitivity is at a light intensity of 6.7x10¹² W/m² that is -0.068059 dB/ C with a wavelength shift of -93.17 *pm/*℃.

Keywords: Fiber Optic SMS, Kerr effect, Temperature Sensors.

KATA PENGANTAR

Syukur alhamdulillah kami panjatkan kehadirat Allah SWT atas limpahan rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan tugas akhir beserta laporanya yang berjudul :

"STUDI EFEK KERR TERHADAP KARAKTERISTIK SENSOR SUHU SERAT OPTIK DENGAN KONFIGURASI SMS (SINGLEMODE-MULTIMODE-SINGLEMODE)"

Selama pengerjaan tugas akhir ini, penulis telah mendapatkan bantuan dari berbagai pihak, baik secara langsung maupun tidak langsung. Untuk itu, penulis ingin mengucapkan terimakasih kepada :

- Bapak Dr. Suyanto, S.T., M.T. selaku Kepala Departemen Teknik Fisika ITS Surabaya yang telah memberikan arahan selama menjalani masa perkuliahan hingga menyelesaikan tugas akhir ini
- Bapak Agus Muhamad Hatta, ST, MSi, Ph.D dan Bapak Detak Yan Pratama, S.T., M.Sc. atas kesabarannya yang telah membimbing, memotivasi dan memberikan banyak pengetahuan kepada penulis selama pengerjaan tugas akhir hingga penyusunan laporan.
- 3. Prof. Dr. Ir. Sekartedjo, M.Sc., Bapak Iwan Cony Setiadi, S.T., M.T., dan Ibu Dyah Sawitri, S.T., M.T. selaku dosen penguji tugas akhir yang telah membimbing, memotivasi dan memberikan banyak pengetahuan kepada penulis untuk menyelesaikan tugas akhir ini.
- 4. Seluruh karyawan dan karyawati Teknik Fisika ITS atas pelayanan akademis yang diberikan.
- Muhammad Chafid dan Siti Nur Ma'ani selaku orangtua dan seluruh keluarga yang telah menjadi inspirasi dan motivasi penulis dalam menyelesaikan studi di Teknik Fisika ITS.
- 6. Teman-teman Thalassinus Fortis angkatan 2016 selaku keluarga kedua yang telah melalui suka duka perkuliahan bersama.
- 7. Teman-teman Lab. Rekayasa Fotonika yang memberikan semangat serta dukungan selama melalui tahapan tugas akhir.

- 8. Ika, Nanang, Indayu, Ikma, Hanif, Kartini, Aji, sahabat serta teman seperjuangan yang menjadi tempat bercerita kapanpun dan dimanapun.
- 9. Fadhel Islamy, Rima Fitria, dan Ika Puspita, selaku kakak yang bersedia berdiskusi dan menyalurkan ilmunya dalam membantu pengerjaan tugas akhir.

10. Serta semua pihak yang tidak dapat penulis sebutkan satu persatu.

Penulis menyadari masih terdapat kekurangan dalam penyusunan tugas akhir ini. Oleh karena itu penulis mengharapkan kritik dan saran yang membangun dari semua pihak demi tercapainya hasil yang lebih baik. Semoga laporan tugas akhir ni dapat memberikan manfaat bagi semua pihak

Surabaya, 15 Mei 2020

Penulis

DAFTAR ISI

HALAN	IAN JUDULiii
PERNY	ATAAN BEBAS PLAGIASIv
LEMBA	AR PENGESAHANvii
LEMBA	AR PENGESAHANix
ABSTR	AKxi
ABSTRA	ACTxiii
KATA	PENGANTARxv
DAFTA	R ISIxvii
DAFTA	R GAMBARxix
DAFTA	R TABELxxi
BAB I I	PENDAHULUAN1
1.1	Latar Belakang1
1.2	Rumusan Masalah
1.3	Tujuan
1.4	Batasan Masalah
1.5	Sistematika Laporan
BAB II	TINJAUAN PUSTAKA DAN DASAR TEORI5
2.1	Modal Propagation Analysis Serat Optik Struktur SMS5
2.2	Gambaran Serat Multimode <i>Graded-index</i> 7
2.3	Sensor Suhu Serat Optik SMS9
2.4	Efek Optika Kerr 11
BAB III	METODOLOGI PENELITIAN15
3.1	Studi literatur
3.2	Pembuatan dan Pengujian Model Serat Struktur SMS16

3.3	Pembuatan Model Sensor Suhu Serat Optik SMS16
3.4	Pembuatan Model Sensor Suhu Serat Optik SMS dengan Efek Kerr 17
3.5	Pengujian Karakteristik Model Sensor Suhu Serat Optik SMS dengan
Efek	Kerr
BAB IV	/ HASIL DAN PEMBAHASAN19
4.1	Pembuatan dan Pengujian Model Serat Optik Struktur SMS19
4.2	Pembuatan Model Sensor Suhu Serat Optik SMS23
4.3	Pembuatan Model Sensor Suhu Serat Optik SMS dengan Efek Kerr 25
4.4	Pengujian Model Sensor Suhu Serat Optik SMS dengan Efek Kerr 29
4.5	Perhitungan Numerik Pengaruh Efek Kerr terhadap Karakteristik Sensor
Suhu	Serat Optik SMS
4.6	Pembahasan
BAB V	KESIMPULAN DAN SARAN
5.1	Kesimpulan
5.2	Saran
DAFTA	AR PUSTAKA
DAFTA	AR LAMPIRAN

DAFTAR GAMBAR

Gambar 2.1 Skema serat optik konfigurasi SMS
Gambar 2.2 Skema bagian serat optik7
Gambar 2.3 Struktur serat optik step-index dan graded-index multimode serta
profil indeks biasnya7
Gambar 2.4 Sistem pengukuran serat optik9
Gambar 2.5 Skema SMF-GIMF-SMF berdasarkan NL-MMI11
Gambar 2.6 Interaksi linier dan nonlinier11
Gambar 2.7 Hubungan indeks bias terhadap medan elektrik: (a) Pockels medium,
(b) Kerr medium
Gambar 3.1 Diagram alir penelitian15
Gambar 4.1 Spektrum serat optik multimode : (a) $L=2$ m, (b) $L=4$ m19
Gambar 4.2 Pemilihan panjang serat optik multimode
Gambar 4.3 Spektrum transmisi serat optik dengan material doping
Gambar 4.4 Spektrum transmisi sensor suhu dengan material doping23
Gambar 4.5 Spektrum transmisi sensor suhu dengan kenaikan 20°C24
Gambar 4.6 Grafik daya output terhadap suhu dengan material doping24
Gambar 4.7 Grafik perubahan indeks bias terhadap intensitas26
Gambar 4.8 Spektrum transmisi serat optik dengan power 3kW27
Gambar 4.9 Grafik daya output terhadap suhu dengan power 100W27
Gambar 4.10 Grafik daya output terhadap suhu dengan power 1kW28
Gambar 4.11 Grafik daya output terhadap suhu dengan power 2kW
Gambar 4.12 Grafik daya output terhadap suhu dengan power 3kW
Gambar 4.13 Spektrum transmisi sensor suhu dengan power 100W29
Gambar 4.14 Spektrum transmisi sensor suhu dengan power 1kW30
Gambar 4.15 Spektrum transmisi sensor suhu dengan power 2kW31
Gambar 4.16 Spektrum transmisi sensor suhu dengan power 3kW

DAFTAR TABEL

Tabel 4.1 Parameter yang Digunakan dalam Pemodelan
Tabel 4.2 Nilai Koefisien pada Sellemeier's Formula a1,a2,,b3 untuk Pure dan
Doped Silica:
Tabel 4.3 Perubahan Indeks Bias dengan Power 100W25
Tabel 4.4 Perubahan Indeks Bias dengan Power 1kW25
Tabel 4.5 Perubahan Indeks Bias dengan Power 2kW
Tabel 4.6 Perubahan Indeks Bias dengan Power 3kW
Tabel 4.7 Pergeseran Panjang Gelombang pada Spektrum Transmisi dengan Power
100W
Tabel 4.8 Pergeseran Panjang Gelombang pada Spektrum Transmisi dengan Power
1kW
Tabel 4.9 Pergeseran Panjang Gelombang pada Spektrum Transmisi dengan Power
2kW
Tabel 4.10 Pergeseran Panjang Gelombang pada Spektrum Transmisi dengan
Power 3kW
Tabel 4.11 Perhitungan Sensitivitas dari Material dengan Power 100W33
Tabel 4.12 Perhitungan Sensitivitas dari Material dengan Power 1kW33
Tabel 4.13 Perhitungan Sensitivitas dari Material dengan Power 2kW
Tabel 4.14 Perhitungan Sensitivitas dari Material dengan Power 3kW

BAB I

PENDAHULUAN

1.1 Latar Belakang

Perangkat serat optik berdasarkan *multimodal interference* di antara moda terpandu dari MMF yang disambungkan di antara dua serat optik singlemode (SMF) telah menarik perhatian yang sangat besar di bidang penelitian, karena biayanya yang rendah, fabrikasi yang mudah, dan tahan terhadap interferensi elektromagnetik (EMI). Serat optik SMS telah banyak digunakan untuk berbagai aplikasi seperti sensor, *optical beam shaper, optical switches, directional couplers, bandpass / stop filter*, lensa dll. Beberapa perangkat ini, seperti sensor suhu, memerlukan sensitivitas yang tinggi sementara yang lain membutuhkan sensitivitas nol atau rendah. Karakteristik transmisi struktur serat optik SMS pada dasarnya ditentukan oleh spektral variasi konstanta propagasi dari berbagai pemandu moda MMF yang digunakan. Hal ini ditentukan oleh indeks bias profil, konsentrasi dopant dan parameter serat MMF lainnya. Dalam hal ini sensitivitas suhu dari *graded-index* multimode selalu jauh lebih tinggi (sekitar 45-285 kali) dibandingkan dengan *step-index* multimode (Kumar, Kumar, & Tripathi, 2014).

Serat optik yang digunakan sebagai sensor suhu memiliki efek linier dan nonlinier. Linier dan nonlinier dalam optik berarti intensitas yang *independent* dan fenomena yang bergantung pada intensitas. Efek nonlinier pada serat optik terjadi karena perubahan pada indeks bias medium dengan intensitas optik dan fenomena hamburan inelastik. Ketergantungan daya pada indeks bias yang bertanggung jawab atas efek Kerr (S.P. Singh & N. Singh, 2007). Ketika medan listrik yang diterapkan cukup tinggi, perpindahan muatan dari posisi keseimbangan di dalam material menjadi begitu besar sehingga dipol yang diinduksi tidak lagi sebanding dengan amplitudo medan E. Untuk lebih spesifiknya, melalui efek Kerr, intensitas yang kuat dapat mengubah indeks bias medium dimana berkas sinyal merambat (Degiorgio & Cristiani, 2014).

Terdapat penelitian lain yang menginvestigasi dari propagasi cahaya nonlinier pada serat optik dimana berfokus pada permasalahan keadaan soliton pada

serat optik singlemode dan propagasi cahaya pada serat multimode *graded-index* (Arabi & Carlos, 2018). Selain itu juga terdapat penelitian yang mengkaji keterbaruan efek nonlinier yang menginduksi mekanisme modulasi yang digunakan untuk operasi Q-swicthed pada serat laser berdasarkan efek Kerr dari multimode interference (MMI) pada single mode-multimode-single mode (SMS) serat divais (Shijie Fu, 2015).

Dalam penelitian ini, dilakukan perbandingan karakteristik sensor suhu dengan konsentrasi dan material doping yang berbeda dengan perubahan intensitas yang tinggi untuk kisaran panjang gelombang 1250 nm-1350 nm dan dengan rentang perubahan suhu 0°C hingga 100°C menggunakan pemodelan secara matematis. Pada penelitian ini akan dikaji mengenai sensor suhu serat optik dengan konfigurasi SMS *graded-index* dan menguji pengaruh *Kerr effect* terhadap karakteristik sensor yang dihasilkan.

1.2 Rumusan Masalah

Adapun permasalahan yang diangkat berdasarkan latar belakang yang telah dipaparkan adalah : bagaimana pengaruh efek Kerr terhadap karakteristik sensor suhu serat optik dengan konfigurasi SMS (*singlemode-multimode-singlemode*)?

1.3 Tujuan

Tujuan dari penelitian ini adalah untuk mengetahui pengaruh efek Kerr terhadap karakteristik sensor suhu serat optik dengan konfigurasi SMS (singlemode-multimode-singlemode).

1.4 Batasan Masalah

Berdasarkan identifikasi masalah, maka batasan masalah pada penelitian ini adalah sebagai berikut :

- a. Struktur serat optik adalah singlemode grade index multimode singlemode.
- b. Serat optik yang dimodelkan menggunakan efek Kerr.
- c. Perubahan intensitas yang tinggi hanya memengaruhi perubahan indeks bias.
- d. Serat multimode didoping dengan material GeO₂ (6,3%), B_2O_3 (5,2%), dan P_2O_5 (10,5%).
- e. Variabel yang diuji adalah suhu dengan perubahan $0 \,^{\circ}\text{C} 100 \,^{\circ}\text{C}$.

- f. Panjang gelombang cahaya yang digunakan adalah 1310 nm.
- g. Simulasi dilakukan dengan menggunakan software MATLAB

1.5 Sistematika Laporan

Laporan tugas akhir ini tersusun atas lima bab yang tersusun secara sistematik dengan rincian sebagai berikut:

BAB I PENDAHULUAN

Bab ini menjelaskan latar belakang, rumusan masalah, tujuan, batasan masalah, dan sistematika penulisan laporan pada tugas akhir ini.

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

Pada bab ini dijelaskan mengenai beberapa teori dasar yang menunjang penelitian tugas akhir ini, diantaranya karakteristik transmisi serat optik SMS, gambaran serat optik multimode *graded-index*, *optical kerr effect*, sensor suhu serat optik SMS.

BAB III METODOLOGI PENELITIAN

Bab ini menjelaskan secara detail mengenai langkah-langkah yang dilakukan untuk mencapai tujuan dan untuk mendapatkan data keluaran yang dibutuhkan.

BAB IV HASIL DAN PEMBAHASAN

Pada bab ini dijelaskan hasil dan pembahasan pada pembuatan dan pengujian model sensor suhu berbasis serat optik SMS dengan efek Kerr.

BAB V KESIMPULAN DAN SARAN

Bab ini terdiri dari kesimpulan dari penelitian tugas akhir ini dan saran yang dapat diberikan untuk penelitian selanjutnya.

BAB II

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 Modal Propagation Analysis Serat Optik Struktur SMS

Struktur SMS terdiri dari dua serat singlemode identik yang disambung (aksial disejajarkan) di kedua ujung multimode core parabola serat dengan panjang L (Gambar 2.1).

Gambar 2.1 Skema serat optik konfigurasi SMS (Kumar, Varshney, Antony, & Sharma, 2003)

Daya cahaya yang digabungkan dari satu serat ke lainnya di setiap sambungan dapat diperoleh dengan menghitung integral overlap antara guided modes dari dua serat. Bidang mode dasar (dinormalkan sehubungan dengan seluruh penampang dari serat) dari serat singlemode dapat dituliskan sebagai (Kumar, Varshney, Antony, & Sharma, 2003):

$$\frac{w_s}{a_s} = \left[0.65 + \frac{1.619}{V_s^{3/2}} + \frac{2.879}{V_s^{6}}\right]; 0.8 \le V_s \le 2.5$$
(2.1)

di mana w_s , a_s , dan V_s masing-masing mewakili *gaussian spot size*, jari-jari core dan V-number dari serat singlemode. Perkiraan di atas diketahui telah akurat (nilai w_s berada dalam ~1% error) untuk mode dasar dari singlemode step index serat. Serat multimode dalam struktur SMS diasumsikan sebagai serat parabola-core yang dikarakterisasi oleh profil indeks bias berikut:

$$n(r) = n_0 \left[1 - 2\Delta_M \frac{r^2}{a_M^2} \right]^{1/2}; r \le a_M$$
(2.2)

$$n(r) = n_0 [1 - 2\Delta_M]^{1/2}; r \ge a_M$$
(2.3)

dengan

$$\Delta_M = \frac{n_0^2 - n_{cl}^2}{2n_0^2} \tag{2.4}$$

di mana n_o dan n_{cl} masing-masing adalah indeks inti dan cladding, Selanjutnya, a_M dan D_M mewakili jari-jari inti dan relative core-cladding refractive index difference dari serat multimode.

Seperti disebutkan di atas, diasumsikan bahwa sumbu serat single-lead singlemode dan serat multimode selaras sempurna. Dalam kasus seperti itu, power dalam serat singlemode akan digabungkan hanya untuk beberapa mode simetris sirkular pertama serat multimode. Pola bidang modal untuk mode seperti itu (dinormalisasi sehubungan dengan keseluruhan potongan melintang serat) dapat diperkirakan dengan sangat baik oleh media parabola yang diperpanjang tak terhingga dan diberikan oleh

$$\psi_m(r) = \sqrt{\frac{2}{\pi}} \frac{1}{w_M} L_m\left(\frac{2r^2}{w_M^2}\right) e^{\left(-r^2/w_M^2\right)}$$
(2.5)

Persamaan di atas, Lm(r) mewakili Laguerre polynomial of degree m dan w_M mewakili Gaussian spot size dari mode dasar dan diberikan oleh

$$w_M = \left[\frac{2a_M}{k_0 n_0 \sqrt{2\Delta_M}}\right]^{1/2} = a_M \sqrt{\frac{2}{V_M}}$$
(2.6)

Dimana V_M merepresentasikan V-number dari serat multimode. Untuk lebih jauhnya, propagasi konstan dari mth mode simetris diberikan oleh

$$\beta_m = k_0 n_0 \left[1 - \frac{2(2m+1)\alpha_M}{k_0^2 n_0^2} \right]^{1/2}; m = 0, 1, 2, \dots$$
(2.7)

dimana

$$\alpha_M = \frac{k_0 n_0}{a_M} \sqrt{2\Delta_M} = \frac{V_M}{a_M^2} = 2/w_M^2$$
(2.8)

Pada sambungan pertama (misal input akhir (z = 0) dari multimode serat), total medan $\psi(z=0)$ dapat diperoleh dari

$$\psi(z=0) = \psi_s = \Sigma A_m \psi_m(r) \tag{2.9}$$

Amplitudo Am dari mth mode dari serat multimode dapat dihitung dengan integral overlap antara medan $\psi_s(r)$ dan $\psi_m(r)$ yang sesuai dengan unit power yang diluncurkan di serat single mode yang diberikan oleh

$$A_m = \frac{\int_0^\infty \psi_s \psi_m^* r \, dr}{\int_0^\infty |\psi_m|^2 r \, dr} = \frac{2\mu}{1+\mu^2} \left(\frac{1-\mu^2}{1+\mu^2}\right)^m \tag{2.10}$$

Dimana $\mu = w_s/w_M$ Selama perbedaan lintasan guided modes dengan perbedaan propagasi konstan, total medan ψ pada output akhir dari serat multimode dengan panjang L dapat ditulis dengan

$$\psi(z=L) = \Sigma A_m \psi_m e^{-i\beta_m L} \tag{2.11}$$

Pada sambungan kedua, power akan disambungkan ke berbagai mode dari serat multimode ke lead-out serat single mode. Power (PSM) dihubungkan ke lead-out serat yang akan diberikan oleh

$$P_{SM} = \left| \int_0^\infty \psi_s^* \psi(z=L) r dr \right|^2$$

= $\left| A_0^2 + A_1^2 e^{i(\beta_0 - \beta_1)L} + A_2^2 e^{i(\beta_0 - \beta_2)L} + \cdots \right|^2$ (2.12)

2.2 Gambaran Serat Multimode Graded-index

Gambar 2.2 Skema bagian serat optik (Keiser, 1991)

Gambar 2.3 Struktur serat optik *step-index* dan *graded-index* multimode serta profil indeks biasnya (Keiser, 1991)

Serat optik multimode *graded-index* ini terdiri dari core yang mempunyai indeks bias berkurang sedikit demi sedikit secara step by step dari pusat core sampai batas antara core dengan cladding. Core tersebut terdiri dari lapisan-lapisan gelas, masing-masing lapisan mempunyai index bias yang berbeda. Umumnya diameter core 50 µm dan untuk claddingnya 125 µm. Berkas cahaya yang merambat melalui kabel ini dibelokkan sampai propagasi sejajar dengan sumbu serat. Di tempat titik pantul tersebut propagasi diarahkan kearah axis serat. Propagasi gelombang cahaya melalui lapisan bagian luar berjalan lebih jauh dari pada berkas yang hanya melalui lapisan bagian dalam. Tetapi indeks bias dari lapisan luar lebih kecil, berarti bahwa kecepatan propagasi cahaya bagian luar lebih cepat dari pada bagian dalam. Oleh karena itu, semua berkas cahaya (mode-mode) menggambarkan pulsa-pulsa yang datang pada waktu yang bersamaan (Ananto, 2011).

Indeks bias profil multimode *graded-index* diberikan oleh (Nazemosadat & Mafi, 2013):

$$n^{2}(\rho) = n_{0}^{2} \left[1 - 2\Delta \left(\frac{\rho}{R}\right)^{\alpha} \right]$$
(2.13)

Dimana R adalah radius core, n_0 adalah indeks bias pada tengah core, Δ adalah perbedaan indeks relatif antara core dan cladding, dan $\alpha \approx 2$ mengkarakteristikkan pendekatan profil indeks parabola pada core ($\rho \leq R$), dan $\alpha = 0$ pada cladding ($\rho > R$). Profil medan listrik transversal dari mode terbatas dengan radial p ($p \geq 0$) angular m angka bilangan bulat, dapat dinyatakan sebagai :

$$E_{p,m}(\rho,\phi) = N_p^m \frac{\rho^{|m|}}{\rho_0^{|m|+1}} exp\left(-\frac{\rho^2}{2\rho_0^2}\right) L_p^{|m|}\left(\frac{\rho^2}{\rho_0^2}\right) e^{im\phi}$$
(2.14)

Dimana $L_p^{|m|}$ disamakan dengan Laguerre polynomials, dan p_0 dan N_p^m diberikan oleh:

$$\rho_0 = \frac{R^{1/2}}{(k_0 n_0)^{1/2} (2\Delta)^{1/4}}, \qquad N_p^m = \sqrt{\frac{p!}{\pi (p+|m|)!}}$$
(2.15)

Dimana $k_0 = 2\pi/\lambda$. Koefisien N_p^m dari Laguerre–Gauss modes (LGpm) ini dipilih karena mode orthonormal. Menggunakan notasi bra-ket, profil medan listrik dari LGpm diidentifikasikan sebagai $|p,m\rangle = E_{p,m}(\rho,\phi)$ dan kondisi orthonormal sebagai $\langle p,m|p'm'\rangle = \delta_{p,p'}\delta_{m,m'}$ dimana bra-ket mengindikasikan integrasi koordinat transversal (ρ,ϕ) .

2.3 Sensor Suhu Serat Optik SMS

Perangkat serat optik berdasarkan *multimodal interference* di antara moda terpandu dari MMF yang disambungkan di antara dua serat optik singlemode (SMF), telah menarik perhatian yang sangat besar di bidang penelitian, karena biaya rendah, fabrikasi yang mudah, dan kemudahan dalam menyesuaikan spektrum output. Serat optik SMS telah banyak digunakan untuk berbagai aplikasi seperti sensor, *optical beam shaper, optical switches, directional couplers, bandpass / stop filter*, lensa dll.

Gambar 2.4 Sistem pengukuran serat optik (Bentley & J.P., 2006)

Karakteristik transmisi struktur serat optik SMS pada dasarnya ditentukan oleh spektral variasi konstanta propagasi dari berbagai pemandu moda MMF yang digunakan. Hal ini ditentukan oleh indeks bias profil, konsentrasi dopant dan parameter serat MMF lainnya. Dalam hal ini sensitivitas suhu dari *graded-index* multimode selalu jauh lebih tinggi (sekitar 45-285 kali) dibandingkan dengan *step-index* multimode (Kumar, Kumar, & Tripathi, 2014).

Perubahan suhu dapat mengubah material dari serat optik sehingga terdapat perubahan panjang, indeks bias, dan radius melalui persamaan-persamaan berikut (Wang, et al., 2009):

$$R_T = R_0 + \alpha R_0 \Delta T \tag{2.16}$$

$$L_{MMFT} = L_{MMF0} + \alpha L_{MMF0} \Delta T \tag{2.17}$$

$$n_T = n_0 + \xi . \, n_0.\,\Delta T \tag{2.18}$$

Keterangan :

R = radius core serat optik

L = panjang serat optik

n = indeks bias serat optik

 α = thermal expansion coefficient silica

 ξ = thermo-optic coefficient material serat

 α memiliki nilai 5 × 10^{-7/o}C dan ξ sebesar 6,9 × 10⁻⁶ /°C (Li & Peng, 2008). Teknik yang digunakan untuk mengamati pengaruh suhu terhadap serat diantaranya pergeseran pada puncak spektrum panjang gelombang (*wavelength shift*), *intensity-based interrogation system*, atau *ratiometric power interrogation system* (Hatta, et al., 2013).

Dalam serat optik berstruktur SMS, terjadi sebuah fenomena yang disebut dengan multimode interference (MMI). Multimodal Interference (MMI) adalah gangguan dari mode tereksitasi dalam serat optik multimode ketika cahaya dari singlemode digabungkan ke serat optik multimode. Self-imaging terjadi pada interval berkala di sepanjang arah propagasi serat GIMF. Panjang beat, $L\pi$ didefinisikan sebagai jarak di mana energi secara maksimal digabungkan dari serat singlemode ke serat GIMF. Dalam kasus linier, transmisi melalui geometri SMF-GIMF-SMF adalah fungsi periodik dari panjang GIMF ~ L dan periodik sama dengan panjang beat. MMI dalam linier telah berhasil digunakan untuk berbagai aplikasi perangkat seperti pembentuk balok, sensor, filter dan coupler low-loss. Dalam rezim nonlinier dimana daya optik tinggi, efek self-phase modulation dan cross-phase modulation (SPM dan XPM) mengubah indeks bias masing-masing mode, akibatnya pergeseran fase yang dikenakan akan mengubah panjang pulsa self-imaging di GIMF, memvariasikan efisiensi kopling daya antara GIMF dan SMF. Dengan kata lain, transmisi daya relatif dari GIMF ke SMF akan berubah ketika daya cahaya input meningkat. Jika panjang GIMF dipilih tepat seperti panjang setengahnya $L\pi$ atau $L = nL\pi$, dimana n adalah bilangan bulat, transmisi daya relatif berada pada nilai minimum untuk linier. Dan ketika daya yang diinputkan meningkat, transmisi daya relatif juga meningkat hingga mencapai nilai maksimumnya. Prinsip dasar SMS ditunjukkan pada Gambar. 2.2 untuk sinyal berdaya rendah, berkas cahaya mengembang dan mengalami loss yang besar karena ketidakcocokan diameter inti antara GIMF dan SMF. Di sisi lain, untuk sinyal daya tinggi, *self-imaging* terjadi sehingga daya cahaya yang digabungkan ke inti SMF meningkat. Secara teoritis, transmisi dalam struktur SMF-GIMF-SMF ditentukan oleh empat parameter terkait yaitu panjang GIMF L, total daya optik P, rasio

diameter bidang mode dari mode LG_{00} dalam GIMF dengan mode dasar dalam SMF η , dan jumlah total mode tereksitasi (Yang, et al., 2018).

Gambar 2.5 Skema SMF-GIMF-SMF berdasarkan NL-MMI (Wang, et al., 2017)

2.4 Efek Optika Kerr

Gambar 2.6 Interaksi linier dan nonlinier (S.P. Singh & N. Singh, 2007)

Efek nonlinier (Efek Kerr) pada serat optik terjadi akibat pemberian intensitas cahaya yang tinggi dan fenomena hamburan inelastik.

Gambar 2.7 Hubungan indeks bias terhadap medan elektrik: (a) Pockels medium, (b) Kerr medium (Saleh & Teich, 2007)

Intensitas merupakan kuadrat dari medan elektrik. Persamaan-persamaan yang digunakan untuk mencari perubahan indeks bias akibat adanya efek Kerr adalah sebagai berikut (Saleh & Teich, 2007) :

$$n(E) = n_0 - n_1 E + n_2 E^2 (2.19)$$

Pockels Effect :

$$n(E) = n_0 - n_1 E \tag{2.20}$$

Kerr Effect :

$$n(E) = n_0 + n_2 E^2 \tag{2.21}$$

Indeks bias bergantung pada daya medan optik.

$$n(E) = n_0 + n_2 E^2$$

$$E^2 \propto I = \frac{P}{A_{eff}}$$
(2.22)

$$n_{2} = (2, 2 \dots 3, 4) \cdot 10^{-20} \frac{(m)^{2}}{(W)}$$

$$n = n_{0} + n_{2}I = n_{0} + n_{2} \frac{P}{A_{eff}}$$
(2.23)

Nonlinier Coefficient :

$$\gamma = \frac{k_0 n_2}{A_{eff}} \tag{2.24}$$

$$A_{eff} = \pi w^2 = \frac{\pi . MFD^2}{4}$$
(2.25)

Dimana :

 $I = \text{intensitas (W/m^2)}$ P = power (watt) $A_{eff} = \text{luas penampang efektif (m^2)}$ $n_0 = \text{indeks bias core}$ $n_2 = \text{koefisien indeks bias nonlinier (m^2/W)}$

MFD = Mode field diameter

2.4.1 Kerr effect dari interferensi multimode

MMI adalah interferensi dari mode yang tereksitasi dalam pemandu gelombang cahaya singlemode digabungkan ke pemandu gelombang multimode. Bidang pada posisi apapun dalam pemandu gelombang multimode adalah superposisi medan dari mode yang tereksitasi. *Self-imaging* dari medan dapat diperoleh pada posisi tertentu dimana mode tereksitasi dalam fase misalnya akumulasi dari perbedaan fase antara 2 mode yang tereksitasi kelipatan bilangan bulat dari 2π . Ketika cahaya input singlemode digabungkan ke multimode, sejumlah mode multimode tereksitasi (Fu, et al., 2015).

$$E_{SM}(r,\phi,z=0) = \sum_{n=1}^{N} C_n e_n(r,\phi,z=0)$$
(2.26)

Dimana z = 0 adalah poin splicing antara input SMF dan MMF. $E_{SM}(r, \phi, z = 0)$ adalah mode dasar dari SMF dan $e_n(r, \phi, z = 0)$ adalah n-th mode dari MMF, dimana Cn adalah koefisien mode ekspansi.

Medan $E_{MM}(r, \phi, z)$ sepanjang MMF dapat didefinisikan sebagai:

 $E_{MM}(r,\phi,z) = \sum_{n=1}^{N} C_n e_n(r,\phi,0) e^{-i\beta_n z} = e^{-i\beta_1 z} \sum_{n=1}^{N} C_n e_n(r,\phi,0) e^{-i(\beta_n - \beta_1) z}$ (2.27) Dimana β_1 dan β_n masing-masing adalah konstanta propagasi dari mode dasar dan mode tereksitasi n-th dari MMF. *Self-imaging* terjadi pada posisi tertentu di dalam MMF, ketika kondisi memenuhi untuk semua mode N :

$$(\beta_{n-}\beta_{1})z_{self-imaging} = \Delta\beta_{n}z_{self-imaging} = m_{n}2\pi \qquad (m_{n} \text{ is integer}) \qquad (2.28)$$

Ketika panjang segmen MMF L dipilih untuk memungkinkan terjadi *self-imaging* pada panjang gelombang tertentu, oleh karena itu pers (2.25) dapat ditulis sebagai berikut :

$$\Delta n_{eff,n} L = m_n \lambda_0 \qquad (m_n \text{ is integer}) \tag{2.29}$$

Dimana $\Delta n_{eff,n} = \frac{(\beta_{n-}\beta_{1})\lambda_{0}}{2\pi} = n_{eff,n} - n_{eff,1}$

Karena efek Kerr, indeks bias serat optik tergantung pada Intensitas cahaya dan dengan demikian (2.26) dapat dinyatakan sebagai berikut :

$$\Delta n_{eff,n}(I)L = m_n \lambda \qquad (m_n \text{ is integer}) \tag{2.30}$$

Oleh karena itu, panjang gelombang *self-imaging* pada intensitas laser yang tinggi dapat dideskripsikan seperti di bawah :

$$\lambda_{SI} = \frac{\Delta n_{eff,n}(l_{high})}{\Delta n_{eff,n}(l_{low})} \lambda_0 \tag{2.31}$$

Berdasarkan persamaan (2.27) dan (2.26), perubahan nonlinier dari indeks bias yang berasal dari efek Kerr optik menyebabkan perubahan panjang gelombang *self-imaging* dalam MMF. Dengan kata lain, spektrum transmisi dari perangkat serat SMS akan berubah karena efek Kerr MMI. Akibatnya, transmisi perangkat serat SMS pada panjang gelombang tertentu menunjukkan kinerja yang mirip dengan *saturable absorber*, misalnya peningkatan transmisi pada daya laser yang tinggi.
BAB III METODOLOGI PENELITIAN

Gambar 3.1 Diagram alir penelitian

3.1 Studi literatur

Pelaksanaan tugas akhir ini diawali dengan perumusan masalah dan dilanjutkan dengan studi literatur terkait mengenai sensor suhu berbasis serat optik, karakteristik serat optik SMS *graded-index*, dan *Kerr effect*. Studi literatur ini dilakukan dengan mempelajari referensi teori dari buku dan penelitian-penelitian sejenis yang pernah dilakukan sebelumnya. Tujuannya adalah diperolehnya suatu

kerangka berpikir dan penyusunan tugas akhir seperti keterbaruan ide dari penelitian sebelumnya, serta teori-teori yang menunjang tugas akhir yang dilaksanakan.

3.2 Pembuatan dan Pengujian Model Serat Struktur SMS

Model serat optik dengan struktur singlemode-graded index multimodesinglemode dibuat dengan menggunakan persamaan-persamaan yang tertera pada sub bab 2.1 dimana dapat menghasilkan karakteristik transmisi dari serat optik berstruktur SMS. Parameter-parameter dari serat optik yang digunakan dimasukkan ke dalam persamaan seperti lamda, core radius single mode dan multimode, refractive index difference, serta panjang dari serat multimode *gradedindex*. Untuk melakukan pemodelan serat optik diperlukan pemilihan panjang multimode. Panjang multimode dipilih menggunakan perhitungan *self-imaging* untuk menentukan panjang yang paling optimal. Kemudian dilakukan doping material serat optik dengan material nonlinier menggunakan perhitungan nilai indeks bias *Sellemeier's formula*. Material doping yang digunakan adalah GeO₂ (19,3%), B₂O₃ (5,2%), dan P₂O₅ (10,5%). Model serat optik SMS diuji dengan spektrum keluaran yang harus memiliki *trendline* yang serupa dengan penelitian terkait.

3.3 Pembuatan Model Sensor Suhu Serat Optik SMS

Pemodelan sensor suhu serat optik menggunakan efek suhu dengan range perubahan suhu 0-100°C. Pada persamaan model serat optik diinputkan persamaan yang mengindikasikan perubahan suhu pada serat optik multimode. Perubahan suhu dapat mengubah material dari serat optik sehingga terdapat perubahan panjang, indeks bias, dan radius melalui persamaan-persamaan pada sub bab 2.3. Teknik yang digunakan untuk mengamati pengaruh suhu terhadap serat diantaranya pergeseran pada puncak spektrum panjang gelombang (*wavelength shift*), *intensity-based interrogation system*, atau *ratiometric power interrogation system* (Hatta, et al., 2013). Pada penelitian kali ini teknik yang digunakan adalah melihat pergeseran pada puncak spektrum panjang gelombang (*wavelength shift*).

3.4 Pembuatan Model Sensor Suhu Serat Optik SMS dengan Efek Kerr

Setelah itu penambahan efek Kerr dimana indeks bias mengalami perubahan yang bergantung pada intensitas yang tinggi. Intensitas dapat diinputkan untuk mencari perubahan indeks bias (efek Kerr) dengan power input sebesar 100W, 1kW, 2kW, dan 3kW melalui persamaan 2.22. Kemudian dari perubahan indeks bias tersebut menghasilkan grafik indeks bias terhadap intensitas, dan spektrum perbandingan transmisi akibat efek Kerr dengan kondisi semula. Serat optik berstruktur SMS (singlemode-multimode-singlemode) mengakibatkan terjadinya fenomena yang disebut dengan multimode interference (MMI). Interferensi antar moda terjadi sepanjang MMF, membentuk titik-titik interferensi maksimum dan minimum pada jarak tertentu. Interferensi konstruktif yang terjadi secara periodik disebut selfimaging. Fenomena self-imaging di dalam pemandu gelombang multimode dapat dijelaskan menggunakan mode propagation analysis (MPA). Performa dari serat optik SMS sebagai sensor suhu sangat dipengaruhi oleh struktur waveguide dalam SMS dan material pembentuk sensor. Multimode interference yang terjadi pada moda didalam MMF dapat dipengaruhi oleh gangguan eksternal, seperti perubahan suhu. Respon serat optik berstruktur SMS terhadap suhu berawal dari perubahan indeks bias dan dimensi dari serat optik terhadap perubahan suhu lingkungan. Parameter yang menunjukkan perubahan ini yaitu koefisien ekspansi termal (Coefficient of Thermal Expansion, CTE, α) dan koefisien termo-optik (ξ). Begitu pula dengan adanya perubahan intensitas cahaya yg tinggi dapat mengubah indeks bias core dari material serat optik. Parameter yang menunjukkan perubahan ini yaitu indeks bias nonlinier (n_2) .

3.5 Pengujian Karakteristik Model Sensor Suhu Serat Optik SMS dengan Efek Kerr

Model sensor suhu serat optik diuji dengan pemberian efek Kerr dan perubahan suhu sekaligus. Efek Kerr diberikan dengan penambahan intensitas yang tinggi pada serat multimode yang telah didoping dengan material nonlinier bersamaan dengan pemberian perubahan suhu. Sehingga hasilnya akan dilihat pada perubahan spektrum akibat penambahan kedua efek tersebut. Kemudian dilakukan perhitungan numerik untuk mengetahui pengaruh efek Kerr terhadap karakteristik sensor suhu melalui spektrum transmisi dan grafik daya output terhadap perubahan suhu.

BAB IV

HASIL DAN PEMBAHASAN

4.1 Pembuatan dan Pengujian Model Serat Optik Struktur SMS

Pembuatan model serat optik dengan struktur SMS *graded-index* dilakukan dengan memasukkan parameter ke dalam persamaan-persamaan yang menghasilkan karakteristik serat optik seperti yang telah dijelaskan pada sub bab 2.1. Spesifikasi dari serat optik yang digunakan terdapat di **lampiran A**.

No.	Simbol	Variabel (satuan)	Nilai
1.	λ	Lambda (nm)	500-2000
2.	π	Phi	3,14
3.	D_s	Refraktive index difference singlemode	0,002379
4.	a_s	Core radius singlemode (mikrometer)	4,15
5.	D_M	Refraktive index difference multimode	0,008
7.	a_M	Core radius multimode (mikrometer)	62,5
8.	Lmmf	Panjang multimode (m)	2 dan 4

Tabel 4.1 Parameter yang Digunakan dalam Pemodelan

Gambar 4.1 Spektrum serat optik multimode : (a) L=2 m, (b) L=4 m

Untuk pengujian model dilakukan perbandingan hasil spektrum dengan penelitian pada sub bab 2.1. Spektrum yang dihasilkan memiliki *trend line* yang serupa sehingga pemodelan serat optik ini dapat digunakan.

4.1.1 Pemilihan Panjang Serat Optik Multimode

Gambar 4.2 Pemilihan panjang serat optik multimode

Untuk pembuatan model serat optik diperlukan pemilihan panjang multimode agar menghasilkan keluaran yang optimal. Dilakukan simulasi variasi panjang multimode dari 44 mm - 46 mm, sehingga didapatkan panjang dengan gradien terbesar dan bernilai positif pada panjang 44,4 mm untuk digunakan pada sensor suhu. Pola interferensi multimode muncul seperti dua moda menjadi satu interferensi dengan *self-imaging* yang menggunakan persamaan $L_i = \pi \frac{n_o a}{\sqrt{n_o^2 - n_{cl}^2}}$.

Panjang *self-imaging* juga didapatkan dari kelipatan bilangan bulat dari L_i . Dari hasil perhitungan nilai panjang *self-imaging* sebesar 1552 mikrometer. Sehingga diperlukan kelipatannya agar dapat direalisasikan. Ditemukan panjang dari kelipatan 1556 kali L_i yaitu 2,42 m dengan perhitungan gradien yang menghasilkan panjang yang paling optimal. Berdasarkan perhitungan, panjang 2,42 m memiliki

gradien terbesar sehingga panjang multimode ini yang terpilih untuk digunakan pada pemodelan sistem serat optik untuk menghasilkan spektrum.

4.1.2 Pembuatan Model Serat Optik dengan Doping Material

Pembuatan model serat optik dilakukan dengan berbagai variasi material doping untuk meningkatkan efek Kerr. Salah satu unsur yang paling umum digunakan sebagai *dopant* bagian inti adalah germanium, termasuk pada grup IVA sebagaimana silikon dan menggantikan atom silikon yang berada dalam struktur tetrahedron, berkoordinasi dengan 4 atom hidrogen. Kehadiran unsur fosfor dalam senyawa P_2O_5 pada silika meskipun dalam jumlah yang kecil (~0,1%) dapat mengurangi titik lebur dari gelas secara signifikan, membuatnya menjadi lebih mudah untuk memfabrikasi sebagai serat optik. Pengelompokan menyebabkan interaksi ion-ion, yang mengurangi masa hidup keadaan tereksitasi. Fosfor juga umum digunakan pada planar silica dalam fabrikasi pandu gelombang silika, hal ini dikarenakan fosfor dapat mengurangi temperatur pemrosesan dari pembuatan substrat. Fluorin dan boron trivalen (sebagai B₂O₃) adalah dopant lain yang biasanya digunakan dalam serat optik silika. Dengan boron memungkinkan reduksi indeks bias yang besar (>0.02). Boron juga mengubah topologi dari gelas menjadi trivalen. Boron dan germanium bersama-sama membuat perbedaan indeks bias yang rendah diantara inti dan cladding (Kashyap & R., 2009).

Material yang digunakan adalah GeO₂ (6.3% mole), B₂O₃ (5.2% mole), dan P₂O₅ (10.5% mole). Material ini dipilih karena merupakan material nonlinier dimana material nonlinier merupakan material yang mengalami perubahan indeks bias dalam sifat bahan karena medan listrik yang berubah secara lambat dibandingkan dengan frekuensi cahaya (Agrawal & Govind, 2006). Dalam efek Kerr, perubahan indeks bias sebanding dengan kuadrat dari medan listrik. Parameter yang mengindikasikan material nonlinier adalah n₂ (indeks bias nonlinier). Doping material dilakukan dengan memasukkan parameter koefisien pada *Sellemeier's formula* yang menghasilkan indeks bias (Ghatak & Thyagarajan, 1997).

Dopant (%)	a ₁	a ₂	a ₃	b ₁	b ₂	b ₃
Pure SiO ₂	0.004679	0.013512	97.9340	0.696166	0.407942	0.897479
GeO ₂ (6.3)	0.007290	0.010502	97.9342	0.708395	0.420399	0.866341
GeO ₂ (19.3)	0.005847	0.015527	97.9348	0.734700	0.446119	0.808169
$B_2O_3(5.2)$	0.004981	0.013756	97.9335	0.691002	0.402243	0.943964
P ₂ O ₅ (10.5)	0.005202	0.012877	97.9340	0.705848	0.417602	0.895275

 Tabel 4.2 Nilai Koefisien pada Sellemeier's Formula a1,a2,...,b3 untuk Pure dan Doped Silica:

Gambar 4.3 Spektrum transmisi serat optik dengan material doping

Spektrum dari GeO₂, B₂O₃, dan P₂O₅ doped serat silica dengan panjang 2,42 m disimulasikan dengan rentang panjang gelombang antara 1250 hingga 1350 nm sehingga didapatkan spektrum pada gambar 4.3. Spektrum dengan material Pure silica memiliki puncak panjang gelombang paling besar yakni $\lambda = 1295,101$ nm, material doping GeO₂ memiliki puncak $\lambda = 1292,551$ nm, material doping B₂O₃ memiliki puncak $\lambda = 1291,4965$ nm, sedangkan dengan material doping P₂O₅ memiliki puncak panjang gelombang yang paling kecil yakni $\lambda = 1290,6552$ nm.

4.2 Pembuatan Model Sensor Suhu Serat Optik SMS

Pembuatan model sensor suhu serat optik menggunakan perubahan suhu 0°C-100°C. Pada persamaan model serat optik dimasukkan persamaan yang mengindikasikan perubahan suhu pada serat optik multimode seperti yang telah dijelaskan pada sub bab 2.3.

Gambar 4.4 Spektrum transmisi sensor suhu dengan material doping

Spektrum transmisi sensor suhu menunjukkan bahwa semakin tinggi suhu maka kurva spektrum semakin bergeser ke kanan dari berbagai macam material.

Gambar 4.5 Spektrum transmisi sensor suhu dengan kenaikan 20°C

Pada kondisi awal pure silica memiliki puncak panjang gelombang λ =1295,101 nm, setelah diberikan suhu 20°C, 40°C, 60°C, 80°C, dan 100°C puncak panjang gelombang pure silica berubah berturut-turut menjadi λ =1295,2923, λ =1295,484, λ =1295,677, λ =1295,868, dan λ =1296,059 nm.

Gambar 4.6 Grafik daya output terhadap suhu dengan material doping

Melihat dari grafik diatas, daya output sebanding dengan kenaikan suhu untuk material Pure silica. Semakin tinggi suhu maka daya output juga semakin besar. Sedangkan untuk material GeO₂, B₂O₃, dan P₂O₅ semakin tinggi suhu maka daya output semakin kecil.

4.3 Pembuatan Model Sensor Suhu Serat Optik SMS dengan Efek Kerr

Penambahan efek Kerr yakni indeks bias bergantung pada intensitas yang merambat pada serat optik sehingga intensitas mulai dari yang terendah hingga intensitas yang tinggi diberikan. Persamaan-persamaan yang digunakan untuk mencari indeks bias baru akibat efek Kerr terdapat pada sub bab 2.4. Tabel-tabel berikut merupakan indeks bias core setelah mendapatkan efek Kerr.

 Tabel 4.3 Perubahan Indeks Bias dengan Power 100W

Material	n _{cl}	n_0	$n_2 ({ m m}^2/{ m W})$	n _{nl}
GeO ₂ doped silica	1,443970	1,455662	3,08.10-20	1,45566272548316
B ₂ O ₃ doped silica	1,442799	1,454482	3,08.10-20	1,45448257600794
P ₂ O ₅ doped silica	1,441867	1,453542	3,08.10-20	1,45354288071126

Tabel 4.4 Perubahan Indeks Bias dengan Power 1kW

Material	n _{cl}	n_0	$n_2 ({ m m}^2/{ m W})$	n _{nl}
GeO ₂ doped silica	1,443970	1,455662	3,08.10-20	1,45566278782257
B ₂ O ₃ doped silica	1,442799	1,454482	3,08.10-20	1,45448263829681
P ₂ O ₅ doped silica	1,441867	1,453542	3,08.10-20	1,45354294295988

 Tabel 4.5 Perubahan Indeks Bias dengan Power 2kW

Material	n _{cl}	n_0	<i>n</i> ₂ (m ² /W)	n _{nl}
GeO ₂ doped silica	1,443970	1,455662	3,08.10 ⁻²⁰	1,45566285708857
B ₂ O ₃ doped silica	1,442799	1,454482	3,08.10 ⁻²⁰	1,45448270750666
P ₂ O ₅ doped silica	1,441867	1,453542	3,08.10 ⁻²⁰	1,45354301212502

Material	n _{cl}	n_0	$n_2 ({\rm m}^2/{\rm W})$	n _{nl}
GeO ₂ doped silica	1,443970	1,455662	3,08.10-20	1,45566292635458
B ₂ O ₃ doped silica	1,442799	1,454482	3,08.10 ⁻²⁰	1,45448277671651
P ₂ O ₅ doped silica	1,441867	1,453542	3,08.10 ⁻²⁰	1,45354308129016

 Tabel 4.6 Perubahan Indeks Bias dengan Power 3kW

Gambar 4.7 Grafik perubahan indeks bias terhadap intensitas

Grafik 4.7 merupakan perubahan indeks bias terhadap intensitas dari intensitas rendah hingga tinggi. Semakin besar intensitas maka indeks bias juga semakin tinggi. Berdasarkan hasil simulasi menunjukkan bahwa serat optik yang telah didoping dengan material GeO_2 memiliki indeks bias yang lebih tinggi daripada material B_2O_3 dan P_2O_5 .

Gambar 4.8 Spektrum transmisi serat optik dengan power 3kW

Spektrum yang tertera merupakan spektrum dengan power input sebesar 3kW yang menghasilkan intensitas sebesar $6,7.10^{12}$ W/m². Hasilnya menunjukkan dengan penambahan intensitas yang tinggi maka spektrum bergeser ke kiri.

Gambar 4.9 Grafik daya output terhadap suhu dengan power 100W

Grafik yang tertera merupakan grafik dengan power input sebesar 100W yang menghasilkan intensitas sebesar $2,25.10^{11}$ W/m².

Gambar 4.10 Grafik daya output terhadap suhu dengan power 1kW

Grafik yang tertera merupakan grafik dengan power input sebesar 1kW yang menghasilkan intensitas sebesar $2,25.10^{12}$ W/m².

Gambar 4.11 Grafik daya output terhadap suhu dengan power 2kW

Grafik yang tertera merupakan grafik dengan power input sebesar 2kW yang menghasilkan intensitas sebesar $4,5.10^{12}$ W/m².

Gambar 4.12 Grafik daya output terhadap suhu dengan power 3kW

Grafik daya output terhadap suhu dengan penambahan efek Kerr menunjukkan bahwa dengan penambahan intensitas yang besar dapat menghasilkan gradien yang lebih tinggi.

4.4 Pengujian Model Sensor Suhu Serat Optik SMS dengan Efek Kerr

Gambar 4.13 Spektrum transmisi sensor suhu dengan power 100W

Spektrum yang mentransmisikan data daya output tiap panjang gelombang sensor suhu dengan power 100W membuat puncak panjang gelombang spektrum bergeser ke kiri. Karena power yang digunakan kecil sehingga perubahan yang terlihat juga sangat kecil.

Gambar 4.14 Spektrum transmisi sensor suhu dengan power 1kW

Spektrum transmisi sensor suhu dengan power 1kW membuat puncak panjang gelombang spektrum bergeser ke kiri lebih besar dari power 100W. Dengan diberikannya intensitas yang cukup tinggi dapat memengaruhi perubahan indeks bias core serat optik yang digunakan.

Gambar 4.15 Spektrum transmisi sensor suhu dengan power 2kW

Gambar 4.16 Spektrum transmisi sensor suhu dengan power 3kW

Pengujian model sensor suhu serat optik dengan efek Kerr ditunjukkan oleh spektrum transmisi pada gambar 4.13, 4.14, 4.15, dan 4.16. Sensor diberikan perubahan suhu 100°C dan intensitas yang tinggi dengan power input 100W, 1kW, 2kW, dan 3kW sehingga menghasilkan pergeseran spektrum ke kiri dari kondisi awal. Bila dibandingkan dengan kondisi awal yang tanpa pemberian intenitas dan suhu, spektrum ini memiliki puncak panjang gelombang yang lebih rendah.

4.5 Perhitungan Numerik Pengaruh Efek Kerr terhadap Karakteristik Sensor Suhu Serat Optik SMS

Berdasarkan perhitungan, dapat ditentukan sensitivitas sensor SMS yang ditunjukkan melalui pergeseran panjang gelombang per satuan suhu (*wavelength shift*) pada tabel berikut. Tahapan perhitungan numerik selengkapnya ditunjukkan pada **lampiran B.**

Tabel 4.7 Pergeseran Panjang Gelombang pada Spektrum Transmisi dengan Power100W

Material	Efek	Wavelength Shift (pm/°C)	
Pure Silica	Suhu	9,58	
Pure Silica	Kerr dan Suhu	7,665	
GeO ₂ doped silica	Kerr dan Suhu	-17,87	
B ₂ O ₃ doped silica	Kerr dan Suhu	-28,43	
P ₂ O ₅ doped silica	Kerr dan Suhu	-36,83	

Tabel 4.8 Pergeseran Panjang Gelombang pada Spektrum Transmisi dengan Power1kW

Material	Efek	Wavelength Shift (pm/°C)	
Pure Silica	Suhu	9,58	
Pure Silica	Kerr dan Suhu	-9,83	
GeO ₂ doped silica	Kerr dan Suhu	-35,39	
B ₂ O ₃ doped silica	Kerr dan Suhu	-45,94	
P ₂ O ₅ doped silica	Kerr dan Suhu	-54,33	

Tabel 4.9 Pergeseran Panjang Gelombang pada Spektrum Transmisi dengan Power 2kW

Material	Efek	Wavelength Shift (pm/°C)	
Pure Silica	Suhu	9,58	
Pure Silica	Kerr dan Suhu	-29,39	
GeO ₂ doped silica	Kerr dan Suhu	-55,02	
B ₂ O ₃ doped silica	Kerr dan Suhu	-65,54	
P ₂ O ₅ doped silica	Kerr dan Suhu	-73,92	

Material	Efek	Wavelength Shift (pm/°C)
Pure Silica	Suhu	9,58
Pure Silica	Kerr dan Suhu	-48,65
GeO ₂ doped silica	Kerr dan Suhu	-74,28
B ₂ O ₃ doped silica	Kerr dan Suhu	-84,79
P ₂ O ₅ doped silica	Kerr dan Suhu	-93,17

Tabel 4.10 Pergeseran Panjang Gelombang pada Spektrum Transmisi denganPower 3kW

Berdasarkan tabel tersebut didapatkan sensitivitas tiap material setelah diberikan efek Kerr dengan masing-masing power. Sensitivitas terbesar berada pada material P₂O₅ doped silica. Kemudian dilakukan perhitungan gradien pada grafik 4.9, 4.10, 4.11, dan 4.12 untuk mengetahui sensitivitas dengan satuan dB/°C yang ditunjukkan pada tabel berikut.

Material	Efek	Sensitivitas (dB/°C)
Dura Silica	-	0,024717
Fule Silica	Kerr	0,025156
GeO ₂	-	-0,026980
	Kerr	-0,028666
B ₂ O ₃	-	-0,034315
	Kerr	-0,046352
D O	-	-0,034315
P2O5	Kerr	-0,048543

Tabel 4.11 Perhitungan Sensitivitas dari Material dengan Power 100W

Tabel 4.12 Perhitungan S	Sensitivitas dari	Material dengan	Power 1kW
--------------------------	-------------------	-----------------	-----------

Material	Efek	Sensitivitas (dB/°C)
Pure Silica	-	0,024717
	Kerr	0,025159
GeO ₂	-	-0,026980
	Kerr	-0,029248
B ₂ O ₃	-	-0,034315
	Kerr	-0,050269
P ₂ O ₅	-	-0,034315
	Kerr	-0,056737

Material	Efek	Sensitivitas (dB/°C)
Pure Silica	-	0,024717
	Kerr	0,026251
GeO ₂	-	-0,026980
	Kerr	-0,037598
B ₂ O ₃	-	-0,034315
	Kerr	-0,057838
P ₂ O ₅	-	-0,034315
	Kerr	-0,061026

Tabel 4.13 Perhitungan Sensitivitas dari Material dengan Power 2kW

Tabel 4.14 Perhitungan Sensitivitas dari Material dengan Power 3kW

Material	Efek	Sensitivitas (dB/°C)
Pure Silica	-	0,024717
	Kerr	0,026533
GeO ₂	-	-0,026980
	Kerr	-0,044952
B ₂ O ₃	-	-0,034315
	Kerr	-0,066224
P ₂ O ₅	-	-0,034315
	Kerr	-0,068059

Berdasarkan tabel dapat diketahui dengan penambahan efek Kerr dapat mengubah sensitivitas dari sensor, semakin tinggi daya yang diinputkan akan menghasilkan intensitas yang semakin tinggi yang berdampak pada sensor yang semakin sensitif. Sensitivitas tertinggi berada pada material P₂O₅. Karakteristik sensor suhu SMS selengkapnya ditunjukkan pada **lampiran C**.

4.6 Pembahasan

Model serat optik dengan struktur singlemode-graded index multimodesinglemode dibuat dengan menggunakan persamaan-persamaan yang tertera pada sub bab 2.1 yang memberikan karakteristik transmisi dari serat optik konfigurasi SMS. Karakteristik transmisi merupakan sifat atau ciri dari pola data yang dibawa atau ditransmisikan. Parameter-parameter dari serat optik yang digunakan seperti yang tertera pada tabel 4.1 dimasukkan ke dalam persamaan. Nilai-nilai yang tersebut dimasukkan ke dalam persamaan untuk mencari daya di sepanjang serat dengan menggunakan rumus pada persamaan 2.12. Model serat optik diuji dengan melihat spektrum transmisi dan dibandingkan dengan peneltian terkait menghasilkan spektrum dengan trendline yang serupa sehingga pemodelan serat optik SMS ini dapat digunakan. Spektrum transmisi pemodelan serat optik ini ditunjukkan melalui gambar 4.1, spektrum ini merupakan spektrum dari data yang dibawa atau ditransmisikan dari serat optik pure silica dengan panjang 2 m dan 4 m.

Untuk pembuatan model serat optik diperlukan pemilihan panjang multimode agar menghasilkan keluaran yang optimal. Dilakukan simulasi variasi panjang multimode dari 44 mm - 46 mm, sehingga didapatkan panjang dengan gradien terbesar dan bernilai positif pada panjang 44,4 mm untuk digunakan pada sensor suhu. Pola interferensi multimode muncul seperti dua moda menjadi satu interferensi dengan *self-imaging* yang menggunakan persamaan $L_i = \pi \frac{n_o a}{\sqrt{n_o^2 - n_{cl}^2}}$

Panjang *self-imaging* juga didapatkan dari kelipatan bilangan bulat dari L_i . Dari hasil perhitungan nilai panjang *self-imaging* sebesar 1552 mikrometer. Sehingga diperlukan kelipatannya agar dapat direalisasikan. Ditemukan panjang dari kelipatan 1556 kali L_i yaitu 2,42 m dengan perhitungan gradien yang menghasilkan panjang yang paling optimal. Berdasarkan perhitungan, panjang 2,42 m memiliki gradien terbesar sehingga panjang multimode ini yang terpilih untuk digunakan pada pemodelan sistem serat optik dalam menghasilkan spektrum.

Pembuatan model serat optik dilakukan dengan berbagai variasi material doping untuk meningkatkan efek Kerr. Material yang digunakan adalah GeO₂ (6.3% mole), B₂O₃ (5.2% mole), dan P₂O₅ (10.5% mole). Doping material dilakukan dengan memasukkan parameter koefisien pada *Sellemeier's formula* yang menghasilkan indeks bias yang tertera pada tabel 4.2. Spektrum dari GeO₂, B₂O₃, dan P₂O₅ doped serat silica dengan panjang 2,42 m disimulasikan sehingga didapatkan spektrum pada gambar 4.3. Spektrum dengan material Pure silica memiliki puncak panjang gelombang paling besar yakni λ = 1295,101 nm, material doping GeO₂ memiliki puncak λ = 1292,551 nm, material doping B₂O₃ memiliki puncak λ = 1291,4965 nm, sedangkan dengan material doping P₂O₅ memiliki puncak panjang gelombang yang paling kecil yakni λ = 1290,6552 nm.

Pembuatan model sensor suhu serat optik menggunakan perubahan suhu 0°C-100°C. Pada persamaan model serat optik diinputkan persamaan yang mengindikasikan perubahan suhu pada serat optik multimode. Perubahan suhu dapat mengubah material dari serat optik sehingga terdapat perubahan panjang, indeks bias, dan radius. Teknik yang digunakan untuk mengamati pengaruh suhu terhadap serat optik adalah melihat pergeseran pada puncak spektrum panjang gelombang (wavelength shift). Spektrum transmisi sensor suhu dengan material doping terdapat pada gambar 4.4. Spektrum transmisi sensor suhu menunjukkan bahwa semakin tinggi suhu maka kurva spektrum semakin bergeser ke kanan dari berbagai macam material. Pada kondisi awal pure silica memiliki puncak panjang gelombang $\lambda = 1295,101$ nm, setelah diberikan suhu 20°C, 40°C, 60°C, 80°C, dan 100°C puncak panjang gelombang pure silica berubah berturut-turut menjadi λ = 1295,2923, $\lambda = 1295,484$, $\lambda = 1295,677$, $\lambda = 1295,868$, dan $\lambda = 1296,059$ nm. Gambar 4.6 menunjukkan grafik daya output sebanding dengan kenaikan suhu untuk material Pure silica. Semakin tinggi suhu maka daya output juga semakin besar. Sedangkan untuk material GeO₂, B₂O₃, dan P₂O₅ semakin tinggi suhu maka daya output semakin kecil.

Pemodelan sensor suhu dengan penambahan efek Kerr dimana indeks bias mengalami perubahan yang bergantung pada intensitas yang tinggi. Intensitas mengakibatkan perubahan indeks bias (efek Kerr) melalui power input dengan menggunakan persamaan 2.22. Perubahan indeks bias akibat penambahan intensitas dijelaskan pada tabel 4.3, 4.4, 4.5, dan 4.6 dengan power input 100W, 1kW, 2kW, dan 3kW. Kemudian dari perubahan indeks bias tersebut menghasilkan grafik indeks bias terhadap intensitas seperti pada gambar 4.7. Grafik tersebut menggambarkan perubahan indeks bias terhadap intensitas dari intensitas rendah hingga tinggi. Semakin besar intensitas maka indeks bias juga semakin tinggi. Berdasarkan hasil simulasi menunjukkan bahwa serat optik yang telah didoping dengan material GeO₂ memiliki indeks bias yang lebih tinggi daripada material B_2O_3 dan P_2O_5 . Gambar 4.8 menunjukkan spektrum transmisi serat optik dengan efek Kerr. Spektrum yang tertera merupakan spektrum pada kondisi awal dan dengan penambahan intensitas sebesar 6,7.10¹² W/m² dengan power input 3kW. Hasilnya menunjukkan dengan penambahan intensitas tersebut maka spektrum bergeser ke kiri. Gambar 4.9, 4.10, 4.11, dan 4.12 merupakan grafik daya output terhadap suhu dengan efek Kerr. Grafik dengan power input sebesar 100W menghasilkan intensitas sebesar 2,25.10¹¹ W/m². Grafik dengan power input sebesar 1kW menghasilkan intensitas sebesar 2,25.10¹² W/m². Grafik dengan power input sebesar 2kW menghasilkan intensitas sebesar 4,5.10¹² W/m². Grafik dengan power input terhadap suhu dengan penambahan efek Kerr menunjukkan bahwa dengan penambahan intensitas yang besar dapat menghasilkan gradien yang lebih tinggi.

Model sensor suhu serat optik diuji dengan efek Kerr. Efek Kerr diberikan dengan penambahan intensitas yang tinggi pada serat optik multimode yang telah didoping dengan material nonlinier untuk meningkatkan efek Kerr. Sehingga hasilnya akan dilihat pada perubahan spektrum akibat penambahan efek tersebut. Spektrum efek Kerr pada sensor suhu dari tiap material doping ditunjukkan pada gambar 4.13, 4.14, 4.15, dan 4.16. Serat optik diberikan perubahan suhu 100°C dan intensitas yang tinggi sehingga didapatkan perubahan yakni pergeseran spektrum ke kiri dari kondisi awal. Spektrum transmisi sensor suhu dengan power 100W membuat puncak panjang gelombang spektrum bergeser ke kiri. Karena power yang digunakan kecil sehingga perubahan yang terlihat juga sangat kecil. Spektrum transmisi sensor suhu dengan power 1kW membuat puncak panjang gelombang spektrum bergeser ke kiri lebih besar dari power 100W. Dengan diberikannya intensitas yang cukup tinggi dapat memengaruhi perubahan indeks bias core serat optik yang digunakan. Bila dibandingkan dengan kondisi awal yang tanpa pemberian intensitas dan suhu, spektrum ini memiliki puncak panjang gelombang yang lebih rendah.

Kemudian dilakuan perhitungan numerik pengaruh efek Kerr pada sensor suhu SMS. Berdasarkan perhitungan tersebut, dapat ditentukan sensitivitas sensor SMS yang ditunjukkan melalui pergeseran panjang gelombang per satuan suhu (*wavelength shift*) pada tabel 4.7, 4.8, 4.9 dan 4.10. Hasilnya material P₂O₅ doped silica memiliki sensitivitas yang paling besar dengan nilai -93,17 pm/°C pada power 3kW. Kemudian dilakukan perhitungan gradien pada grafik 4.9, 4.10, 4.11, dan 4.12 untuk mengetahui sensitivitas dengan satuan dB/°C yang ditunjukkan pada tabel 4.11, 4.12, 4.13, dan 4.14. Berdasarkan tabel tersebut menunjukkan bahwa dengan penambahan efek Kerr dapat mengubah sensitivitas dari sensor. Sensitivitas tertinggi berada pada material P₂O₅ sebesar 0,068059 dB/°C pada power 3kW. Dari hasil perhitungan numerik dapat diketahui bahwa semakin tinggi power input yang diberikan akan menghasilkan sensitivitas yang semakin tinggi, hal ini dikarenakan intensitas sebanding dengan power input, semakin tinggi intensitas yang ditransmisikan serat optik maka akan menambah sensitivitas dari sensor.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil pengujian dan analisis yang telah dilakukan, dapat diambil kesimpulan sebagai berikut :

- a. Untuk mengetahui pengaruh efek Kerr terhadap karakteristik sensor suhu serat optik dilakukan pengujian dengan penambahan efek Kerr menggunakan perubahan intensitas cahaya yang semakin tinggi. Serat optik didoping dengan material nonlinier GeO₂ (6,3%), B₂O₃ (5,2%), dan P₂O₅ (10,5%) untuk meningkatkan pengaruh efek Kerr. Teknik yang digunakan untuk mengamati pengaruh efek Kerr terhadap sensor suhu serat optik ini adalah dengan melihat pergeseran pada puncak spektrum panjang gelombang (*wavelength shift*), dengan penambahan efek Kerr membuat puncak spektrum panjang gelombang bergeser ke kiri atau memiliki puncak gelombang yang lebih rendah.
- b. Berdasarkan perhitungan numerik pengaruh efek Kerr terhadap karakteristik sensor suhu SMS dapat ditentukan sensitivitas sensor. Hasilnya, akibat dari efek Kerr, sensor suhu berbasis serat optik SMS memiliki sensitivitas yang semakin baik seiring dengan kenaikan intensitas cahaya yang diberikan. Sensitivitas yang paling besar berada pada intensitas cahaya 6,7x10¹² W/m² (power 3kW) yaitu -0,068059 dB/°C dengan *wavelength shift* sebesar -93,17 pm/°C.

5.2 Saran

Berdasarkan hasil penelitian ini didapatkan saran untuk penelitian selanjutnya antara lain :

- a. Hasil simulasi ini dapat digunakan sebagai dasar penelitian dengan tema sama yang berbasis eksperimen
- b. Penelitian selanjutnya dapat menggunakan variasi material lain untuk lebih meningkatkan efek nonlinier Kerr.

c. Penelitian selanjutnya dapat menggunakan variasi efek dari gangguan eksternal lain seperti bending, strain, dan sebagainya untuk mengetahui pengaruh efek lainnya.

DAFTAR PUSTAKA

Degiorgio, V., & Cristiani, I. (2014). Photonics A Short Course. Italy: Springer.

- Wang, W.-h., Li, S.-d., Lin, J.-x., Yun-jun, F., Wen-qing, S., Zheng-ye, X., & Weina, W. (2009). Analysis of Packaging Material Impacting on FBG Temperature. *International Conference on Optical Instrumentation and Technology*. Shanghai, China: Society of Photo-Optical Instrumentation Engineers (SPIE).
- Agrawal, & Govind, P. (2006). *Nonlinier Fiber Optics Fourth Edition*. New York: Academic Press.
- Ananto, B. (2011). Simulasi Perambatan Cahaya pada Serat Optik. *Research Gate*, 4.
- Arabi, M., & Carlos. (2018). Nonlinier Propagation In Optical Fibers: from soliton radiations to multimode instabilities. *Academics Field Physics*, 75.
- Bentley, & J.P. (2006). *Principles of Measurement System, 4th ed.* Essex: Pearson Education Limited.
- Fu, S., Sheng, Q., Zhu, X., Shi, W., Yao, J., Shi, G., . . . Peyghambarian, N. (2015). Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference. *Optical Society of America*, 3-4.
- Ghatak, A., & Thyagarajan, K. (1997). *Introduction to fiber optics*. New Delhi: Cambridge University Press.
- Hatta, A., Indriawati, K., Bestariyan, T., Humada, T., Sekartedjo, & et. al. (2013). SMS Fiber Structure For Temperature Measurement Using an OTDR. *Photonic Sensor*, 262-266.
- Kashyap, & R. (2009). Fiber bragg gratings. Academic press.
- Keiser, G. (1991). *Optical Fiber Communications 2nd Edition*. Florida: McGraw-Hill.
- Kumar, A., Varshney, R. K., Antony, S., & Sharma, P. (2003). Transmission characteristics of SMS fiber optic sensor structure. *Optics Communications*, 1-5.

- Kumar, M., Kumar, A., & Tripathi, S. M. (2014). A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers. *Optics Communications*, 312 222–226.
- Li, E., & Peng, G.-d. (2008). Wavelength-encoded fiber-topic temperature sensor with ultra-high sensitivity. *Optics Communications*, 5768–5770.
- Nazemosadat, E., & Mafi, A. (2013). Nonlinier multimodal interference and saturable absorption using short GIMF. *Optical Society of America*, 1-11.
- S.P. Singh, & N. Singh. (2007). Nonlinier Effects In Optical Fibers: Origin, Management And Applications. *Progress In Electromagnetics Research*, 1.
- Saleh, & Teich. (2007). Fundamentals of Photonics 2nd Edition. USA: Wiley.
- Shijie Fu, Q. S. (2015). Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference . *Optical Society of America*, 1-8.
- Wang, Z., Wang, D., Yang, F., Li, L., Zhao, C., Xu, B., . . . Fang, Z. (2017). Er-Doped Mode-Locked Fiber Laser With a Hybrid Structure of a Step-Index– Graded-Index Multimode Fiber as the Saturable Absorber. *Lighwave Technology*, 2.
- Yang, F., Wang, D., Z. W., Li, L., Zhao, C.-l., Xu, B., . . . Fang, Z.-j. (2018). Saturable absorber based on a single mode fiber – graded index fiber – single mode fiber structure with inner micro-cavity. *Opt. Express*, 3-4.

DAFTAR LAMPIRAN

LAMPIRAN A Spesifikasi Serat Optik yang Digunakan	.45
LAMPIRAN B Pemodelan Matematis Sensor Suhu Serat Optik SMS	.47
LAMPIRAN C Karakteristik Sensor Suhu Serat Optik SMS	. 53

Halaman ini sengaja dikosongkan

LAMPIRAN A

Spesifikasi Serat Optik yang Digunakan

Geometrical & Mechanical	
Core Diameter	8.2 μm
Cladding Diameter	125 ± 0.7 μm
Coating Diameter	242 ± 5 μm
Core-Clad Concentricity	≤0.5 µm
Coating-Clad Concentricity	<12 µm
Fiber Curl	≥4.0 m Radius of Curvature
Proof Test Level (245 coat)	≥100 kpsi (0.7 GN/m²)
Jacket	Ø900 µm Hytrel
Optical	
Numerical Aperture (nominal)	0.14
Operating Wavelength	1260 - 1625 nm
Mode Field Diameter	9.2 ± 0.4 μm @ 1310 nm 10.4 ± 0.5 μm @ 1550 nm
Dispersion	≤18.0 ps/(nm·km) @ 1550 nm ≤22.0 ps/(nm·km) @ 1625 nm
Polarization Mode Dispersion, Link Design Value	≤0.04 ps/√km
Polarization Mode Dispersion, Maximum Individual Fiber	≤0.1 ps/√km
Bend Loss for 100 Turns on 25 mm Mandrel	≤0.01 dB @ 1550 nm

Tabel 1. Spesifikasi Serat Optik Singlemode

Tabel 2. Spesifikasi Serat Optik Multimode Graded-index

Geometrical & Mechanical Specifications		
Core Diameter	62.5 ± 2.5 μm	
Cladding Diameter	125 ± 1 μm	
Coating Diameter	245 ±10 μm	
Coating Non-Circularity	≤5%	
Core Non-Circularity	≤5%	
Cladding Non-Circularity	≤1%	
Core-Clad Offset	≤8 µm	
Optical Specifications		
Numerical Aperture	0.275 ± 0.015	
Attenuation	≤2.9 dB/km	
	≤0.6 dB/km @ 1300 nm	
Bandwidth Bange	≥200 MHz∙km	
	≥500 MHz·km @ 1300 nm	
Zero Dispersion Wavelength	1320 nm (Min)	
	1365 nm (Max)	
Zero Dispersion Slope	≤0.11 ps/(nm²·km)	
Group Refractive Index	1.496 @ 850 nm	
Group Refractive index	1.491 @ 1300 nm	

Halaman ini sengaja dikosongkan

LAMPIRAN B

Pemodelan Matematis Sensor Suhu Serat Optik SMS

Judul m-file	Fungsi
wavelength_shift.m	Pembuat spektrum daya output
	terhadap panjang gelombang
intensity_temperature.m	Pembuat grafik daya output terhadap
	suhu
laguerreGen.m	Perhitungan polinomial Laguerre
	umum. Jika tidak ada alfa yang
	diberikan, alfa diatur ke nol dan fungsi
	ini menghitung polinomial Laguerre
	"normal".
laguerre.m	Perhitungan fungsi laguerre
extsimpsonrule.m	Perhitungan fungsi extsimpsonrule

Tabel 3. Daftar m-file dalam Pemodelan Sensor Suhu Serat Optik SMS

wavelength_shift.m

```
function [Ls]=wavelength_shift(z0,deltaT,ncl0,nco0,lambda);
toc=6.9*10^(-6);
tec=5*10^(-7);
dnT=toc*deltaT;
k0 = 2*pi./lambda;
```

%Singlemode

```
nco0s=1.4504;ncl0s=1.4447;
ncos=nco0s+(nco0s*dnT);
ncls=ncl0s+(ncl0s*dnT);
as0 = 4.15;
as=as0+(tec*as0*deltaT);
Vs= k0.*as.*(ncos.^2-ncls.^2).^(1/2);
ws=(0.65+1.619./Vs.^(3/2)+2.879./Vs.^6)*as;
```

```
%Multimode
Dm = 0.008;
am0 = 62.5;
am=am0+(tec*am0*deltaT);
nco=nco0+(nco0*dnT);
ncl=ncl0+(ncl0*dnT);
Vm = k0.*am.*(nco.^2-ncl.^2).^(1/2);
wm = am.*(2./Vm).^(1/2);
```

```
z1=z0+tec*z0*deltaT;
m = fix(Vm/pi);
k0jj = k0;
ncojj = nco;
alpham = 2/wm^2; %Eq. (7).
mu = ws/wm;
```

```
for kk = 1:m
    betam(kk)=k0jj*ncojj*sqrt(1-2*(2*(kk-
1)+1)*alpham/(k0jj^2*ncojj^2));
```

```
end
```

```
for kk = 1:m
Am(kk)=2*mu/(1+mu^2)*((1-mu^2)/(1+mu^2))^(kk-1);
end
```

```
Psma=0;
for kk=1:m,
Psm_kk=Am(kk)^2*exp(li*(betam(1)-betam(kk))*z1);
Psma=Psma+Psm_kk;
end
```

```
Ls=10*log10((abs(Psma))^2);
```

intensity_temperature.m

```
clear;clc;
tic;
```

z=2.42e6;

```
lambda = 1.31;
deltaT=0;
%pure silica
ncl0=1.444023621286825;
nco0=1.455716311130077;
for m=1:101,
deltaT=m-1;
[L]=wavelength_shift(z,deltaT,ncl0,nco0,lambda);
LL0(m)=L;
Tmp(m)=deltaT;
end
```

```
%GeO2 doped silica
```

```
ncl0=1.441260943104973;
nco0=1.452931262719206;
for m=1:101,
deltaT=m-1;
[L]=wavelength_shift(z,deltaT,ncl0,nco0,lambda);
LL1(m)=L;
Tmp(m)=deltaT;
end
```

```
%B2O3 doped silica
```

```
ncl0=1.439881167062090;
nco0=1.451540314218279;
for m=1:101,
deltaT=m-1;
[L]=wavelength_ shift(z,deltaT,ncl0,nco0,lambda);
LL2(m)=L;
Tmp(m)=deltaT;
end
```

```
%P205 doped silica
ncl0=1.439111742882502;
nco0=1.450764659781681;
for m=1:101,
deltaT=m-1;
```

```
[L]=wavelength_shift(z,deltaT,ncl0,nco0,lambda);
LL3(m)=L;
Tmp(m)=deltaT;
end
```

```
figure(1);
plot(Tmp,LL0,'g-.',Tmp,LL1,'r-.',Tmp,LL2,'b-.',Tmp,LL3,'k-
.','LineWidth',3);set(gca,'FontSize',10);
xlabel('Temperature \DeltaT (^oC)');
ylabel('Output Power(dB)');
legend('Pure silica','GeO_2 doped silica','B_2O_3 doped
silica','P 20 5 doped silica')
```

laguerreGen.m

```
function y = LaguerreGen(varargin)
%set default parameters and rename input
if (nargin == 1)
        n = varargin\{1\};
        alpha = 0;
elseif (nargin == 2)
        n = varargin\{1\};
        alpha = varargin{2};
end;
%error checking of input parameters
if (nargin == 0) || (nargin > 2) || (n~=abs(round(n))) || (alpha<-
1)
        error('n must be integer, and (optional) alpha >= -1');
end;
%Recursive calculation of generalized Laguerre polynomial
L=zeros(n+1);
switch n
    case 0
       L(1,:) = 1;
    otherwise
        L(1,:)=[zeros(1,n), 1];
```
```
L(2,:)=[zeros(1, n-1), -1, (alpha+1)];
for i=3:n+1
        A1 = 1/(i-1) * (conv([zeros(1, n-1), -1, (2*(i-
1)+alpha-1)], L(i-1,:)));
        A2 = 1/(i-1) * (conv([zeros(1, n), ((i-1)+alpha-1)],
L(i-2,:)));
        B1=A1(length(A1)-n:1:length(A1));
        B2=A2(length(A2)-n:1:length(A2));
        L(i,:)=B1-B2;
end;
```

end;

%Define output

y=L(n+1,:);

laguerre.m

```
function Lm=laguerre(n,r)
L0=1;
L1=1-r;
L=zeros(n,r);
L(1)=1;
L(2)=1-r;
for k=3:n
    L(k)=1/(k+1)*((2*k+1-x)*L(k-1)-k*L(k-2));
End
```

extsimpsonrule.m

```
function y = extsimpsonrule (f,a,b,n);
```

```
h=(b-a)/n;
a1=17*f(1);
a2=59*f(2);
a3=43*f(3);
a4=49*f(4);
ajj=0;
for jj=5:n-4
aj=48*f(jj);
ajj=ajj+aj;
```

```
end
an_3=49*f(n-3);
    an_2=43*f(n-2);
    an_1=59*f(n-1);
an=17*f(n);
```

```
y=h/48*(a1+a2+a3+a4+ajj+an_3+an_2+an_1+an);
```

LAMPIRAN C Karakteristik Sensor Suhu Serat Optik SMS

Material	Karakteristik Statik	Satuan	Nilai	
	D	Input Subu (%C)	Min	0
		input Sunu (°C)	Max	100
	Kange	Output Dava (dP)	Min	-13,5578
Pure Silica		Output Daya (uB)	Max	-11,0861
	Span	Input Suhu (°C)	100	
	Span	Output Daya (dB)	2	,4717
	Sensitivitas	dB/°C	0	,0247
		Input Subu (°C)	Min	0
	Dango	input Sunu (C)	Max	100
CoO dorod	Kange	Output Dava (dB)	Min	-10,57
GeO ₂ doped		Output Daya (uB)	Max	-7,8719
Sinca	Span	Input Suhu (°C)	100	
		Output Daya (dB)	2,6980	
	Sensitivitas	dB/°C	-0,0269	
	Dongo	Input Subu (°C)	Min	0
			Max	100
D. domod	Kange	Output Daya (dB)	Min	-11,4382
B_2O_3 doped silica			Max	-8,0203
Sinca	Span	Input Suhu (°C)	100	
		Output Daya (dB)	3,4178	
	Sensitivitas	dB/°C	-0,0341	
		Input Subu (°C)	Min	0
P ₂ O ₅ doped	Dongo		Max	100
	Range	Output Dava (dB)	Min	-11,5157
		Output Daya (uD)	Max	-8,0841
Sinca	Span	Input Suhu (°C)	100	
		Output Daya (dB)	3,4315	
	Sensitivitas	dB/°C	-0,0343	

Tabel 4	. Karal	cteristik	Statik	Sensor	Suhu	Serat	Opt	ik Tanpa Efek	

Daya input	Karakteristik Statik	Satuan	Nilai	
		Least Cuby (%C)	Min	0
		Input Sunu (°C)	Max	100
	Range		Min	-12,2577
100 W		Output Daya (dB)	Max	-9,7421
	C	Input Suhu (°C)	100	
	Span	Output Daya (dB)	2,5156	
	Sensitivitas	dB/°C	0,0251	
		Least Cuby (%C)	Min	0
	Dongo	Input Sunu (°C)	Max	100
	Range	Outrout Davia (dD)	Min	-14,9012
1 kW		Output Daya (dB)	Max	-12,3853
	Snon	Input Suhu (°C)	100	
	Span	Output Daya (dB)	2,5159	
	Sensitivitas	dB/°C	0,0251	
	Range	Input Suhu (°C)	Min	0
			Max	100
		Output Davia (dD)	Min	-10,2656
2 kW		Output Daya (ub)	Max	-7,6405
	Spon	Input Suhu (°C)	100	
	Span	Output Daya (dB)	2,6251	
	Sensitivitas	dB/°C	0,0262	
		Input Subu (°C)	Min	0
3 kW	Dange	input Sunu (C)	Max	100
	Kange	Output Dava (dP)	Min	-18,2929
		Output Daya (uB)	Max	-15,0673
	Spon	Input Suhu (°C)	100	
	Span	Output Daya (dB)	3,2256	
	Sensitivitas	dB/°C	0,0265	

Tabel 5. Karakteristik Statik Sensor Suhu Serat Optik Pure Silica

Daya input	Karakteristik Statik	Satuan	Nilai		
		Input Subu (°C)	Min	0	
	Damaa	input Sunu (C)	Max	100	
	Kange	Output Davia (dD)	Min	-14,1211	
100 W		Output Daya (db)	Max	-11,2544	
	Gron	Input Suhu (°C)	100		
	Span	Output Daya (dB)	2,8666		
	Sensitivitas	dB/°C	-0,0286		
		Input Suby (%C)	Min	0	
	Dongo	input Sunu (°C)	Max	100	
	Kange	Output Dava (dP)	Min	-19,0790	
1 kW		Output Daya (dB)	Max	-16,1541	
	Spon	Input Suhu (°C)	100		
	Span	Output Daya (dB)	2,9248		
	Sensitivitas	dB/°C	-0,0292		
	Danga	Input Suhu (°C)	Min	0	
			Max	100	
	Kange		Min	-16,4426	
2 kW		Output Daya (uD)	Max	-12,6827	
	Span	Input Suhu (°C)	100		
	Span	Output Daya (dB)	3,7598		
	Sensitivitas	dB/°C	-0,0375		
		Input Suhu (°C)	Min	0	
3 kW	Range		Max	100	
	Kange	Output Dava (dB)	Min	-17,8512	
		Output Daya (uD)	Max	-13,356	
	Snan	Input Suhu (°C)	100		
	Span	Output Daya (dB)	4,4952		
	Sensitivitas	dB/°C	-0,0449		

Tabel 6. Karakteristik Statik Sensor Suhu Serat Optik Geo2 Doped Silica

Daya input	Karakteristik Statik	Satuan	Nilai	
		Input Suby (%C)	Min	0
		input Sunu (C)	Max	100
	Range	Outrust David (dD)	Min	-19,3127
100 W		Output Daya (dB)	Max	-14,6775
	Snon	Input Suhu (°C)	100	
	Span	Output Daya (dB)	4,6351	
	Sensitivitas	dB/°C	-0,0463	
		Input Suby (%C)	Min	0
	Dongo	input Sunu (°C)	Max	100
	Kange	Output Davia (dD)	Min	-13,0425
1 kW		Output Daya (dB)	Max	-8,0155
	Spon	Input Suhu (°C)	100	
	Span	Output Daya (dB)	5,0269	
	Sensitivitas	dB/°C	-0,0502	
	Banga	Input Suhu (°C)	Min	0
			Max	100
	Kange	Output Dava (dP)	Min	-23,9479
2 kW		Output Daya (uB)	Max	-18,1640
	Spon	Input Suhu (°C)	100	
	Span	Output Daya (dB)	5,7838	
	Sensitivitas	dB/°C	-0,0578	
3 kW		Input Subu (%C)	Min	0
	Dange		Max	100
	Kange	Output Dava (dP)	Min	-18,9731
		Output Daya (uD)	Max	-12,3506
	Span	Input Suhu (°C)	100	
	Span	Output Daya (dB)	6,6224	
	Sensitivitas	dB/°C	-0,0662	

Tabel 7. Karakteristik Statik Sensor Suhu Serat Optik B₂O₃ Doped Silica

Daya input	Karakteristik Statik	Satuan	Nilai	
		Input Subu (°C)	Min	0
	Dorran		Max	100
	Kange	Outrout Davia (dD)	Min	-18,0632
100 W		Output Daya (dB)	Max	-13,2088
	Suca	Input Suhu (°C)	100	
	Span	Output Daya (dB)	4,8543	
	Sensitivitas	dB/°C	-0,0485	
		Input Suby (%C)	Min	0
	Dongo	Input Sunu (C)	Max	100
	Känge	Output Davia (dD)	Min	-13,995
1 kW		Output Daya (db)	Max	-8,3211
	Spon	Input Suhu (°C)	100	
	Span	Output Daya (dB)	5,6738	
	Sensitivitas	dB/C	-0,0567	
	Panga	Input Suhu (°C)	Min	0
			Max	100
	Känge		Min	-23,5879
2 kW		Output Daya (uB)	Max	-17,4852
	Spon	Input Suhu (°C)	100	
	Span	Output Daya (dB)	6,1026	
	Sensitivitas	dB/°C	-0,0610	
3 kW		Input Suhu (°C)	Min	0
	Danas		Max	100
	Kange	Output Dava (dP)	Min	-19,6782
		Output Daya (uB)	Max	-12,8722
	Snan	Input Suhu (°C)	100	
	Span	Output Daya (dB) 6,8059		5,8059
	Sensitivitas	dB/°C	-0,0680	

Tabel 8. Karakteristik Statik Sensor Suhu Serat Optik P_2O_5 Doped Silica

Halaman ini sengaja dikosongkan

BIODATA PENULIS

Umroatul Fauziah merupakan anak ketiga dari M. Chafid dan Siti Nur Ma'ani. Lahir pada tanggal 20 Oktober 1997 di kota Mojokerto. Mulai mengenyam pendidikan formal di MI Al-Muhsinun Mojokerto hingga lulus pada tahun 2010 dan melanjutkan pendidikan di SMPN 2 Mojokerto dan lulus pada tahun 2013. Kemudian melanjutkan pendidikan di SMAN 1 Sooko Mojokerto. Setelah lulus dari

pendidikan SMA pada tahun 2016, penulis melanjutkan pendidikan di Institut Teknologi Sepuluh Nopember Departemen Teknik Fisika FTI. Selama berkuliah, penulis aktif dalam organisasi Himpunan Mahasiswa Teknik Fisika (HMTF) dan aktif sebagai asisten di Laboratorium Rekayasa Fotonika serta aktif di SPIE Student Chapter ITS. Penulis memiliki pengalaman kerja praktek di PT. Pakuwon Jati Tbk dengan tema penelitian DCKV (Demand Control Kitchen Ventilation). Penulis memiliki motto hidup, "Being born poor is not a mistake, but if you die still in mistake". Penulis dapat dihubungi di poverty it is а email umroatul.fauziah@gmail.com.