

TUGAS AKHIR - TL184834

ANALISIS TEGANGAN PROYEKTIL FRANGIBLE PADA PROSES EJEKSI DENGAN VARIASI KOEFISIEN GESEK DAN PENAMBAHAN SPLIT CETAKAN MENGGUNAKAN METODE ELEMEN HINGGA

Muhammad Mulya Jati NRP. 02511640000112

Dosen Pembimbing Dr. Widyastuti S.Si., M.Si Dr. Eng Hosta Ardhyananta, S.T., M.Sc

DEPARTEMEN TEKNIK MATERIAL DAN METALURGI Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2020

TUGAS AKHIR - TL 184834

ANALISIS TEGANGAN PROYEKTIL FRANGIBLE PADA PROSES EJEKSI DENGAN VARIASI KOEFISIEN GESEK DAN PENAMBAHAN SPLIT CETAKAN MENGGUNAKAN METODE ELEMEN HINGGA

Muhammad Mulya Jati NRP. 02511640000112

Dosen Pembimbing

Dr. Widyastuti, S.Si., M.Si

Dr. Eng Hosta Ardhyananta S.T., M.Sc

DEPARTEMEN TEKNIK MATERIAL DAN METALURGI

Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2020

FINAL PROJECT - TL 184834

ANALYSIS OF FRANGIBLE PROJECTILE STRESS IN EJECTION PROCESS WITH VARIATION OF FRICTION COEFFICIENT AND ADDITIONAL SPLIT DIES USING FINITE ELEMENT METHOD

Muhammad Mulya Jati NRP, 02511640000112

Supervisors

Dr. Widyastuti S.Si., M.Si

Dr. Eng Hosta Ardhyananta S.T., M.Sc

MATERIALS AND METALLURGICAL ENGINEERING DEPARTMENT Faculty of Industrial Technology and System Engineering Institut Teknologi Sepuluh Nopember Surabaya 2020

(This page is intentionally left blank)

ANALISIS TEGANGAN PROYEKTIL FRANGIBLE PADA PROSES EJEKSI DENGAN VARIASI KOEFISIEN GESEK DAN PENAMBAHAN SPLIT CETAKAN MENGGUNAKAN METODE ELEMEN HINGGA

TUGAS AKHIR

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada

Program Studi S-1 Departemen Teknik Material dan Metalurgi Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember

Oleh: MUHAMMAD MULYA JATI NRP 02511640000112

Disetujui Oleh Tim Penguji Tugas Akhir:

Dr. Widyastuti S.Si., M.Si.....(Pembimbing I)

Dr. Eng Hosta Ardhyananta S.T., M.Sc . (Pembimbing II)

ANALISIS TEGANGAN PROYEKTIL FRANGIBLE PADA PROSES EJEKSI DENGAN VARIASI KOEFISIEN GESEK DAN PENAMBAHAN SPLIT CETAKAN MENGGUNAKAN METODE ELEMEN HINGGA

Nama : Muhammad Mulya Jati

NRP : 02511640000112

Departemen : Teknik Material dan Metalurgi Pembimbing I : Dr. Widyastuti, S.Si., M.Si,

Pembimbing II : Dr. Eng Hosta Ardhyananta S.T., M.Sc

Abstrak

Proses kompaksi merupakan salah satu langkah pembuatan proyektil frangible. Proses tersebut meliputi fase kompresi dan ejeksi yang dapat dipengaruhi oleh desain cetakan. Pada prakteknya, proyektil yang dihasilkan memiliki retak dan permukaan yang kasar. Tujuan penelitian ini adalah memahami pengaruh koefisien gesek dan penambahan split cetakan terhadap tegangan yang dialami proyektil frangible pada proses ejeksi. Simulasi dilakukan menggunakan metode ANSYS Workbench Mechanical Analysis Type Explicit Dynamic pada 3 desain cetakan dan variasi koefisien gesek. Hasil penelitian menunjukan desain yang memiliki split mengurangi tegangan yang terjadi selama proses ejeksi. Hasil penelitian juga menunjukan koefisien gesek memberikan dampak pada besaran gaya ejeksi. Semakin besar nilai koefisien gesek semakin besar gaya ejeksi yang diperlukan. Gaya ejeksi yang tinggi adalah indikasi kondisi tegangan suboptimal proyektil pasca-pembebanan. Penelitian ini bermanfaat untuk menindaklanjuti tegangan yang dialami proyektil dan kekuatan ejeksi sebagai faktor yang efektif untuk mengidentifikasi dan mengurangi risiko cacat proyektil sehingga proyektil memiliki akurasi dan presisi yang baik.

Kata Kunci: Desain Cetakan, Koefisien Gesek, Gaya Ejeksi, Proyektil, Frangible

ANALYSIS OF FRANGIBLE PROJECTILE STRESS IN EJECTION PROCESS WITH VARIATION OF FRICTION COEFFICIENT AND ADDITIONAL SPLIT DIES USING FINITE ELEMENT METHOD

Student Name : Muhammad Mulya Jati

NRP : 02511640000112

Department : Material dan Metallurgical Engineering

Supervisor : Dr. Widyastuti, S.Si., M.Si

Co-Supervisor : Dr. Eng Hosta Ardyananta S.T., M.Sc

Abstract

The compaction process is one of the steps for making frangible projectiles. The process includes compression and ejection phases which can be affected by the mold design. In practice, the resulting projectile have cracks and rough surfaces. The purpose of this study was to determine the effect of the friction coefficient and the addition of a split mold on the stress applied by the frangible projectile in the ejection process. The simulation was carried out with the ANSYS Workbench Mechanical Analysis Type Explicit Dynamic method on 3 mold designs and variations of the friction coefficient. The results showed that the split design reduces the stress that occurs during the ejection process. The results also show that the friction coefficient has an effect on the magnitude of the ejection force. The greater the friction coefficient, the greater the ejection force required. The high ejection force is an indication of the sub-optimal projectile stress conditions after loading. This research is useful for following up the pressure applied by projectiles and ejection strength as an effective factor to identify and reduce the risk of projectile defects so that projectiles have good accuracy and precision.

Keywords: Design, Friction Coefficient, Ejection Force, Projectile, Frangible

(This page is intentionally left blank)

KATA PENGANTAR

Puji dan syukur penulis ucapkan ke hadirat Tuhan Yang Maha Esa berkat rahmat dan karunia-Nya penelitian Tugas Akhir dapat terlaksanakan dengan baik dan dapat selesai tepat pada waktunya. Tujuan dari penyusunan Laporan Tugas Akhir adalah untuk memenuhi salah satu syarat akademis yang wajib dipenuhi dalam kuliah program studi Departemen Teknik Material dan Metalurgi FTIRS-ITS, Surabaya.

Terselesaikannya Laporan Tugas Akhir tidak luput dari bantuan, motivasi serta partisipasi dari semua pihak, untuk itu pada kesempatan ini penulis ingin menyampaikan terima kasih sebesarbesarnya kasih kepada:

- 1. Ibu Dr. Widyastuti, S.Si., M.Si., selaku dosen pembimbing I dan Bapak Dr. Eng Hosta Ardhyananta S.T., M.Sc selaku dosen pembimbing II Tugas Akhir atas bimbingannya selama pelaksanaan dan penyusunan Laporan Tugas Akhir.
- 2. Bapak Dr. Sigit Tri Wicaksono, S.Si., M.Si selaku Kepala Departemen Teknik Material dan Metalurgi FTIRS-ITS.
- 3. Bapak Tubagus Noor Rohmannudin, ST., M.Sc selaku dosen wali penulis yang senantiasa memberikan arahan selama masa perkuliahan.
- 4. Seluruh rekan yang telah membantu penulis dalam menyelesaikan tugas akhir

Penulis menyadari penyusunan laporan ini masih jauh dari kesempurnaan. Untuk itu, penulis sangat mengharapkan kritik dan saran yang membangun dari pembaca. Semoga laporan ini dapat berguna bagi penulis dan semua pihak yang terkait.

Surabaya, 23 Juli 2020 Penulis

Muhammad Mulya Jati

DAFTAR ISI

HALAMA	N JUDUL	i
LEMBAR	PENGESAHAN	v
Abstrak	••••••	vii
Abstract	••••••	ix
KATA PE	NGANTAR	xi
DAFTAR	ISI	xiii
DAFTAR	GAMBAR	xvii
DAFTAR	TABEL	xxi
BAB I PE	NDAHULUAN	
1.1	Latar Belakang	1
1.2	Perumusan Masalah	2
1.3	Batasan Masalah	2
1.4	Tujuan Penelitian	2
1.5	Manfaat Penelitian	3
BAB II TI	NJAUAN PUSTAKA	
2.1	Frangible Bullet	5
2.1	.1 Komposit Cu-Sn dan Karakteristik	6
2.2	Desain Peluru	8
2.3	Metalurgi Serbuk	10
2.4	Kompaksi	11
2.4	.1 Teknik Kompaksi Die	12
2.5	Desain Cetakan	15
2.5	6.1 Geometri Bagian Die dan Clearance	16
2.5	5.2 Persyaratan kompaksi press	19
2.5	5.3 Pemilihan Material	24
2.5	5.4 Proses Fabrikasi Die	25
2.6	External Balistik	31
2.6	5.1 Gaya Aerodinamik	32
2.6		
2.6	5.3 Wind Deflection	35
2.6	5.4 Gyrocopic Drift	36
2.6	5.5 Center of Pressure	36
2.7	Akurasi dan Presisi	38

2	8	Metode Elemen Hingga	. 40
2	.9	Gaya Gesek	. 43
2	.10	Teori Kegagalan	. 47
	2.10	0.1 The Maximum Principal Stress Theory	. 47
	2.10		
	2.10	0.3 The Maximum Energy of Distortion Theory	. 48
2	.11	Penelitian Sebelumnya	. 51
BAB II	II MI	ETODOLOGI PENELITIAN	
3	.1	Diagram Alir Penelitian	. 53
3	.2	Desain Penelitian	. 54
	3.2.1	1 Variabel Konstan	. 54
	3.2.2	2 Variabel Proses	. 54
	3.2.3	3 Variabel Respon	. 56
	3.2.4	4 Spesifikasi peluru <i>frangible</i>	. 58
3	.3	Permodelan dengan Software	. 58
	3.3.1		
3	.4	Pradesain Komponen Cetakan	. 61
	3.4.1	1 Penentuan Geometri Komponen	. 61
	3.4.2	2 Geometri Cetakan dan penekan	. 65
3	.5	Meshing	. 69
3	.6	Boundary Condition	. 71
BAB I	V HA	ASIL DAN PEMBAHASAN	
4	.1	Desain Komponen Cetakan	. 73
	4.1.1	1 Desain <i>Upper Punch</i>	. 73
	4.1.2	2 Desain Lower Punch	. 73
	4.1.3	3 Ejector	. 74
4	.2	Simulasi Proses Ejeksi	. 74
	4.2.1		. 75
	4.2.2		
		terhadap Proyektil Frangible	. 83
	4.2.3		
		terhadap Proyektil Frangible	. 85
BAB V	KES	SIMPULAN DAN SARAN	
5	.1	Kesimpulan	. 91
5	.2	Saran	. 91

DAFTAR PUSTAKA	93
LAMPIRAN	
UCAPAN TERIMAKASIH	119
BIODATA PENULIS	

DAFTAR GAMBAR

Gambar 2.1	Proyektil <i>frangible</i>			
Gambar 2.2	Desain peluru			
Gambar 2.3	Mekanisme Single-Action			
Gambar 2.4	Mekanisme Double-Action1			
Gambar 2.5	Mekanisme Floating Die	14		
Gambar 2.6	Clearance pada cetakan	16		
Gambar 2.7	Contoh bagian-bagian cetakan untuk			
	pembuatan gear	17		
Gambar 2.8	Penampang Cetakan			
Gambar 2.9	Pedoman Chamfers	19		
Gambar 2.10	Tipikal Kurva kompresi untuk serbuk			
	logam	20		
Gambar 2.11	Koreksi tekanan pemadatan untuk			
	peningkatan ketebalan benda			
Gambar 2.12	Kekasaran permukaan			
Gambar 2.13	Pengukuran kekasaran permukaan			
Gambar 2.14	Skema EDM			
Gambar 2.15	Ilustrasi gaya magnus			
Gambar 2.16	Trajectory	35		
Gambar 2.17	Center of pressure dan Center of Gravity	27		
G 1 040	pada proyektil			
Gambar 2.18	Grafik hubungan akurasi dan presisi			
Gambar 2.19	Ilustrasi akurasi dan presisi			
Gambar 2.20	Proses dari Analisis Elemen Hingga			
Gambar 2.21	Tegangan yang diterapkan pada serbuk	45		
Gambar 2.22	Von Mises and Maximum Shear Stress			
	theory yield envelope for plane stress states	40		
Combon 2.1	Diagram Alin Danalidan			
Gambar 3.1	Diagram Alir Penelitian			
Gambar 3.2	Desain cetakan tanpa split			
Gambar 3.3	Desain cetakan dengan 1 split5			
Gambar 3.4	Desain Cetakan dengan 2 split			
Gambar 3.5	Desain peluru frangible	ว8		

Gambar 3.6	Software yang digunakan (a) Autodesk	
	Inventor (b) logo ANSYS	. 59
Gambar 3.7	Diagram alir simulasi ANSYS	. 60
Gambar 3.8	Arnold Density test	. 63
Gambar 3.9	Standard macam kesesuaian	. 65
Gambar 3.10	Gambar teknik badan cetakan	. 66
Gambar 3.11	Gambar teknik penekan atas	. 67
Gambar 3.12	Gambar teknik penekan bawah	. 68
Gambar 3.13	Gambar teknik ejektor	. 69
Gambar 3.14	Tampilan pengaturan meshing untuk badan	
	cetakan	. 70
Gambar 3.15	Tampilan pengaturan meshing method	. 71
Gambar 3.16	Meshing pada cetakan 2	. 71
Gambar 4.1	Grafik (a) gaya ejeksi, (b) Equivalent Stress	
	dan (c) shear stress proyektil pada cetakan	
	1	. 76
Gambar 4.2	Grafik (a) gaya ejeksi, (b) equivalent stress	
	dan (c) shear stress proyektil pada cetakan	
	2	. 78
Gambar 4.3	Grafik (a) gaya ejeksi, (b) equivalent stress	
	dan (c) shear stress proyektil pada cetakan	
	3	. 79
Gambar 4.4	Equivalent Stress Proyektil pada Cetakan 1	0.0
~	(a) 0,5 (b) 0,6 (c) 0,7 (d) 0,8	. 80
Gambar 4.5	Shear Stress Proyektil pada Cetakan 1 (a)	00
0 1 46	0,5 (b) 0,6 (c) 0,7 (d) 0,8	. 80
Gambar 4.6	Equivalent Stress Proyektil pada cetakan 2	0.1
C	(a) 0,5 (b) 0,6 (c) 0,7 (d) 0,8	. 81
Gambar 4.7	Shear Stress proyektil pada cetakan 2 (a)	0.1
C1 1 0	0,5 (b) 0,6 (c) 0,7 (d) 0,8	. 81
Gambar 4.8	Equivalent Stress proyektil pada cetakan 3	02
Combon 10	(a) 0,5 (b) 0,6 (c) 0,7 (d) 0,8	. 82
Gambar 4.9	Shear Stress proyektil pada cetakan 3 (a)	02
	0,5 (b) 0,6 (c) 0,7 (d) 0,8	. 82

Gambar 4.10	Penumpukan serbuk Cu-Sn pada area	
Gambar 4.11	cetakan(a) Bagian boattail proyektil (b) ogive	
	proyektil	
Gambar 4.12	Kasus proyektil tersumbat pada cetakan	87
Gambar 4.13	Grafik Prediksi Gaya Ejeksi	88

DAFTAR TABEL

Tabel 2.1	karakteristik peluru frangible dari Sinterfire				
	dan SR				
Tabel 2.2	Jenis-jenis teknik kompaksi				
Tabel 2.3	Perbandingan Alat kompaksi mekanik dan				
	hidrolik	12			
Tabel 2.4	Perbandingan Teknik kompaksi				
Tabel 2.5	Material untuk bagian alat kompaksi				
Tabel 2.6	harga kekasaran rata-rata (Yahuza, 2010)	28			
Tabel 2.7	Rentan Kekasaran berdasarkan proses				
	pengerjaan (Yahuza, 2010)	28			
Tabel 2.8	Kelebihan dan Kekurangan Mesin CNC				
Tabel 2.9	Referensi Penelitian tentang cetakan				
	kompaksi	51			
Tabel 3.1	Rancangan Simulasi ANSYS Explicit				
	Dynamic				
Tabel 3.2	Spesifikasi peluru frangible	58			
Tabel 3.3	Spesifikasi Baja M2 High Speed	61			
Tabel 4.1	Geometri badan cetakan	73			
Tabel 4.2	Geometri Upper Punch	73			
Tabel 4.3	Geometri Lower Punch	74			
Tabel 4.4	Geometri Ejector	74			
Tabel 4.5	Hasil Simulasi Ejeksi	83			

BAB I PENDAHULUAN

1.1 Latar Belakang

Peluru *Frangible* adalah proyektil yang didesain mudah pecah menjadi fragmen-fragmen kecil umumnya digunakan untuk latihan. Keuntungan utama dari proyektil ini antara lain mengurangi resiko terjadinya *ricochet* dan *backsplash* ketika berkontak dengan target yang lebih keras. Proyektil harus memiliki integritas yang cukup dalam komposisinya sehingga tidak akan rusak secara material saat melewati laras senjata. Proyektil yang mudah pecah dianggap relatif sensitif secara ekologis karena mereka tidak memiliki konten timbal. (Komenda, 2013)

Sifat balistik proyektil *frangible* bergantung pada proses manufaktur spesifiknya. Proyektil *frangible* diproduksi dengan metalurgi serbuk (biasanya cetakan dingin) dari material komposit berdasarkan serbuk halus logam. Tahapan kompaksi memiliki peran penting dalam proses dikarenakan akan membentuk serbuk dengan desain yang diinginkan dengan pembebanan sehingga meningkatkan densitas dan mengurangi porositas. Proses kompaksi akan memberikan karakteristik pada serbuk sehingga memiliki kekuatan untuk diproses selanjutnya. Komponen penting yang menunjang proses kompaksi salah satunya adalah cetakan.

Desain cetakan dalam langkah proses metalurgi serbuk sangat mempengaruhi hasil final komponen. Dalam praktiknya, ketidakseragaman proyektil sering terjadi. Proyektil yang dihasilkan memiliki surface finish yang kurang baik dan geometrinya tidak sesuai dengan desain awal. Hasil dari geometri produk yang tidak sesuai bisa disebabkan pengisian serbuk yang tidak seragam pada cetakan, tekanan pemadatan lokal yang besar, membentuk perbedaan green compact lokal yang besar, dan akhirnya retak pada green compact selama pengeluaran. Selain itu, kekasaran permukaan cetakan yang tinggi sangat dihindari. Kekasaran permukaan tinggi dapat membuat surface finish tidak baik dan berkontribusi pada ketidakstabilan proyektil yang dibuat.

Reuss, telah menguji efek dari kekasaran pada airfoil pada wind tunnel. Hasil penelitian menunjukkan penurunan 30% gaya *lift* maksimum dan setidaknya 60% peningkatan koefisien *drag* atas konfigurasi airfoil mulus. (Chakroun, 2004). Penelitian yang dilakukan Shi dan Takami tentang masuknya peluru dengan kecepatan tinggi (ogive dengan ekor silinder) dan menemukan bahwa kekasaran permukaan proyektil menyebabkan lapisan batas turbulen untuk berpisah lebih awal dari yang diprediksi secara teoritis, dan pemisahan lapisan batas tersebut bertanggung jawab akan defleksi lintasan yang diamati. Kondisi permukaan yang tidak konsisten (sudut pembasahan) pada proyektil juga dapat menyebabkan perubahan lintasan. (Ellis, 2016)

Penelitian ini difokuskan pada pengaruh koefisien gesek dan penambahan split cetakan terhadap proyektil *frangible* pada proses ejeksi.

1.2 Perumusan Masalah

Berdasarkan penjelasan latar belakang di atas, dapat diambil rumusan masalah sebagai berikut:

- 1. Bagaimana pengaruh koefisien gesek cetakan-proyektil terhadap tegangan yang dialami proyektil *frangible*?
- 2. Bagaimana pengaruh penambahan split pada cetakan terhadap tegangan yang dialami proyektil *frangible* ?

1.3 Batasan Masalah

Agar diperoleh hasil akhir yang tepat dan sesuai dengan yang diinginkan serta tidak menyimpang dari permasalahan yang ditinjau, maka batasan masalah pada penelitian ini adalah sebagai berikut:

- 1. Desain dan spesifikasi peluru dianggap optimal.
- 2. Pengaruh fisik eksternal dianggap tidak ada.
- 3. Hasil kompaksi dianggap sempurna

1.4 Tujuan Penelitian

Dengan adanya beberapa rumusan masalah yang telah tertulis di atas, terdapat tujuan penelitian sebagai berikut:

- 1. Mendesain cetakan yang sesuai dengan spesifikasi.
- 2. Analisis pengaruh koefisien gesek cetakan terhadap gaya ejeksi.
- 3. Analisis pengaruh koefisien gesek terhadap tegangan yang dialami proyektil *frangible*
- 4. Analisis pengaruh penambahan split cetakan terhadap tegangan yang dialami proyektil *frangible*.

1.5 Manfaat Penelitian

Manfaat dari penelitian ini adalah mendapatkan desain cetakan peluru yang optimal untuk peluru *frangible* dan menunjukan analisis pengaruh koefisien gesek dan penambahan split cetakan terhadap tegangan proyektil *frangible* selama proses ejeksi dari cetakan. Sehingga didapat peluru sesuai dengan geometri dan memiliki akurasi dan juga presisi yang baik.

BAB II TINJAUAN PUSTAKA

2.1 Frangible Bullet

Peluru *Frangible* adalah proyektil yang didesain mudah pecah menjadi fragmen-fragmen kecil umumnya digunakan untuk latihan. Keuntungan utama dari proyektil ini antara lain mengurangi resiko terjadinya *ricochet* dan *backsplash* ketika berkontak dengan target yang lebih keras. proyektil harus memiliki integritas yang cukup dalam komposisi mereka sehingga tidak akan rusak secara material saat melewati laras senjata. Proyektil yang mudah pecah dianggap relatif sensitif secara ekologis karena mereka tidak memiliki konten timbal. (Komenda, 2013). Gambar 2.1 menunjukan proyektil *frangible* untuk pistol Luger 9 mm yang dibuat dengan serbuk tembaga. gambar di sebelah kanan menunjukkan disintegrasi proyektil setelah mengenai target keras resistensi balistik yang lebih rendah.

Gambar 2.1 Proyektil *frangible* (Google, 2020)

Proyektil *frangible* dalam penelitian ini terbentuk dari serbuk logam Cu dan Sn dengan komposisi berat Cu 90% dan Sn 10%.

Penggunaan serbuk logam Cu pada proyektil *frangible* dikarenakan sifatnya tidak beracun dan lunak sehingga dapat menjadi pelumas ketika peluru diaplikasikan pada senjata api. Unsur timah ditambahkan untuk meningkatkan kekuatan dari matriks tembaga sehingga mempengaruhi modulus elastisitas komposit Cu-Sn. Selain itu, timah memiliki *melting point* yang rendah sehingga dapat digunakan sebagai pengikat agar lebih mudah membasahi serbuk tembaga. Kemudian ditambahkan *zinc stearate* sebagai pelumas untuk memudahkan proses kompaksi dan pelarut ethanol untuk memudahkan proses pencampuran.

2.1.1 Komposit Cu-Sn dan Karakteristik

Cu-Sn dapat diaplikasikan sebagai komposit dengan matrik metal. Dalam aplikasi metalurgi serbuk, Cu sebagai *bulk of material* yang ditambahkan Sn sebagai *minor component*. Tembaga (Cu) digunakan untuk material proyektil karena memiliki syarat densitas cukup tinggi serta memiliki *high green strength* sehingga sesuai dengan kebutuhan produk peluru *frangible*. Tembaga (Cu) dapat digunakan sebagai pengganti Timbal (Pb) yang selama ini digunakan karena timbal memiliki sifat *toxic*, sedangkan tidak dengan tembaga (Nadkarni, 2003).

Sifat Timah (Sn) yang memiliki *melting point* rendah digunakan sebagai pengikat (*binder*). Timah cair cenderung lebih mudah masuk diantara partikel tembaga. Hal ini akan mampu meningkatkan *frangibility*. Untuk mengetahui sifat komposit dapat dilakukan dengan *Rule of Mixture* (ROM) yang dinyatakan dengan persamaan (2.1):

$$\rho_c = \rho_m V_m + \rho_f V_f \tag{2.1}$$

dimana.

 ρ_c = densitas komposit

 ρ_m = densitas matriks

 ρ_f = densitas filler

 V_m = fraksi volume matriks

 V_f = fraksi volume filler

$$\rho = \frac{m}{v} \tag{2.2}$$

dimana,

ρ = densitasm = massaV = volume

Dengan menggunakan rumus densitas pada persamaan (2.1) maka dapat diperoleh fraksi massa dengan persamaan berikut

$$m_m = a \cdot m_c \, \operatorname{dan} \, m_f = b \cdot m_c \tag{2.3}$$

dimana.

 m_m = massa matrik m_c = massa komposit m_f = massa filler

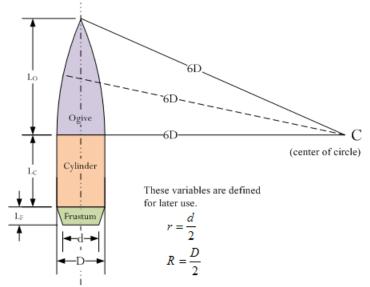
a = fraksi massa matrik b = fraksi massa filler

Massa serbuk yang terdiri dari massa matrik dan massa filler dibutuhkan untuk pembuatan komposit dapat dicari dengan menggunakan persamaan berikut:

$$m_m = a \frac{\rho_m \cdot \rho_f}{a \cdot \rho_f + b \cdot \rho_m} Vc \tag{2.4}$$

$$m_f = b \frac{\rho_m \cdot \rho_f}{a \cdot \rho_f + b \cdot \rho_m} Vc \tag{2.5}$$

Menurut Hansen (2006), densitas peluru *frangible* berkisar antara 1,75 – 8,25 g/cm³ Sedangkan untuk peluru *frangible* yang sesuai dengan karakteristik uji tembak memiliki densitas dengan kisaran 7,1–8,5 g/cm³. Penelitian yang dilakukan oleh Kruachaturrat menunjukan bahwa kekuatan tekan yang harus dimiliki oleh peluru *frangible* berada pada kisaran 31 – 310 MPa. Dengan nilai kekerasan permukaan pada kisaran 54 – 119 HV (Kruachaturrat, 2009). Pada Tabel 2.1 menunjukkan data karakteristik peluru *frangible* dari *Sinterfire* dan SR



Tabel 2.1 karakteristik peluru frangible dari Sinterfire dan SR

Karakteristik Peluru	Sinterfire	SR
Kaliber d (m)	0,009	0,009
Panjang peluru ls (m)	0,0161	0.01435
Massa peluru ms (kg)	0,00648	0,0055
Densitas peluru ρs (kg/m³)	7443	6763
Modulus elastisitas saat penekanan Ks (MPa)	10597	3999
Tekanan relatif maksimal peluru Esx, lim (1)	0,01172	0,01255
Batas velositas peluru vs, lim (m/s)	69,4	32,9
Batas energi kinetik peluru Eks,lim (J)	15,6	2,9
Energi kinetik peluru jarak 2 m dari laras Ek ₂ (J)	470,3	366,4
Faktor frangibility peluru FF	30,1	126,3

2.2 Desain Peluru

Suatu proyektil memiliki desain tertentu sesuai dengan fungsi serta jenis senjata yang akan digunakan. Fungsi utama dari desain sebuah proyektil adalah untuk mencapai tingkat akurasi dan kemampuannya untuk menembus sebuah target menjadi lebih baik. Proyektil terdiri dari ujung (nose), jaket dan inti (core) (Gita, 2013).

Gambar 2.2 Desain peluru (Mathscinotes, 2011)

1. Ogive

Bentuk *ogive* membentuk bagian depan peluru. Bentuk *ogive* terbentuk dari lengkungan dua lingkaran. *Ogive* dapat bersinggungan ataupun tidak pada titik persimpangan ke bagian silinder dari peluru. Ketika lingkaran bersinggungan dengan bagian silinder dapat dikatakan adalah *ogive* bersinggungan. Ketika lingkaran tidak bersinggungan dengan bagian silinder, dapat dikatakan memiliki sinyal garis potong.

2. *Body* silinder

Bagian silinder dari peluru adalah yang menopang pada laras.

3. Boattail

Boattail atau bagian belakang peluru secara geometris berbentuk frustum kerucut. bagian belakang peluru yang mengerucut atau lonjong mengurangi hambatan, terutama pada kecepatan kurang dari supersonik.

Selama peluru berada di udara setelah ditembakan dari senjata, gaya *drag* dihasilkan dari perubahan penampang peluru

yang disebut sebagai *wave drag* dan hal ini berkaitan dengan *shock wave* yang terbentuk. Umumnya terjadi di bagian hidung (*forebody*) dan ekor (*afterbody*) dari peluru. Oleh karena itu pemilihan bentuk hidung dan ekor dari proyektil sangat perlu diperhatikan karena untuk memastikan performa dan kinerja dari proyektil secara kesuluruhan.

2.3 Metalurgi Serbuk

Powder metallurgy atau metalurgi serbuk adalah proses pencampuran material serbuk halus dan menekannya ke dalam bentuk yang diinginkan, dan kemudian memanaskan material yang telah dikompresi dalam atmosfer yang terkontrol untuk mengikat material.

Proses pembuatan komponen dengan metode ini dapat diringkas dalam beberapa langkah sederhana:

- 1. Preparation yaitu mempersiapkan serbuk logam menjadi ukuran berkisar antara 10 hingga 100 mikron sesuai dengan standard aplikasi metalurgi serbuk. Ukuran dan bentuk partikel serbuk sangat mempengaruhi densitas hasil kompaksi. Prosesnya ada beragam, antara lain mechanical pulverization atau comminution, atomisasi, deposisi elektrolit, metode kimia (reduksi, dekomposisi dan kondensasi)
- 2. *Mixing* yaitu mencampur serbuk logam baik dengan atau tanpa pelumas. Untuk peluru *frangible* sendiri dibutuhkan tingkat homogenitas pencampuran yang tinggi untuk memperoleh hasil yang bagus.
- 3. *Compaction* yaitu menekan campuran dalam cetakan dengan nilai pembebanan tertentu, untuk mendapatkan apa yang disebut *green compact*.
- 4. *Sintering*, yaitu memanaskan green compact dalam atmosfer pelindung hingga 60-90% dari titik lebur konstituen utama. Selama proses ini, partikel-partikel akan saling menyatu dan mendapatkan kekuatan antar partikel. (Skrinjar, 2005)

2.4 Kompaksi

Tahapan kompaksi memiliki peran penting dalam proses dikarenakan akan membentuk serbuk dengan desain yang diinginkan dengan pembebanan sehingga meningkatkan densitas dan mengurangi porositas. Proses kompaksi akan memberikan karakteristik pada serbuk sehingga memiliki kekuatan untuk diproses selanjutnya. Beberapa jenis kompaksi dapat dilihat di Tabel 2.2.

Tabel 2.2 Jenis-jenis teknik kompaksi

Tubel 2:2 Jeins Jeins tekink kompuksi						
Proses	Cold Isostatic Compact ion	Cold Forging Compact ion	Die Compa ction	Explode Compact ion	Roll Compa ction	Warm Compa ction
Tekanan	Moderate, 400 MPa	Sangat Tinggi, >800MPa	Tinggi, 700 MPa	Sangat Tinggi, >1 GPa	Rendah	Tinggi, 700 MPa
Temperatur	Ambient	Ambient	Ambient	Sangat tinggi	Ambient	Hangat
Perkakas	Lunak	Keras	Keras	Lunak	Keras	Keras, Dipanas kan
Laju deformasi	Rendah	Tinggi	Tinggi	Sangat tinggi	Rendah	Tinggi
Continuous	Tidak	Tidak	Tidak	Tidak	Iya	Tidak
Arah Penekanan	3	1	1	1	1	1
Kompleksitas bentuk	Menengah -Tinggi	Menengah	Tinggi	Rendah	Rendah	Meneng ah
Polymer level	Tidak ada	Tidak ada	Rendah, 0,5%	Tidak ada	Rendah, 0,1%	Rendah, 0,6%
Presisi	Rendah	Menengah	Tinggi	Rendah	Tinggi	Tinggi
Penggunaan	Menengah	rendah	Tinggi	Sangat rendah	Menenga h	Rendah

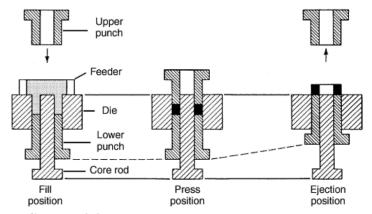
Desain *die* adalah salah satu yang paling penting dalam langkah proses metalurgi serbuk karena bentuk dan atribut dari *die* tersebut mempengaruhi hasil final komponen. Desain *die* memiliki sejumlah langkah dan pertimbangan yang harus dibuat sebelum fabrikasi. (Parswajinan, 2016)

Langkah pemadatan menggunakan *die* terdiri dari menekan serbuk yang berada dalam rongga *die* dengan memberikan tekanan dengan satu atau lebih penekan dalam *die* stasioner atau bergerak.

Gerakan relatif antara *die* dan serbuk dalam rongga *die* menimbulkan gesekan antarmuka yang selain berpengaruh terhadap pengeluaran energi dalam mengatasi gesekan, hal tersebut juga mempengaruhi kualitas *green compact* dengan mengendalikan keseragaman tekanan tekan dan kemudian distribusi kepadatan melalui *green compact* (Michrafy, 2004).

2.4.1 Teknik Kompaksi Die

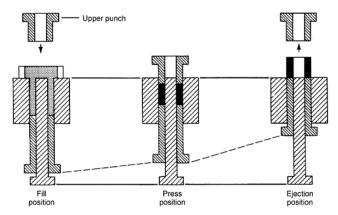
Teknik kompaksi cetakan secara umum menggunakan cetakan kaku dan penekan mekanik atau hidrolik. Teknik ini menghasilkan produk dengan densitas 90% dari densitas totalnya. Perbandingan antara penekan mekanik dan hidrolik dapat dilihat pada table 2.3 dibawah.


Tabel 2.3 Perbandingan Alat kompaksi mekanik dan hidrolik

Aspek yang dibandingkan	Mekanik Press	Hidrolik Press
Laju Produksi	½ - 5 (lebih tinggi)	1
Biaya	Menengah	Lebih tinggi
Perlindungan overload	Rentan	Lebih baik
Biaya Alat	Lebih tinggi	Sedikit lebih murah
Tenaga yang diperlukan	Lebih rendah	Lebih tinggi
Efisiensi	Lebih baik	Baik

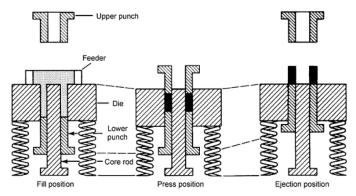
2.4.1.1 Single Action

Dalam proses kompaksi cetakan *single-action*, penekan bawah and cetakan keduanya tidak bergerak dan tekanan pres diterapkan oleh penekan atas yang dapat digerakan. Gesekan antarmuka menyebabkan distribusi densitas yang tidak seragam di *green compact* berkurang sepanjang sumbu kompaksi dengan bergerak menuju penekan bawah yang statis. Setelah kompaksi,


green compact dikeluarkan dari celah cetakan dengan cara memindahkan penekan bawah. Dalam prosesnya, dengan adanya gesekan antarmuka, green compact akan diproduksi oleh rasio aspek tinggi tetapi dengan kepadatan terdistribusi rendah dan tidak seragam (Kadiri, 2005). Namun, pelumasan mengurangi efek gesekan yang merugikan dan membantu densifikasi yang mengurangi rasio aspek green compact. Lubricant atau bahan pelumas yang digunakan harus tidak reaktif terhadap campuran serbuk dan yang memiliki titik leleh rendah sehingga pada proses sintering tingkat awal lubricant dapat menguap (Al-Qureshi, 2008).

Gambar 2.3 Mekanisme Single-Action (Lee, 1998)

2.4.1.2 Double Action


Dalam proses kompaksi *double-action*, baik penekan atas dan bawah sama-sama memberikan tekanan pada powder yang berada di cetakan yang tidak bergerak. keseragaman densitas meningkat di sepanjang sumbu pemadatan dengan kepadatan minimum di tengah *green compact* (Molinari, 2018). Namun, ada hal lain yang dibutuhan untuk menggunakan proses *double-action* ini, yang membutuhkan biaya dan kesulitan tambahan.

Gambar 2.4 Mekanisme *Double-Action* (Lee, 1998)

2.4.1.3 Floating Die

Dalam proses *floating die*, punch bawah stasioner dan die bergerak turun dikarenakan aksi gesekan antarmuka antara serbuk dan dinding die dengan serbuk yang dipadatkan oleh punch atas bergerak. (Behrens, 2010). Distribusi kerapatan lebih seragam dalam *green compact* yang diproses oleh *floating die* dan *doubleaction die* daripada *single-action die* (Iwaoka, 2011)

Gambar 2.5 Mekanisme *Floating Die* (Lee, 1998)

Tabel 2.4	Perbandingan	Teknik kompaksi
-----------	--------------	-----------------

No	Aspek yang dibandingkan	Single- action	Double- action	Floating Die
1	Kecepatan produksi	Cepat	Lebih lambat	Cepat
2	Distribusi Densitas	Kurang homogen	Lebih homogen	Lebih homogen
4	Pembeban yang diperlukan	Besar	Lebih rendah	Lebih rendah
3	Biaya pembuatan <i>Green</i>	Murah	Mahal	Menengah
4	compact design	flexible	terbatas	flexible

2.5 Desain Cetakan

Desain cetakan adalah salah satu yang paling dipertimbangkan dalam langkah proses metalurgi serbuk karena bentuk dan atribut dari cetakan tersebut mempengaruhi hasil final komponen. Desain cetakan memiliki sejumlah langkah dan pertimbangan yang harus dibuat sebelum fabrikasi. (Parswajinan, 2016)

Langkah pemadatan menggunakan cetakan terdiri dari menekan serbuk yang berada dalam rongga cetakan dengan memberikan tekanan dengan satu atau lebih penekan dalam cetakan stasioner atau bergerak. Gerakan relatif antara cetakan dan serbuk dalam rongga cetakan menimbulkan gesekan antarmuka yang selain berpengaruh terhadap pengeluaran energi dalam mengatasi gesekan, hal tersebut juga mempengaruhi kualitas *green compact* dengan mengendalikan keseragaman tekanan tekan dan kemudian distribusi kepadatan melalui *green compact* (Michrafy, 2004).

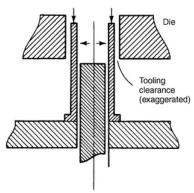
2.5.1 Geometri Bagian Die dan Clearance

1. Cetakan

Cetakan umumnya yang mengontrol bentuk bagian luar dan ukuran benda. Minimum ketebalan dinding cetakan ditentukan oleh ukuran dan bentuk komponen yang akan dibentuk. Jika rasio antara panjang dengan tebal dinding adalah 8:1 atau lebih, maka perlu adanya pencegahan khusus unuk mencapai pengisian yang seragam. Untuk mendapatkan ketebalan dinding yang sesuai, maka digunakan persamaan Lame sebagai berikut:

$$D = d \sqrt{\frac{\sigma + p}{\sigma - p}} \tag{2.6}$$

$$\sigma = \frac{S}{Safety Factor} \tag{2.7}$$

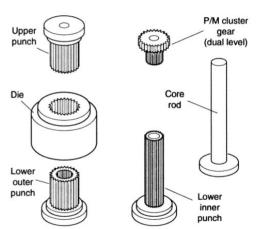

dimana,

d = diameter internal (mm)

 $P = internal \ pressure \ (Mpa \ atau \ N/mm^2)$

 $\sigma = Maximum \ allowable \ stress \ (Mpa \ atau \ N/mm^2)$

S = ultimate tensile stress

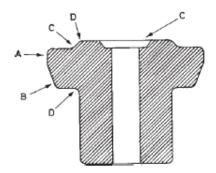

Gambar 2.6 *Clearance* pada cetakan (Lee, 1998)

Jarak antara penekan dan cetakan harus ada agar penekan dapat bergerak di dalam cetakan. Partikel serbuk dapat tersangkut

dalam jarak bebas ini, menyebabkan masalah dengan pergerakan alat. Untuk mencegah partikel serbuk tersangkut dalam celah ini, jarak dirancang sangat rendah. Nilai jarak antara penekan dan cetakan, digunakan untuk menekan serbuk, biasanya kurang dari 0,001 inci atau 0,0254 mm.

2. Penekan

Penekan berfungsi sebagai pemberi gaya tekan yang dibutuhkan untuk memadatkan serbuk. Kontrol dimensi, terutama di bidang seperti konsentrisitas dan lokasi *hole-to-hole*, tergantung pada besaran izin jarak bebas antara penekan, cetakan, dan batang inti. Jarak bebas harus dihitung untuk setiap rentang dan ukuran bagian tertentu. Perubahan termal terjadi selama operasi, dikarenakan gesekan yang diciptakan oleh pengupasan bagian yang dipadatkan dan kecepatan siklus pengepresan. Pemadatan serbuk menyebabkan tekanan tekan pada penekan. Tegangan ini harus di bawah kekuatan luluh bahan penekan. Perhitungan stabilitas tekuk harus dilakukan untuk penekan panjang dan berdinding tipis.


Gambar 2.7 Contoh bagian-bagian cetakan untuk pembuatan *gear* (Brewin, 2008)

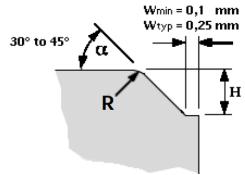
3. Core rod

Core rod atau batang inti adalah bagian cetakan yang mengontrol bentuk dan ukuran bagian dalam benda.

4. Tapers and Drafts

Draft pada umumnya tidak diperlukan pada produksi powder metallurgy. Bagian yang meruncing dibentuk dengan geometri yang lurus dan pendek untuk mencegah penekan atasmmengalir ke bagian yang runcing di dinding cetakan. Jika hal itu terjadi makan akan terjadi pemusatan tegangan. Draft sangat berguna ketika proses ejection.

Gambar 2.8 Penampang Cetakan (Lee, 1998)


5. Fillets dan Radii

Perkakas dengan filet akan membuat desain lebih ekonomis, dikarenakan akan lebih tahan lama. Selain itu filet akan membuat integritas strukural cetakan lebih besar.

6. Chamfers

Chamfers lebih disukai dibagian tepi daripada radii untuk solusi mencegah burring dan meningkatkan umur pakai. Chamfer terdiri dari lereng dengan sudut dan lebar zona data (w) pada Gambar 2.9. Semakin besar sudut chamfer α , semakin besar gaya kompresi yang diperlukan untuk menghasilkan sudut ini. Sudut chamfer umumnya 45°, kurang dari 45° masih dapat diterima.

Karena kekuatan yang diperlukan untuk mengompresi serbuk, sudut yang lebih besar dari 45° relatif terhadap horizontal harus dihindari. Ini akan membantu mencegah kerusakan batang inti dan cetakan.

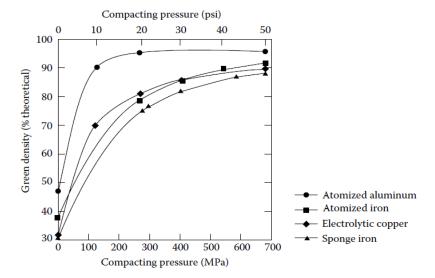
Gambar 2.9 Pedoman *Chamfers* (Lee, 1998)

Ketinggian H tidak boleh mengurangi ketebalan benda lebih dari 30% karena akan menghasilkan variasi dalam kepadatan. Lebar minimum zona datar adalah 0,1 mm, tetapi nilai yang direkomendasikan yaitu 0,2 - 0,3 mm. Nilai tipikal untuk jari-jari R adalah 0,2 - 0,3 mm. Seperti ditunjukkan dalam Gambar 2.9, jika tidak mempertimbangkan zona datar, masa pakai penekan akan terpengaruh dan pada akhirnya akan pecah untuk membentuk flatnya sendiri dengan dimensi dalam urutan 0,1 mm.

2.5.2 Persyaratan kompaksi press

Ketika tekanan kompaksi dinaikan maka densitas serbuk akan meningkat. (Gambar 2.10) menunjukkan kurva kompaksi berbagai material. Terlihat bahwa mencapai densitas tinggi diatas 90% sulit diraih. Densitas tinggi membutuhkan pembebanan yang besar tetapi hanya mampu meningkatkan sedikit densitas.

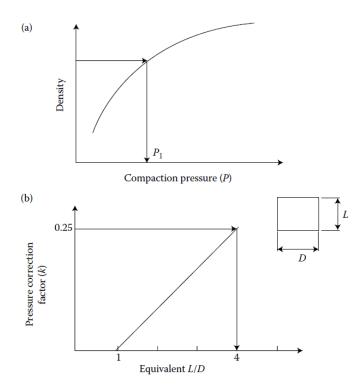
Kurva kompaksi dapat diperkirakan oleh hubungan hukum daya sebagai berikut:


$$P = A\rho^b \tag{2.8}$$

dimana,

P = Tekanan

 ρ = Densitas benda


A dan b dapat diketahui dari nilai P dan ρ yang diperoleh dari suitable test (Boothroyd, 2010)

Gambar 2.10 Tipikal Kurva kompresi untuk serbuk logam (Boothroyd, 2010)

Total beban ditentukan oleh benda yang akan dikompres ke kepadatan yang dibutuhkan dan area yang diproyeksikan. Kurva kompaksi menghubungkan tekanan, P, dengan kepadatan yang diperlukan, q, dan biasanya diperoleh dari tes pemadatan pada bentuk silinder dengan tinggi, L, sama dengan diameter D.

Untuk bagian yang lebih tebal, beban harus ditingkatkan, sebesar 25% untuk rasio panjang terhadap diameter 4:1, untuk memberikan kepadatan yang diperlukan. Kesuksesan kompaksi sulit diraih ketika perbandingan panjang terhadap diameter 5:1.

Gambar 2.11 Koreksi tekanan pemadatan untuk peningkatan ketebalan benda (Boothroyd, 2010)

Tekanan pemadatan yang diperlukan dapat diperkirakan dengan faktor koreksi, k, sedemikian sehingga:

$$P = P1 (1 + k) (2.9)$$

dimana,

P = tekanan kompaksi untuk bagian yang lebih tebal

P1 = tekanan kompaksi untuk bagian "standar"

Faktor koreksi adalah:

$$K = (\frac{0.25}{3}) (\frac{L}{D} - 1) \text{ untuk } L / D > 1$$

$$K = 0 \text{ untuk } L / D < 1$$

Untuk bagian yang tidak berbentuk silinder, rasio L/D yang setara dapat digunakan:

$$L_e/D_e = \frac{V}{2} \sqrt{\frac{\pi}{A^2}}$$
 (2.10)

dimana,

V = volume bagian

A = area yang diproyeksikan.

Beban tekan yang dibutuhkan kemudian diperoleh dengan mengalikan tekanan pemadatan yang diperlukan dengan area yang diproyeksikan pada bagian tersebut. (Lee, 1998)

Rasio Kompresi serbuk

The depth of loose powder (fill height) dibutuhkan untuk memberikan ketebalan final dari benda yang dikompaksi yang mana diketahui dari rasio kompresi serbuk pada densitas yang diinginkan. Rasio kompresi serbuk menentukan fill height serbuk untuk semua variasi ketebalan final part.

$$K_r = \frac{\rho}{\rho_a} \tag{2.11}$$

dimana,

 ρ_a = kerapatan nyata serbuk yang tergantung pada ukuran dan bentuk partikel serbuk dalam campuran

Fill height,
$$hf = tK_r$$
 (2.12)

dimana.

 $hf = Fill\ height\ (ketinggian\ pengisian)$

t = Ketebalan benda dikompaksi

 K_r = Rasio kompresi serbuk

Jika *fill height* lebih besar dari maksimum yang dapat ditampung dalam pres yang digunakan berdasarkan pemadatan yang diperlukan. Maka mesin berkapasitas yang lebih besar harus digunakan. Ini memungkinkan pada part yang tebal dengan luas penampang relatif kecil. (Boothroyd, 2010)

Sifat dari hasil proses kompaksi dapat diketahui dengan pengambilan data spesimen dan perhitungan teori dengan persamaan sebagai berikut:

Berat spesifik

$$\rho = \frac{m}{V_t} \tag{2.13}$$

Densitas Kompak

$$\delta = \frac{m}{V_h} \tag{2.14}$$

Porositas

$$\emptyset = 1 - \frac{\delta}{\delta th} \tag{2.15}$$

Tekanan Kompaksi

$$P = \frac{F}{A} \tag{2.16}$$

dimana,

 ρ = Berat spesifik

m = massa serbuk

 $V_t = Volume$

 δ = Densitas kompaksi

 V_b = Volume setelah kompaksi

 δ th = densitas teoritis

 \emptyset = Porositas

P = Tekanan

F = Gaya

A = Area

2.5.3 Pemilihan Material

Serbuk logam umumnya bersifat abrasif, yang menyebabkan keausan penekan. Penekan yang mengalami keausan dapat menghasilkan *green compact* yang kasar pada permukaannya.

Tabel 2.5 Material untuk bagian alat kompaksi

1 4001 2.5	Tabel 2:5 Waterial untuk bagian alat kompaksi		
Part tool	Speksifikasi khusus yang diperlukan	Material	
Cetakan	Tahan haus Kekuatan tinggi	T15, D2, CPM- 10V, CPM-15V	
	Ketangguhan	,	
Penekan	High fatigue strength	A2	
renekan	Tahan haus	S7	
	Shock resisting		
Core Rods	Tahan haus Ketangguhan	Tungsten carbide High-speed steels (M-grades) steel CPM 15V D2, M2, and A2 tool steels yang sudah dinitritrisasi atau dilapisi tungsten carbide	
Tooling support adapters	Ketangguhan	AISI/SAE 4140 or 6150	
Penekan clamp rings	Ketangguhan	Heat-treatable steel	

Terlepas dari ketahanan terhadap abrasi, alat harus memiliki sifat kekuatan dan ketangguhan kompresi yang tinggi. Mengacu pada standard logam, umumnya baja yang digunakan ialah A2, D2, M2 dan SAE 6150 type. Baik permukaan kerja cetakan dan batang inti harus dipoles seperti permukaan cermin, dan pemolesan akhir harus dilakukan dalam arah yang sejajar dengan sumbu pahat. Permukaan dan dasar penekan juga harus difinishing dengan baik.

Permukaan yang sangat halus mengurangi gesekan, sehingga mengurangi sebagian beban pada perkakas. Ini juga membuatnya lebih mudah untuk mengeluarkan *green compact*, dan menghilangkan goresan kecil dan timbulnya stress lain yang dapat menyebabkan kegagalan kelelahan prematur.

Pelapisan kromium keras terkadang direkomendasikan untuk meningkatkan masa pakai baja penekan dan batang inti, terutama ketika serbuk abrasif terlibat dalam proses. Beberapa peneliti mengklaim bahwa bagian cetakan berlapis nitrida atau kromium memiliki hingga sepuluh kali ketahanan aus bagian cetakan baja perkakas yang tidak mengaplikasikan hal tersebut. ada pula yang mengklaim bahwa pelapisan krom tidak terlalu efektif. Bagian cetakan yang berlapis nitrida dan berlapis krom dapat mengalami *chipping* atau *flaking*, terutama pada bagian yang tajam. (Lee, 1998)

2.5.4 Proses Fabrikasi Die

Fabrikasi ialah proses manufaktur dimana suatu benda dibuat menjadi alat dari bahan mentah atau setengah jadi. Pada proses fabrikasi cetakan, sejumlah langkah dan pertimbangan harus dibuat sebelum fabrikasi agar ketelitian dimensi dan kekasaran permukaan dicapai.

2.5.4.1 Kekasaran Permukaan Cetakan

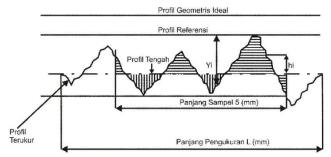
komponen adalah permukaan yang halus. hal ini penting dalam perencanaan suatu komponen khususnya menyangkut masalah gesekan, keausan, tahanan terhadap kelelahan dan sebagainya. permukaan adalah suatu batas yang memisahkan benda padat dengan sekitarnya. Permukaan yang kasar berbentuk gelombang pendek yang tidak teratur dan terjadi karena getaran pisau (pahat) potong atau proporsi yang kurang tepat dari pemakanan (feed) pisau potong dalam proses pembuatannya.

Dalam proses pemadatan serbuk, gesekan hadir antara partikel yang bersentuhan antara permukaan serbuk dan pahat. Selama tahap kompresi, gesekan memiliki dampak besar

pada pembentukan gradien kepadatan di dalam green compact. Selama tahap pelepasan kompresi, beban punch menjadi ringan dan pemulihan elastis pada komponen press dan alat berlangsung. green compact juga mengalami beberapa pemulihan, namun, pemulihan akan dihadang oleh adanya gesekan antara serbuk dan permukaan set alat. Gesekan hadir karena adanya tegangan sisa dalam green compact yang memiliki komponen yang normal pada permukaan pahat. Pada akhir fase pelepasan penekan atas, akan ada bidang dalam *green compact*, yang di atasnya gaya gesekan antara permukaan serbuk dan pahat akan sama dengan gaya pemulihan dalam compact. Selama ejeksi, tegangan normal sisa permukaan cetakan berinteraksi dengan gesekan yang mengakibatkan gaya yang menahan ejeksi bagian tersebut. Untuk bagian silindris sederhana, gesekan dapat menyebabkan densifikasi lebih lanjut selama pengeluaran green compact yang memiliki rasio aspek tinggi.

Gambar 2.12 Kekasaran permukaan (Yahuza, 2010)

Cetakan yang memiliki kekasaran tinggi nantinya akan menyebabkan gesekan yang besar saat proses produksi dan menghasilkan proyektil yang memiliki permukaan yang kasar pula. Penelitian sebelumnya menunjukan efek kekasaran permukaan pada karakteristik aerodinamis. Reuss, telah menguji efek dari kekasaran pada airfoil pada wind tunnel. Hasil penelitian menunjukkan penurunan 30% gaya lift maksimum dan setidaknya 60% peningkatan koefisien drag atas konfigurasi airfoil mulus. (Chakroun, 2004).


Kekasaran rata-rata merupakan harga-harga rata-rata secara aritmetis dari harga absolut antara harga profil terukur dengan

profil tengah.parameter Ra lebih banyak dibicarakan dalam menjelaskan karakteristik permukaan.

$$Ra = \frac{1}{L} \int_0^L |hi \, x| \, dx \, (\mu m) \tag{2.17}$$

di mana Ra adalah kekasaran permukaan rata-rata aritmatika atau deviasi rata-rata, hi ketinggian permukaan di atas garis rata-rata pada jarak (μ m), n dari titik asal dan L panjang keseluruhan dari profil yang diuji (μ m).

Parameter Ra adalah sangat cocok untuk digunakan dalam pemeriksaan kekasaran permukaan dari komponen-komponen mesin dalam jumlah besar yang proses pengerjaannya dengan proses permesinan tertentu. Hal ini dimungkinkan karena parameter Ra ternyata lebih peka dari pada parameter yang lain terhadap adanya perubahan kehalusan permukaan. Sehingga dengan demikian, bila diketahui adanya penyimpangan maka dengan segera bisa diambil tindakan pencegahannya.

Gambar 2.13 pengukuran kekasaran permukaan (Yahuza, 2010)

Harga kekasaran rata-rata aritmetis Ra (*Mean Roughness Indec/Center Line Average*, CLA) mempunyai harga toleransi kekasaran. Toleransi harga kekasaran rata-rata, Ra dari suatu permukaan tergantung pada proses pengerjaannya Dengan demikian masing-masing harga kekasaran mempunyai kelas kekasaran yaitu dari N1 sampai N12. Besarnya toleransi untuk Ra

biasanya diambil antara 50% ke atas dan 25% ke bawah. Tabel 2.6 menunjukkan harga kekasaran rata-rata beserta toleransinya.

Tabel 2.6 harga kekasaran rata-rata (Yahuza, 2010)

Kelas Kekasaran	Harga C.L.A (μm)	Harga Ra (µm)	Toleransi $N_{-25\%}^{+50\%}$
N1	1	0.0025	0.02-0.04
N2	2	0.05	0.04 - 0.08
N3	4	0.1	0.08 - 0.15
N4	8	0.2	0.15 - 0.3
N5	16	0.4	0.3 - 0.6
N6	32	0.8	0.6 - 1.2
N7	63	1.6	1.2 - 2.4
N8	125	3.2	2.4 - 4.8
N9	250	6.3	4.8 - 9.6
N10	500	12.5	9.6 - 18.75
N11	1000	25	18.75 - 37.5
N12	2000	50	37.5 - 75.0

Tabel 2.7 Rentan Kekasaran berdasarkan proses pengerjaan (Yahuza, 2010)

Proses pengerjaan	Range (N)	Nilai Ra
Flat and cylindrical lapping,	N1 - N4	0.025 - 0.2
Superfinishing Diamond turning	N1 - N6	0.025 - 0.8
Flat cylindrical grinding	N1 - N8	0.025 - 3.2
Finishing	N4 - N8	0.1 - 3.2
Face and cylindrical turning,		
milling and	N5 - N12	0.4 - 50.0
reaming	N7 - N10	1.6 - 12.5
Drilling		
Shapping, planning, horizontal milling	N6 – N12	0.8 - 50.0
Sandcasting and forging	N10 - N11	12.5 - 25.0
Extruding, cold rolling, drawing	N6-N8	0.8 - 3.2
Die casting	N6 - N7	0.8 - 1.6

Dalam pemeriksaan permukaan secara tidak langsung ada beberapa cara yang bisa dilakukan, antara lain yaitu dengan meraba (touch inspection), dengan melihat/mengamati (visual inspection), dengan menggaruk (scratch inspection), dengan mikroskop (microscopic inspection) dan dengan potografi permukaan (surface photographs). Sedangkan secara langsung adalah menggunakan peralatan yang dilengkapi dengan peraba yang disebut stylus. Stylus merupakan peraba dari alat ukur kekasaran permukaan yang bentuknya konis atau piramida. Bagian ujung dari stylus ini ada yang berbentuk rata dan ada pula yang berbentuk radius. Untuk ujung stylus yang berbentuk radius, jari-jari keradiusannya biasanya sekitar 2 µm. Bila stylus bergeser maka setiap perubahan yang dialami oleh stylus karena permukaan yang tidak halus akan nampak pada kertas grafik dari peralatan ukurnya karena perubahan ini terekam secara otomatis. Dengan adanya bagian pembesar pada peralatan ukurnya (amplifier) kekasaran permukaan yang tidak jelas dilihat dengan mata akan nampak lebih jelas tergambar pada kertas di bagian rekorder (perekam) jalannya stylus. Pada bagian daerah stylus biasanya dilengkap dengan skid atau datum attachment. Fungsi skid ini pada dasarnya adalah penahan dan pengatur menyentuhnya stylus terhadap permukaan ukur. Bentuk skid ini ada yang berbentuk kurve dan ada pula yang rata. Jadi, perlengkapan secara umum dari peralatan ukur kekasaran permukaan dengan stylus yang bekerjanya berdasarkan prinsip kelistriksan adalah peraba (stylus), skid, amplifier, perekam (recorder) dan bagian pencatat semua profil kekasaran yang direkam. Beberapa peralatan ukur permukaan yang menggunakan stylus ini antara lain adalah profilometer, The Tomlinson Surface Meter dan The Taylor-Hobson Taysurf.

Beberapa proses manufaktur yang umum digunakan untuk pembuatan cetakan kompaksi antara lain:

A. Mesin CNC

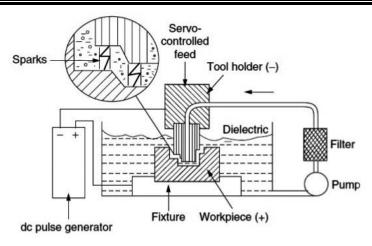
CNC machine adalah sistem otomasi mesin perkakas yang dioperasikan oleh perintah program yang disediakan pada

pengontrolan perangkat lunak untuk menjalankan fungsi dasarnya. Keuntungan utama dari penggunaan teknologi CNC yaitu

Tabel 2.8 Kelebihan dan Kekurangan Mesin CNC

Kelebihan	Kekurangan	
Meningkatkan produksi	Biaya pembelian tinggi	
Mengurangi biaya produksi		
Fasilitas dan operasi mesin	Kebutuhan maintenance tinggi	
yang beragam		
Ketepatan tinggi		
Fleksibilitas lebih besar		

Mesin CNC secara umum melakukan 6 jenis proses pemesinan


- Facing
- Profilling
- Pocketing
- Stol Cutting
- Hole Cutting
- 3D Surface machining

(Yahuza, 2010)

B. EDM

Electric Discharger Machine adalah salah satu proses pemesinan unkonvensional yang paling populer dalam manufaktur. Dengan tingkat penyelesaian permukaan yang tinggi dan kemampuan untuk membuat bahan-bahan yang sulit untuk dikerjakan dengan proses pemesinan konvensional.

EDM adalah proses termoelektrik yang memanfaatkan energi panas yang dihasilkan oleh percikan untuk menghilangkan bahan dari permukaan benda kerja. Energi listrik diubah menjadi energi termal dengan serangkaian pelepasan listrik yang terjadi antara benda kerja dan alat yang direndam ke dalam cairan cetakanlektrik. Saluran plasma dihasilkan oleh energi panas antara anoda dan katoda. Saluran plasma dihasilkan pada kisaran suhu 8000-1200 °C, bahkan dapat mencapai 20.000 °C yang bisa digunakan untuk material apapun.

Gambar 2.14 Skema EDM (Anbesh,2018)

Lokasi percikan listrik yang dihasilkan oleh energi panas ditentukan oleh celah tersempit antara alat dan benda kerja. Ribuan percikan listrik dapat dihasilkan perdetiknya. Satu-satunya batasan dalam EDM ialah benda kerja dan material pahat keduanya harus konduktif secara elektrik. (Anbesh,2018)

2.6 External Balistik

Analisa pergerakan proyektil dibagi menjadi 3 tahapan:

- 1. Internal Balistik yang meliputi peristiwa yang terjadi saat ledakan peluru terjadi hingga peluru keluar laras senjata.
- 2. External Balistik meliputi hubungan gerak proyektil ketika meninggalkan laras senjata sampai menyentuh object.
- 3. Terminal Balistik yang membahas fenomena ketika peluru mencapai target berupa apa yang terjadi dengan peluru dan hasil akibat interaksi target dengan peluru tersebut.

Khusus penelitan ini pada external balistik, terdapat beberapa faktor yang mempengaruhi (Yuana, 2017)

2.6.1 Gaya Aerodinamik

A. Gaya Drag

Aerodinamik *drag* memiliki arah yang berlawanan dengan kecepatan proyektil. Gaya ini dikaitkan dengan ketahanan udara pada proyektil.

$$Drag = -\frac{1}{2}\rho V^2 SC_D \tag{2.18}$$

dimana,

 ρ = Densitas udara (kg/m³)

V = Kecepatan proyektil (m/s)

S = Luas penampang $(\pi d^2/2)$ (m^2)

C_D = Koefisien Drag

Efek dari gerak yaw dihitung dari koefisien drag yang bergantung dari variasi sudut yaw. Sudut yaw didefinisikan sebagai sudut antara sumbu proyektil dan tangen dengan lintasan di pusat gravitasi proyektil.

$$C_D = C_{D_0} + C_{D_{\delta^2}} \delta^2 \tag{2.19}$$

dimana,

 C_{D_0} = koefisien zero yaw drag $C_{D_{\delta^2}}$ = koefisien yaw drag $\delta^2 = \sin \alpha$

$$o = \sin \alpha_t$$

 $\sin \alpha_{t} = \sqrt{(\sin\alpha \cos\beta)^{2} + \sin^{2}\beta}$ (2.20)

dimana,

 α = angle of attack (pitch) β = angle of sideslip (yaw)

Koefisien *drag* ialah angka yang digunakan untuk menghitung tarikan berdasarkan bentuk peluru dan kondisi aliran udara. Nilai biasanya diukur secara eksperimental dan bervariasi secara signifikan berdasarkan Mach. (McCoy, 2012)

B. Gaya Lift

Gaya *lift* adalah gaya yang tegak lurus dengan lintasan. Gaya ini menyebabkan proyektil untuk melayang naik.

$$Lift = \frac{1}{2}\rho V^2 SC_{L_{\alpha}} sin_{\alpha}$$
 (2.21)

Lift proporsional dengan total sin sudut tembak, dan selalu bekerja tegak lurus dari lintasan. Gaya ini juga membuat drift of spin stabilized pada proyektil jarak jauh. Gaya lift juga menunjukan sifat non-linier yang dijelaskan oleh:

$$C_{L\alpha} = C_{L\alpha_0} + C_{L\alpha_2} \delta^2 \tag{2.22}$$

dimana,

 $C_{L_{\alpha}}$ = Koefisien gaya *lift*

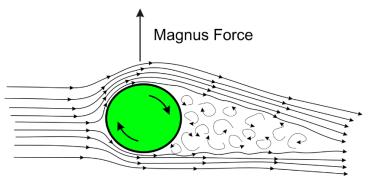
 $C_{L\alpha_0}$ = koefisien gaya *lift linier* $C_{L\alpha_0}$ = koefisien gaya *lift cubic*

(McCoy, 2012)

C. Gaya Magnus

Proyektil yang distabilkan oleh gerakan berputar dipengaruhi oleh efek Magnus. Saat proyektil bergerak melintang ke udara, apabila dibawah pengaruh angin, perbedaan tekanan terjadi pada dua sisi yang berlawanan dari proyektil yang menyebabkan gaya Magnus seperti pada Gambar 2.13. Gaya bertindak naik atau turun, tergantung pada arah angin dan arah rotasi. Deviasi vertikal dari lintasan proyektil lebih kecil daripada deviasi yang disebabkan oleh angin.

Gaya Magnus =
$$\frac{1}{2}\rho V^2 S\left(\frac{pd}{V}\right)C_{N_{p\alpha}}sin_{\alpha}$$
 (2.23)


$$C_{N_{p\alpha}} = C_{N_{p\alpha0}} + C_{N_{p\alpha2}} \delta^2 \tag{2.24}$$

dimana.

 $C_{N_{n\alpha}}$ = Koefisien gaya magnus

 $C_{N_{p\alpha 0}}$ = Koefisien gaya magnus linier

 $C_{N_{p\alpha 2}}$ = Koefisien gaya magnus *cubic*

Gambar 2.15 Ilustrasi gaya magnus (Google, 2019)

Efek gaya Magnus pada peluru tidak signifikan jika dibandingkan dengan gaya seperti gaya *drag*. Namun, efek Magnus memiliki peran penting dalam stabilitas peluru karena gaya Magnus tidak bekerja pada pusat gravitasi peluru, tetapi di center of pressure. Titik ini terletak di belakang atau di depan pusat gravitasi, tergantung pada struktur medan aliran, penerbangan super-sonik atau sub-sonik. Gaya Magnus memengaruhi stabilitas karena ia mencoba untuk "memutar" peluru di sepanjang pelariannya. (Ibraheem, 2017)

2.6.2 Trajectory

Trajectory atau lintasan dapat didefinisikan sebagai kurva dalam ruang yang dipengaruhi oleh pusat gravitasi proyektil ketika berada di udara Gambar 2.14. Faktor-faktor yang mempengaruhi bentuk lintasan proyektil yang ditentukan setelah meninggalkan senjata pada dasarnya adalah medan gravitasi bumi. Gravitasi adalah gaya konstan yang menarik semua benda ke pusat bumi. Kecepatan peluru dapat meminimalkan efek gravitasi. Semakin cepat peluru menempuh jarak ke target, semakin sedikit waktu yang dapat digunakan oleh gravitasi. (Ibraheem, 2017). Selain itu karakteristik udara yang dilewati oleh proyektil seperti temperatur dan densitas udara juga mempengaruh lintasan proyektil. Untuk lintasan jarak jauh, faktor tambahan harus dipertimbangkan,

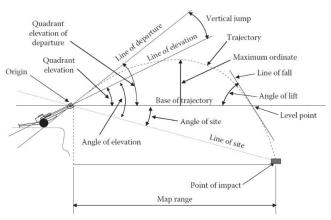
termasuk kelengkungan bumi, rotasi bumi, dan variasi medan gravitasi dengan ketinggian.

$$m\frac{d\vec{v}}{dt} = \sum \vec{F} + m\vec{g} + m\vec{\Lambda}$$
 (2.25)

dimana.

m = massa proyektil

 \vec{V} = Vektor kecepatan


t = waktu

 $\frac{d\vec{V}}{dt}$ = Vektor akselerasi

 $\sum \vec{F}$ = Vektor jumlah semua gaya aerodinamis

 \vec{g} = Vektor akselerasi akibat gravitasi

 $\vec{\Lambda}$ = Vektor Coriolis akibat rotasi bumi

Gambar 2.16 Trajectory (Jacobson, 2018)

2.6.3 Wind Deflection

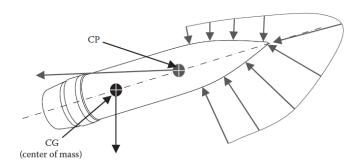
Angin menyebabkan rotasi proyektil mengikuti arah angin, yang menyebabkan gaya *drag* tidak sejajar dengan lintasan. Gaya *drag* yang diarahkan seperti itu menyebabkan defleksi horizontal lintasan peluru, dan dikatakan sebagai penyimpangan proyektil. Efek lain dari angin adalah perubahan kecepatan relatif proyektil

terhadap udara, yang menghasilkan perubahan gaya aerodinamis. (Jedrasiak, 2018)

2.6.4 Gyrocopic Drift

Drift gyroscopic adalah interaksi massa dan aerodinamika proyektil dengan atmosfir yang melayang. Drift gyroscopic bergantung pada sifat (kepadatan) atmosfer. Putaran kiri atau kanan akan mengubah arah penyimpangan gyroscopic. Peluru yang ditembakkan dari barel yang memiliki putaran ke kanan melayang ke kanan pula. (Khan, 2017)

2.6.5 Center of Pressure


Center of Pressure adalah titik dimana vektor dapat ditarik yang dihasilkan dari semua gaya tekanan yang bekerja pada benda. Normal force center of pressure tidak sama dengan magnus moment center of pressure. Untuk kebanyakan proyektil, Center of pressure (CP) terletak di depan center of mass. Pada proyektil dengan tipe fin atau drag stablilized, center of pressure dapat berada di belakang center of mass. Center of pressure sendiri ialah besaran khayalan untuk membuat tinjauan overturning moment pada proyektil yang disebabkan pemisahan center of gravity dan center of pressure. Hubungan matematika antara koefisien momen overturning, koefisien normal force, center of gravity, dan center of pressure.

$$C_{m\alpha} = C_{N\alpha}(CG - CP_N) \tag{2.26}$$

dimana,

 $C_{m\alpha}$ = Koefisien *Pitching moment* $C_{N\alpha}$ = Koefisien *Normal Force*

CG = Jarak dari ujung hidung ke *Center of Gravity* CP_N = Jarak dari ujung hidung ke *Center of Pressure* (McCoy, 2012)

Gambar 2.17 Center of pressure dan Center of Gravity pada proyektil (Jacobson, 2018)

Identifikasi lokasi *center of pressure* pada badan proyektil dibutuhan untuk menghitung momen aerodinamik, stabilitas dan analisis struktural. Lokasi *center of pressure* yang terdiri dari hidung berbentuk kerucut dan silinder afterbodies ditentukan sebagai berikut

$$(X_{cp})N = (0.667 + C_{Cyl}) L_N$$
 (2.27)

Untuk proyektil dengan hidung ogival

$$(X_{cp})N = (0.467 + C_{Cyl}) L_N$$
 (2.28)

Lokasi *center of pressure* secara keseluruhan yang diukur dari puncak hidung proyektil

$$x_{cp} = \frac{(x_{cp})_N (C_{N\alpha})_N + (x_{cp})_{BT} (C_{N\alpha})_{BT}}{(C_{N\alpha})}$$
(2.29)

dimana,

C_{Cyl} = Kontribusi dari bagian berbentuk silinder pada center of pressure hidung

 L_N = Panjang Nose (m)

 x_{cp} = Lokasi *Centre-of-pressure* dihitung dari ujung hidung (m)

 $(x_{cp})_{BT}$ = Koefisien *centre-of-pressure* boattail

$$C_{N\alpha}$$
 = Normal-force-curve slope, 1/rad (SH, 2008)

2.7 Akurasi dan Presisi

Akurasi mengacu pada level kesepakatan antara pengukuran aktual dan pengukuran absolut. Akurasi mengukur ketepatan dan yang kemiripan hasil pada waktu sama membandingkannya terhadap nilai absolut. Semakin mendekati ukurannya, semakin tinggi level akurasi. Akurasi adalah nomor referensi (biasanya diberikan dalam persen (%) kesalahan).

Untuk menemukan nilai akurasi, perlu menghitung kesalahan, dan untuk mengukur "tingkat kedekatan dengan nilai sebenarnya", perlu menghitung % kesalahan. seberapa dekat (atau jauh) pembacaan instrumen dibandingkan dengan pembacaan standar referensi.

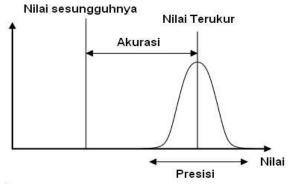
Untuk menghitung error dan persen error, rumus seperti dibawah:

$$Error = Nilai \ yang \ diukur - Nilai \ standard$$
 (2.30)

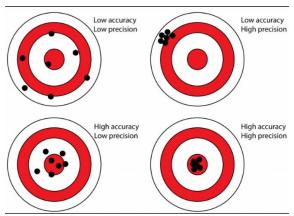
Dan untuk persen
$$error$$

 $\% error = \frac{Error}{Nilai Standard} x 100\%$ (2.31)

Presisi menunjukan level keberagaman yang terletak pada nilai beberapa pengukuran dari faktor yang sama yang menggambarkan seberapa dekat hasil dengan yang lain atau keseragaman dan pengulangan pada pengukuran. Semakin tinggi level presisi semakin kecil variasi antar pengukuran.


Istilah umum yang digunakan untuk menggambarkan presisi adalah koefisien variasi (CV) dan deviasi standar relatif (RSD). Semakin rendah RSD, semakin kecil hasil sebaran dan semakin tinggi presisi.

$$Cv = \frac{\sigma}{\mu} \tag{2.32}$$


dimana,

CV = standard deviation (mean)

Standard Deviation = (devisiasi semua pengukuran / jumlah pengukuran

Gambar 2.18 Grafik hubungan akurasi dan presisi Westgard JO (2008) Basic method validation. 3rd ed. Madison: Westgard QC, Inc.

Gambar 2.19 Ilustrasi akurasi dan presisi (calibrationawareness.com, 2018)

Pada Gambar 2.19 menunjukan ilustrasi akurasi dan presisi sebuah proyektil pada pengujian tembak. Untuk menghasilkan proyektil

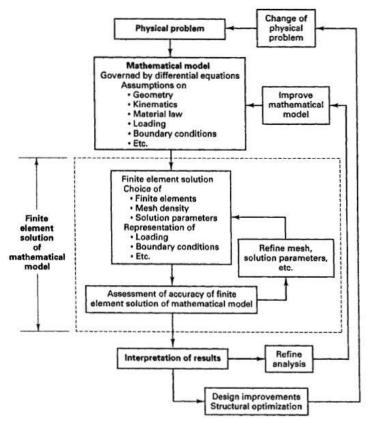
yang memiliki akurasi dan presisi tinggi harus memenuhi faktor faktor internal, eksternal dan terminal balistik yang sudah dipaparkan pada subbab sebelumnya.

2.8 Metode Elemen Hingga

Metode elemen hingga (FEM) adalah teknik matematika untuk mengatur dan memecahkan sistem persamaan diferensial parsial atau integral. Dalam rekayasa, metode elemen hingga digunakan untuk membagi sistem yang perilakunya tidak dapat diprediksi menggunakan persamaan bentuk tertutup menjadi potongan-potongan kecil atau elemen, yang solusinya diketahui atau dapat diperkirakan. Metode elemen hingga membutuhkan geometri sistem untuk didefinisikan oleh sejumlah titik dalam ruang yang disebut node. Setiap node memiliki seperangkat derajat kebebasan (suhu, perpindahan, dan lain-lain.) Yang dapat input ke bervariasi berdasarkan sistem. Node-node dihubungkan oleh elemen-elemen mendefinisikan yang matematika interaksi derajat kebebasan (DOF). Untuk beberapa elemen, seperti balok, solusi bentuk tertutup diketahui. Untuk elemen lain, seperti elemen kontinum, interaksi antara derajat kebebasan diperkirakan dengan integrasi numerik atas elemen. Semua elemen individu dalam model digabungkan untuk membuat satu set persamaan yang mewakili sistem yang akan dianalisis. Akhirnya, persamaan ini diselesaikan untuk mengungkapkan informasi yang berguna tentang perilaku sistem. Sama seperti poligon reguler yang mendekati lingkaran sempurna ketika jumlah sisi mendekati tak terhingga, model elemen hingga mendekati representasi sempurna dari sistem ketika jumlah elemen menjadi tak terbatas. Karena tidak mungkin membagi sistem menjadi beberapa elemen, metode elemen hingga menghasilkan solusi yang tepat untuk perkiraan masalah yang ingin diselesaikan. Ketika jumlah elemen menjadi cukup besar, pendekatannya menjadi cukup baik untuk digunakan untuk analisis teknik. Namun, ini dapat meningkatkan jumlah persamaan yang harus dipecahkan di luar titik di mana praktis atau diinginkan untuk menyelesaikannya

dengan tangan. Untuk alasan ini, metode elemen hingga dikaitkan dengan program komputer yang mengatur, memecahkan, dan memvisualisasikan solusi dari set persamaan. (Thompson, 2017)

Pemecahan masalah masalah dalam kehidupan manusia adalah kewajiban. Masalah sederhana dapat dan harus diselesaikan dengan metode sederhana atau diperoleh dari buku pegangan teknik. Namun tidak semua masalah itu sederhana. Dengan meningkatnya kompleksitas permasalahan, pemecahan masalah menggunakan fundamental teknik menjadi lebih meninggalkan analis dengan jam panjang perhitungan dan rawan kesalahan. Manfaat nyata dari analisis elemen hingga terletak pada kemampuan untuk memecahkan masalah kompleks yang tidak tersedia solusi analitiknya atau yang akan menghabiskan banyak waktu dan mahal untuk menyelesaikannya dengan tangan. Ada 10 langkah dasar dalam setiap analisis elemen hingga. Pertama, geometri model solid dibuat, tipe elemen (s) dan sifat material didefinisikan, dan geometri model solid disatukan untuk membuat model elemen hingga. Di ANSYS, langkah-langkah ini dilakukan di Preprocessor (PREP7). Selanjutnya, beban dan kendala diterapkan, opsi solusi ditentukan, dan masalahnya selesai. Langkah-langkah ini dilakukan dalam prosesor Solusi (SOL). Setelah solusi sudah siap, hasilnya diplot, dilihat, dan diekspor di salah satu postprocessor (POST1 atau POST26). Akhirnya, hasilnya dibandingkan dengan perkiraan tingkat pertama, solusi bentuk tertutup, model matematika, atau hasil eksperimen untuk memastikan bahwa output dari program ini masuk akal dan seperti yang diharapkan.


/ PREP7

- 1. Tentukan Geometri Model Padat
- 2. Pilih Jenis Elemen
- 3. Tentukan Properti Material
- 4. Mesh

/SOLUTION

- 5. Tetapkan Ketentuan Batas
- 6. Tentukan Beban

- Tetapkan Opsi Solusi
- 8. Selesaikan
- / POST1 atau / POST26
- 9. Plot, Lihat, dan Ekspor Hasil
- 10. Bandingkan dan Verifikasi Hasil

Gambar 2.20 Proses dari Analisis Elemen Hingga (Bathe, 2014)

Terkadang dimungkinkan untuk menghilangkan satu atau beberapa langkah. Misalnya, opsi solusi default seringkali cukup

untuk analisis sederhana. Semua pengaturan tergantung kondisi yang diinginkan. (Thompson, 2017)

2.9 Gaya Gesek

Selama kompresi, penekan bekerja pada serbuk dengan kekuatan kompresi dan menciptakan keadaan tegangan pada serbuk. Karena kenyataan bahwa serbuk tidak kontinum, tegangan aksial tidak konstan, tetapi berkurang dengan meningkatnya jarak dari tumbukan pengepresan. Bagian dari beban aksial diubah menjadi tegangan radial yang bekerja pada dinding cetakan, menciptakan gesekan antara dinding dan serbuk. Situasi ini ditunjukkan pada Gambar 2.21, dimana serbuk dikompresi dalam cetakan berdiameter silindris D. Pertimbangkan tablet silinder berdiameter D dan tinggi H dan potongan elemen dz terletak pada jarak z dari bagian bawah tablet. Mengabaikan berat serbuk, persamaan keseimbangan gaya adalah:

$$\frac{\pi D^2}{4} d\sigma_z = \tau_{rz} \pi D d\sigma_z \tag{2.33}$$

di mana $d\sigma_z$ adalah peningkatan tegangan aksial dasar, τ_z adalah tegangan geser, dz adalah peningkatan elementer dari posisi aksial. Tegangan radial pada ketinggian tertentu z dapat ditulis sebagai:

$$\sigma_{rz} = K\sigma_z \tag{2.34}$$

di mana σ_r adalah tegangan radial pada posisi aksial, σ_z adalah tegangan aksial pada posisi aksial z dan K adalah rasio tegangan radial-ke-aksial. Konstanta proporsionalitas ini biasa disebut konstanta Janssen. Dengan menggunakan metode *slice diferensial* dan dengan asumsi tegangan vertikal adalah isotropik dalam arah horizontal, Janssen memperoleh bahwa tekanan aksial vertikal yang bekerja pada padatan curah yang dipertahankan oleh dinding kembar adalah fungsi peluruhan eksponensial dari geometri padat padatan kurungan geometri dan konstanta Janssen. Mengikuti analisis Janssen dalam cetakan melingkar dan dengan

mengabaikan berat benda padat (Cunningham, 2004), dapat ditunjukkan bahwa:

$$K = \frac{\sigma_{rz}}{\sigma_z} \tag{2.35}$$

Tegangan geser akibat gesekan yang bekerja pada irisan unsur dapat diekspresikan sesuai dengan hukum gesekan Coulomb:

$$\tau_{rz} = \mu \sigma_{rz} \tag{2.36}$$

dimana μ adalah koefisien gesek. Menggabungkan persamaan (2.34) dan (2.35), persamaan kesetimbangan menjadi:

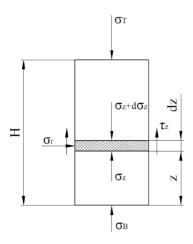
$$\frac{d\sigma_z}{\sigma_z} = \frac{4K\mu}{D} d_z \tag{2.37}$$

Jika diasumsikan bahwa produk K dan μ tidak tergantung pada posisi z, persamaan (2.36) dapat diintegrasikan menggunakan kondisi batas yang sesuai:

$$ln\frac{\sigma_z}{\sigma_B} = \frac{4K\mu}{D}z \ (0 \le z \le H) \tag{2.38}$$

atau

$$ln\frac{\sigma_T}{\sigma_B} = \frac{4K\mu}{D} z \ (0 \le z \le H) \tag{2.39}$$


Persamaan (2.37) dan (2.38) menyiratkan distribusi eksponensial dari tegangan aksial pada ketinggian tertentu di tablet:

$$\sigma_Z = \sigma_B \left(\frac{\sigma_T}{\sigma_B}\right)^{\frac{Z}{H}} \tag{2.40}$$

dan koefisien gesekan antara serbuk dan dinding mati adalah:

$$\mu = \frac{D}{4H} \frac{\sigma_B}{\sigma_r} \left(\frac{\sigma_T}{\sigma_B}\right)^{\frac{z}{H}} \ln \frac{\sigma_T}{\sigma_B}$$
 (2.41)

(Eckert, 2016)

Gambar 2.21 Tegangan yang diterapkan pada serbuk (Eckert, 2016)

Selama proses pengeluaran proyektil, proyektil yang dikompresi didorong keluar dari cetakan dengan gerakan aksial ke atas yang diberikan oleh ejektor. Gaya ejeksi adalah gaya yang ditanggung oleh ejektor pada proses ejeksi, yang mengalami gesekan antara sisi proyektil dan dinding cetakan. Ejeksi proyektil dapat dibagi menjadi dua fase. Pertama yaitu fase statis, dimana proyektil tetap diam di cetakan sampai kekuatan maksimum tercapai untuk memungkinkan pergerakan proyektil relatif ke dinding cetakan. Kedua yaitu fase kinetik, dimana terjadi pergeseran proyektil di cetakan. Kekuatan ejeksi dari dua fase ini diatur oleh:

$$F_{ei \ statis} = \mu_{statis} \ \sigma_{rr,statis} A \tag{2.42}$$

$$F_{ej \ kinetik} = \mu_{kinetik} \ \sigma_{rr,kinetik} \ A$$
 (2.43)

dimana $F_{ej,statis}$ adalah gaya ejeksi pada fase statis, yang merupakan kekuatan maksimum yang terjadi untuk memulai gerakan proyektil; $F_{ej,kinetik}$ adalah gaya ejeksi fase kinetik ketika proyektil meluncur di sepanjang dinding cetakan. $\sigma_{rr,statis}$ dan $\sigma_{rr,kinetik}$ adalah

tegangan radial dinding cetakan yang diberikan pada proyektil pada fase statis dan kinetik, masing-masing; A adalah area permukaan bagian samping proyektil.

Residual stress dinding cetakan merupakan hasil dari kurangnya pemulihan volume secara penuh green compact pasca pembebanan. Tepat sebelum pelepasan beban dimulai, green compact menerima tegangan aksial maksimum σ_{zmax} dan tegangan radial cetakan yang mana berkaitan dengan

$$\sigma_{rz,max} = K\sigma_{z,max} \tag{2.44}$$

Dimana K adalah Janssen Contant, karena dinding cetakan kaku total. Regangan radial selama pasca pembebanan dianggap tidak ada atau nol. Asumsi pemulihan elastic dominan pada proses unloading dan *green compact* adalah isotropik dan linier elastic. Perubahan tegangan radial dinding selama proses unloading berkaitan dengan perubahan tegangan axial Δz dan rasio poisson v seperti yang diutarakan doelker dan massuele

$$\Delta \sigma_{rz} = \Delta \sigma_{z,} \left(\frac{v}{1 - v} \right) \tag{2.45}$$

Selama masa unloading, penekan atas seutuhnya meninggalkan *green compact* dan tegangan axial menjadi nol (i.e. $\Delta \sigma_z = \sigma_{zmax}$) Menggabungkan persamaan 2.44 dan 2.45, maka residual stress $\sigma_{rz,res}$ setara dengan

$$\sigma_{rz,res} = \sigma_{rz,max} - \Delta \sigma_{rz} = \sigma_{z,max} \left(K - \frac{v}{1-v} \right)$$
 (2.46)

Secara matematika nilai gaya ejeksi bisa diprediksi dengan menggabungkan persamaan 2.42 dan 2.46 menjadi

$$F_{ej} = \mu \sigma_{z,max} \left(K - \frac{v}{1 - v} \right) A_{side}$$
 (2.47)

2.10 Teori Kegagalan

Pada dasarnya, kegagalan (failure) dari suatu struktur dinyatakan apabila struktur tersebut tidak dapat berfungsi sesuai dengan yang sudah didesain. Kegagalan pada material yang ulet adalah ketika permulaan dari peluluhan material tersebut, sedangkan pada material yang getas, kegagalan dapat disebut dengan fracture (patah). Beberapa teori kegagalan yang umum digunakan seperti pada subbab dibawah.

2.10.1 The Maximum Principal Stress Theory

Teori ini dikenal dengan nama *Rankine Theory* yang mana menyebutkan bahwa kegagalan akan terjadi saat tegangan utama mencapai tegangan luluh (S_y) . Berdasarkan hal ini σ_1 adalah *maximum principal stress* dan adalah σ_2 *minimum principal stress* didapat dari persamaan (2.48) dan (2.49)

$$\sigma_1 = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
 (2.48)

$$\sigma_2 = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \tag{2.49}$$

(Yahya, 2019)

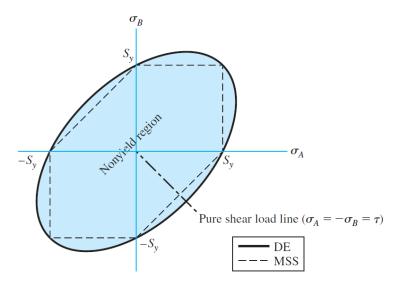
2.10.2 The Maximum Shear Stress Theory

Teori ini dikenal dengan nama *Guest/Tresca Theory* Kegagalan dicapai saat tegangan geser maksimum mencapai separuh dari tegangan luluh ($\frac{1}{2}S_y$). Nilai didapat dengan menggunakan persamaan (2.50) dan diilustrasikan pada Gambar 2.22.

$$\tau_{max} = \frac{\sigma_1 - \sigma_3}{2} \ge \frac{S_y}{2} \tag{2.50}$$

(Budynas, 2015)

2.10.3 The Maximum Energy of Distortion Theory (Von Mises Theory)


Teori ini dikenal dengan von Mises-Hencky theory atau The octahedral-shear-stress theory. Teori energi-distorsi memprediksi bahwa peluluhan terjadi ketika energi regangan distorsi per satuan volume mencapai atau melebihi energi regangan distorsi per satuan volume untuk menghasilkan tegangan atau kompresi dari material yang sama. Yield akan terjadi ketika $\sigma' \geq S_y$. Dimana tegangan ditunjukkan pada persamaan (2.51) dan diilustrasikan pada Gambar 2.22

$$\left[\frac{\left[(\sigma_{1}-\sigma_{2})^{2}+(\sigma_{2}-\sigma_{3})^{2}+(\sigma_{3}-\sigma_{1})^{2}\right]^{\frac{1}{2}}}{2} \ge S_{y}$$
 (2.51)

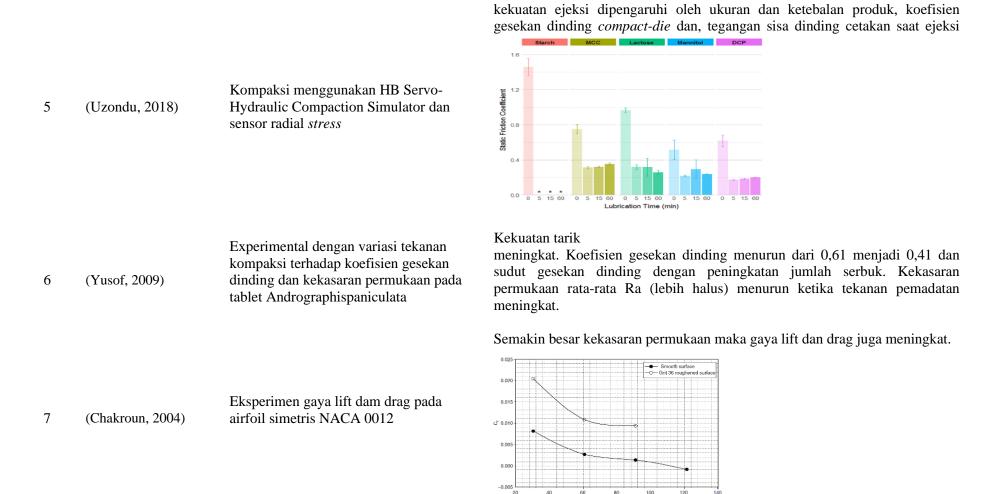
Bagian sebelah kiri persamaan dapat dianggap sebagai *Single, Equivalent stress*, atau *effective stress* untuk keseluruhan keadaan umum tegangan yang diberikan oleh σ_1 , σ_2 , dan σ_3 . *Effective stress* ini biasanya disebut *von Mises Stress*, σ , dinamai menurut nama Dr. R. von Mises, yang berkontribusi pada teori.

Menggunakan komponen xyz tegangan tiga dimensi, tegangan von Mises dapat ditulis sebagai

$$\sigma' = \frac{1}{\sqrt{2}} [(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2)]^{1/2}$$
 (2.52) (Budynas, 2015)

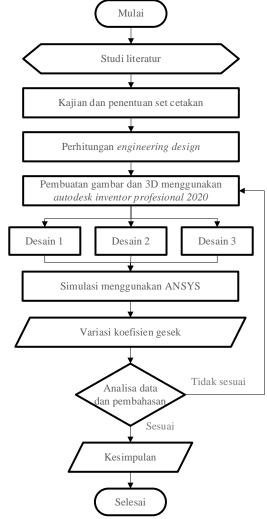
Gambar 2.22 *Von Mises* and *Maximum Shear Stress* theory yield envelope for *plane stress states* (Budynas, 2015)

(Halaman ini sengaja dikosongkan)


2.11 Penelitian Sebelumnya

Penelitian terkait proyektil *frangible* dan proses kompaksinya sudah lebih dulu dilakukan. Beberapa daftar hasil penelitian tersebut yang menunjang penelitian ini disajikan pada Tabel 2.9

Tabel 2.9 Referensi Penelitian tentang cetakan kompaksi


No	Peneliti	Metode	Hasil
1	Saiful, Dyah Sawitri (2012)	Perancangan Sistem Kompaksi hidrolik manual	Mesin kompaksi hidrolik manual Kinerja yang dihasilkan dilihat dari serbuk kayu natrium kalium briket karbon dan kalsium menghasilkan bentuk cukup baik, namun kekuatan yang dihasilkan rendah karena masih rapuh.
2	Mia, Widyastuti dan Mas Irfan (2017)	Optimasi Parameter eksperimen dengan metode <i>Taguchi & Neural Network</i> pada desain eksperimen peluru <i>frangible</i>	Parameter optimum didapatkan pada kombinasi 5%Sn, tekanan kompaksi 200 MPa dan Temperatur sintering 250 ₀ C dengan prediksi nilai FF Taguchi 20,40 dan NN nilai FF 20,07
3	Nadya Yahya (2019)	Optimasi Desain dan Simulasi Kegagalan Material Pada <i>Die</i> mesin Kompaksi Dengan Metode elemen hingga	Didapat hasil simulasi pengaruh diameter dan tekanan terhadap <i>equivalent stress</i> terendah pada diemater 40mm Pengaruh diameter die dan tekanan terhadap hasil simulasi <i>buckling</i> terendah pada 40 mm
4	Dzul(2018)	Computational Fluid Dynamics dengan variasi ogive dan jari jari boattail	Jari jari ogive optimum sebesar 18,45mm dan jari jari boattail optimum sebesar 0,75mm. Koefisien drag didapat 1,1045 dan Energi Kinetik 487,4 Joule

BAB III METODOLOGI PENELITIAN

3.1 Diagram Alir Penelitian

Gambar 3.1 Diagram Alir Penelitian

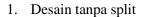
3.2 Desain Penelitian

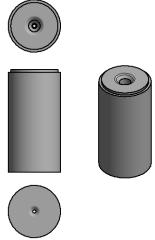
Nilai-nilai variabel yang digunakan dalam penelitian ini berdasarkan teori dan penelitian sebelumnya. Adapun penjabaran desain penelitian yang meliputi variabel respon dan proses sebagai berikut

3.2.1 Variabel Konstan

Variabel konstan adalah variabel yang besarnya dibuat seragam dan tidak divariasikan. Adapun variabel konstan pada penelitian ini adalah

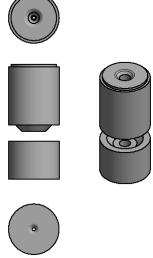
- Desain dan spesifikasi proyektil frangible dianggap optimum
- Pengaruh fisik eksternal (temperatur, korosi,dll) dianggap tidak ada
- Tekanan seragam ke segala arah
- Proses kompresi diasumsikan sempurna

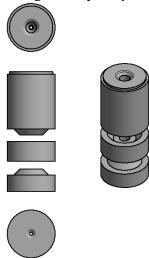

3.2.2 Variabel Proses


Variabel proses adalah variabel yang nilainya ditentukan dan divariasikan dengan tujuan mendapatkan hasil dan analisis terhadap variabel respon. Adapun variabel proses pada penelitian ini adalah

• X₁: Desain cetakan

Desain cetakan mempengaruhi proses *filling* (pengisian) dan *Ejection* (Pengeluaran) dari proyektil. Dengan desain yang tepat, akan menghindari kemungkinan kerusakan dari benda hasil kompaksi. Penelitian ini menggunakan 3 desain sebagai berikut




Gambar 3.2 Desain cetakan 1 tanpa split

2. Desain Cetakan adanya 1 split

Gambar 3.3 Desain cetakan 2 dengan 1 split

3. Desain dengan adanya 2 split

Gambar 3.4 Desain Cetakan 3 dengan 2 split

• X₂: Koefisien gesek.

Tingkat kekasaran permukaan mempengaruhi performa dari proyektil karena dapat meningkatkan gaya *drag* dan kemungkinan *deflection*, pada penelitian ini kekasaran permukaan dimodelkan menggunakan koefisien gesek dengan besaran nilai yaitu 0,5; 0,6; 0,7; 0,8.

3.2.3 Variabel Respon

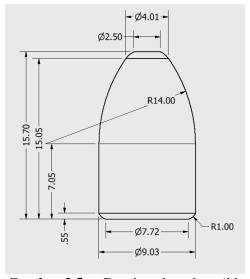
Gaya ejeksi

Gaya yang diterima proyektil selama proses pengeluaran. Semakin besar gaya ejeksi semakin besar pula kemungkinan terjadinya kerusakan pada proyektil

Equivalent Stress

Equivalent Stress von Mises digunakan untuk memprediksi tingkat keluluhan material terhadap kondisi pembebanan. Material dikatakan mulai luluh ketika tegangan von Mises mencapai nilai kritis yang diketahui sebagai yield strength

Shear Stress
 Tegangan geser merupakan tegangan yang bekerja sejajar atau menyinggung permukaan.

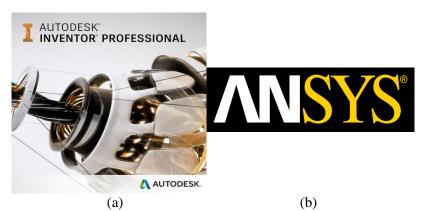

Tabel 3.1 dibawah merupakan rancangan simulasi ejeksi pada untuk penelitian ini dengan menggunakan *Software ANSYS* metode *Explicit Dynamic*

 Tabel 3.1
 Rancangan Simulasi ANSYS Explicit Dynamic

	Parame	ter Proses	Variabel Respon						
Simulasi	Desain Cetakan	Koefisien Gesek	Gaya Ejeksi	Equivalent Stress	Shear Stress				
1	1	0,5							
2	1	0,6							
3	1	0,7							
4	1	0,8							
5	2	0,5							
6	2	0,6							
7	2	0,7							
8	2	0,8							
9	3	0,5							
10	3	0,6							
11	3	0,7							
12	3	0,8							

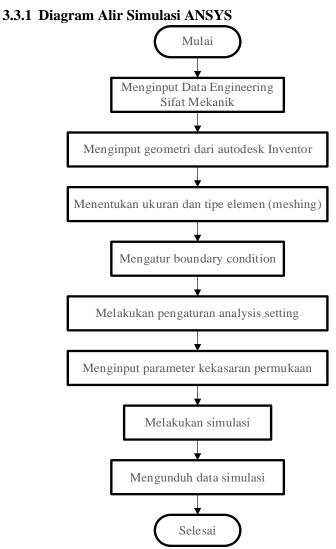
3.2.4 Spesifikasi peluru frangible

Gambar 3.5 Desain peluru frangible


 Tabel 3.2
 Spesifikasi peluru frangible

Spesifikasi	Peluru frangible
Material	Cu-10%Sn
Massa proyektil (gr)	5,23
Densitas peluru (kg/m³)	6607,5
Modulus elastisitas (MPa)	53331,6
Energi kinetic batas (J)	33,67
Frangibility factor	10,91
Energi kinetic pada jarak 2 m di depan laras	267,33

3.3 Permodelan dengan Software


Dalam menunjang simulasi dalam penelitian ini, maka perangkat lunak (software) yang digunakan yaitu Autodesk Inventor professional 2020. Auto Inventor digunakan untuk

membuat desain geometri desain 3 dimensi dari proyektil *frangible* dan cetakan. Hasil desain dari *Inventor* akan diimpor ke dalam *software* ANSYS. ANSYS adalah software analisis elemen hingga untuk menghitung tegangan dan gaya selama proses ejeksi pada proyektil.

Gambar 3.6 *Software* yang digunakan (a) *Autodesk Inventor* (b) logo ANSYS

Gambar 3.7 Diagram alir simulasi ANSYS

3.4 Pradesain Komponen Cetakan

Teknik kompaksi cetakan yang digunakan ialah *single-action* dengan mesin hidrolik. Prinsip kerja *single-action* adalah menggunakan penekan atas yang diberi pembebanan melalui mesin hidrolik dan menekan serbuk di dalam celah cetakan menuju penekan bawah. Penekan bawah dan cetakan pada teknik ini tidak bergerak (stasioner). Cetakan pada penelitian ini terdiri dari penekan atas, penekan bawah, *ejector*, dinding cetakan

3.4.1 Penentuan Geometri Komponen

A. Cetakan

Tabel 3.3 Spesifikasi Baja M2 High Speed

Tabel 5.5 Spesifika	isi Baja M2 Higi	i Speed
Keterangan	M2 H	SS
	C	0,78-1,05
	Mn	0,15-0,4
	Si	0,2-0,45
	Cr	0,2-0,45
	Ni	0,3
Vomnosisi	Mo	4,5-5,5
Komposisi	M	5,5-6,75
	V	1,75-2,2
	Cu	0,25
	P	0,3
	S	0,3
	Fe	balance
Modulus Young	190-210	
Densitas material	8,16	
Poisson rasio	0,27-0,30	
Tensile Yield Strength	1000	
Ultimate Tensile	1200	
Strength	1200	
Compressive Yield	3250	
Strength		

Material yang digunakan baik ialah M2 Molybdenum *High Speed Steel* seperti yang digunakan oleh PT PINDAD. Baja ini sangat umum digunakan pada industri dan lebih ekonomis diantar *high speed steel* lainnya. M2 *Tool Steel* memiliki spesifikasi yang mumpuni sebagai bahan dasar seperti pada Tabel 3.3

Untuk mendapatkan ketebalan dinding yang sesuai, maka digunakan persamaan Lame sebagai berikut:

$$D = d \sqrt{\frac{\sigma + (\mu p)}{\sigma - (\mu p)}}$$
 (3.1)

dimana,

D = diameter luar (mm)

d = diameter internal (mm)

 $P = internal \ pressure \ (Mpa \ atau \ N/mm^2)$

 $\sigma = allowable \ fiber \ stress \ (Mpa \ atau \ N/mm^2)$

D =
$$9.03 \sqrt{\frac{625 + (0.3 \times 750)}{625 - (0.3 \times 750)}}$$

= $13,2 \text{ mm}$

Secara umum, formula ini menghasilkan lebih banyak hasil konservatif daripada yang diperlukan. Maka dari itu penggunaan analisis elemen hingga adalah metode terbaik untuk secara akurat menentukan tegangan dan *buckling*. Maka penulis mengambil data dari penelitian yang telah dilakukan Nadya (2019) dimana diameter yang baik untuk tegangan dan *buckling* ialah 40 mm.

B. Ketinggian pengisian

Dalam penentuan ketinggian pengisian, terlebih dahulu dilakukan tes apparent density dari serbuk Cu-Sn yang akan digunakan untuk proyektil. Tes ini menggunakan standar ASTM B703-10 Standard Test Method for Apparent Density of Metal Powders and Related Compounds Using the Arnold Meter. Alat yang digunakan dapat dilihat pada Gambar 3.8

Gambar 3.8 Arnold Density test

Dari 4 kali percobaan pada Arnold density, berat serbuk rata rata yang didapat adalah sebesar 30.478375 gram. Berat tersebut kemudian dibagi dengan volume pada Arnold block sebesar 20 cm³ Dengan menggunakan data tersebut dimaka apparent density

- = Berat serbuk/ volume
- $= 30,478375 \text{ g} / 20 \text{ cm}^3$
- $= 1.52391875 \text{ g/cm}^3 \sim 1,524 \text{ g/cm}^3$

Setelah mendapatkan apparent density dari serbuk, selanjutnya menghitung rasio kompresi dengan membagi densitas peluru yang akan dicetak dengan apparent density.

$$K_r = \frac{\rho}{\rho_a}$$

$$K_r = \frac{6.6}{1.524}$$
= 4.33

Rasio kompresi dikali dengan ketebalan benda yang akan dikompaksi

$$hf = tK_r$$
 (3.3)
 $hf = 15,7 \text{ mm x } 4,33$
 $= 67,98 \sim 68 \text{ mm}$

Didapat filling height atau ketinggian pengisian sebesar 68 mm.

dimana,

hf = Ketinggian pengisian

t = Ketebalan benda dikompaksi

K_r = Rasio kompresi serbuk

 $ho_a=$ kerapatan nyata serbuk, yang tergantung pada ukuran dan bentuk partikel serbuk dalam campuran

 ρ = Densitas peluru yang dikompaksi

Densitas teoritic material

$$\rho_c = \rho_{Cu} V_{Cu} + \rho_{Sn} V_{Sn}
= (8,96 \times 0,9) + (7,31 \times 0,1)
= 8,795 \text{ g/cm}^3$$
(3.4)

Porositas = 82,5%

C. Penekan

Panjang penekan dapat dicari dengan persamaan

Penekan =
$$Hf$$
 – panjang proyektil (3.5)
Penekan atas = $68 - 15,7 = 52,3$ mm

D. Ejector

Ejector adalah bagian yang cetakan yang digunakan untuk mendorong peluru dari dalam cetakan. Panjang ejektor didapat menggunakan persamaan berikut:

$$Ejector = panjang \ penekan \ bawah + Hf$$

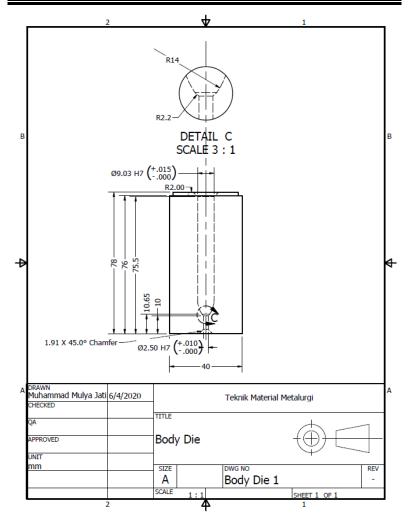
$$= 10 + 68$$

$$= 78 \ mm$$
(3.6)

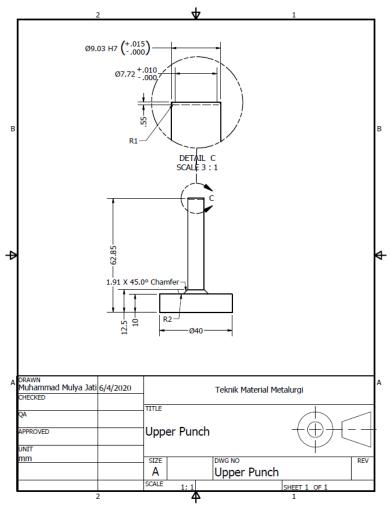
E. Toleransi pada cetakan

Jarak antara penekan dan dinding harus diperhitungankan sebab partikel serbuk dapat tersangkut dalam jarak bebas ini, menyebabkan masalah dengan pergerakan alat. (Gambar 3.3) menunjukan standar engineering untuk toleransi penekan dan dinding cetakan. Dimana toleransi yang digunakan adalah suaian sesak H7-g6 dengan total jarak 0,024 mm.

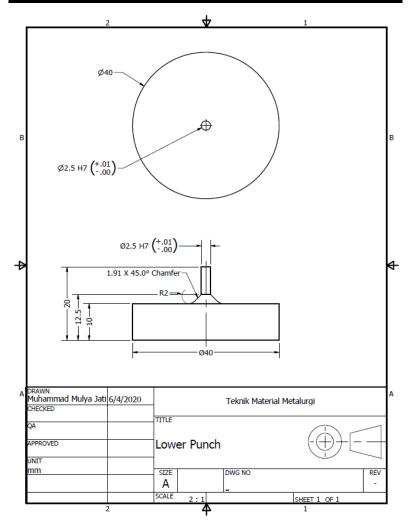
	bang			ä		***		**		ř		±		177	6	17 ne	,	H7	k)	17	86
Poros		e11 d10 e9 77						96 h6													
							Lon	ogar							Tran	ismisi			Se	sak	
			Sualan Sangat Luas				- XCATE	Suaian Suaian Luas Geser				Suaian		Sualan		Sualan Kp. ringan			Sualan Kp. berat		
Nom		Toler	ransi		ransi	_	ransi	Tole	ransi	-	ransi	_	ransi	-	ransi	-	ransi	-	ransi	-	eransi
ebih besar dari	Sampai	H11	c11	Н9	d10	нэ	e9	нв	17	H7	g6	Н7	h6	H7	k6	H7	n6	H7	p6	H7	s6
mm	mm	+60	-60	+25	-20	+25	-14	+14	-6	+10	-2	+10	-6	+10	+6	+10	+10	+10	+12	+10	+20
3	8	+75	-70	+30	-60	+30	-20	+18	-10	+12	-8 -4	+12	+8	+12	+9	+12	+14	+12	+20	+12	+14
		+90	-145	+36	-78 -40	+36	-50 -25	+22	-22	+15	-12 -5	+15	-9	+15	+10	+15	+8	+15	+12	+15	+19
6	10	+110	-170	+43	-78 -50	+43	-61 -32	127	-28 -16	+18	-14	0 +18	-11	+15	+12	+18	+10	+18	+15	+18	+23
10	18	0	-205	0	-120	0	-75	0	-34	0	-17	0	0	0	+1		+12	0	+18	0	+28
18	30	+130	-110	+52	-65	+52	-40	+33	-20	-21	-7	+21	-13	+21	+15	+21	+28	+21	+35	+21	+46
30	40	+160	-120 -240	+62	-00	+62	-50	+39	-25	+25	-9	+25	-16	+25	+18	+25	+33	+25	+42	+25	+59
40	50	+160	-130	0	-180	0	-112	0	-50	0	-25	o	0	0	+2	0	+17	0	26	0	+43
50	65	+190	-140	+74	-100	+74	-60	+46	-30	+30	-10	+30	-19	+30	+21	+90	+30	+90	+51	+30	+72
65	80	+190	-330 -150	0	-220	0	-134	0	-60	0	-20	0	0	0	+2	0	+20	0	+32	+30	+53
80	100	+220	-340 -170	+87	-120	+87	-72	+54	-36	+36	-12	+35	+25	+35	+26	+35	+45	+35	+50	+35	+50
		+220	-390 -180							0.00		0155	2000			100	1000			+35	+71
100	120	+250	-400 -210	0	-260	0	-159	0	-71	0	-34	0	0	a	+3	0	+23	0	+37	0	+71
120	140	0 +250	-450 -210	+100	-145	+100	-84	+63	-43	+40	-14	+40	-25	+40	+98	+40	+52	+40	+68	0	+92
140	160	0	-460																		
160	160	+250	+230	0	-305	0	-185	0	-83	D	-39	0	O	0	43	0	+27	0	+43	40	+125
180	200	+290	-240 -530	+115	-170	+115	-100	+72	-50	+46	-15	+46	-29	+46	+33	+46	+60	+46	+79	+46	+151
200	225	+290	-260				9													+46	+159
225	250	0 +290 0	-550 -280 -570	0	-355	0	-215	a	-96	0	-44	0	0		+4	0	+31	0	+50	+46	+169

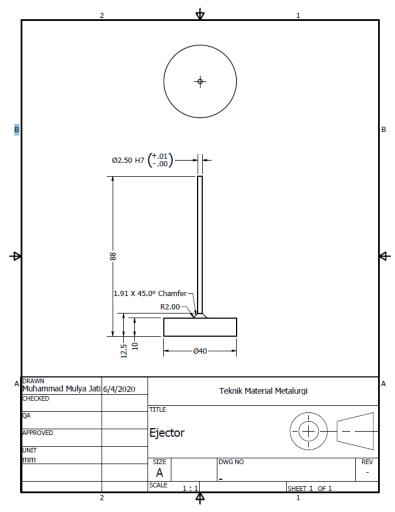

Keterangan:

Satuan toleransi, dalam micronmeter (mikron) Biasanya ditulis dalam simbol μm. 1 μm = 0,001 mm


Gambar 3.9 Standard macam kesesuaian

3.4.2 Geometri Cetakan dan penekan


Gambar teknik dari komponen-komponen set cetakan Digambar menggunakan software Autodesk inventor dan dapat dilihat pada Gambar (3.8-3.11).

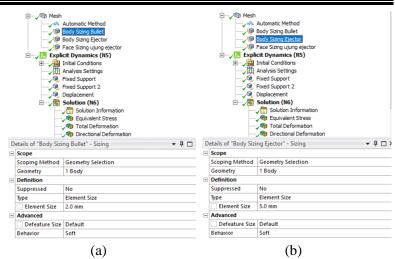

Gambar 3.10 Gambar teknik badan cetakan

Gambar 3.11 Gambar teknik penekan atas

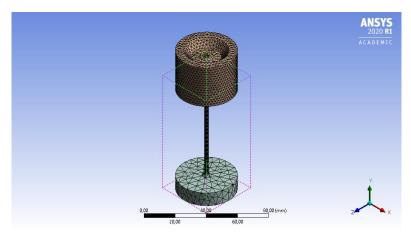
Gambar 3.12 Gambar teknik penekan bawah

Gambar 3.13 Gambar teknik ejektor

3.5 Meshing


Pada simulasi ejeksi menggunakan software ANSYS. Dilakukan meshing pada 3 bagian yaitu badan cetakan, ejector dan

proyektil hasil kompresi. Meshing pada geometri badan cetakan dilakukan dengan menambah meshing *method:automatic*. Pengaturan meshing pada badan cetakan ditunjukan pada Gambar 3.14



Gambar 3.14 Tampilan pengaturan meshing untuk badan cetakan

Pada proyektil proses meshing dilakukan dengan mengatur meshing sizing menjadi body size 0.9 mm. Sedangkan pada ejector meshing sizing diatur menjadi body size : 5 mm. untuk memastikan geometri dapat disimulasikan dengan baik, celah dimeshing lebih halus dan ditambah *face meshing* pada permukaan ejektor face meshing pada ujung ejector dengan ukuran 3 mm. Gambar 3.15 Menunjukan proses meshing pada proyektil dan ejector.

Gambar 3.15 Tampilan pengaturan meshing method (a) body sizing untuk proyektil (b) body sizing untuk ejector

Gambar 3.16 Meshing pada cetakan 2

3.6 Boundary Condition

Dalam penelitian ini, ejektor bergerak ke atas arah axial dengan perpindahan 150 mm pada sumbu y. Kekasaran permukaan

dimodelkan dengan koefisien gesek dengan dengan rentan 0,5-0,8. Durasi simulasi selama 0,1 detik. Untuk memodelkan *residual stress* pada proyektil ditambahkan tekanan arah axial pada bagian ogive proyektil dengan nilai sebesar -0,485 MPa. Penambahan *fixed support* dilakukan pada bagian cetakan yang berlawanan dengan arah dorongan guna memastikan cetakan tidak bergerak selama proses berlangsung.

BAB IV HASIL DAN PEMBAHASAN

4.1 Desain Komponen Cetakan

Untuk menentukan geometri cetakan, penulis menggunakan beberapa acuan dari referensi cetakan untuk metalurgi serbuk. Maka desain set cetakan sebagai berikut.

Tabel 4.1 Geometri badan cetakan

Keterangan	Dimensi
Diameter luar (mm)	40
Tinggi Total (mm)	78
Sudut Tapper	45
Diameter peluru (mm)	$9.03 \pm (0.015)$
Diameter Lower Punch (mm)	$2,5 \pm (-0,006)$
Tinggi Lower Punch (mm)	10
Filling height (mm)	68

4.1.1 Desain Upper Punch

Upper punch atau penekan atas memiliki fungsi untuk memberikan tekanan pada serbuk hingga menjadi padat. Geometri yang upper punch dapat dilihat pada Tabel 4.2

Tabel 4.2 Geometri Upper Punch

14001112	Geometri opper i unen
Keterangan	Dimensi
Diameter luar (mm)	40
Tinggi Kepala (mm)	10
Diameter Punch (mm)	$9.03 \pm (-0.009)$
Tinggi Total (mm)	62,3

4.1.2 Desain Lower Punch

Lower punch memiliki fungsi sebagai pemberi beban atau sebagai bagian penahan saat proses kompresi. Detail geometri dapat dilihat pada Tabel 4.3

Tabel 4.3	Geometri	Lower Punch
I and I To	Ocomen	LOWEL LUNCH

Keterangan	Dimensi
Diameter luar (mm)	40
Tinggi Kepala (mm)	10
Diameter Punch (mm)	$2,5 \pm (-0,006)$
Tinggi Total (mm)	20

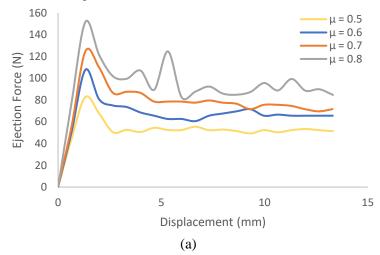
4.1.3 Ejector

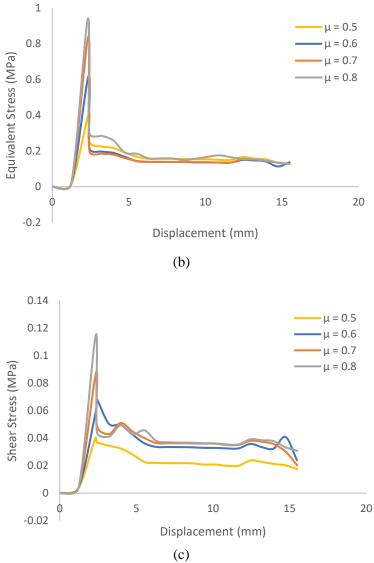
Ejector adalah *ejection tool* yang berfungsi untuk mengeluarkan hasil penekanan dari cetakan. Detail geometri dapat dilihat pada Tabel 4.4

Tabel 4.4 Geometri Ejector

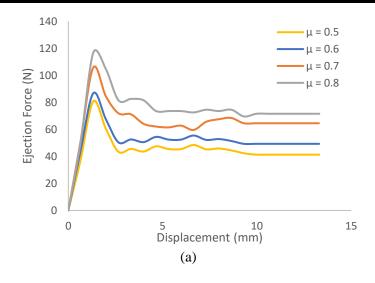
Keterangan	Dimensi
Diameter luar (mm)	40
Tinggi Kepala (mm)	10
Diameter Punch (mm)	$2.5 \pm (-0.006)$
Tinggi Total (mm)	78

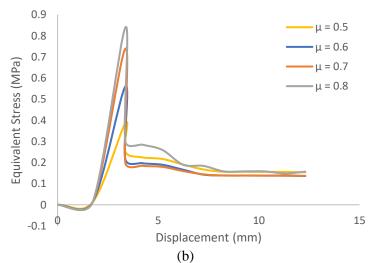
4.2 Simulasi Proses Ejeksi

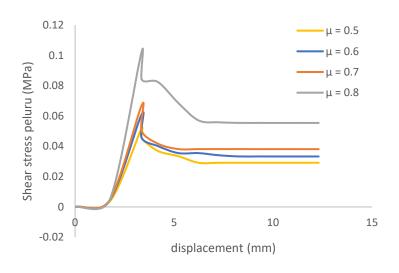

Simulasi proses ejeksi dilakukan dengan pendekatan secara numerik menggunakan metode elemen hingga guna mendapatkan gaya ejeksi dan fenomena *stress* yang terjadi selama proses pengeluaran proyektil dari cetakan. Pada proses ejeksi ini, penekan atas dan penekan bawah dihilangkan dari matriks. Ejector hadir menggantikan penekan bawah dan mendorong proyektil keluar


Proses simulasi pada penelitian ini dilakukan dengan menggunakan 3 desain cetakan berbeda dan setiap desain divariasikan dengan 4 koefisien gesek. Disini kekasaran permukaan dimodelkankan dengan nilai *friction coefficient* dengan rentan 0,5-0,8. angka tersebut penulis gunakan berdasarkan beberapa jurnal terkait proses kompresi metalurgi serbuk. Skematik projek pada software ANSYS yang digunakan pada penelitian ini ialah *Explicit Dynamic*.

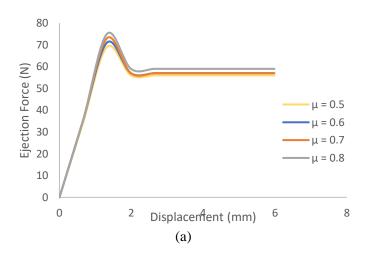
4.2.1 Hasil Simulasi ANSYS

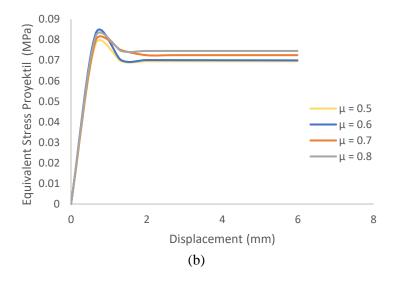

Selama proses pengeluaran proyektil, proyektil yang dikompresi didorong keluar dari cetakan dengan gerakan aksial ke atas yang diberikan oleh ejektor. Dalam situasi di mana tegangan radial dinding cetakan tidak dapat diketahui, gaya ejeksi adalah indikator yang ideal untuk menyelidiki tegangan *green compact* pada fase unloading dan ejeksi. Umumnya tiap-tiap serbuk dapat menunjukkan kekuatan ejeksi yang sangat berbeda ketika dikompresi pada tekanan tertentu. Proyektil yang dikompresi ditargetkan memiliki ketebalan 15,7 mm dan *relative density* ($\gamma = 0,23$)

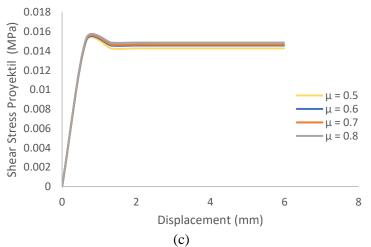

Gambar 4.1; Gambar 4.2; Gambar 4.3 merupakan grafik hasil simulasi ejeksi.



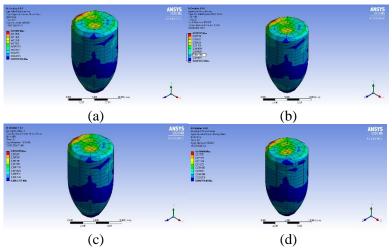
Gambar 4.1 Grafik (a) gaya ejeksi, (b) *Equivalent Stress* dan (c) *shear stress* proyektil pada cetakan 1

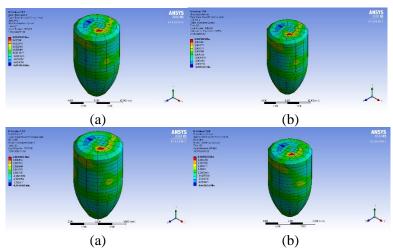


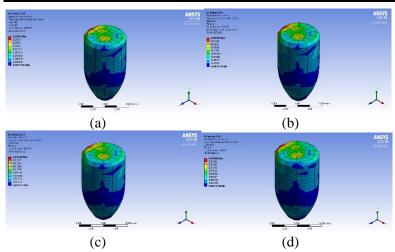


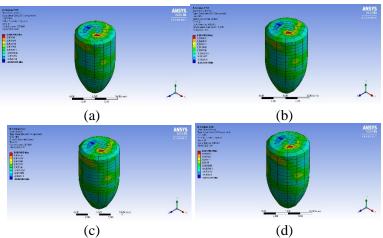


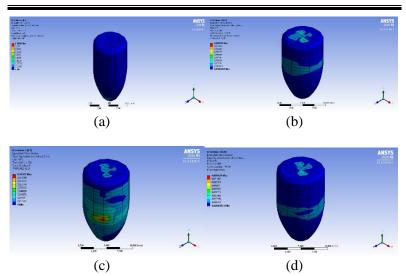
(c)

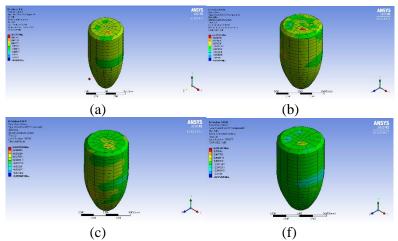

Gambar 4.2 Grafik (a) gaya ejeksi, (b) equivalent stress dan
(c) shear stress proyektil pada cetakan 2




Gambar 4.3 Grafik (a) gaya ejeksi, (b) *equivalent stress* dan (c) *shear stress* proyektil pada cetakan 3


Gambar 4.4 Equivalent Stress Proyektil pada Cetakan 1 (a) 0,5 (b) 0,6 (c) 0,7 (d) 0,8


Gambar 4.5 *Shear Stress* Proyektil pada Cetakan 1 (a) 0,5 (b) 0,6 (c) 0,7 (d) 0,8


Gambar 4.6 Equivalent Stress Proyektil pada cetakan 2 (a) 0,5 (b) 0,6 (c) 0,7 (d) 0,8

Gambar 4.7 *Shear Stress* proyektil pada cetakan 2 (a) 0,5 (b) 0,6 (c) 0,7 (d) 0,8

Gambar 4.8 Equivalent Stress proyektil pada cetakan 3 (a) 0,5 (b) 0,6 (c) 0,7 (d) 0,8

Gambar 4.9 *Shear Stress* proyektil pada cetakan 3 (a) 0,5 (b) 0,6 (c) 0,7 (d) 0,8

Pada gambar grafik di atas, merupakan hasil dari perbandingan nilai simulasi gaya ejeksi, equivalent stress dan shear stress terhadap perpindahan proyektil di cetakan. Keseluruhan grafik menunjukan titik puncak yang menandakan gaya yang diperlukan untuk membuat proyektil yang sebelumnya diam menjadi bergerak. Gambar 4.3 memperlihatkan grafik cetakan 3 yang flat tepat setelah puncak tekanan, hal tersebut menandakan proyektil tersebut sudah terlepas dari cetakannya. Tabel 4.5 merupakan pemaparan nilai hasil dari 12 simulasi ejeksi yang telah dilakukan menggunakan ANSYS Expliciy Dynamic.

4.2.2 Pengaruh Penambahan Split Cetakan terhadap Proyektil *Frangible*

Desain yang dirancang pada penelitian ini mengikuti pedoman pembuatan cetakan seperti ketinggian pengisian, ini

Tabel 4.5 Hasil Simulasi Ejeksi

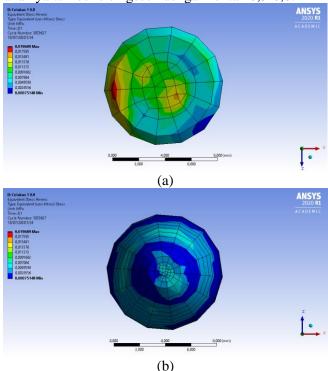
	Parame	ter Proses	1	Variabel Respo	n
Simulasi	Desain Cetakan	Koefisien Gesek	Gaya Ejeksi (N)	Equivalent Stress (MPa)	Shear Stress (MPa)
1	1	0,5	82.754	0.40638	4.01E-02
2	1	0,6	107.754	0.61971	6.80E-02
3	1	0,7	124.754	0.83889	8.74E-02
4	1	0,8	151.754	0.93889	0.11506
5	2	0,5	80.754	0.3863	5.20E-02
6	2	0,6	86.754	0.5597	6.11E-02
7	2	0,7	105.754	0.7388	6.71E-02
8	2	0,8	116.754	0.8389	0.10256
9	3	0,5	69.736	7.79E-02	1.50E-02
10	3	0,6	71.295	7.97E-02	1.51E-02
11	3	0,7	73.742	8.17E-02	1.53E-02
12	3	0,8	75.554	8.29E-02	1.53E-02

Note: Cetakan 1 - tanpa split

Cetakan 2 - 1 split Cetakan 3 - 2 split

penting untuk memastikan serbuk yang akan dikompresi sesuai dengan jumlah yang dibutuhkan untuk membentuk proyektil dengan spesifikasi. Dimana jika serbuk yang diisi kurang dari dari seharusnya akan mengurangi distribusi massa peluru yang berefek pada *center of pressure* dan juga *center of mass*.

Gambar 4.10 Penumpukan serbuk Cu-Sn pada area cetakan


Pertimbangan *clearance* juga dilakukan untuk mengurangi penumpukan berlebih pada sisi-sisi cetakan yang dapat membuat proyektil tidak simetris. Ditinjau dari hasil simulasi yang sudah dilakukan, terlihat perbedaan gaya ejeksi pada cetakan 1, cetakan 2, dan cetakan 3. Pada cetakan 3 menunjukan gaya ejeksi yang cukup kecil. Hal ini disebabkan tidak adanya gaya yang menahan proyektil selama proses ejeksi. Perbedaan yang paling menonjol ialah durasi tegangan yang dialami proyektil selama proses ejeksi, pada desain cetakan 1 yang mana tanpa adanya split mengharuskan proyektil mengalami gesekan sepanjang ketinggian pengisian sekitar 53 mm. Namun penerapan multilevel (split) tidak selamanya baik pada proses kompaksi terlebih pada produk yang memiliki desain yang simple seperti halnya proyektil. Pengunaan split memungkinan sisa serbuk menumpuki celah selama siklus kompaksi. Tumpukan inilah yang menyebabkan cetakan tidak

menyatu dengan semestinya dan menyebabkan serbuk selanjutnya memasuki celah tersebut dan membentuk layer yang mengganggu performa proyektil saat ditembakkan. Dapat dilihat pula pada Gambar 4.1-4.3 dimana equivalent dan shear stress meningkat saat awal ejector menyentuh proyektil dan puncak tegangan terjadi tepat sebelum proyektil bergerak. Selanjutnya terlihat terjadi penurunan baik gaya ejeksi maupun stress yang dialami. Gambar 4.4-4.9 menunjukan distribusi equivalent stress dan shear stress proyektil. Kontur warna dialami Gambar 4.4-4.10 yang menunjukan distribusi tegangan pada proyektil. Area berwarna merah pada gambar diatas merupakan tanda distribusi tegangan yang paling besar pada proyektil. Sedangkan area berwarna biru menandakan distribusi tegangan yang diterima paling rendah. Pada Cetakan 1 (tanpa split) dan cetakan 2 (1 split) tegangan memusat pada bagian boattail. Sedangkan pada cetakan 3 (2 split) tegangan memusat pada sisi silinder proyektil yang kita ketahui bersentuhan dengan ujung cetakan. Bagian ujung ogive proyektil juga menunjukkan sebaran tegangan untuk ketiga cetakan karena bersentuhan langsung dengan ejektor ketika proses ejeksi. Dimana nilai tegangan tertinggi diangka 0,938 MPa untuk cetakan 1 dengan koefisien gesek 0,8. Angka ini masih dibawah kekuatan luluh material menurut penelitian schneider yang mana CuSn10 yang disinterring pada temperature 800-850 °C mempunyai Yield Strength (Sy) sebesar 64 MPa. Untuk itu keseluruhan simulasi menunjukkan hasil yang aman, namun data tersebut dapat memberi gambaran distribusi pada proyektil yang terjadi selama proses ejeksi yang menjadi indikasi kemungkinan cacat atau rusaknya proyektil pada area tersebut. Persebaran Equivalent stress dan shear stress menunjukan persebaran yang serupa pada proyektil.

4.2.3 Pengaruh Koefisien Gesek Cetakan terhadap Proyektil *Frangible*

Persamaan. (2.42) dan (2.43) menunjukkan bahwa gaya ejeksi proyektil bergantung pada tiga faktor utama, yaitu koefisien gesekan antara proyektil dan dinding cetakan, tegangan sisa

dinding cetakan, dan ukuran & ketebalan proyektil. Berbeda dengan ukuran proyektil, sisa tegangan dinding cetakan dan koefisien gesekan tidak mudah diukur dan mekanismenya sulit dipahami. Oleh karena itu, perlu adanya upaya untuk mempelajari lebih lanjut faktor-faktor ini dan signifikansi relatifnya pada ejeksi proyektil. Namun dalam penelitian ini tidak dilakukan eksperimental, penelitian ini hanya mensimulasikan proses ejeksi guna menunjukan respon proyektil terhadap variabel yang digunakan yaitu koefisien gesek dengan rentan 0,5-0,8.

Gambar 4.11 (a) Bagian boattail proyektil (b) ogive proyektil

Dapat dilihat cetakan yang memiliki koefisien gesek tinggi membutuhkan gaya ejeksi yang paling besar. Gaya ejeksi yang

tinggi merupakan suatu resiko. Hal itu menunjukkan gesekan dinding cetakan-*green compact* yang berlebihan, yang bisa diakibatkan oleh koefisien gesekan atau tegangan sisa dinding cetakan, atau bahkan keduanya. Risiko gaya ejeksi yang tinggi yang dimaksud bukan kegagalan untuk mengeluarkan proyektil dari cetakan walaupun kejadian seperti itu sesekali terjadi seperti pada Gambar 4.12, tetapi lebih sering berkaitan dengan cacat proyektil yang timbul dari gesekan tinggi pada antarmuka dinding cetakan dan *green compact*. Gesekan yang tidak diharapkan ini berpotensi merusak proyektil dan membuat permukaan proyektil menjadi kasar, dimana ini sangat dihindari karena dapat menurunkan perfoma proyektil digunakan nantinya. Permukaan yang kasar menyebabkan gaya drag dari proyektil meningkat.

Gambar 4.12 Kasus proyektil tersumbat pada cetakan

Cetakan dengan koefisien gesek 0.8 menghasilkan gaya ejeksi yang paling besar sebab koefisien gesek cetakan turut andil menahan gaya yang diberikan oleh ejektor. Semakin halus atau koefisien gesekan rendah sebuah cetakan maka gaya ejeksi yang diperlukan juga semakin rendah. Serupa dengan tegangan equivalent, tegangan geser (shear stress) proyektil tertinggi terjadi pada cetakan dengan koefisien gesek tinggi.

Selain itu gesekan dinding yang kuat dapat menahan ekspansi volume *green compact* ke arah aksial, sedangkan pengekangan seperti itu tidak begitu besar di daerah yang jauh dari dinding cetakan. Oleh karena itu tekanan lokal dapat meningkat dalam proyektil karena ketidakhomogenan spasial ini, yang dapat menyebabkan pembentukan retakan-mikro atau dalam kasus-kasus ekstrim, pembatasan atau laminasi. Lebih lanjut, dalam keadaan di mana gesekan dinding tinggi didorong oleh tegangan sisa dinding cetakan, kedua hal ini dapat merugikan sebab akan meningkatkan gaya ejeksi. Singkatnya, kekuatan ejeksi tinggi itu merusak. Ini berarti proyektil tetap tegang pasca pembebanan, baik secara lokal maupun secara keseluruhan, dan berpotensi menyebabkan kegagalan proyektil.

Gambar 4.13 Grafik Prediksi Gaya Ejeksi Gambar 4.14

Gambar 4.13 adalah prediksi gaya ejeksi, nilai tersebut didapat dari perhitungan persamaan (2.47). Pada dasarnya, perbedaan antara gaya ejeksi yang diprediksi dan yang disimulasi didorong oleh perbedaan antara tegangan sisa dinding cetakan yang diprediksi dan disimulasikan.

Penelitian yang dilakukan Yusof (Yusof, 2009) menunjukan kekasaran permukaan bawah produk lebih tinggi daripada permukaan atas yang dikompres. Karakteristik ini menunjukkan bahwa tekanan pemadatan belum sepenuhnya ditransmisikan ke penekan bawah dan hilang karena gesekan. Pada tekanan rendah, green compact dicirikan oleh adanya pori besar. Oleh karena itu, Ra atau kekasaran permukaan produk itu besar. Selain itu besar tekanan kompresi juga mempengaruhi Ra produk. Semakin besar tekanan yang diberikan semakin kecil Ra atau semakin halus permukaan produk. Pernyataan ini hanya dapat dibuktikan dengan melakukan eksperimen sebab ANSYS hanya dapat menunjukan distribusi stress pada proyektil tidak tingkat kehalusan proyektil.

Banyak penelitian sebelumnya yang menunjukan cara mengurangi gaya gesekan pada proses kompaksi, seperti halnya dengan penambahan zinc striate sekitar 1%. Penambahan ini cukup efektif mengurangi gesekan yang membuat proyektil dengan mudah keluar dari cetakan. Sehingga kemungkinan kemungkinan cacat yang disebabkan baik pada saat kompresi dan ejeksi dapat dihindari. Namun penambahan zinc ini tidak boleh berlebih guna menghindari menurunnya sifat mekanik dari produk.

Pada buku standar pembuatan cetakan, baik penekan dan dinding cetakan disarankan memiliki kekasaran permukaan sebesar <25µm karena hasilnya cukup baik (Lee, 1998). Dan apabila dilihat pada Tabel 2.6 nilai kekasaran rata rata maka didapat standar yang bisa digunakan adalah N4. Hal ini sesuai dengan hasil simulasi yang menunjukan penurunan gaya ejeksi dan tegangan yang terjadi pada proyektil menurun dengan semakin rendahnya koefisien gesek.

(Halaman ini sengaja dikosongkan)

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Penelitian telah dilakukan, dan hasil mengenai analisis simulasi ejeksi beserta pembahasannya telah dibahas secara rinci pada bab sebelumnya. Dari hasil pembahasan tersebut, dapat disimpulkan bahwa:

- 1. Hasil simulasi pada ketiga desain cetakan menunjukan desain cetakan 3 dengan adanya 2 split mengurangi tegangan yang terjadi pada proyektil selama proses ejeksi. Sehingga mengurangi kemungkinan terjadinya cacat proyektil
- 2. Hasil simulasi menunjukan koefisien gesek memberi pengaruh pada gaya ejeksi proyektil. Gaya ejeksi tertinggi dialami cetakan 1 dengan kekasaran tertinggi (0.8) sebesar 158,46 N dan terendah pada cetakan 3 dengan koefisien (0.5) sebesar 69,736 N. Gaya ejeksi menurun dengan menurunnya koefisien gesek cetakan.
- 3. Equivalent Stress dan Shear stress yang dialami proyektil pada setiap cetakan berkurang dengan merendahnya koefisien gesek cetakan sehingga memungkinkan proyektil yang dihasilkan lebih baik.
- 4. Nilai gaya ejeksi tinggi menunjukan *Equivalent Stress* dan *Shear stress* yang dialami proyektil juga tinggi sehingga dapat menjadi indikator yang tepat selama proses ejeksi.
- 5. Dengan menggunakan parameter kesimpulan pada poin sebelumnya, cetakan paling aman selama proses ejeksi ialah desain cetakan 3 dengan koefisien gesek terkecil yaitu (0,5)

5.2 Saran

Adapun saran dari dan bagi penelitian ini adalah sebagai berikut:

- 1. Menggunakan komputer yang lebih handal guna mendapatkan hasil yang mendekati kondisi real
- 2. Dilakukan penelitian eksperimen secara langsung untuk membandingkan hasil simulasi dan eksperimen.

3. Dilakukan penelitian lebih lanjut terkait proses kompresi proyektil secara simulasi dan eksperimen.

DAFTAR PUSTAKA

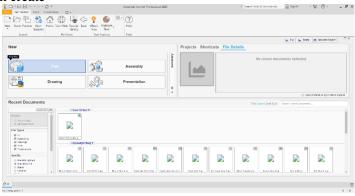
- Al-Qureshi. (2008). Analyses of The Fundamental Parameter of Cold Die Compaction of Powder Metallurgy. *Journal Mater Process Technology*, 417-424.
- Barbero, E. J. (2014). Finite Element Analysis of Composite Materials Uisng ANSYS. Florida: : Taylor & Francis Group, LLC.
- Bathe, K.-J. (2014). *Finite Element Procedures*. Massachussets:: Pearson Education, Inc.
- Boothroyd, G. (2010). Product Design for Manufacture and Assembly Third Edition. New York: CRC Press.
- Brewin, P. R. (2008). *Modelling of Powder Die Compaction*. London: Springer.
- Budynas, R. G. (2015). *Shigley's Mechanical Engineering Design*. New York: Mc Graw Hill.
- Chakroun, W. (2004). Effect of Surface Roughness on The Aerodynamic Characteristics of Symmetrical Airfoil. *Wind Engineering Volume* 28, 547-564.
- Cristina Ramírez-Aragón, a. c. (2020). Numerical Modeling for Simulation of Compaction of Refractory Materials for Secondary Steelmaking. *materials*.
- Cristofolini, M. I. (2016). Study of the Uniaxial Cold Compaction of AISI 316L Stainless Steel Powder through Single-action Test. *Powder Technology*, 284-295.
- Cunningham, J. S. (2004). Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction. *Pharmacy Science*, 2022–2039.
- Eckert, M. (2016). Die-wall Friction and Janssen Coefficient during Compaction.
- Ellis, J. C. (2016). *The Effect of Projectile Nose on the Formation of the Water Entry Cavity*. All Thesis and Disertations.
- German, R. (2016). *Particulate Composites*. Cham, Switzerland: Springer International Publishing.

- Jacobson, D. E. (2018). *Ballistics Theory and Design of Guns and Ammunution Third Edition*. Boca Raton: CRC Press.
- Jankovic, S. (1979). *Aerodynamika Projektila*. Belgrade: Aerodynamics of Projectiles Masinski Fakultet, Univerziteta u Beogradu.
- Jedrasiak, K. (2018). Advanced Ballistics Model and Its Experimental Evaluation for Professional Simulation System. Spring Internasional publishing Institute of Automatic Control, 44-100.
- Khan, I. R. (2017). Study of Internal & External Ballistics for .177 cal & .22 cal Projectiles. *International Journal for Scientific Research & Development Vol. 5, Issue 07*.
- Komenda, J. (2013). Forensic and Clinical Issues in the Use of Frangible Projectile. *Journal of Forensic and Legal Medicine*, 697-702.
- Kruachaturrat, S. (2009). Sintering Cu-Sn Materials for Frangible Bullets. *The 3rd Thailand Metallurgy Conference*. Thailand.
- Lee, P. W. (1998). *Volume 7 of ASM Hanbook, Powder Metal Technologies and Applications*. ASM International.
- Maeno, T. (2018). Prevention of seizure in ejection of compact by control of internal diameter of container. *Procedia manufacturing*, 550-556.
- McCoy, R. L. (2012). *Modern External Ballistics*. Atglen: Sciffer Military History.
- Rydlo, M. (2010). Theoritical Criterion for Evaluation of the Frangibility Factor. *advances in military technology*, Vol 5, No.2.
- SH, A. (2008). Effect of Body Shape on The Aerodynamics of Projectiles at Supersonic Speeds. *Journal of Engineering Science and Technology Vol 3*, 278-292.
- Skrinjar, O. (2005). *Cold Compaction of Composite Powders*. Stockholm: Royal Institute of Technology.
- Thompson, M. K. (2017). *ANSYS Mechanical APDL for Finite Element Analysis*. Pittsburgh: ELSEVIER.

- Uzondu, B. (2018). A mechanistic study on tablet ejection force and its sensitivity to lubrication for pharmaceutical powders. *Internasional Journal of Pharmaceutics*, 234-244.
- Yahuza, R. (2010). Teknologi CNC. Jakarta: UNTAR.
- Yahya, N. P. (2019). Optimasi Desain dan Simulasi Kegagalan Buckling pada Die Mesin Kompaksi Dengan Metode Elemen Hingga. Surabaya: ITS.
- Yuana, K. A. (2017). Modelling dan Pembuatan Algoritma Aliran Fluida pada External Ballistics dengan Model G1-Standard-Bullet Menggunalan Metode Lattice Boltzmann. *Jurnal Teknologi Informasi*.
- Yusof, Y. (2009). Compaction pressure, wall friction and surface roughness upon compaction strength of Andrographispaniculata tablets. *Tribology International*, 1168–1174.
- Zili Liu, D. L. (2020). Effect Of Die Wall Lubrication On High Velocity Ccompaction Behavior and Sintering Properties OF Fe-Based PM Alloy. *Arch. Metall. Mater*, 677-684.

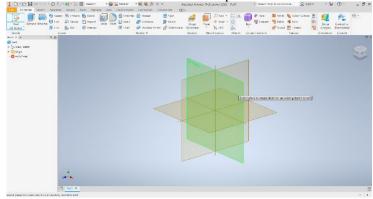
(Halaman ini sengaja dikosongkan)

LAMPIRAN

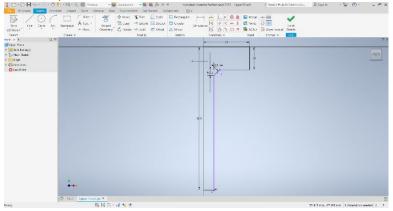

Lampiran 1

Langkah-langkah membuat desain pada Autodesk Inventor Professional 2020

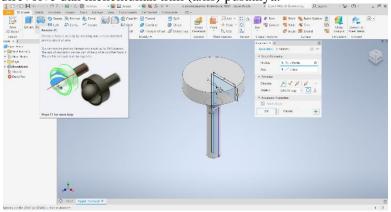
Step 1 membuka software Autodesk inventor professional


Step 2 Membuat file

Klik new pada tool box, lalu klik create 2D Standart(mm).ipt dan klik create


Step 3 menentukan plane

Klik start 2D sketch dan tentukan base plane


Step 4 membuat sketch

Klik center point circle pada tool box dan menggambar dari pusat koordinat,

Step 5: membuat 3D

Klik revolve pada tool box dan pilih sketch 2 dimensi yang akan direvolve dan menentukan titik (axis) pusatnya.

Step 6 save data

Klik save, dan data diexport dengan format Parasolid text(t_x) atau STL agar dapat diimport disoftware lainnya

Lampiran 2

 η_{Cyl} = Rasio Panjang bagian silinder dengan panjang hidung

=6,5/8,65=0,75

 β = Mach Number Parameter, $\sqrt{M^2 - 1}$

 $=\sqrt{1,1^2-1}=0,458$

 λ_N = Nose fineness ratio (Panjang hidung/Diameter)

= 8,65/9,03 = 0,958

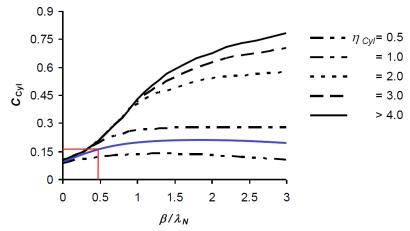


Fig. A-11. Cylindrical Part Effect on Nose Centre of Pressure Coefficient [6].

Ccyl = 0.17

Project ANSYS

Author	Jati
Subject	Cetakan
Prepared for	TA
First Saved	Wednesday, June 3, 2020
Last Saved	Tuesday, July 21, 2020
Product Version	2020 R1
Imported Source	C:\Users\WORKSHOP 2\Desktop\TA MulyaJati\Kiblat cetakan 2.mechdat
Imported Version	2020 R1
Save Project Before Solution	No
Save Project After Solution	No

Contents

- Units
- Model (B4)
 - Geometry
 - Parts
 - o Materials
 - Coordinate Systems
 - Connections
 - Contacts
 - Contact Regions
 - Body Interactions
 - Body Interaction
 - o Mesh
 - Mesh Controls
 - **Explicit Dynamics (B5)**
 - **Initial Conditions**
 - Pre-Stress (None)

- Analysis Settings
- Loads
- Solution (B6)
 - Solution Information
 - Results
 - Force Reaction
- o Force
- o **Equivalent**
- o Shear
- Material Data
 - o M2 HSS
 - o Cu-Sn

Units

TABLE 1

Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (B4) Geometry

TABLE 2 Model (B4) > Geometry

Object Name	Geometry	
State	Fully Defined	
Definition		
Source	C:\Users\WORKSHOP 2\Desktop\TA MulyaJati\Cetakan 1_files\dp0\SYS- 1\DM\SYS-1.scdoc	
Туре	SpaceClaim	

Length Unit	Meters
Display Style	Body Color
Bounding Box	
Length X	47,364 mm
Length Y	156,01 mm
Length Z	47,364 mm
Properties	
Volume	1,0744e+005 mm³
Mass	0,87545 kg
Scale Factor Value	1,
Statistics	
Bodies	3
Active Bodies	3
Nodes	9575
Elements	10427
Mesh Metric	None
Update Options	
Assign Default Material	No
Basic Geometry Op	otions
Solid Bodies	Yes
Surface Bodies	Yes
Line Bodies	Yes
Parameters	Independent
Parameter Key	
Attributes	Yes
Attribute Key	
Named Selections	Yes
Named Selection Key	
Material Properties	Yes
Advanced Geometr	y Options
Use Associativity	Yes

Coordinate Systems	Yes
Coordinate System Key	
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	Yes
Compare Parts On Update	No
Analysis Type	3-D
Mixed Import Resolution	None
Clean Bodies On Import	No
Stitch Surfaces On Import	None
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

TABLE 3
Model (B4) > Geometry > Parts

wioder (D4) > Geometry > 1 arts			
Object Name	Ejektor	Ammo	Body
State	Meshed		
Graphics Properties			
Visible	Yes		
Transparency	1		
Definition			
Suppressed	No		
Stiffness Behavior	Flexible		
Coordinate System	Default Coor	dinate System	

Reference Temperature	By Environment		
Reference Frame Lagrangian			
	Materia	al	
Assignment	M2 HSS	Cu-Sn	M2 HSS
	Bounding	Box	
Length X	47,364 mm	9,7391 mm	40, mm
Length Y	88, mm	15,7 mm	78, mm
Length Z	47,364 mm	9,7391 mm	40, mm
	Properti	ies	
Volume	12971 mm ³	816,24 mm ³	93654 mm ³
Mass	0,10585 kg	5,3872e-003 kg	0,76421 kg
Centroid X	35,21 mm		
Centroid Y	-53,774 mm	37,047 mm	56,632 mm
Centroid Z	0,11267 mm	0,1128 mm	0,11268 mm
Moment of Inertia Ip1	18,459 kg·mm²	0,10898 kg·mm²	468,85 kg·mm²
Moment of Inertia lp2	20,441	4,9275e-002	159,11
	kg-mm²	kg-mm²	kg·mm²
Moment of Inertia Ip3	18,459	0,10898	468,86
	kg·mm²	kg-mm²	kg∙mm²
Statistics			
Nodes	793	1166	7616
Elements	2930	987	6510
Mesh Metric	None		
	CAD Attrib	outes	
PartTolerance:	0,00000001		
Color:161.161.161			

TABLE 4 Model (B4) > Materials

Object Name Materials

State	Fully Defined
Statistics	
Materials	2
Material Assignments	0

Coordinate Systems

TABLE 5
Model (B4) > Coordinate Systems > Coordinate System

Object Name	Global Coordinate System	
State	Fully Defined	
Definition		
Туре	Cartesian	
Origin		
Origin X	0, mm	
Origin Y	0, mm	
Origin Z	0, mm	
Directional Vectors		
X Axis Data	[1,0,0,]	
Y Axis Data	[0, 1, 0,]	
Z Axis Data	[0, 0, 1,]	

Connections

TABLE 6 Model (B4) > Connections

model (B4) > definitionie		
Object Name	Connections	
State	Fully Defined	
Auto Detection		
Generate Automatic Connection On Refresh Yes		
Transparency		
Enabled	Yes	

TABLE 7
Model (B4) > Connections > Contacts

Object Name Contacts		
Object Name	Contacts	
State	Fully Defined	
Definition		
Connection Type	Contact	
Scope		
Scoping Method	Geometry Selection	
Geometry	All Bodies	
Auto Detection		
Tolerance Type	Slider	
Tolerance Slider	0,	
Tolerance Value	0,42445 mm	
Use Range	No	
Face/Face	Yes	
Face-Face Angle Tolerance	75, °	
Face Overlap Tolerance	Off	
Cylindrical Faces	Include	
Face/Edge	No	
Edge/Edge	No	
Priority	Include All	
Group By	Bodies	
Search Across	Bodies	
Statistics		
Connections	3	
Active Connections	3	

TABLE 8
Model (B4) > Connections > Contacts > Contact Regions

model (D4) > Connections > Contacts > Contact regions				
Object Name	Frictional - Ejektor To Ammo	Frictionless - Ejektor To Body	Frictional - Ammo To Body	
State	Fully Defined			
Scope				

Scoping Method	Geometry Selection		
Contact	1 F	ace	3 Faces
Target	1 6	-ace	3 Faces
Contact Bodies	Ejektor		Ammo
Target Bodies	Ammo	Bod	У
Protected		No	
	Definition		
Туре	Frictional	Frictionless	Frictional
Friction Coefficient	0,2		0,8
Dynamic Coefficient	0,		0,
Decay Constant	0,		0,
Scope Mode	Automatic		
Behavior	Program Controlled		
Trim Contact	Program Controlled		
Trim Tolerance	0,42445 mm		
Suppressed	No		

TABLE 9
Model (B4) > Connections > Body Interactions

Object Name	Body Interactions
State	Fully Defined
Adva	nced
Contact Detection	Trajectory
Formulation	Penalty
Sliding Contact	Discrete Surface
Body Self Contact	Program Controlled
Element Self Contact	Program Controlled
Tolerance	0,2

TABLE 10 Model (B4) > Connections > Body Interactions > Body Interaction

Object Name	Body Interaction	
State	Fully Defined	
Scope		
Scoping Method	Geometry Selection	
Geometry	All Bodies	
Definition		
Туре	Frictionless	
Suppressed	No	

Mesh

TABLE 11 Model (B4) > Mesh

Mesh			
Solved			
у			
Use Geometry Setting			
s			
Explicit			
Linear			
Default			
Sizing			
Yes			
Default (4)			
Yes			
Default			
Slow			
Coarse			
Assembly			
169,78 mm			
863,86 mm ²			

Minimum Edge Length	7,8351 mm		
Qualit	y		
Check Mesh Quality	Yes, Errors		
Target Quality	Default (0.050000)		
Smoothing	High		
Mesh Metric	None		
Inflation	on		
Use Automatic Inflation	None		
Inflation Option	Smooth Transition		
Transition Ratio	0,272		
Maximum Layers	5		
Growth Rate	1,2		
Inflation Algorithm	Pre		
View Advanced Options	No		
Advanced			
Number of CPUs for Parallel Part Meshing	Program Controlled		
Straight Sided Elements			
Rigid Body Behavior	Full Mesh		
Triangle Surface Mesher	Program Controlled		
Topology Checking	Yes		
Pinch Tolerance	Please Define		
Generate Pinch on Refresh	No		
Statisti	cs		
Nodes	9575		
Elements	10427		

TABLE 12 Model (B4) > Mesh > Mesh Controls

	(, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Object Name	Automatic Method	Body Sizing	Body Sizing 2	Face Meshing	Edge Sizing cetakan	Edge Sizing ejektor
State			Fully [Defined		

Scope					
Scoping Method	Geometry Selection			ı	
Geometry	1	Body		1 Face	2 Edges
		Def	inition		
Suppressed			١	٧o	
Method	Automatic				
Element Order	Use Global Setting				
Туре		Eleme	nt Size		Number of Divisions
Element Size		0,9 mm	5, mm		
Mapped Mesh				Yes	
Internal Number of Divisions				Default	
Constrain Boundary			No		
Number of Divisions				15	
	Advanced				
Defeature Size		Def	ault		
Behavior	Soft			Soft	
Bias Type					No Bias

Explicit Dynamics (B5)

TABLE 13 Model (B4) > Analysis

Object Name	Explicit Dynamics (B5)		
State	Solved		
Definition			

Physics Type	Structural	
Analysis Type	Explicit Dynamics	
Solver Target	AUTODYN	
Options		
Environment Temperature	22, °C	
Generate Input Only	No	

TABLE 14 Model (B4) > Explicit Dynamics (B5) > Initial Conditions

Object Name	Initial Conditions
State	Fully Defined

TABLE 15 Model (B4) > Explicit Dynamics (B5) > Initial Conditions > Initial Condition

Object Name	Pre-Stress (None)				
State	Fully Defined				
Definition					
Pre-Stress Environment	None Available				
Pressure Initialization	From Deformed State				

TABLE 16
Model (B4) > Explicit Dynamics (B5) > Analysis Settings

	(=0) / /ay c c c cgc
Object Name	Analysis Settings
State	Fully Defined
Analysis Sett	ings Preference
Туре	Program Controlled
Step	Controls
Number Of Steps	1
Current Step Number	1
Load Step Type	Explicit Time Integration
End Time	0,1
Resume From Cycle	0
Maximum Number of Cycles	1e+07

Maximum Energy Error	0,1			
Reference Energy Cycle	0			
Initial Time Step	Program Controlled			
Minimum Time Step	Program Controlled			
Maximum Time Step	Program Controlled			
Time Step Safety Factor	0,9			
Characteristic Dimension	Diagonals			
Automatic Mass Scaling	No			
Solver	Controls			
Solve Units	mm, mg, ms			
Beam Solution Type	Bending			
Beam Time Step Safety Factor	0,5			
Hex Integration Type	Exact			
Shell Sublayers	3			
Shell Shear Correction Factor	0,8333			
Shell BWC Warp Correction	Yes			
Shell Thickness Update	Nodal			
Tet Integration	Average Nodal Pressure			
Shell Inertia Update	Recompute			
Density Update	Program Controlled			
Minimum Velocity	1,e-003 mm s^-1			
Maximum Velocity	1,e+013 mm s^-1			
Radius Cutoff	1,e-003			
Minimum Strain Rate Cutoff	1,e-010			
Euler Don	nain Controls			
Domain Size Definition	Program Controlled			
Display Euler Domain	Yes			
Scope	All Bodies			
X Scale factor	1,2			
Y Scale factor	1,2			
Z Scale factor	1,2			
Domain Resolution Definition	Total Cells			
Total Cells	2,5e+05			

Lower X Face	Flow Out				
Lower Y Face	Flow Out				
Lower Z Face	Flow Out				
Upper X Face	Flow Out				
Upper Y Face	Flow Out				
Upper Z Face	Flow Out				
Euler Tracking	By Body				
Dampin	g Controls				
Linear Artificial Viscosity	0,2				
Quadratic Artificial Viscosity	1,				
Linear Viscosity in Expansion	No				
Artificial Viscosity For Shells	Yes				
Hourglass Damping	AUTODYN Standard				
Viscous Coefficient	0,1				
Static Damping	0,				
Erosion Controls					
On Geometric Strain Limit	Yes				
Geometric Strain Limit	1,5				
On Material Failure	No				
On Minimum Element Time Step	No				
Retain Inertia of Eroded Material	Yes				
Output Controls					
Step-aware Output Controls	No				
Save Results on	Equally Spaced Points				
Result Number Of Points	20				
Save Restart Files on	Equally Spaced Points				
Restart Number Of Points	5				
Save Result Tracker Data on	Cycles				
Tracker Cycles	1				
Output Contact Forces	Off				
Analysis Data Management					

Solver Files Directory	C:\Users\WORKSHOP 2\Desktop\TA MulyaJati\Cetakan 1_files\dp0\SYS-1\MECH\
Scratch Solver Files Directory	

TABLE 17
Model (B4) > Explicit Dynamics (B5) > Loads

model (D4) > Explicit Dynamics (D3) > Loads							
Object Name	Fixed Support	Fixed Support 2	Displacement				
State	Fully Defined						
	;	Scope					
Scoping Geometry Selection							
Geometry	1 Face						
	Definition						
Туре	Fixed	Support	Displacement				
Suppressed		No					
Define By			Components				
Coordinate System		Global Coordin System					
X Component	0, mm (ramped)						
Y Component		68, mm (ramped)					
Z Component		0, mm (ramped)					

FIGURE 1 Model (B4) > Explicit Dynamics (B5) > Displacement

Solution (B6)

TABLE 18
Model (B4) > Explicit Dynamics (B5) > Solution

Object Name	Solution (B6)					
State	Solved					
Information						
Status	Done					

Post Processing				
Beam Section Results	No			

TABLE 19
Model (B4) > Explicit Dynamics (B5) > Solution (B6) >
Solution Information

Object Name	Solution Information		
State	Solved		
Solution Info	rmation		
Solution Output	Solver Output		
Update Interval	2,5 s		
Display Points	All		
Display Filter During Solve	Yes		

TABLE 20
Model (B4) > Explicit Dynamics (B5) > Solution (B6) > Results

	(, -		<u> </u>	11100 (50	,, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(.	,	
Objec t Name	Equi valen t Stres s	Total Defor matio n	Directi onal Defor matio n	Directi onal Defor matio n 2	Directi onal Defor matio n 3	Shear Stres s	Equi valen t Stres s Amm o	Shear Stres s Amm o
State				Solv	/ed			
	Scope							
Scopi ng Metho d	ng Geometry Selection							
Geom etry		All Bodies 1 Body						
			D	efinitio	n			
Туре	Equi Total valen Defor Directional t matio (von- n					Shear Stres s	Equi valen t (von-	Shear Stres s

	Mise s) Stres s						Mise s) Stres s			
Ву		Time								
Displa y Time	1,5e- 002 s									
Calcul ate Time Histor y		Yes								
Identif ier										
Suppr essed	No									
Orient ation			X Axis	Y Axis	Z Axis	XY Comp onent		XY Comp onent		
Coord inate Syste m		Global Coordinate Sy						Globa I Coor dinat e Syste m		
		In	tegratio	n Poin	t Result	ts				
Displa y Optio n	Aver aged						verage	ed		
Avera ge Acros s	No	No								

Bodie s									
Results									
Minim um	0, MPa	0, mm	- 9,624 8e- 002 mm	- 5,085 9e- 003 mm	- 5,456 8e- 002 mm	- 93,07 MPa	7,51 48e- 004 MPa	- 3,525 3e- 003 MPa	
Maxi mum	15,2 33 MPa	13,27 9 mm	1,739 1e- 002 mm	13,27 9 mm	4,051 2e- 002 mm	67,69 5 MPa	1,96 89e- 002 MPa	4,782 3e- 003 MPa	
Avera ge	0,64 805 MPa	2,185 4 mm	- 3,011 7e- 003 mm	2,184 7 mm	- 8,288 5e- 004 mm	- 0,100 45 MPa	4,93 72e- 003 MPa	- 6,360 6e- 005 MPa	
Minim um Occur s On	Во	ody	Ejekto r	Body	Ejekto r	Body	Ammo		
Maxi mum Occur s On	Ejekt or	Amm o	Ejekto r	Amm o	Ejekto r	Body	Am	nmo	
		Miı	nimum	Value C	Over Tir	ne			
Minim um	0, MPa	0, mm	- 0,339 36 mm	- 7,193 1e- 003 mm	- 0,121 63 mm	- 109,9 6 MPa	0, MPa	- 3,548 3e- 003 MPa	
Maxi mum	7,58 36e- 004 MPa	0, mm				0, MPa	7,59 5e- 004 MPa	0, MPa	
		Ma	ximum	Value (Over Tii	ne			

Minim um	0, MPa		0, mm				0, MPa	1
Maxi mum	1472 ,7 MPa	13,27 9 mm					1,96 89e- 002 MPa	4,789 3e- 003 MPa
Information								
Time	1,5e- 002 s 0,1 s							
Set	4		21					
Cycle Numb er	4549 85	3033627						

UCAPAN TERIMAKASIH

Selama proses pengerjaan tugas akhir ini penulis banyak mendapatkan bantuan dari berbagai pihak. Pada kesempatan ini penulis mengucapkan banyak terima kasih kepada:

- 1. Kedua orang tua penulis yang selalu mendukung secara moril maupun materil serta do'a yang selalu dicurahkan selama masa studi penulis.
- 2. Kakak penulis yang selalu memberikan support selama penulis melakukan studi dan pengerjaan tugas akhir ini.
- 3. Seluruh dosen dan karyawan Departemen Tenik Material dan Metalurgi FTIRS-ITS yang telah memberikan ilmu dan hal baru selama penulis melakukan studi
- 4. Girsang Garsiman S.T dan Dimas Bagus Setyawan S.T selaku mentor dalam Tim Lini Produksi *Frangible Bullet* yang telah memberikan wawasan yang berkaitan dengan tugas akhir yang dilakukan penulis dan makna kehidupan.
- 5. Seluruh anggota Tim *Frangible Bullet* (Adhy, Iyando, Afrizal, Bagas, Fadhel, Ninik, Salma dan Nadya) yang telah membantu dan menemani dalam pengerjaan tugas akhir.
- 6. Fadhel MYF, Bagas Dwi, Ninik selaku partner tugas akhir yang selalu membantu, bekerja sama baik tenaga dan pikiran sampai tugas akhir ini selesai.
- Annisa Rahma yang selalu hadir memberikan motivasi dan dukungan yang diluar ekspektasi, dan juga mendengarkan keluh kesah penulis selama pengerjaan tugas akhir ini berlangsung.
- 8. Mar'ie Muhammad, Zakiul Fauzi dan Teuku Firdausi selaku penghuni kontrakan yang telah menemani dimasa baik maupun buruk dan berbagi kehidupan selama masa studi penulis.
- 9. Fadel Devinto dan Fadhel MYF selaku rekan, EF, hedon dan berbagi cerita yang selalu memberikan warna kehidupan, terutama secara materil selama perkuliahan

- 10. Teman-teman Sumatra garis keras yang mengisi waktu malam bersama di bang cen.
- 11. Seluruh rekan kerja penulis pada kepengurusan HMMT 18/19, baik Pengurus Inti maupun Fungsionaris Departemen MEDFO yang telah memberikan warna dan selalu memberikan dukungan satu sama lain selama masa studi penulis dan pengerjaan tugas akhir ini.
- 12. Seluruh mahasiswa Angkatan 2016 atau MT18 yang telah memberikan apa yang layak untuk diberikan kepada penulis selama masa studi.
- 13. Seluruh anggota HMMT FTI-ITS, baik berstatus aktif maupun alumnus, dan lingkungannya yang telah mengajarkan banyak hal dan memberikan banyak nlai kehidupan kepada penulis selama masa studi.
- 14. Dan seluruh pihak yang telah memberikan partisipasi dalam tugas akhir ini.

BIODATA PENULIS

Penulis bernama lengkap Muhammad Mulya Jati. Lahir dari pasangan Ir. Supriyono dengan Yusriati di Kota Lhokseumawe pada tanggal 20 Maret 1998. Penulis merupakan anak ketiga dari tiga bersaudara. Penulis menempuh Pendidikan formal di Sekolah Dasar Swasta YAPENA, Sekolah Menengah Pertama Negeri Arun, Sekolah Menengah Atas Negeri Modal Bangsa Arun. Kemudian penulis melanjutkan

Pendidikan di Perguruan Tinggi Negeri tepatnya di Departemen Teknik Material dan Metalurgi FTIRS-ITS pada tahun 2016. Selama menjadi mahasiswa, penulis aktif menjadi Kabiro Jurnalistik Himpunan Mahasiswa Teknik Material Metalurgi FTI-ITS 2018/2019. Penulis melaksanakan Kerja Praktik di PT. ANTAM Tbk (Persero) dan PT Pupuk Iskandar Muda selama kurang lebih 1 bulan. Penulis mengakhiri studi S1-nya dengan mengambil bidang Material Inovatif khususnya proyektil frangible. Penulis dapat dihubungi melalui alamat *e-mail* dan nomor telepon: bagasmulyajati@gmail.com dan 0813-6006-8869.