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ABSTRAK 
 

Pemodelan ketidakpastian melalui operasi stokastik dalam masalah 

economic dispatch dapat memberikan formulasi yang lebih baik, khususnya pada 

masalah pengambilan keputusan di dunia nyata. Metode ini juga dapat membantu 

mengurangi biaya penjadwalan sumber daya jika dibandingkan dengan 

pendekatan deterministik tradisional. Terlebih, keterlibatan energi terbarukan 

seperti pembangkit listrik tenaga air, dapat mengurangi biaya lebih jauh. Studi ini 

mengusulkan pemodelan economic dispatch dengan pendekatan stokastik (SED) 

pada pembangkit listrik tenaga air dan uap untuk mencari biaya distribusi listrik 

minimum. Model teori permainan kooperatif juga diformulasikan untuk 

menentukan koalisi yang menghasilkan biaya investasi minimum. Namun, karena 

masalah optimasi stokastik membutuhkan komputasi yang tinggi, maka model 

SED dalam penelitian ini didekomposisi menjadi dua tahap berdasarkan Improved 

Aggregating-Rule-based Stochastic Optimization (I-ARSO). Pada tahap pertama, 

sejumlah N skenario Monte Carlo yang mempertimbangkan permintaan daya dan 

ketersediaan generator digenerasi, kemudian distribusi daya dioptimalkan 

menggunakan algoritma hibrid berdasarkan optimasi particle swarm dan 

algoritma artificial fish swarm. Pada tahap kedua, setiap skenario yang optimal 

disimulasikan untuk mengevaluasi biaya operasi yang sesungguhnya. Akhirnya, 

teori permainan kooperatif akan memilih skenario terbaik untuk semua pemain 

untuk mendapatkan total biaya minimum. Biaya ini meliputi biaya operasi, biaya 

tetap, biaya variabel, dan biaya investasi serta alokasi biaya.  

 

Kata kunci: economic dispatch, improved aggregating-rule-based stochastic 

optimization (I-ARSO), teori permainan kooperatif, ketidakpastian  
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ABSTRACT 
 

Modeling uncertain behavior through stochastic operating strategies in 

economic dispatch problems may better formulate the nature of real-world 

decisions and help reduce cost in resource scheduling compared to traditional 

deterministic approaches. Moreover, the involvement of renewable energy, such 

as hydro power plant, may further reduce the cost. This study proposes a 

stochastic economic dispatch (SED) model in thermal and hydro power plants to 

seek minimum dispatch costs. A cooperative game-theoretic model was also 

formulated to determine the coalition that will lead to minimum investment cost. 

In particular, for tackling the issue of high computational requirements when the 

stochastic optimization problem becomes bigger, SED model in this study was 

decomposed into two stages based on an improved aggregating-rule-based 

stochastic optimization (I-ARSO) approach. At the first stage, N Monte Carlo 

scenarios of power demand and generator availability were generated, and then 

power dispatch was optimized using the hybrid intelligent algorithm based on 

particle swarm optimization and artificial fish swarm algorithm. At the second 

stage, each optimal scenario is simulated to evaluate the corresponding expected 

operating cost. Finally, cooperative game theory will pick the best arrangement 

for all players to get the minimum total cost, which includes expected operating 

cost, fixed cost, variable cost, and investment cost as well as the cost allocation. 

 

Keywords: economic dispatch, improved aggregating-rule-based stochastic 

optimization (I-ARSO), cooperative game theory, uncertainties 
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1. CHAPTER 1 

INTRODUCTION  

 

This chapter explains about the background containing the problem of 

research object and brief literature review on the solution methodology, objective, 

scope and outline of this research. 

 

1.1 Background 

Electrical energy becomes the most frequently used form of energy 

because the distribution is highly efficient and has a reasonable cost (Murty, 

2017). Not only it affects individual aspect such as communication, entertainment, 

home, and food, but it also affects the economic aspects of a country. It aligns 

with what Tumiran (a member of the National Energy Council) said that 

electricity is a part of national infrastructure that indeed has a role in developing 

the economy, especially in creating and developing industry (Sihite, 2017). 

Therefore, electricity will play an important role as an economic driving force in a 

country. However, there are several requisites to be an economic driving force 

through electricity. The power supply must be adequate, reliable, and affordable. 

The challenge is that today we need to sustain the environment using renewable 

energy sources instead of the other major non-renewable energy sources (coal, oil, 

gas, and uranium joined coal). Unfortunately, investment in renewable energy 

faces far more uncertainty than in the big four because of the availability of 

renewable power sources (Smardon, 2018). In addition, the load demand is also 

uncertain. Hence, we must fully utilize available resources. One of the ways is by 

optimizing the operation cost through appropriate power system scheduling. To be 

able to distribute the power to the consumer effectively, power plant must decide 

which power plant, how much power supply, and when the power should be 

distributed. This problem is known as the economic dispatch (ED) problem.  

Indonesia also faces the same problem. It has to utilize the available 

resources to meet the demand reliably. Furthermore, it begins to consider 

employing more power plants using renewable energy sources. However, the fact 
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tells that the electricity supply in Indonesia is not adequate to meet the demand. 

According to Mineral (2017), electricity sales growth in most provinces in 

Indonesia is not accompanied by additional generator capacity. In Kalimantan, 

electricity sales grow 10.7% per year (as shown in table 1.1), but the additional 

generator capacity only grows about 1% per year. The data show that the demands 

in Indonesia are not satisfied, especially in Kalimantan island with a 9.7% growth 

gap. 

 

Table 1.1 Kalimantan Electricity Sales Realization (TWh) 

Sector 2011 2012 2013 2014 2015 2016 

Household 3,481 4,012 4,437 4,958 5,238 5,688 

Industry 380 410 431 464 493 531 

Business 1,272 1,383 1,488 1,630 1,760 1,907 

Social 182 205 237 265 295 316 

Government Office Building 180 208 233 257 282 303 

Street Lighting 157 161 164 167 166 178 

Total 5,652 6,379 6,990 7,741 8,234 8,923 

Source: (Kementerian Energi dan Sumber Daya Mineral, 2018) 

 

The electrification ratio is a ratio between residents that have gotten 

electricity, with those who have not gotten the electricity. Figure 1.1 shows the 

electrification ratio in Indonesia. The target is 97.1% for year 2018, and per Q3 

year 2018 the ratio has reached 98.05%. However, there are still some areas that 

are still far from year 2019‟s target, which is 99%, like in Kalimantan, Sulawesi, 

Nusa Tenggara, Papua, and Maluku.  
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Figure 1.1 Electrification Ratio in Indonesia per 1st semester of 2018 

Source: https://www.esdm.go.id 

The government has made some programs to overcome the electricity 

problem, and one of them is the 35.000 MW electricity development program. 

This program includes generator, transmission network, and substation 

development. The concern in electricity development is to be able to use 

renewable energy as the energy source of electricity. It is because according to 

PwC et al. (2018), natural gas reserves will be run out in the next 40 years, 

assuming that there is no more discovery on the reserves, crude oil in 12-15 years, 

gas in 30 years, and coal in 60-70 years. Hence the use of natural resources should 

be utilized optimally to reach the aim. Regarding that matter, Kalimantan master 

plan is made to increase the capacity of the electricity. There are several choices 

of energy that PT PLN should consider to satisfy the demand. However, because 

of the uncertainty of demand and blackout that can happen anytime, PT PLN 

should choose the appropriate amount of power to be dispatched as well as power 

plant type and interconnectivity alternatives. This strategy should benefit and 

accepted by all parties.  

Many studies have dealt with ED problem. They focused on developing 

models to make lower economic dispatch cost under various circumstances like 

storage and renewable energy and also improving calculation time from the 

previous research (Du, Grijalva and Harley, 2015; Yildiran and Tacer, 2015; 

Tang, Member and Jain, 2016; Srikantha and Kundur, 2017; Widodo, 2017; Faria 

et al., 2018). Several methods have been done to deal with ED problem such as 
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metaheuristic: particle swarm optimization (PSO) (Singh and Kumar, 2015), 

differential evolution (Biswas et al., 2018), imperialist competitive algorithm 

(Hazi, Rosmaliati and Misbahuddin, 2014), game theory (Zolezzi and Rudnick, 

2002; Du, Grijalva and Harley, 2015), mixed integer linear programming (Fioriti, 

Giglioli and Poli, 2016), and many more. For ED problem, what's more important 

is the fast and efficient solution. It means we pursue the most efficient method to 

obtain proper dispatching methods within a short time. Thus several studies tried 

to combine different optimization algorithms to form a hybrid intelligent 

optimization algorithm. This way, it could fully utilize the advantages of various 

algorithms, and overcome the flaws in a single intelligent optimization algorithm 

with satisfying results. Sadegheih (2009) and Su et al. (2014) found that the 

hybrid algorithms are superior than the simple ones both in terms of the 

convergence speed and the accuracy of the optimal solution.  

Li et al. (2002) designed widely combined algorithm namely the Artificial 

Fish Swarm Algorithm (AFSA). This algorithm has shown excellence 

convergence, but it is not suitable for problem with higher dimensions since it will 

take long computation time. In this case, PSO solves the problem because it 

produces higher calculation efficiency and is easier to implement. Even so, it has 

fewer adjustable parameters and doesn't require the gradient information, thus 

often resulting in premature solutions that cannot converge to the global optimum 

(Yuan and Yang, 2019). So, the combination between these two algorithms will 

complement each other and worth further study. 

Today, the problem in ED not only lies in the short calculation time, but 

also in the uncertainty aspect especially in demand and generator availability 

uncertainty.  Moreover, renewable energy prone to have more variability than 

fossil fuel. Previously, ED problem was solved by implementing deterministic 

optimization. This way, we must provide the right amount of reserve margin to 

cope with load uncertainty. In other word, it ensures limited amount of energy-

not-served. However, it must be calibrated with an economical or a probabilistic 

approach so that it is not producing sub optimal solution with high total cost. To 

address the problem, stochastic, robust, and interval optimization methodologies 

have been proposed (Pandzic et al., 2016; Abujarad, Mustafa and Jamian, 2017).  
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Stochastic optimization (SO) is essential because not only can it estimate 

the cost more accurately but also enables saving, usually in the range of 0–4% in 

wide power systems (Niknam, Golestaneh and Malekpour, 2012; Hemmati, 

Saboori and Saboori, 2016). Moreover, they can reach even 35% in case of the 

low quality of the forecasts of DO (Quan, Srinivasan and Khosravi, 2016), or 13% 

for isolated systems with limited storage capacity (Olivares et al., 2015). 

However, there is tradeoff between solving uncertainty with SO and computation 

time. To tackle this problem, Fioriti and Poli, (2019a) a two-stage modeling 

stochastic scenario known as Improved Aggregating-Rule-based Stochastic 

Optimization (IARSO). It could decompose N scenarios formulation into N 

deterministic sub problems that led to fewer constraints compared to SO. Thus, 

resulting in lower computational requirements. So this study propose IARSO 

combined with the hybrid intelligent algorithm to model stochastic behavior of 

outage power lines and electrical loads.  

We can further decrease the investment cost by implementing 

collaboration between areas, since they can share information and resources 

among themselves. By taking advantage of this, it is possible to perform energy 

management and make decisions based on collaboration (Ni and Ai, 2016). The 

collaboration allows the agents to utilize transmission lines and resources better 

(Sore, Rudnick and Zolezzi, 2006), resulting in lower total cost. Cooperation 

game theory can be utilized to deal such problem and is one of convenient tool to 

solve cost allocation problems (Zolezzi and Rudnick, 2002). The solution 

mechanisms behave well in terms of fairness, efficiency, and stability, and 

qualities required for the correct allocation. 

To the best of the author‟s knowledge, there is still no paper that considers 

IARSO combined with the hybrid intelligent algorithm combined with game 

theory method to seek the lowest investment cost. This finding is the main 

research gap in this work. By doing this research, a further comprehensive idea in 

terms of analytical models to elicit some beneficial insights on managing 

electricity costs is proposed. By performing this research, the impact of applying 

strategies of electricity master plan under uncertainty in Kalimantan Island can be 
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appropriately examined. Thus, power plant managers might have reliable 

theoretical as well as practical grips prior to making their managerial decision. 

1.2 Research Objectives 

This game theory and IARSO combined with the hybrid intelligent 

algorithm reciprocally induce researchers to contribute their ideas to make 

economic dispatch performs better and better. The works focused on modeling 

stochastic behavior to decrease economic dispatch costs considering renewable 

energy, demand, and generator availability uncertainty. Also, it aims to improve 

calculation time so that operational decisions can be carried in a fast manner. 

Lastly, it aims to find the strategy and cost allocation of each player in the 

electricity master plan, so that the outcome can be accepted by all players in the 

aforementioned circumstances. 

 

1.3 Scopes and Assumption 

Here are the scopes and assumptions of this research: 

1. The voltage levels for the power plant is 500 kV. 

2. The power source is using river flow as a renewable power source and 

coal. 

3. The object under observation is Kalimantan island. 

4. The data used in this research is obtained from PT PLN year 2017 and 

2018. 

5. The planning horizon is from year 2018 until year 2050. 

6. The cost of the transmission of the power source to each plant for the 

interconnection scenario is the same. 

7. The demand in each scenario is generated following a particular 

distribution from historical data  

 

1.4 Research Outlines 

The research outline consists of several chapters that will be explained 

below.  

CHAPTER 1 INTRODUCTION  
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This chapter explains the background of this research, problem 

formulation that will be solved, objectives to be achieved, benefits, research 

scope, and the outline that is used in the research.  

CHAPTER 2 LITERATURE REVIEW  

This chapter explains the theories and fundamental concepts that will 

become base to do this research as well as to justify the method used in this 

research. Theories and the basic concept shown in this chapter are got from books, 

journal, and the previous research align with the problem. A literature review of 

several related journals will also be shown in this chapter. 

CHAPTER 3 RESEARCH METHODOLOGY  

This chapter explains about step by step process to conduct this research 

presented in the form of a flowchart. A detailed explanation in each step, as well 

as a mathematical model, will also be shown here.  

CHAPTER 4 DATA PROCESSING  

This chapter consists of model validation and data processing. Proposed 

method is validated with the data in journal paper and historical data. Then, the 

data containing investment cost, operational cost, and fix cost in electricity of 

Kalimantan Island are collected to generate the value of the payoff matrix. After 

that, game theory modeling is made. Finally, the best winning power plant 

coalition is chosen based on the available scenario using cooperative game theory 

method.  

CHAPTER 5 ANALYSIS  

This chapter explains about data analysis and interpretation from chapter 

4. All of the scenarios generated will be analyzed and interpreted. The best 

scenario will be recommended for the decision-maker. Comparison of several cost 

allocation method among players will also be presented. 

CHAPTER 6 CONCLUSION AND RECOMMENDATION  

This chapter explains the conclusion got from the research that answers the 

objective of the research. It also contains guidance and reference for the decision-

maker of the electricity department in Kalimantan Island. Also, there are 

suggestions for future research. 



8 

 

(this page is initially left blank)



 

9 

 

2. CHAPTER 2 

LITERATURE REVIEW 

 

This chapter presents literature review of three prominent aspects of the theses: 

economic dispatch, game theory, and stochastic modeling. The related research which 

previously done will also be reviewed in this chapter as the background of the theses. 

 

2.1 Economic Dispatch 

Economic Dispatch (ED) is the process of allocating generators to the demand unit 

such that the constraints are met, and the energy needed is minimized (Farsi et al., 2015). For 

the interconnected power system, economic dispatch is the process to find total real and 

reactive power schedules of each interconnected power plant by allocating generators so that 

the total energy is minimized and the constraints are met. Farsi et al. (2015) state that 

economic dispatch practices can be divided into two stages namely unit commitment and unit 

dispatch. Unit commitment takes place before real-time operation comes first. It is a process 

of determining the set of generating units that will be available for dispatch as long as the 

reactive power vary within certain allowable limits. Unit dispatch occurs in real time. It 

determines the amount of generation needed from each available generating units.  

Beside this main objective of finding the optimum output for each set of available 

generators, there are other objectives in doing the economic dispatch. It can maximize the 

total profit by generating the lowest possible total cost and schedule the available generating 

units output. So it will be able to satisfy uncertain load demand and system constraints while 

able to minimize operating cost at the same time. This problem is usually solved by 

deterministic optimization (DO), assuming a perfect forecast of the load and the available 

renewable production (Fioriti and Poli, 2019b). While in reality, the load demand is 

uncertain, thus relevant uncertainties are handled by ensuring an adequate amount of 

generating reserve. However, it can underestimate reliability aspects and produce sub-optimal 

solutions with high final costs if they are not calibrated with uncertainty. So, stochastic, 

robust, and interval optimization methodologies have been proposed to cope with uncertainty. 

The solution methodologies to ED problem, especially in unit commitment can be 

broadly grouped into two namely conventional (classical) methods and intelligent methods 

(Reddy, Reddy and Pradesh, 2013). Each methods has its own advantages and disadvantages. 

In most cases solved by classical methods, although they are quite flexible and easy to add 
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some constraints, the capability to solve real-world large-scale power system problems are 

limited. So, they are computationally expensive for solution of a large system. They also have 

poor convergence and may get stuck at local optimum. While intelligent methods, in most 

cases, can find the global optimum solution. Moreover, they possess learning ability and fast. 

However, large dimensionality and the choice of training methodology are some 

disadvantages of intelligent methods. Table 2.1 below shows the advantages and 

disadvantages of each methods. 

 

Table 2.1 Advantages and Disadvantages of UC Solution Methods 

Author 

(Year) 
Method Advantage(s) Disadvantage(s) 

Mori and 

Matsuzaki 

(2001) 

C
la

ss
ic

al
 

Priority List 

 Good with functional 

inequality constraints  

 Good with high 

constrained problems 

 Very slow convergence 

 Difficult for inequality constraints 

Lowery 

(1966) 

Dynamic 

Programming 

 Converge fast 

 Handle inequality 

constraints very well 

 Flexible formulation 

 Convergence characteristics are 

sensitive to the initial conditions 

and may even fail to converge due 

to inappropriate initial conditions 

 The optimal solution will twnd to 

float over the limit 

Zhuang, 

Galiana and 

Member 

(1988) 

Lagrange 

Relaxation 

 Good for infeasible or 

divergent starting 

points 

 Good for ill 

conditioned and 

divergent systems 

 Difficulties in obtaining solution of 

lagrangian programming in large 

dimension 

 Difficult in obtaining the 

convergence of approximating 

programming cycle 

Arthur (1983) 
Branch and 

Bound 

 Efficient, fast and 

accurate compared to 

other known linear 

programming 

techniques 

 Infeasible solution if step size is 

chosen improperly 

Dillon et al. 

(1978) 

Integer and 

Mixed Integer 
  Flexible and accurate 

modeling capabilities 

 Computational complexity 

 Takes a long time 

Zhuang and 

Galiana 

(1990) 

In
te

ll
ig

en
t 

Simulated 

Annealing 

 Guarantees finding an 

optimal solution  

 Easy to code 

 Takes a long time to converge 

 Big T takes a lot of iterations while 

small T might not adequate before 

reaching a true optimum 

Huang and 

Huang (1997) 

Genetic 

Algorithms 

 Handle the integer or 

discrete variables 

 Adaptable to change 

 The solution is not guaranteed to 

be optimum 

 Deterioration in execution time and 

the quality of the solution when 

chromosome length increase 

Sisworahardjo 

and El-Keib 

(2002) 

Ant Colony 

Optimization 

 Inherent parallelism 

 Rapid discovery of 

good solution 

 Difficult theoretical analysis 

 Changes in probability distribution 

per iteration 

 Uncertain convergence time 

Yuan et al. 

(2009) 

Particle 

Swarm 

Optimization 

 High calculation 

efficiency 

 Easy to Implement, 

simple concept 

 Has fewer adjustable parameters, 

thus often resulting in premature 

solutions that cannot converge to 

the global optimum 
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Author 

(Year) 
Method Advantage(s) Disadvantage(s) 

 Capable to solve large-

scale non convex 

optimization 

 Deal with non 

differentiable and non 

convex objective 

functions 

 Balance in global and 

local exploration 

 Weak local search ability 

 Li et al. 

(2002) 

Artificial Fish 

Swarm 

Algorithm 

 Excellence 

convergence 

 Good local searching 

ability 

 Not suitable for problems with 

high dimensions 

 High time complexity 

 

A research that comes from Singh and Kumar (2015), tried to solve economic 

dispatch problem to reduce total generation cost and emission minimization using moderate 

random search PSO. The result shown that MRPSO enhances the ability of particles to 

explore in the search spaces more effectively and increases their convergence rates.  

While Biswas et al. (2018) use summation based multi objective differential evolution 

superiority of feasible solutions (SMODE-SF) and  multi objective evolutionary algorithm 

based on decomposition superiority of feasible solutions (MOEA/D-SF). They consider 

network security constraints together with constraints on generator capability and prohibited 

operating zones (POZs). The uncertainty is modeled by utilizing probability of solar power 

being excess of the scheduled power, and expectation of solar PV power above scheduled 

power. 

For ED problem, what's more important is the fast and efficient solution (Yuan and 

Yang, 2019). It means we pursue the most efficient method to obtain proper dispatching 

methods within a short time. Thus several studies tried to combine different optimization 

algorithms to form a hybrid intelligent optimization algorithm. Lee et al. (2008) tried to 

combine the ant colony algorithm with the genetic algorithm, while Shieh, Kuo and Chiang 

(2011) tried to combine the Particle Swarm Optimization (PSO) algorithm with the simulated 

annealing algorithm. This way, it could fully utilize the advantages of various algorithms, and 

overcome the flaws in a single intelligent optimization algorithm with satisfying results. 

Sadegheih (2009) and Su et al. (2014) found that the hybrid algorithms are superior than the 

simple ones both in terms of the convergence speed and the accuracy of the optimal solution. 

Looking at table 2.1, the advantage and disadvantage of PSO and AFSA algorithm seems to 

complement each other. The combination of those two algorithm should show excellence 
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convergence and higher calculation efficiency with an easy implementation. Therefore, we 

combined the two algorithms to obtain better results. 

 

2.2 Game Theory 

A definition of game theory comes from Leyton-Brown and Shoham (2008), game 

theory is the study of interaction among independent, self-interested agents. Self-interested 

agent does not mean that it will always cause harm, but it means that each agent has his own 

description of which states of the world he likes and the party will make an/some action(s) to 

make the goal happens. So in game theory method, there are more than one players (decision 

maker) involved, and each player has its own goal and strategy. The strategy of one player 

can affect the strategy and decision of another player. According to Osborne (2000), game-

theoretic modeling begins with some aspects of interest between the decision makers and 

then expressed to a model, including the situations that are relevant to the circumstances of 

the interest.  

Du, Grijalva and Harley (2015) had proposed a paper with the title of Game-Theoretic 

Formulation of Power Dispatch With Guaranteed Convergence and Prioritized Best 

Response. He proposed an ED model as potential games and solved the potential-game 

formulated ED in a distributed manner by incorporating renewable generators. He used game 

theory with Cournot dynamics with inertia and spatial adaptive play algorithm to solve the 

problem. The result shows that computational time decrease. In the same year, Yildiran and 

Tacer (2015) also solved the economic dispatch problem with game theory approach. It 

analyzed the economic dispatch of real power generation for the entire system. However, he 

did not include renewable generators in the system. The result shown that game theory model 

yield lower cost compared to genetic algorithm and lagrange function. Tang, Member and 

Jain (2016) have proposed a paper with the title of Dynamic Economic Dispatch Game: The 

Value of Storage. He made a DED model in which each generator has its own electricity 

storage device. So in this paper, he wanted to see how the agents react to the new business 

model as the impact of incorporating electricity storage in the market. Srikantha and Kundur 

(2017) had proposed a paper with the title of A Game Theoretic Approach to Real-Time 

Robust Distributed Generation Dispatch. They aimed to make a distributed dispatch strategy 

that is highly scalable and robust with strong static and dynamic properties as validated by 

theoretical and simulation analyses. It is designed to coordinate distributed generators 

effectively.  
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Over the years smart grid concept has encouraged researchers to enhance the 

reliability and reduce the costs of an integrated transmission grid. They study ways of 

generating power locally in proximity to the customer through combining together loads and 

distributed generation (DG) in so called microgrids. Thus, there is collaboration between 

players by sharing information and resources. Pilling, Chang and Luh (2017) study is able to 

prove that compared to standalone generations, the grids produce lower costs when they 

collaborate in power exchange regardless of their individual contributions to the power 

exchange coalition. 

Zolezzi and Rudnick (2002) had proposed a paper with the title of Transmission Cost 

Allocation by Cooperative Games and Coalition Formation. They aimed to present a method 

to allocate charges among users of a transmission system, either in the existing network or 

expanding one using cooperative game theory and coalitional formation. The result has 

shown that the presented method allows solving the transmission cost allocation problem and 

solve the allocation of expansion cost, without any methodological change. 

Sore, Rudnick and Zolezzi (2006) had proposed a paper with the title of Definition of 

an Efficient Transmission System Using Cooperative Games Theory. They aimed to find a 

transmission trunk system (TTS) making use of the cooperative games theory characteristics 

that allow finding a minimum network that satisfies the system demand at the lowest possible 

cost. The methodology used is using cooperative game theory. The results succeed in 

distributing the cost to the agent and government. Another literature on game theory method 

to solve economic dispatch problem is also presented in table 2.2 below. 

 

Table 2.2 Previous study on game theory method 

No Title Method Research Aim Result Drawback 

1 
Hong and Kim 

(2016) 

Game theory 

based approach 

Maximum 

utilization of 

resources to 

minimize the 

transmission cost 

Efficiently utilize the 

surplus power 

No proper 

pricing medium 

is adapted to 

calculate the 

cost 

2 Ni and Ai (2016) 

Coalition game 

theory using 

Shapley value 

Optimal cost 

including all 

expenditures 

Expenditure reduction 

up to 34.7% 

No proper 

pricing policy of 

the micro grids 

3 
Pilling, Chang 

and Luh (2017) 

Cooperative 

game theory 

using Shapley 

value 

Minimize daily 

generation cost 

Reduction in 

generation up to 

202,397 MWh at a 

cost of $3,977,685 

during summer and 

159,755MWh at a cost 

of $2,918,003 during 

winter 

Increase in 

complexity 
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4 

Karavas, 

Arvanitis and 

Papadakis (2017) 

Game theory 

using Nash 

equilibrium 

Meeting load 

demand with 

power scarcity 

7% higher efficiency 

and 1.62% reduction 

in annual cost 

Overlooked the 

system 

complexity 

 

2.3 Stochastic Modeling 

Initially, deterministic optimization is able to solve economic dispatch problem. By 

implementing deterministic optimization, the problem formulation only need low 

computational need and low amount of variables. However, we must provide the right 

amount of reserve margin to cope with load uncertainty. In other word, it ensures limited 

amount of energy-not-served. However, it must be calibrated with an economical or a 

probabilistic approach so that it is not producing sub optimal solution with high total cost. To 

address the problem, stochastic, robust, and interval optimization methodologies have been 

proposed (Pandzic et al., 2016; Abujarad, Mustafa and Jamian, 2017). 

Stochastic processes are collections of random variables defined on the same 

probability space. The random variables are not usually independent, but some dependency 

relationships can typically be expressed using conditional expectation or probability 

(Lanchier, 1998). It models a random phenomenon that evolves over time. A mathematical 

expression is used to model the relationship between the fixed past and the random future. It 

means that measurement of the random future depends on random past.  

In practice, especially in power system, stochastic variants of grid operations models 

are not due to their computational difficulty (Papavasiliou and Oren, 2013). It is mainly 

because of the number of samples required to achieve high-quality, robust solutions (Safta et 

al., 2017). Despite all the hard work, stochastic optimization (SO) seems able to find the 

cheapest solutions (Abujarad, Mustafa and Jamian, 2017), because it can capture 

uncertainties more accurately. For example, through forecast based on the probability density 

function (PDF) of the forecasting errors. Several studies have utilized stochastic concept to 

solve economic dispatch problem. 

Shaabani, Reza and Kouhanjani (2017) propose a time-varying acceleration particle 

swarm optimization (TVAC-PSO) combined with Monte Carlo simulations to solve multi-

objective optimization of economic emission dispatch. In this study, the uncertain behavior is 

defined as expected value from Monte Carlo simulation. Once the power and heat values and 

their associated variance and probability density function (PDF) are obtained. This value will 

become the input to the next step. The result shows that TVAC-PSO method has good 
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convergence properties and the convergence speed and the simulation time of this method is 

appropriate.  

Solving the same problem, Pourghasem et al. (2019) proposed stochastic model  

along with capacity outage probability table (COPT), exchange market algorithm (EMA) and 

the weighted sum method. Stochastic problem is addressed through implementation of 

scenario generation and scenario reduction approaches. First, forecast errors of load demand 

and wind power are taken as random variables with specific probability density functions 

(PDF). Afterwards, roulette wheel mechanism is used to generate scenarios. Then, 

simultaneous backward method is used as scenario reduction technique. This method can 

produce greater achievements for longer dispatching horizons. 

Another research conducted by Fioriti, Giglioli and Poli (2016) had proven that 

Monte Carlo simulations and mixed integer programming can address short-term operation of 

a hybrid mini grid problem under load and renewable production uncertainty. By using this 

approach, the daily fuel cost of the stochastic formulation is 1.4% lower than for the 

deterministic optimization.  

From these previous studies, computation time, uncertainty as well as renewable 

energy aspect become important in recent years. There is tradeoff between solving 

uncertainty with stochastic optimization and computation time. It is because a sharp increase 

in computational time (more than 100 times with respect to the robust approach) was 

observed in stochastic optimization (Morales-España, Lorca and de Weerdt, 2018). 

Meanwhile, the dispatch problem must be done quickly, so that the generator will be able to 

generate the power reliably. Fioriti and Poli (2019) found that Improved Aggregating-Rule-

based Stochastic Optimization (IARSO) is at least 34 times faster and 0.1–2.6% cheaper than 

SO. Hence, IARSO combined with the hybrid intelligent algorithm (PSO and AFSA) is 

proposed to cope with both uncertainty and computation time. 

The Improved ARSO (I-ARSO) approach is based on a novel cost-based aggregating 

rule (Fioriti and Poli, 2019b). It is a novel approach based on standard ARSO methodology 

because of a cost-based rule for the aggregator in the second stage shown in figure 2.2 below. 

Monte Carlo simulation generates a given number of scenarios of load and renewable 

production profiles. Then deterministic optimization is conducted to get the optimal 

dispatching that minimizes the operating costs in each scenario independently. The result will 

then be simulated to evaluate the corresponding expected operating costs. Finally, the final 

dispatching is selected according to the cost-based aggregator. 
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In the initialization stage, the proposed operating strategy begins by forecasting the 

load and the available renewable production. The PDF of forecasting error is used to draw N 

scenarios, consisting of a possible power profile of the load and the available renewable 

production. 

In the first stage, for every scenario generated in the initialization phase, the optimal 

deterministic scheduling of the system will be calculated by a standard deterministic 

optimization technique and solved by solver such as in  (Fioriti, Giglioli and Poli, 2016), 

(Schulze and McKinnon, 2016) and (Pandzic et al., 2016). The objective function is to 

minimize overall electricity costs.  

 

 

Figure 2.1 Improved Aggregating-Rule-based Optimization 

 

In the second stage, since the results in the first stage only relevant to the 

corresponding scenario, they do not represent the uncertainty. In this case, the result will be 

in the expected operating cost (EOC) of the whole stochastic process. Therefore, in M 

different Monte Carlo scenarios (having occurrence probability πm) will be generated to 

simulate real-time operations. Finally, the final dispatching with the lowest EOC is selected 

according to cost-based aggregator. 

 

2.4 Related Research 

To find out the latest research developments, reviews of previous researches were 

conducted to determine the position and differences of current research. The research on the 

ED topic with various methods and similar methods used in various problems are compared 
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and analyzed. There are plenty of research papers discussing about solving economic 

dispatch problem. The summary of related researches are shown in table 2.3 and 2.4 below.
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Table 2.3 List of Reviewed Papers 

No Author Year Title Method Research Aim Result Drawback 

1 

Zolezzi, Juan 

M.; Rudnick, 

Hugh 

2002 

Transmission Cost 

Allocation by 

Cooperative Games 

and Coalition 

Formation 

Cooperative games 

and coalition 

formation 

To present a method to allocate 

charges among users of a 

transmission system, either in 

existing network or expanding 

one 

The presented a method 

allows solving the 

transmission cost allocation 

problem and solve the 

allocation of expansion 

cost, without any 

methodological change 

Handling of dimension of 

the game, which grows 

with ratio 2^N, with N 

being the number of 

agents. 

2 

Sore, Francko; 

Rudnick, 

Hugh; Zolezzi, 

Juan 

2006 

Definition of an 

Efficient 

Transmission System 

Using Cooperative 

Games Theory 

Cooperative game 

theory 

To finds a TTS making use of the 

cooperative games theory 

characteristics that allow finding a 

minimum network that satisfies 

the system demand at the lowest 

possible cost. 

The modeling of the 

regulated and private games 

allows covering 100% of 

the cost of the respective 

resulting TTS lines, 

because 

the calculation of the 

Shapley value allows 

distributing the costs 

associated to the large 

coalition 

Adding revenue, 

investment and operational 

cost to the model 

3 

Du, Liang & 

Santiago 

Grijalva 

2015 

Game-Theoretic 

Formulation of 

Power Dispatch With 

Guaranteed 

Convergence and 

Prioritized Best 

Response 

Game theory, 

cournot dynamics 

with inertia and 

spatial adaptive 

play algorithm  

Model the ED as potential games 

and solve the potential-game 

formulated ED in a distributed 

manner 

Present potential-game 

formulation of the 

constrained ED problem by 

incorporating renewable 

generators 

Does not consider cost and 

profit functions of 

renewable resources 

4 

Yildiran, 

Nezihe & 

Emin Tacer 

2015 

Game Theory 

Approach to Solve 

Economic Dispatch 

Problem 

Game theory 

Analyze the economic dispatch of 

real power generation for the 

entire system 

Present game theory model 

to yield lower cost 

compared to Genetic 

Algorithm and Lagrange 

function 

Does not consider 

transmission loss & 

renewable energy 
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No Author Year Title Method Research Aim Result Drawback 

5 

Singh, 

Nagendra; 

Kumar, 

Yogendra 

2015 

Multiobjective 

Economic Load 

Dispatch Problem 

Solved by New PSO 

Moderate random 

search PSO 

Solve the economic load dispatch 

problem to reduce the total 

generation cost of the thermal 

power plant and deals with 

environmental emission 

minimization 

MRPSO enhances the 

ability of particles to 

explore in the search spaces 

more effectively and 

increases their convergence 

rates. 

Does not consider 

generation, and 

distribution cost and profit 

functions 

6 

Fioriti, Davide; 

Romano 

Giglioli; 

Davide Poli 

2016 

Short-term Operation 

of a Hybrid Minigrid 

under Load and 

Renewable 

Production 

Uncertainty 

Monte Carlo 

simulations and 

mixed integer 

programming 

Minimizes the sum of fuel costs, 

load curtailment, and maintenance 

cost 

A proper unit commitment 

and dispatching method 

improves the quality of 

supply while reducing the 

costs. 

Does not accommodate 

long term simulations, the 

computation time is long. 

7 
Tang, 

Wenyuan 
2016 

Dynamic Economic 

Dispatch Game: The 

Value of Storage 

Game theory 

Make a DED model in which 

each generator has its own 

electricity storage device 

Present simplified model 

DED model incorporatig 

the value of storage 

Extend to a larger class of 

scenarios, and generalize 

the results to the stochastic 

setting. 

8 
Srikantha, 

Pirathayini 
2017 

A Game Theoretic 

Approach to Real-

Time Robust 

Distributed 

Generation Dispatch 

Game theory 

Make a distributed dispatch 

strategy that is highly scalable 

and robust with strong static and 

dynamic properties as validated 

by theoretical and simulation 

analyses 

Present generation dispatch 

strategy that can effectively 

coordinate a large number 

of distributed generators 

Inherent generation 

variability of DGs. 

9 

Melati, 

Alfiyyah 

Azzah 

2017 

Analisa Strategi 

Economic Dispatch 

dengan Pendekatan 

Game Theory pada 

Sistem Kelistrikan 

Jawa Bali 500kV 

Game theory 

Minimizing cost of electricity by 

considering the interest of gas 

generator and coal generator 

Win win solution between 

coal generator and gas 

generator has been reached 

with top-pull strategy for 

coal generator and take or 

pay strategy for gas 

generator 

Does not consider 

transmission losses 
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No Author Year Title Method Research Aim Result Drawback 

10 

Shaabani, 

Yousef ali et 

al. 

2017 

Stochastic multi-

objective 

optimization of 

combined heat and 

power economic 

emission dispatch 

Time-varying 

acceleration 

particle swarm 

optimization 

(TVAC-PSO) 

combined with 

monte carlo 

simulations 

Solving economic dispatch and 

emission reduction problems 

simultaneously and stochastically 

TVAC-PSO method has 

good convergence 

properties and the 

convergence speed and the 

simulation 

time of this method is 

appropriate 

• The uncertain bahavior is 

defined as expected value 

from Monte Carlo 

simulation 

• Optimization based on 

reliability has not been 

done 

11 Safta, Cosmin  2017 

Efficient Uncertainty 

Quantification in 

Stochastic Economic 

Dispatch 

 PolynomialChaos 

Expansions (PCEs) 

approachwith a 

novel renewable 

power scenario 

generation 

technique based on 

Karhunen-Lo`eve 

expansions 

(KLEs). 

Minimize the expected total 

production and loss-of-load costs 

• These representations 

enable efficient and 

accurate propagation of 

uncertainties in model 

parameters, using sparse 

quadrature methods. 

• Reduction in 

computational cost 

• Dramatically reduce the 

computational difficulty of 

stochastic grid operations 

problems 

Faces the curse-of 

dimensionality challenge, 

as the number of samples 

required by the PCE 

method exhibits a near 

exponential dependence 

on the number of 

stochastic dimensions. 

12 
Biswas, Partha 

P. et al. 
2018 

Stochastic multi-

objective dynamic 

dispatch of renewable 

and CHP-based 

islanded microgrids 

Stochastic model  

along with capacity 

outage probability 

table (COPT), 

exchange market 

algorithm (EMA) 

and the weighted 

sum method 

Minimization of both generation 

cost and emission 

• It calculates the expected 

energy not supplied 

• By including emission and 

EENS in economic dispatch 

problem, greater 

achievements can be 

reached for longer 

dispatching horizons 

The approach has not 

consider robust and 

opportunity functions and 

also renewable energy 

sources and energy storage 

systems 

13 

Xiang, 

Mengyuan et 

al. 

2018 

Computing non-

stationary (s, S) 

policies using mixed 

integer linear 

programming 

MINLP model and 

a binary search 

approach 

Introduce two new heuristics to 

compute near-optimal ( s , S ) 

policy parameters 

Optimality gaps of these 

models are less than 0.3% 

of the optimal policy cost 

and computational times 

are reasonable 
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No Author Year Title Method Research Aim Result Drawback 

14 
Fioriti, Davide; 

Davide Poli 
2019 

A novel stochastic 

method to dispatch 

micro grids using 

Monte Carlo 

scenarios 

Improved 

Aggregating-Rule-

based Stochastic 

Optimization 

(IARSO) 

Minimize the operating costs 

related to fuel, maintenance, load 

curtailment, and the equivalent 

cost of discharging the battery 

more than the preset final value 

• Interesting savings in 

operational costs, up to 5%, 

• Sharply reduces the 

computational 

requirements, even more 

than 5–100 times with 

respect to traditional 

stochastic approaches 

• The solutions with I-

ARSO turned out to be 

more resilient than the 

standard SO, both in terms 

of computational 

requirements and optimality 

of the solution 

None declared 

15 
Pourghasem, 

Pouya et al. 
2019 

Multiobjective 

economic-

environmental power 

dispatch with 

stochastic wind-solar-

small hydro power 

Summation based 

multiobjective 

differential 

evolution 

superiority of 

feasible solutions 

(SMODE-SF) and  

multiobjective 

evolutionary 

algorithm based on 

decomposition 

superiority of 

feasible solutions 

(MOEA/D-SF) 

Determine output of each 

generating unit so that fuel cost 

and amount of emission are 

minimized while the electrical 

demand is provided by more 

reliable units and operational 

constraints are met 

 Considers network security 

constraints together with 

constraints on generator 

capability and prohibited 

operating zones (POZs) 

Making stochastic 

behavior become 

deterministic because it 

uses expected value 

Table 2.4 Research Position 

No Author Title Year Journal Name Method 
Economic dispatch 

Uncertainty 
Renewable 

Energy Generation Transmission Distribution 
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No Author Title Year Journal Name Method 
Economic dispatch 

Uncertainty 
Renewable 

Energy Generation Transmission Distribution 

1 

Zolezzi, Juan 

M.; Rudnick, 

Hugh 

Transmission Cost 

Allocation by 

Cooperative 

Games and 

Coalition 

Formation 

2002 

IEEE 

Transactions on 

Power System 

Cooperative games and 

coalition formation 
 v    

2 

Sore, Franko; 

Rudnick, 

Hugh; 

Zolezzi, Juan 

Definition of an 

Efficient 

Transmission 

System Using 

Cooperative 

Games Theory 

2006 

IEEE 

Transactions on 

Power System 

Cooperative game 

theory 
  v       

3 

Du, Liang & 

Santiago 

Grijalva 

Game-Theoretic 

Formulation of 

Power Dispatch 

With Guaranteed 

Convergence and 

Prioritized Best 

Response 

2015 

IEEE 

Transactions on 

Sustainable 

Energy 

Game theory, Cournot 

dynamics with inertia 

and spatial adaptive 

play algorithm  

v   v   v 

4 

Yildiran, 

Nezihe & 

Emin Tacer 

Game Theory 

Approach to Solve 

Economic 

Dispatch Problem 

2015 

International 

Journal of 

Trade, 

Economics, and 

Finance 

Game theory   v v   v 

5 

Singh, 

Nagendra; 

Kumar, 

Yogendra 

Multiobjective 

Economic Load 

Dispatch Problem 

Solved by New 

PSO 

2015 

Advances in 

Electrical 

Engineering 

Moderate random 

search PSO 
  v v   v 

6 

Fioriti, 

Davide; 

Romano 

Giglioli; 

Davide Poli 

Short-term 

Operation of a 

Hybrid Minigrid 

under Load and 

Renewable 

2016 

IEEE 2016 

Global 

Humanitarian 

Technology 

Conference 

Monte Carlo 

simulations and mixed 

integer programming 

v     v v 
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No Author Title Year Journal Name Method 
Economic dispatch 

Uncertainty 
Renewable 

Energy Generation Transmission Distribution 

Production 

Uncertainty 

7 
Tang, 

Wenyuan 

Dynamic 

Economic 

Dispatch Game: 

The Value of 

Storage 

2016 

IEEE 

Transactions on 

Smart Grid 

Game theory v   v     

8 
Srikantha, 

Pirathayini 

A Game Theoretic 

Approach to Real-

Time Robust 

Distributed 

Generation 

Dispatch 

2017 

IEEE 

Transactions on 

Industrial 

Informatics 

Game theory v v v     

9 

Davidov, 

Sreten & 

Milo's Panto's 

Stochastic 

Assessment of 

Investment 

Efficiency in A 

Power System 

2017 Energy 
Simulation & cost 

benefit analysis 
v v   v   

10 Zou, Dexuan  

A new global 

particle swarm 

optimization for 

the economic 

emission dispatch 

with or without 

transmission 

losses 

2017 

Energy 

Conversion and 

Management 

Global particle swarm 

optimization 
  v v v   

11 

Shaabani, 

Yousef ali et 

al. 

Stochastic multi-

objective 

optimization of 

combined heat and 

power economic 

emission dispatch 

2017 Energy 

Time-varying 

acceleration particle 

swarm optimization 

(TVAC-PSO) 

combined with monte 

carlo simulations 

v     v   
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No Author Title Year Journal Name Method 
Economic dispatch 

Uncertainty 
Renewable 

Energy Generation Transmission Distribution 

12 Safta, Cosmin  

Efficient 

Uncertainty 

Quantification in 

Stochastic 

Economic 

Dispatch 

2017 

IEEE 

Transaction on 

Power Systems  

Improved Aggregating-

Rule-based Stochastic 

Optimization (IARSO) 

v     v v 

13 

Biswas, 

Partha P. et 

al. 

Stochastic multi-

objective dynamic 

dispatch of 

renewable and 

CHP-based 

islanded 

microgrids 

2018 

Electric Power 

Systems 

Research 

MINLP model and a 

binary search approach 
v     v v 

14 

Fioriti, 

Davide; 

Davide Poli 

A novel stochastic 

method to dispatch 

micro grids using 

Monte Carlo 

scenarios 

2019 

Electric Power 

Systems 

Research 

Stochastic model  

along with capacity 

outage probability table 

(COPT), exchange 

market algorithm 

(EMA) and the 

weighted sum method 

v     v v 

15 
Pourghasem, 

Pouya et al. 

Multiobjective 

economic-

environmental 

power dispatch 

with stochastic 

wind-solar-small 

hydro power 

2019   

Summation based 

multiobjective 

differential evolution 

superiority of feasible 

solutions (SMODE-SF) 

and  multiobjective 

evolutionary algorithm 

based on 

decomposition 

superiority of feasible 

solutions (MOEA/D-

SF) 

v v   v v 

16 This research    

IARSO combined with 

the hybrid intelligent 

algorithm (PSO and 

AFSA) and game 

v v  v v 
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No Author Title Year Journal Name Method 
Economic dispatch 

Uncertainty 
Renewable 

Energy Generation Transmission Distribution 

theory 

 

Based on the literature review, game theory mostly applied when handling multi-player economic dispatch problem. Moreover, year 

published of most of the papers applying game theory as a solution technique indicates that game theory is one of the recent issues on multi-

player economic dispatch problem. Most of the papers are concerned about electricity cost minimization. While cost minimization considering 

renewable energy, uncertainty and investment decision making still lack paper which concerned about especially for hydro power plant. Based 

on the review on these two perspectives: modeling stochastic behavior of power system using IARSO combined with the hybrid intelligent 

algorithm (PSO and AFSA) to solve ED problem and utilizing game theory to seek lowest investment cost is keen to state that proposed idea in 

this work is original and beneficial.
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3. CHAPTER 3 

RESEARCH METHODOLOGY 

 

This chapter mainly contains three aspects, which are the research 

flowchart, materials and methodology to be used in this research and finally 

model development as well as the steps taken to solve research problem. 

 

3.1 Research Flowchart 

In this chapter, the steps taken in conducting study are explained. Figure 

3.1 below shows the flowchart of the research. 

 

Figure 3.1 Research Flowchart 
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The study starts with introduction phase. It consists of gap elicitation and 

building research question. In this phase, the gap is elicited based on the up-to-

date studies in economic dispatch under uncertainty and the author's research 

series about economic dispatch in Kalimantan electricity master plan. In addition, 

economic dispatch drawbacks also become one of consideration in finding the 

research gap. Several literature reviews are conducted to search the best method in 

solving stochastic economic dispatch problem. After that, research question is 

generated based on the existing condition of the object and the research gap. 

The second phase is variables and data identification. This phase identifies 

the variables, players involved in the study. It also presents the source of data used 

in the study. Moreover, it presents the scenarios considered in the study. The next 

phase is model development. This phase presents the mathematical model 

formulation to solve ED problem and characteristic cost function as the utility for 

cooperative game theory. Then, I-ARSO approach to model stochastic behavior 

along with the hybrid intelligent algorithm based on particle swarm optimization 

and artificial fish swarm algorithm to optimize power dispatch is presented. 

The final phase is drawing a conclusion to answers to the research 

objective. The conclusion is also got from the analysis result of the research. It 

results in economic dispatch theoretical contribution and managerial implication 

on renewable energy sources under uncertainty. Moreover, suggestions about the 

development of future research are given. 

 

3.2 Variables and Data 

In this stage, the player and variable is defined. The object under 

discussion is Kalimantan electricity master plan. It is divided into three areas, 

namely “Khatulistiwa” system in West Kalimantan (Area-1), “Barito” system in 

South - Middle Kalimantan (Area-2), and “Mahakam” system in East - North 

Kalimantan (Area-3) as the electricity system in Kalimantan Island. The players in 

the game are groups of power plants in area 1, 2, and 3 or the coalition among the 

players. The coalition consists of S12, S23, and S123. A total of 27 generators in area 

1 and 2, and 22 generators in area 3 are modeled in this study. The detailed 

information can be seen in table 3.1. The list of power plant as well as the 
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variables used in this study are got from Rencana Usaha Penyediaan Tenaga 

Listrik (RUPTL) Tahun 2018-2027 PT PLN (Persero), Interim Report of 

Kalimantan Electricity Master Plan Development and primary data from the 

company.  

Kalimantan electricity master plan has two system alternatives, namely 

regional balance and interconnectivity system.  

1. Regional Balance System 

Regional balance system is a situation where the electricity needs of a region 

are met by generators in its own region and do not depend much on the power 

transfer across region through interconnection transmission lines. With this 

principle, the need for interconnection transmission between regions will be 

minimal. 

2. Interconnectivity System  

Interconnection system is an electric power system that consists of several 

generators and several substations (GI) interconnected each other through a 

transmission line. This system is able to supply the load in its connected area. 

For example, interconnection of Area 1 and 2 means Area 1 (Khatulistiwa) 

and Area 2 (Barito) support each other to meet the demand (power will be 

transferred if needed), while Area 3 (Mahakam) supplies its own region. 

Based on the previous research and company‟s consideration, there are 

several scenarios that will be considered in this study shown in table 3.1 below. 

Table 3.1 Lists of Scenarios 

Scenario Plant Types System 
#HPP #TPP 

A2 A3 A1 A2 A3 

1 HPP Regional balance 1 2 27 26 19 

2 TPP Regional balance 0 0 27 27 22 

3 TPP & HPP Regional balance 0 2 27 27 19 

4 HPP& TPP Regional balance 1 0 27 26 22 

5 HPP& TPP Interconnectivity 1-2 1 2 27 26 19 

6 TPP Interconnectivity 1-2 0 0 27 27 22 

7 HPP& TPP Interconnectivity 2-3 1 2 27 26 19 

8 TPP Interconnectivity 2-3 0 0 27 27 22 

9 HPP& TPP Interconnectivity 1-2-3 1 2 27 26 19 

10 TPP Interconnectivity 1-2-3 0 0 27 27 22 
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3.3 Model Development 

In this stage, we calculate the total demand needed in Kalimantan 

electricity master plan and generator data as the input to calculate operational cost. 

In addition, the total investment cost, fix cost and variable cost are also calculated. 

In order to calculate the operational cost, IARSO with hybrid PSOAFSA 

algorithm will be utilized. Sub-section 3.3.1 below shows the objective function 

of the operational cost. 

3.3.1 Mathematical Model Formulation 

In this phase, the mathematical model of the system is built. The model 

consists of the objective function, constraint, and cost formulation shown below. 

Variables: 

   (   ) = the cost function of the jth generating unit per hour t (Rp) 

    = the real output of the jth generating units per hour t (MW) 

    = total system demand every hour (MW) 

    = total losses that occur in the system (MW) 

Parameters: 

         = the cost coefficients of the jth generating unit  

 g = the total number of generators in the power system. 

  = the total number of time steps in the power system. 

    = the jth element of the loss coefficient square matrix 

    = the ith element of the loss coefficient vector 

    = the loss coefficient constant. 

  
    = minimum power capacity of generator j (MW) 

  
    = maximum power capacity of generator j (MW). 

 

Objective function: 

          ∑ ∑         
  
   

 
    (3.1) 

Where    (   ) is modeled as: 

   (   )       
             (3.2) 
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s.t. 

∑ ∑    
  
   

 
    ∑          

 
       (3.3) 

     ∑ ∑          
 
   

 
     ∑       

 
        (3.4) 

  
             

    (3.5) 

 

The objective function is to minimize the generation cost especially the 

operational cost that is related to fuel consumption in an hourly basis (24 hour). 

Equation 3.2 elaborate how the cost function is obtained. It is got from the 

multiplication of cost coefficient of each generating unit with the power to be 

dispatched. Constraint 3.3 ensures that the demand in each hour is satisfied 

regardless of the transmission loss occurred. Constraint 3.4 calculates the amount 

of transmission loss in every hour. While constraint 3.5 contains the generator 

limit, which is the minimum and maximum amount the generator is allowed to 

operate. 

 

3.3.2 Defining Characteristic Cost Function 

Characteristic function tells how much collective payoff a set of players 

pay by forming a coalition. Here, the characteristic cost function is defined as: 

C(S) =  EPC cost + development cost + fix cost + variable cost (3.6) 

where EPC cost consists of transmission line cost, installation, coal and ash 

handling system, switchyard, turbine, FGD, stack and steam generator cost. While 

development cost consists of land acquisition, site preparation, and consulting 

service cost. Fix cost consists of employee‟s wage, property tax and assurance. 

Finally, variable cost consists of operational and supply cost. 

 

3.3.3 Utilizing IARSO with Hybrid Intelligent Algorithms (PSO and AFSA)  

Here are several core components of IARSO with hybrid intelligent 

algorithm and (PSO AFSA). 

 

1. The Hybrid Intelligent Algorithm (PSO and AFSA) 
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According to (Yuan and Yang, 2019), suppose that in a D-dimensional 

objective search space, there is community made up by N particles, where the i
th

 

particle is represented as a D- dimensional vector: Xi = (xi1, xi2, …, xiD), i=1, 2, 

…, N. The “flying” velocity of the ith particle is also a D-dimensional vector, 

written as: Vi = (vi1, vi2, …, viD), i=1, 2, …, N. The optimal position found by the 

ith particle so far is called the individual extremum, written as: Pbest = (pi1, pi2, …, 

piD), i=1, 2, …, N. The optimal position found by the entire particle swarm so far 

is called the global extremum, written as: Gbest = (pg1, pg2, …, pgD). 

When these two optimal values are found, the particles will update their 

velocity and position according to Equations 3.7 and 3.8 below: 

                            (       )   (3.7) 

            (3.8) 

where c1 and c2 are learning factors, also called the acceleration constants, and r1 

and r2 are uniform random numbers in the range of [0, 1]. Let i = 1, 2, …, D, and 

vid be the velocity of the particle 

After the above transformation, the position of the particle is updated 

according to AFfollow or AFswarm. The velocity and position after transformation are 

shown in Equations 3.9 and 3.10 below: 

                            (       )   (3.9) 

                                (3.10) 

where α and β are the position transformation weights (     ). The weights 

here are mainly to avoid reaching premature solutions or local optimal solutions 

of the particle swarm. The value of a is an increasing function to the changing 

weight. The pseudocode and detailed steps of this algorithm is shown in table 3.2 

below. 

 

2. Monte Carlo 

Monte Carlo simulation is a technique used to understand the impact of 

risk and uncertainty in financial, project management, cost, and other forecasting 

models (Shaabani, Seifi and Kouhanjani, 2017). Whenever a forecasting model is 

made, the best thing we can do is estimate the expected value based on historical 
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data. Moreover, there will always be some inherent uncertainty and risk because 

it‟s an estimate of an unknown value. When there is already a range of values as a 

result, how likely the resulting outcomes will be accurately estimated. 

In a Monte Carlo simulation, a random value is generated based on the 

range of estimates. The result of the model is recorded, and the process is repeated 

hundreds or thousands of times randomly. The result is random based on random 

input. These results are used to describe the likelihood or probability of the model. 

 

3. IARSO 

IARSO methodologies decompose the SO problem into N deterministic 

sub problems. This methodology consists of two stages. The first stage is 

optimizing each sub problem and using an aggregating rule to select the optimal 

scheduling of resources among the previous solutions. While the second stage 

evaluates the EOCs over the whole stochastic process. 

In the novel Improved Aggregating-Rule-based Stochastic Optimization 

(IARSO), standard DO technique calculates the optimal deterministic scheduling 

of the system for every load and RES scenario drawn in the initialization phase. 

However, because a great number of generators must be scheduled on an hourly 

basis, metaheuristic algorithm will be applied so that the calculation time will be 

faster. Hybrid Intelligent Algorithms (PSO and AFSA) will be used as the method 

to solve the economic dispatch problem since it will lead to excellent stability, 

better convergence, and quick calculation time (Yuan and Yang, 2019). Figure 3.2 

below shows the proposed method. 
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Figure 3.2 IARSO combined with Hybrid Intelligent Algorithms (PSO & AFSA) 

In the initialization stage, the proposed operating strategy begins by 

forecasting the load and the available renewable production in hourly basis. The 

procedure of demand scenario generations begins with a distribution fitting. 

Distribution fitting is a process to define a distribution type of data. Minitab  

19.1.1 (64-bit) is used to obtain these parameters. The PDF of forecasting error is 

used to draw N scenarios, consisting of a possible power profile of the load and 

generator availability. For the generator availability generation, the availabilities 

are determined from available historical data on the outages in a power network. 

A uniformly distributed random number is defined in s-th scenario, which holds a 

value between a = 0 and b = 1, as shown in equation 3.11 below: 

           (3.11) 

Equation 3.12 define the status of the generator. It is set to 1 (in service) 

when the random value is less than the e-th element's availability Ae; otherwise, is 

set to 0 (outage). While equation 3.13 shows the availability calculation. 

                 {
                       

                        
 (3.12) 

   
  

     
 (3.13) 

where the Ae represents e-th element's availability, me represents e-th element 

mean time to failure and re represents e-th element mean time to repair. 
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In the first stage, the optimal scheduling of the system will be calculated 

by the hybrid intelligent algorithm (PSO and AFSA) as shown in figure 3.3(a). It 

applies to every scenario generated in the initialization phase. The objective 

function is to minimize overall operational costs related to fuel as shown in sub-

chapter 3.3.1. 

 

 (a) (b) 

Figure 3.3 IARSO (a) first stage (b) second stage 

 

For every scenario generated in the initialization phase, the solution 

process of the power system dispatching problem is mainly to randomly generate 

a swarm of intelligent particles based on the constraints, and evaluate the problem 

based on cost function described in sub-chapter 3.3.1. And then update the values 

of the intelligent particles by the Particle Swarm Optimization-Artificial Fish 

Swarm Algorithm. The algorithm process for the integrated weighted dispatching 

optimization model, as shown in equation 3.10. Below is the steps for the 

algorithm: 
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Step 1: Initialize a swarm of intelligent particles (with a size of n particles), 

including their initial position and initial speed (interval position 

corresponding to the constraints). 

Step 2: Check if all constraints are met; if yes, proceed to the next step; if 

balance constraint is violated, re-allocate demand excess or surplus to 

randomly selected generator as long as the boundary constraint is met. 

Step 3: Evaluate the fitness value of each particle by using the value of the 

objective function, as shown in equation 3.1. 

Step 4: For each particle, compare its fitness value with its best position pbest. If 

its fitness value is better, then use it to replace pbest. 

Step 5: For each particle, compare its fitness value with its best position gbest. If 

its fitness value is better, then use it to replace gbest. 

Step 6: Update the particle speed and the position (in accordance with the 

strategy in Equation 3.7 and 3.8). 

Step 7: The individuals would update themselves by swarming and following 

behavior, or generate a new intelligent particle swarm. 

Step 8: Evaluate all individuals. If an individual is better than the Bulletin Board, 

then use this individual to replace the Bulletin Board. 

Step 9: Check whether the terminal conditions of the algorithm are met (If met, 

then end the algorithm; if not, go back to Step 3). 

a. Second stage 

In the second stage, since the technical-economical results are only 

relevant to the corresponding load and generator availability scenario, they do not 

represent the total power cost (TC) of the whole stochastic process. Therefore, a 

Sample Average Approximation (SAA) method (Kim and Ryu, 2011) has been 

introduced in equation 3.14 to evaluate TCn that are expected in the real-time 

system operation when generating resources are scheduled according to the n-th 

dispatching strategy issued by the first stage (n =1 …N). This method allows 

evaluating the EOCs over the whole stochastic process, as required by the 

aggregator as shown in figure 3.3(b). For each scheduling configuration, the 

procedure simulates the real-time operation of the power system in M different 
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Monte Carlo scenarios (having occurrence probability πm) that model the possible 

deviations of load and transmission loss with respect to their forecasted power 

profiles. During each simulation, the real-time rules adjust the scheduled 

dispatching to balance the load with the current power production; operating costs 

Ceq,m, which account for fuel consumption (CF,n,m) and curtailment (CC,n,m), 

as detailed in equation 3.15, are calculated and recorded. The costs are calculated 

and recorded. 

         ∑          
 
    

 

 
∑      

 
     (3.14) 

                            (3.15) 

Finally, the aggregator selects as final dispatching     the scheduling 

   ̂   optimized in the first stage that has the lowest expected cost     ̂ , as shown 

in equation 3.16 below. The pseudocode and detailed steps of this monte carlo 

generation is shown in table 3.3 below 

     {   ̂    ̂              {   }} (3.16) 

 

Table 3.2 Pseudocode of the Proposed Hybrid PSOAFSA 

Input: dgen (contains PDmin, PDmax, a, b, c, AeData, CC), 

dpar               , N, maxit, Rep, Rep2, teta, beta, step 

Output: Gbest, F(Gbest), computation_time 

1 for q = 1 to Rep 

2       Generate loadq ~         

3       Generate RandAe ~ U(0,1) 

4       if RandAe <= AeData 

5             Ae = 1 

6       else  
7             Ae = 0 

8       end  
9       for i = 1 to N 

10             PDi ← initialize the position of the ith particle 

11             Compute objective value F(PDi) 

12             Pbesti = PDi 

13             if F(Pbesti) < F(Gbest) 

14 Gbest = Pbesti 

15 end 
16             vi = initialize the velocity of the ith particle 

17       end 

18       for t = 1 to maxiter 

19             PDc = ∑          
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20             Compute objective value F(PDc) 

21             for i = 1 to N 

22 vi ← update the velocity of the ith particle 

23 PDi(t) =  PDi(t-1) + vi  

24 Compute objective value F(PDi) 

25 if F(Gbest) < F(PDi) 

26 PDifollow(t) = PDi(t) + 
            

‖            ‖
             

27 else  
28 PDifollow(t) = PDi(t)  

29 end 
30 Compute objective value F(PDifollow) 

31 if F(PDc) < F(PDi) 

32 PDiswarm(t) = PDi(t) + 
          

‖          ‖
             

33 else  
34 PDiswarm(t) = PDi(t)  

35 end 
36 Compute objective value F(PDiswarm) 

37 PDAFi =  αPDi(t-1) + β(PDifollow or PDiswarm) 

38 Compute objective value F(PDAFi(t)) 

39 if F(PDAFi) < F(Pbesti) 

40 PDi = PDAFi 

41 else  
42 PDi = PDi 

43 end 

44 end 
45            Compute objective value F(PDi) 

46 if F(PDi) < F(Pbesti) 

47 Pbesti = PDi 

48 if F(Pbesti) < F(Gbest) 

49 Gbest = Pbesti 

50 end 

51             end 

52       end 

53 end 

 

Table 3.3 Pseudocode of the second stage 

Input: dgen (contains PDmin, PDmax, a, b, c, AeData, CC), 

dpar               , Gbest, Rep2, teta, beta, step 

Output: PDopt, TCmin, computation_time 

1 for k = 1 to Rep2 

2       Generate loadq ~         

3       Generate RandAe ~ U(0,1) 

4       if RandAe <= AeData 

5             Ae = 1 

6       else  
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7             Ae = 0 

8       end  
9       Compute objective value F(Gbest) and curtailment cost 

10 end 

11      ∑    (   )        
   
    

12        {     ̂                {   }} 

13 TCmin = min(EOQ) 

 

3.3.4 Cost Allocation 

After the total cost has been calculated, the players need to know how 

much benefits and cost they should pay in the coalition. Cooperation game theory 

is one of convenient tool to solve cost allocation problems (Zolezzi and Rudnick, 

2002). The solution mechanisms behave well in terms of fairness, efficiency, and 

stability, and qualities required for the correct allocation. Thus, it is expected to 

improve system efficiency. For the player to join the coalition, not only the 

system cost should be lower but also each member of the coalition. Therefore, 

cost allocation mechanisms is needed to allocate the cost to each player fairly. 

Hence, the players are convinced to join the coalition and none of the agents has 

the incentive to leave the coalition or group in a different manner, as no 

alternative coalition may improve the allocation. The following are several cost 

allocation methods based on cooperative game theory. 

 

1. Cooperative Game Theory 

Coalitional game is a model which contains interaction of decision maker 

and focus on the actions and behavior of the groups of player, rather than acting 

individually. The outcomes consist of a partition of the sets of player into groups 

and the actions taken. A right coalition should have satisfied numbers of fairness 

criteria, or we refer that as coalition properties. In this section, some of the most 

common coalition properties are described.  

Let S is a subset of participants of a grand coalition N all participants. It is 

assumed that all players have the same opportunity to join or form a coalition. The 

cost of the coalition as C(S) is generated when coalition S operates. It is obtained 

from the characteristic cost function. The first common property in the cost 
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allocation mechanism is efficient. Cost allocation is said to be efficient if the 

following constraints hold: 

∑            (3.17) 

where yj is the cost allocated to each player j in N. Equation 3.17 states that the 

total cost of grand coalition N, C(N), is split among the players j according to the 

value of y.  

The second property is individual rational property. This happen if no 

player in the coalition spends more than its stand-alone cost c{j}, which is the cost 

before coalition is formed. The individual rational property can be express as 

equation 3.18 below. 

    { }         (3.18) 

The cost allocation, y, is called the core of the game if it satisfies equation 

3.17 and 3.19 below. 

∑                (3.19) 

Equation 3.19 ensure the stability of alliance. It means no partition that no of 

the sets of player would get better pay-off than acting individually. To measure how 

far the cost allocation is from the core we can use excess, e(S, y), expressed in 

equation 3.20 below. Excess tells the difference between the cost of the coalition and 

the total cost allocated to player j. 

            ∑       (3.20) 

If there is at least one excess is negative, the coalition is not in the core. The next 

property is monotone. The game is said to be monotone if there is no cost decrease 

when a new player is included in the game, as expressed in equation 3.21 below. 

                (3.21) 

It can also mean that the coalition cost will increase if there is additional player in the 

game. 

The last property is proper. Proper property implies that the more player 

involved in the coalition, the more profitable (or at least not unprofitable) we will get. 

It can be expressed mathematically in equation 3.22 below. 

                       (3.22) 

 

2. Shapley Value 
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Shapley Value is frequently used methods in cooperative game. This 

method allocates cost to each player j based on its average marginal cost of the 

participants based on the assumption that the grand coalition is formed by entering 

the participants into this coalition one at a time. The cost assigned to j can be 

calculated as shown in equation 3.23 below. 

   ∑
                  

   
          { }          (3.23) 

N denotes the number of players in the coalition. ( ) −  (  − { }) implies the 

marginal cost of player j concerning coalition S – {j}. The Shapley value satisfies 

four axioms or properties, which are efficient, symmetry, dummy property, and 

additivity. However, this method does not guarantee the stability in the coalition. 

 

3. Egalitarian Allocation Method 

The egalitarian method is the simplest one (Tijs and Driessen, 1986). It 

allocates the cost, y, among each player j equally as shown in equation 3.24 

below. This egalitarian method is efficient, monotonic in the aggregate, but it fails 

to take strategic aspects into consideration: the allocation is not usually 

individually rational. This method is only feasible if all players are a part of the 

grand coalition, and the allocated cost is lower than the stand-alone cost. 

   
 

 
     (3.24) 

 

4. Proportional Repartition of Total Gains 

Moriarity (1976) invented the proportional repartition. This approach 

shares the cost among players based on the proportion of its stand-alone cost with 

respect to the total cost of the grand coalition as shown in equation 3.25 below. 

   
  

∑      
     (3.25) 

 

5. Volume-based Allocation 

Volume-based allocation allocates the cost among players based on its 

shipped volume or demand, Dj. It is expected that the player with higher demand 

will expend more charge in the coalition as shown in equation 3.26 below. 
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∑      
     (3.26) 

 

6. Equal Profit Method 

Frisk et al. (2010) believe that there is drawback from the previous 

mechanisms. That is the acceptance of the cost allocation among players. The 

reason is because it is hard to prove that all players have similar gains from the 

coalition. Thus, it would be beneficial if we can minimize the difference in 

pairwise relative savings. That is the goal of this mechanism as shown in equation 

3.27 and 3.28 below. Of course, this mechanism will have to meet efficient and 

individual rational property. 

        (3.27) 

   
  

 { }
 

  

 { }
            (3.28) 

 

7. Proportional Charge Method 

The concept of PCM is adapted from proportional repartition method by 

Moriarity (1976). It allocates the cost among players based on its marginal cost 

with respect to the grand coalition as shown in equation 3.29 below.  

   
  

∑      
     (3.29) 
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4. CHAPTER 4 

DATA PROCESSING 

 

This chapter shows the data collection and data processing of area 3 

especially year 2027 in electricity master plan development as an example on how 

to calculate the result. The complete result will be shown in chapter 5. 

 

4.1 Data Collection and Processing 

This sub-chapter consists of the data that is needed in the analysis. The 

data is got from governmental documents like Rencana Usaha Penyediaan Tenaga 

Listrik (RUPTL) PT PLN and Interim Report of Kalimantan Electricity Master 

Plan Development as well as primary data from the company.  

In this case study, the planning horizon is 32 years beginning in year 2018-

2050. It is divided into two phase: preconstruction phase (year 2018-2020) and 

construction phase (year 2021-2050). The base year is year 2018. 

 

1. Inflation 

Inflation used in this final project is using Indonesia‟s inflation. Inflation 

data is obtained from consumer price index. Inflation calculation is using formula 

in equation 4.1 below.  

          
           

      
      (4.1) 

 

Figure 4.1 CPI Plot of Year 2014-2019 
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Plotted CPI data is represented in figure 4.1 above. As we can see in the 

figure, the pattern is showing certain trend with slight seasonal pattern. Thus, 

double exponential smoothing method will be used to forecast the data. Then, 

Minitab 19 software forecast the CPI data to calculate the inflation rate. Table 4.1 

below shows the result of inflation rate from year 2018 until 2050. Later, this data 

will be used to predict investment, fix, and variable costs in the future year. 

Table 4.1 Inflation Rate of Year 2018-2050 

Year Inflation Year Inflation Year Inflation Year Inflation Year Inflation 

2018 3.09% 2025 2.66% 2032 2.24% 2039 1.94% 2046 1.71% 

2019 2.69% 2026 2.59% 2033 2.19% 2040 1.90% 2047 1.68% 

2020 3.13% 2027 2.53% 2034 2.15% 2041 1.87% 2048 1.65% 

2021 2.98% 2028 2.46% 2035 2.10% 2042 1.83% 2049 1.62% 

2022 2.89% 2029 2.40% 2036 2.06% 2043 1.80% 2050 1.60% 

2023 2.81% 2030 2.35% 2037 2.02% 2044 1.77% 

  2024 2.73% 2031 2.29% 2038 1.98% 2045 1.74% 

   

2. Exchange Rate 

This study will use the exchange rate from USD to IDR. Exchange rate 

data is got from Bank Indonesia‟s transaction from January 2013 until April 2020. 

Then we forecast the monthly exchange rate data using double exponential 

smoothing for year 2021-2050. Table 4.2 below shows the forecasting result. 

Table 4.2 Exchange Rate of Year 2018-2050 

Year 
Exchange 

Rate 
Year 

Exchange 

Rate 
Year 

Exchange 

Rate 
Year 

Exchange 

Rate 

2018  Rp 14,237  2027  Rp 16,479  2035  Rp 19,393  2043  Rp 22,307  

2019  Rp 14,148  2028  Rp 16,843  2036  Rp 19,757  2044  Rp 22,671  

2020  Rp 13,925  2029  Rp 17,207  2037  Rp 20,121  2045  Rp 23,035  

2021  Rp 14,293  2030  Rp 17,571  2038  Rp 20,485  2046  Rp 23,399  

2022  Rp 14,657  2031  Rp 17,936  2039  Rp 20,850  2047  Rp 23,764  

2023  Rp 15,022  2032  Rp 18,300  2040  Rp 21,214  2048  Rp 24,128  

2024  Rp 15,386  2033  Rp 18,664  2041  Rp 21,578  2049  Rp 24,492  

2025  Rp 15,750  2034  Rp 19,028  2042  Rp 21,942  2050  Rp 24,856  

2026  Rp 16,114  

       

3. Transmission and Distribution Loss  

Table 4.3 below shows the percentage of transmission and distribution loss 

during operation from year 2016-2050.  
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Table 4.3 Transmission and Distribution Loss Percentage 

No Province 2016 2017 2020 2025 2030 2035 2040 2045 2050 

1 West Kalimantan  14.8 13.5 12.6 11.3 10.6 10.3 10.2 10.2 10.2 

2 Middle Kalimantan 10.9 10.8 10.7 10.6 10.5 10.4 10.3 10.2 10.2 

3 South Kalimantan  12.4 12.3 12.1 11.9 11.6 11.4 11.2 11.1 10.9 

4 East Kalimantan  8.1 8.2 8.3 8.4 8.3 8.2 8.2 8.2 8.2 

5 North Kalimantan 7.3 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.8 

 

4. Demand Data 

Demand data are generated based on sub-chapter 3.3.3. Based on 

distribution fitting done in minitab 19, the best distribution to represent the 

demand is normal distribution with p-value > 0.05. The table 4.4 below shows the 

mean and standard deviation of demand data on area 3 year 2027. 

Table 4.4 Demand Data Year 2027 

Hour Mean Std Hour Mean Std Hour Mean Std 

1 631.02  2,756.37  9    703.24  1,398.88  17    727.92     732.93  

2 602.84  2,310.62  10    718.51  1,920.24  18    736.84     419.01  

3 584.30  2,790.79  11    731.98  2,356.17  19    795.85       43.11  

4 573.42  3,547.73  12    724.60  1,492.73  20    804.42         6.00  

5 585.77  2,648.83  13    691.61     702.99  21    782.52       54.27  

6 646.08  2,025.58  14    743.36  2,511.72  22    743.56     119.63  

7 630.63     684.76  15    741.90  1,614.02  23    693.02     273.29  

8 645.60     788.01  16    729.89  1,278.14  24    653.10     219.36  

 

5. Generator Data 

Table 4.5 below shows generator data of area 3 electricity year 2027 in 

regional balance scenario using both thermal and hydro power plant. Pdmin and 

Pdmax represents power minimum and maximum that a generator will produce. 

While a, b, c are cost coefficients of generating unit and Ae is the availability of 

each generator. 

Table 4.5 Generator Data Area 3 Year 2027 

 
G1 G2 G3 G4 G5 G6 

Pdmin 69 69 69 69 69 69 

Pdmax 100 100 100 100 100 100 

a 2.33E-03 2.33E-03 2.33E-03 2.33E-03 2.33E-03 2.33E-03 

b 375,274 375,274 375,274 375,274 375,274 375,274 

c 3,500,531 3,500,531 3,500,531 3,500,531 3,500,531 3,500,531 

Ae 0.97 0.97 0.98 0.99 0.99 0.99 
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G7 G8 G9 G10 G11 

 Pdmin 69 69 69 69 37.95 

 Pdmax 100 100 100 100 55 

 a 2.33E-03 2.33E-03 2.33E-03 2.33E-03 0.00E+00 

 b 375,274 375,274 375,274 375,274 5,265 

 c 3,500,531 3,500,531 3,500,531 3,500,531 1,277,203 

 Ae 0.99 0.99 0.97 0.99 0.99 

  

These generator and demand data become input for running the hybrid 

PSOAFSA algorithm to obtain optimum dispatch for each hour so that the 

expected operation cost will be minimum. Table 4.6 below shows the result of 

power dispatch for each generator and each hour in area 3 year 2027. Gi 

represents the i-th generator available to fulfill the demand in the area. From this 

power dispatch, we got Rp 7,778,379,258 as the EOC generated within a day. 

This value will be multiplied by 30 days and 12 months to obtain EOC in a year. 

So the operational cost in year 2027 is Rp 2,800,216,533,134. This procedure is 

applied from year 2018-2050 for all areas and all scenarios. 

Table 4.6 Load Dispatch for Year 2027 (Cont.) 

2027 Area 3 

Hour G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 

1 69.0 83.4 69.0 69.0 100.0 69.0 95.5 100.0 100.0 89.8 55.0 

2 76.5 69.0 69.3 84.4 69.0 0.0 69.0 69.0 69.0 100.0 40.6 

3 74.8 69.7 100.0 81.6 69.0 71.0 100.0 69.0 69.0 70.0 38.0 

4 100.0 100.0 69.0 69.0 81.8 100.0 100.0 69.0 100.0 100.0 38.0 

5 69.0 71.8 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 55.0 

6 74.1 75.6 69.0 69.0 69.0 89.5 69.0 69.0 71.1 82.0 51.5 

7 69.0 100.0 81.1 69.0 69.0 76.1 71.2 69.0 100.0 100.0 38.0 

8 69.0 0.0 100.0 69.0 100.0 69.0 69.0 95.2 69.0 69.0 38.0 

9 76.9 73.8 82.0 69.0 87.1 69.0 100.0 69.0 69.0 82.9 47.3 

10 69.0 76.0 69.0 69.0 72.4 69.0 73.0 69.0 69.0 79.0 48.5 

11 98.1 99.9 84.8 0.0 69.0 69.0 69.0 100.0 69.0 69.3 49.0 

12 69.0 75.0 69.0 83.2 69.0 100.0 94.4 69.0 0.0 98.2 55.0 

13 84.3 69.0 0.0 100.0 100.0 91.1 69.0 69.0 69.0 69.0 45.2 

14 76.5 100.0 69.0 69.0 69.4 100.0 69.0 76.4 69.0 100.0 55.0 

15 69.0 71.3 78.9 69.0 79.3 69.0 69.0 83.3 69.0 69.0 55.0 

16 69.0 69.0 69.0 100.0 69.0 76.0 100.0 69.0 100.0 75.8 55.0 

17 69.0 69.0 69.0 100.0 69.0 86.4 69.0 69.0 69.0 69.0 55.0 

18 75.0 73.1 69.0 69.0 98.4 77.3 69.0 100.0 69.0 69.0 48.0 

19 69.0 69.0 69.0 69.0 100.0 100.0 88.6 69.0 99.8 69.0 43.4 

20 98.0 100.0 69.0 69.0 76.0 69.0 100.0 69.0 69.0 100.0 52.8 

21 69.0 100.0 100.0 100.0 69.0 69.0 69.0 69.0 74.4 69.0 55.0 

22 69.0 69.0 69.0 84.5 86.5 69.0 79.7 94.5 100.0 71.6 55.0 

23 100.0 70.2 72.6 85.0 69.0 100.0 69.0 95.9 69.0 69.9 38.0 

24 0.0 69.0 74.0 69.0 88.7 94.2 100.0 100.0 69.0 73.0 38.0 
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Table A.2 in the appendix shows the result of power dispatch for each 

generator and each hour year 2018. If blackout happens, the PD value will be 0. 

 

4.2 Cost Summary 

Beside the calculation above, there are several costs that compose total 

investment cost including engineering procurement construction (EPC) cost, fix 

cost, and variable cost. These funding needs is based on historical data from PT 

PLN which is adjusted by inflation rate. Table 4.7 below shows the investment, 

variable and fix cost for area 3 year 2027 RB scenario. While table 4.8 shows the 

cost summary. This procedure is applied from year 2018-2050 for all areas. Thus 

we can get the total PV during the time horizon. It is also applied to all scenarios 

Table 4.7 Investment, Fix and Variable Cost 

 

 

Table 4.8 Cost Summary 

EPC Cost 1,935,970,794,934 

Development Cost 95,436,674,138 

Other Cost 573,308,527,398 

Total Fix Cost 21,851,223,934 

Total Variable Cost 2,800,228,929,755 

Total 5,426,796,150,159 

PV 1,956,957,095,279 

 

EPC Cost 1,935,970,794,934  Development Cost 95,436,674,138    

Steam Generator -                          Land Acquisition 48,408,775,760    

Stack -                          Site Preparation 26,592,318,877    

FGD -                          Consulting Service 20,435,579,501    

Turbine 560,286,733,670     Other Cost 573,308,527,398  

Switchyard 28,720,758,649       Price Escalation 368,822,569,463  

Coal, Ash handling system 721,816,662,702     Contingency 116,957,306,188  

EPC Installation 625,146,639,912     Administration Cost 25,251,607,791    

Materials for 500 kV T/L -                          Tax and Duties 62,277,043,957    

Total Variable Cost 2,800,228,929,755  Total Fix Cost 21,851,223,934    

Operational Cost 2,800,216,533,134  Management Wage 728,395,471         

Supply Cost 12,396,621              Staff Wage 4,621,207,604      

Property Taxes 16,501,620,859    

Variable Cost (IDR) Fix Cost (IDR)

Investment Cost (IDR)



 

47 

 

(this page is initially left blank)



 

48 

 

5. CHAPTER 5 

RESULT AND DISCUSSION 

 

The proposed hybrid PSOAFSA algorithm is implemented in Matlab 

R2019b and run on a computer with an Intel® Core™ i5-8500 CPU at 3.00 GHz 

and 24 GB of RAM under Windows 10 Professional. In order to see its 

performance, the proposed algorithm is tested on 3 benchmark instances, which 

are adapted from ED instances without valve-point effects provided by Zou et al. 

(2017). Afterward, the proposed algorithm is applied to solve the actual problem.  

 

5.1 Parameter Setting for Hybrid Intelligent Algorithms (PSO and AFSA) 

Parameter setting plays big role in determining the solution quality. So, 

this sub-chapter is conducted to find the best parameter combination for proposed 

algorithm. There are five parameters tested in this study. The following parameter 

values are considered in the parameter setting.  

   : 0.4, 0.6, 0.8, 1, 1.5 

Step : 0.5, 1, 1.5, 2  

  : 0.2, 0.4, 0.6, 0.7, 0.8 

N  : 100, 500, 1000, 2000  

Iter : 50, 300, 500, 1000, 5000  

The parameter combination is chosen based on design of experiment using 

2k factorial design result. In order to do that, initial experiment using one-factor-

at-time (OFAT) analysis is done to determine the low and high value of the 

parameter. The experiment is done by changing one value of the parameter at one 

time. The value of each experiment is got from the average of five-time execution. 

A six-unit generator instances are selected from Zou et al. (2017) benchmark 

instances for the analysis. The overall result of OFAT experiments can be seen in 

Appendix 1. Table 5.1 shows the two selected low and high value from OFAT 

result.  

Table 5.1 Parameter Values for 2k Factorial Design 

Parameter Low High 
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Parameter Low High 

θ 0.4 0.6 

Step 0.5 1 

β 0.7 0.8 

N 1000 2000 

Iter 500 5000 

 

Proceeding the result in the 2k factorial design, 32 parameter combination 

need to be evaluated. Considering objective function and computation time, the 

result shows that parameter setting with θ = 0.6, step=1, β = 0.7, N = 1000, Iter = 

500 seems to give the best solution. Thus, this parameter will be used to solve the 

benchmark instances and the real problem. 

  

 

 

Figure 5.1 Sensitivity Analysis of Parameter 
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The result from OFAT experiment will then be used for sensitivity 

analysis. Figure 5.1 above shows sensitivity analysis result. From this figure, we 

can see how the effect of each parameter on the solution obtained from the 

proposed algorithm, specifically on the objective function and computational time 

is. 

Generally, when parameter θ decrease the solution quality will improve. 

The best solution is obtained when θ value is 0.6. But, it is not the case for 

computation time because there seem to be no correlation between them. 

Meanwhile, parameter Step seems to have no correlation to the objective 

function. The best value is obtained when step is 1. Other than that, the solution 

quality deteriorates. Nonetheless, as the step decrease the computation time will 

also decrease. 

Parameter β appears to have a similar effect on both performance 

indicators. When the step increase, the computational time tends to be slower and 

the objective function decreases. However, the computation time increases after it 

reaches 0.7. 

Parameter N and Iter seem to give opposite effect on objective function 

and computation time. As number of N becomes higher, the objective function 

becomes smaller. This could happen because there are a lot more area to be 

searched by initial particle, so the chance to have a solution near the global 

optimal solution is higher. However, the computation time will increase. Although 

utilizing high number of N will improve solution quality, it takes more time to 

compute the algorithm. So, we must pay attention to the trade-off between the 

solution quality and computation efficiency. Meanwhile, as iter increases, the 

solution quality will also increase but the computation time will decrease. From 

the figure we notice that on iter 500 and above, the solution quality seems to be 

stagnant. It means that there is only a little difference in solution quality 

improvement. Hence we can utilize iter 500 as the parameter as it will give better 

solution quality with minimum amount of computation time. 

Since the stochastic approaches under test rely on input scenarios, so the 

number of scenarios do have important part in bringing the result into 
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convergence. Thus, beside the parameters for optimization, there are two other 

parameters tested in this study related to the stochastic process. N and M is the 

number of scenarios of the 1
st
 and 2

nd
 stages of I-ARSO. The following parameter 

values are considered in the parameter setting. 

N : 10, 30, 50, 100, 250, 500 

M : 50, 500, 1000 

This parameter setting along with the chosen PSOAFSA parameters in the 

previous step is applied to the case study. Specifically, in area 3 year 2029, 

composed by a 11 thermal power plants and 3 hydro power plants. Table 5.2 and 

5.3 below shows the generator and demand data used for parameter setting. 

Table 5.2 Generator Data of Area 3 Year 2029 

Pi Type P min P max ai bi ci 

1 HPP 0 55 0 375,275.56    1,408,288.15  

2 HPP 0 360 0 388,911.68  18,445,744.07  

3 HPP 0 900 0 425,209.29  21,208,097.64  

4 TPP 288 600 -7.454E-07 456,671.74    6,285,060.82  

5 TPP 126 300 2.5796E-05 473,265.47    6,524,324.51  

6 TPP 126 300 2.5796E-05 490,462.16    6,783,460.05  

7 TPP 126 300 -5.049E-05 499,293.46    7,529,112.32  

8 TPP 126 300 -7.315E-05 508,283.75    7,840,405.13  

9 TPP 126 300 -5.033E-06 517,435.89    7,218,824.71  

10 TPP 126 300 2.5796E-05 526,752.83    8,238,715.97  

11 TPP 126 300 -5.033E-06 536,237.56    8,271,486.63  

  

Table 5.3 Demand Data of Area 3 Year 2029 

Hour Mean Std Hour Mean Std Hour Mean Std 

1 2,296.82    191.10  9 2,559.69         136.14  17 2,649.53       98.54  

2 2,194.24    174.96  10 2,615.29         159.50  18 2,682.00       74.51  

3 2,126.79    192.29  11 2,664.30         176.68  19 2,896.78       23.90  

4 2,087.17    216.80  12 2,637.45         140.63  20 2,927.98         8.92  

5 2,132.14    187.33  13 2,517.36           96.51  21 2,848.25       26.81  

6 2,351.63    163.82  14 2,705.72         182.42  22 2,706.47       39.81  

7 2,295.39      95.25  15 2,700.41         146.23  23 2,522.50       60.17  

8 2,349.91    102.18  16 2,656.70         130.13  24 2,377.20       53.91  

 

Table 5.4 below shows the result and standard deviation of proposed 

algorithm for each N and M setting. While figure 5.2 below displays the % 

Standard Deviation & EOC of Each Combinations for N and M parameter setting 
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Table 5.4 EOC and Computation Time of Each Parameter Setting Combination 

Combination N M 
EOC (IDR in 

million) 
CompTime Std EOC %std EOC 

1 

10 

50 34,184.63        235.8    511.4  1.50% 

2 500 33,981.00        229.1    332.2  0.98% 

3 1000 34,120.30        230.3    316.4  0.93% 

4 

30 

50 33,592.27        684.0    484.7  1.44% 

5 500 33,896.67        688.7    392.1  1.16% 

6 1000 33,758.01        690.7    388.4  1.15% 

7 

50 

50 33,987.77     1,152.3    398.7  1.17% 

8 500 33,468.53     1,126.9    416.0  1.24% 

9 1000 33,805.60     1,171.2    393.3  1.16% 

10 

100 

50 33,681.18     2,265.8    371.6  1.10% 

11 500 33,621.32     2,277.8    413.0  1.23% 

12 1000 33,743.47     2,336.2    418.3  1.24% 

13 

250 

50 33,513.46     5,466.3    410.9  1.23% 

14 500 33,472.92     5,475.6    395.8  1.18% 

15 1000 33,493.36     5,829.8    387.5  1.16% 

16 

500 

50 33,636.42   11,058.3    397.4  1.18% 

17 500 33,617.84   10,971.1    428.0  1.27% 

18 1000 33,611.49   11,022.5    402.9  1.20% 

 

 

Figure 5.2 %Standard Deviation & EOC of Each Combinations 

 

The performance in figure 5.2 shows that generally as the number of N 

increase, the cheaper EOC will be. This is because increasing N enables better 

sampling of uncertainties since more load and generator availability will be 

covered. Moreover, it also makes the procedure to generate more dispatching 
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scenarios in the second stage. Thus, leading to achieve cheaper solutions. While 

for M, standard deviation reduces as it increases. The computation time standard 

deviation in I-ARSO is very low (below 2% for each N). It means that the 

solutions are achieved almost in the same amount of time. From here we also can 

see the method robustness. Considering objective function and computation time, 

the result shows that parameter setting with N = 50 and M=500 seems to be a 

good compromise as it gives the cheapest EOC with acceptable computation time. 

 

5.2 Algorithm Testing on Benchmark Instance 

To evaluate the performance of the proposed PSOAFSA algorithm, the 

algorithm is tested on 3 benchmark instances of economic dispatch problem. The 

units are ranging from 2 to 6. Table 5.5 below describes the details for each 

instance. 

Table 5.5 ED Benchmark Instances Data 

  2 unit case 3 unit case 

 Pmin 20.00 20.00 150.00 100.00 50.00 

 Pmax 200.00 200.00 600.00 400.00 200.00 

 a 0.01 0.02 0.001562 0.001940 0.004820 

 b 5.00 4.00 7.92 7.85 7.97 

 c 400.00 600.00 561.00 310.00 78.00 

 Demand (MW) 250 850 

   6 unit case 

Pmin 100.00 50.00 80.00 50.00 50.00 50.00 

Pmax 500.00 200.00 300.00 150.00 200.00 120.00 

a 0.007 0.01 0.009 0.009 0.008 0.0075 

b 7.00 10.00 8.50 11.00 10.50 12.00 

c 240.00 200.00 220.00 200.00 220.00 190.00 

Demand (MW) 1263 

 

Notation Pmin and Pmax denotes the minimum and maximum power 

capacity of generator to be dispatched. While notation a, b, and c indicates the 

fuel cost coefficient of each generator.  

This study presents IARSO combined with game theory concepts in 

solving the ED & investment decision problems, which consider cooperative 

strategy enabling the use of same transmission facilities as the backbone. Thus, 
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resource sharing between players is enabled. To address the ED problem, an 

IARSO with hybrid PSO AFSA algorithm is developed. Hence, in non-

cooperative strategy, the algorithm is tested on these benchmark instances to 

assess its performance. In cooperative strategy, the allied generators are 

influenced by transmission structure and will be calculated accordingly.  

These ED benchmark instances were provided by Zou et al. (2017). The 

ED solution consists of power generated in each hour which met the constraint. 

The results from the benchmark testing are being compared to the results of 

related researches (Zou et al., 2017). Zou et al. (2017) developed an improved 

differential evolution algorithm to solve ED problem. The proposed algorithm is 

also compared with memory based differential evolution (MBDE), self-adapting 

control parameters (SADE), modified differential evolution (MDE), particle 

swarm optimization (PSO), and artificial fish swarm algorithm (AFSA). Table 5.7 

shows the comparison of the computational result between the proposed hybrid 

PSOAFSA and the previous researches, based on the average run.  

Based on the table 5.6, it can be seen that the proposed algorithm manages 

to find the optimal solution for the 3 instances benchmark. The algorithm 

performance can be seen through cost standard deviation and computational time. 

Overall, the proposed algorithm has nearly zero standard deviation to the previous 

research. This means the optimality gap is nearly zero. Moreover, the 

computational time of the proposed algorithm has outperformed the previous 

method. In conclusion, the proposed algorithm is relatively good to solve the 

aforementioned problem. It is also compared to individual PSO and AFSA 

algorithm. The result shows that overall, hybrid method performs better in 

computation time compared to the two algorithm. Thus, the proposed hybrid PSO 

AFSA can be applied to solve the real problem of the study. 
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Table 5.6 Comparison of Zou's Benchmark Instances 

Problems Algorithms Beta Inersia N Gmax CPU 

Time 

Costmin Costmax Costmean Coststd 

2-unit case MBDE       300 0.574 2515 2515 2515 0 

(PD  250 MW) SADE       300 0.507 2515 2515 2515 0 

  MDE       300 0.58 2515 2515 2515 0 

  IDE       300 0.551 2515 2515 2515 0 

 

PSO   1 200 300 0.124      2,515        2,515.0        2,515.0  0 

 

AFSA     200 400 1.133 2,515  2,515.2  2,515.0  0.062145547 

  PSOAFSA 0.7 0.6 100 150 0.415      2,515        2,515.0        2,515.0  0 

3-unit case MBDE       300 0.557 8194.36 8194.36 8194.36 4.34E-12 

(PD  850 MW) SADE       300 0.577 8194.36 8194.36 8194.36 3.70E-12 

  MDE       300 0.746 8194.36 8194.36 8194.36 3.41E-12 

  IDE       300 0.632 8194.36 8194.36 8194.36 3.56E-12 

 

PSO   0.6 300 700 0.735 8194.36 8194.86 8194.38 9.43E-02 

 

AFSA     200 400 1.521 8194.36 8194.80 8194.50 1.39E-01 

  PSOAFSA 0.7 0.6 100 500 0.506 8194.36 8194.36 8194.36 3.70E-12 

6-unit case MBDE 

   

600 1.264 15275.93 15275.93 15275.93 6.62E-12 

(PD  1263 MW) SADE 

   

600 1.254 15275.93 15275.93 15275.93 5.51E-09 

 

MDE 

   

600 1.761 15275.93 15275.93 15275.93 6.16E-12 

 

IDE 

   

600 1.290 15275.93 15275.93 15275.93 5.71E-12 

 

PSO 

 

0.5 1000 3000 0.983 15275.93 15279.00 15277.01 1.03E+00 

 

AFSA 

  

500 800 7.562 15275.93 15278.00 15277.53 5.78E-01 

  PSOAFSA 0.7 0.6 100 600 0.610 15275.93 15275.93 15275.93 5.55E-12 
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5.3 Algorithm Testing on Area 3 (Mahakam System) 

The algorithm testing in the case study aims to investigate the benefits of 

SO strategies, where significant uncertainties affect forecasting procedures of both 

the load and the generator availability. The proposed algorithm along with   

deterministic optimization, PSO and AFSA algorithm are tested on in area 3 year 

2029 with the generator data detail is depicted in table 5.2 and deterministic 

demand data is using the mean in table 5.3. The deterministic optimization is 

calculated using Lingo 11 software with global solver method, while the 

algorithms are calculated using Matlab R2019b and run on a computer with an 

Intel® Core™ i5-8500 CPU at 3.00 GHz and 24 GB of RAM under Windows 10 

Professional. Table 5.7 below shows the comparison between the three 

approaches. 

Table 5.7 Comparison Between Algorithms 

  N 
Max 

Iter 

Catlculation 

Time 

TC (in 

million) 

TC Saving 

(in million) 

% 

Saving 

/Day 

Data        Rp  31,954.25      

DO   37914 2  Rp  31,905.05   Rp   49.20  0.15% 

PSOED 1000 500 150.32  Rp  31,870.25   Rp   84.00  0.26% 

AFSAED 1000 500 29.26  Rp  31,562.58   Rp 391.67  1.23% 

PSOAFSAED 1000 500 23.76  Rp  31,353.00   Rp 601.25  1.88% 

 

The result shows that the proposed algorithm generally performs better 

both in the objective function and the computation time. It enables to save up to 

1.88% cost per day compared to deterministic optimization which amount to 

601.25 million rupiahs. It is also cheaper than the other two algorithms. The 

computational time is also shorter than the other two algorithms which is 6.5 

times shorter compared to PSO and 1.26 times shorter compared to AFSA. Thus 

this algorithm will be used to calculate the load dispatch in the real case. 

 

5.4 Cooperation Evaluation 

A comparative study between non-cooperation and cooperation scenario is 

carried on to evaluate the performance of the cooperation strategy in the 
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electricity master plan development. In non-cooperation (RB) scenario, each area 

will fulfill its demand by using its own resources. Therefore, we will find the 

solution by determining the load dispatch of each generator in area 1, 2, and 3 

independently. Whereas in a cooperation (IC) scenario, the load and resources 

available in each area are combined. Cooperation scenario allows one area to 

fulfill the demand in another area as long as they are in the same coalition. For 

example, in scenario IC 12 year 2025, area 1 has 10 TPP generators and 431.8 

MW demand, while area 2 has 11 TPP generators and 1,081.1 MW demand. Thus, 

in IC scenario, the problem consists of 21 generators and 1,512.9 MW demand. 

By using the parameters in sub section 5.2.1, we compute the result for 

cooperation (IC) and non-cooperation (RB) scenario from year 2018 until year 

2050. There are 10 scenarios in the case study. Table 5.8 below shows the 

operational and total investment costs comparison result between scenarios. The 

initial cost using the company‟s formula is also compared. 

Table 5.7 Cost Comparison Between Scenarios 

Plant Types Scenario Operational Cost (in million) 

TPP 

Initial  Rp                308,679,373.25  

Are

a 1  Rp                   72,387,878.08  

Are

a 2  Rp                 117,029,349.02  

Are

a 3  Rp                 119,262,146.15  

TPP 

TPP & HPP 

TPP & HPP 

RB  Rp                289,928,310.08  

Are

a 1  Rp                   69,394,010.20  

Are

a 2  Rp                 114,637,715.20  

Are

a 3  Rp                 105,896,584.68  

TPP 

TPP 

TPP 

RB  Rp                291,701,016.28  

Are

a 1  Rp                   69,394,010.20  

Are

a 2  Rp                 115,222,785.13  

Are

a 3  Rp                 107,084,220.95  

TPP RB  Rp                288,766,710.47  
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Plant Types Scenario Operational Cost (in million) 

TPP 

TPP & HPP 

Are

a 1  Rp                   69,394,010.20  

Are

a 2  Rp                 113,476,115.59  

Are

a 3  Rp                 105,896,584.68  

TPP 

TPP & HPP 

TPP 

RB  Rp                289,581,714.65  

Are

a 1  Rp                   69,394,010.20  

Are

a 2  Rp                 113,103,483.50  

Are

a 3  Rp                 107,084,220.95  

TPP & HPP 

IC12  Rp                286,876,733.35  

Are

a 12  Rp                 180,980,148.68  

Are

a 3  Rp                 105,896,584.68  

TPP 

IC12  Rp                288,236,983.92  

Are

a 12  Rp                 181,152,762.97  

Are

a 3  Rp                 107,084,220.95  

TPP & HPP 

IC23  Rp                288,511,128.60  

Are

a 1  Rp                   69,394,010.20  

Are

a 23  Rp                 219,117,118.39  

TPP 

IC23  Rp                290,538,555.79  

Are

a 1  Rp                   69,394,010.20  

Are

a 23  Rp                 221,144,545.59  

TPP & HPP IC123  Rp                286,680,755.38  

TPP IC123  Rp                288,446,776.84  

 

From table 5.8 above, it can be seen that the cooperation scenario spends a 

lower total cost than the non-cooperation scenario. This condition might be happened 

due to inefficiency of resource usage and the absence of backbone support. As we 

know, in a regional balance system, area 1, 2, and 3 act independently, which means 

that if there is blackout or demand insufficiency in certain area the other area cannot 
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support the lacking area with its power generation. This will lead to higher penalty 

cost from the unsatisfied demand as well as higher overall operational cost 

The results imply that the cooperation scenario dominates the non-

cooperation scenario one. About 7.13% of the total cost can be reduced by 

implementing the cooperation strategy for TPP and HPP scenario and about 6.55% of 

the total cost can be reduced by implementing the strategy for TPP scenario. This 

results are able to save IDR 21,998,617.88 million and IDR 20,232,596.42 

consecutively compared to company‟s calculation  

Moreover, we can see that involvement of renewable energy which is hydro 

power plant is indeed beneficial in the long run. It is proven by the involvement of is 

hydro power plant in the scenarios always outperform the thermal power plant only 

scenarios by an average of 0.6%. These findings can be elaborated by the reduction in 

power generation during the operation as well as percentage of unsatisfied demand. It 

means that cooperation strategy helps to better utilize the capacity of the resources 

during power distribution process. 

 

5.5 Cost Allocation 

After the total cooperation cost is obtained, the next question is how to 

allocate the cost to each player fairly, so that the players are convinced to join the 

coalition and none of the agents has the incentive to leave the coalition or group in 

a different manner, as no alternative coalition may improve the allocation. From 

the previous section, cooperation scenario indeed is more beneficial than non-

cooperation scenario as it results in lower total cost. Then, the company will be 

interested on how much the cost saving will be obtained if they play cooperation 

scenario. Therefore, cost allocation mechanism, and estimation of the cost saving 

generated in collaboration need to be presented before companies decide to ally 

with each other. 

In order to allocate the post-cooperation cost for each company as fair as 

possible, we adopt several cost allocation mechanism based on cooperative game 

theory method. There are seven methods considered in the analysis, such as the 

core, egalitarian allocation (EA), equal profit method (EPM), proportional charge 

method (PCM), proportional repartition method (PRM), Shapley value, and 
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volume-based allocation (VBA), as explained in sub chapter 3.3.4. Through the 

analysis, we try to find the most stable and fairest cost allocation among all 

method used so that the players will not move to another coalition or act 

independently. The result of the cost allocation analysis and the estimation of cost 

saving for each company are presented in table 5.9 and table 5.10. 

Table 5.8 Cost Allocation for Area 1, 2, and 3 

Cost Allocation 

Mechanism 

Cost (IDR in million) 
C(N) 

Area 1 Area 2 Area 3 

Pre-

collaboration 
69,394,010 114,637,715 105,896,585 289,928,310 

Core 69,394,010 111,390,200 105,896,600 286,680,810 

Shapley Value 68,357,991 112,645,001 105,677,763 286,680,755 

Egalitarian 

Allocation 
95,560,252 95,560,252 95,560,252 286,680,755 

Proportional 

Repartition 
68,616,712 113,353,631 104,710,412 286,680,755 

Volume-based 

Allocation 
59,195,519 121,963,180 105,522,056 286,680,755 

Equal Profit 

Method 
68,243,330 112,736,800 105,700,600 286,680,755 

Proportional 

Charge Method 
68,163,420 111,878,391 106,638,944 286,680,755 

 

 

Table 5.9 Cost and Saving Ratio of Area 1, 2, and 3 

Cost Allocation 

Mechanism 

Area 1 Area 2 Area 3 

Cost 

Ratio 

Saving 

Ratio 

Cost 

Ratio 

Saving 

Ratio 

Cost 

Ratio 

Saving 

Ratio 

Pre-collaboration 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 

Core 100.0% 0.0% 97.2% 2.8% 100.0% 0.0% 

Shapley Value 98.5% 1.5% 98.3% 1.7% 99.8% 0.2% 

Egalitarian 

Allocation 
137.7% 0.0% 83.4% 16.6% 90.2% 9.8% 

Proportional 

Repartition 
98.9% 1.1% 98.9% 1.1% 98.9% 1.1% 

Volume-based 

Allocation 
85.3% 14.7% 106.4% 0.0% 99.6% 0.4% 

Equal Profit Method 98.3% 1.7% 98.3% 1.7% 99.8% 0.2% 

Proportional Charge 

Method 
98.2% 1.8% 97.6% 2.4% 100.7% 0.0% 
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Table 5.10 shows that the cost allocation mechanisms result is varied. 

Every mechanism has its own allocation. However, not all allocation satisfied the 

individual rational property of the coalition, in which the allocated cost is not 

higher than the stand-alone cost, such as in EA, PCM, and VBA. Thus, these three 

allocation do not seem applicable. 

In EA, the cost is allocated equally to each company. This method is 

simple and easy to explain to all companies involved. However, there are some 

drawbacks in this method. First, it does not take into account each company stand-

alone cost. Moreover, it also does not include the added value of each player 

(marginal benefit). Hence, one can be benefited more than the other. In this case, 

player 2 and 3 are more profitable by 54.3% and 47.5% compared to area 1. 

Moreover, area 1 has to pay 37.7% more than it pays in the stand alone cost. For 

sure, this allocation in not irrational and unstable. The PCM method also does not 

seem to be applicable because the cost in area 3 is slightly higher than its stand 

alone cost. 

The VBA divides the cost based on the company‟s distributed power 

dispatch. The company with higher demand will be allocated more cost than the 

one with lower demand. Table 5.11 below shows the percentage of demand 

satisfied for each area per day. The weakness of this allocation mechanism is, in a 

bigger allocation, it can lead companies to pay more than its stand alone cost. It 

also does not consider the number of generator in each area. So, the investment 

cost is not taken into account. For example, in this case area 1, 2, and 3 has 27, 27 

and 22 generators respectively. Because area 2 has lower investment cost and 

higher capacity, area 2 has to fulfill the demand 2 times higher than area 1 (some 

of allocated demand in area 1 is transferred to area 2). However, the cost is 

allocated to area 2 more than the other area because it only cares about the 

volume. In consequence, resulting the cost in area 2 is slightly higher than its 

stand alone cost. 

Table 5.10 Percentage of Satisfied Demand Per Day 

Area 1 2 3 

Demand (mw) 59,027.7 121,617.5 105,222.9 
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% Demand 21% 43% 37% 

 

The cost allocation based on the core, only gives benefit to area 2. It can 

be seen as an unfair allocation because only area 2 manages to save the expense.  

Among the cost allocation mechanisms, the EPM, PRM, and Shapley 

value generate more stable allocation. These methods consider saving, stand-alone 

cost and the marginal cost of each company. The most evenly allocated costs is 

provided by the PRM. The PRM allocates the cost based on the proportion of the 

stand-alone cost concerning the grand coalition cost, while the EPM allocates the 

cost by minimizing the difference of savings generated by the company. Through 

EPM, it ensures that all company involved will get a similar savings ratio to 

produce a fair collaboration. Meanwhile, Shapley value allocates the cost by 

considering the marginal cost of each player. The cost saving between these 

methods are in the range of 0.2% - 2.5%. 

Every cost allocation mechanism has its own advantages and 

disadvantages. Therefore, the selected mechanism would be different for various 

cases. It is also stated by Dai and Chen (2012) that there is no universally 

accepted fairness criteria exist for the cost or profit allocation in a cooperation 

problem. However, it is very common to use Shapley value as the mechanism to 

allocate the cost in economic dispatch problem. So, table 5.9 and 5.10 are 

presented to give options and better overview to allocate the cost for each player. 

Moreover, the result clearly shows that cooperation strategy especially using 

renewable energy is indeed beneficial.
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6. CHAPTER 6 

CONCLUSION AND RECOMMENDATION 

 

This chapter consists of conclusion and the recommendation of the 

research. The conclusion contains the insight of the reseach. It also can be used as 

a guide and reference to the decision maker, while the recommendations is for the 

betterment of future research. 

 

6.1 Conclusion 

Developing economic dispatch model that is able to accommodate demand 

uncertainty and generator availability in a quick way has inspired this study in the 

first place. Moreover, this study also formulates a cooperative game-theoretic 

model to determine the coalition that will lead to minimum investment cost as 

well as how to allocate the costs into the players. According to such concern, the 

result of this study concludes that: 

1. Improved aggregating-rule-based stochastic optimization (I-ARSO) approach 

is used to solve stochastic economic dispatch (SED) problem. This approach 

will use hybrid intelligent algorithm (particle swarm optimization and 

artificial fish swarm algorithm) to solve optimization problem for N Monte 

Carlo scenarios of power demand and unavailability in the first stage. In the 

second stage, each optimal scenario is simulated to evaluate the 

corresponding expected operating cost. Finally, cooperative game theory will 

pick the best arrangement for all players to get the minimum total cost. The 

proposed method is able to save IDR 21,998,617.88 million or about 7.13% 

compared to company‟s calculation. 

2. From available scenario, cooperation scenario (interconnectivity) is proven to 

outperform the non-cooperation scenario and combination between thermal and 

hydro power plant scenario is also proven to outperform the thermal power plant 

scenario. Hence, cooperation scenario (interconnectivity) between area 1, 2, 

and 3 using combination of thermal and hydro power plant is the best option 
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to choose. The company will need to invest IDR 286,680,755.38 million for 

year 2018-2050.  

3. For better perspective on the cooperation in the involved players, comparison 

of several cost allocation mechanism is done. It turns out that EPM, PRM, 

and Shapley value generate more stable allocation. Through the cost allocation 

analysis, it can be seen that cooperation strategy can reduce the total cost of 

entire system as well as the expenses for each area. 

 

6.2 Recommendation for Future Research 

This study only evaluates the utility from cost occurred. Future research 

might evaluate the utility from different perspective such as profit. Furthermore, 

environmental aspect can also be considered since it becomes concerning aspect 

nowadays. Beside using two stage approach to deal with stochastic behavior, 

future research might try to incorporate probability in the mathematical model and 

make a joint probability for the independent sources of uncertainty (in this case 

load and generator availability). Finally, because this research only model about 

aleatory uncertainty, taking consideration on epistemic uncertainty in the 

stochastic model can also enhance the contribution in this field.
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APPENDIX 

 

Table A.1 Result of One-Factor-at-Time (OFAT) Experiments 

Combination θ Step β N Iter #1 #2 #3 #4 #5 Average Low High 

a 

0.4 1 0.8 100 50 15277.3 15276.1 15276.1 15276.3 15275.9 15276.34755     

0.6 1 0.8 100 50 15275.9 15275.9 15275.9 15275.9 15275.9 15275.93539     

0.8 1 0.8 100 50 15276.4 15276 15277.7 15276.4 15278.8 15277.06516     

1 1 0.8 100 50 15277.2 15279.1 15278.8 15276.7 15277.1 15277.77547     

1.5 1 0.8 100 50 15277.3 15278.7 15277.1 15277.6 15276.3 15277.41204     

b 

1 0.5 0.8 100 50 15277.9 15282.6 15276.5 15277.5 15276.7 15278.24763     

1 1 0.8 100 50 15276.7 15277.2 15276.8 15276 15276.6 15276.65444     

1 1.5 0.8 100 50 15278.8 15276.2 15277.4 15276.7 15282 15278.24767     

1 2 0.8 100 50 15278 15277.3 15277.3 15278.1 15280.1 15278.17298     

c 

1 1 0.2 100 50 15283.3 15288.8 15282.4 15285.1 15287.5 15285.39838     

1 1 0.4 100 50 15278.2 15294.5 15281.3 15280.6 15277.4 15282.39731     

1 1 0.6 100 50 15281.7 15278.7 15278.2 15278.6 15277.3 15278.89693     

1 1 0.7 100 50 15276.4 15277.3 15277.4 15276.9 15277.6 15277.11496     

1 1 0.8 100 50 15276.5 15276.2 15277.2 15277.3 15276.6 15276.75409     

d 

1 1 0.8 100 50 15278.1 15277.5 15279.2 15277.2 15276.9 15277.80004     

1 1 0.8 500 50 15276.2 15277 15276.8 15276.5 15276.4 15276.59249     

1 1 0.8 1000 50 15276.2 15276.2 15276.4 15277.3 15276.1 15276.44741     

1 1 0.8 2000 50 15276.1 15276.3 15276.2 15276 15276.1 15276.12233     

e 

1 1 0.8 100 50 15279 15277.8 15278.3 15284.8 15280.2 15280.02917     

1 1 0.8 100 300 15276.2 15276.5 15277.5 15276.6 15276.8 15276.7179     

1 1 0.8 100 500 15276.4 15276.2 15276.2 15276 15276.2 15276.17705     

1 1 0.8 100 1000 15276.2 15276.2 15276.5 15276.1 15276.2 15276.22338     

1 1 0.8 100 5000 15276.2 15276 15276.1 15276 15276.2 15276.10256     
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Table A.2 Load Dispatch for Year 2018 

 2018 Area 1 Area 2 

Hour G1 G2 G3 G4 G5 G6 G7 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

1 69.0 69.0 69.0 0.0 69.0 77.6 83.6 69.0 77.7 90.9 69.0 69.0 69.0 100.0 90.4 69.0 100.0 

2 96.3 69.0 100.0 93.3 95.3 69.0 78.5 69.0 0.0 69.0 75.7 100.0 98.7 69.0 77.0 92.4 69.0 

3 84.8 100.0 69.2 100.0 69.0 83.8 78.7 97.7 79.8 81.4 100.0 71.8 69.0 69.0 71.4 69.0 69.0 

4 69.0 69.0 69.0 70.9 100.0 69.0 69.0 69.0 69.0 69.0 69.0 95.6 80.2 84.8 95.3 69.0 100.0 

5 69.0 88.1 69.0 74.2 92.3 100.0 69.0 69.0 70.1 74.0 69.0 69.0 100.0 69.0 69.0 69.0 69.0 

6 69.0 69.0 69.0 69.0 99.6 84.2 75.0 69.0 84.6 69.0 81.8 100.0 69.0 69.0 90.3 69.0 100.0 

7 81.1 89.7 69.0 81.1 78.3 91.2 69.0 69.0 87.0 100.0 98.1 100.0 100.0 69.0 73.4 100.0 100.0 

8 96.1 72.8 69.0 86.3 100.0 69.0 70.9 69.0 100.0 69.0 69.0 85.9 69.0 69.0 90.0 69.0 69.0 

9 69.0 86.6 69.0 100.0 100.0 81.9 69.0 69.0 73.1 71.3 71.5 93.4 69.0 100.0 69.0 69.0 69.0 

10 73.9 69.0 98.4 69.0 69.0 69.0 89.3 69.0 100.0 69.0 69.0 69.0 69.0 69.0 69.0 94.4 69.0 

11 100.0 70.8 100.0 100.0 69.0 100.0 69.0 86.0 69.0 85.0 69.0 69.0 100.0 71.8 69.0 69.0 79.5 

12 100.0 69.0 69.0 69.0 69.0 71.3 69.0 100.0 69.0 69.0 69.0 69.0 100.0 70.9 69.0 69.0 88.6 

13 69.0 0.0 86.8 81.5 69.0 69.0 69.0 69.0 100.0 93.2 100.0 78.2 69.0 69.0 69.0 69.0 69.0 

14 69.0 73.4 92.2 69.0 69.0 69.0 86.8 100.0 90.1 69.0 80.5 69.0 100.0 100.0 92.9 85.8 69.0 

15 92.2 69.0 69.0 80.7 82.0 69.0 73.6 69.0 69.0 100.0 96.5 71.0 100.0 95.8 92.6 70.8 78.7 

16 91.0 69.0 92.5 75.0 73.2 69.0 69.0 92.1 69.0 80.3 69.0 69.0 69.0 69.0 95.0 69.7 69.0 

17 69.0 74.6 69.0 69.0 69.0 80.5 69.5 69.0 76.4 69.0 100.0 69.0 100.0 84.6 69.0 69.0 100.0 

18 69.0 69.0 74.8 84.9 72.3 69.0 76.4 69.0 69.0 96.9 97.0 69.0 69.0 69.0 100.0 83.1 80.6 

19 0.0 69.0 100.0 69.0 69.0 69.0 100.0 69.0 99.2 72.3 87.4 100.0 69.0 69.0 88.6 83.7 69.0 

20 94.6 100.0 69.0 100.0 69.0 89.1 100.0 80.6 69.0 82.3 85.8 69.0 69.0 100.0 69.0 100.0 100.0 

21 69.0 100.0 100.0 92.1 100.0 83.4 69.0 95.3 69.0 93.5 98.9 100.0 69.0 100.0 100.0 85.4 69.0 

22 74.1 69.0 100.0 69.0 69.0 100.0 100.0 69.0 95.8 69.0 72.3 76.9 100.0 96.2 82.5 88.9 69.0 

23 86.5 100.0 69.0 94.4 69.0 80.8 69.0 69.0 100.0 69.0 69.0 69.0 69.1 71.9 80.7 90.1 69.0 

24 100.0 73.3 100.0 69.0 83.7 69.0 69.0 100.0 69.0 100.0 78.4 100.0 70.4 78.8 81.2 70.7 69.0 
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Table A.2 Load Dispatch for Year 2018 (Cont.) 

 2018 Area 3 

Hour G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

1 85.8 69.0 100.0 69.0 73.2 69.0 74.6 100.0 0.0 100.0 

2 79.2 0.0 71.9 71.0 69.0 71.2 69.0 73.9 71.6 100.0 

3 85.7 69.0 69.0 79.9 69.0 69.0 100.0 100.0 69.0 100.0 

4 76.7 95.1 100.0 69.0 100.0 69.0 69.0 100.0 69.0 100.0 

5 77.3 90.4 100.0 79.8 0.0 69.0 83.6 69.0 69.0 100.0 

6 95.1 95.9 69.9 69.0 75.9 69.0 69.0 69.0 90.7 69.0 

7 69.0 0.0 80.2 100.0 69.0 86.4 71.1 69.0 69.0 84.6 

8 100.0 69.0 74.9 72.4 69.0 100.0 80.0 85.0 69.0 69.0 

9 100.0 100.0 74.6 84.5 100.0 69.0 75.1 91.9 90.7 100.0 

10 69.0 99.9 69.0 83.2 70.8 69.0 100.0 69.0 69.0 100.0 

11 81.4 69.6 74.2 69.0 69.0 100.0 69.0 69.0 77.8 100.0 

12 69.0 89.7 70.4 69.0 100.0 88.4 73.5 69.0 100.0 69.0 

13 69.0 100.0 69.0 100.0 69.0 83.8 73.5 100.0 69.0 87.0 

14 70.2 100.0 72.7 85.0 76.4 88.4 100.0 69.0 100.0 69.0 

15 100.0 100.0 83.8 100.0 100.0 82.0 98.9 100.0 86.1 69.0 

16 69.0 83.4 100.0 69.0 100.0 85.5 69.0 69.0 69.0 71.0 

17 94.9 100.0 100.0 69.0 69.0 69.0 100.0 70.7 70.0 79.8 

18 100.0 82.9 69.0 69.0 99.5 85.9 83.4 69.0 82.1 86.3 

19 70.6 69.0 70.7 69.0 69.0 70.3 100.0 69.0 69.0 88.1 

20 78.7 89.8 92.4 69.0 98.3 69.0 70.0 69.0 69.0 69.0 

21 100.0 94.5 100.0 78.4 75.1 82.3 90.9 69.0 100.0 69.0 

22 69.0 0.0 100.0 100.0 100.0 69.0 69.0 69.0 70.7 77.8 

23 76.3 84.5 69.4 69.0 69.0 70.3 100.0 74.8 69.7 72.6 

24 69.0 69.0 100.0 95.5 100.0 100.0 69.0 100.0 75.9 96.2 

 


