
i 

 

THESIS – TI185401 

 

JOINT OPTIMIZATION MODEL OF SPARE PARTS 
INVENTORY AND PLANNED MAINTENANCE UNDER 
UNCERTAIN FAILURES 

 

 
NABILA YURAISYAH SALSABILA 
02411850020004 
 

 

Supervisor 
Nurhadi Siswanto, S.T., M.S.I.E., Ph.D 
Prof. Vincent F. Yu 
 

 

 
Industrial and Systems Engineering Department 
Faculty of Industrial Technology and Systems Engineering 
Institut Teknologi Sepuluh Nopember 
2020  



ii 

 

 

  



iii 

 

THESIS – TI185401 

 

JOINT OPTIMIZATION MODEL OF SPARE PARTS 
INVENTORY AND PLANNED MAINTENANCE UNDER 
UNCERTAIN FAILURES 

 

 
NABILA YURAISYAH SALSABILA 
02411850020004 
 

 

Supervisor 
Nurhadi Siswanto, S.T., M.S.I.E., Ph.D 
Prof. Vincent F. Yu 
 

 

 
Industrial and Systems Engineering Department 
Faculty of Industrial Technology and Systems Engineering 
Institut Teknologi Sepuluh Nopember 
2020  



iv 

 

 

  



v 

 

TESIS – TI185401 
 
 

MODEL OPTIMASI GABUNGAN PADA MANAJEMEN 
PERSEDIAAN SUKU CADANG DAN PERENCANAAN 
PERAWATAN DENGAN MEMPERTIMBANGKAN 
KETIDAKPASTIAN KEGAGALAN 
 
 
NABILA YURAISYAH SALSABILA 
02411850020004 
 
 
 
Supervisor : 
Nurhadi Siswanto, S.T., M.S.I.E., Ph.D 
Prof. Vincent F. Yu 
 
 
 
Departemen Teknik dan Sistem Industri 
Fakultas Teknologi Industri dan Rekayasa Sistem 
Institut Teknologi Sepuluh Nopember 
2020  



vi 

 

 

 



i 

 

 

  



ii 

 

(This page is initially left blank) 

  



iii 

 

 

  



iv 

 

(This page is initially left blank) 

  



v 

 

 

  



vi 

 

(This page is initially left blank) 

  



vii 

 

AUTHENTICITY STATEMENT SHEET 

 

I, the undersigned below: 

Name  : Nabila Yuraisyah Salsabila 

NRP  : 02411850020004 

Study program : Master Degree in Industrial and Systems Engineering, ITS 

 

state that thesis with the title: 

"JOINT OPTIMIZATION MODEL OF SPARE PARTS INVENTORY 

AND PLANNED MAINTENANCE UNDER UNCERTAIN FAILURES” 

is truly the result of independent intellectual work, completed without the use of 

materials that are not permitted and is not the work of other parties that I 

acknowledge as his own work. 

All references cited or referred have been written in full in the reference list. 

If it turns out that this statement is not true, I am willing to accept sanctions in 

accordance with applicable regulations. 

 

 

 

 Surabaya, August 2020 

 

  

    

 Nabila Yuraisyah Salsabila 

NRP. 02411850020004 

  



viii 

 

(This page is initially left blank) 

  



ix 

 

JOINT OPTIMIZATION MODEL OF SPARE PARTS 

INVENTORY AND PLANNED MAINTENANCE UNDER 

UNCERTAIN FAILURES 
 

Student Name : Nabila Yuraisyah Salsabila 

Student ID : 02411850020004 

Supervisor : Nurhadi Siswanto, S.T., MSIE., Ph.D. 

Co-Supervisor : Prof. Vincent F. Yu, B.S., M.S., Ph.D. 

 

1 ABSTRACT 
 

Spare parts are often considered as Class C items, because of their low cost 

and low demand among the stocked items, but the availability of spare parts is 

essential to support maintenance requirements. Optimizing inventory parameters is 

the main problem of spare parts management to maintain a small number of SKUs 

kept in a store, and optimization techniques are commonly used to balance 

inventory cost and spare parts availability. Thus, this research proposes a joint 

optimization model of single-item multi-period spare parts inventory management 

and planned maintenance under uncertain failures. We present a Mixed Integer 

Nonlinear Programming (MINLP) formulation of the inventory optimization model 

under (s, S) policy with T periods of the order interval. Second, we combine this 

formulation with the predictive maintenance interval, representing the uncertain 

failures under predefined distribution. Since the model is nonlinear and stochastic, 

it is difficult to use exact methods to tackle it. Therefore, we combine the previously 

introduced MINLP formulation with a metaheuristic approach to solve the problem. 

Lastly, we perform a computational study on some instances and a real case study 

to demonstrate the proposed approach’s effectiveness and efficiency. Based on the 

numerical experiment results, the proposed GA performs efficiently in large scale 

problem and the total cost of the real case study decreased by 17.9% compared to 

the current policy.  
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2 ABSTRAK 
 

Suku cadang pada umumnya termasuk dalam kelompok barang kelas C, 

hal ini disebabkan karena biaya dan permintaan yang rendah dibandingkan dengan 

barang-barang lainnya. Tetapi, ketersediaan suku cadang sangat penting untuk 

mendukung perawatan. Salah satu masalah utama dalam manajemen persediaan 

suku cadang adalah meminimalkan jumlah barang yang tersimpan dalam gudang 

dengan mengoptimalkan parameter persediaan. Teknik optimasi pada umumnya 

digunakan untuk menyeimbangkan biaya persediaan dan ketersediaan suku cadang. 

Penelitian ini mengusulkan model optimasi gabungan dari manajemen persediaan 

suku cadang multi-periode multi-item dan perencanaan perawatan dengan 

mempertimbangkan ketidakpastian kegagalan. Pertama, model Mixed Integer 

Nonlinear Programing (MINLP) persediaan suku cadang diformulasikan dengan 

kebijakan (s, S) dengan tinjauan berkala setiap T periode. Kedua, model persediaan 

suku cadang ini kemudian digabungkan dengan model perencanaan pemeliharaan 

berkala. Ketidakpastian kegagalan dimodelkan berdasarkan distribusi probabilitas 

normal. Pendekatan optimasi eksak akan membutuhkan waktu komputasi yang 

lama untuk menyelesaikan model gabungan ini dalam skala besar. Sehingga, 

pendekatan metaheuristik dengan Genetic Algorithm (GA) dikembangkan untuk 

menyelesaikan permasalahan ini dalam skala besar. Ketiga, analisis komputasi 

dilakukan pada beberapa contoh dan studi kasus untuk mengevaluasi efektivitas dan 

efisiensi pendekatan GA yang diusulkan. Berdasarkan hasil simulasi, GA dapat 

menyelesaikan permasalahan berskala besar. Total biaya pada contoh studi kasus 

dapat menurun hingga 17,9% dibandingkan dengan kebijakan awal. 
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1 CHAPTER 1 

INTRODUCTION 

 

Chapter 1 contains the description of the thesis background, problem 

formulation, thesis objectives, scopes and assumptions, and also the thesis 

organization. 

 

1.1 Background 

Indonesia is currently targeting the industrial sector as the primary driver 

of national economic development. Several developed countries are currently 

competing on economic growth. The economic growth in developing Asian 

countries is projected to 5.6% in 2020 (Asian Development Bank, 2019). 

Furthermore, Indonesia’s economic growth is projected to remain above 5% in 

2020 (OECD, 2018). This economic growth will lead to high demand for various 

products in Indonesia. Several actions have been made to support these demands, 

including importing various products. In 2019, the total import value in Indonesia 

reached a value of 156 Billion in US $. This value is very high compared to 

Indonesia’s export value, which amounts to 153 Billion in US $ (Indonesian Central 

Bureau of Statistics, 2019). Indonesia can reduce the dependence on these import 

activities by increasing the industries’ capability to meet domestic demands 

(Salsabila et al., 2019). Increasing the capacity and developing the technology of 

the manufacturing system can be done to increase production performances. 

Equipment availability becomes essential to support the development of 

manufacturing technologies. 

Spare parts inventories exist for serving the need for the maintenance and 

replacement of operating plant items (Wang, 2012). Spare parts are often 

considered the class C item since they contribute to low demand and cost, among 

other stock items. However, the unavailability of the spare parts will lead to 

unsatisfied production performances, which will affect the financial performances, 

especially for the high manufacturing technologies. According to Gallagher et al. 

(2005) in Hu et al. (2018), machinery which might have a useful life up to 30 years, 
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annually consumes spare parts amounting to as much as 2.5 percent of the purchase 

price. Many researchers are interested in studying this research area in the past few 

decades. The spare parts inventory management has different characteristics 

compared to other stock items. Kennedy et al. (2002) in Wang (2012) mentioned 

two main differences between spare parts inventory management and other 

manufacturing inventories, such as work-in-process and finished products, namely 

the functionality and the policy for managing the inventory. Spare parts demands 

are hard to forecast because most of the demand has irregular patterns. Equipment 

could require a significant value of spare parts at a time, but no spare parts are 

needed for a sequence of periods afterward. 

Furthermore, most plants consist of a large variety and number of spare 

parts that are hard to manage. The most critical characteristic is the unavailable 

spare parts can extend the machine downtime. On the other hand, maintaining 

unnecessary spare parts leads to high holding costs and obsolescence risks. 

However, although the spare parts management differs from other stock items, the 

critical question is still the same, namely deciding the optimal stocking level of the 

spare parts (Wang, 2012). 

Four standard stocking policies are commonly used in spare parts 

management: 

1. (Q, R) inventory policy: continuous review, with fixed reorder point (r) 

and fixed order quantity (Q) 

2. (s, S) inventory policy: continuous review, with fixed reorder point (s) and 

order-up-to level (S) 

3. (T, R) inventory policy: periodic review, with fixed review interval (T) and 

order-up-to-level (R) 

4. (S-1, S) inventory policy: continuous review, with order-up-to-level (S) in 

one-for-one replenishment mode. 

Combining several standard stocking policies is also possible to increase 

the parameter performances. Scarf (1960) has proven the optimality of (T, s, S) 

policy, which gave the minimum total cost than the other systems under general 

assumptions of demand and cost factors. The (T, s, S) is a combination of periodic 
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review control policy with fixed reorder point (s) and order-up-to level (S). . 

Furthermore, this policy is commonly implemented in practice. 

Inventory replenishment based on forecasting under (T, R) and (S, S) 

policy has been done before by Syntetos and Boylan (2006) and Zhou and 

Viswanathan (2011). Syntetos and Boylan (2006) assessed the empirical stock 

control performance of intermittent demand estimation procedures under periodic 

order-up-to-level (T, R) policy. Zhou and Viswanathan (2011) addressed 

forecasting and managing the inventory of service parts where the demand patterns 

are highly intermittent under (s, S) policy. Based on these studies, they suggested 

that the order-up-to level’s decision by taking into account that the demand for that 

period triggers the order in a period. 

Many optimization problems assume that the demands and parameters are 

already known. However, in reality, the machine utilization to meet the production 

parameters causes the failures’ uncertainty. The uncertain failures will result in the 

variability of the spare parts requirements. Thus, the allocation of spare parts more 

complicated. Several studies have been done to solve the uncertain behavior of 

spare parts requirements. Simulation studies are standard techniques to tackle the 

uncertain behavior of the spare parts requirements (Lee et al., 2008; Marseguerra et 

al., 2005; Salsabila and Siswanto, 2019). Lee et al. (2008) developed a multi-

objective simulation-optimization framework. In this study, they integrated 

simulation, multi-objective evolutionary algorithms, and multi-objective 

computing budget allocation methods. Marseguerra et al., (2005) proposed an 

approach to the multi-objective optimization of the spare part allocation by 

combining the Genetic Algorithm and Monte Carlo simulation. A discrete event 

simulation study was done by Salsabila and Siswanto (2019) to model the 

equipment’ configuration of a manufacturing system. They model each 

equipment’s failure, which triggered the spare parts requirements. Other than the 

simulation study, other modeling techniques also have been done in several studies 

(Wen et al., 2017; Xiang et al., 2018). Wen et al. (2017), instead of utilizing the 

probability theory that requires massive historical data, proposed a new method to 

measure uncertainty based on the belief degree of decision-makers. They also 

utilized a Genetic Algorithm procedure to search for the optimal solution. In Xiang 
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et al. (2018), they present a mixed-integer nonlinear programming (MINLP) 

formulation for determining near-optimal (s, S) policy parameters. To tackle more 

significant instances, they combine the previously introduced MINLP formulation 

with a Binary Search approach. They also linearized these models into mixed-

integer linear programming (MILP) by utilizing a piecewise function. 

Preventive maintenance is commonly implemented in some companies to 

maintain their equipment. Scheduling the regular interval period for preventive 

maintenance is practically universal in some companies. A longer interval will 

result in more spare parts during failures. On the other hand, a shorter interval will 

require more spare parts during PM. Thus, the spare parts inventory management 

and maintenance schedule should be managed jointly (Wang, 2012). Joint spare 

parts inventory management and maintenance optimization model have been done 

in several studies (Bousdekis et al., 2017; Olde Keizer et al., 2017; Wang, 2012). 

Bousdekis et al. (2017) proposed a proactive event-driven decision model for joint 

predictive maintenance and spare parts inventory optimization, which can be 

embedded in an Event-Driven Architecture (EDA) for real-time processing in the 

frame of e-maintenance concept. In Wang (2012), joint optimization of the spare 

parts and PM was done by utilizing the stochastic dynamic programming model. 

This model follows a periodic review inventory policy with the demand generated 

based on the spare parts requirement due to maintenance. Furthermore, the 

preventive maintenance schedule was determined based on the optimal 

multiplication of the review interval. 

In this research, we develop a joint optimization model of spare parts 

inventory management and preventive maintenance under uncertain failures. The 

joint optimization model consists of MINLP formulation of spare parts optimization 

under periodic review of s, S policy and periodic preventive maintenance, which to 

the best to our knowledge has never been done before in the previous studies. 

Furthermore, we also consider the uncertainty of the failures that will cause the 

variability of the spare parts requirements. The Monte Carlo simulation provides a 

flexible simulation that can be implemented for many realistic issues (Marseguerra 

et al., 2005). We perform a Monte Carlo simulation to generate the random spare 

parts requirements under a predetermined probability distribution. Therefore, based 
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on this random number generation, we determine the periodic s, S parameters. 

Furthermore, we determine the periodic preventive maintenance based on the 

multiplication of the periodic review. 

This problem’s objective is to minimize the total relevant cost, which 

consists of fixed ordering cost, purchasing cost, holding cost, penalty cost, and 

maintenance cost. The fixed ordering cost is incurred when there is an order issued. 

The purchasing cost incurs based on the variable unit cost of the spare parts 

requirements. The holding cost is the variable cost of the stocking cost. The penalty 

cost is incurred when there are no spare parts available during the downtime 

machine. 

Furthermore, we breakdown the maintenance cost into two costs, namely 

corrective maintenance cost and preventive maintenance cost. The corrective 

maintenance is incurred when the failure occurs during the preventive maintenance 

interval. On the other side, the preventive maintenance cost incurs when preventive 

maintenance is performed. Both preventive maintenance and corrective 

maintenance are mutually exclusive since they cannot be conducted at the same 

time. 

This study proposes the Genetic Algorithm (GA) to be implemented in the 

real problem. The implementation of GA of spare parts inventory management has 

been done by Marseguerra et al. (2005) and Wen et al. (2017). Marseguerra et al. 

(2005) utilized GA to determine the optimal spare parts allocation concerning 

different objectives. Wen et al. (2017) implemented GA to solve nonlinear discrete 

programming models. GA is a search heuristic that can efficiently reach global 

optimal and can flexibly adjust its search direction without determining rules (Wen 

et al., 2017). GA is numerical search tools which operate according to procedures 

that resemble the principles of natural selection and genetics (Marseguerra et al., 

2005). The procedure of searching optimal stock levels of spare parts is 

implemented by the representation of the initial population, fitness evaluation, 

genetic operation (selection, crossover, and mutation) (Wen et al., 2017). 

We present numerical analysis to some instances and a real case problem 

of the chemical process industry in Gresik, Indonesia. This chemical process 

industry is currently working on 70,000 Ton of production capacity. However, the 
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equipment breakdown causes a decreasing availability to 88%, and the 

manufacturing system cannot perform effectively. Furthermore, 40% of the 

production shutdown causes are related to the machine breakdown. Therefore, 

optimizing the spare parts inventory management and planned maintenance is 

essential to minimize the shutdown risks. 

This study provides theoretical and practical contributions. The theoretical 

contribution is developing a new joint optimization model of spare parts inventory 

and planned maintenance under uncertain failures. Based on this case, we consider 

periodic s, S inventory policy, which has never been done in the previous research. 

We also implement this proposed model to some instances and a real case problem 

to evaluate the performance. 

 

1.2 Problem Formulation 

This study focuses on developing a new joint optimization model of spare 

parts inventory management and planned maintenance under uncertain failures. 

This study also presents a numerical analysis to demonstrate this model to some 

instances and a real case study on a chemical process plant in Gresik, Indonesia. 

 

1.3 Research Objectives 

The research objectives are listed as follows: 

1. Develop a new joint optimization model of spare parts inventory 

management and planned maintenance under uncertain failures with 

periodic s, S policy. 

2. Propose a Genetic Algorithm to solve the optimum policy parameters. 

3. Implement the proposed model to solve the real case study on a chemical 

process plant in Gresik, Indonesia. 

 

 

1.4 Research Scopes and Assumptions 

Scopes and assumptions of this research follow: 

1. The demand is generated based on the normal distribution with the given 

average as the expected value. 
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2. The replacement is done when failed items occur, and preventive 

maintenance takes place. 

3. If there is no stock available, the items are backordered, and very high 

penalty costs occur. 

4. The delay-time of the replacement process is neglected. 

5. The proposed model only considers the inventory and maintenance 

system. 

 

1.5 Thesis Organization 

This thesis is divided into seven chapters. Chapter 1 is the introduction 

section, which presents the background and the objective of this research. Chapter 

2 is the literature review that presents the related studies and the overview of the 

terminologies related to our research. Chapter 3 describes the problem and the 

developed mathematical model. Chapter 4 describes the solution methodology, 

which consists of the solution representation and the explanation of the proposed 

algorithm operations. Chapter 5 presents the computational analysis, which 

evaluates the computing performance and implementation of the real case study. 

Chapter 6 summarizes this thesis and suggestion for future research. 
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2 CHAPTER 2 

LITERATURE REVIEW 

 

Chapter 2 contains the literature review which is related to this research. 

In this chapter, we describe some theoretical review, which are consist of spare 

parts inventory management, planned maintenance, spare parts inventory 

management under uncertainty, and some solution methods that have been done in 

the previous research. Other related previous studies also reviewed in this chapter. 

 

2.1 Spare Parts Inventory Management 

Spare parts inventories are used to serve the maintenance requirements of 

operating plant items (Wang, 2012). The spare parts inventory management has the 

different characteristics of inventory management, aiming to achieve the desired 

equipment availability at a minimum cost. The following are the particular 

characteristics of the spare part inventory management (Hu et al., 2018): 

1. The spare parts’ demand is commonly intermittent. Therefore, the spare 

parts demand is complicated to forecast. 

2. The spare parts are usually hard to manage because of the large number 

and various types. Thus, it is hard to determine the parameters of each 

spare part. 

3. It is important to minimize stocks, with only a small quantity per Stock 

Keeping Unit (SKU) to reduce the risk of spare parts’ obsolescence. 

4. The consumption of the spare parts is closely related to maintenance. A 

spare part is needed when the corresponding part of the equipment fails, 

damaged, or wears out. The dependences of equipment usage become a 

critical decision to support the whole production system. 

Although the spare parts inventory management has different 

characteristics from other stock items, the critical decision variable is the same, 

deciding the optimal stocking level of the spare parts (Wang, 2012). Special 

characteristics of spare parts management challenge many researchers to tackle this 

problem. Operational Research (OR) models and many solutions methods have 
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been proposed in the past decades. Hu et al. (2018) have created a framework for 

OR in spare parts management in academic researches. 

Figure 2.1 describes the OR spare parts management framework, which 

consists of three layers: i) objectives of spare parts management, ii) main tasks 

based on the equipment life-cycle phase, iii) OR disciplines for supporting spare 

parts management. The critical question of the spare parts management is deciding 

which items to be stocked, when, and how many items to (re)order. The objectives 

mostly consist of minimizing downtime by maximizing spare parts’ availability and 

minimizing economic costs. The economic costs are the total of holding cost, stock-

out penalty cost, and the ordering cost. The second layer describes the spare parts 

management’s main tasks at each phase of the equipment life-cycle. Hu et al. (2018) 

categorize the equipment life-cycle into four phases: i) phase 0: pre-life phase, ii) 

phase 1: initial procurement, iii) phase 2: normal operation, and iv) phase 3: end-

of-life. The third layer describes many techniques to facilitate the spare parts 

management. Hu et al. (2018) classify four main technical approaches of OR, 

namely multi-criteria classification, forecasting, optimization, and simulation. 

The optimization techniques are considered to be challenging in inventory 

management since it has been used by many researchers to achieve high system 

availability with minimal inventory. Hu et al. (2018) divided the relevant 

contributions into three groups: i) optimization of the system parameters, ii) 

optimization of the replenishment quantities, and iii) end-of-life orders and reuse 

supply chain design. 

The optimization of the system parameters is related to the first phase of 

the spare part management. In this phase, the managers will have two main choices: 

to stock the initial spare parts or place an order when demand occurs. After 

optimizing the system parameters, then the next main task is to optimize the 

replenishment quantities. There are four standard stocking policies commonly used 

in spare parts management (Hu et al., 2018): 

1. (Q, R) inventory policy: continuous review, with fixed reorder point (r) 

and fixed order quantity (Q); 

2. (s, S) inventory policy: continuous review, with fixed reorder point (s) and 

order-up-to level (S); 
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3. (T, R) inventory policy: periodic review, with fixed review interval (T) and 

order-up-to-level (R); and 

4. (S-1, S) inventory policy: continuous review, with order-up-to-level (S) in 

one-for-one replenishment mode. 

Combining several standard stocking policies is also possible to increase 

the optimization performances. Scarf (1960) has proven the optimality of (T, s, S) 

policy which gave the minimum total cost than the other systems under general 

assumptions of demand and cost factors. The (T, s, S) is a periodic review control 

policy with fixed re-order point (s) and order-up-to level (S). 
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Figure 2.1 Framework for OR in spare parts management (Hu et al., 2018) 
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2.2 Planned Maintenance 

There are several types of maintenance policies have been implemented in 

practice and extensively studied, namely corrective, periodic, age-based, and 

condition-based maintenance. 

1. Corrective maintenance is a maintenance action that is done when the 

machine breakdown. Sometimes this maintenance action requires 

equipment replacement. In practice, this maintenance action could be more 

expensive than preventive maintenance because an equipment failure can 

damage other equipment (Olde Keizer et al., 2017). 

2. Periodic maintenance is preventive maintenance (PM) at a regular interval. 

This maintenance policy is commonly implemented in practice. The lumpy 

demand for the spare parts is usually the result of the periodic maintenance 

actions because several defective but still working parts may be identified 

and replaced at PM. Thus, the interdependency between the PM interval 

and spare parts inventory could occur (Wang, 2012). A periodic 

maintenance policy is determined by an optimal scheduling plan for 

servicing a set of machines over a planning horizon while minimizing the 

total costs (Mjirda et al., 2016). 

3. Age-based maintenance is a maintenance policy that considers the 

degradation phenomena. If the degradation level of a component reaches 

a given critical size, it is replaced by a new one, and other components 

undergo a PM action. Degradation failure can result in substantial costs of 

repair or replacement. Furthermore, significant losses of production and 

catastrophic safety hazards also can be happened. An age-based preventive 

maintenance policy is implemented to maintain machine reliability 

(Shafiee and Finkelstein, 2015). 

4. Condition-based maintenance is the maintenance action that is based on 

the actual system state (Olde Keizer et al., 2017). This maintenance policy 

is also known as a just-in-time maintenance policy since it’s done at the 

appropriate time based on information based on inspection and monitoring 

(Zhang and Zeng, 2017). 
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Figure 2.2 illustrates the relationship between the number of failures and 

the PM interval (Wang, 2012). Defective item’s arrival is represented by ○ and 

failure is represented by ●. An arc linking ○ and ● represents the delay-time. An 

arc linking ○ and * represents the censored delay-time due to preventive 

replacement. Four defective items are preventively replaced, and seven potential 

failures reduced into three due to PM inspections. If the PM interval is shortened 

by half of the current interval, then one more defective item could be identified and 

replaced. Thus, the PM interval influences the number of failures, and if no 

inspection is performed, all seven defective items will lead to failures. 

 

 

Figure 2.2 The process of defective and failed items (Wang, 2012) 

 

2.3 Spare Parts Inventory Management under Uncertainty 

Many spare parts inventory management studies have implemented 

several techniques to cope with uncertain failures. Robust dynamic programming 

was implemented by Qiu et al. (2017). They used two types of uncertainty sets, i.e., 

box and ellipsoid, to model demand distribution uncertainty. This method is useful 

when the assumption of the distribution function is unknown and nonstationary. 

Based on the result of their numerical study, the (s, S) policy is different from the 

optimal policy when the actual distribution is known. The objective values of the 

optimal (s, S) are higher than when the actual distribution is known. However, the 

solution found is close to the actual optimal solution. This solution implies that the 

proposed models are robust, and the corresponding solution approaches are 

powerful for solving inventory management problems. 

Another technique was developed by Wen et al. (2017). They focused on 

developing an uncertainty theory-based method to model the demand uncertainty 

with a lack of statistical data. They used the uncertainty theory to describe the belief 
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degree of decision-makers, which presents the likelihood that an uncertain event 

happens. The availability and effectiveness of these models were proven through 

the numerical example. However, the optimality and the computational time of the 

solution were not further analyzed. 

These two studies are effective in solving the lack of knowledge of the 

demand distribution problem. Thus, the solution is hardly reaching the optimal 

solution. However, these techniques are unnecessary to be implemented if the 

demand distribution has already given, and the historic data were provided. Other 

methods such as Markov Decision Process, Stochastic dynamic programming, and 

simulation techniques relax the assumption of unknown distribution probability and 

lack of historical data. 

An exact method for a multi-component system by formulating the 

problem as Markov Decision Process was firstly implemented by Olde Keizer et al. 

(2017). The state space is used to keep track of the state of each component, the 

status of each order, and the number of spares on hand. The transition probabilities 

summarize the probabilities of the component state changes based on the 

replacement decision. Each probability was generated based on Poisson 

distribution. Based on the numerical analysis, the main results are robust for a 

variety of parameter settings.  

Other than Markov Decision Process, Stochastic dynamic programming 

also implemented by Wang (2012) to deal with uncertain failures. They provide a 

probability tree showing all scenarios of the possible numbers of replacements over 

an order interval. Furthermore, this probability tree results in an expected value, 

which will be further analyzed through the dynamic programming model. An 

enumeration procedure was also provided to find the optimal parameter of order 

interval and planned maintenance interval. Based on the numerical analysis, an 

optimal joint solution was found. However, the dimensionality could be a problem 

if the arrival of defective items is large, which will substantially increase the 

computational time, mainly if the enumeration is also used to determine other 

decision variables. In the numerical example presented, it requires about 20 minutes 

to find the optimal solution. 
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The common method to solve a stochastic problem is simulation modeling. 

There were various kinds of simulation techniques done by previous researches 

(Marseguerra et al., 2005; Salsabila and Siswanto, 2019). Salsabila and Siswanto 

(2019) utilized the Discrete Event Simulation (DES) to determine the spare parts 

inventory parameter by considering the equipment failures. DES is commonly 

utilized to model the stochastic queue system. However, it is hard to combine DES 

with other optimization techniques. This method mostly involves an experimental 

design to find a better solution. Therefore, the solution provided by the DES 

technique is hardly reaching the optimal solution. 

Marseguerra et al. (2005) firstly developed the Monte Carlo simulation 

with a Genetic Algorithm to optimize the order quantity by a multi-component 

system. The modeling of the system repair, failure, and stochastic replacement 

processes is done by Monte Carlo simulation, which they claimed it could achieve 

more realistic system modeling. The Monte Carlo provides a flexible simulation 

tool capable of evaluating all the fitness of interest while accounting for many 

practical issues (Marseguerra et al., 2005). Three probability density functions 

(PDFs) were involved in this research: the failure time distribution of the 

component, the replacement time distribution, and the recycling time distribution. 

In this research, they assume that the repair facility starts the repair process as soon 

as it receives the failed component, which means the repair queues are not modeled. 

Based on the above literature review, the most suitable method to model 

the uncertain failure in our case is the Monte Carlo Simulation. This method is 

flexible, which can be combined with other optimization techniques but still can 

achieve realistic system modeling. Furthermore, the queue system is not necessarily 

modeled in this case. Thus, we can assume that all the equipment can be repaired 

as soon as the components available. 

 

2.4 Solution Method 

Various solution methods to solve s, S inventory policy was presented in 

the previous researches. An exact evaluation was done by Topan et al. (2017). They 

develop a hybrid approach based on applying Lagrangian decomposition and 

column generation to obtain a lower bound and then using a two-step greedy 



17 

 

algorithm to generate feasible policy parameters from that lower bound. Based on 

the numerical studies, the solution generated is asymptotically optimal in the 

number of parts. In line with this finding, the lower bound obtained by the 

Lagrangian decomposition and column generation method is asymptotically tight. 

This result means that their solution method can solve with large numbers of items 

optimally. 

Two approaches were presented by Xiang et al. (2018). First, they 

introduce an MINLP and solve it by the Binary Search algorithm. Furthermore, they 

linearized previously formulated MINLP to become a MILP model by piecewise 

function. The off-shelf software can solve the advantage of this linearized MILP 

model. Based on their computational experiments, the linearized MILP can provide 

shorter computational time than the Binary Search algorithm approach. However, 

this approach cannot solve a larger size problem. Furthermore, the smaller 

optimality gap was provided by the Binary Search approach. 

Some researchers have implemented the genetic algorithm to solve spare 

parts inventory management (Marseguerra et al., 2005; Wen et al., 2017). GA is 

numerical search tools which operate according to procedures that resemble the 

principles of natural selection and genetics (Marseguerra et al., 2005). The 

procedure of searching optimal stock levels of spare parts is implemented by the 

representation of the initial population, fitness evaluation, genetic operation 

(selection, crossover, and mutation) (Wen et al., 2017). The advantage of GA is the 

global optimization, and it can flexibly adjust its search direction. In this research, 

we develop an MINLP model that is solved by the GA approach, which can provide 

efficient nonlinear and discrete problem solutions. 

According to Wen et al. (2017), the GA procedure can be illustrated as 

follows: 
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Figure 2.3 GA Procedures (Wen et al., 2017) 

 

GA procedure starts with defining the parameters, Such as the population 

size of each chromosome, the crossover probability, and the mutation probability. 

An initial population can be generated through a random seed approach. The fitness 

calculation is done by calculating the objective function of the initial population. 

The crossover operation is rearranging the chromosomes of each population 

according to their fitness from big to small, and the first chromosome passes on 

directly to the next generation. Other chromosomes are selected from generation 

based on spinning roulette wheel characterized by fitness for population size times. 

Each time a single chromosome is selected. The parents are selected based on the 

crossover probability. Before accepting the selected parents, the feasibility must be 

evaluated. If both children are feasible, the children replace their parents. 

Otherwise, the existing feasible solution must be kept. The crossover operation is 
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repeated until two feasible children are obtained. The mutation operation is based 

on the probability of mutation. The mutation result can be selected if it is feasible. 

A new approach is proposed Santosa and Ai (2017), which is elitism operation. This 

operation aims to maintain the best solution in each generation. 
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3 CHAPTER 3 

RESEARCH METHODOLOGY AND MODEL 

DEVELOPMENT 

 

The research methodology of this study is described as follows. 

 

Start

Problem 

Defintion

Literature 

Review

Real Case 

Study
Data Collection 

and Data 

Processing

Developing 

MINLP 

Formulation

Numerical 

Analysis

Developing 

Genetic 

Algorithm

Sensitivity 

Analysis

Conclusion and 

Recomendation

End
 

Figure 3.1 Research Methodology 

 

The research is started with the problem definition. The problem is 

determined based on the literature review on the previous research and the real case 

study. The second stage is the data collection and data processing. The data are 
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taken from the real case study and used as the input parameter in the numerical 

analysis. Next, we develop a Mixed-Integer Non-linear Programming formulation. 

We can develop this model by modifying the model in previous research. The next 

step is developing a Genetic Algorithm (GA) to be implemented to a large scale 

problem. In the numerical analysis, we test the MINLP model and GA to some 

instances and a real case study. In this stage, we evaluate the optimality and the 

computational efficiency of both approaches. Lastly, we provide a conclusion and 

recommendation, which also includes possible future research. 

 

3.1 Problem Description 

In this problem, we consider a significant key identical component in a 

petrochemical manufacturing system. In this system, components such as bearing 

and gasket with identical type and size significantly influence the cost. We assume 

the preventive maintenance (PM) is the inspection of the equipment. If during the 

inspection, a defective or failed component is found, a replacement takes place. In 

this problem, we do not consider repairing the defective component. Here we 

implement the regular PM policy, in which the inspection of each item takes place 

at a regular time interval, such as every three months or four months. Random 

failures may occur during the PM interval. If this failure occurs, corrective 

maintenance (CM) takes place. 

A single warehouse stocks the components for replacing the failed and 

defective items. The review ordering of the spare parts is done periodically, which 

usually implemented in practice. An order will be issued if the inventory level is 

less than the reorder point (s). The amount of order will be the order-up-to level (S) 

minus the current inventory level. In this research, the uncertain variable is the spare 

parts requirement of each period. The Monte Carlo simulation generates the random 

spare parts requirement. 

Figure 3.2 illustrates the inventory profile modified from Wang (2012). 

Unlike the previously described inventory profile, instead of implementing (Q, R) 

policy, we implement the periodic (s, S) policy. We assume that the PM interval is 

an integer multiple of the review interval, thus tm = kto. The random number of 

failures from the ordering point to the next order arrival is represented by d, and the 
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random number of items found faulty during PM inspection is represented 

by dpm. If the available spare parts are less than the requirements, the backorders 

(Bt) will be issued, which will be fulfilled in the next ordering period. Therefore, to 

avoid backorders at the current period, the previous inventory level (It-1) and the 

issued order quantity (Qt) must fulfill the current failed items (dt), the defective item 

(dpmt) if there is a PM inspection, and the previously backordered items (Bt-1). 

Otherwise, the items will be backordered based on the number of failed items (dt), 

the defective item (dpmt) if there is a PM inspection, and the previously backordered 

items (Bt-1) which can not be satisfied by the the previous inventory level (It-1) and 

the issued order quantity (Qt). Equation (1) and (2) is the formulation of inventory 

on hand and backordered items, where the order quantity is formualated as Equation 

(3). 

 

11 −− −−−+= tttttt BdpmdIQI                              (1) 

11 −− −−++= tttttt IQBdpmdB              (2) 

 

where, 

 

1−−= tt ISQ                 (3) 

 

Ioa1+1

Ioa1

Iop1-1

Qoa1

toa1

doa1

to = 3
S

s

top1 toa1+1 top2

doa1+1

Qoa2

kto = 2 x 3

tm1

dpmoa1

Bop3

T

LT

dLT1 dLT2

LT

Ioa2

doa2

dLT2

toa2 toa2+1

doa2+1

Ioa2+1

dLT3

top3

Qoa3

to = 3

toa3

doa3

LT

dpmoa3

tm2

Ioa3
Iop1 Iop2

d’LT3

toa3

Bop3

d’LT3

dLT1

 

Figure 3.2 Spare Parts Inventory Profile if to = 3 and k = 2 
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where: 

T planning horizon 

LT ordering lead time 

to review interval 

topi the 
ot

T
i  ordering period, where 

oopopi ittt += 1
 

toai the 
ot

T
i  ordering arrival, where LTtt opoai += 1  

kto PM interval 

tmj the 
okt

T
j   preventive maintenance period, where 

ommj jkttt += 1
  

Qt  order quantity at period t 

dt random number of failures at period t 

d’t satisfied random number of failures at period t 

dpmt random number of defective items at period t 

It inventory on hand at period t 

Bt backordered items at period t 

S order-up-to level 

s reorder point 

 

According to Xiang et al., (2018), to model the stochastic behavior, the 

inventory and backorders will be estimated by utilizing the order loss function 

which is formulated as follows: 

)]0,[max(),( xExL −=                           (4) 

where E denotes the expected value with respect to the random variable  and scalar 

variable x. In our model, the spare parts requirements are the random variable and 

the order quantity, inventory, and the backordered items are the scalar variables. 

Therefore, if we want to model the non-linear holding and penalty units, the 

equations will be: 

),( 11 tttttt dpmdBIQLI +−+= −−              (5) 
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))(,( 11 tttttt dpmdBIQLB +−+−−= −−             (6) 

or 

)]0[max( 11 tttttt dpmdBIQEI −−−+= −−             (7) 

)]0[max( 11 tttttt IQdpmdBEB −− −−++=             (8) 

Therefore, equation (7) and (8) can be formulated as follows: 

tttttt IdpmdBIQE −−−+ −− ][ 11                 (9) 

tttttt BdpmdBIQE +++−− −− ][ 11              (10) 

These equations will be used to calculate non-linear inventory and penalty units. 

 

Model development and 

implementation

Input

· Planning horizon

· Generated random 

failed spare parts

· Generated random 

defective spare parts

Parameter

· Fixed ordering cost

· Variable purchasing cost

· Variable holding cost

· Variable penalty cost of unsatisfied demand

· Fixed PM cost

· Fixed CM cost

Constraint

· Ordering condition

· Updating quantity order

· Updating inventory

· Updating backordered items

· Scheduling PM

· Scheduling stock review

· Updating CM schedule

Output

· Order-up-to level

· Reorder point

· Selected PM interval

· Selected stock review 

interval

· Total cost

Figure 3.3 System Characterization 

 

3.2 System Characterization 

We use an Integer non-Linear Programing (INLP) to deal with the spare 

parts inventory problem under S, s policy. The uncertain spare parts requirement 

will be modeled by the Monte Carlo Simulation. Since the spare parts requirement 

is stochastic, the simulation requires a number of replications. Each replication will 
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generates the required spare parts and will be solved by the INLP formulation. The 

objective function will be the average total cost and the decision variables will be 

the average of S, s parameters which are resulted by a set of replications. To find 

the optimal to and k, each schedule is generated and solved by this INLP 

formulation. The best solution is the to and k that give the minimum cost. The Figure 

3.3 illustrates the system characterization of this research. 

 

3.3 Problem Assumptions 

The following are the assumptions of this problem: 

1. The order lead time is assumed one period. Therefore, the ordered item 

will be arrived at one period after an order is issued. 

2. A CM action takes place once a failed item is detected while operating, 

while a PM action takes place once a defective item or failed item is 

detected while a PM inspection is done. 

3. The failure and PM replacements time are assumed less than one period, 

therefore the replacement processes do not influence the order and PM 

interval. 

4. Once a defective or failed item are detected, a replacement takes place 

through PM or CM actions instead of repairing it. 

5. The PM and CM action are assumed to be perfect, means that the 

replacement of the defective and failed spare parts is as good as new. 

6. The penalty costs of unavailable spare parts at failures and PM inspections 

are included in the backordering cost. 

7. The review interval is constant at to times of single period. 

8. The PM inspection interval is constant at k times of the review interval, 

where 
ot

T
k   

 

3.4 Mathematical Model 

The following formulation is the MINLP model of the uncertain spare 

parts inventory management with planned maintenance. To find the optimal review 

interval (to) and PM interval (kto), we solve all possible combinations of to and k 
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which will be generated as the stock review and PM schedule. To model the 

stochastic behavior, we generate random spare parts requirements in some scenarios 

under normal distribution. Since we do not have any detailed information about the 

pdf, thus, we assume that the expected value of the total cost is the average total 

cost of all scenarios. 

 

Sets: 

T Set of periods 

U Set of items 

S Set of schedule candidates 

  Set of spare part requirements scenarios 

 

Parameters: 

K Fixed ordering cost for placing an order 

cu Variable purchasing cost of item Uu   for each unit 

hu Variable holding cost of the item Uu   for each unit carried at the end of 

each time period  

b Variable penalty cost for each unmet demand at the end of each time period 

PC Predictive maintenance cost 

CC Corrective maintenance cost 

utd  Generated random failed items Uu   at period Tt   of scenario   

tsdpm  Generated random defective items at period Tt   if schedule  is 

implemented on the scenario Ss   

Rst Binary variable equal to 1 if stock review of schedule Ss   is done at Tt 

, and 0 otherwise 

Pst Binary variable equal to 1 if PM of schedule Ss   is done at Tt  , and 0 

otherwise 

LT Order lead time 

 

Decision Variables: 
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utO  Binary variable equal to 1 if order item Uu   is done at Tt  , and 0 

otherwise 

But Expected unsatisfied demand item Uu   at the end of period Tt   

Iut Expected closing inventory level item Uu   at the end of period Tt   

Qut Order quantity level of item Uu   at the beginning of period Tt   

Cut Binary variable equal to 1 if CM of item Uu   is done at Tt  , and 0 

otherwise 

zs Binary variable equal to 1 if schedule Ss   is selected, and 0 otherwise 

M Big number 

Su Order-up-to level of item Uu   

su Reorder point of item Uu   

 

Objective Function 

Min 
Ss

ss zTCE ][                 (12) 

s. t 

1=
Ss

sz                  (13) 


=




)(

][
s

s

TC

TCE ,      s             (14) 

where: 

=)(sTC
 

Min 
 

+++++
Uu Tt

uttuututuutut CCCPCPcQbBhIKO ))()()()()((         (15) 

s. t 

,0)(0 =uI         u       (16) 

,0)(0 =uB         u       (17) 

,0)(0 =uQ         u       (18) 

))(1()()(1,  ututu OMsI −−− ,                u , t      (19) 

)()1)()(( 1,  uttuust MOIsR +− − ,     u , t      (20) 

)())()()(( 1,,  uttuuLTtu QISO =− −− ,    u , t      (21) 
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)()()()()()( 1,1,  utststuttuuttu IPdpmdBQI −−−+ −−
, u , t      (22) 

)())()()()()(( 1,1,  utststuttuuttu BPdpmdBQI −−−+− −−
, u , t      (23) 

)()(

)()()()()( 1,1,





utut

ststuttuuttu

BI

PdpmdBQI

+=

−−−+ −−

 ,  
u , t      (24) 

)()1)((  utstut MCPd − ,      u , t      (25) 

}1,0{)(),(  utut CO  ,      u , t     (26)

+MsSQBI uuututut ),(),(),(),(),(      u , t      (27) 

The objective function of this model is shown in the Equation (12) which is to 

minimize the expected total cost of the selected schedule. Equation (13) ensures 

only one schedule can be selected. Equation (14) calculates the expected total cost 

which is the average of the total cost of each scenario. Here we minimize the total 

cost of each scenario by using Equation (15), which consist of the total purchasing 

cost, holding cost, penalty cost, ordering cost, PM cost, and CM cost. Equation (16), 

(17), and (18) ensure that there is no inventory, backordered items, and the quantity 

order at the beginning of the planning horizon. Equation (19) ensures that an order 

should not be issued if the inventory on hand (I) is more than the reorder point (s). 

Otherwise, in Equation (20), an order should be issued if a stock review is 

performed at period t and the inventory on hand (I) is less than equal to the reorder 

point (s). Equation (21) generates the order quantity. If an order is issued, the order 

quantity is the difference between the order-up-to level (S) and the inventory on 

hand (I). Equation (22) calculates the amount of inventory on hand (I) at the end of 

period t. The inventory on hand (I), is calculated based on the difference between 

inventory on hand (I) at the end of the previous period and the order quantity (Q) at 

the current period with the backordered items (B) at the previous period, the failed 

spare parts of the current period (d), and the defective spare parts if a PM is 

performed (dpm). Otherwise, if this value is negative, it will be calculated as the 

backordered items (B), which is shown in the Equation (23). Equation (24) ensures 

that both inventory on hand (I) and backordered items (B) are mutually exclusive. 

Equation (25) ensures that a CM (C) must be performed if there is a failed item (d) 

and no PM (P) is performed. Equation (26) is the binary constraint of the variable 
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order (O) and CM (C). Equation (27) is the nonnegative integer constraint for 

variable inventory on hand (I), backordered items (B), order quantity (Q), or-der-

up-to level (S), and the reorder point (s).  
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4 CHAPTER 4 

SOLUTION METHODOLOGY 

 

We propose a Genetic Algorithm (GA) to solve a near optimal solution of 

a larger size problem in a larger replication. Previously, a set of review interval (to) 

and the PM interval (k) combination are predetermined and then the optimal (S, s) 

inventory policies are solved through an MINLP model. Meanwhile in this 

algorithm, we also provide a joint optimization between the inventory management 

and the maintenance planning. Figure 4.3 describes the whole solution 

methodology. We propose two stages of GA. First, we solve the inventory policy 

parameters, the review interval, and the PM interval of each replication. The output 

of the first stage GA is the best solutions of each replication. Second, from this 

solution, we try to solve the best inventory policy parameters based on the best 

review interval and PM interval resulted from the first stage GA. The detailed 

operations will be explained further in this chapter. We develop our GA based on 

the GA framework on Wen et al. (2017); Santosa and Ai (2017). The GA procedure 

of each generation is illustrated in Figure 4.4. 

 

4.1 Solution Representation 

The notations that will be used for GA are shown as follow: 

 

Sets: 

re = 1, 2, 3, ..., Rep Set of replications 

n = 1, 2, 3, ..., N Set of chromosomes 

it = 1, 2, 3, ..., maxit Set of iterations 

itm = 1, 2, 3, ..., item Set of items 

t =1, 2, 3, ..., P Set of periods 

 

Input parameters: 

N   Number of chromosomes 

g   Number of genes 
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maxit1   Maximum iteration of GA stage 1 

maxit2   Maximum iteration of GA stage 2 

K    Fixed ordering cost for placing an order 

vitm   Variable purchasing cost 

hitm  Variable holding cost for each unit carried at the end of 

period t 

b   Variable penalty cost for each unmet demand at the end of 

period t 

Repdre,itm,t  Generated demand of replication re failed items itm at period 

t  

Repdpmre,itm,t  Generated demand of defective items of replication re itm at 

period t 

xLsSitm   Lower limit of s and S of each item 

xUsSitm   Upper limit of s and S of each item 

Pcross   Probability of crossover 

Mut   Percentage of mutation 

 

Output: 

Sre,itm   Order-up-to level item itm of replication re 

sre,itm   Reorder point item itm of replication re 

tore   Ordering interval of replication re 

Rre,itm,t Binary variable equal to 1 if a stock review of item itm is 

done at replication re period t, and 0 is otherwise 

Ore,itm,t Binary variable equal to 1 if an order of item itm is done at 

replication re period t, and 0 is otherwise 

Bre,itm,t   Unsatisfied demand of replication re at period t 

Ire,itm,t   Closing inventory level of replication re at period t 

Qre,itm,t   Order quantity level of replication re at period t 

PMre,t Binary variable equal to 1 if a PM is done at replication re 

period t, and 0 is otherwise  

CMre,itm,t  Binary variable equal to 1 if a CM of item itm is done at 

replication re period t, and 0 is otherwise 
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TCre   Total cost of replication re 

Elapsed time  Computing time 

it   Required iteration to reach optimal solution 

 

Since our model is considered as a continuous problem, the solution 

representation consists of the decision variables (sitm, Sitm, to, and k). To deal with 

the uncertain spare parts requirement, we generate some replications of the demand 

based on the predetermined distribution function. Each replication will be solved 

independently and results a near optimal solution. The solution structure for this 

problem is illustrated as follows: 

 

s1 S1 s2 S2 s3 S3 ... sitem Sitem to k 

Figure 4.1 Solution Structure 

 

Based on the above solution structure, the number of genes can be formulated as 

follows: 

 

22 += itemg                         (28) 

 

4.2 1st Stage Genetic Algorithm Procedure 

This first stage of GA solves the inventory policies, review interval, and 

the PM interval of each replication. After the solution of these variables have 

already found, the mode of the best review interval and PM interval found are 

selected as the best review interval, and the PM interval. 

 

4.2.1 Population initialization 

A population of N rows of chromosomes and g-2 columns of genes is 

generated randomly as the initial solution. Each chromosome is generated based on 

the following formulation: 

)( LUL xxrxx −+=              (29) 

Where xL is the lower limit of each gene, xU is the upper limit of each gene, r is a 

random value between (0, 1). Since our solution structure consists of the decision 
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variables, each xL and xU consist of four values. The xL and xU of s and S are entered 

as the input of the GA function. The xL of to and k is 1 and the xU of to is T-2 since 

we want to define the review interval. While xU of k is dependent to to. Therefore, 

three genes (s, S, and to) are generated first, then, the xU of k will be 
ot

T
. Then the 

value of k is generated randomly between xL and xU of k. 

 

4.2.2 Updating Variables and Evaluating the Population 

Each variable is updated based on the generated population in each 

chromosome. After updating variables, the total cost of each chromosome is 

calculated. The pseudo code for updating each variable is shown in Figure 5.5. The 

following are the procedure to update the variables. 

1. Stock review schedule (Rn,t) 

This variable is illustrated as a binary matrix of N rows, P columns. Rnt = 1 

means a stock review is performed at chromosome n period t, if Rnt = 0, no 

review is performed. Rnt is changed to 1 at every t = 1+aton, where 
not

T
a  . 

2. Preventive maintenance schedule (PMnt) 

Variable PMnt is illustrated as a binary matrix of N rows x P columns. PMnt = 

1 means a predictive maintenance is performed at chromosome n period t, if 

PMnt = 0, no preventive maintenance is performed. PMnt is changed to 1 at 

every t = 1+bknton, where
nontk

T
b  . 

3. Order (On,itm,t) 

Variable On,itm,t is illustrated as a binary matrix of N rows x P x item columns. 

On,itm,t = 1 means an order of item itm is issued at chromosome n period t, if 

On,itm,t = 0, no order is issued. If Rnt = 1 and In,itm,t-1 ≤ sn,itm, then On,itm,t = 1, 

otherwise On,itm,t = 0. 

4. Quantity order (Qn,itm,t) 
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Variable Qn,itm,t is the quantity order of item itm at chromosome n period t. This 

variable is illustrated as an integer matrix of N rows x P columns. Each Qn,itm,t 

is formulated as follows: 

titmntitmntitmntitmn OSSQ ,,1,,,,,, )( −= −
          (30) 

5. Inventory on hand (In,itm,t) 

Variable In,itm,t is the inventory on hand of item itm at chromosome n period t. 

This variable is illustrated as an integer matrix of N rows x P x item columns. 

Each In,itm,t is formulated as follows: 

)0,)(max( 1,,,,,,,1,,,, −− −−−+= titmnnttretitmretitmntitmntitmn BPMRepdmRepdQII (31) 

6. Backordered items (Bn,itm,t) 

Variable Bn,itm,t is the backordered number of item itm at chromosome n period 

t. This variable is illustrated as an integer matrix of N rows x P x item columns. 

Each Bn,itm,t is formulated as follows: 

)0),)((max( 1,,,,,,,1,,

,,

−− −−−+−= titmnnttretitmretitmntitmn

titmn

BPMRepdmRepdQI

B

     
(32) 

7. Corrective maintenance (CMn,itm,t) 

Variable CMn,itm,t is illustrated as a binary matrix of N rows x P x item columns. 

CMn,itm,t = 1 means a corrective maintenance of item itm is performed at t, if 

CMn,itm,t = 0, no corrective maintenance is performed. If 

0)1(,, − nttitmre PMRepd , then CMn,itm,t = 1, otherwise CMn,itm,t = 0. 

8. Total cost (TCn) 

Variable TCn is the total cost of each chromosome. This variable is illustrated 

as an array of N rows. TCn is formulated as follows: 

 
)( ,,,,,,,,,, 

 

+++++=
itemitm Pt

titmnnttitmntitmnitmtitmnitmtitmn

n

CCCMPCPMKObBhIvQ

TC

 

(33) 

9. Fitnessn 

Variable Fitnessn is illustrated as an array of N rows. Since our objective is 

minimizing the cost, Fitnessn is formulated as follows: 

n

n
TC

Fitness
1

=              (34) 
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The BestX is the best chromosome which result the biggest value of Fitness. 

 

4.2.3 Elitism Operation 

The elitism operation maintains the best chromosome which resulted from 

each iteration. So that this chromosome will stay appear in the population of the 

next iteration (Santosa and Ai, 2017). We perform this operation by copying the 

best chromosome into four times if N value is even or three times if N value is odd. 

 

4.2.4 Crossover Operation 

This operation consists of the selection of parents and the crossing 

procedure. Two parents are selected randomly through the roulette wheel selection. 

In this procedure, the chromosomes with larger fitness have a larger probability to 

be selected. After two parents are selected, a random value r is generated. In this 

procedure, we use two condition so that the chromosome is performed. First, if r 

value is less than Pcross and second, if the crossover results satisfiy the feasibility. 

If both of these conditions are satisfied, then two new children are generated by 

crossing both parents. Otherwise, both parents are selected as two new children 

without crossing them. The crossover results are considered feasible if Ss  and if

ot
Tk 1− . We use a simple crossover which is illustrated in Figure 4.2. Two different 

crossover points are selected randomly and then crossing the chromosome between 

these crossover points. 

 

25 46 30 60 21 30 50 80 5 4

35 50 25 33 44 50 45 90 3 2

Parent 1

Parent 2

Cutting Point 1 Cutting Point 2

35 50 25 60 21 30 50 80 5 2

25 46 30 33 44 50 45 90 3 4Child 1

Child 2

Cutting Point 1 Cutting Point 2

crossover

 

Figure 4.2 The Process of Crossover with Two Cutting Points 

 

4.2.5 Mutation Operation 

The mutation procedure enables the new chromosomes other than the 

crossover procedure (Santosa and Ai, 2017). Here we generate NMut   of 
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chromosomes randomly as the same procedure as the population initialization in 

the Section 4.2.1.  

 

4.2.6 Evaluating the Terminating Condition 

Here we evaluate the terminating condition based on the maximum 

iteration (maxit1) and the non-improvement within a certain percentage (maxter) of 

iterations. If 
1maxitit   or

)( 1 maxtermaxititit TCTC −= , the iteration breaks, otherwise, 

update iteration 1+= itit  and the iteration continues. 

 

4.2.7 Final Solution 

In this stage, the variables and the total cost are updated based on BestX. 

If some replications are performed and multiple items are considered, therefore 

each of Rre,itm,t, PMre,itm,t, Ore,itm,t, Qre,itm,t, Ire,itm,t, Bre,itm,t, and CMre,itm,t are formed in 

a matrix of Rep rows and P x item columns. Furthermore, each sre,itm, Sre,itm, are 

formed in a matrix of Rep rows x item columns. Meanwhile each tore, kre, and TCre 

are formed in an array of Rep rows. 

 

4.3 2nd Stage GA Procedure 

After resulting the initial solution based on GA in the first stage, then we 

select the best to and k. Here we use mode function to find the most appear to and k 

in the whole replications. Both to and k will be used as the input parameter in GA 

in the second stage. Meanwhile the inventory policies (sitm, Sitm) will be used as the 

initial solution in GA in the second stage. Therefore, number of genes in this second 

stage of GA is g-2. 

 

4.3.1 Population initialization 

A population of N-1 rows of chromosomes and g columns of genes is 

generated randomly as the initial solution. The first chromosome is the result of the 

1st stage of GA. The next each chromosome is generated based on the following 

formulation: 

)( LUL xxrxx −+=  , 1n            (35) 
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Where xL is the lower limit of each gene, xU is the upper limit of each gene, r is a 

random value between (0, 1). Since this solution structure only consists of the 

inventory policy, we generate the initial solution within the xL and xU of s and S.  

 

4.3.2 Updating Variables and Evaluating the Population 

Each variable is updated based on the generated population in each 

chromosome. After updating variables, the total cost of each chromosome is 

calculated. The pseudo code for updating each variable is shown in Figure 5.5. The 

following are the procedure to update the variables. 

1. Stock review schedule (Rt) 

This variable is illustrated as a binary array of P columns. Rt = 1 means a stock 

review is performed at period t, if Rt = 0, no review is performed. Rt is changed 

to 1 at every t = 1+ato where
not

T
a  . 

2. Preventive maintenance schedule (PMt) 

Variable PMt is illustrated as a binary array of P columns. PMt = 1 means a 

predictive maintenance is performed at chromosome n period t, if PMt = 0, no 

preventive maintenance is performed. PMt is changed to 1 at every t = 1+bkto 

where
nontk

T
b  . 

3. Order (On,itm,t) 

Variable On,itm,t is illustrated as a binary matrix of N rows x P x item columns. 

On,itm,t = 1 means an order of item itm is issued at chromosome n period t, if 

On,itm,t = 0, no order is issued. If Rnt = 1 and In,itm,t-1 ≤ sn,itm, then On,itm,t = 1, 

otherwise On,itm,t = 0. 

4. Quantity order (Qn,itm,t) 

Variable Qn,itm,t is the quantity order of item itm at chromosome n period t. This 

variable is illustrated as an integer matrix of N rows x P columns. Each Qn,itm,t 

is formulated as follows: 

titmntitmntitmntitmn OSSQ ,,1,,,,,, )( −= −           (36) 

5. Inventory on hand (In,itm,t) 
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Variable In,itm,t is the inventory on hand of item itm at chromosome n period t. 

This variable is illustrated as an integer matrix of N rows x P x item columns. 

Each In,itm,t is formulated as follows: 

)0,)(max( 1,,,,,,,1,,,, −− −−−+= titmnnttretitmretitmntitmntitmn BPMRepdmRepdQII (37) 

6. Backordered items (Bn,itm,t) 

Variable Bn,itm,t is the backordered number of item itm at chromosome n period 

t. This variable is illustrated as an integer matrix of N rows x P x item columns. 

Each Bn,itm,t is formulated as follows: 

)0),)((max( 1,,,,,,,1,,

,,

−− −−−+−

=

titmnnttretitmretitmntitmn

titmn

BPMRepdmRepdQI

B
       (38) 

7. Corrective maintenance (CMn,itm,t) 

Variable CMn,itm,t is illustrated as a binary matrix of N rows x P x item columns. 

CMn,itm,t = 1 means a corrective maintenance of item itm is performed at t, if 

CMn,itm,t = 0, no corrective maintenance is performed. If 

0)1(,, − nttitmre PMRepd , then CMn,itm,t = 1, otherwise CMn,itm,t = 0. 

10. Total cost (TCn) 

Variable TCn is the total cost of each chromosome. This variable is illustrated 

as an array of N rows. TCn is formulated as follows: 

    
)( ,,,,,,,,,, 

 

+++++

=

itemitm Pt

titmnnttitmntitmnitmtitmnitmtitmn

n

CCCMPCPMKObBhIvQ

TC

 

(39) 

11. Fitnessn 

Variable Fitnessn is illustrated as an array of N rows. Since our objective is 

minimizing the cost, Fitnessn is formulated as follows: 

n

n
TC

Fitness
1

=                             (40) 

The BestX is the best chromosome which result the biggest value of Fitness. 

 

4.3.3 Elitism Operation 

The elitism operation maintains the best chromosome which resulted from 

each iteration. So that this chromosome will stay appear in the population of the 
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next iteration (Santosa and Ai, 2017). We perform this operation by copying the 

best chromosome into four times if N value is even or three times if N value is odd. 

 

4.3.4 Crossover Operation 

This operation consists of the selection of parents and the crossing 

procedure. Two parents are selected randomly through the roulette wheel selection. 

In this procedure, the chromosomes with larger fitness have a larger probability to 

be selected. After two parents are selected, a random value r is generated. In this 

procedure, we use two conditions so that the chromosome is performed. First, if r 

value is less than Pcross and second, if the crossover results satisfy the feasibility. 

If both of these conditions are satisfied, then two new children are generated by 

crossing both parents. Otherwise, both parents are selected as two new children 

without crossing them. The crossover results are considered feasible if s < S and if

ot

T
k

1−
 . Here we use two options of simple crossover. If item > 1, two different 

crossover points are selected randomly and then crossing the chromosome between 

these crossover points. Otherwise, a crossover between s and S are directly 

performed since there are only two genes. 

 

4.3.5 Mutation Operation 

The mutation procedure enables the new chromosomes other than the 

crossover procedure (Santosa and Ai, 2017). Here we generate NMut  of 

chromosomes randomly as the same procedure as the population initialization in 

the Section 4.3.1.  

 

4.3.6 Evaluating the Terminating Condition 

Here we evaluate the terminating condition based on the maximum 

iteration (maxit2) and the non-improvement within a certain percentage (maxter) of 

iterations. If 
2maxitit   or )( 2 maxtermaxititit TCTC −= , the iteration breaks, otherwise, 

update iteration 1+= itit  and the iteration continues. 
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4.3.7 Final Solution 

In this stage, the variables and the total cost are updated based on BestX. 

If some replications are performed and multiple items are considered, therefore 

each of Rre,itm,t, PMre,itm,t, Ore,itm,t, Qre,itm,t, Ire,itm,t, Bre,itm,t, and CMre,itm,t are formed in 

a matrix of Rep rows and P x item columns. Furthermore, each sre,itm, Sre,itm, are 

formed in a matrix of Rep rows x item columns. Meanwhile TCre are formed in an 

array of Rep rows. 
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Start

Input:

· Replication number (maxrep)

· Demand distribution parameters (dmean, 

dstdev)

· Planning horizon (T)

· Number of items (item)

· Upper limit and the lower limit of S, s

· Cost components (K, h, b, c, CC, PC)

Random demand generation (dt, dpmt)

GA 1st Stage

Initial solution:

· Initial S, s of each replication

· to and k of each replication

Input parameters:

Mut, Pcross, N, maxit1, 

maxter

GA 2nd Stage

Input parameters:

Mut, Pcross, N, maxit2, 

maxter

Final solution:

· Final S, s

· Best to and k

End

Set the mode of pairs of to and k as the 

best to and k

 

Figure 4.3 Solution Methodology 
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Start

Population initialization: s, S, to, k 

(for GA 1st Stage) s, S (for GA 2nd 

Stage)

Evaluating the solution:

· Calculating the objective function (TC)

· Calculating fitness (1/TC)

· Selecting the best chromosome as the BestX

Elitism operation

Starting the iteration (it = 1)

· Input parameters: Mut, Pcross, N, maxit1 

(for GA 1st Stage), maxit2 (for GA 2nd 

Stage), maxter

· Input data: maxrep, dt, dpmt, T, item, xUsS, 

xLsS, initial s, S (for GA 2nd Stage), best to 

and k (for GA 2nd Stage)

· Cost components: K, h, b, c, CC, PC

Mutation operation

Setting the children as the new solution

it = it + 1

Is the terminating condition 

satisfied?

Setting BestX as the final solution

End

Output:

· It, Bt, Ot, Qt, PMt, CMt

· s, S, to, k

· TC

· Computing time

A

B

B

Crossover operation:

Parents selection through the 

roulette wheel selection

Is r < Pcross?

Generating r ~ U (0,1)

Yes

Evaluating feasibility:

· Is s ≤ S?

· Is k ≤ T/to?

Generating two new chromosomes by 

crossing the parents

Yes

Generating two new 

chromosomes directly 

from parents

No

No

A

Updating variables:

· Ordering period (Ot)

· PM actions (PMt)

· Order quantity (Qt)

· Inventory on hand (It)

· Backordered items (Bt)

· CM actions (CMt)

 

Figure 4.4 GA Procedure 
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Data: maxrep, dt, dpmt, T, item, cost (K, h, b, c, CC, PC), solutions (s, S, to, k) 

Results: O, R, I, B, PM, CM 

 

1 for t = 1 to T do 

2       for a = 1 to 
ot

T
 do 

3             if     t = 1 + ato then 

4                    Rt = 1; 

5             end 

6       end 

7       for b = 1 to 
okt

T
 do 

8             if     t = 1 + bkto then 

9                    PMt = 1; 

10             end 

11       end 

12       for itm = 1 to item 

13             if     Rt = 1 and In,itm,t-1 ≤ sitm then 

14                    On,itm,t = 1; 

15             else 

16                    On,itm,t = 0; 

17             end 

18             Qn,itm,t = (Sitm - In,itm,t-1) × Ot-1; 

19             In,itm,t = max(In,itm,t-1 + Qn,itm,t - ditm,t – (dpmitm,t × PMt) – Bn,itm,t-1, 0); 

20             Bn,itm,t = max(-(In,itm,t-1 + Qn,itm,t - ditm,t – (dpmitm,t × PMt) – Bn,itm,t-1), 0); 

21             if     ditm,t × (1 – PMt) > 0 then 

22                    CMitm,t = 1; 

23             end 

24       end 

25 end 

Figure 4.5 Algorithm for Updating Variables 
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5 CHAPTER 5 

RESULTS AND DISCUSSION 

 

The proposed GA is implemented in Matlab 2015 and run on a computer 

with an Intel® Core i7-6700 CPU at 3.40 GHz and 8 GB of RAM under Windows 

10 Professional. The INLP model is implemented in LINGO 11. To evaluate the 

performance of our policy, we compare the result of our model with other policies 

such as (Q, R) and continuous (s, S). We also compare our GA solution result with 

the INLP result to evaluate the performance of our proposed GA. Furthermore, we 

will implement the proposed GA to a real case study. We present numerical analysis 

to a real case problem of the chemical process industry in Gresik, Indonesia. 

 

5.1 Parameter Setting 

The experimental design is created to determine the parameter setting in 

our proposed GA. We use 5 parameters in this study. The following list is the 

parameters which will be used in this experiment: 

1. Mutation percentage (Mut) = 0.2, 0.4, 0.6, 0.8. 

2. Crossover probability (Pcross) = 0.2, 0.4, 0.6, 0.8. 

3. Number of chromosomes (N) = 100, 300, 500, 700. 

4. Maximum iteration of the 1st stage GA (maxit1) = 10000, 30000, 50000, 

70000. 

5. Maximum iteration of the 2nd stage GA (maxit2) = 1000, 3000, 5000, 

7000. 

6. Non improvement within a certain percentage of iterations (maxter) = 

0.05, 0.1, 0.2, 0.25. 

 First, we perform an OFAT (One Factor at Time) experiment to our 

parameter to determine the high and low level of these parameters. We use the 

instances from Xiang et al. (2018) to perform this experiment. They provide the 

datasets of demand distribution parameters ( td
~

) of a time series. They provide two 

instances, which are 8 periods and 25 periods of demand distribution parameters. 

Each instance has different demand pattern depends on the characteristic of the 
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item. In this experiment, we use the life cycle (LCY) demand pattern to generate 

the random failed items of each period. The demand patterns are normal distribution 

characterized by means and coefficient of variation (cv = 0.1); note that tvt dc
~

=
. 

Appendix 1 shows the parameters of these datasets. 

Based on this dataset, we use three instances for the experimental design. 

First, we consider 8 periods of horizon planning of three items in 15 replications. 

Second, 25 periods of horizon planning of single item in 15 replications. Third, 25 

periods of horizon planning of three items in 15 replications. The detailed OFAT 

result is shown in the Appendix 2. Table 5.1 shows the selected of high and low 

level based for the 2k design of experiment. 

 

Table 5.1 Selected Parameters for 2k Factorial Design 

Parameter Level 1 Level 2 

Mut 0.60  0.80  

Pcross 0.20  0.80  

N 300 700 

Maxit1 10,000  50,000 

Maxit2 3,000 7,000 

Maxter 0.20 0.25 

 

All the selected level parameters are tested through a 2k full factorial 

design. Here we have 64 combinations of paremeters. The best parameter setting is 

chosen based on the best total cost by considering the computing time. Table 5.2 

shows the selected parameters for the proposed GA. 

 

Table 5.2 Selected Parameters for the Proposed GA 

Parameter Value 

Mut 0.60 

Pcross 0.80 

N 700 

Maxit1 50,000 

Maxit2 7,000 

Maxter 0.20 

 

We also perform a sensitivity analysis to evaluate the trade-off between 

the effectiveness and efficiency of our proposed GA. We consider the increasing 
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rate of the computing time and the decreasing rate of the total cost to determine the 

setting parameters (Yu and Lin, 2015). The sensitivity analysis of the parameters to 

the total cost and the computational time are illustrated in Figure 5.1, Figure 5.2, 

Figure 5.3, Figure 5.4, Figure 5.5, and Figure 5.6.. Figure 5.1 illustrates the 

sensitivity analysis to the mutation percentage (Mut). Based on the graph, the 

changes of Mut do not significantly influence the total cost. The computing time 

decreases until Mut = 0.6. However, in a larger value, the computing time increases. 

Therefore, we can conclude that the most preferable value of Mut is 0.6. 

 

 

Figure 5.1 Sensitivity Analysis on the Mutation Percentage 

 

 

Figure 5.2 Sensitivity Analysis on the Crossover Probability 
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Figure 5.3 Sensitivity Analysis on the Number of Chromosomes 

 

 

Figure 5.4 Sensitivity Analysis on the Maximum Iteration 1 

 

 

Figure 5.5 Sensitivity Analysis on the Maximum Iteration 2 
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Figure 5.6 Sensitivity Analysis to Non-improvement Termination 

 

Figure 5.2 illustrates the sensitivity analysis of the crossover probabiliry. The total 

cost increases in Pcross = 0.6 then decreases at Pcross = 0.8 which is the lowest 

point. The computing time decreases at Pcross = 0.6 and remains until Pcross = 

0.8. Therefore, the most preferable value of Pcross is 0.8. The sensitivity analysis 

of the number of chromosomes is shown in Figure 5.3. Based on this figure, the 

lower total cost is resulted at value N = 300 and N = 700. However, the computing 

time increases significantly as the computing time increases. Based on Figure 5.4, 

the maximum iteration of the first stage GA (Maxit1) does not significantly 
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significantly influence the total cost. However, the computing time is significantly 
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In our model, the stock review and PM are scheduled on a regular basis 
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the computing efficiency. We introduce a procedure to generate the combinations 

of stock review interval and PM interval as well as stock review schedule and PM 

schedule based on a given planning horizon in Figure 5.7. 

 

Data: Planning horizon (T) 

Result: A list of stock review and PM interval (combinations), a matrix of stock 

review schedule (review schedule), a matrix of PM schedule (PM 

schedule). 

1   com = 1; 

2   for to = 1 to T-2 do 

3         for k = 1 to
ot

T 2−
 do

 

 

4               combinations (com, 1) = com; 

5               combinations (com, 2) = to; 

6               combinations (com, 3) = k; 

7              for t = 1 : to : T do 

8                     review schedule (com, t) = 1; 

9              end 

10             for t = 2 : to × k : T do 

11                   PM schedule (com, t) = 1; 

12             end 

13                com = com+1; 

14            end 

16    end  

Figure 5.7 Algorithm for Generating Stock Review Schedule and PM Schedule 

 

First, we enumerate all the possible to and k, then we record this combination in a 

matrix. The generation of combinations matrix is done in line 4-6, which consists 

of the number of combination in the first column, to in the second column, and k in 

the third column. Second, the matrix of review schedule is generated in line 7-9. 

This procedure results a matrix of number of combinations rows × T columns. 

Third, the matrix of PM schedule is generated in line 10-12, which results in a 

matrix of combinations rows × T columns. 

 

5.3 Modeling Random Components 

According to Altiok and Melamed (2007), the activity of modeling random 

components involves four stages of modeling activity as follows: 
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5.3.1 Data Collection 

In this stage, the observations of system characteristics over time are 

gathered to avoid the paucity of the available data, or from irrelevant, outdated, or 

simply erroneous data. The data should be correct and relevant and the sample size 

collected should be representative and large enough. 

5.3.2 Data analysis 

After the data collection, a preliminary analysis of the data is done to assist 

the next stage of fitting distribution. Such analysis of this stage includes the 

statistics related to moments (mean, standard deviation, etc.), statistics related to 

distributions (histograms), and statistics related to temporal dependences 

(autocorrelations within an empirical time series, or cross-relations among two or 

more distinct time series). 

5.3.3 Time series data modeling 

In this stage, a stochastic process is fitted to empirical time series data, 

which are pairs of time and corresponding observations collected in the data 

collection stage. There are two main approaches to model this time series data. The 

simplest approach is to construct a histogram from the empirical data, and then 

normalize it to a step probability density function (pdf) or a probability mass 

function (pmf) is then declared to be the fitted distribution. The second approach is 

try to determine a probability function based on the histogram which forms a 

particular functional distribution. Two common methods that can be implemented 

to this approach are the method of moments and the maximum likelihood estimation 

(MLE) method. 

5.3.4 Goodness-of-fit testing 

The goodness of fit tests for distribution is assessed by a statistical test, 

where the null hypothesis states that the candidate distribution is sufficiently good 

fit to the data, while the alternative hypothesis states that is not. The mostly used 

tests for the goodness-of-fit of a distribution to sample data are the chi-square test 

and the Kolmogorov-Smirnov test. 

 

5.4 Generating Random Spare Parts Requirements 
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Random spare parts requirements are generated based on the 

predetermined distribution function and parameters. In this model we have two 

spare parts requirements, which are the random failed items and the random 

defective items. Figure 5.8 shows the algorithm for generating random failed items 

and the random defective items. 

First, we generate random failed items of each item and each period based 

on the predetermined distribution function in line 2-6. This procedure results a 

matrix with replication number of rows and planning horizon × number of items of 

columns. Second, random defective items will be generated based on the 

predetermined distribution parameters in line 7-18. If a PM is performed in a period, 

therefore the number of defective items will be decreased to be the number of 

defective item of the first period. Otherwise, the number of defective items will be 

increased. We generate this random defective item based on each combination of 

stock review interval and PM interval, which results in a matrix of with replication 

number of rows and planning horizon × number of combinations of columns. 
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Data: distribution parameters of failed items (d mean, d standard deviation), 

distribution parameters of defective items (dpm mean, dpm standard 

deviation), combination matrix, replication number. 

Results: a matrix of generated random failed items (Repd), a matrix of generated 

random defective items (Repdpm). 

1 for rep = 1 to replication number do 

2       for t = 2 to T do 

3             for itm = 1 to number of items do 

4 Repd(rep, ((itm-1) × T) + t) = round(d mean(((itm-1) × T) + t) + 

d standard deviation(((itm-1) × T) + t) × random number, 0); 

5             end  

6       end 

7       for j = 1 to number of combinations do 

8           to = combinations(j, 2); 

9           k = combinations(j, 3); 

10           m=to × k; 

11           a = 1; 

12           for t = 2 to T do 

13 Repdpm (rep, ((j-1) × T) + t) = round(dpm mean(t – 1 – m × (a - 1)) 

+ npmstdev(t – 1 – m × (a - 1)) × random number, 0); 

14                  if t > a × m+1 do 

15                   a = a+1; 

16                 end 

17           end 

18      end 

19 end 

Figure 5.8 Algorithm for Generating Random Spare Parts Requirements 

 

5.5 Algorithm Testing 

We implement our proposed GA and MINLP model in some instances to 

evaluate the computing performance. We test our proposed GA to 8 different 

instances which varies in the planning horizon (P), number of items (I), and number 

of replications (R). Here we also consider a deterministic case (Det) which does not 

need replications. Table 5.4 shows the ordering cost (K), the penalty cost (b), the 

fixed PM cost (PC) , and the fixed CM cost (CM). Table 5.5 shows the variable 

holding cost (h) and the variable purchasing cost (v). 

 

Table 5.3 Instances for Algorithm Testing 

Instances 
Planning 

Horizon 

Number of 

Items 

Number of 

Replications 

8P-1I -1R 8 1 1 

25P-1I-1R 25 1 1 
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Instances 
Planning 

Horizon 

Number of 

Items 

Number of 

Replications 

8P-3I-1R 8 3 1 

25P-3I-1R 25 3 1 

8P-1I-15R 8 1 15 

25P-1I-

15R 25 1 15 

8P-3I-15R 8 3 15 

25P-3I-

15R 25 3 15 

 

Table 5.4 Ordering Cost, Penalty Cost, PM Cost, and CM Cost  
K       100.00  

b   25,000.00  

PC    4,360.00  

CC    9,810.00  

 

Table 5.5 Variable Purchasing Cost and Variable Holding Cost  
Item 1 2 3 

v   1,500.00    1,000.00    2,000.00  

h 15 10 20 

 

Table 5.6 shows the average total cost and the CPU of our computational study. 

Most of the result obtain good performances, which is less than 1%. However, both 

instances 8P-3I-Det and 8P-3I-15R results pretty much gap on the total cost. The 

decision variables of both proposed MINLP and proposed GA are obtained in the 

Table 5.7 and Table 5.8 to find the root cause of this problem. Based on the MINLP 

result, the review interval and the PM interval are to = 1 and k =4. Meanwhile, based 

on the GA result, the review interval and the PM interval are to = 4 and k =1. Based 

on this result, we can conclude that our solution could stuck in a local optimal, 

specifically for the ordering interval and the PM intervals. 

Based on Table 5.6, it shows that the CPU relies heavily to the planning 

horizon, the number of items, and number of replications. The increasing of the 

planning horizon increases the solution space of the problem. As we described 

previously, the possible solution of to and k depends on the planning horizon. 

Therefore, as the planning horizon increases, the solution space increases. As the 

number of items increase, the decision variables are also increase. This also may 

cause an increasing to the CPU. Adding more replications also requires more 
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computational time. This is because each replication need to be solved in some 

iterations. At a lower scale problem, our proposed GA doesn’t work efficiently 

compared to the MINLP. However, in a larger scale problem such as in a larger 

planning horizon and multi-items, our proposed GA solves the problem efficiently 

compared to the MINLP approach.  

 

Table 5.6 Algorithm Testing on The Proposed MINLP and GA 

Instances 
Proposed MINLP Proposed GA 

Gap 
Total Cost CPU (s) Total Cost CPU (s) 

8P-1I -1R       451,855  13        451,855  139.89 0.00% 

25P-1I-1R     4,317,685  348      4,317,685  171.07 0.00% 

8P-3I-1R     1,356,465  67      1,373,195      273.94  1.23% 

25P-3I-1R   17,276,605        40,702     17,276,605      463.61  0.00% 

8P-1I-15R       451,242  124        451,242  2182.14 0.00% 

25P-1I-15R     4,295,400          5,220       4,295,400  2726.38 0.00% 

8P-3I-15R     1,374,191          1,037    1,389,678.7    4,545.25  1.13% 

25P-3I-15R   17,107,019       670,540     17,107,019    7,098.19  0.00% 

 

Table 5.7 The Decision Variables of The Proposed MINLP 

Instances 
Proposed MINLP 

to k S1 s1 S2 s2 S3 s3 

8P-1I -Det 1 4 224 9         

25P-1I-Det 13 1   1,293    1,293          

8P-3I-Det 1 4 224 0 263 29 206 47 

25P-3I-Det 13 1 1293 1293 1410 1410 2277 2277 

8P-1I-15R   1    4  237.80 23.47         

25P-1I-15R 13 1 1285.8 1285.8         

8P-3I-15R 1 4 223.07 6.67 279.73 28.20 199.87 47.27 

25P-3I-15R 13 1 1285.9 1172.5 1333.6 1225.1 2675.5 1797.3 

 

Table 5.8 The Decision Variables of The Proposed GA 

Instances 
Proposed GA 

to k S1 s1 S2 s2 S3 s3 

8P-1I -Det 1 4 224 4     

25P-1I-Det 

1

3 1 1,293 591     
8P-3I-Det 4 1 143 84 181 127 179 153 

25P-3I-Det 

1

3 1 1293 1239 1410 783 2277 1319 

8P-1I-15R 1 4 223.07 

810.5

3     
25P-1I-

15R 

1

3 1 1285.8 771.4     
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8P-3I-15R 4 1 144.33 

116.8

7 188.33 

151.0

7 177.33 157.40 

25P-3I-

15R 

1

3 1 

1,285.8

0 

762.5

3 

1,336.4

7 

785.0

7 

2,806.8

7 

1,566.5

3 

 

Since in our algorithm the computation could terminate when there is no 

improvement in a certain percentage of iterations, here we also obtain a further 

analysis of the number of iterations of each instance. Figure 5.9, Figure 5.10, Figure 

5.11, Figure 5.12, Figure 5.13, Figure 5.14, Figure 5.15, and Figure 5.16 illustrates 

the improvement of the total cost at every iteration. Furthermore, the termination of 

the computation is also shown by a vertical line in the figure. Based on these figures, 

all the computation terminates before the Maxit1 and Maxit2 have reached. This 

means that the computation has already converged at a local optimal or global 

optimum value before reaching its maximum iteration. 

 

 

Figure 5.9 Iteration of 1st Stage of GA 

on 8P-1I-15R 

 

Figure 5.10 Iteration of 2nd Stage of GA 

on 8P-1I-15R 
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Figure 5.11 Iteration of 1st Stage of GA 

on 8P-3I-15R 

 

Figure 5.12 Iteration of 2nd Stage of GA 

on 8P-3I-15R 

 

 

Figure 5.13 Iteration of 1st Stage of GA 

on 25P-1I-15R 

 

Figure 5.14 Iteration of 2nd Stage of GA 

on 25P-1I-15 

 

Figure 5.15 Iteration of 1st Stage of GA 

on 25P-3I-15R 

 

Figure 5.16 Iteration of 2st Stage of GA 

on 25P-3I-15R 

 

5.6 Evaluation on Inventory Policies and PM Policies 
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In this study, we propose the (T, s, S) inventory policy. Scarf (1960) has 

proven the optimality of (T, s, S) policy which gave the minimum total cost than the 

other systems under general assumptions of demand and cost factors. Furthermore, 

we also evaluate our policy with other policy (Q, R) and continuous (s, S). Note that 

(T, s, S) policy will be equivalent with (Q, R) policy if s = 0 and (T, s, S) policy will 

be equivalent with (s, S) if T = 1. 

 

Table 5.9 Comparing Inventory Policies 

Instances 

(S, s, R) (Q, R) (S, s) 

Average Total 

Cost 

Average Total 

Cost 
Gap 

Average Total 

Cost 
Gap 

8P-1I -Det 451,855.00 456,795.00 1.09% 451,855.00 0.00% 

25P-1I-Det 4,317,685.00 4,502,700.00 4.29% 4,405,880.00 2.04% 

8P-3I-Det 1,356,465.00 1,477,290.00 8.91% 1,356,465.00 0.00% 

25P-3I-Det 17,272,560.00 18,075,290.00 4.65% 17,272,560.00 0.00% 

8P-1I-15R 451,242.00 511,392.67 13.33% 451,242.00 0.00% 

25P-1I-15R 4,295,400.00 4,545,798.00 5.83% 4,473,793.00 4.15% 

8P-3I-15R 1,374,191.33 1,541,850.67 12.20% 1,374,191.33 0.00% 

25P-3I-15R 17,107,019.33 17,787,733.33 3.98% 17,419,226.33 1.83% 

 

Based on the Table 5.9, the (S, s, R) policy is much better compared to the (Q, R) 

policy. In some problem, the best decision is to review the stock continuously, 

which is equivalent to the continuous (S, s) policy. Therefore, there is no gap 

between the costs in some problems. In conclusion, the (S, s, R) policy could be 

considered as a flexible policy which could obtain an optimal solution at any 

condition of the stock-review intervals and the re-order point value. 

The proposed PM policy is to perform an overhaul inspection in a regular 

basis. Here we also evaluate our proposed PM policy compared to performing PM 

policy at every period and when there is no PM performed until the end of the 

planning horizon. 

 

Table 5.10 Comparing PM Policies 

Instances 

Regular PM 

Interval at k*to 
PM at Every Period 

No PM until the last 

period 

Average Total 

Cost 

Average Total 

Cost 
Gap 

Average Total 

Cost 
Gap 

8P-1I -Det 
451,855.00 700,135.00 

54.95

% 
471,560.00 4.36% 
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Instances 

Regular PM 

Interval at k*to 
PM at Every Period 

No PM until the last 

period 

Average Total 

Cost 

Average Total 

Cost 
Gap 

Average Total 

Cost 
Gap 

25P-1I-Det 
4,317,685.00 5,478,590.00 

26.89

% 
4,639,080.00 7.44% 

8P-3I-Det 
1,356,465.00 2,015,155.00 

48.56

% 
1,413,170.00 4.18% 

25P-3I-Det 
17,276,605.00 20,522,970.00 

18.79

% 
17,978,190.00 4.06% 

8P-1I-15R 
451,242.00 705,060.00 

56.25

% 
501,270.67 11.09% 

25P-1I-

15R 
4,295,400.00 5,372,588.50 

25.08

% 
4,694,131.50 9.28% 

8P-3I-15R 
1,374,191.33 2,059,496.33 

49.87

% 
1,524,574.33 10.94% 

25P-3I-

15R 
17,107,019.33 19,965,739.67 

16.71

% 
17,742,648.00 3.72% 

 

Based on the Table 5.10, conducting PM at every period is not preferable since the 

total cost increases because it requires more items to be replaced. Furthermore, not 

performing PM is also not preferable since the number of defective items could 

increase if we do not replace it as soon as possible. 

 

5.7 Evaluation on the Modeling Accuracy 

We also evaluate the modeling accuracy (%) to evaluate the gap between 

the expected total cost and the simulation result. The expected total cost is obtained 

by calculating the optimal cost when the stochastic variables (d, dpm) are assumed 

to be the expected values. The manual calculation of these expected values are 

shown in the Appendix 4. The formula for evaluating the simulation result is shown 

as follows Xiang et al. (2018): 

 

%100
result simulation

result simulationresult model
accuracy model 

−
=         (41) 

 

To ensure that this simulation result has already represented the expected value, we 

can perform a hypothesis testing by conducting a t-test between our simulation 

result and the expected total cost. 
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H0 : There is no significant difference between the simulation results and the 

expected total cost. 

H1 : There is a significant difference between the simulation results and the 

expected total cost. 

 

Table 5.11 Modeling Accuracy 
Instance

s 

Replication

s 

Expected 

Total Cost 

Simulation 

Result 

Model 

Accuracy 
P-value 

8P-1I 
1 

453,680 
451,855.00 0.40% N/A 

15 451,242.00 0.54% 0.517 

8P-3I 
1 

1,387,770 
1,373,195.00 1.05% N/A 

15 1,389,678.67 0.14% 0.841 

25P-1I 
1 

4,261,375 
4,317,685.00 1.32% N/A 

15 4,295,400.00 0.80% 0.25 

25P-3I 
1 

17,206,545 
17,276,605.00 0.41% N/A 

15 17,107,019.33 0.58% 0.056 

 

From the Table 6.11, the simulation result is still within the acceptable range of 

model accuracy (5%), and all of the p-value is larger than 0.05. This means that our 

simulation results in 15 replications have represented the expected total cost. Larger 

number of replications will be more representative. However, by considering the 

computing time, adding more replication will be less efficient. 

 

5.8 Application: A Petrochemical Company in Gresik, Indonesia 

We implement our proposed GA to a chemical process industry which 

currently working on 70,000 Ton of production capacity. However, the equipment 

breakdown cause a decreasing availability to 88% and the manufacturing system 

cannot perform effectively. Furthermore, 40% of the production shutdown causes 

are related to the machine breakdown. Therefore, optimizing the spare parts 

inventory management and planned maintenance is important to minimize the 

shutdown risks. In this case study, we will consider 48 periods of planning horizon. 

Each period represents a month of operational time. Since a petrochemical company 

operates continuously in 24 hours, therefore, our planning horizon is in 4 years’ 

operational time. This company currently conducts a periodic planned maintenance 

once in every four years. Furthermore, the ordering review is done in every month, 

if the current stock is less than the reoder point (s), the company will order the spare 
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part in amount of order-up-to-level (S) minus the current stock level (I). By 

implementing this policy, the expected cost during four years is IDR 

7,469,607,000.-. The manual calculation of this expected cost is shown in the 

Appendix 5. Here we assume that the ordering lead time is one month. So that the 

ordered spare parts will arrive one month after it was issued. 

We evaluate our proposed GA to six independent items of spare parts of 

the critical units in the production system. Appendix 3 shows the detailed 

information about the expected number of required items for CM and PM in every 

period of each item. Table 5.12 and Table 5.13 shows the information about the 

cost components, which consist of the fixed ordering cost (K), variable purchasing 

cost (v), variable penalty cost (b), variable holding cost (h), fixed PM cost (PC), 

and fixed CM cost (CM). 

 

Table 5.12 Odering Cost, Penalty Cost, PM Cost, and CM Cost (IDR) 

Ordering Cost K 100,000 

Penalty Cost b 25,000,000 

PMCost PC 4,360,000 

CMCost CC 4,905,000 

 

Table 5.13 Variable Purchasing Cost and Variable Holding Cost (IDR) 

Item 1 2 3 4 5 6 

v 200,000 600,000 1,800,000 3,000,000 2,000,000 2,500,000 

h 2,000 6,000 18,000 30,000 20,000 25,000 

 

First, we try to simulate the current policy by using our algorithm, where 

the review interval and the PM interval have already given (to = 1 and k = 47). Table 

5.14 shows the total cost and the computing time in 15 replications of simulations. 

 

Table 5.14 The Simulation Result of The Case Study (Existing Policy) 

Replication 
Total Cost 

(1,000 IDR) 

Computing 

Time 1st GA 

Computing 

Time 2nd GA 

Total Computing 

Time (s) 

1 7,384,062.00 1,838.24 412.75 2,250.99 

2 7,698,289.00 1,365.24 400.07 1,765.31 

3 6,956,427.00 1,555.31 154.35 1,709.65 

4 7,229,323.00 1,861.92 491.64 2,353.56 

5 7,085,226.00 1,786.04 172.04 1,958.08 

6 7,346,577.00 2,468.17 377.23 2,845.41 

7 7,771,944.00 1,486.20 381.16 1,867.36 
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Replication 
Total Cost 

(1,000 IDR) 

Computing 

Time 1st GA 

Computing 

Time 2nd GA 

Total Computing 

Time (s) 

8 7,430,853.00 1,284.67 196.02 1,480.69 

9 7,189,318.00 1,410.89 354.91 1,765.80 

10 7,767,978.00 1,356.30 293.36 1,649.66 

11 7,762,308.00 4,104.06 266.11 4,370.17 

12 7,668,146.00 2,008.96 445.11 2,454.07 

13 7,193,381.00 1,836.13 217.08 2,053.20 

14 7,610,101.00 2,696.51 443.91 3,140.43 

15 7,688,093.00 1,925.27 472.46 2,397.73 

Average  7,452,135.67 1,932.26 338.55 2,270.81 

 

To ensure that this simulation result has already represented the expected value, we 

can perform a hypothesis testing by conducting a t-test between our simulation 

result and the expected total cost. 

 

H0 : There is no significant difference between the simulation results and the 

expected total cost. 

H1 : There is a significant difference between the simulation results and the 

expected total cost. 

 

Based on the Minitab result, the p-value is 0.797, which is greater than α = 0.05, 

therefore, we can conclude that there is no significant difference between our 

simulation results and the expected value. 

Next, we conduct the simulation in 15 replications through our proposed 

GA, the summary of the total cost and the computing time is shown in the Table 

5.15, and the decision variables are shown in the Table 5.16 and Table 5.17. 

 

Table 5.15 The Simulation Result of the Case Study (New Policy) 

Replicatio

n 

Total Cost 

(1000 IDR) 

Computing 

Time 1st GA 

Computing 

Time 2nd 

GA 

Total 

Computing 

Time (s) 

1 6,237,254.00 1,838.24 425.3 2,263.50 

2 6,319,034.00 1,365.24 422.7 1,787.93 

3 6,014,973.00 1,555.31 424.6 1,979.86 

4 5,967,961.00 1,861.92 379.3 2,241.22 

5 6,033,882.00 1,786.04 213 1,999.01 

6 5,965,438.00 2,468.17 85.75 2,553.93 

7 6,346,303.00 1,486.20 334.3 1,820.50 

8 6,170,137.00 1,284.67 329.2 1,613.87 
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Replicatio

n 

Total Cost 

(1000 IDR) 

Computing 

Time 1st GA 

Computing 

Time 2nd 

GA 

Total 

Computing 

Time (s) 

9 6,184,319.00 1,410.89 325.3 1,736.16 

10 6,026,296.00 1,356.30 364.1 1,720.45 

11 6,154,276.00 4,104.06 492.6 4,596.62 

12 6,134,891.00 2,008.96 437.5 2,446.50 

13 6,379,230.00 1,836.13 184.4 2,020.56 

14 5,762,803.00 2,696.51 105.1 2,801.60 

15 6,081,209.00 1,925.27 269.9 2,195.21 

Average  6,118,534.33 1,932.26  319.53   2,251.79  

 

Table 5.16 Decision Variables (to, k) 
to k m 

1 25 25 

 

Table 5.17 Average Decision Variables (S, s) 
S1 S2 S3 S4 S5 S6 

260.80 163.80 188.73 175.20 191.07 154.20 

s1 s2 s3 s4 s5 s6 

182.67 80.07 31.87 1.53 16.87 13.47 

 

Table 5.18 Rounded Up Decision Variables (S, s) 
S1 S2 S3 S4 S5 S6 

261 164 189 176 192 155 

s1 s2 s3 s4 s5 s6 

183 81 32 2 17 14 

 

Based on the simulation results, the total cost incurred for the maintenance 

is IDR 6,118,533,733.33 in four years. This simulation requires 33,776.92 seconds in total 

or 2,251.79 in average. This calculation can be considered efficient for the long-term 

planning in our case study. Based on our simulation result, the best ordering review is in 

every month and the PM interval is in every 25 months. Table 5.17 shows the average S, s 

parameters for every item, since our item is discrete, we round up these variables in to the 

integer values which is shown in Table 5.18. 

Therefore, the expected difference between our simulation result and the current 

policy is IDR 1,333,601,333.-. The following is the calculation of the percentage gap 

between our simulation results and the current policy. 
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5.9 Sensitivity Analysis 

In this part, we conduct a sensitivity analysis to our model to evaluate the 

differences of the cost and the solutions if some parameters are changed. The 

sensitivity analysis is done to the fixed PM cost, fixed CM cost, and fixed ordering 

cost. Table 5.19 and Table 5.20 show the result of the sensitivity analysis of fixed 

CM cost. In this sensitivity analysis, there are three scenarios. The first scenario is 

reducing the current CM cost into half, the second scenario is the current value of 

the CM cost, and the third scenario is increasing the CM cost into twice. 

 

Table 5.19 Sensitivity Analysis of Fixed CM Cost 
Scenari

o 

Coefficien

t CC Total Cost 

Computing 

Time 

t

o k 

1 

0.5  

2,452,500.00  

 

5,434,958,800.00  32,004.82 4 6 

2 

1  

4,905,000.00  

 

6,118,533,733.33  33,776.92 1 

2

5 

3 

2  

9,810,000.00  

 

6,384,767,333.33  34,539.02 1 1 

 

Table 5.20 S, s of the Sensitivity Analysis of Fixed CM Cost 

Scenario S1 S2 S3 S4 S5 S6 s1 s2 s3 s4 s5 s6 

1 463 190 149 178 163 156 360 117 71 2 30 18 

2 261 164 189 176 192 155 183 81 32 2 17 14 

3 148 57 25 12 19 16 101 37 16 9 13 11 

 

(42) 
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Figure 5.17 Sensitivity Analysis of CM Cost 

 

 

Figure 5.18 to and k Values of Sensitivity Analysis of the CM Cost 

 

Based on the Table 5.19 and Table 5.20, if we decrease the CM cost into 

half of the current value, the PM is done in every 24 months. Compared to the 

current CM cost policy, there are no significant changes of the PM policy. 

Furthermore, the stock review is done more often compared to the current CM cost 

policy. The cost resulted from this scenario is also less than the original scenario. 

Meanwhile, if we increase the CM cost into twice of the current value, the PM is 

done in every month which is significantly different compared to the current PM 

policy. The stock review is also done in every month; this is because the spare parts 

requirements for the PM in every month need to be fulfilled. The cost is also 

increased as the fixed CM cost increases. The computing time of the scenario 1 is 

shorter than the original scenario, while the scenario 3 are longer compared to the 

original scenario. 
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Table 5.21 Sensitivity Analysis of Fixed PM Cost 
Scenari

o 

Coefficien

t PC Total Cost 

Computing 

Time to k 

1 

0.5 2,180,000.0

0 

6,419,244,666.6

7 37,857.82 

1

0 1 

2 

1 4,360,000.0

0 

6,118,533,733.3

3 33,776.92 1 

2

5 

3 

1.5 6,540,000.0

0 

6,135,905,666.6

7 39,306.04 1 

2

4 

 

Table 5.22 S, s of the Sensitivity Analysis of Fixed PM Cost 

Scenario S1 S2 S3 S4 S5 S6 s1 s2 s3 s4 s5 s6 

1 896 384 172 72 132 105 701 248 126 52 82 74 

2 261 164 189 176 192 155 183 81 32 2 17 14 

3 273 207 128 179 187 157 180 75 35 2 18 16 

 

Table 5.21 and Table 5.22 show the result of the sensitivity analysis of the 

fixed PM cost. We use three scenarios. The first scenario is reducing the fixed PM 

cost into half, the second scenario is the current PM cost, and the third scenario is 

increasing the fixed PM cost into 1.5 times of the current PM cost. 

 

 

Figure 5.19 Sensitivity Analysis of PM Cost 
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Figure 5.20 to and k Values of Sensitivity Analysis of the PM Cost 

 

If we decrease the fixed PM cost into half, the stock review is done in every 10 

months, this is significantly different compared to the original scenario. 

Furthermore, the PM is done in every 10 months, which is more often compared to 

the original scenario. The cost resulted from the first scenario is also higher 

compared to the second scenario. Meanwhile, if we increase the PM cost into 1.5 

times, the PM is done in every 24 months and the stock review is done in very 

month. This means there is no significant changes if we increase the PM cost into 

1.5 times. Both computing time of the scenario 1 and scenario 3 are larger compared 

to the original scenario. 

 

Table 5.23 Sensitivity Analysis of Fixed PM Cost 
Scenario Coefficient CC Total Cost Computing Time to k 

1 5 500,000.00 6,143,032,600.00 39,918.19 1 25 

2 1 100,000.00 6,118,533,733.33 33,776.92 1 25 

3 2 200,000.00 6,124,316,733.33 32,522.04 2 12 

 

Table 5.24 S, s of the Sensitivity Analysis of Fixed PM Cost 

Scenario S1 S2 S3 S4 S5 S6 s1 s2 s3 s4 s5 s6 

1 304 165 174 175 191 154 194 76 36 3 16 13 

2 261 164 189 176 192 155 183 81 32 2 17 14 

3 24 320 185 131 186 191 152 258 97 47 2 30 

 

Table 5.23 and Table 5.24 show the result of the sensitivity analysis of the 

fixed ordering cost. We use three scenarios. The first scenario is increasing the fixed 

ordering cost into five times, the second scenario is the current ordering cost, and 

the third scenario is increasing the fixed ordering cost into 2 times of the current 

ordering cost. 
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Figure 5.21 Sensitivity Analysis of Fixed Ordering Cost 

 

 

Figure 5.22 to and k Values of Sensitivity Analysis of the Fixed Ordering Cost 

 

If we increase the fixed ordering cost into five times, the stock review is 

done in every 25 months and the PM is done in every 25 months, this means there 

is no difference compared to the original scenario. The cost resulted from the first 

scenario is also higher compared to the second scenario. Meanwhile, if we increase 

the ordering cost into 2 times, the PM is done in every 24 months and the stock 

review is done in every two months. This means there is a significant change if we 

increase the PM cost into 2 times. The computing time of the scenario 1 is larger 

than the original scenario, while the computing time of scenario 3 is longer 

compared to the original scenario. 
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6 CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

Chapter 6 contains the conclusions which are resulted from the previous 

analysis. This chapter also contains the recommendations for the possible future 

research. 

 

6.1 Conclusions 

This research has developed a mathematical model to optimize the spare 

parts inventory management and the planned maintenance jointly. We focus on 

modeling a periodic s, S inventory policy which the stock review is done in every 

to periods. Furthermore, the PM interval is done in every kto periods. The stochastic 

programming model is performed to solve the variability of the spare parts 

requirements under the normal distribution assumption. The mathematical model is 

obtained to solve a small scale problem. Otherwise, if we solve a large scale 

problem by the mathematical model, it would be computationally expensive. 

Therefore, a genetic algorithm (GA) is also developed to solve a larger scale 

problem. We conduct two stages of GA to solve the best to and k values under 

uncertain spare parts requirements.   

An experimental design method is conducted to determine the best 

parameter setting for the proposed algorithm. Based on the algorithm testing result, 

the proposed GA performs good computational efficiency for the large scale 

problem and results a good solution in most instances. However, our proposed GA 

will be less efficient to be implemented in a small scale problem since the 

terminating condition depends on the maxit and maxter parameters.  

We conduct a comparison of the different inventory policies and PM policies. From 

these comparisons, we found that the best inventory policy is the periodic s, S 

inventory policy. This is because this policy can be considered as a flexible policy, 

which can become Q, R policy if s = 0 and become continuous s, S policy if the 

stock review equal to 1. Based on the comparisons between the inventory policies, 

the gap between the (Q, R) inventory policy and the periodic s, S policy is 
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considerably high. While sometimes if the decision is review the stock 

continuously, the gap between the continuous s, S inventory policy and the periodic 

s, S inventory policy will become 0. Based on the comparison between the PM 

policies, conducting PM at regular basis is much better compared to PM at every 

period and no PM until the last period. Conducting PM at every period is not 

preferable since the total cost increases because it requires more items to be 

replaced. Furthermore, not performing PM is also not preferable since the number 

of defective items could increase if we do not replace it as soon as possible. 

We also implement our proposed GA to a real case study. The current 

policy of the real case study is reviewing the stock at every period and conducting 

the PM at every four years (48 months). By performing this policy, the expected 

total cost during four years is IDR 7,469,607,000.-. After conducting the GA 

simulation, the best policy is conducting the stock review at every month and the 

PM at every 25 months. By conducting this policy, the expected difference between 

our simulation result and the current policy is IDR 1,333,601,333.-, which decreases 

up to 17.9%. 

The sensitivity analysis is also conducted to evaluate the changes of the policies 

due to the changes of the parameters. We conduct the sensitivity analysis to three 

parameters, which are the fixed ordering cost (K), the fixed PM cost (PC), and the fixed 

CM cost (CM). Based on these sensitivity analyses, the policy changes significantly by 

increasing the CM cost into twice of the current policy, decreasing the PM cost into half of 

the current policy, and increasing the fixed ordering cost into twice of the current policy. 

 

6.2 Recommendations for Future Research 

In this study, we assume that all the items are independent each other, 

which in reality, one item could influence the other items in a large manufacturing 

plant. Future studies could consider the interdependency between items and the 

internal failure rate of each item. Furthermore, the repairing activity could also be 

considered instead of only considering the replacement activity. However, the 

problem could become much more complex which might require other advance 

approaches which can model the probabilistic behavior of the system. 
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In this study, the solution method does not perform efficiently for the small 

scale problem. Although it performs better than the MINLP model for the large 

scale problem, it still requires long computational time. Future studies could 

develop other solution method which can solve the problem more effectively and 

efficiently. 
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8 APPENDICES 

 

Appendix 1. One Factor at Time Experiment Results 

No Mut Pcross N Maxit1 Maxit2 Maxter #1 #2 #3 Average Level 1 Level 2 

1 0.2 0.2 100 10000 1000 0.05   1,412,976.00    4,297,150.00    17,251,194.00    7,653,773.33      

2 0.4 0.2 100 10000 1000 0.05   1,398,834.67    4,296,275.00    17,271,781.00    7,655,630.22      

3 0.6 0.2 100 10000 1000 0.05   1,400,556.00    4,296,025.00    17,247,381.33    7,647,987.44      

4 0.8 0.2 100 10000 1000 0.05   1,400,777.33    4,295,900.00    17,228,335.33    7,641,670.89      

5 0.2 0.2 100 10000 1000 0.05   1,412,976.00    4,297,150.00    17,251,194.00    7,653,773.33      

6 0.2 0.4 100 10000 1000 0.05   1,434,698.67    4,296,650.00    17,362,784.33    7,698,044.33      

7 0.2 0.6 100 10000 1000 0.05   1,434,396.67    4,295,775.00    17,837,746.67    7,855,972.78      

8 0.2 0.8 100 10000 1000 0.05   1,398,673.33    4,295,900.00    17,194,816.00    7,629,796.44      

9 0.2 0.2 100 10000 1000 0.05   1,412,976.00    4,297,150.00    17,251,194.00    7,653,773.33      

10 0.2 0.2 300 10000 1000 0.05   1,396,713.33    4,295,400.00    17,154,497.00    7,615,536.78      

11 0.2 0.2 500 10000 1000 0.05   1,397,961.33    4,295,400.00    17,833,621.67    7,842,327.67      

12 0.2 0.2 700 10000 1000 0.05   1,392,668.00    4,295,400.00    17,155,315.00    7,614,461.00      

13 0.2 0.2 100 10000 1000 0.05   1,412,976.00    4,297,150.00    17,251,194.00    7,653,773.33      

14 0.2 0.2 100 30000 1000 0.05   1,401,108.00    4,295,650.00    17,324,455.00    7,673,737.67      

15 0.2 0.2 100 50000 1000 0.05   1,407,336.00    4,296,275.00    17,268,048.00    7,657,219.67      

16 0.2 0.2 100 70000 1000 0.05   1,400,598.67    4,295,775.00    17,277,651.33    7,658,008.33      

17 0.2 0.2 100 10000 1000 0.05   1,412,976.00    4,297,150.00    17,251,194.00    7,653,773.33      

18 0.2 0.2 100 10000 3000 0.05   1,400,029.33    4,296,025.00    17,187,692.00    7,627,915.44      

19 0.2 0.2 100 10000 5000 0.05   1,401,624.00    4,295,900.00    17,865,456.67    7,854,326.89      

20 0.2 0.2 100 10000 7000 0.05   1,398,150.67    4,295,525.00    17,170,330.00    7,621,335.22      

21 0.2 0.2 100 10000 1000 0.05   1,412,976.00    4,297,150.00    17,251,194.00    7,653,773.33      

22 0.2 0.2 100 10000 1000 0.1   1,401,584.00    4,295,650.00    17,215,414.67    7,637,549.56      

23 0.2 0.2 100 10000 1000 0.2   1,395,461.33    4,295,400.00    17,190,518.67    7,627,126.67      

24 0.2 0.2 100 10000 1000 0.25   1,396,154.67    4,295,400.00    17,139,463.67    7,610,339.44      
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Appendix 2. Distribution Parameters of Instances 

8 Periods (d) 

Item 
Period 

0 1 2 3 4 5 6 7 8 

1 0 5 15 26 44 24 15 22 10 

2 0 4 23 28 50 39 26 19 32 

3 0 11 14 7 11 16 31 11 48 

 

8 Periods (dpm) 

Period 

0 1 2 3 4 5 6 7 8 

0 20 36 52 61 72 79 90 105 

25 Periods (d) 

Period 0 - 12 

Item 
Period 

0 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 11 17 26 38 53 71 92 115 138 159 175 186 

2 0 23 32 42 55 70 86 103 120 136 150 161 168 

3 0 20 31 47 68 95 128 166 207 248 286 315 335 

Period 13 - 25 

Item 
Period 

13 14 15 16 17 18 19 20 21 22 23 24 25 

1 190 186 175 159 138 115 92 71 53 38 26 17 11 

2 170 168 161 150 136 120 103 86 70 55 42 32 23 

3 342 335 315 286 248 207 166 128 95 68 47 31 20 

 

25 Periods (dpm) 

Period 1 - 12 

Periode 

0 1 2 3 4 5 6 7 8 9 10 11 12 

0 0 44 74 76 102 114 116 119 136 144 146 165 

Period 13 - 25 

Periode 

13 14 15 16 17 18 19 20 21 22 23 24 25 

174 183 198 204 218 260 264 284 299 318 323 482 534 
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Appendix 3. Distribution Parameters of Case Study 

Expected d of period 0 – 12 

Item 0 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 116 116 116 116 116 116 116 116 116 116 116 116 

2 0 48 48 48 48 48 48 48 48 48 48 48 48 

3 0 18 18 18 18 18 18 18 18 18 18 18 18 

4 0 4 4 4 4 4 4 4 4 4 4 4 4 

5 0 11 11 11 11 11 11 11 11 11 11 11 11 

6 0 9 9 9 9 9 9 9 9 9 9 9 9 

Expected d of period 13 – 24 

Item 13 14 15 16 17 18 19 20 21 22 23 24 

1 116 116 116 116 116 116 116 116 116 116 116 116 

2 48 48 48 48 48 48 48 48 48 48 48 48 

3 18 18 18 18 18 18 18 18 18 18 18 18 

4 4 4 4 4 4 4 4 4 4 4 4 4 

5 11 11 11 11 11 11 11 11 11 11 11 11 

6 9 9 9 9 9 9 9 9 9 9 9 9 

Expected d of period 25 – 36 

Item 25 26 27 28 29 30 31 32 33 34 35 36 

1 116 116 116 116 116 116 116 116 116 116 116 116 

2 48 48 48 48 48 48 48 48 48 48 48 48 

3 18 18 18 18 18 18 18 18 18 18 18 18 

4 4 4 4 4 4 4 4 4 4 4 4 4 

5 11 11 11 11 11 11 11 11 11 11 11 11 

6 9 9 9 9 9 9 9 9 9 9 9 9 

Expected d of period 37 – 48 

Item 37 38 39 40 41 42 43 44 45 46 47 48 

1 116 116 116 116 116 116 116 116 116 116 116 116 

2 48 48 48 48 48 48 48 48 48 48 48 48 

3 18 18 18 18 18 18 18 18 18 18 18 18 

4 4 4 4 4 4 4 4 4 4 4 4 4 

5 11 11 11 11 11 11 11 11 11 11 11 11 

6 9 9 9 9 9 9 9 9 9 9 9 9 

Expected dpm of period 0 – 12  

0 1 2 3 4 5 6 7 8 9 10 11 12 

0 6 6 10 15 17 21 30 31 34 38 40 45 

Expected dpm of period 12 – 24 

13 14 15 16 17 18 19 20 21 22 23 24 

48 48 51 52 64 68 74 76 77 81 85 90 

Expected dpm of period 25 – 36 

25 26 27 28 29 30 31 32 33 34 35 36 

93 97 105 108 113 116 122 130 133 139 143 148 
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Expected dpm of period 37 – 48 

37 38 39 40 41 42 43 44 45 46 47 48 

151 154 160 163 168 172 178 184 190 195 199 206 

 

Appendix 4. Calculation of the Expected Total Cost of Instances 

8 Periods Single Item 

Period 0 1 2 3 4 5 6 7 8 Cost 

PM Requirements 0 20 36 52 61 72 36 52 61  

CM Requirements (Item 1) 0 5 15 26 44 24 15 22 10  

Stock Review 1 0 0 0 1 0 0 0 1  

PM 0 1 0 0 0 1 0 0 0      8,720.00  

Inventory 0 118 103 77 33 47 32 10 0      6,300.00  

Backorder 0 0 0 0 0 0 0 0 0               -    

Quantity 0 143 0 0 0 110 0 0 0   379,500.00  

CM 0 0 1 1 1 0 1 1 1    58,860.00  

Order 1 0 0 0 1 0 0 0 1         300.00  

Total Cost   453,680.00  

 

to k S s 

4 1 143 133 

 

25 Periods Single Item 

Period 0 1 2 3 4 5 6 7 

PM Requirements 0 0 44 74 76 102 114 116 

CM Requirements (Item 1) 0 11 17 26 38 53 71 92 

Stock Review 1 0 0 0 0 0 0 0 

PM 0 1 0 0 0 0 0 0 

Inventory 0 1260 1243 1217 1179 1126 1055 963 

Backorder 0 0 0 0 0 0 0 0 

Quantity 0 1271 0 0 0 0 0 0 

CM 0 0 1 1 1 1 1 1 

Order 1 0 0 0 0 0 0 0 

 

Period 8 9 10 11 12 13 14 15 16 

PM Requirements 119 136 144 146 165 174 183 44 74 

CM Requirements (Item 1) 115 138 159 175 186 190 186 175 159 

Stock Review 0 0 0 0 0 1 0 0 0 

PM 0 0 0 0 0 0 1 0 0 

Inventory 848 710 551 376 190 0 902 727 568 

Backorder 0 0 0 0 0 0 0 0 0 

Quantity 0 0 0 0 0 0 1271 0 0 

CM 1 1 1 1 1 1 0 1 1 

Order 0 0 0 0 0 1 0 0 0 

 

Period 17 18 19 20 21 22 23 24 25 

PM Requirements 76 102 114 116 119 136 144 146 165 
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Period 17 18 19 20 21 22 23 24 25 

CM Requirements (Item 1) 138 115 92 71 53 38 26 17 11 

Stock Review 0 0 0 0 0 0 0 0 0 

PM 0 0 0 0 0 0 0 0 0 

Inventory 430 315 223 152 99 61 35 18 7 

Backorder 0 0 0 0 0 0 0 0 0 

Quantity 0 0 0 0 0 0 0 0 0 

CM 1 1 1 1 1 1 1 1 1 

Order 0 0 0 0 0 0 0 0 0 

 

to k S s 

13 1 143 133 

 

Ordering Cost           200.00  

Purchasing Cost   3,813,000.00  

Holding Cost     213,825.00  

Penalty Cost                  -    

CM Cost     225,630.00  

PM Cost         8,720.00  

Total Cost   4,261,375.00  

 

8 Periods Multi Items 

Period 0 1 2 3 4 5 6 7 8 

PM 0 1 0 0 0 1 0 0 0 

PM Requirements 0 20 36 52 61 72 36 52 61 

Re 1 0 0 0 1 0 0 0 1 

 

CM Requirements 

Period/Item 0 1 2 3 4 5 6 7 8 

SP_1 0 5 15 26 44 24 15 22 10 

SP_2 0 4 23 28 50 39 26 19 32 

SP_3 0 11 14 7 11 16 31 11 48 

 

Inventory 

Period/Item 0 1 2 3 4 5 6 7 8 

SP_1 0 118 103 77 33 47 32 10 0 

SP_2 0 164 141 113 63 77 51 32 0 

SP_3 0 147 133 126 115 90 59 48 0 

 

Backorder 

Period/Item 0 1 2 3 4 5 6 7 8 

SP_1 0 0 0 0 0 0 0 0 0 

SP_2 0 0 0 0 0 0 0 0 0 

SP_3 0 0 0 0 0 0 0 0 0 
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Quantity 

Period/Item 0 1 2 3 4 5 6 7 8 

SP_1 0 143 0 0 0 110 0 0 0 

SP_2 0 188 0 0 0 125 0 0 0 

SP_3 0 178 0 0 0 63 0 0 0 

 

CM 

Period/Item 0 1 2 3 4 5 6 7 8 

SP_1 0 0 1 1 1 0 1 1 1 

SP_2 0 0 1 1 1 0 1 1 1 

SP_3 0 0 1 1 1 0 1 1 1 

 

Order 

Period/Item 0 1 2 3 4 5 6 7 8 

SP_1 1 0 0 0 1 0 0 0 1 

SP_2 1 0 0 0 1 0 0 0 1 

SP_3 1 0 0 0 1 0 0 0 1 

 

Item to k S s 

SP_1 

4 1 

143 84 

SP_2 188 164 

SP_3 178 176 

 

Ordering Cost            900.00  

Purchasing Cost   1,174,500.00  

Holding Cost        27,070.00  

Penalty Cost                  -    

CM Cost      176,580.00  

PM Cost         8,720.00  

Total Cost   1,387,770.00  
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25 Periods Multi Items 

Period 0 1 2 3 4 5 6 7 8 9 10 11 12 

PM 0 1 0 0 0 0 0 0 0 0 0 0 0 

PM Requirements 0 0 44 74 76 102 114 116 119 136 144 146 165 

Re 1 0 0 0 0 0 0 0 0 0 0 0 0 
 

Period 13 14 15 16 17 18 19 20 21 22 23 24 25 

PM 0 1 0 0 0 0 0 0 0 0 0 0 0 

PM Requirements 174 183 44 74 76 102 114 116 119 136 144 146 165 

Re 1 0 0 0 0 0 0 0 0 0 0 0 0 
 

CM Requirements 

Period/Item 0 1 2 3 4 5 6 7 8 9 10 11 12 

SP_1 0 11 17 26 38 53 71 92 115 138 159 175 186 

SP_2 0 23 32 42 55 70 86 103 120 136 150 161 168 

SP_3 0 20 31 47 68 95 128 166 207 248 286 315 335 
 

CM Requirements 

Period/Item 13 14 15 16 17 18 19 20 21 22 23 24 25 

SP_1 190 186 175 159 138 115 92 71 53 38 26 17 11 

SP_2 170 168 161 150 136 120 103 86 70 55 42 32 23 

SP_3 342 335 315 286 248 207 166 128 95 68 47 31 20 

 

Inventory 

Period/Item 0 1 2 3 4 5 6 7 8 9 10 11 12 

SP_1 0 1260 1243 1217 1179 1126 1055 963 848 710 551 376 190 

SP_2 0 1306 1274 1232 1177 1107 1021 918 798 662 512 351 183 
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SP_3 0 2268 2237 2190 2122 2027 1899 1733 1526 1278 992 677 342 

 

Inventory 

Period/Item 13 14 15 16 17 18 19 20 21 22 23 24 25 

SP_1 0 902 727 568 430 315 223 152 99 61 35 18 7 

SP_2 13 978 817 667 531 411 308 222 152 97 55 23 0 

SP_3 0 1770 1455 1169 921 714 548 420 325 257 210 179 159 

 

Backorder 

Period/Item 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

SP_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Quantity 

Period/Item 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

SP_1 0 1271 0 0 0 0 0 0 0 0 0 0 0 0 1271 0 0 0 0 0 0 0 0 0 0 0 

SP_2 0 1329 0 0 0 0 0 0 0 0 0 0 0 0 1316 0 0 0 0 0 0 0 0 0 0 0 

SP_3 0 2288 0 0 0 0 0 0 0 0 0 0 0 0 2288 0 0 0 0 0 0 0 0 0 0 0 

 

CM 

Period/Item 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

SP_1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 

SP_2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 

SP_3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 
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Order 

Period/Item 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

SP_1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

SP_2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

SP_3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

 

Item to k S s 

SP_1 

13 1 

1271 746 

SP_2 1329 357 

SP_3 2288 1295 

 

Appendix 4. Calculation of the Expected Total Cost of Real Case Study 

Period 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

PM 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

PM Requirements 0 6 6 10 15 17 21 30 31 34 38 40 45 48 48 51 52 64 68 74 76 77 81 85 

Re 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

Period 24 25 26 27 28 29 30 31 32 33 34 35 36 

PM 0 0 0 0 0 0 0 0 0 0 0 0 0 

PM Requirements 90 93 97 105 108 113 116 122 130 133 139 143 148 

Re 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

Period 37 38 39 40 41 42 43 44 45 46 47 48 

PM 0 0 0 0 0 0 0 0 0 0 0 1 

PM Requirements 151 154 160 163 168 172 178 184 190 195 199 206 

Re 1 1 1 1 1 1 1 1 1 1 1 1 
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CM Requirements 

Period/Item 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

SP_1 0 5 5 7 9 10 14 18 19 20 22 23 24 25 25 25 25 35 38 40 42 43 45 48 

SP_2 0 1 1 2 4 5 5 7 7 9 9 10 13 13 13 15 15 17 17 19 19 19 20 20 

SP_3 0 0 0 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 

SP_4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

SP_5 0 0 0 0 1 1 1 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 5 6 

SP_6 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 

 

CM Requirements 

Period/Item 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

SP_1 53 55 58 60 62 64 68 73 75 78 80 83 85 86 90 92 95 98 100 105 108 110 113 116 

SP_2 21 22 25 25 28 28 29 31 31 32 33 34 34 35 36 36 38 38 40 40 43 44 45 48 

SP_3 8 8 9 10 10 10 10 11 12 12 13 13 14 14 14 15 15 15 16 16 16 17 17 18 

SP_4 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 

SP_5 6 6 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 

SP_6 4 4 4 4 4 4 5 5 5 5 5 6 6 6 7 7 7 7 8 8 8 9 9 9 

 

Inventory 

Period/Item 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

SP_1 0 313 319 312 303 293 279 261 242 304 302 279 255 230 299 299 274 

SP_2 0 255 261 259 255 250 245 238 231 222 213 203 190 177 164 149 134 

SP_3 0 238 244 243 242 241 240 238 236 234 231 228 225 221 217 213 208 

SP_4 0 204 210 210 210 210 210 210 210 210 210 210 209 208 207 206 205 

SP_5 0 211 217 217 216 215 214 212 210 208 205 202 199 196 193 189 185 

SP_6 0 219 225 225 225 225 225 224 223 222 221 220 219 217 215 213 211 
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Inventory 

Period/Item 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

SP_1 239 286 284 242 199 279 276 225 172 269 266 264 262 260 256 251 

SP_2 117 100 81 62 43 242 242 221 200 178 153 128 100 72 43 12 

SP_3 203 198 192 186 180 173 166 159 151 143 134 124 114 104 94 83 

SP_4 204 203 202 201 200 199 198 197 196 194 192 190 188 186 184 182 

SP_5 181 177 172 167 162 157 151 145 139 133 126 119 112 104 96 88 

SP_6 209 206 203 200 197 194 191 187 183 179 175 171 167 163 158 153 

 

Inventory 

Period/Item 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

SP_1 249 246 244 241 239 238 234 232 229 226 224 219 216 214 211 2 

SP_2 231 230 197 163 129 94 58 22 224 224 184 144 101 57 12 8 

SP_3 232 232 219 206 192 178 164 149 134 119 103 87 71 227 227 3 

SP_4 180 177 174 171 168 165 162 159 156 152 148 144 140 136 132 0 

SP_5 209 208 199 190 181 171 161 151 141 131 121 110 99 88 77 0 

SP_6 148 143 138 132 126 120 113 106 99 92 84 76 68 216 216 1 

 

Backorder 

Period/Item 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

SP_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Backorder 

Period/Item 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

SP_4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

Backorder 

Period/Item 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

SP_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Quantity 

Period/Item 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

SP_1 0 324 11 0 0 0 0 0 0 82 20 0 0 0 94 25 0 0 85 38 0 0 125 45 0 

SP_2 0 262 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 219 20 0 

SP_3 0 244 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_4 0 210 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_5 0 217 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_6 0 225 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Quantity 

Period/Item 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 
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SP_1 0 152 55 58 60 62 64 68 73 75 78 80 83 85 86 90 92 95 98 100 105 108 110 113 

SP_2 0 0 0 0 0 0 0 0 250 31 0 0 0 0 0 0 240 38 0 0 0 0 0 250 

SP_3 0 0 0 0 0 0 0 0 161 12 0 0 0 0 0 0 0 0 0 0 0 173 17 0 

SP_4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 78 

SP_5 0 0 0 0 0 0 0 0 129 8 0 0 0 0 0 0 0 0 0 0 0 0 0 140 

SP_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 157 9 0 

 

 

CM 

Period/Item 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

SP_1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

SP_2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

SP_3 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

SP_4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

SP_5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

SP_6 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

CM 

Period/Item 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

SP_1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

SP_2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

SP_3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

SP_4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

SP_5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

SP_6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

 

Order 
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Period/Item 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

SP_1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

SP_2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

SP_3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP_6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

Order 

Period/Item 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

SP_1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

SP_2 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 

SP_3 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

SP_4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

SP_5 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

SP_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

 

Ordering Cost                6,400,000  

Purchasing Cost         5,335,900,000  

Holding Cost            853,097,000  

Penalty Cost                              -  

CM Cost         1,265,490,000  

PM Cost                8,720,000  

Total Cost         7,469,607,000  

 

Item S s 
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SP_1 324 275 

SP_2 262 70 

SP_3 244 102 

SP_4 210 139 

SP_5 217 97 

SP_6 225 77 
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