

TESIS - TI185471

PENGENDALIAN PERSEDIAAN SPARE PARTS ELECTRICAL & INSTRUMENTATION DI INDUSTRI SEMEN

IMRAN 02411850077009

Dosen Pembimbing Prof. Iwan Vanany, S.T, M.T, Ph.D

Program Magister Departemen Teknik Sistem Dan Industri Fakultas Teknologi Industri Dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember 2020

TESIS - TI185471

PENGENDALIAN PERSEDIAAN SPARE PARTS ELECTRICAL & INSTRUMENTATION DI INDUSTRI SEMEN

IMRAN 02411850077009

Dosen Pembimbing Prof. Iwan Vanany, S.T, M.T, Ph.D

Program Magister Departemen Teknik Sistem Dan Industri Fakultas Teknologi Industri Dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember 2020

LEMBAR PENGESAHAN TESIS

Tesis disusun untuk memenuhi salah satu syarat memperoleh gelar Magister Teknik (MT)

Di

Institut Teknologi Sepuluh Nopember

Oleh:

IMRAN

NRP: 02411850077009

Tanggal Ujian: 26 Juni 2020 Periode Wisuda: September 2020

Disetujui Oleh: Pembimbing:

1. Prof. Iwan Vanany ST., M.T., Ph.D NIP: 197109271999031002

Penguji:

1. Nani Kurniati, S.T., M.T., Ph.D NIP: 197504081998022001

2. Niniet Indah Arvitrida, S.T., M.T., Ph.D NIP: 198407062009122007

Kepala Departemen Teknik Sistem dan Industri

Nurhad Siswanto, S.T., MSIE., Ph.D. Ph.D. Ph.D. 197005231996011001

(Halaman ini sengaja dikosongkan)

LEMBAR PERNYATAAN KEASLIAN TESIS

Saya yang bertanda tangan di bawah ini:

Nama : Imran

NRP : 02411850077009

Program Studi : Magister Teknik Sistem dan Industri - ITS

Menyatakan bahwa tesis dengan judul

"Pengendalian Persediaan Spare Parts Electrical & Instrumentation di Industri Semen"

adalah benar-benar hasil karya intelektual mandiri, diselesaikan tanpa menggunakan bahan-bahan yang tidak diijinkan dan bukan merupakan karya pihak lain yang saya akui sebagai karya sendiri.

Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap pada daftar pustaka. Apabila ternyata pernyataan ini tidak benar, saya bersedia menerima sanksi sesuai peraturan yang berlaku.

Surabaya, Juni 2020

Yang membuat pernyataan

Imran

NRP. 02411850077009

(Halaman ini sengaja dikosongkan)

PENGENDALIAN PERSEDIAAN SPARE PARTS ELECTRICAL & INSTRUMENTATION DI INDUSTRI SEMEN

Mahasiswa Nama : Imran

Mahasiswa ID : 02411850077009

Pembimbing : Prof. Iwan Vanany, S.T, M.T, Ph.D

ABSTRAK

Mengelola dan mengendalikan persediaan *spare parts* di industri termasuk industri semen adalah kegiatan penting yang dilakukan oleh manajer inventory. Dalam studi kasus, insiden kehabisan stok terutama suku cadang dalam kategori listrik dan instrumentasi sering terjadi dan secara signifikan mempengaruhi program pemeliharaan berdasarkan pada pengamatan dan pengumpulan data awal. Tujuan dari penelitian ini adalah untuk menyelidiki dan menganalisis persediaan spare parts menggunakan metode yang sesuai. Fenomena lumpy demand terjadi di beberapa spare parts berdasarkan metode matriks ADI-CV dan metode probabilistik diperlukan untuk mengelola spare parts dengan fenomena tersebut. Kebijakan metode continuous review (s, S) dipilih untuk menentukan jumlah kuantitas pemesanan, titik pemesanan ulang (ROP) dan total biaya persediaan. Metode simulasi Monte Carlo digunakan untuk menganalisis kinerja persediaan seperti biaya persediaan dan service level. Hasil utama dari penelitian ini adalah untuk menentukan tindakan perbaikan untuk material dalam rangka mengurangi stock out dan biaya persediaan. Berdasarkan hasil perhitungan pengendalian persediaan spare part di industri semen dengan metode continuous review didapatkan hasil nilai service level yang lebih tinggi dibandingkan kondisi existing. Implikasi praktisnya bagi perusahaan salah satunya adalah penelitian ini dapat dipakai untuk memasukkan data klasifikasi material (A/B/C) pada sistem SAP perusahaan, mengurangi shortage spare part sehingga durasi perbaikan peralatan dapat dikurangi dan juga dapat mengurangi indeks pemakaian listrik.

Kata Kunci: *Continuous review* (s,S), Klasifikasi ABC, Pengendalian persediaan, *spare parts*, simulasi Monte Carlo, *service level*

(Halaman ini sengaja dikosongkan)

INVENTORY CONTROL FOR ELECTRICAL & INSTRUMENTATION SPARE PARTS IN CEMENT INDUSTRIES

By : Imran

Student ID : 02411850077009

Supervisor : Prof. Iwan Vanany, S.T, M.T, Ph.D

ABSTRACT

Managing and controlling the spare parts inventory in industries including cement industries is critical activities that was conducted by inventory manager. In case study, the out of stock incidents especially spare parts in the electrical and instrumentation category were often occurring and significantly affecting the maintenance program based on observation and preliminary collection data. The purpose of this study is to investigate and analysis spare parts inventory using the appropriate methods. The lumpy phenomena was happen in some spare parts based on ADI-CV matrix methods and the probabilistic methods is needed to manage spare parts. The continuous review method (s, S) policy is selected to determine order quantity, reorder point (ROP) and total inventory costs. The Monte Carlo simulation method is used to analysis the inventory performance such as inventory costs and service level. The main results of this study is to determine the improvement action for managerial in order to reduce stock out and inventory costs. Based on the calculation of spare part inventory control in the cement industry using continuous review method, the service level value obtained is higher than the existing conditions. Practical implication for the company is that this research can be used to identify material classification data (A/B/C) in the compny's SAP system. Otherwise it can minimize shortage of spare part so it can reduce equipment repairs time and also can reduce the electricity usage index.

Keyword: Continuous review (s, S), ABC Classification, inventory control spare parts, Monte Carlo simulation, service level

(Halaman ini sengaja dikosongkan)

KATA PENGANTAR

Alhamdulillahirabbil'alamin, puji syukur kehadiran Allah SWT yang telah melimpahkan rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan penelitian ini dengan sebaik-baiknya. Shalawat serta salam juga senantiasa penulis haturkan kepada junjungan besar Nabi Muhammad SAW.

Penelitian ini disusun untuk memenuhi persyaratan dalam menyelesaikan studi Magister Teknik Departemen Teknik Industri Institut Teknologi Sepuluh Nopember Surabaya. Selama proses pengerjaan, penulis juga telah menerima banyak dukungan, masukan, serta bantuan dari berbagai pihak. Pada kesempatan ini, penulis ingin mengucapkan terima kasih kepada:

- 1. Bapak Prof. Iwan Vanany, S.T., M.T., Ph.D selaku dosen pembimbing tesis yang telah memberikan arahan, masukan dan bimbingan selama pengerjaan tesis.
- Ibu Nani Kurniati, ST., MT., Ph.D, dan Ibu Niniet Indah Arvitrida, S.T., M.T., Ph.D selaku dosen penguji dalam seminar proposal dan sidang tesis.
- 3. Bapak Nurhadi Siswanto, S.T., MSIE., Ph.D selaku Kepala Departemen Teknik Industri yang selalu memberikan inspirasi kepada penulis untuk selalu menghasilkan karya-karya terbaik untuk penelitian.
- 4. Seluruh Bapak dan Ibu Dosen Departemen Teknik Industri ITS yang telah mendidik dan mengajarkan banyak ilmu dan pelajaran berharga kepada penulis selama masa perkuliahan.
- 5. Kedua orang tua dan istri tercinta yang senantiasa memberikan semangat, dukungan, kasih sayang dan doa-doanya dari awal perkuliahan hingga penelitian ini selesai.
- 6. Bapak dan Ibu pimpinan di Semen Indonesia dan Semen Tonasa yang sudah memberikan kesempatan untuk mengikuti program magister ini dan juga buat rekan-rekan kuliah program magister kerja sama industri dari Semen Indonesia.

Serta semua pihak yang tidak dapat saya sebutkan satu persatu, atas segala bantuan dan doa dalam penyelesaian penelitian tesis ini. Semoga Allah SWT membalas semua kebaikan tersebut. Amin

Dalam penyusunan penelitian ini, penulis masih merasa ada banyak kekurangan pada materi maupun penulisan. Untuk itu, kritik dan saran dari semua pihak sangat diharapkan dalam rangka perbaikan untuk penulis. Penulis juga berharap semoga laporan tesis ini dapat bermanfaat dan memberikan referensi kepada pembaca maupun penulis sendiri untuk kebutuhan penelitian yang akan datang.

Surabaya, Juni 2020

Penulis

DAFTAR ISI

LEMB	AR PENGESAHAN TESIS	i
LEMB	AR PERNYATAAN KEASLIAN TESIS	. iii
ABSTE	PAK	v
ABSTE	RACT	vii
KATA	PENGANTAR	. ix
DAFTA	AR ISI	. xi
DAFT	AR GAMBAR	xiii
DAFTA	AR TABEL	XV
BAB 1	PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Perumusan Masalah	5
1.3	Tujuan Penelitian	6
1.4	Manfaat Penelitian	6
1.5	Batasan Penelitian	6
1.6	Sistemasi Penulisan Tesis	6
BAB 2	TINJAUAN PUSTAKA	9
2.1	Konsep Pengendalian Persediaan Suku Cadang	9
2.2	Analisis Pola Permintaan	11
2.3	Analisis ABC	13
2.4	Pengendalian Persediaan Suku Cadang	14
2.4	Pengendalian Persediaan Model Deterministik	14
2.4	Pengendalian Persediaan Model <i>Probabilistik</i>	15
2.5	Jenis Spare Part di Industri Semen	17
2.6	Penelitian Terdahulu.	23
BAB 3	METODOLOGI PENELITIAN	25
3.1	Tahap Pengumpulan Data	26
3.2	Tahap Pengolahan Data	27
3.3	Tahap Analisis dan Pembahasan	27
BAB 4	PENGUMPULAN DAN PENGOLAHAN DATA	29
<i>1</i> 1	Profil Parisahaan	20

4.2	Dat	ta Pengunaan Spare Parts Electrical & Instrumentation	. 32
4.3	Kla	sifikasi ABC Electrical dan Instrumentation Spare Parts	. 33
4.4	Dat	ta Penggunaan Spare Part Terpilih Periode 2015 – 2019	.36
4.5	Per	hitungan ADI – CV	. 37
4.6	Dat	ta Harga dan <i>Lead Time Spare Parts</i>	.38
4.7	Per	hitungan Biaya Persediaan Spare Part	. 39
4.7	7.1	Biaya Pemesanan	. 39
4.7	7.2	Biaya Penyimpanan	.41
4.7	7.3	Biaya Kekurangan	.43
4.8	Per	hitungan Parameter Kebijakan Persediaan	. 44
4.8	3.1	Perhitungan Persediaan dan Pemesanan dengan Kondisi Eksisting	45
	3.2 ontini	Perhitungan Persediaan Kondisi Perbaikan dengan Kebijakan uous Review (s, S).	. 48
4.9	Per	encanaan Skenario pada Rekomendasi Kebijakan Persediaan	. 52
4.9	9.1	Pembangkitan Bilangan Acak	. 52
4.9	9.2	Validasi Data Pembangkitan Bilangan Acak	. 56
4.9	9.3	Skenario Perbaikan	61
4.10	Per	ngujian Sensitivitas	.71
4.]	10.1	Sensitivitas Total Biaya Persediaan Terhadap Perubahan Demand	72
4.]	10.1	Sensitivitas Total Biaya Persediaan Terhadap Perubahan Demand	<i>l</i> 73
4.1	10.2	Sensitivitas Service Level Terhadap Perubahan Demand	. 73
BAB 5	ANA	ALISIS DAN PEMBAHASAN	. 75
5.1	Ana	alisis Kebijakan Persediaan	. 75
5.2 Reko		alisis Kebijakan Perusahaan Kondisi Awal dan Skenario dasi Perbaikan	. 76
5.3	Ana	alisis Pengujian Sensitivitas	. 77
5.4	Imp	olikasi Praktis	. 78
BAB 6	KES	SIMPULAN DAN SARAN	81
6.1	Kes	simpulan	. 81
6.2	Sar	an	. 82
DAFT	AR P	USTAKA	. 83
LAMP	IRA	N	. 85
BIOGE	RAFI	PENULIS	155

DAFTAR GAMBAR

Gambar 1. 1 Kondisi Aktual Stock Beberapa Spare Part General Use
Gambar 1. 2 Kondisi Aktual Stock Out Beberapa Spare Parts Elins
Gambar 2. 1 Klasifikasi Pola Permintaan
Gambar 2. 2 Peralatan Utama Pabrik Semen
Gambar 2. 3 Beberapa Peralatan Pendukung dipabrik Semen
Gambar 2. 4 Contoh Spare Parts Listrik, Instrumen & General Use
Gambar 2. 5 Contoh Spare Parts Mesin
Gambar 2. 6 Contoh <i>Spare parts</i> Konstruksi & Alat Berat
Gambar 3. 1 Flow Chart Alur Penelitian
Gambar 4. 1 Dena Lokasi Warehouse & Peralatan PT. X
Gambar 4. 2 Proses Permintaan Spare Part
Gambar 4. 3 Validasi Pembangkitan Bilangan Acak 632-001172 60
Gambar 4. 4 Grafik Sensitivitas Biaya Persediaan terhadap Perubahan Demand 73
Gambar 4. 5 Grafik Sensitivitas Service Level terhadap Perubahan Demand 73

(Halaman ini sengaja dikosongkan)

DAFTAR TABEL

Tabel 1. 1 Sistem SAP yang Dipakai di PT. X	2
Tabel 1. 2 Resume Material Issued dari Gudang Spare Parts Periode 2017 -	- 2019
	3
Tabel 2. 1 Daftar Spare Part Listrik, Instrumentasi & General Use	
Tabel 2. 2 Daftar Spare Parts Mesin	21
Tabel 2. 3 Daftar Spare Parts Konstruksi	22
Tabel 2. 4 Daftar Spare Parts Alat Berat	22
Tabel 4. 1 Spare Part Peralatan Utama PT. X	30
Tabel 4. 2 Data Penggunaan Jenis Electrical Spare Part	32
Tabel 4. 3 Data Penggunaan Jenis Instrumentation Spare Part	33
Tabel 4. 4 Hasil Klasifikasi ABC pada Jenis Electrical Spare Part	33
Tabel 4. 5 Hasil klasifikasi ABC pada Jenis Instrumentation Spare Part	34
Tabel 4. 6 Spare Part Jenis Electrical yang Masuk Kelas A	35
Tabel 4. 7 Spare Part Jenis Instrumentation yang Masuk kelas A	36
Tabel 4. 8 Data Penggunaan Spare Part Periode Tahun 2015 – 2019	36
Tabel 4. 9 Pola Permintaan Spare Part dengan Analisis ADI – CV	38
Tabel 4. 10 Data Harga dan Lead Time Spare Part Terpilih	38
Tabel 4. 11 Rincian Biaya Jumlah Aset pada Unit Kerja Pengadaaan Barang	g 39
Tabel 4. 12 Perhitungan Depresiasi Aset Unit Pengadaan Barang	40
Tabel 4. 13 Data Gaji Pekerja pada Unit Pengadaan Barang	40
Tabel 4. 14 Perhitungan Biaya Telepon, Listrik, Internet, dan Administrasi	40
Tabel 4. 15 Rekapitulasi Biaya Pemesanan Tiap Item	41
Tabel 4. 16 Data Aset Perusahaan Untuk Persediaan Spare Part Electronic Company of the Company o	rical &
Instrumentation	41
Tabel 4. 17 Data Gaji Pekerja pada Unit Gudang	41
Tabel 4. 18 Data Perhitungan Depresiasi Aset Gudang	42
Tabel 4. 19 Biaya penyimpanan	43
Tabel 4, 20 Biava Kekurangan	44

Tabel 4. 21 Perhitungan Persediaan dan Pemesanan 632-000490 kondisi Eksisting
45
Tabel 4. 22 Hasil Perhitungan Biaya Persediaan dan Service Level Kondisi
Eksisting
Tabel 4. 23 Pengolaan Data Material 632-001172
Tabel 4. 24 Hasil Perhitungan Parameter Input
Tabel 4. 25 Hasil Pembangkitan Bilangan Acak dengan Monte Carlo 632-001172
Tabel 4. 26 Hasil Pembangkitan Bilangan Acak 632-001172
Tabel 4. 27 Data Validasi Pembangkitan Bilangan Acak 632-001172 57
Tabel 4. 28 Simulasi Rekomendasi Perbaikan dengan Data <i>Demand</i> Replikasi 161
Tabel 4. 29 Hasil Perhitungan Rekomendasi Perbaikan dengan Data Demand
Replikasi 1 – 100, pada Material 632-001172
Tabel 4. 30 Skenario Perbaikan $Continuous\ Review$ pada Material 632-001172 . 65
Tabel 4. 31 Skenario Perbaikan $Continuous\ Review$ pada Material 627-000279 . 66
Tabel 4. 32 Skenario Perbaikan Continuous Review pada Material 613-000490 . 66
Tabel 4. 33 Skenario Perbaikan Continuous Review pada Material 602-001378 . 67
Tabel 4. 34 Skenario Perbaikan Continuous Review pada Material 628-000239 . 67
Tabel 4. 35 Skenario Perbaikan $Continuous\ Review$ pada Material 631-000542 . 68
Tabel 4. 36 Skenario Perbaikan Continuous Review pada Material 626-007992 . 68
Tabel 4. 37 Skenario Perbaikan Continuous Review pada Material 632-001184 . 69
Tabel 4. 38 Skenario Perbaikan Continuous Review pada Material 632-000118 . 69
Tabel 4. 39 Skenario Perbaikan $Continuous\ Review$ pada Material 626-007278 . 70
Tabel 4. 40 Resume Skenario Perbaikan Continuous Review
Tabel 4. 41 Hasil Pengujian Sensitivitas <i>Demand</i> pada 627-00027972
Tabel 5. 1 Rekapitulasi Kondisi Eksisting dan Rekomendasi Skenario Perbaikan
77

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Persediaan adalah bahan atau material yang dibawa oleh suatu bisnis atau perusahaan untuk dijual atau untuk memberikan input atau bahan untuk proses produksi (Champan, 2016). Persediaan dapat berupa *raw materials*, barang dalam proses, barang jadi, *spare part*. Manajemen persediaan adalah fungsi yang bertanggung jawab untuk semua keputusan tentang *stock* dalam suatu organisasi (Waters, 2003).

Tujuan utama dari persediaan/stock adalah memberikan penyangga antara permintaan dan penawaran. Pengaman ini sangat penting untuk memastikan kelancaran operasi. Persediaan memungkinan operasi menjadi lebih efisien dan produktif. Persediaan mempengaruhi waktu tunggu dan ketersediaan bahan – dengan demikian mempengaruhi layanan pelanggan, kepuasan dan value dari produk tersebut. Persediaan mempengaruhi biaya operasi – dan karenanya menghasilkan laba, laba atas asset, laba atas inventaris, dan hampir semua ukuran kinerja keuangan lainnya (Waters, 2003).

Persediaan dapat berdampak buruk apabila tidak dikelola dengan baik, akan tetapi terdapat beberapa alasan mengapa perusahaan perlu menyediakan persediaan yaitu pertama alasan waktu, yaitu untuk menghadapi kondisi operasional yang tidak sesuai dengan perencanaan, dimana unit kerja tetap dituntut bertanggung jawab terhadap berjalannya proses produksi. Alasan kedua yaitu ketidakpastian dalam menghadapi *demand* dan *supply*. Dan alasan terakhir yaitu *economic of scale* adalah agar perusahaan mampu meraih nilai ekonomis dalam proses produksi dan proses pengadaan barang (Octaviana, 2018).

Untuk membantu proses pengadaan (*procurement*) dan pengelolaan *inventory* unit perencana/pengendali tersebut menggunakan Sistem *Application and Product in Data Processing* (SAP) yang dipakai secara umum di PT. X.

Di SAP, PT. X belum meng-explore sistem ini dengan baik. Di sistem SAP yang dipakai sekarang ini sebenarnya sudah terdapat kolom terkait klasifikasi *spare part*nya (ABC), *Reorder Point*, dan *Safety Stock* namun memang belum dijalankan oleh PT. X, di sebagian besar item yang tercatat di SAP belum ada identifkasi terkait klasifikasi *spare part*nya (A/B/C), dan juga belum ada nilai/angka untuk *reorder point* dan *safety stock*.

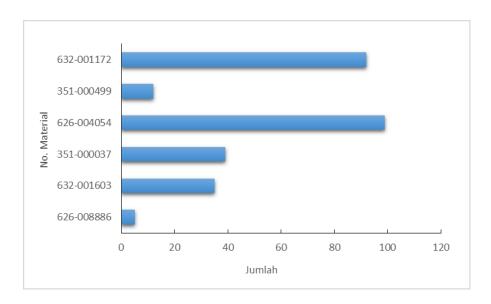
Tabel 1. 1 Sistem SAP yang Dipakai di PT. X

No	Material Number	Unrest ricted	BUM	Material Group	Last Change	Material Type	ABC Indicator	Reorder Point	Safety Stock
1	116-000017	0	KG	040203	9/13/2019	ZBBP		0	0
2	116-000020	0	KG	040203	9/13/2019	ZBBP		0	0
3	117-000012	688	EA	040106	7/22/2019	ZBBP		0	0
4	117-000053	570	EA	040108	7/26/2019	ZBBP		0	0
5	117-000055	8204	EA	040108	7/22/2019	ZBBP		0	0
6	117-000059	8832	EA	040108	7/22/2019	ZBBP		0	0
7	117-000064	0	EA	040108	7/26/2019	ZBBP		0	0
8	117-000065	21030	EA	040108	10/7/2019	ZBBP		0	0
9	117-000069	6009	EA	040108	7/22/2019	ZBBP		0	0
10	117-000072	278	EA	040108	7/22/2019	ZBBP		0	0
11	117-000074	450	EA	040108	7/26/2019	ZBBP		0	0
12	117-000075	186	EA	040108	7/26/2019	ZBBP		0	0
13	117-000078	851	EA	040108	7/22/2019	ZBBP		0	0
14	117-000081	293	EA	040108	7/22/2019	ZBBP		0	0
15	117-000122	8460	EA	040108	7/26/2019	ZBBP		0	0

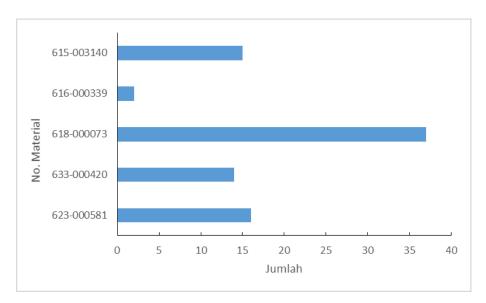
Sumber: Sistem SAP PT. X

Kebijakan setiap unit pengendali dalam menentukan dan merencanakan kebutuhan *spare part* untuk masing-masing *spare part* yang dikendalikannya di PT. X belum ada dasar teori yang jelas. Dalam menentukan jumlah permintaan masih sebagian besar didasarkan pada perkiraan saja atau berdasarkan *history* permintaan yang ada atau berdasarkan berapa yang diminta oleh masing-masing *user* yang diinformasikan pada saat membuat *order*, padahal pada saat unit peminta membuat *order*, kadangkala barang tersebut sudah dibutuhkan pada saat itu juga sehingga harapannya sudah ada *stock*nya di gudang.

Berdasarkan *history* pengeluran barang di gudang PT. X dalam 3 tahun terakhir (2017-2019) ada 44,338 kali kegiatan *issued* barang/material/*spare part* dari gudang. Dari 44,338 kali tersebut terdiri dari 6,187 jenis item. Material yang paling sering adalah material yang masuk dalam klasifikasi (berdasarkan pembagian tipe material di SAP) *Electrical, Instrument & General Use* yaitu sebanyak 32,433 kali *issued* dengan total jenis *equipment* sebanyak 3,461.


Tabel 1. 2 Resume Material Issued dari Gudang Spare Parts Periode 2017 – 2019

No	Material Type	Description	Number of Items	Total Number of Issued
1	ZSPG	Electrical, Instument & Gen.Use	3.461	32.433
2	ZBBP	Raw Materials & Auxiliary	285	3.462
3	ZSPK	Office Supply	102	1.939
4	ZSPR	Machinary & Spare parts	1.488	4.209
5	ZBKT	Construction Materials	82	771
6	ZHEV	Heavy Equipment & Vehicle	671	1.051
7	ZTOL	Equipment & Supplies	92	466
8	ZMED	Medical Goods	6	7
		TOTAL:	6.187	44.338


Sumber: SAP PT. X

Khusus untuk jenis *spare parts* yang masuk tipe *general use* tersebut diatas sudah dibuatkan kontrak pengadaan baik itu kontrak konsinyasi ataupun kontrak *price list* sehingga tidak terlalu bermasalah dalam hal stock seperti yang terlihat pada gambar 1.2. *Spare part* kategori *general use* tersebut seperti Gas Acytiline, Oxigen, Kawat Las, *Bearing, Gasket*, dan lain-lain.

Dilain pihak, untuk jenis *spare part electrical and instrumentation* didapat informasi bahwa masih terjadi ketidak-seimbangan antara permintaan dan ketersediaan, tingkat persediaan untuk *spare parts* ini mengalami ketidakadaan (*stock out*) seperti yang terlihat pada gambar 1.3 dibawah.

Gambar 1. 1 Kondisi Aktual *Stock* Beberapa *Spare Part General Use*Sumber: SAP PT. X

Gambar 1. 2 Kondisi Aktual *Stock Out* Beberapa *Spare Parts Elins*Sumber: SAP PT

Kondisi *stock out* mempunyai implikasi negatif ke perusahaan yaitu dapat mengakibatkan hilangnya potensi produksi dan keuntungan. Sebagai contoh misalnya jika *equipment* motor terbakar/rusak dan tidak ada spare yang ada maka 1 unit pabrik akan mati (contoh unit finish mill 2). Dimana unit *finish mill* ini memproduksi semen dengan kapasitas 100 ton/hari. Sehingga potensi kehilangan produksi sebesar kapasitasnya yaitu 100 ton/hari. Kemudian jika harga jual semen

per zak (40 Kg) adalah Rp. 48.000, dengan margin keuntungan ± 20%, maka terdapat potensi kehilangan penjualan sebesar Rp. 120.000.000,-/hari dengan potensi kehilangan keuntungan Rp. 24.000.000.-/hari. Belum lagi ditambah adanya potensi pesaing masuk jika *stock* semen tidak tersedia dipasar.

Oleh sebab itu analisa pengendalian spare part untuk jenis item barang klasifikasi electrical and instrumentation perlu dianalisa secara komperhensif. Upaya untuk menentukan jumlah pemesanan dan titik pemesanan kembali dengan mempertimbangkan biaya persediaanya. Pada penelitian ini akan digunakan metode pengendalian persediaan dengan pendekatan model continuous review (s,S) untuk mengetahui jumlah pemesanan dan titik pemesanan kembali, hal ini sejalan dengan karakteristik *lumpy demand* dan kebijakan perusahaan yang dapat melakukan pemesanan kembali setiap saat dan sudah memiliki sistem untuk real time melihat posisi inventory. Menurut Setyaningsih & Basri (2013), kelebihan dari continuous review adalah dapat dilakukan *update* posisi inventory secara real time sehingga lebih mudah untuk mengetahui kapan harus dilakukan replenishment, kebijakan continuous review melibatkan perhitungan dan dokumentasi dari setiap item dalam setiap kali item tersebut bergerak dari inventaris. Dan menurut Hidayat (2012), untuk material yang memiliki pola permintaan intermitten cocok dengan pendekatan probabilistic (continuous review) sehingga pada penelitiannya menggunakan model continuous review (s,S) untuk spare partnya yang masuk kategori intermitten dengan jenis lumpy demand. Diharapkan terjadinya stock out dapat dikurangi. Implikasi praktis yang diharapkan bagi manajemen departemen inventory dan warehouse adalah mengurangi terjadinya potensi kerugian akibat terhentinya produksi akibat ketiadaan *spare part* yang dibutuhkan peralatan.

1.2 Perumusan Masalah

Permasalahan pada penelitian ini adalah bagaimana melakukan pengendalian persediaan *spare part* dengan menentukan jumlah kuantitas pemesanan dan titik pemesanan kembali dengan mempertimbangkan biaya persediaan. Upaya umtuk memberikan rekomendasi perbaikan pengendalian persediaan yang mampu mereduksi *stock out* dengan juga mempertimbangkan biaya persedian yang optimal akan dilakukan dalam penelitian.

1.3 Tujuan Penelitian

Adapun tujuan dari penelitian tesis ini adalah sebagai berikut:

- 1. Menentukan jumlah kuantitas pemesanan dan titik pemesanan kembali yang optimal pada persedian *spare parts Electrical & Instrumentation* di PT. X.
- 2. Memberikan rekomendasi perbaikan untuk mengurangi terjadinya *stock out* dan atau mengurangi biaya persediaan *spare parts* di PT. X.

1.4 Manfaat Penelitian

Manfaat penelitian perusahaan pada studi kasus yang dilakukan, hasil penelitian ini diharapkan dapat mereduksi terjadinya stock out pada spare part kategori electrical dan instrumentation, dan juga memperhatikan biaya persediaan yang optimal. Terjadinya pengurangan stock out dapat menaikkan service level. Model kebijakan persediaan sparepart yang dipakai untuk kategori electrical & instrumentation dapat menjadi rujukan untuk digunakan pada spare part jenis lain.

1.5 Batasan Penelitian

Batasan yang digunakan dalam penelitian ini adalah:

- 1. Penelitian ini tidak memperhitungkan umur peralatan seperti peralatan *crusher, tube mill, vertical mill, rotary kiln*. Ketika terjadi kerusakan peralatan ini membutuhkan spare part *electrical & instrumentation*.
- 2. Penelitian ini lebih difokuskan pada pengelolaan *inventory*, dan tidak fokus ke *maintenance*.
- 3. Data penggunaan *spare part* dalam penelitian ini diambil dari periode tahun 2015 2019.

1.6 Sistemasi Penulisan Tesis

Sistematika penulisan tesis yang berbasis pada studi kasus ini dibagi menjadi ke dalam 5 bab. Setiap bab dibagi menjadi sub bab yang berisi uraian lebih rinci yang mendukung isi bab secara sistematis dari setiap bab secara keseluruhan. Sistematika penulisan tesis yang akan dilakukan sebagai berikut:

- BAB I: PENDAHULUAN

Pada bab ini diuraikan secara umum isi materi yang akan dibahas diantaranya: latar belakang, rumusan masalah, tujuan penelitian, manfaat penelitian, batasan masalah, sistematika penulisan tesis. Pada latar belakang dijelaskan kondisi *stock out* yang terjadi dan belum maksimalnya penggunaan sistem SAP. Kemudian menjelaskan tujuan, manfaat dari penelitian ini terhadap *service level* dan biaya persediaan kedepan, dan juga batasan-batasan penelitian.

- BAB II: KAJIAN PUSTAKA

Pada bab ini dijelaskan landasan teori yang akan digunakan seperti objek penelitian terkait manajemen *spare parts*, yang terdiri dari konsep dan fungsi persediaan itu sendiri dimana merupakan bagian penting dari aset sebuah perusahaan dan berperan penting terhadap kehandalan operasi pabrik. Pengendalian persediaan model *deterministic* dan model *probabilistic* (*periodic review & continuous review*). Walaupun yang digunakan nantinya hanya model *continuous review*.

Adapun referensi yang digunakan ada beberapa buku seperti *Inventory* Control & Management dari Donald Water, Material Management dari Steve Champan dkk, Supply Chain Management dari Sunil Chopra & Peter Meindl, dan juga buku dari I Nyoman Punjawan & Mahendrawati tentang Supply Chain Management, selain itu juga digunakan referensi dari beberapa jurnal yang sesuai.

- BAB III: METODOLOGI PENELITIAN

Pada bab ini dijelaskan metode penelitian dan langkah-langkah dalam melakukan penelitian. Metodologi yang dipaparkan mencakup tahapan dalam penelitian yang digunakan untuk menyelesaikan permasalahan yang nantinya digunakan untuk menjawab tujuan seperti studi literature tentang metode pengendalian *spare parts* dan studi lapangan terkait kondisi ketersediaan *spare parts*. Setelah itu dilakukan pengumpulan data berupa data pemakaian *spare parts*, *lead time*, biaya pembelian dan penyimpanan. Kemudian tahap pengolahan data dan selanjutnya tahap analisa dan menarik kesimpulan.

- BAB IV: PENGUMPULAN DAN PENGOLAHAN DATA

Pada bab ini dilakukan pemgumpulan data pemakaian *spare part* di perusahaan, biaya pembelian, biaya pengadaan, biaya penyimpanan dan biaya yang ditanggung perusahaan jika terjadi *stock out*. Setelah itu dilakukan pengolahan data diantaranya melakukan pengklasifikasian material dengan metode ABC, kemudian melakukan perhitungan ADI – CV, perhitungan parameter kebijakan dengan pendekatan *continuous review*, simulasi monte carlo dan melakuka pengujian sensitivitas.

- BAB V: ANALISA DAN PEMBAHASAN

Pada bab ini akan membahas mengenai analisis dari hasil penelitian yang telah dilaksanakan. Pembahasan yang dilakukan terkait strategi kebijakan persediaan berdasarkan hasil klasifikasi, analisis kondisi eksisting perusahaan, kemudian dilakukan pembahasan terkait perancangan skenario terhadap rekomendasi perbaikan, dan selanjutnya dilakukan analisis terhadap pengujian sensitivitas, dan yang terakhir dibahas implikasi praktis dari tahapan *spare part* analisis yang telah dilakukanp

- BAB VI: KESIMPULAN DAN SARAN

Pada bab ini diuraikan kesimpulan berdasarkan keseluruhan pembahasan penelitian dan dilengkapi dengan saran untuk menunjang perbaikan dalam penelitian berikutnya. Pada bab ini juga diberikan saran dari penulis yang dapat dijadikan rekomendasi bagi perusahaan.

BAB 2

TINJAUAN PUSTAKA

2.1 Konsep Pengendalian Persediaan Suku Cadang

Pada dasarnya pengontrolan material atau suku cadang dapat ditentukan sesuai dengan kebutuhan usaha dan kondisi pengoperasiannya. Namun demikian perubahan dapat saja terjadi dan memerlukan pengaturan setiap waktu. Dalam kaitan ini, penting adanya perhatian manajemen untuk pengontrolan material atau suku cadang yang dibutuhkan pada pekerjaan perawatan. Usaha-usaha yang perlu ditangani dalam mengelola dan mengontrol suku cadang mencakup sistem *order*, rencana teknik untuk mengganti atau memperbaiki, penanggulangan masalah produk yang berubah karena pengaruh material atau suku cadang, persediaan suku cadang sesuai dengan kebutuhan fasilitas yang akan menggunakannya.

Terdapat beberapa jenis persediaan yang menjadi pembeda antar perusahaan yaitu (Octaviana, 2018).

- ➤ Pipeline atau transit inventory: persediaan yang muncul karena panjangnya waktu pengiriman dari satu tempat ke tempat yang lainnya.
- > Cycle stock: persediaan ini memiliki siklus dalam pergerakannya. Jumlah persediaan jenis ini akan berkurang sedikit demi sedikit akibat habis terpakai ataupun habis terjual.
- > Safety stock: berfungsi sebagai antisipasi keterlambatan pengiriman.
- ➤ Anticipation stock: persediaan untuk mengantisipasi kenaikan permintaan karena sifat musiman dari permintaan suatu produk.

Hal yang perlu diperhatikan dalam pengendalian suku cadang adalah bahwa penyimpanan stock tidak terlalu lebih atau tidak terlalu kurang dari kebutuhan. Jumlah maksimum dan minimum penyimpanan suku cadang harus ditentukan secermat mungkin. Faktor-faktor penting yang mendasari pengontrolan suku cadang adalah (Dhamayanti, 2010).

Persediaan/stok maksimum. Menunjukkan batas tertinggi penyimpanan suku cadang dengan jumlah yang menguntungkan secara ekonomi.

- Persediaan/stok minimum. Menunjukkan batas terendah penyimpanan suku cadang dengan batas yang aman. Untuk mengatasi kebutuhan suku cadang di atas batas normal, maka harus selalu ada persediaan dalam jumlah tertentu.
- ➤ Standar pemesanan. Menunjukkan jumlah barang atau suku cadang yang dibeli pada setiap pemesanan. Pemesanan kembali dapat diadakan lagi untuk mencapai jumlah stok yang dibutuhkan.
- ➤ Batas pemesanan kembali. Menunjukkan jumlah barang yang dapat dipakai selama waktu pengadaannya kembali (sampai batas stok minimum). Pada saat jumlah persediaan barang telah mencapai batas pemesanan, maka pemesanan yang baru segera diadakan.
- Waktu pengadaan. Menunjukkan lamanya waktu pengadaan barang yang dipesan (sejak mulai pemesanan sampai datangnya barang pesanan baru). Biaya-biaya yang berpengaruh dalam kegiatan pengendalian persediaan adalah (Triono, 2016).
 - a. Biaya Pembelian adalah harga pembelian per unit item bila item tersebut diperoleh dari sumber eksternal atau biaya produksi per unit bila item tersebut diproduksi secara internal.
 - b. Biaya Pengadaan, dibagi menjadi dua:
 - Biaya pemesanan (*ordering cost*), semua pengeluaran yang timbul untuk mendatangkan barang dari luar.
 - Biaya pembuatan (*setup cost*), semua pengeluaran yang timbul dalam mempersiapkan produksi suatu barang.
 - c. Biaya Penyimpanan adalah semua pengeluaran yang timbul akibat menyimpan barang, yang meliputi biaya memiliki persediaan, biaya usang, biaya kerusakan, dan penyusutan barang, biaya kadaluarsa, biaya asuransi, dan biaya administrasi.
 - d. Biaya Kekurangan Persediaan adalah biaya atas kerugian karena terganggunya proses produksi dan kehilangan kesempatan untuk mendapatkan keuntungan akibat habisnya persediaan, biaya ini dapat diukur dari:

- Kuantitas yang tidak dapat dipenuhi, diukur dari keuntungan yang hilang karena tidak dapat memenuhi permintaan atau kerugian akibat terhentinya proses produksi.
- Waktu pemenuhan diukur berdasarkan waktu yang diperlukan untuk memenuhi gudang dengan satuan waktu.
- Biaya pengadaan darurat, yaitu biaya yang ditimbulkan akibat dilakukannya pengadaan darurat yang biasanya menimbulkan biaya yang lebih besar dari pengadaan normal.

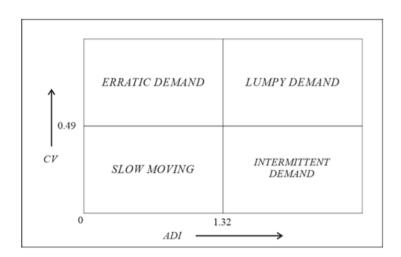
2.2 Analisis Pola Permintaan

Dalam pemilihan kebijakan persediaan yang cocok untuk diterapkan maka perlu dilakukan analisa ADI - CV yang bertujuan mengklasfikasikan suku cadang berdasarkan pola permintaan berdasarkan interval antar kemunculan permintaan dan keberagaman tingkat permintaan yang muncul (Adhi, Nashir & Efrata, 2015). Dari klasifikasi ini, dapat diperoleh empat informasi sekaligus yang dapat dijadikan pedoman dalam pemilihan kebijakan persediaan yang cocok untuk diterapkan pada jenis material yang diteliti. Berdasarkan interval kemunculan permintaan, suatu material dapat digolongkan menjadi continuous material maupun intermittent material. Continuous material kerap disebut pula sebagai fast moving material dan cocok diatur menggunakan kebijakan continuous review. Sedangkan intermittent material merupakan material yang mendapat permintaan dengan selang waktu antar permintaan cukup besar. Material jenis ini kerap disebut sebagai slow moving material atau dan cocok diatur menggunakan kebijakan Periodic Review. Untuk material yang mempunyai pola permintaan intermittent, selanjutnya dapat diklasifikasikan menjadi intermittent demand, erratic demand, lumpy demand, dan slow moving (Adhi, Nashir & Efrata, 2015).

- 1. *Intermittent demand*: Permintaan bersifat acak atau banyak periode tanpa permintaan.
- 2. *Erratic demand*: Permintaan yang berpola tidak menentu dan ditandai dengan tingginya variasi ukuran permintaan per periode.

- 3. *Lumpy demand*: Permintaan nol secara acak dalam jangka waktu yang panjang.
- 4. *Slow Moving*: Tidak mempunyai variasi besar antara kebutuhan dan kuantitas permintaan.

Klasifikasi material berdasarkan pola pemakaiannya dapat dilihat dari ADI (*Average Demand Interval*) dimana menunjukkan rentang ukuran permintaan ratarata pada periode tertentu dan CV (*Coefficient of Variations*). Nilai ADI dapat diperoleh dengan melakukan perhitungan berdasarkan Persamaan (1) berikut (Kurniasari, 2015).


$$ADI = \frac{\sum_{N}^{i=1} t_i}{N} \qquad (1)$$

Dan menghitung nilai CV dapat diperoleh dengan menggunakan Persamaan (2)

$$CV = \frac{\sqrt{\frac{\sum_{i=1}^{l} (\varepsilon_i - \varepsilon)^2}{N \, cv}}}{\varepsilon} \tag{2}$$

Dengan ε dapat diperoleh dengan Persamaan (3)

$$\varepsilon = \frac{\sum_{i=1}^{N} \varepsilon_i}{N} \tag{3}$$

Gambar 2. 1 Klasifikasi Pola Permintaan

Dengan diketahuinya nilai ADI dan CV, pemilihan kebijakan persediaan yang tepat untuk material suku cadang dapat dilakukan dengan makin mudah (Kurniasari, 2015).

2.3 Analisis ABC

Analisis ABC adalah metode pengklasifikasian barang berdasarkan peringkat nilai dari tertinggi hingga terendah, dan dibagi menjadi 3 kelompok besar yang disebut kelompok A, B dan C. Analisis ABC atau kadang-kadang disebut analisis Pareto atau aturan 80-20 datang pada abad kesembilan belas ketika Vilfredo Pareto menyatakan bahwa grup selalu memiliki persentasi terkecil (20%) yang bernilai atau memiliki dampak terbesar (80%). Dalam bentuk yang berbeda, ini adalah hasil yang banyak digunakan, dan dalam istilah pengendalian persediaan, itu berarti bahwa 20 persen dari item persediaan membutuhkan 80 persen dari perhatian, sedangkan 80 persen sisanya perlu 20 persen perhatian (Water, 2003).

Analisis ABC dimulai dengan mengambil setiap item dan mengalikan jumlah unit yang digunakan dalam satu tahun dengan biaya unit. Ini memberikan total penggunaan tahunan barang-barang dalam hal nilai. Biasanya, barang yang yang nilainya besar pemakaiannya banyak, sementara banyak barang murah digunakan sedikit. Jika kami mencantumkan item dalam urutan penggunaan tahunan berdasarkan nilai, item A berada di bagian atas daftar dan item C berada di bagian bawah (Water, 2003).

Klasifikasi ABC adalah sebagai berikut (Wahyuni, 2015).

- 1. Kelas A merupakan barang-barang yang memberikan nilai yang tinggi. Walaupun kelompok A ini hanya diwakili oleh 20% dari jumlah persediaan yang ada tetapi nilai yang diberikan adalah sebesar 80%.
- 2. Kelas B merupakan barang-barang yang memberikan nilai sedang. Kelompok persediaan kelas B ini diwakili oleh 30% dari jumlah persediaan dan nilai yang dihasilkan adalah sebesar 15%.
- 3. Kelas C merupakan barang-barang yang memberikan nilai yang rendah. Kelompok persediaan kelas C diwakili oleh 50% dari total persediaan yang ada dan nilai yang dihasilkan adalah sebesar 5%.

Analisis ABC dapat membantu manajemen dalam menentukan pengendalian yang tepat untuk masing-masing klasifikasi barang dan menentukan barang mana yang harus diprioritaskan untuk meningkatkan efisiensi dan mengurangi biaya. Analisis klasifikasi ABC memiliki beberapa manfaat, diantaranya sebagai berikut (Wahyuni, 2015).

- Membantu manajemen dalam menentukan tingkat persediaan yang efisien.
- Memberikan perhatian pada jenis persediaan utama yang dapat memberikan cost benefit yang besar bagi perusahaan Dapat memanfaatkan modal kerja (working capital) sebaik-baiknya sehingga dapat memacu pertumbuhan perusahaan.
- Sumber-sumber daya produksi dapat dimanfaatkan secara efisien yang pada akhirnya dapat meningkatkan produktifitas dan efisiensi fungsi-fungsi produksi.

2.4 Pengendalian Persediaan Suku Cadang

Menurut Silver (1998), sistem pengendalian persediaan dapat dibagi menjadi 2, yaitu sistem persediaan *deterministik* dan sistem persediaan *probabilistik*.

2.4.1 Pengendalian Persediaan Model Deterministik

Pengendalian persediaan bersifat *deterministik* merupakan sebuah model pengendalian dimana laju dari penggunaan persediaan bersifat konstan. Pengendalian persediaan model *deterministik* memiliki beberapa asumsi yang meliputi bahwa jumlah kebutuhan dari persediaan sudah diketahui, besar *lead time* sudah diketahui dan bersifat tetap serta jumlah biaya yang harus dikeluarkan juga bersifat tetap (Kurniasari, 2015).

Dasar penentuan untuk jumlah kuantitas pemesanan pada model ini menggunakan model EOQ. Pendekatannya adalah membangun model sistem persediaan yang ideal dan menghitung kuantitas pesanan tetap yang meminimalkan total biaya. Ukuran pesanan optimal ini yang disebut *Economic Order Quantity* (EOQ). Perhitungan EOQ adalah analisis yang paling penting dari pengedalian persediaan, dan bisa dibilang salah satu paling penting dalam bidang manajemen operasi (Waters, 2003). Perhitungan EOQ bisa dilakukan dengan rumus dibawah ini (Waters, 2003).

$$Qo = \sqrt{\frac{2 x RC x D}{HC}}$$
 (4)

RC = Reorder Cost / Biaya pemesanan kembali

D = Demand / Jumlah permintaan HC = Holding Cost / Biaya penyimpanan

2.4.2 Pengendalian Persediaan Model *Probabilistik*

Pada pengendalian persediaan *probabilistic* semua parameter yang terdiri dari *demand*, *lead time* dan harga bersifat variatif. Adanya variasi yang terdapat pada parameter persediaan ini menyebabkan adanya perbedaan pada tingkat persediaan sehingga diperlukan sebuah *safety stock*. Pemesanan dilakukan apabila jumlah persediaan produk yang dimiliki sudah mencapai *safety stock*, sehingga waktu pemesanan tidak pasti. Dalam melakukan pengendalian persediaan, penggunaan *safety stock* dilakukan untuk menghidari *shortage* atau kekurangan bahan baku atau *spare parts* yang nantinya akan berdampak pada terhambatnya kelangsungan proses produksi. Perhitungan *safety stock* dan *reorder level* bisa dilakukan dengan rumus dibawah ini (Waters, 2003).

2.4.2.1 Metode Periodic Review

Salah satu kebijakan persediaan dan metode penggendalian persediaan yang umum dipakai dan dapat memberikan performa terbaik dalam manajemen persediaan material suku cadang adalah kebijakan persediaan *periodic review* (R,s,S). Terdapat dua jenis sistem *review* pada *period review control*, yaitu (R,s) dan (R,s,S) (Octaviana, 2018). Sistem control (R,S) adalah sistem kontrol yang dalam melakukan kontrol persediaan dan pelaksanaan pemesanan akan dilakukan setiap R dengan jumlah pemesanan yang dilakukan harus mencapai titik maksimal atau titik S. Sistem kontrol (R,s,S) adalah sistem kontrol gabungan antara (s,S) dengan (R,S). R berfungsi sebagai periode kontrol yang dilakukan untuk kontrol persediaan, S sebagai titik maksimal jumlah persediaan dan s merupakan titik minimum jumlah persediaan.

Pemesanan akan dilakukan apabila posisi *inventory* berada pada titik minimum atau pada titik s, apabila pada saat *review* posisi *inventory* belum mencapai titik s maka tidak akan dilakukan pemesanan. Jika titik *inventory* berada pada titik maksimal atau pada titik S (Kurniasari, 2015).

2.4.2.2 Metode Continuous Review

Selain itu kita juga mengenal kebijakan *continuous review*, perbedaan keduanya hanyalah periode pengambilan keputusan untuk melakukan *replenishment*, apakah langsung melakukan pemesanan pada saat tingkat persediaan mencapai posisi *reooder point* atau menunggu waktu *review* (Adhi, Nashir & Efrata, 2015).

Sistem ini terbagi atas dua yaitu s,Q dan s,S. Sistem s,Q digunakan ketika pemesanan dilakukan sebesar jumlah pemesanan yang dibutuhkan Q, ketika tingkat persediaan telah menyentuh batas titik *reorder point* atau bahkan dibawahnya. Selanjutnya untuk sistem s,S memiliki ciri yang sama dengan sistem (s,Q), hanya saja pada sistem ini dapat dilakukan ketika pemesanan barang yang dibutuhkan tidak pada jumlah optimal pemesanan saja, namun hingga mencapai batas maksimum persediaan (S). Berikut perhitungan persediaan menggunakan sistem kontrol (s,S) (Octaviana, 2018).

$$SS = Z\alpha \sigma_D \sqrt{L} \qquad (7)$$

$$S = q' + r'$$
 (8)

$$q = \sqrt{\frac{2AD}{h}} \qquad (9)$$

$$\alpha = \frac{h \, q_0}{\text{Cu D}} \quad \dots \tag{10}$$

$$N = \int_{r_{i}}^{\infty} (x - r') f(x) dx = \sigma_{DL} [f(Z\alpha) - Z\alpha \varphi(Z\alpha)] \dots$$
 (11)

$$r_1' = DL + Z\alpha \sigma_D \sqrt{L}$$
 (12)

q = Kuantitas pemesanan

D = Total permintaan

A = Biaya pemesanan

L = Lead Time

h = Holding cost

Cu = *Shortage Cost*

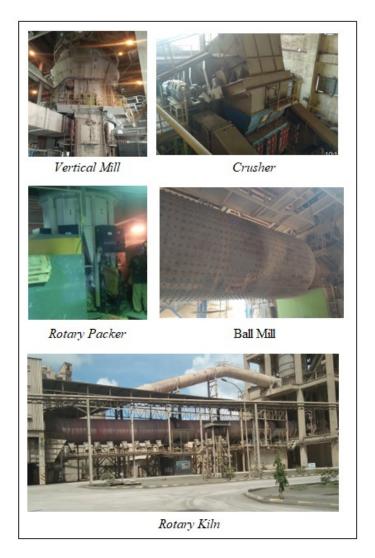
S = Maksimum persediaan

r' = Titik pemesanan kembali (s)

 σ_D = Standar deviasi *Demand*

B = Biaya shortage

SS = Safety Stock


2.5 Jenis Spare Part di Industri Semen

Jenis peralatan produksi di sebuah pabrik semen sangat beragam macamnya, dan bisa dikatakan semua jenis peralatan terdapat disana. Secara umum ada 5 peralatan utama dalam suatu proses produksi semen yang umum digunakan oleh produsen semen di Indonesia berdasarkan jenis atau *spesifikasi* peralatannya yaitu: *crusher, ball mill, rotary kiln, vertical mill rotary packer*. Peralatan-peralatan utama ini beroperasi dengan begitu banyak *equipment* kecil/suku cadang yang menyusun peralatan tersebut.

Berdasarkan jenis suku cadangnya dibagi menjadi 3 suku cadang utama yaitu:


- 1. Suku Cadang Mesin
- 2. Suku Cadang Listrik
- 3. Suku Cadang Instrumentasi

Untuk satu peralatan utama bisa memiliki begitu banyak suku cadang diatas sebagai penyusun peralatannya. Misalnya untuk peralatan utama *Ball Mill* maka peralatan ini memiliki suku cadang mesin, listik dan instrumentasi sebagai penyusun peralatannya. Begitupun dengan peralatan utama lainnya yang dapat memiliki ratusan suku cadang yang diperlukan agar peralatan tersebut dapat beroperasi dengan baik.

Gambar 2. 2 Peralatan Utama Pabrik Semen

Namun selain ke-5 *equipment* utama tersebut ada juga peralatan-peralatan pendukung seperti alat transport (*belt conveyor, bucket elevator, screw conveyor, air slide, screw pump*), *compress air, reclaimer, fan*, alat angkut, alat angkat, dan lain-lain.

Gambar 2. 3 Beberapa Peralatan Pendukung dipabrik Semen

Untuk menjaga kehandalan pengoperasian peralatan-peralatan utama dan pendukung diatas maka ketersediaan s*pare parts* harus terus terjaga. Adapun jenis *spare part* yang dimaksud adalah sebagai berikut:

- > Spare parts Listrik, Instrumen & General Use
- > Spare parts Mesin
- > Spare parts Konstruksi
- > Spare parts untuk Alat Berat

Gambar 2. 4 Contoh Spare Parts Listrik, Instrumen & General Use

Tabel 2. 1 Daftar Spare Part Listrik, Instrumentasi & General Use

Item	Deskripsi	Nilai (Rp)
1	Flowmeter, Electric, 0-500 L/Hr	91.,815,675
2	Drive, Freq: ATV71HD55N	121,121,000
3	Adapter	7,447,000
4	Brush Holder; 40190	25,200,000
5	Transmitter, Pressure; 1766 078	145,000
• • • •		
17,340	Capacitor: FPX86P0305J; 2500V	1,083,000
17,341	Bearing Ball; 7312 BEP	1,089,000
17,342	Motor, Electric	2,217,500
17,343	Bolt, CSK, HD: M30; 155MM	130,000

Sumber SAP PT. X



Gambar 2. 5 Contoh Spare Parts Mesin

Tabel 2. 2 Daftar Spare Parts Mesin

Item	Deskripsi	Nilai (Rp)
1	Gear Stage III; 14088088	147,500,000
2	Coupling Magnetic; 251VOM289	121,000,000
3	Guide Roller	1,200,000
4	Divider Gate, E4	4,800,000
5	Coupling, N-EUPEX A; 610 Size	71,148,000
• • • •		•••••
14.,81	Idler: 140MM;720MM;30/2MM	304,985
14,782	Lagging; Segmented: 900MM	43,655,861
14,783	Drum Tension: 710-600 LA 60	267,211,177
14,784	Rod As; PN: 4T6838	40,301,424
14,785	Seal Kit; PN: 8C5048	2,599,488

Sumber: SAP PT. X

Gambar 2. 6 Contoh Spare parts Konstruksi & Alat Berat

Tabel 2. 3 Daftar Spare Parts Konstruksi

Item	Deskripsi	Nilai (Rp)
1	Bar Angle: 50MM;5MM;6MM	225,000
2	Beam, IWF: 500MM;200MM;12MM;19MM;12MM	17,600,000
3	Beam, UNP:100MM;50MM;5MM;6000MM	1,150,000
		• • • • • •
49	Cat, Avian: 2.5KG	245,000
50	Engsel, Pintu Goyang	8,500
51	Hinge, Sendok: 2-1/2IN	4.050

Sumber: SAP PT.X

Tabel 2. 4 Daftar Spare Parts Alat Berat

Item	Deskripsi	Nilai (Rp)
1	Flap Tyre: 1000-20	115,000
2	V-Belt: 71-64-74	19,000

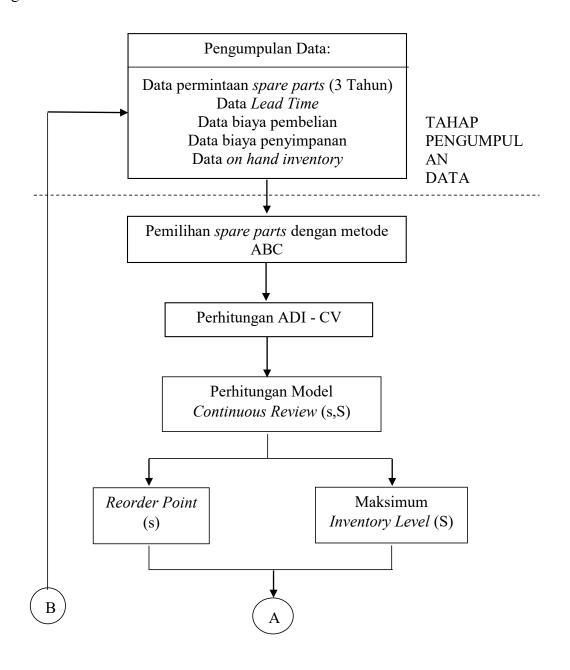
3	Spring: ME 7022 21	35,000
		•••••
1,137	Seal Oil: 90043-1124	10,000
1,138	Piston, brake, Assy Rear LH: 51600LH	881,250

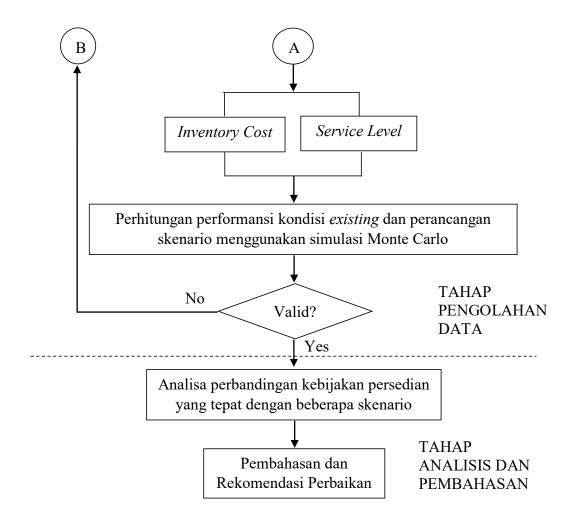
Sumber: SAP PT.X

2.6 Penelitian Terdahulu

Penelitian ini bertujuan untuk menyelidiki dan menganalisa persediaan *spare part* listrik dan instrumentasi di industri semen dengan metode yang sesuai. Banyak penelitian terkait industri semen membahas tentang pemeliharaan. Penelitian yang dilakukan oleh Graisa & Al-Habaibeh (2011), mempelajari tantangan produksi saat ini yang dihadapi industri semen Libya dan kebutuhan akan strategi Pemeliharaan Produktif Total Inovatif (TPM). Lainnya seperti Santarisi & Almomay (2005), telah melakukan penelitian untuk pemodelan matematika tingkat keausan bagian yang tidak dapat diperbaiki dan strategi penggantiannya (studi kasus: liner pabrik semen). Penelitian lain diluar pemeliharaan seperti yang dilakukan oleh Vanany, I (2005), telah melakukan studi tentang bagaimana aplikasi pemetaan aliran nilai dapat mengidentifikasi *waste* pada industri kemasan semen.

Ada juga studi yang membahas *spare part* namun bukan di industri semen seperti studi (Mukherjee dan Dey, 2008), mengkaji literatur yang relevan saat ini dan mengembangkan kerangka kerja konseptual (sistem pendukung keputusan kelompok terpadu) untuk memilih opsi pergudangan yang paling efektif untuk industri proses menggunakan proses hirarki analitik (AHP). Penelitian yang membahas tentang manajemen suku cadang di industri semen tidak terlalu banyak ditemukan. Dan juga belum ada penelitian terkait dengan jenis listrik dan instrumentasi suku cadang pada industri semen yang telah terjadi *stock out* seperti yang dijelaskan sebelumnya.


Beberapa penelitian telah dilakukan terkait topik pengendalian persediaan namun bukan di industri semen. Penelitian tugas akhir Octaviana (2018), juga membahas topik mengenai kebijakan persediaan *spare parts* (studi kasus: pabrik perakitan sepeda motor). Metode yang digunakan untuk memperoleh nilai persediaan yang optimal sehingga dapat menurunkan biaya persediaan adalah metode *economic order quantity* (EOQ) dengan sistem kontrol pengendalian


persediaan menggunakan continuous review (S,s). Penelitian lain mengenai pengendalian persediaan oleh Mahardika, Ardiansyah & Yunus (2015), dengan judul Pengendalian Persediaan untuk Mengurangi Biaya Total Persediaan dengan Pendekatan Metode Periodic Review Power Approximation pada Suku Cadang Consumable (studi kasus: job pertamina Talisman Jambi Merang). Penelitian ini melibatkan spare parts consumable. Adapun kebijakan yang diambil dalam penelitian ini adalah periodic review (R,s,S) dengan pendekatan Power Approximimation untuk menekan biaya total persediaan dan meningkatkan service level.

Selanjutnya dalam penelitian Kurniyah (2009), yang membahas pengendalian persediaan material consumable pesawat B737 di PT. GMF Aero Asia dimana kondisi saat itu persediaan di gudang cukup tinggi/over stock. Akan tetapi di sisi lain, terdapat material yang tidak memiliki persediaan di gudang. Perhitungan pengendalian persediaan material menggunakan metode existing perusahaan (min-max level), metode (s,Q), dan metode (R,s,S). Dari keseluruhan material yang ada, terlebih dahulu dilakukan pengelompokan menjadi 3 kelas berdasarkan tingkat kekritisannya. Sehingga didapatkan metode pengendalian persediaan yang sesuai untuk tiap kelas material. Penelitian Kurniasari (2015), mengangkat judul Analisis Pengendalian Persediaan Bahan Baku Menggunakan Metode Continuous Review (s,S) Dengan Pertimbangan Component Commonality studi kasus di PT. Petrokimia Gresik. Dalam analisa awalnya menyebutkan masih terdapat overcapacity dan stock out dalam pengendalian persediaan existing. Pada penelitian ini dilakukan analisis terhadap proses pengendalian persediaan menggunakan continouos review dengan pertimbangan component commonality pada bahan baku penyusun pupuk.

BAB 3
METODOLOGI PENELITIAN

Alur penelitian ini digambarkan pada model konseptual yang tercantum pada gambar 3.1.

Gambar 3. 1 Flow Chart Alur Penelitian

3.1 Tahap Pengumpulan Data

Pengumpulan data pada penelitian ini dilakukan menggunakan data yang tercatat di sistem SAP yang digunakan oleh PT. X. Adapun data-data yang dikumpulan yaitu data pemakaian *spare part* selama kurung waktu tiga tahun yaitu dari Januari 2017 sampai September 2019. Dalam pengumpulan data terkait dengan pemakaian, dilakukan peninjauan terhadap historis yang dimiliki perusahaan. Kemudian diambil juga data *lead time* yang merupakan lama proses pemesanan dari masing-masing *spare part* mulai dari terbitnya *purchase request* sampai barang tersebut tiba di gudang.

Kemudian juga diambil data berapa biaya yang dikeluarkan untuk melakukan pemesanan barang, dan biaya pembelian yaitu harga *spare part* tersebut

sesuai dengan *history* pembelian terakhir. Kemudian juga diambil data terkait biaya simpan digudang dari masing-masing *spare part*. Dan yang terakhir adalah biaya *shortage* dimana ini merupakan biaya yang harus ditanggung oleh perusahaan akibat produksi terhenti akibat ketidiadaan *spare part* dari suatu peralatan di lini produksi.

3.2 Tahap Pengolahan Data

Tahap awal dalam penelitian ini adalah mengklasifikasikan *spare parts* dengan menggunakan analisis ABC untuk masing-masing jenis *electical* dan jenis *instrumentation*. Pada kelas A (20% dari jumlah material), kelas B (30% dari jumlah material). Dan kelas C yang mewakili 50% dari jumlah material. Kemudian selanjutnya akan dipilih *spare part* pada kelas A baik itu di jenis *electrical* maupun di jenis *instrumentation*. Kemudian Tahap berikutnya adalah mengklasifikasikan *spare parts* tersebut dengan berdasarkan karakteristik datangnya permintaan menggunakan analisis ADI - CV.

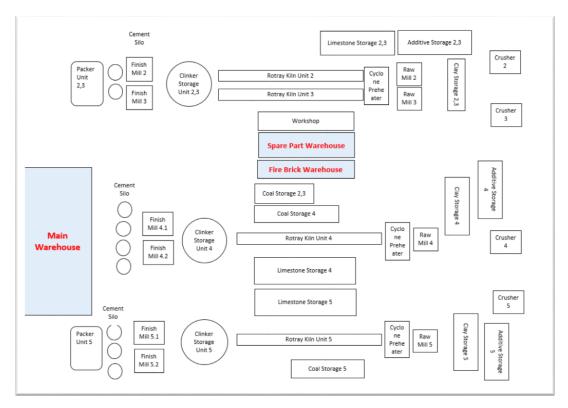
Perhitungan parameter dilakukan dengan menghitung parameter yang akan menjadi inputan dalam simulasi Monter Carlo. Dalam penelitian ini akan digunakan perhitungan parameter yaitu *continuous review* (s,S). Simulasi Monte Carlo adalah simulasi *probabilistik* yang digunakan untuk memperoleh pendekatan solusi dari suatu masalah dengan *sampling* dari proses yang di *generate* secara *random* (Kharisma, 2013). Perhitungan performansi dilakukan untuk membandingkan kondisi *existing* yang ada diperusahaan dengan kondisi perbaikan.

3.3 Tahap Analisis dan Pembahasan

Pada tahap ini akan dilakukan analisis terhadap hasil dari pengolahan data pada yang telah dilakukan pada tahap sebelumnya dan juga penarikan kesimpulan. Analisis yang dilakukan yaitu analisis dari kebijakan persediaan, analisis kebijakan perusahaan kondisi eksisting dan rekomendasi perbaikan dan analisis pengujian sensitivitas dan terakhir adalah implilkasi praktis dari penelitian ini.

(Halaman ini sengaja dikosongkan)

BAB 4


PENGUMPULAN DAN PENGOLAHAN DATA

Pada bab ini akan dijelaskan mengenai pengumpulan dan pengolahan data yang terdiri dari data pemakaian spare parts electrical & instrumentation, mengklasifikasi spare parts dengan metode ABC, perhitungan biaya persediaan dengan metode continuous review (s,S), perhitungan total cost, dan perhitungan service level.

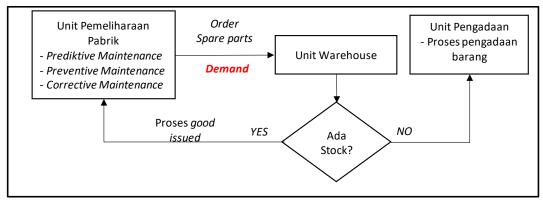
4.1 Profil Perusahaan

PT X merupakan perusahaan yang bergerak di bidang industri semen dan merupakan salah satu produsen semen terbesar di Indonesia yang menempati lahan seluas 715 hektar. Perseroan yang memiliki kapasitas terpasang 5,980,000 ton semen per tahun ini, mempunyai empat unit pabrik, yaitu Pabrik Unit II, Pabrik Unit III, Pabrik Unit IV dan Pabrik Unit V. Keempat unit pabrik tersebut menggunakan proses kering dengan kapasitas masing-masing 590,000 ton semen pertahun untuk Unit II dan III, 2,300,000 ton semen per tahun untuk Unit IV serta 2,500,000 ton semen untuk Unit V.

Dalam memproduksi semen, ada 4 equipment utama yang digunakan pada industri semen termasuk di PT. X, yaitu *Crusher, Grinding Mill (Raw Mill/Finish Mill/Coal Mill), Rotary Kiln, Packing Machine*. Selain peralatan-peralatan utama tersebut, terdapat juga peralatan-peralatan pendukung seperti alat transport material (belt conveyor, screw conveyor, bucket elevator, pan conveyor, screw conveyor, air slide, drag chain), alat penangkap debu (dust collector, Electrostatic Precipitator), alat angkut, alat angkat, cooler, preheater tower, reclaimer, dll. Di beberapa pabrik semen juga memiliki power plant sendiri untuk mensuply kebutuhan listriknya, PT. X sendiri memiliki 4 unit PLTU untuk menjamin ketersediaan listrik untuk operasional pabriknya.

Gambar 4. 1 Dena Lokasi Warehouse & Peralatan PT. X

Dalam pengoperasian peralatan utama dan pendukung tersebut diatas sangat membutuhkan ketersediaan material *spare part* yang harus selalu siap jika dibutuhkan baik itu untuk kegiatan *corrective maintenance* ataupun untuk kegiatan *preventive maintenance*. Berdasarkan data yang ada di SAP 51,047 jenis material yang tercatat. Adapun material tersebut dan penggunaannya dapat dilihat pada tabel 4.1 dibawah.


Tabel 4. 1 Spare Part Peralatan Utama PT. X

No	Spare Part	Nomor Material		
1	Crusher			
	Chain RLR	404-001202		
	Axle Hammer	604-000031		
	Brake Lining	604-000182		
	Demoliton Hammer	315-001494		
	Shaft Hammer	316-000776		
2	Grinding Mill			
	Grinding Ball	116-000007		

	Plate Liner	310-000171
	Diafragma	309-000014
	Bolt Liner	311-000054
		•••••
	Dam Ring	309-000225
3	Rotary Kiln	
	Fire Brick Allumina	117-000002
	Brick Spinel	117-000020
	Anchor Plate	118-000003
	Shaft Supporting	316-000778
		•••••
	Anchor Spiral	118-000050
4	Packing Machine	
	Brange	318-000025
	Solenoid Valve, MC 07510	613-000937
	Stop Buffer	301-001808
	Encoder	318-000395
		•••••
	Haver Roto Packer	318-000540

Suku cadang tersebut diatas ditempatkan di 3 unit gudang yang dimiliki oleh perusahaan seperti yang terlihat di gambar 4.1. Dalam proses bisnisnya suku cadang yang ada di gudang dikendalikan oleh unit kerja warehouse. Setiap unit dalam hal ini unit kerja pemeliharaan pabrik yang memerlukan suku cadang, terlebih dahulu membuat order reservasi melalui sistem SAP, jika suku cadang tersebut memiliki stok di gudang maka unit warehouse akan melakukan issued barang tersebut, namun jika teryata suku cadang yang dimaksud tidak ada maka, akan dilakukan proses pengadaan terlebih dahulu oleh unit pengendali dan pengadaan barang.

Pada penelitian ini, demand yang dimaksud adalah ketika unit pemeliharaan pabrik atau unit lain yang memerlukan suku cadang membuat order disistem. Order yang dilakukan oleh unit pemeliharaan diperuntukan untuk kegiatan preventive maintenance, predictive maintenance, dan juga untuk corrective maintenance. Khusus untuk kegiatan corrective maintenance dimana pada saat di buat order spare part peralatan sudah mengalami kerusakan dan tidak beroperasi sehingga kecepatan waktu perbaikan sangat ditentukan oleh ketersediaan spare part di gudang.

Gambar 4. 2 Proses Permintaan Spare Part

4.2 Data Pengunaan Spare Parts Electrical & Instrumentation

Berikut merupakan spare parts electrical & instrumentation termasuk didalamnya spare part kategori consumable part. Data penggunanaan spare parts electrical & instrumentation selama 33 bulan (Januari 2017 – September 2019). Selanjutnya data ini menjadi input bagi penentu kebijakan pengendalian persediaan dengan menggunakan metode perhitungan continuous review (s,S). Data penggunaan masing-masing spare parts electrical dan instrumentation dapat dilihat pada tabel berikut ini.

Tabel 4. 2 Data Penggunaan Jenis Electrical Spare Part

No	Nomor Material	Kategori	Jumlah	Pemakaian di Alat	Umur Alat (Tahun)
1	602-000197	spare parts	1	Raw Mill 3	34
2	602-002875	spare parts	1000	Finish Mill 5	6
3	602-002970	spare parts	2	Raw Mill 3	34
4	602-004055	spare parts	1	Stl.Pond	2
5	602-004059	spare parts	1	Finish Mill 5	6
6	603-000222	spare parts	1	BTG	23
7	603-000381	spare parts	3	BTG	23
8	604-000012	spare parts	120	BTG	23
9	604-000026	spare parts	17	Finish Mill 4	23
10	604-000172	spare parts	1	Finish Mill 3	34
				•••••	•••
489	627-000118	consumable	5	Coal Mill 4	4
490	627-000127	consumable	18	Crusher 2	39
					•••

795	SI00004019	spare parts	30	Packer Bks	23
-----	------------	-------------	----	------------	----

Tabel 4. 3 Data Penggunaan Jenis Instrumentation Spare Part

No	Nomor Material	Kategori	Jumlah	Pemakaian di Alat	Umur Alat (Tahun)
1	601-000061	spare parts	1	Coal Mill 4	4
2	602-002061	spare parts	10	Kiln 4	23
3	604-000229	spare parts	70	Kiln 4	23
4	604-000402	spare parts	1	BTG	23
5	604-001696	spare parts	2	Raw Mill 5	6
6	604-001748	spare parts	2	Kiln 5	6
7	609-000108	spare parts	1500	Kiln 5	6
8	609-000113	spare parts	11	Kiln 5	6
9	609-000114	spare parts	8	PP Bks	23
10	613-000875	spare parts	2	Kiln 4	23
235	632-001712	spare parts	1	Raw Mill 4	23
236	632-001731	spare parts	1	Kiln 4	23

4.3 Klasifikasi ABC Electrical dan Instrumentation Spare Parts

Pada bab ini akan dilakukan pengklasifikasian *spare part* menggunakan analisis ABC. Hal ini dilakukan untuk menentukan *spare part* yang akan dipilih untuk kemudian untuk kemudian dilakukan perhitungan pada penelitian ini. *Spare part* yang dipilih yaitu 5 suku cadang *electrical* yang masuk dalam kelas A dan 5 suku cadang *instrumentation* yang masuk kelas A, baik itu dari kategori *consumable parts* dan *non consumable/spare parts*. Sehingga nantinya akan didapatkan 10 item *spare parts* dari *electrical* dan *instrumentation*.

Tabel 4. 4 Hasil Klasifikasi ABC pada Jenis Electrical Spare Part

No	No. Matl	Kategori	Unit Price (Rp)	Total Price (Rp)	% Nilai	% Kum	Kls
1	631- 000490	spare parts	413,820	2,409,260.040	8.13	8.1	A
2	602- 001378	spare parts	380,000	917,700,000	3.10	11.2	A
3	626- 000657	spare parts	174,269,750	871,348,750	2.94	14.2	A

4	626- 006069	spare parts	96.757.500	580.545.000	1.96	16.1	A
5	631- 003917	spare parts	435,953	548,864,827	1.85	18.0	A
							• • • •
160	626- 008054	spare parts	3,400,000	37,400,000	0.13	83.2	В
161	626- 000056	spare parts	1,150,000	36,800,000	0.12	83.3	В
162	610- 000050	spare parts	90,000	36,540,000	0.12	83.5	В
163	625- 000292	spare parts	18,130,000	36,260,000	0.12	83.6	В
164	619- 000060	spare parts	123,578	36,208,354	0.12	83.7	В
791	631- 001180	spare parts	1,063	1,063	0.00	100.0	С
792	631- 002971	spare parts	500	1,000	0.00	100.0	C
793	631- 002969	spare parts	50	250	0.00	100.0	C
794	631- 002962	spare parts	50	150	0.00	100.0	C
795	631- 000797	spare parts	100	100	0.00	100.0	C

Tabel 4. 5 Hasil klasifikasi ABC pada Jenis Instrumentation Spare Part

No	No. Matl	Kategor i	Unit Price (Rp)	Total Price (Rp)	% Nilai	% Kum	Kl s
1	613- 001346	spare parts	2,664,816	1,028,618,976	11.53	11.5	A
2	632- 000118	spare parts	72,750,000	582,000,000	6.52	18.0	A
3	613- 000956	spare parts	1,687,257	543,296,754	6.09	24.1	A
4	632- 001704	spare parts	12.513.000	425.442.000	4.77	28.9	A
5	626- 008560	spare parts	21.019.230	420.384.600	4.71	33.6	A
48	626- 005385	spare parts	13,662,000	40,986,000	0.46	78.5	В

49	629- 000044	spare parts	6,529,234	39,175,404	0.44	78.9	В
50	626- 000049	spare parts	19,558,650	39,117,300	0.44	79.4	В
51	626- 007195	spare parts	2,550,000	38,250,000	0.43	79.8	В
52	626- 004584	spare parts	7,500,000	37,500,000	0.42	80.2	В
			• • • • • • • • • • • • • • • • • • • •		• • • • •		
232	626- 003566	spare parts	500	150,000	0.00	100.0	С
233	626- 005422	spare parts	132,000	132,000	0.00	100.0	С
234	626- 003565	spare parts	500	100,000	0.00	100.0	С
235	626- 003561	spare parts	295	5,605	0.00	100.0	С
236	626- 001935	spare parts	210	420	0.00	100.0	С

Dari klasifikasi diatas berikut adalah *spare part* terpilih, yaitu yang masuk dalam kelas A pada masing-masing kelas di jenis *electrical* dan *instrumentation spare part*.

Tabel 4. 6 Spare Part Jenis Electrical yang Masuk Kelas A

No	No. Material	Kategori	Pemakaian di Alat	Umur Alat (Tahun)	Kls
1	631-000490	spare parts	Finish Mill 2	39	A
2	602-001378	spare parts	Finish Mill 2	39	A
3	626-000657	spare parts	Packer 2	39	A
4	626-006069	spare parts	Finish Mill 4	23	A
5	631-003917	spare parts	Coal Mill 4	4	Α
6	626-006973	spare parts	Coal Mill 5	6	Α
7	625-000294	spare parts	Ls. Crusher 4	23	Α
8	626-008908	spare parts	Finish Mill 5	6	Α
9	626-008649	spare parts	CCR 3	34	A
• • • •					
13	627-000279	consumable	Raw Mill 5	6	A
158	626-002472	spare parts	PP Bks	23	A
159	626-006007	spare parts	PP Bks	23	A

Tabel 4. 7 Spare Part Jenis Instrumentation yang Masuk kelas A

No	No. Material	Kategori	Pemakaian di Alat	Umur Alat (Tahun)	Kls
1	613-001346	spare parts	Finish Mill 5	6	A
2	632-000118	spare parts	Finish Mill 4	23	A
3	613-000956	spare parts	Kiln 3	34	A
4	632-001704	spare parts	PP Bks	23	A
5	626-008560	spare parts	Kiln 3	34	A
6	626-007992	spare parts	Kiln 3	34	A
7	632-001547	spare parts	BTG	23	A
8	609-000119	spare parts	BTG	23	A
9	632-000545	spare parts	Finish Mill 2	39	A
10	626-008565	spare parts	BTG	23	A
				•••	
46	626-001920	spare parts	Kiln 4	23	A
47	626-000210	spare parts	Kiln 5	6	A

4.4 Data Penggunaan *Spare Part* Terpilih Periode 2015 – 2019

Berikutnya akan dipilih beberapa sampel *spare part* dari kelas A diatas baik itu dari jenis *spare parts electrical* maupun dari jenis *spare parts instrumentation* untuk dilakukan perhitungan pengendalian persediaannya. Berikut merupakan data penggunanaan sampel *spare parts* yang terpilih. Data ini diambil dari historis pemakaian yang tercatat di sistem SAP yang digunakan oleh perusahaan.

Spare part yang dipilih sebagai sample adalah seperti pada tabel 4.7 dibawah. Dilengkapi dengan data pemakaian selama periode 2015 – 2019.

Tabel 4. 8 Data Penggunaan Spare Part Periode Tahun 2015 – 2019.

N	No.	Kate		Periode					Total			
0	Mat'l	gori	1	2	3	4	5	6	•••	59	60	Total
1	627-0 00279	E - C	0	0	0	0	0	0	•••	0	40	984
2	631-0 00490	E - S	0	0	0	350	0	0		0	0	10832
3	602-0 01378	E - S	200	0	0	300	0	0		250	50	4300

4	628-0 00239	E - S	0	0	0	0	0	0	 0	0	716
5	631-0 00542	E - S	0	0	0	200	0	0	 0	0	18102
6	632-0 01172	I - S	0	0	0	0	0	6	 0	10	320
7	626-0 07992	I - S	0	0	0	0	20	0	 0	0	106
8	632-0 01184	I - S	0	0	0	0	0	0	 0	6	131
9	632-0 00118	I - S	0	0	0	3	0	0	 0	1	16
10	626-0 07282	I - S	0	0	0	0	0	0	 0	0	115

4.5 Perhitungan ADI – CV

Pada sub-bab ini akan dilakukan pengklasifikasian sampel *spare part* yang terpilih berdasarkan nilai ADI – CV, hasil yang diperoleh dari perhitungan ADI – CV ini akan mentukan kebijakan perhitungan persediaan apakah dapat menggunakan metode *continuous review* (s,S) atau tidak.

Sebagai contoh perhitungan, akan digunakan *spare part* 631-000490 Perhitungan ADI dapat dicari menggunakan persamaan 1.

$$ADI = \frac{\sum_{N}^{i=1} t_i}{N}$$

$$ADI = \frac{60}{10} = 6$$

Sedangkan nilai CV dapat dicari dengan menggunakan persamaan 2 dan 3 sebagaimana berikut.

$$\varepsilon = \frac{\sum_{i=1}^{N} \varepsilon_i}{Ncv}$$

$$\varepsilon = \frac{10832}{60} = 180.53$$

$$CV = \frac{\sqrt{\sum_{i=1}^{l} (\varepsilon_i - \varepsilon)^2}{Ncv}}{\varepsilon}$$

$$CV = \frac{874,44}{180.53} = 4.84$$

Berikut rekapitulasi hasil dari perhitungan ADI dan CV yang kemudian dilakukan pemilihan metode kebijakan persediaan pada sampel *spare parts Electrical & Instrumentation* terpilih.

Tabel 4. 9 Pola Permintaan Spare Part dengan Analisis ADI – CV

No	Nomor Material	Nilai ADI	Nilai CV	Pola Permintaan
1	627-000279	4.29	2.27	Lumpy Demand
2	631-000490	6.67	4.84	Lumpy Demand
3	602-001378	3.16	1.71	Lumpy Demand
4	628-000239	5.00	2.32	Lumpy Demand
5	631-000542	2.07	1.59	Lumpy Demand
6	632-001172	2.31	1.49	Lumpy Demand
7	626-007992	3.75	2.89	Lumpy Demand
8	632-001184	2.73	2.00	Lumpy Demand
9	632-000118	6.67	2.47	Lumpy Demand
10	626-007282	6.00	2.99	Lumpy Demand

Dari tabel diatas dapat dilihat bahwa pola permintaan dari keseluruhan sample *spare parts* yang terpilih memiliki pola permintaan *lumpy demand*. Dimana untuk pola permintaan ini cocoknya menggunakan metode pengendalian persediaan model *probabilistic (continuous review)*.

4.6 Data Harga dan Lead Time Spare Parts

Berikut merupakan data harga dan *lead time* pemesanan *spare part*. Data harga *spare parts* digunakan untuk menghitung biaya simpan dan biaya pemesanan. Begitu juga pada data harga *spare parts* dan *lead time* pemesanan ini yang nantinya akan digunakan sebagai *input* dalam perhitungan parameter kebijakan persediaan dan dilakukan simulasi menggunakan *monte carlo* pada pengolahan selanjutnya. Adapun data harga dan *lead time* pemesanan *spare parts* dapat dilihat sebagai berikut.

Tabel 4. 10 Data Harga dan Lead Time Spare Part Terpilih

No	Nomor Material	Harga Satuan (Rp.)	Lead Time (Hari)
1	627-000279	522,958	68

2	631-000490	413,820	210
3	602-001378	380,000	137
4	628-000239	190,000	68
5	631-000542	9,000	75
6	632-001172	550,000	123
7	626-007992	5,471,980	170
8	632-001184	1,057,000	109
9	632-000118	72,750,000	294
10	626-007282	1,788,211	185

4.7 Perhitungan Biaya Persediaan Spare Part

Sebelum mendapatkan biaya persediaan, perlu dihitung terlebih dahulu biaya penyusunan, diantaranya yaitu terdapat biaya pemesanan, biaya penyimpanan, biaya kekurangan persediaan. Ketiga jenis biaya ini selanjutnya akan digunakan dalam perhitungan kebijakan persediaan dengan metode pengendalian persediaan *continuous review*.

4.7.1 Biaya Pemesanan

Biaya pemesanan (ordering cost) merupakan biaya yang dikeluarkan untuk sekali pemesanan spare parts electrical & instrumentation. Biaya pemesanan diperoleh dari biaya aset yang digunakan pada unit pengadaan barang, gaji pegawai, biaya listrik, biaya telepon, dan administrasi. Berikut rincian biaya yang digunakan dalam perhitungan biaya pemesanan.

Tabel 4. 11 Rincian Biaya Jumlah Aset pada Unit Kerja Pengadaaan Barang

No	Aset	Harga Satuan (Rp.)	Kuantitas (Ea)	Total Harga (Rp.)
1	Dekstop Hp	12,000,000	7	84,000,000
2	Kursi	500,000	7	3,500,000
3	Meja	2,350,000	7	16,450,000
4	Printer	2,000,000	2	4,000,000
	To	107,950,000		

Selanjutnya dihitung biaya depresiasi dari aset yang dimiliki oleh Unit Pengadaan Barang pada PT. X.

Tabel 4. 12 Perhitungan Depresiasi Aset Unit Pengadaan Barang

No	Aset	Total Harga (Rp.)	Umur Pakai (Tahun)	Depresiasi Per Bulan (Rp.)
1	Dekstop Hp	84,000,000	10	700,000
2	Kursi	3,500,000	5	58,333
3	Meja	16,450,000	5	274,167
4	Printer	4,000,000	5	66,667
	7	1,099,167		

Selain itu, terdapat pula di dalamnya gaji pekerja yang bekerja di Unit Pengadaan Barang.

Tabel 4. 13 Data Gaji Pekerja pada Unit Pengadaan Barang

No	Pekerja	Jumlah	Gaji (Rp.)	Total Gaji (Rp.)
1	Manager	1	19,000,000	19,000,000
2	Staff Pengadaaan (es. 4)	3	11,000,000	33,000,000
3	Staff Pengadaaan (es. 5)	4	8,000,000	32,000,000
	Total	84,000,000		

Terakhir, berikut disertakan rata-rata biaya per bulan yang digunakan untuk membayar telepon, listrik, internet, dan administrasi.

Tabel 4. 14 Perhitungan Biaya Telepon, Listrik, Internet, dan Administrasi

No	Komponen	Total Biaya per Bulan (Rp.)
1	Telepon	2,500,000
2	Listrik	1,000,000
3	Internet	1,000,000
4	Administrasi	1,000,000
	Total	5,500,000

Sehingga, rekapitulasi biaya pemesanan setiap item dapat dilihat pada tabel berikut ini, yang mana didapatkan rata-rata jumlah pemesanan (*purchase order*) setiap bulannya sebesar 128 kali

Tabel 4. 15 Rekapitulasi Biaya Pemesanan Tiap Item

No	Komponen	Total Biaya per Bulan (Rp.)
1	Aset	1,099,167
2	Pekerja	84,000,000
3	Telepon, Listrik, Internet & Administrasi	5,500,000
	Total biaya per bulan	90,599,167
	Jumlah purchase order per bulan	128
	Biaya pemesanan	710,582

4.7.2 Biaya Penyimpanan

Biaya penyimpanan (*Holding Cost*) merupakan biaya untuk memegang satu unit item dalam persediaan selama satu periode waktu. Dalam penelitian ini akan akan diperhitungkan melalui depresiasi aset dari fasilitas pendukung yang digunakan untuk menunjang persediaan, beserta sumber daya manusia yang mengelola persediaan tersebut.

Tabel 4. 16 Data Aset Perusahaan Untuk Persediaan Spare Part Electrical & Instrumentation

No	Pekerja	Kuantitas	Total Harga (Rp.)
1	Gudang spare parts utama	4,500 M2	4,950,000,000
2	Gudang spare parts tambahan	1,000 M2	1,100,000,000
3	Gudang spare parts Tonasa 2, 3	1,000 M2	1,320,000,000
4	Forklift	1 Unit	522,000,000
5	Overhead Crane 10T	1 Unit	450,000,000
	Total Aset	8,342,000,000	

Selain itu, terdapat perhitungan gaji karyawan gudang *spare part electrical* & *instrumentasi* yang dapat dilihat pada tabel berikut.

Tabel 4. 17 Data Gaji Pekerja pada Unit Gudang

No	Pekerja	Jumlah	Gaji (Rp.)	Total Gaji (Rp.)
1	Manager	1	19,000,000	19,000,000
2	Staff Pengadaaan (es. 4)	3	11,000,000	33,000,000
3	Staff Pengadaaan (es. 5)	5	8,000,000	40,000,000

Total biaya gaji	92,000,000
Biaya gaji per item (1.055 item)	87,204

Adapun metode depresiasi yang digunakan ialah metode garis lurus (*straight-line method*), depresiasi besarnya sama untuk setiap tahun masa manfaat asset. Pada metode garis lurus, untuk menentukan beban depresiasi setiap tahun adalah membagi biaya yang dapat disusutkan dengan masa manfaat aset.

$$Depresiasi = \frac{Harga Perolehan - Nilai Sisa}{Umur Pakai}$$

Sebagai contoh dilakukan perhitungan depresiasi untuk Forklift sebagai berikut, dengan asumsi bahwa nilai sisa tidak ada pada akhir periode umur pakai:

Depresiasi =
$$\frac{\text{Rp.} 522,000,000 - \text{Rp.} 0}{10 \text{ Tahun}}$$
$$= \text{Rp.} 4,350,000,-$$

Tabel 4. 18 Data Perhitungan Depresiasi Aset Gudang

No	Pekerja	Total Harga (Rp.)	Umur Pakai (Tahun)	Depresiasi (per bulan)			
1	Gudang <i>spare parts</i> utama	4,950,000,000	30	13,750,000			
2	Gudang <i>spare parts</i> tambahan	1,100,000,000	30	3,055,556			
3	Gudang <i>spare parts</i> Tonasa 2, 3	1,320,000,000	30	3,666,667			
4	Forklift	522,000,000	10	4,350,000			
5	Overhead Crane 10T	450,000,000	10	3,750,000			
	Total						
	Depresiasi per item (1.	055 item)		27,083			

Biaya modal (*cost of capital*) juga perlu dipertimbangkan dalam perhitungan biaya penyimpanan ini. Yang dimaksud biaya modal adalah biaya yang dikeluarkan untuk memperoleh dana (modal), baik berasal dari hutang, saham, maupun laba ditahan untuk mendanai investasi atau operasi perusahaan tertentu. Biaya modal ini didapatkan dari besarnya suku bunga bank terhadap nilai barang. Suku bunga bank yang diperhitungkan dalam penelitian ini sebesar 7% per tahun. Berikut disertakan contoh perhitungan biaya modal terhadap material Cable Power; N2XSY; 1 Core; 300 MM2; 6/10 kV (Nomor Material 632-000490).

Cost of capital = Bunga bank (per tahun) X Unit Cost

Cost of capital = 7% X Rp. 413,820,
Cost of capital = Rp. 28,967,
Cost of capital per bulan = Rp. 2,414,-

Sehingga total biaya *Holding Cost* dapat dilihat pada tabel berikut, dimana merupakan gabungan antara biaya gaji, depresiasi dan *cost of capital*.

Tabel 4. 19 Biaya penyimpanan

No	No. Material	Gaji (Rp/Bulan)	Depresiasi (Rp/Bulan)	Cost of Capita (Rp/Bulan)	Total (Rp/Tahun)
1	627-000279	87,204	27,083	3,051	1,408,045
2	631-000490	87,204	27,083	2,414	1,400,405
3	602-001378	87,204	27,083	2,217	1,398,038
4	628-000239	87,204	27,083	1,108	1,384,738
5	631-000542	87,204	27,083	53	1,372,068
6	632-001172	87,204	27,083	3,208	1,409,938
7	626-007992	87,204	27,083	2,217	1,398,038
8	632-001184	87,204	27,083	6,166	1,445,428
9	632-000118	87,204	27,083	424,375	6,463,938
10	626-007282	87,204	27,083	10,431	1,496,612

4.7.3 Biaya Kekurangan

Perhitungan biaya kekurangan atau *shortage cost* dalam penelitian ini menggunakan biaya yang harus dibayarkan ketika mesin mengalami kerusakan dan tidak ada *spare parts* pengganti yang tersedia sehingga peralatan tidak dapat berjalan sebagaimana mestinya. Kerugian tersebut ditinjau dari adanya potensi kehilangan keuntungan yang tidak direncanakan. Adapun peralatan yang diambil sebagai referensi adalah *Finish Mill* 2 yang produk akhirnya adalah semen, dimana peralatan ini mempunyai kapasitas produksi semen 100 Ton per hari, dengan harga jual semen Rp. 48.000 per zak atau Rp. 1.200 per kg, dengan margin keuntungan sebesar 20%. Berikut disertakan contoh perhitungan potensi kerugian/biaya kekurangan terhadap *spare part* Cable Power; N2XSY; 1 Core; 300 MM2; 6/10 kV (Nomor Material 632-000490).

Potensi Kerugian = Kapasitas Produksi X Harga Jual X Lead Time X Margin Keuntungan

= 100000 Kg/hari X Rp. 1200 /Kg X 210 Hari X 20%

= Rp. 5,040,000,000,-

Tabel 4. 20 Biaya Kekurangan

No	No. Material	Lead Time (Hari)	Biaya shortage (Rp.)
1	627-000279	68	1,632,000,000
2	631-000490	210	5,040,000,000
3	602-001378	137	3,280,695,652
4	628-000239	68	1,622,400,000
5	631-000542	75	1,792,000,000
6	632-001172	123	2,948,307,692
7	626-007992	170	4,090,285,714
8	632-001184	109	2,616,000,000
9	632-000118	294	6,192,000,000
10	626-007282	185	4,440,000,000

4.8 Perhitungan Parameter Kebijakan Persediaan

Pada sub bab ini akan dilakukan perhitungan dari persediaan dan pemesanan *spare part*. Perhitungan ini akan dihitung dengan kondisi eksisting di PT. X saat ini dan pendekatan *continuous review* (s,S) *system* sebagai metode yang diusulkan dalam penelitian ini. Perhitungan ini akan dilakukan dengan ketentuan sebagai berikut:

a. Stock Awal

Merupakan jumlah persediaan awal periode t. *Stock* awal bernilai sama dengan *stock* akhir pada periode sebelum t.

b. Receipt

Merupakan pesanan yang datang pada periode t.

c. Total Stock

Merupakan jumlah *stock* yang dimiliki oleh perusahaan. *Total stock* dihitung dengan persamaan:

 $Total\ Stock = Stock\ awal + Receipt - Shortage\ t-1.$

d. Demand

Demand dalam penelitian ini diperoleh dari data histori pemakaian *spare* parts, sedangkan demand yang digunakan dalam simulasi perhitungan diperoleh dari data yang dibangkitkan dengan Monte Carlo dan data historis pemakaian *spare parts*.

e. Shortage

Shortage menunjukkan bahwa perusahaan tidak dapat memenuhi permintaan spare parts.

f. Stock Akhir

Stock akhir merupakan jumlah stock di akhir periode t yang didapatkan dari pengurangan nilai total stock dan demand

g. Order

Order pada perhitungan kondisi eksisting adalah data pembelian material yang dilakukan oleh unit pengadaan yang diterima di gudang spare part. Sedangkan order pada perhitungan pendekatan continuous review akan dilakukan ketika stock akhir persediaan kurang dari ROP (s). Jumlah spare part yang dipesan adalah sebesar maximum stock (S) dikurangi stock akhir.

4.8.1 Perhitungan Persediaan dan Pemesanan dengan Kondisi Eksisting

Perhitungan persediaan dan pemesanan dengan kondisi eksisting akan dilakukan pada 10 sampel data *spare parts* sesuai pada sub bab sebelumnya. Dari perhitungan persediaan dan pemesanan ini nantinya akan diketahui total biaya dan *service level* yang dihasilkan pada kondisi eksisting.

Contoh perhitungan kondisi eksisting dilakukan pada *spare part* Cable Power; N2XSY; 1 Core; 300 MM2; 6/10 kV (Nomor Material 632-000490).

Tabel 4. 21 Perhitungan Persediaan dan Pemesanan 632-000490 kondisi Eksisting

No	Periode	Stock awal	Receipt history		Demand (history)	Short age	Stock akhir	Orde r (1/0)
1	Jan-15	1404	0	1404	0	0	1404	
2	Feb-15	1404	0	1404	0	0	1404	
3	Mar-15	1404	0	1404	0	0	1404	

4	Apr-15	1404	0	1404	350	0	1054	
5	May-15	1054	0	1054	0	0	1054	
6	Jun-15	1054	0	1054	0	0	1054	
7	Jul-15	1054	0	1054	0	0	1054	
8	Aug-15	1054	0	1054	240	0	814	
9	Sep-15	814	0	814	0	0	814	
10	Oct-15	814	0	814	0	0	814	
11	Nov-15	814	0	814	0	0	814	
12	Dec-15	814	0	814	0	0	814	
13	Jan-16	814	0	814	0	0	814	
14	Feb-16	814	0	814	500	0	314	
15	Mar-16	314	0	314	320	6	0	
16	Apr-16	0	0	0	0	0	0	
17	May-16	0	0	0	0	0	0	
18	Jun-16	0	0	0	0	0	0	
19	Jul-16	0	0	0	0	0	0	
20	Aug-16	0	3.000	2994	0	0	2994	1
21	Sep-16	2994	0	2994	6760	3766	0	
22	Oct-16	0	0	0	0	0	0	
23	Nov-16	0	0	0	0	0	0	
24	Dec-16	0	6.000	2234	0	0	2234	1
25	Jan-17	2234	0	2234	0	0	2234	
26	Feb-17	2234	0	2234	0	0	2234	
27	Mar-17	2234	0	2234	1000	0	1234	
28	Apr-17	1234	0	1234	0	0	1234	
29	May-17	1234	0	1234	0	0	1234	
30	Jun-17	1234	0	1234	0	0	1234	
31	Jul-17	1234	0	1234	0	0	1234	
32	Aug-17	1234	0	1234	0	0	1234	
33	Sep-17	1234	0	1234	0	0	1234	
34	Oct-17	1234	0	1234	1500	266	0	
35	Nov-17	0	0	0	0	0	0	
36	Dec-17	0	0	0	0	0	0	
37	Jan-18	0	0	0	0	0	0	
38	Feb-18	0	0	0	120	120	0	
39	Mar-18	0	0	0	0	0	0	
40	Apr-18	0	0	0	0	0	0	
41	May-18	0	0	0	0	0	0	
42	Jun-18	0	0	0	0	0	0	
43	Jul-18	0	0	0	0	0	0	
44	Aug-18	0	0	0	0	0	0	
45	Sep-18	0	0	0	0	0	0	
46	Oct-18	0	0	0	0	0	0	

47	Nov-18	0	0	0	0	0	0	
48	Dec-18	0	0	0	0	0	0	
49	Jan-19	0	0	0	0	0	0	
50	Feb-19	0	0	0	0	0	0	
51	Mar-19	0	0	0	42	42	0	
52	Apr-19	0	0	0	0	0	0	
53	May-19	0	0	0	0	0	0	
54	Jun-19	0	0	0	0	0	0	
55	Jul-19	0	0	0	0	0	0	
56	Aug-19	0	0	0	0	0	0	
57	Sep-19	0	0	0	0	0	0	
58	Oct-19	0	0	0	0	0	0	
59	Nov-19	0	0	0	0	0	0	
60	Dec-19	0	0	0	0	0	0	
	Total		9,000		10,832	4,200	31,960	2

Dari perhitungan persediaan dan pemesanan diatas maka dapat dihitung total biaya dan *service level* sebagai beriku:

Biaya Penyimpanan = Jumlah Stock X Holding Cost

= 31,960 X Rp. 1,400,405

= Rp. 3,729,745,313

Biaya Pemesanan = Jumlah Order (histori pemesanan) X Order Cost

= 2 X Rp. 710,582

= Rp. 1,421,163

Biaya Pembelian = Jumlah Satuan X Harga Satuan

= 9,000 X Rp. 413,820

= Rp. 3,724,380,000

Total Biaya = Biaya Penyimpanan + Biaya Pemesanan +

Biaya Pembelian

= Rp. 3,729,745,313 + Rp. 1,421,163 +

Rp. 3,724,380,000

= Rp. 7,455,546,477

Service Level _ Jumlah Demand — Jumlah Shortage

Jumlah Demand

$$= \frac{10,832 - 4,200}{10,832} \times 100\%$$
$$= 61\%$$

Dari tabel 4.22 dapat dilihat hasil perhitungan untuk biaya persediaan dan *service level* dari 10 sampel data pada kondisi eksisting.

Tabel 4. 22 Hasil Perhitungan Biaya Persediaan dan Service Level Kondisi Eksisting

Item Num ber	Biaya Penyimpa nan (Rp.)	Biaya Pemesa nan (Rp.)	Biaya Pembelian (Rp.)	Total Cost (Rp.)	Servi ce Level
627- 000279	183,984,502	4,974,072	462,294,872	651,253,446	84%
631- 000490	3,729,745,313	1,421,163	3,724,380,000	7,455,546,477	61%
602- 001378	314,558,460	9,948,144	1,615,000,000	1,939,506,604	60%
628- 000239	28,964,095	9,237,562	141,550,000	179,751,657	51%
631- 000542	6,255,552,102	7,105,817	3,439,000,000	9,701,657,919	89%
632- 001172	55,927,525	7,105,817	170,500,000	233,533,342	84%
626- 007992	68,037,830	4,974,072	656,637,600	729,649,502	74%
632- 001184	40,833,330	6,395,235	144,809,000	192,037,565	88%
632- 000118	18,314,490	3,552,908	1,164,000,000	1,185,867,398	88%
626- 007282	8,356,086	4,974,072	205,644,265	218,974,423	74%

4.8.2 Perhitungan Persediaan Kondisi Perbaikan dengan Kebijakan Continuous Review (s, S).

Pada sub bab ini akan dilakukan simulasi perhitungan persediaan dan pemesanan *spare part*. Simulasi perhitungan ini bertujuan untuk mensimulasikan kebijakan persediaan dengan pendekatan *continuous review* (s,S) sekaligus menghitung total biaya dan *service level* yang dihasilkan dari kebijakan tersebut.

Data pemakaian *spare parts* yang digunakan dalam simulasi ini mencakup 60 data historis pemakaian *spare part*.

Pertama yang harus dilakukan adalah melakukan setting parameter input. Parameter input ini akan dijadikan sebagai masukan awal dari simulai persediaan dan pemesanan spare part. Parameter yang dijadikan acuan dalam penelitian ini adalah parameter persediaan dengan menggunakan pendekatan continuous review yang meliputi reorder point (ROP), dan, safety stock, dan maximum stock. Perhitungan parameter ini menggunakan pendekatan Hadley-within. Berikut contoh perhitungan parameter input yang dilakukan untuk material Proximity Sensor: XS1-M30MA2; 2 Wire (Nomor Material 632-001172). Data-data dan standar deviasi diperoleh dari data historis demand spare part.

Tabel 4. 23 Pengolaan Data Material 632-001172

Data Spare Parts 632-001172						
Rata-rata permintaan 632-001172 per Tahun (D)	64 Unit					
Standar Deviasi permintaan (δD)	1	0 Unit				
Lead time (L)	0.3	4 Tahun				
Standar deviasi lead time (δL)	0.12 Tahun					
Standar Deviasi permintaan selama lead time (δDL)	9.63 Unit					
Biaya setiap kali pesan (A)	Rp.	710,582				
Biaya Kekurangan per unit (Cu)	Rp. 2	,948,307,692				
Biaya simpan per unit per tahun (h)	Rp.	1,409,938				
Harga Barang per unit (v)	Rp.	550,000				

Iterasi 1

a. Menghitung ukuran lot pemesanan

$$q_0 = \sqrt{\frac{2AD}{h}} = \sqrt{\frac{2(710,000)(64)}{1,409,938}} = 8.032 \text{ Unit}$$

b. Menghitung α dan r'

$$\alpha = \frac{h \, q_0}{\text{Cu D}} = \frac{(1,409,938)(8.032)}{(2,948,307,692)(64)} = 0.00006$$

Didapat dari tabel distribusi normal untuk $\alpha = 0.00006$ diperoleh nilai $Z\alpha = 3.845$, maka,

$$r' = DL + Z\alpha \sigma_D \sqrt{L} = (64)(0.34) + (3.845)(10)(\sqrt{0.34}) = 43.9 \text{ Unit}$$

c. Menghitung nilai q₀₁ dengan persamaan

$$N = \int_{r'}^{\infty} (x - r') f(x) dx = \sigma_{DL} [f(Z\alpha) - Z\alpha \varphi(Z\alpha)]$$

Dimana:

$$f(Z\alpha) = NORMDIST (Z\alpha,0,1,0)$$

$$\Psi(Z\alpha) = \text{NORMDIST} (Z\alpha, 0, 1, 0) - (Z\alpha (1-\text{NORMDIST} (Z\alpha, 0, 1, 1)))$$

Sehingga dengan $Z\alpha = 3.845$ didapat nilai:

$$f(Z\alpha) = 0.000246$$

$$\Psi(Z\alpha) = 0.000014$$

Dan nilai N dapat dihitung sebagai berikut:

$$\begin{split} N &= \sigma_{DL} [f(Z\alpha) - Z\alpha \, \Psi(Z\alpha)] = 0.0018 \\ q_{01} &= \sqrt{\frac{2D[A + Cu.N]}{h}} \\ &= \sqrt{\frac{2(64)[710,582 + (2,948,307,692)(0.0018)]}{1,409,938}} = 23.64 \; \text{Unit} \end{split}$$

d. Menghitung kembali nilai α dan r'

$$\alpha = \frac{h \, q_{01}}{\text{Cu D}} = \frac{(1,409,938)(23.64)}{(2,948,307,692)(64)} = 0.000177$$

Didapatkan dari tabel distribusi normal untuk $\alpha = 0.000177$ diperoleh nilai $Z\alpha = 3.57$, maka,

$$r_1' = DL + Z\alpha \sigma_D \sqrt{L} = (64)(0.34) + (3.57)(10)(\sqrt{0.34}) = 42.3$$
 Unit Dari perhitungan nilai r'= 43.9 dan r_1 '= 42.3. Karena masih terdapat perbedaan unit, maka dilanjutkan perhitungan ke iterasi ke 2

Iterasi 2

e. Menghitung nilai q_{02} dengan r_1 ' = 42.3

Dengan nilai $Z\alpha = 3.57$ didapat nilai:

$$f(Z\alpha) = 0.000681$$

$$\Psi(Z\alpha) = 0.000044$$

Dengan nilai N dapat dihitung sebagai berikut:

$$N = \sigma_{DL}[f(Z\alpha) - Z\alpha \Psi(Z\alpha)] = 0.005 \text{ Unit}$$

$$q_{02} = \sqrt{\frac{2D[A+Cu.N]}{h}} = 37.61 \text{ Unit}$$

f. Menghitung kembali nilai α dan r₂'

$$\alpha = \frac{h \, q_{02}}{\text{Cu D}} = \frac{(1,409,938)(37.61)}{(2,948,307,692)(64)} = 0.000281$$

Didapatkan dari tabel distribusi normal untuk $\alpha=0.000281$ diperoleh nilai $Z\alpha=3.45,$ maka,

$$r_2' = DL + Z\alpha \sigma_D \sqrt{L} = 41.6 \text{ Unit}$$

Dari perhitungan nilai r_1 '= 42.3 dan r_2 '= 41.6. Karena nilai keduanya sudah relatif sama yaitu 42 sehingga tidak perlu dilanjutkan iterasi kembali. Sehingga didapatkan hasil kebijakan optimal adalah:

g. Menghitung Safety Stock (SS)

$$SS = Z\alpha \sigma_D \sqrt{L} = 21 \text{ Unit}$$

h. Menghitung Maximum Inventory (S)

$$S = q' + r' = 80 \text{ Unit}$$

Dari tabel 4.24 dapat dilihat hasil perhitungan untuk parameter *input* dari 10 sampel data.

Tabel 4. 24 Hasil Perhitungan Parameter Input

No	Material No.	q'	S	SS	S
1	627-000279	188	115	78	303
2	631-000490	7,580	6,311	5,047	13,891
3	602-001378	1,195	633	311	1,828
4	628-000239	97	85	58	182
5	631-000542	2,297	1,668	927	3,965
6	632-001172	38	42	21	80
7	626-007992	28	31	21	59
8	632-001184	19	17	9	36
9	632-000118	2	6	3	8
10	626-007282	38	38	26	76

4.9 Perencanaan Skenario pada Rekomendasi Kebijakan Persediaan

Pada sub bab ini akan dilakukan perancangan skenario rekomendasi kebijakan persediaan, hal ini bertujuan untuk mendapatkan parameter dari rekomendasi kebijakan persediaan tersebut yang optimal.

4.9.1 Pembangkitan Bilangan Acak

Adapun langkah-langkah untuk membangkitkan bilangan acak dengan pendekatan Monte Carlo sebagai berikut:

- 1. Lakukan observasi terhadap parameter yang akan dimodelkan
- 2. Hitung frekuensi tiap-tiap parameter
- 3. Hitung distribusi frekuensi kumulatif dan distribusi probabilitas kumulatif.
- 4. Pasangkan nilai kelas tiap-tiap parameter dengan bilangan *random* dengan range 1-100.

Pada tabel 4.25 dapat dilihat hasil perhitungan sampai dengan langkah 4 untuk material 632-001172.

Tabel 4. 25 Hasil Pembangkitan Bilangan Acak dengan Monte Carlo 632-001172

Xi	Frekuensi Xi	Probabi litas	Frekuensi Kumulatif	Probabilitas Kumulatif	Interval Angka Acak
0	34	0,57	34	0,57	0-57
1	2	0,03	36	0,60	58-60
3	2	0,03	38	0,63	61-63
4	2	0,03	40	0,67	64-67
5	1	0,02	41	0,68	68-68
6	3	0,05	44	0,73	69-73
7	2	0,03	46	0,77	74-77
8	2	0,03	48	0,80	78-80
9	1	0,02	49	0,82	81-82
10	1	0,02	50	0,83	83-83
12	1	0,02	51	0,85	84-85
15	1	0,02	52	0,87	86-87
19	1	0,02	53	0,88	88-88
20	1	0,02	54	0,90	89-90
21	1	0,02	55	0,92	91-92
25	2	0,03	57	0,95	93-95
28	1	0,02	58	0,97	96-97
32	1	0,02	59	0,98	98-98

35	1	0,02	60	1,00	99-100
TOTAL	60				

Kemudian langkah selanjutnya adalah sebagai berikut:

- 1. Tarik suatu bilangan *random* dengan menggunakan tabel *random* atau *generate random* di aplikasi microsof excel.
- 2. Dapatkan nilai parameter yang sesuai dengan memasangkan bilangan *random* yang dihasilkan.

Berikut merupakan hasil dari pembangkitan bilangan acak untuk material 632-001172.

Tabel 4. 26 Hasil Pembangkitan Bilangan Acak 632-001172

	Replil	kasi 1	Replil	kasi 2	Replik	kasi 3	Replik	asi 4	•••	Replika	asi 100
No	Random Number	Demand	Random Number	Demand	Random Number	Demand	Random Number	Demand	•••	Random Number	Demand
1	37	0	96	28	86	15	10	0	•••	90	20
2	22	0	97	28	44	0	59	1	•••	29	0
3	22	0	42	0	86	15	87	15	•••	67	4
4	0	0	37	0	77	7	96	28	•••	29	0
5	92	21	63	3	29	0	75	7		93	25
6	82	9	95	25	3	0	4	0		40	0
7	8	0	14	0	33	0	100	35		22	0
8	27	0	49	0	38	0	45	0		92	21
9	80	8	99	35	78	8	37	0		43	0
10	38	0	3	0	1	0	41	0		25	0
11	77	7	1	0	100	35	17	0		1	0
12	46	0	42	0	90	20	60	1		38	0
13	61	3	6	0	75	7	59	1		0	0
14	10	0	86	15	43	0	27	0		36	0
15	68	5	90	20	46	0	24	0	•••	51	0
16	29	0	78	8	73	6	14	0	•••	71	6
17	77	7	8	0	63	3	37	0		73	6
18	33	0	63	3	79	8	9	0		30	0
19	65	4	86	15	17	0	25	0		35	0

			T	1	T	I	T	1			
20	91	21	100	35	21	0	35	0		14	0
21	61	3	99	35	97	28	39	0	•••	98	32
22	45	0	49	0	6	0	15	0		60	1
23	43	0	83	10	95	25	0	0		22	0
24	31	0	6	0	13	0	80	8		28	0
25	39	0	67	4	81	9	58	1	•••	64	4
26	61	3	28	0	38	0	54	0	•••	53	0
27	42	0	53	0	5	0	28	0	•••	46	0
28	33	0	61	3	32	0	58	1		67	4
29	86	15	91	21	77	7	17	0		79	8
30	68	5	65	4	10	0	70	6		52	0
31	40	0	98	32	3	0	16	0		85	12
32	3	0	64	4	26	0	57	0		43	0
33	32	0	25	0	77	7	61	3		41	0
34	50	0	71	6	73	6	24	0		36	0
35	48	0	32	0	31	0	42	0		5	0
36	25	0	75	7	11	0	18	0		66	4
37	58	1	94	25	100	35	28	0		46	0
38	35	0	72	6	4	0	5	0		64	4
39	12	0	15	0	28	0	54	0		85	12
40	55	0	40	0	36	0	42	0		58	1
41	66	4	74	7	82	9	8	0		76	7
42	66	4	84	12	29	0	70	6		12	0
43	77	7	7	0	84	12	79	8		49	0
44	31	0	4	0	82	9	31	0		81	9
45	68	5	48	0	59	1	3	0	•••	55	0

46	83	10	76	7	61	3	76	7	•••	73	6
47	7	0	37	0	22	0	78	8	•••	73	6
48	82	9	57	0	87	15	48	0	•••	44	0
49	96	28	51	0	100	35	11	0	•••	35	0
50	38	0	43	0	32	0	100	35	•••	89	20
51	85	12	97	28	28	0	71	6	•••	55	0
52	80	8	29	0	16	0	47	0	•••	1	0
53	28	0	73	6	62	3	4	0	•••	59	1
54	74	7	80	8	48	0	86	15	•••	73	6
55	96	28	93	25	93	25	30	0		40	0
56	99	35	34	0	27	0	89	20		66	4
57	7	0	86	15	16	0	90	20	•••	81	9
58	80	8	82	9	67	4	78	8	•••	65	4
59	80	8	94	25	9	0	33	0		77	7
60	34	0	40	0	19	0	96	28	•••	21	0
TC	OTAL:	285		514		357		413			243

4.9.2 Validasi Data Pembangkitan Bilangan Acak

Selanjutnya yang akan dilakukan setelah pembangkitan bilangan acak adalah menilai validitas data pemakaian suku cadang yang telah dibangkitkan sebelumnya. Data pemakaian suku cadang yang telah dibangkitkan ini dapat dikatakan *valid* jika data pemakaian suku cadang tersebut tidak memiliki perbedaan yang signifikan dengan data history pemakaian suku cadang.

Tabel 4. 27 Data Validasi Pembangkitan Bilangan Acak 632-001172

No	Kondisi	Replika	Replika	Replika	_	Replika	_	Replika		Replika	Replika	Replika
	Eksisting	si	si	si	si	si	si	si	•••	si	si	si
		1	2	3	4	5	6	7		98	99	100
1	0	0	28	15	0	3	8	0	•••	10	0	20
2	0	0	28	0	1	28	6	6	•••	35	4	0
3	0	0	0	15	15	20	0	0	•••	25	0	4
4	0	0	0	7	28	0	35	0	•••	0	1	0
5	0	21	3	0	7	20	0	0		1	0	25
6	6	9	25	0	0	20	0	0		0	0	0
7	5	0	0	0	35	0	0	1	•••	0	0	0
8	3	0	0	0	0	25	0	0	•••	20	21	21
9	0	8	35	8	0	0	3	8	•••	19	25	0
10	0	0	0	0	0	21	0	0	•••	0	0	0
11	1	7	0	35	0	0	0	6	•••	0	0	0
12	0	0	0	20	1	3	0	0	•••	25	0	0
13	0	3	0	7	1	0	0	0	•••	35	0	0
14	0	0	15	0	0	32	0	6	•••	4	1	0
15	0	5	20	0	0	25	6	0	•••	6	0	0
16	0	0	8	6	0	0	0	0	•••	21	28	6
17	0	7	0	3	0	0	4	0	•••	0	0	6
18	0	0	3	8	0	15	6	0		0	3	0
19	0	4	15	0	0	0	9	0		4	0	0
20	0	21	35	0	0	0	3	8		0	0	0
21	25	3	35	28	0	0	4	0		3	0	32

22	20	0	0	0	0	0	0	20		0	0	1
	20			_	0				•••	0	_	1
23	12	0	10	25	0	0	0	0	•••	0	4	0
24	6	0	0	0	8	15	20	0	•••	28	35	0
25	4	0	4	9	1	12	12	0	•••	0	0	4
26	8	3	0	0	0	6	0	0		20	0	0
27	0	0	0	0	0	28	0	12		0	0	0
28	32	0	3	0	1	0	0	0		0	19	4
29	28	15	21	7	0	8	7	35		10	0	8
30	8	5	4	0	6	4	0	0		4	10	0
31	21	0	32	0	0	0	0	1		0	0	12
32	35	0	4	0	0	0	0	0	•••	21	0	0
33	7	0	0	7	3	0	0	0		7	32	0
34	9	0	6	6	0	25	4	4		0	0	0
35	1	0	0	0	0	3	0	0		4	25	0
36	19	0	7	0	0	0	0	0		0	1	4
37	6	1	25	35	0	0	6	0		0	1	0
38	4	0	6	0	0	20	9	0		0	7	4
39	7	0	0	0	0	9	4	6		0	0	12
40	0	0	0	0	0	0	0	0		0	12	1
41	3	4	7	9	0	0	20	0		0	0	7
42	0	4	12	0	6	3	6	6		0	0	0
43	0	7	0	12	8	4	0	0		6	0	0
44	0	0	0	9	0	0	8	8		3	0	9
45	0	5	0	1	0	0	0	0		4	3	0
46	0	10	7	3	7	0	32	0		25	0	6
47	0	0	0	0	8	35	0	32		0	9	6

48	0	9	0	15	0	0	0	0	•••	15	9	0
49	0	28	0	35	0	12	0	0	•••	0	0	0
50	0	0	0	0	35	0	0	0	•••	0	0	20
51	0	12	28	0	6	9	28	7	•••	4	3	0
52	0	8	0	0	0	0	12	0	•••	19	0	0
53	25	0	6	3	0	0	0	25	•••	0	3	1
54	0	7	8	0	15	0	0	0	•••	0	0	6
55	0	28	25	25	0	0	0	20	•••	4	0	0
56	0	35	0	0	20	8	0	8	•••	0	6	4
57	15	0	15	0	20	0	6	3	•••	0	0	9
58	0	8	9	4	8	0	0	0	•••	0	8	4
59	0	8	25	0	0	0	0	25	•••	0	0	7
60	10	0	0	0	28	0	0	0		3	0	0
TOT	320	285	514	357	413	413	258	247		385	270	243

Berikut merupakan hasil dari validasi pembangkitan bilangan acak menggunakan uji t-test

	Eksisting	Replikasi 1	Eksisting	Replikasi 2	Eksisting	Replikasi 3	 Eksisting	Replikasi 100
Mean	5.333	4.750	5.333	8.567	5.333	5.950	5.333	4.050
Variance	80.328	60.258	80.328	126.216	80.328	92.997	80.328	47.675
Observations	60	60	60	60	60	60	60	60
Pooled Variance	70.293		103.272		86.663		64.002	
Hypothesized Mean Difference	0		0		0		0	
df	118		118		118		 118	
t Stat	0.381		-1.743		-0.363		0.879	
P(T<=t) one-tail	0.352		0.042		0.359		0.191	
t Critical one-tail	1.658		1.658		1.658		1.658	
$P(T \le t)$ two-tail	0.704		0.084		0.717		0.381	
t Critical two-tail	1.980		1.980		1.980		1.980	

Gambar 4. 3 Validasi Pembangkitan Bilangan Acak 632-001172

Dari hasil gambar diatas menunjukkan bahwa pembangkitan bilangan acak untuk replikasi 1 sampai replikasi 100 mempunyai nilai t stat < t critical. Sehingga dapat disimpulkan bahwa hasil pembangkitan bilangan acak telah mendekati kondisi nyata.

4.9.3 Skenario Perbaikan

Skenario perbaikan dilakukan dengan simulasi perhitungan dengan kombinasi nilai s dan S menggunakan 100 replikasi data *demand* hasil pembangkitan data acak Monte Carlo. Berikut tabel 4.28 contoh hasil simulasi perhitungan persediaan dan pemesanan *spare parts* material 632-001172 dengan *demand* dari hasil pembangkitan replikasi 1 dan dengan kombinasi s dan S (42 & 80) sesuai hasil perhitungan bilangan input pada tabel 4.24.

Tabel 4. 28 Simulasi Rekomendasi Perbaikan dengan Data Demand Replikasi 1

No	Periode	Stock awal	Receipt	Total Stock	Demand	Shortage	Stock akhir	ROP	S	Order (1/0)	On Site
1	Jan-15	0	0	0	0	0	0	42	80	1	May-15
2	Feb-15	0	0	0	0	0	0	42	80	0	-
3	Mar-15	0	0	0	0	0	0	42	80	0	-
4	Apr-15	0	0	0	0	0	0	42	80	0	-
5	May-15	0	80	80	21	0	59	42	80	0	-
6	Jun-15	59	0	59	9	0	50	42	80	0	-
7	Jul-15	50	0	50	0	0	50	42	80	0	-
8	Aug-15	50	0	50	0	0	50	42	80	0	-
9	Sep-15	50	0	50	8	0	42	42	80	1	Jan-16
10	Oct-15	42	0	42	0	0	42	42	80	0	-
11	Nov-15	42	0	42	7	0	35	42	80	0	-
12	Dec-15	35	0	35	0	0	35	42	80	0	-

13	Jan-16	35	38	73	3	0	70	42	80	0	-
14	Feb-16	70	0	70	0	0	70	42	80	0	_
15	Mar-16	70	0	70	5	0	65	42	80	0	-
16	Apr-16	65	0	65	0	0	65	42	80	0	-
17	May-16	65	0	65	7	0	58	42	80	0	-
18	Jun-16	58	0	58	0	0	58	42	80	0	-
19	Jul-16	58	0	58	4	0	54	42	80	0	-
20	Aug-16	54	0	54	21	0	33	42	80	1	Dec-16
21	Sep-16	33	0	33	3	0	30	42	80	0	-
22	Oct-16	30	0	30	0	0	30	42	80	0	-
23	Nov-16	30	0	30	0	0	30	42	80	0	-
24	Dec-16	30	47	77	0	0	77	42	80	0	-
25	Jan-17	77	0	77	0	0	77	42	80	0	-
26	Feb-17	77	0	77	3	0	74	42	80	0	-
27	Mar-17	74	0	74	0	0	74	42	80	0	-
28	Apr-17	74	0	74	0	0	74	42	80	0	-
29	May-17	74	0	74	15	0	59	42	80	0	-
30	Jun-17	59	0	59	5	0	54	42	80	0	-
31	Jul-17	54	0	54	0	0	54	42	80	0	-
32	Aug-17	54	0	54	0	0	54	42	80	0	-
33	Sep-17	54	0	54	0	0	54	42	80	0	-
34	Oct-17	54	0	54	0	0	54	42	80	0	-
35	Nov-17	54	0	54	0	0	54	42	80	0	-
36	Dec-17	54	0	54	0	0	54	42	80	0	-
37	Jan-18	54	0	54	1	0	53	42	80	0	-

38	Feb-18	53	0	53	0	0	53	42	80	0	-
39	Mar-18	53	0	53	0	0	53	42	80	0	_
40	Apr-18	53	0	53	0	0	53	42	80	0	-
41	May-18	53	0	53	4	0	49	42	80	0	-
42	Jun-18	49	0	49	4	0	45	42	80	0	-
43	Jul-18	45	0	45	7	0	38	42	80	1	Nov-18
44	Aug-18	38	0	38	0	0	38	42	80	0	-
45	Sep-18	38	0	38	5	0	33	42	80	0	-
46	Oct-18	33	0	33	10	0	23	42	80	0	-
47	Nov-18	23	42	65	0	0	65	42	80	0	-
48	Dec-18	65	0	65	9	0	56	42	80	0	-
49	Jan-19	56	0	56	28	0	28	42	80	1	May-19
50	Feb-19	28	0	28	0	0	28	42	80	0	-
51	Mar-19	28	0	28	12	0	16	42	80	0	-
52	Apr-19	16	0	16	8	0	8	42	80	0	-
53	May-19	8	52	60	0	0	60	42	80	0	-
54	Jun-19	60	0	60	7	0	53	42	80	0	-
55	Jul-19	53	0	53	28	0	25	42	80	1	Nov-19
56	Aug-19	25	0	25	35	10	0	42	80	0	-
57	Sep-19	0	0	0	0	0	0	42	80	0	-
58	Oct-19	0	0	0	8	8	0	42	80	0	-
59	Nov-19	0	55	37	8	0	29	42	80	1	Mar-20
60	Dec-19	29	0	29	0	0	29	42	80	0	-
	Total		314		285	18	2574			7	

Dari perhitungan persediaan dan pemesanan diatas maka dapat dihitung total biaya dan *service level* sebagai beriku:

Biaya Penyimpanan Jumlah Stock X Holding Cost 2,574 X Rp. 1,409,938 Rp. 302,431,615 Biaya Pemesanan Jumlah Order X Order Cost 7 X Rp. 710,582 Rp. 4,974,072 Biaya Pembelian Jumlah Satuan X Harga Satuan 314 X Rp. 550,000 Rp. 172,700,000 Total Biaya Biaya Penyimpanan + Biaya Pemesanan + Biaya Pembelian Rp. 302,431,615 + Rp. 4,974,072 + Rp. 172,700,000 Rp. 480,105,697 Jumlah Demand – Jumlah Shortage Service Level Jumlah Demand $= \frac{285-18}{285} \times 100\%$ 94 %

Kemudian dilakukan perhitungan yang sama untuk replikasi 2 sampai dengan replikasi 100, adapun hasil perhitungan dapat dilihat pada tabel 4.29 dibawah.

Tabel 4. 29 Hasil Perhitungan Rekomendasi Perbaikan dengan Data Demand Replikasi 1 – 100, pada Material 632-001172

Repli kasi	Biaya Penyimpanan	Biaya Pemesanan	Biaya Pembelian	Total Biaya	Service Level
1	302,431,615	4,974,072	172,700,000	480,105,687	94%
2	215,078,822	7,816,399	285,012,110	507,907,330	85%
3	257,437,498	5,684,654	213,366,864	476,489,016	83%
4	299,326,827	4,263,490	134,400,206	437,990,523	77%
5	238,898,244	5,684,654	242,652,512	487,235,409	78%
6	312,468,577	4,263,490	167,346,560	484,078,627	81%

7	341,568,167	3,552,908	152,180,778	497,301,853	98%
8	237,490,199	7,816,399	255,726,462	501,033,060	75%
9	227,281,875	7,105,817	246,313,218	480,700,910	88%
10	305,428,354	5,684,654	179,897,552	491,010,559	86%
					••••
99	306,249,713	4,263,490	161,594,022	472,107,225	96%
100	316,223,363	3,552,908	152,703,736	472,480,007	90%
Rata-	290,755,895	5 201 459	100 045 452	105 002 005	900/
rata	290,733,893	5,201,458	189,845,452	485,802,805	89%

Dengan cara yang sama, dilakukan simulasi perhitungan dengan kombinasi nilai s dan S menggunakan 100 replikasi data *demand* hasil pembangkitan data acak Monte Carlo. Tabel 4.30 merupakan hasil perhitungan dari simulasi perhitungan persediaan dan pemesanan *spare part* 632-001172 dengan menggunakan kombinasi nilai s dan S, serta kombinasi data *demand* dari hasil data pembangkitan bilangan acak Monte Carlo. Adapun target *service level* yang diharapkan adalah 95%.

Tabel 4. 30 Skenario Perbaikan Continuous Review pada Material 632-001172

Experiment	S	S	Average Total Cost (Rp.)	Average Service Level
Eksisting	1	-	233,533,342	84%
1	42	80	485,802,805	89%
2	42	130	688,110,982	92%
3	42	120	645,797,715	92%
4	42	110	604,821,542	91%
5	42	100	564,059,012	90%
6	42	90	526,491,297	90%
7	42	70	448,421,872	88%
8	42	60	396,203,629	83%
9	70	80	539,889,683	91%
10	60	80	531,208,942	91%
11	50	80	511,942,039	90%
12	40	80	480,361,773	89%
13	30	80	450,373,189	86%
14	20	80	420,546,467	81%
15	10	80	387,687,510	75%

Dari tabel diatas dapat disimpulkan bahwa skenario perbaikan yang terbaik dengan peningkatan *service level* paling tinggi yaitu di level 92 % terjadi pada simulasi s = 42 dan S = 120 dengan total biaya *inventory* sebesar Rp. 645,797, 715. Dengan cara yang sama, dilakukan simulasi skenario perbaikan pada sampel material yang lain. Hasilnya dapat dilihat pada tabel-tabel dibawah.

Tabel 4. 31 Skenario Perbaikan Continuous Review pada Material 627-000279

Experiment	S	S	Average Total Cost (Rp.)	Average Service Level
Eksisting	-	-	651,253,446	84%
1	115	303	2,009,044,304	91%
2	115	900	4,621,440,157	95%
3	115	800	4,124,055,161	95%
4	115	700	3,732,922,568	95%
5	115	600	3,210,024,814	94%
6	115	500	2,778,974,731	93%
7	115	400	2,424,430,267	93%
8	115	200	1,579,312,284	87%
9	280	303	2,459,978,346	95%
10	250	303	2,403,612,912	95%
11	220	303	2,332,397,353	95%
12	190	303	2,275,275,921	94%
13	160	303	2,196,889,251	94%
14	130	303	2,078,752,627	92%
15	100	303	1,959,121,978	90%

Tabel 4. 32 Skenario Perbaikan Continuous Review pada Material 613-000490

Experiment	S	S	Average Total Cost (Rp.)	Average Service Level
Eksisting	-	-	7,455,546,477	61%
1	6,311	13,891	78,847,650,019	87%
2	6,311	18,000	95,716,779,821	88%
3	6,311	16,000	86,164,029,124	87%
4	6,311	12,000	68,833,510,867	85%
5	6,311	10,000	57,124,541,550	83%
6	6,311	9,000	51,767,253,200	82%
7	6,311	8,000	47,128,787,993	81%

8	6,311	7,000	42,007,340,252	77%
9	12,000	13,891	85,696,556,908	88%
10	10,000	13,891	82,816,400,435	88%
11	8,000	13,891	81,419,047,492	87%
12	4,000	13,891	71,189,516,364	85%
13	2,000	13,891	67,687,005,464	84%
14	1,000	13,891	67,367,135,524	84%
15	500	13,891	67,171,370,150	84%

Tabel 4. 33 Skenario Perbaikan Continuous Review pada Material 602-001378

Experiment	S	S	Average Total Cost (Rp.)	Average Service Level
Eksisting	-	-	1,939,506,604	60%
1	633	1828	8,969,146,615	94%
2	633	3000	13,499,944,645	95%
3	633	2900	13,066,865,188	95%
4	633	2700	12,133,183,041	94%
5	633	2500	11,406,577,895	94%
6	633	2000	9,362,078,366	93%
7	633	1500	7,561,268,223	92%
8	633	1000	5,596,576,190	88%
9	1500	1828	11,321,871,276	95%
10	1300	1828	10,862,139,738	95%
11	1100	1828	10,351,415,431	95%
12	900	1828	9,696,702,891	95%
13	800	1828	9,419,011,704	94%
14	700	1828	9,126,812,013	94%
15	500	1828	8,450,671,619	91%

Tabel 4. 34 Skenario Perbaikan Continuous Review pada Material 628-000239

Experiment	S	S	Average Total Cost (Rp.)	Average Service Level
Eksisting	-	-	179,751,657	51%
1	85	500	1,031,956,837	92%
2	85	450	2,075,334,576	96%
3	85	400	1,831,928,488	95%
4	85	350	1,659,891,944	95%
5	85	300	1,474,232,650	95%
6	85	250	1,296,387,743	94%

7	85	150	899,250,452	89%
8	85	100	648,783,142	79%
9	120	182	1,140,623,036	94%
10	110	182	1,094,095,317	94%
11	100	182	1,076,351,874	93%
12	90	182	1,040,941,043	92%
13	70	182	977,366,740	89%
14	60	182	942,452,593	88%
15	50	182	902,597,018	85%

Tabel 4. 35 Skenario Perbaikan Continuous Review pada Material 631-000542

Experiment	S	S	Average Total Cost (Rp.)	Average Service Level
Existing	-	-	9,701,657,919	89%
1	1655	3965	16,550,717,686	92%
2	1655	5000	20,485,610,946	94%
3	1655	4500	18,535,597,858	93%
4	1655	4000	16,608,066,256	92%
5	1655	3500	14,739,533,653	91%
6	1655	3000	12,811,844,968	89%
7	1655	2500	10,944,424,601	84%
8	1655	2000	8,661,131,873	78%
9	3000	3965	20,315,564,025	95%
10	2500	3965	18,975,348,756	94%
11	2000	3965	17,554,590,299	93%
12	1500	3965	16,017,577,748	91%
13	1250	3965	15,411,656,895	91%
14	1000	3965	14,476,362,771	88%
15	750	3965	13,531,418,802	86%

Tabel 4. 36 Skenario Perbaikan Continuous Review pada Material 626-007992

Experiment	S	S	Average Total Cost (Rp.)	Average Service Level
Existing	-	-	729,649,502	74%
1	31	59	1,010,649,354	95%
2	31	95	1,257,537,917	96%
3	31	90	1,231,792,476	96%
4	31	85	1,169,362,191	96%
5	31	80	1,143,234,774	96%
6	31	75	1,120,388,428	96%

7	31	70	1,082,680,496	96%
8	31	65	1,046,630,150	95%
9	50	59	1,082,515,657	97%
10	45	59	1,071,323,764	97%
11	40	59	1,051,640,940	96%
12	35	59	1,031,763,030	95%
13	25	59	974,396,741	94%
14	20	59	951,265,882	92%
15	15	59	924,991,583	90%

Tabel 4. 37 Skenario Perbaikan Continuous Review pada Material 632-001184

Experiment	S	S	Average Total Cost (Rp.)	Average Service Level
Existing	-	-	192,037,565	88%
1	17	36	315,747,450	92%
2	17	60	423,592,315	95%
3	17	55	402,814,694	95%
4	17	50	383,413,020	94%
5	17	45	356,528,441	93%
6	17	40	334,391,253	93%
7	17	30	291,117,972	88%
8	17	25	268,080,217	84%
9	33	36	366,077,077	94%
10	30	36	359,256,115	94%
11	25	36	346,975,910	94%
12	20	36	329,086,332	93%
13	15	36	308,587,853	90%
14	10	36	295,374,629	88%
15	5	36	269,604,786	80%

Tabel 4. 38 Skenario Perbaikan Continuous Review pada Material 632-000118

Experiment	S	S	Average Total Cost (Rp.)	Average Service Level
Existing	-	-	1,185,867,398	88%
1	4	11	1,795,286,735	92%
2	4	18	2,070,507,461	93%
3	4	16	1,972,806,226	92%
4	4	14	1,886,594,885	92%
5	4	12	1,776,349,691	91%
6	4	10	1,654,019,316	90%

7	4	8	1,532,181,533	87%
8	4	6	1,389,217,265	78%
9	9	11	1,894,028,815	93%
10	8	11	1,867,072,351	93%
11	7	11	1,832,226,171	93%
12	6	11	1,795,286,735	92%
13	5	11	1,753,573,111	91%
14	4	11	1,725,633,691	91%
15	3	11	1,676,898,242	89%

Tabel 4. 39 Skenario Perbaikan Continuous Review pada Material 626-007278

Experiment	S	S	Average Total Cost (Rp.)	Average Service Level
Existing	-	-	218,974,423	74%
1	38	76	644,021,604	89%
2	38	140	979,586,517	91%
3	38	130	910,706,718	91%
4	38	120	865,777,107	90%
5	38	110	810,171,136	90%
6	38	100	769,928,115	90%
7	38	90	727,150,375	90%
8	38	80	669,063,364	90%
9	70	76	729,895,753	90%
10	60	76	709,573,066	90%
11	50	76	676,459,600	90%
12	40	76	649,931,037	89%
13	30	76	620,136,525	88%
14	20	76	586,603,106	86%
15	10	76	552,581,016	83%

Berikut Pada tabel 4. 40 dibawah dapat dilihat *resume* skenario perbaikan *continuous review* dari ke 10 *spare part* yang diamati sesuai sub-bab sebelumnya.

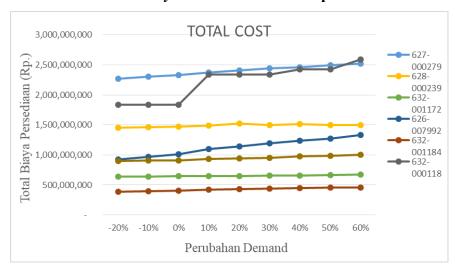
Tabel 4. 40 Resume Skenario Perbaikan Continuous Review

No	Material		S		S	Total Co	Service level		
110	No.	Existing	Simulation	Existing	Simulation	Existing	Simulation	Existing	Simulation
1	627-000279	-	220	-	303	651,253,446	2,332,397,353	84%	95%
2	631-000490	-	10,000	-	13,891	7,455,546,477	82,816,400,435	61%	88%
3	602-001378	-	900	-	1,828	1,939,506,604	9,696,702,891	60%	95%
4	628-000239	-	85	-	300	179,751,657	1,474,232,650	51%	95%
5	631-000542	-	3,000	-	3,965	9,701,657,919	20,315,564,025	89%	95%
6	632-001172	-	42	-	120	233,533,342	645,797,715	84%	92%
7	626-007992	-	31	-	59	729,649,502	1,010,649,354	74%	95%
8	632-001184	-	17	-	55	192,037,565	402,814,694	88%	95%
9	632-000118	-	7	-	11	1,185,867,398	1,832,226,171	88%	93%
10	626-007282	-	38	-	130	218,974,423	910,706,718	74%	91%

4.10 Pengujian Sensitivitas

Pada sub bab ini akan dilakukan pengujian sensitivitas yang mana jumlah pada *demand* masing-masing *spare part* dijadikan percobaan untuk melihat pengaruh dari perubahan *output* yang akan terjadi. *Demand* akan diubah menjadi delapan kondisi yaitu -20%, -15%, -10%, -5%, 0%, +5%, +10%, +15%, +20%. Berikut rekapitulasi hasil pengujian sensitivitas *demand* terhadap material 627-000279.

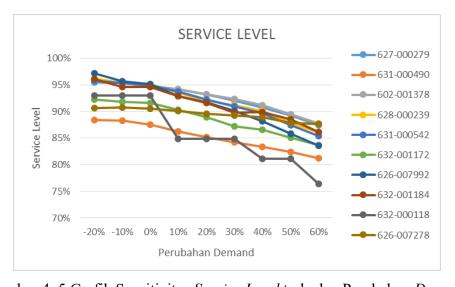
Tabel 4. 41 Hasil Pengujian Sensitivitas *Demand* pada 627-000279


No	Perubahan Demand	Average Total Cost (Rp.)	Average Service Level
1	-20%	2,273,222,538	96%
2	-10%	2,300,596,886	95%
3	0%	2,332,397,353	95%
4	10%	2,375,786,487	94%
5	20%	2,405,755,902	93%
6	30%	2,441,417,263	92%
7	40%	2,461,746,074	91%
8	50%	2,490,947,263	89%
9	60%	2,519,272,380	87%

Pada tabel diatas dapat dilihat perubahan yang terjadi akibat dari pengurangan atau penambahan *demand* pada uji coba tersebut. Berikut disertakan rekapitulasi hasil dari keseluruhan *spare part* yang dilakukan pengujian sensitivitas dengan melihat kecendrungan perubahan masing-masing *output*.

4.10.1 Sensitivitas Total Biaya Persediaan Terhadap Perubahan *Demand*

Pengaruh *demand* terhadap perubahan total biaya persediaan yang terjadi dapat dilihat dari grafik di gambar 4.1 dibawah. Dari grafik tersebut dilihat bahwa semakin besar *demand* dibutuhkan maka semakin besar pula biaya persediaan yang dibutuhkan. Hal ini terjadi karena kenaikan jumlah *demand* akan membutuhkan lebih banyak pembelian sehingga meningkatkan biaya pembelian, dan juga diperlukan lebih banyak banyak biaya juga untuk penyimpanan dikarenkan peningkatan jumlah stok.


4.10.1 Sensitivitas Total Biaya Persediaan Terhadap Perubahan Demand

Gambar 4. 4 Grafik Sensitivitas Biaya Persediaan terhadap Perubahan Demand

4.10.2 Sensitivitas Service Level Terhadap Perubahan Demand

Berikut adalah grafik yang mengambarkan perubahan service level yang dipengaruhi baik dari kenaikan maupun penurunan jumlah demand

Gambar 4. 5 Grafik Sensitivitas Service Level terhadap Perubahan Demand

Berdasarkan grafik diatas dapat disimpulkan bahwa semakin besar kenaikan pada jumlah *demand* maka semakin kecil nilai *service level* yang dihasilkan. Hal ini terjadi karena semakin besar jumlah *demand* maka semakin besar pula usaha yang perlukan untuk memenuhi jumlah *demand* tersebut.

(Halaman ini sengaja dikosongkan)

BAB 5

ANALISIS DAN PEMBAHASAN

Pada bab ini akan membahas mengenai analisis dari hasil penelitian yang telah dilaksanakan. Pembahasan yang dilakukan terkait strategi kebijakan persediaan berdasarkan hasil klasifikasi, analisis kondisi eksisting perusahaan, kemudian dilakukan pembahasan terkait perancangan skenario terhadap rekomendasi perbaikan, dan selanjutnya dilakukan analisis terhadap pengujian sensitivitas, dan yang terakhir dibahas implikasi praktis dari tahapan *spare part* analisis yang telah dilakukan.

5.1 Analisis Kebijakan Persediaan

Pada penelitian ini dalam menentukan perencanaan kebijakan pengendalian persediaan *spare part* listrik dan instrumentasi berdasarkan klasifikasi nilai ADI-CV yang diperoleh. Sebelumnya dalam analisi ABC di dapatkan ada 161 item *spare part* listrik dan 50 item *spare part* instrumentasi yang masuk dalam kelas A. Dari hasil perhitungan ADI-CV didapatkan bahwa pada 10 item *spare part* yang dipilih karena mememiliki historis *stock out*, memiliki nilai ADI ≥ 1.32 dan nilai CV ≥ 0.49 yang berarti ke sepuluh *spare part* (627-000279, 631-000490, 602-001378, 628-000239, 631-000542, 632-001172, 626-007992, 632-001184, 632-000118, 626-007282) tersebut masuk *spare part* dengan klasifikasi *lumpy demand*. Kemudian kebijakan perusahaan terkait waktu pemesanan *spare part* adalah dapat dilakukan kapan saja.

Kebijakan persediaan yang direkomendasikan pada penelitian ini berdasarkan hasil klasifikasi dimana diperoleh hasil *lumpy demand* dan kebijakan pemesanan perusahaan yang dapat dilakukan kapan saja adalah kebijakan persediaan model *probabilistic* dengan pendekatan *continuous review*. Pengendalian persediaan *continuous review* yang dipilih adalah metode (s,S). Pada metode *continuous review* parameter persediaan meliputi *reorder point* dan titik pemesanan maksimal.

5.2 Analisis Kebijakan Perusahaan Kondisi Awal dan Skenario Rekomendasi Perbaikan

Pada kondisi awal, perusahaan tidak mempunya kebijakan dalam melakukan pengendalian persediannya. Jumlah permintaan didasarkan pada kebutuhan *user* pada saat membuat order di SAP dan penentuan jumlah minimal stok yang ditetapkan belum ada patokan yang baku. Sehingga sering terjadi *stock out* apabila *spare part* tersebut tiba-tiba dibutuhkan terutama pada *spare part* jenis *electrical* dan *instrumentation*. Pada sistem persediaan kondisi awal/eksisting didapatkan hasil perhitungan biaya persediaan diperoleh hasil sebesar Rp. 651,253,446 untuk 627-000279. Adapun nilai *service level* sebesar 84%. Nilai *service level* tersebut dipengaruhi oleh jumlah *stock out* yang terjadi, semakin besar *stock out* yang terjadi maka akan semakin kecil *service level*nya. Angka 84% mengindikasikan masih banyak terjadi *stock out* pada *spare part* ini sehingga ruang untuk menaikkan *service level*nya masih sangat terbuka.

Rekomendasi perbaikan yang dilakukan merupakan hasil dari perhitungan dengan pendekatan Hadley-within. Sehingga karena bersifat pendekatan, masih dapat memungkinkan untuk mencari nilai parameter input yang lebih optimal. Salah satunya yaitu dengan merancang skenario pada rekomendasi perbaikan yang telah dihitung sebelumnya. Adapun perencanaan skenario ini dilakukan dengan mengubah nilai parameter *reorder point* dan *maksumum inventory level* dengan tujuan mendapatkan *output* yang dikehendaki yaitu *service level* di angka 95%. Perencanaan skenario yang dilakukan pada masing-masing *spare part* berjumlah 15. Kemudian dicari rekomendasi perbaikan yang sesuai dengan *output* yang diharapkan atau yang paling mendekati.

Adapun hasil perbaikan 627-000279 mampu menaikkan service level dari 84% pada kondisi awal/eksisting meningkat menjadi 91% dengan total biaya *inventory* sebesar Rp. 2,009,044,304. Setelah dilakukan perencanaan skenario sebanyak 15 kali, maka diperoleh skenario terbaik sesuai target nilai service level diangka 95% dengan nilai s = 220 dan S = 303, dengan biaya total *inventory* sebesar Rp. 2,332,397,353. Pada perencanaan skenario perbaikan ada beberapa skenario yang mencapai service level 95%, namun memiliki total biaya

inventory yang lebih besar dari skenarion yang terpilih. Adapun untuk rekapitulasi dari keseluruhan *spare part* terpilih terhadap kondisi awal/eksisting maupun kondisi perbaikan berdasarkan skenario yang terpilih dapat dilihat di tabel 5.1.

Tabel 5. 1 Rekapitulasi Kondisi Eksisting dan Rekomendasi Skenario Perbaikan

No	Material	Total Cost e	existing (Rp.)	Servi	ice level
No No.		Existing Simulation		Existing	Simulation
1	627-000279	651,253,446	2,332,397,353	84%	95%
2	631-000490	7,455,546,477	82,816,400,435	61%	88%
3	602-001378	1,939,506,604	9,696,702,891	60%	95%
4	628-000239	179,751,657	1,474,232,650	51%	95%
5	631-000542	9,701,657,919	20,315,564,025	89%	95%
6	632-001172	233,533,342	645,797,715	84%	92%
7	626-007992	729,649,502	1,010,649,354	74%	95%
8	632-001184	192,037,565	402,814,694	88%	95%
9	632-000118	1,185,867,398	1,832,226,171	88%	93%
10	626-007282	218,974,423	910,706,718	74%	91%

Dari tabel diatas dapat dilihat bahwa ada 6 spare part yang mencapai service level 95% sesuai yang diharapkan. Dan ada 4 spare part yang service levelnya 88% - 93%, spare part ini memiliki lead time yang lama dan ditambah stok awal yang tidak ada sehingga peluang untuk terjadinya stock out di awal periode sangat besar mengakibatkan service level tidak mampu mencapai 95%. Adapun untuk biaya inventory yang meningkat dari skenario rekomendasi perbaikan dibandingkan dengan kondisi awal/eksisting disebabkan karena adanya peningkatan jumlah pesanan dan peningkatan jumlah stok dalam rangka untuk mengurangi jumlah shortage sehingga dapat meningkatkan service level.

5.3 Analisis Pengujian Sensitivitas

Pada pengujian sensitivitas yang dilakukan ini bertujuan untuk mengetaui pengaruh *output* yang dihasilkan terhadap perubahan *demand* dengan kondisi yang sama. Kondisi yang sama disini maksudnya adalah parameter pengendalian yang terjadi ketika posisi +0%. Semakin besar jumlah *demand* maka semakin besar pula total biaya persediaan, hal ini karena diperlukan

penambahan biaya untuk melakukan penambahan jumlah pemesanan, penambahan biaya pembelian materialnya, dan juga biaya penyimpanan.

Selain itu dampak ketika kenaikan *demand* adalah bertambahnya kejadian *shortage*. Ketika *shortage* meningkat maka *service level* yang dicapai akan bertambah kecil. *Shortage* bertambah dikarenakan kenaikan *demand* tidak dibarengi dengan perubahan kebijakan persediaan yaitu perubahan pada parameter berapa jumlah stok akhir untuk kebijakan *reorder point* dilakukan dan berapa jumlah pemesanan yang harus dilakukan, dimana ini ditentukan oleh nilai dari parameter maksimum *inventory*nya.

5.4 Implikasi Praktis

Terdapat beberapa implikasi praktis dari penelitian ini yaitu terkait klasifikasi ABC. Dimana bagi praktisi dilapangan dirasakan sudah cukup baik dalam melakukan analisa ABC ini karena sudah mampu untuk lebih mengfokuskan ke *spare part* yang memiliki nilai yang besar dan sering dipakai. Di sistem SAP yang dipakai oleh perusahaan, terdapat 51,047 item *spare part* yang tercatat sehingga tentunya akan membutuhkan banyak waktu, tenaga dan biaya jika kesemua *spare part* yang tercatat tersebut akan dianalisa terkait kebijakan persediaanya. Selain itu, bagi praktisi metode perhitungan dalam klasifikasi ABC tersebut tidak begitu sulit dan data yang diperlukan dapat dengan cepat diperoleh disistem, seperti data pemakaian dan harga perolehan terakhir. Kemudian selama ini dalam sistem SAP yang digunakan perusahaan kolom untuk klasifikasi sudah ada namun belum dimanfaatkan sehingga hasil penelitian ini dapat dipakai untuk memasukkan data klasifikasi ke sistem tersebut.

Implikasi praktis dari kondisi perbaikan adalah dapat mengurangi stock out yang terjadi dengan adanya perencanaan persediaan spare part ini. Proses produksi akan dapat berjalan lebih lancar dari sebelumnya, dimana jika ada terjadi kerusakan tiba-tiba maka tidak diperlukan waktu yang lama untuk perbaikan karena spare part selalu tersedia dengan adanya kebijakan reorder point dan maksimum inventory yang dijalankan oleh unit pengadaan. Selain itu, implikasi lainnya dengan terjaganya ketersediaan spare part untuk peralatan produksi adalah berkurangnya star-stop peralatan. Hal ini sejalan dengan salah

satu Key Performance Indikator dari unit pemeliharaan yaitu durasi unplane maintenance terhadap total hari operasi peralatan yang saat ini ditargetkan sekitar 5%. Hal ini terjadi karena unit pemeliharaan mesin pabrik, dapat melakukan pekerjaan maintenance dengan komperhensive, peralatan-peralatan yang sudah ada indikasi kerusakan dapat segera diganti pada saat ada waktu jeda produksi yang telah terschedule sehingga mengurangi kejadian star-stop yang tidak diinginkan, misalnya pada saat permintaan produk semen yang lagi tinggi. Pengendalian persediaan yang dilakukan pada penelitian ini dilakukan pada 10 sample spare part listrik dan instrumentasi. Perusahaan dapat melakukan perhitungan pengendalian seperti yang dilakukan pada penelitian ini untuk spare part listrik dan instrumentasi lainnya yang tidak dihitung pada penelitian ini. Dan juga dapat digunakan untuk jenis spare part yang lain jika dibutuhkan yang memiliki kondisi dan karakteristik yang sama dengan spare part pada penelitian ini, seperti untuk jenis spare part mesin, spare part alat berat, spare part alat medis, dan lain-lain sesuai keinginan dan kebutuhan perusahaan.

Implikasi praktis yang lain adalah dapat menurunkan indeks pemakaian listrik di pabrik. Dimana dengan berkurangnya *star-stop* peralatan dan waktu penyelesaian perbaikan mesin yang sedikit karena tersedianya selalu *spare part* pengganti. Dimana diketahui bersama *star* awal peralatan memerlukan konsumsi lisrik yang lebih banyak (sekitar 1,8X operasi normalnya). Jika ini sering terjadi pada peralatan-peralatan yang konsumsi listriknya besar seperti peralatan *EP Fan Rawmill* Unit 5 yang kebutuhan powernya sebesar 7,600 kW, maka tentunya akan berpengaruh signifikan terhadap total indek listrik pabrik, dimana target perusahaan sudah ada untuk nilai indek listrik ini per unit operasi seperti untuk unit Finish Mill 5 targetnya adalah 35 Kwh/ton

(Halaman ini sengaja dikosongkan)

BAB 6

KESIMPULAN DAN SARAN

Pada bab ini akan dijelaskan mengenai kesimpulan dan saran yang dapat ditarik dari hasil penelitian. Kesimpulan merupakan pernyataan yang menjawab tujuan dari penelitian yang telah dirumuskan di awal. Saran merupakan masukan yang diberikan berdasarkan penelitian yang telah dilakukan, baik untuk tempat penelitian maupun penelitian selanjutnya.

6.1 Kesimpulan

Beberapa kesimpulan yang dapat diambil dari penelitian ini antara lain sebagai berikut:

- Dari hasil penelitian dapat diketahui kuantitas pemesanan dan titik pemesanan kembali yang optimal dari 10 material yang di teliti sebagai berikut:
 - Material 627-000279: s = 220, S = 303.
 - Material 631-000490: s = 10,000, S = 13,891
 - Material 602-001378: s = 900, S = 1,828
 - Material 628-000239: s = 85, S = 300
 - Material 631-000542, s = 3,000, S = 3,965
 - Material 632-001172, s = 42, S = 120
 - Material 626-007992, s = 31, S = 59
 - Material 626-001184, s = 17, S = 55
 - Material 632-000118, s = 7, S = 11
 - Material 626-007282: s = 38, S = 130
- 2. Hasil penelitian menunjukkan bahwa nilai-nilai simulasi menghasilkan service level sesuai target Perusahaan yaitu diangka 95% pada pada material 627-000279, 602-001378, 628-00239, 631-000542, 626-007992, 632-001184. Sedangkan sisanya juga menunjukkan nilai service level yang meningkat diangka 88% 93%. Adapun nilai total cost menunjukkan kenaikan di semua material yang diteliti. Kenaikan total

cost ini disebabkan adanya kenaikan yang cukup signifikan biaya penyimpanan dan biaya pembelian untuk mengurangi shortage sehingga bisa meningkatkan service level secara signifikan.

6.2 Saran

Adapun saran yang daapt diberikan dalam penelitian ini dan dapat digunakan untuk perbaikan dalam penelitian selanjutnya adalah sebagai berikut:

- 1. Penelitian berikutnya dapat memasukkan dalam perhitungan terkait umur peralatan dan periode perbaikan besar (*overhaul*).
- 2. Disarankan agar perusahaan menggunakan parameter *reorder point* dan *maksimum inventory* dalam proses penyediaan suku cadang sehingga dapat mengurangi terjadinya *stock out*.

DAFTAR PUSTAKA

- Champan, SN, Arnold, JRT, Gatewood AK, Clive, LM, (2016), *Introduction to Material Management*, 8th edition, Pearson, USA
- Chopra, Sunil & Meindl, P. (2016), Supply Chain Management, 6th edition, Pearson, USA
- Dhamayanti, A.A.P (2010), Pengendalian Persediaan Spare Part Base Transceiver Station (BTS) dengan Pendekatan Base Stock (R,s,S), TA, Institut Teknologi Sepuluh Nopember, Surabaya.
- Graisa, M and Al-Habaibeh, A. (2011), "An Investigation into Current Production Challenges Facing The Libyan Cement Industry and the Need for Innovative Total Productive Maintenance (TPM) Strategy", Journal of Manufacturing Technology Management Vol. 22 No. 4, pp. 541-558.
- Hidayat, Agriananta Fahmi (2012) Pengendalaian persediaan material dengan pendekatan continuous review (s,S) (studi kasus: PT. PLN Persero APJ Gresik). Masters thesis, Institut Teknologi Sepuluh Nopember.
- Kharisma, Gema, (2013), "Pengklasifikasian Dan Peramalan Spare Part Di Industri Pupuk (Studi Kasus: PT. Petrokimia Gresik). *Undergraduate Thesis of Industrial Engineering ITS*.
- Kurniasari, ARD. (2015), "Analisis Pengendalian Persediaan Bahan Baku Menggunakan Metode *Continuous Review* (s,S) Dengan Pertimbangan *Component Commonality* (Studi Kasus: PT. Petrokimia Gresik). *Teknik Industri ITS*. Hal. 13-18
- Kurniyah, Wilda, (2009), "Analisis Pemilihan Metode Pengendalian Persediaan Material *Consumable* Pesawat B737 Berdasarkan Klasifikasi Material (Studi Kasus Di PT GMF Aero Asia). *Teknik Industri ITS*. Hal. 4
- Mahardika, Ardiansyah & Yunus, (2015), "Pengendalian Persediaan untuk Mengurangi Biaya Total Persediaan dengan Pendekatan Metode Periodic

- Review Power Approximation pada Suku Cadang Consumable", Rekayasa Sistem Industri, Vol. 4, No. 1, hal. 11
- Mukherjee & Dey (2008). "Decision support system for spare parts warehousing", Cost Engineering, 50 (5), pp. 24-34.
- Octaviana, Meriem (2018), "Kebijakan Persediaan Spare Parts (Studi Kasus: Pabrik Perakitan Sepeda Motor)", *Teknik ITS*, Vol. 7, No. 1, hal A46
- Ratna, Arif & Zefry (2013), "Pengendalian Persediaan *Spare Parts* Mesin D3E Dengan Pendekatan *Inventory Probabilistic Models*. Jurnal Rekayasa Dan Manajemen Sistem industri Vol.3 No.1 Teknik Industri Universitas Brawijaya
- Pujawan, IN & Mahendrawati, ER, (2010), Supply Chain Management, Guna Widya, Surabaya
- Santarisi and Almomany (2005), "Mathematical modelling of wear rate of non-repairable parts and their replacement strategies: Cement mill liners as a case study", Journal of Quality in Maintenance Engineering, Vol. 11 No. 1, pp. 68-81
- Setyaningsih & Basri (2013), "Comparison Continuous and Periodic Review Policy Inventory Management System Formula and Enteral Food Supply in Public Hospital Bandung". International Journal of Innovation, Management and Technology, Vol. 4, No. 2
- Vanany, I. (2005). Aplikasi pemetaan aliran nilai di industri kemasan semen. *Jurnal Teknik Industri*, 7(2), 127-137.
- Wahyuni, Titis, (2015). "Pengunaaan Analisis ABC Untuk Pengendalian Persediaan Barang Habis Pakai: Studi Kasus di Program Vikasi UI". Jurnal Vokasi Indonesia. Vol 3. Nomor 2, pp. 3-4
- Waters, D, (2003), *Inventory Control and Management*, 2nd edition, John Wiley & Sons Ltd, England

LAMPIRAN

LAMPIRAN A. DATA PEMAKAIAN SPARE PART

Data Pemakian Spare Part Periode Tahun 2017 – 2019 (data dari sistem SAP)

No	Material No.	Material Description	No. of Issued	Last Change	Material Type	ABC Indicator	Reorder Point	Safety Stock	Max. Stock level
1	604-000440	CRANE,MONORAIL:5TON	1	2/24/2017	ZTOL		0	0	0
2	631-003885	UNITRONIC LAN UTP 200MHz,CAT5E	1	5/29/2017	ZSPG		0	0	0
3	631-003946	CABLE PROFI NET ETHERLINE Y UL	3	5/29/2017	ZSPG		0	0	0
4	609-000394	GROUND ROD COPPER	6	6/5/2017	ZSPG		0	0	0
5	626-007092	SILENCER:G1/2IN CONNECTION TYPE	2	6/5/2017	ZSPG		0	0	0
6	626-008841	TERMINAL BOX FOR LIGHTING &	14	6/5/2017	ZSPG		0	0	0
7	631-001180	CONDENSER:3.25UF;125V	1	6/5/2017	ZSPG		0	0	0
8	631-003575	STRAIG. LADD,TYPE SLU,HOTDIP	8	6/5/2017	ZSPG		0	0	0
9	631-003601	STRAIGHTTRAY, TYPE SLU STEELHOT	9	6/5/2017	ZSPG		0	0	0
10	631-003628	COV.STRAG.LADD,W800XH127XL3000	57	6/5/2017	ZSPG		0	0	0
11	631-003629	COV.STRAG.LADD,W400XH127XL3000	23	6/5/2017	ZSPG		0	0	0
12	631-003630	COV.STRAG.LADD,W200XH127XL3000	10	6/5/2017	ZSPG		0	0	0
13	631-003661	COVER LADDER, CLAMP, W800XH127	2	6/5/2017	ZSPG		0	0	0
14	631-003667	TERMINAL BOX PA, LOKAL	12	6/5/2017	ZSPG		0	0	0

1.7	(21 002051	CADLE CHOE FOR LA CARLE	1.7	6/5/0015	ZCDC	0	0	0
15	631-003851	CABLE SHOE FOR LV CABLE	17	6/5/2017	ZSPG	0	0	0
16	631-003853	CABLE SHOE FOR LV CABLE	8	6/5/2017	ZSPG	0	0	0
17	631-003879	CABLE SHOE FOR LV CABLE	6	6/5/2017	ZSPG	0	0	0
18	631-003889	CABLE GLAND, UNARMOURED TYPE	11	6/5/2017	ZSPG	0	0	0
19	610-000016	CLIP,WIRE ROPE:G-450;7/8IN;DIN 1142	3	6/7/2017	ZSPG	4	0	8
20	615-002627	LOCNUT,BIBIR BESI:M10	1	6/7/2017	ZSPG	6	0	11
21	616-002843	TEFLON SHEET:2MM;1200MM;2400MM	1	6/7/2017	ZSPG	0	0	0
22	616-002888	V-SEAL:13MM;20MM;8MM	1	6/7/2017	ZSPG	2	0	4
23	616-002899	V-SEAL:25MM;33MM;9MM	1	6/7/2017	ZSPG	1	0	2
24	620-000307	COVER,COUPLING:1040 T10	1	6/7/2017	ZSPG	2	0	4
25	620-000385	GRID,TAPERED:1160 T10	1	6/7/2017	ZSPG	0	0	1
26	623-004289	BEARING HOUSING	1	6/7/2017	ZSPG	0	0	0
27	628-000037	BALLAST:1XPLCBPI 13L05;13W;220VAC	1	6/7/2017	ZSPG	4	0	8
28	628-000090	BULB,WHITE	9	6/7/2017	ZSPG	20	0	40
29	633-000126	CLIP,WIRE:1-1/4IN	2	6/7/2017	ZSPG	6	0	12
30	623-004175	BEARING:CH 3140	3	7/5/2017	ZSPG	0	0	0
31	615-000355	BOLT,SOCKET SCREW PW:3/8IN;1- 1/4IN;16GRD	3	7/19/2017	ZSPG	50	0	100
32	615-000744	BOLT,HEX HD,NUT,PW:M40;170MM;GDE 10.9	1	7/19/2017	ZSPG	15	0	30
33	615-000818	BOLT,HEX HD:S45C;M32;2MM;160MM;CARBON	1	7/19/2017	ZSPG	0	0	0
34	615-001038	BOLT,SQ HD:M24;70MM;GDE 10.9	2	7/19/2017	ZSPG	25	0	50
35	615-001045	BOLT,SQ HD:M30;2MM;300MM	4	7/19/2017	ZSPG	2	0	4
36	615-001152	BOLT,STUD:M22;2.5MM;70MM;SS;NUT	1	7/19/2017	ZSPG	10	0	20

27	615 001577	DOLT HEV MITM INC.7DIC	3	7/10/2017	ZCDC	1	Λ	8
37	615-001577	BOLT,HEX,NUT:M 1INC;7INC	3	7/19/2017	ZSPG	4	0	
38	615-001686	BOLT:M42;230MM;GDE 12.9;NUT	1	7/19/2017	ZSPG	2	0	4
39	615-001787	CHEMICAL ANCHOR BOLT M22 X 250	1	7/19/2017	ZSPG	0	0	0
40	615-002748	BOLT HTB (HITAM),M20X50,NUT	2	7/19/2017	ZSPG	0	0	0
41	615-002766	HE.HEAD SCREW,C/W. NUT+WASHER	1	7/19/2017	ZSPG	0	0	0
42	615-002774	BOLT SCREW, C/W. NUT & WASHER	2	7/19/2017	ZSPG	0	0	0
43	615-002775	BOLT SCREW,C/W. NUT & WASHER	2	7/19/2017	ZSPG	0	0	0
44	615-002779	BOLT C/W. NUT AND WASHER	2	7/19/2017	ZSPG	0	0	0
45	615-002796	BOLT & NUT 8.8GALV + PW,20X50	1	7/19/2017	ZSPG	0	0	0
46	615-002798	BOLT & NUT 8.8GALV + PW,24X340	1	7/19/2017	ZSPG	0	0	0
47	615-002838	BOLT M12X55 MOT+BAUT+PLATE BAJ	1	7/19/2017	ZSPG	0	0	0
48	615-002857	BOLT SCREW M16X120 GD.5.6THREF	2	7/19/2017	ZSPG	0	0	0
49	615-002870	BOLT M22X120,GRADE 8.8	2	7/19/2017	ZSPG	0	0	0
50	615-002872	BOLT M22X35	2	7/19/2017	ZSPG	0	0	0
51	615-002873	BOLT,C/W.NUT&WASHER,DRAT KASAR	1	7/19/2017	ZSPG	0	0	0
52	615-002982	BOLT	1	7/19/2017	ZSPG	0	0	0
53	631-003676	PVC CONDUIT,HIGH IMPACT,3/4INC	21	8/29/2017	ZSPG	0	0	0
54	631-003677	PVC CONDUIT,ACCES.PVC SADDLE	4	8/29/2017	ZSPG	0	0	0
55	631-003682	T-DOOS 3WAY,PVC CONDUIT ACCES	5	8/29/2017	ZSPG	0	0	0
56	609-000166	CABLE,POWER;1CORE;95MM2;18/30KV	1	10/12/2018	ZSPG	0	0	0
57	616-002844	TEFLON SHEET:4MM;1000MM;1500MM	1	11/7/2018	ZSPG	3	0	6
58	616-002845	TEFLON SHEET:6MM;1200MM;2400MM	4	11/7/2018	ZSPG	3	0	6
59	606-001662	WIRE,FUSE:45010	1	11/15/2018	ZSPG	0	0	0

60	615-000177	BOLT,DOUBLE	2	3/19/2019	ZSPG	70	0	140
		HD:M25;2MM;30MM;90MM;NUT						
61	615-000237	BOLT,HEX	1	3/19/2019	ZSPG	0	0	0
		SCREW:75111401;20MM;80MM						
62	615-000691	BOLT,HEX	5	3/19/2019	ZSPG	100	0	200
		HD,NUT,PW:M42;160MM;GDE 12.9						
63	615-000700	BOLT,HEX HD,NUT,PW:M26;250M;	3	3/19/2019	ZSPG	50	0	100
64	615-000725	BOLT,HEX HD,NUT,PW:M33;110MM;SS	4	3/19/2019	ZSPG	25	0	50
65	615-000746	BOLT,HEX	2	3/19/2019	ZSPG	15	0	30
		HD,NUT,PW:M42;150MM;GDE 8.8						
6174	608-000279	PLATE:12MM;4FT;8FT;MILD STEEL	21	10/14/2019	ZSPG	0	0	0
6175	611-001863	PIPE:5IN;6000MM;SCH.80;CS	3	10/14/2019	ZSPG	8	0	16
6176	620-000044	COUPLING SET:N-EUPEX A;250 SIZE	4	10/14/2019	ZSPG	4	0	8
6177	620-000110	COUPLING,FLEX:N-EUPEX A;110 SIZE	12	10/14/2019	ZSPG	8	0	16
6178	620-000111	COUPLING,FLEX:N-EUPEX A;125 SIZE	7	10/14/2019	ZSPG	8	0	16
6179	620-000171	COUPLING,GEAR:G20;1060G SIZE	2	10/14/2019	ZSPG	2	0	4
6180	620-000525	RUBBER INSERT:FOR COUPLING A 140	8	10/14/2019	ZSPG	24	0	48
6181	620-000533	RUBBER INSERT: N-EUPEX A 110	7	10/14/2019	ZSPG	30	0	60
6182	620-000534	RUBBER INSERT: N-EUPEX A 125	12	10/14/2019	ZSPG	24	0	48
6183	622-000533	V-BELT:SPA;1800MM;12.7MM;10MM	10	10/14/2019	ZSPG	8	0	16
6184	622-000542	V-BELT:SPA;2120MM;12.7MM;10MM	13	10/14/2019	ZSPG	12	0	24
6185	623-000744	BEARING,BALL,DG:1 ROW;6322/C3	10	10/14/2019	ZSPG	0	0	0
6186	623-004357	BEARING,BALL:6319/C3VLO241	1	10/14/2019	ZSPG	0	0	0
6187	632-001598	THERMORESISTANCE:W2 PM2-001;P	8	10/14/2019	ZSPG	0	0	0

LAMPIRAN B. PERHITUNGAN KONDISI EKSISTING

a. Nomor Material 627-000279

No	Periode	Stock awal	Receipt (History)	Total Stock	Demand (history)	Shortage	Stock akhir
1	Jan-15	0	0	-	-	0	0
2	Feb-15	0	0	-	-	0	0
3	Mar-15	0	0	-	-	0	0
4	Apr-15	0	0	-	-	0	0
5	May-15	0	0	-	-	0	0
6	Jun-15	0	0	-	-	0	0
7	Jul-15	0	0	-	-	0	0
8	Aug-15	0	0	-	-	0	0
9	Sep-15	0	0	-	-	0	0
10	Oct-15	0	0	-	-	0	0
11	Nov-15	0	0	-	-	0	0
12	Dec-15	0	0	-	-	0	0
13	Jan-16	0	0	-	-	0	0
14	Feb-16	0	0	-	-	0	0
15	Mar-16	0	0	-	-	0	0
16	Apr-16	0	0	-	-	0	0
17	May-16	0	0	-	-	0	0
18	Jun-16	0	0	-	-	0	0
19	Jul-16	0	0	-	-	0	0
20	Aug-16	0	20	20	-	0	20
21	Sep-16	20	0	20	20	0	0
22	Oct-16	0	120	120	-	0	120
23	Nov-16	120	0	120	120	0	0
24	Dec-16	0	150	150	-	0	150
25	Jan-17	150	0	150	150	0	0
26	Feb-17	0	0	1	ı	0	0
27	Mar-17	0	0	ı	-	0	0
28	Apr-17	0	50	50	ı	0	50
29	May-17	50	0	50	50	0	0
30	Jun-17	0	0	-	-	0	0
31	Jul-17	0	0	-	-	0	0
32	Aug-17	0	0	ı	-	0	0
33	Sep-17	0	0	_	-	0	0
34	Oct-17	0	0	-	-	0	0
35	Nov-17	0	0	-	-	0	0
36	Dec-17	0	0	-	-	0	0
37	Jan-18	0	180	180	88	0	92

38	Feb-18	92	48	140	12	0	128
39	Mar-18	128	0	128	-	0	128
40	Apr-18	128	0	128	24	0	104
41	May-18	104	0	104	40	0	64
42	Jun-18	64	0	64	-	0	64
43	Jul-18	64	0	64	-	0	64
44	Aug-18	64	0	64	-	0	64
45	Sep-18	64	0	64	-	0	64
46	Oct-18	64	50	114	-	0	114
47	Nov-18	114	0	114	15	0	99
48	Dec-18	99	0	99	18	0	81
49	Jan-19	81	0	81	-	0	81
50	Feb-19	81	0	81	-	0	81
51	Mar-19	81	0	81	81	0	0
52	Apr-19	0	108	108	168	60	0
53	May-19	0	0	ı	-	0	0
54	Jun-19	0	0	ı	-	0	0
55	Jul-19	0	0	-	-	0	0
56	Aug-19	0	0	-	-	0	0
57	Sep-19	0	0	-	-	0	0
58	Oct-19	0	158	98	158	60	0
59	Nov-19	0	0	ı	-	0	0
60	Dec-19	0	0	ı	40	40	0
	Total		884		984	160	884

= 183,984,502

Biaya Pemesanan = Jumlah Order x Order Cost

= 4,974,072

Biaya Pembelian = Jumlah satuan x Item Price

= 462,294,872

Total Biaya = Biaya Penyimpanan + Biaya Pemesanan +

Biaya Pembelian 651,253,446

Service Level = Jumlah Demand - Jumlah Shortage

Jumlah Demand

= 84%

b. Nomor Material 631-000490

Sesuai pada tabel 4.21

c. Nomor Material 602-001378

No	Periode	Stock awal	Receipt (History)	Total Stock	Demand (history)	Shortage	Stock akhir
1	Jan-15	200	0	200	200	0	0
2	Feb-15	0	0	0	0	0	0
3	Mar-15	0	300	300	0	0	300
4	Apr-15	300	0	300	300	0	0
5	May-15	0	0	0	0	0	0
6	Jun-15	0	0	0	0	0	0
7	Jul-15	0	0	0	0	0	0
8	Aug-15	0	0	0	0	0	0
9	Sep-15	0	0	0	0	0	0
10	Oct-15	0	0	0	0	0	0
11	Nov-15	0	0	0	0	0	0
12	Dec-15	0	700	700	0	0	700
13	Jan-16	700	0	700	700	0	0
14	Feb-16	0	0	0	0	0	0
15	Mar-16	0	0	0	200	200	0
16	Apr-16	0	200	0	0	0	0
17	May-16	0	0	0	0	0	0
18	Jun-16	0	0	0	0	0	0
19	Jul-16	0	0	0	0	0	0
20	Aug-16	0	450	450	200	0	250
21	Sep-16	250	0	250	250	0	0
22	Oct-16	0	0	0	0	0	0
23	Nov-16	0	0	0	0	0	0
24	Dec-16	0	0	0	0	0	0
25	Jan-17	0	250	250	0	0	250
26	Feb-17	250	0	250	250	0	0
27	Mar-17	0	0	0	0	0	0
28	Apr-17	0	0	0	0	0	0
29	May-17	0	0	0	0	0	0
30	Jun-17	0	0	0	0	0	0
31	Jul-17	0	250	250	0	0	250
32	Aug-17	250	0	250	250	0	0
33	Sep-17	0	0	0	0	0	0
34	Oct-17	0	0	0	250	250	0

35	Nov-17	0	0	0	500	500	0
36	Dec-17	0	800	0	250	200	0
37	Jan-18	0	0	0	0	0	0
38	Feb-18	0	250	50	0	0	50
39	Mar-18	50	0	50	0	0	50
40	Apr-18	50	0	50	0	0	50
41	May-18	50	0	50	200	150	0
42	Jun-18	0	0	0	50	50	0
43	Jul-18	0	0	0	0	0	0
44	Aug-18	0	0	0	50	50	0
45	Sep-18	0	250	0	0	0	0
46	Oct-18	0	0	0	0	0	0
47	Nov-18	0	0	0	0	0	0
48	Dec-18	0	0	0	150	150	0
49	Jan-19	0	0	0	0	0	0
50	Feb-19	0	0	0	0	0	0
51	Mar-19	0	0	0	0	0	0
52	Apr-19	0	150	0	100	100	0
53	May-19	0	0	0	0	0	0
54	Jun-19	0	0	0	0	0	0
55	Jul-19	0	0	0	0	0	0
56	Aug-19	0	150	50	100	50	0
57	Sep-19	0	0	0	0	0	0
58	Oct-19	0	500	450	0	0	450
59	Nov-19	450	0	450	250	0	200
60	Dec-19	200	0	200	50	0	150
	Total		4250		4300	1700	2700
				-			

= 314,558,460

Biaya Pemesanan = Jumlah Order x Order Cost

9,948,144

Biaya Pembelian = Jumlah satuan x Item Price

= 1,615,000,000

Total Biaya = Biaya Penyimpanan + Biaya Pemesanan +

Biaya Pembelian

= 1,939,506,604

Service Level = Jumlah Demand - Jumlah Shortage

Jumlah Demand

= 60%

d. Nomor Material 628-000239

No	Periode	Stock awal	Receipt (History)	Total Stock	Demand (history)	Shortage	Stock akhir
1	Jan-15	1		1		0	1
2	Feb-15	1		1		0	1
3	Mar-15	1		1		0	1
4	Apr-15	1		1		0	1
5	May-15	1		1		0	1
6	Jun-15	1		1		0	1
7	Jul-15	1		1		0	1
8	Aug-15	1		1		0	1
9	Sep-15	1		1		0	1
10	Oct-15	1		1	1	0	0
11	Nov-15	0	3	3		0	3
12	Dec-15	3		3		0	3
13	Jan-16	3		3		0	3
14	Feb-16	3		3		0	3
15	Mar-16	3		3		0	3
16	Apr-16	3		3		0	3
17	May-16	3		3		0	3
18	Jun-16	3		3		0	3
19	Jul-16	3		3		0	3
20	Aug-16	3		3		0	3
21	Sep-16	3		3		0	3
22	Oct-16	3		3		0	3
23	Nov-16	3		3		0	3
24	Dec-16	3		3		0	3
25	Jan-17	3		3		0	3
26	Feb-17	3		3		0	3
27	Mar-17	3		3		0	3
28	Apr-17	3		3		0	3
29	May-17	3		3		0	3
30	Jun-17	3		3		0	3
31	Jul-17	3		3		0	3
32	Aug-17	3		3		0	3
33	Sep-17	3		3		0	3
34	Oct-17	3		3		0	3
35	Nov-17	3		3	3	0	0
36	Dec-17	0		0		0	0
37	Jan-18	0		0		0	0
38	Feb-18	0		0		0	0

39	Mar-18	0		0		0	0
40	Apr-18	0		0		0	0
41	May-18	0		0		0	0
42	Jun-18	0		0		0	0
43	Jul-18	0		0		0	0
44	Aug-18	0		0		0	0
45	Sep-18	0		0		0	0
46	Oct-18	0		0		0	0
47	Nov-18	0		0	50	50	0
48	Dec-18	0	65	15	15	0	0
49	Jan-19	0	40	40	30	0	10
50	Feb-19	10		10	122	112	0
51	Mar-19	0		0	65	65	0
52	Apr-19	0	70	0		107	0
53	May-19	0	207	100	90	0	10
54	Jun-19	10	50	60	60	0	0
55	Jul-19	0	70	70	70	0	0
56	Aug-19	0		0		0	0
57	Sep-19	0	190	190	100	0	90
58	Oct-19	90		90	110	20	0
59	Nov-19	0	50	30		0	30
60	Dec-19	30		30		0	30
	Total		745		716	354	251

= 28,964,095

Biaya Pemesanan = Jumlah Order x Order Cost

= 9,237,562

Biaya Pembelian = Jumlah satuan x Item Price

= 141,550,000

Total Biaya = Biaya Penyimpanan + Biaya Pemesanan +

Biaya Pembelian

= 179,751,657

Service Level = Jumlah Demand - Jumlah Shortage

Jumlah Demand

= 51%

e. Nomor Material 631-000542

No	Periode	Stock	Receipt	Total	Demand	Shortage	Stock
		awal	(History)	Stock	(history)		akhir
1	Jan-15	0		0		0	0
2	Feb-15	0		0		0	0
3	Mar-15	0		0		0	0
4	Apr-15	0		0	200	200	0
5	May-15	0		0		0	0
6	Jun-15	0	500	300		0	300
7	Jul-15	300		300	300	0	0
8	Aug-15	0		0		0	0
9	Sep-15	0		0		0	0
10	Oct-15	0		0		0	0
11	Nov-15	0	1000	1000	300	0	700
12	Dec-15	700		700	500	0	200
13	Jan-16	200		200		0	200
14	Feb-16	200		200		0	200
15	Mar-16	200		200		0	200
16	Apr-16	200	1500	1700	300	0	1400
17	May-16	1400		1400	1000	0	400
18	Jun-16	400	2500	2900	200	0	2700
19	Jul-16	2700		2700	100	0	2600
20	Aug-16	2600		2600	200	0	2400
21	Sep-16	2400		2400	900	0	1500
22	Oct-16	1500		1500	802	0	698
23	Nov-16	698		698	500	0	198
24	Dec-16	198	3000	3198	200	0	2998
25	Jan-17	2998		2998	2300	0	698
26	Feb-17	698		698	500	0	198
27	Mar-17	198		198		0	198
28	Apr-17	198	6000	6198	500	0	5698
29	May-17	5698	500	6198	1000	0	5198
30	Jun-17	5198		5198		0	5198
31	Jul-17	5198		5198	150	0	5048
32	Aug-17	5048		5048	750	0	4298
33	Sep-17	4298		4298	100	0	4198
34	Oct-17	4198		4198	1200	0	2998
35	Nov-17	2998		2998	1000	0	1998
36	Dec-17	1998		1998	2800	802	0
37	Jan-18	0	600	0	100	302	0
38	Feb-18	0		0	500	500	0
39	Mar-18	0	1000	198		0	198
40	Apr-18	198		198		0	198

41	May-18	198	500	698		0	698
42	Jun-18	698		698	400	0	298
43	Jul-18	298		298	500	202	0
44	Aug-18	0		0		0	0
45	Sep-18	0		0		0	0
46	Oct-18	0		0		0	0
47	Nov-18	0		0		0	0
48	Dec-18	0		0		0	0
49	Jan-19	0		0		0	0
50	Feb-19	0		0		0	0
51	Mar-19	0	1000	798	600	0	198
52	Apr-19	198		198		0	198
53	May-19	198		198	200	2	0
54	Jun-19	0		0		0	0
55	Jul-19	0		0		0	0
56	Aug-19	0		0		0	0
57	Sep-19	0		0		0	0
58	Oct-19	0		0		0	0
59	Nov-19	0		0		0	0
60	Dec-19	0		0		0	0
	Total		18100		18,102	2008	54210

= 6,198,315,377

Biaya Pemesanan = Jumlah Order x Order Cost

7,105,817

Biaya Pembelian = Jumlah satuan x Item Price

=

162,900,000

Total Biaya = Biaya Penyimpanan + Biaya Pemesanan +

Biaya Pembelian

= 6,368,321,194

Service Level = Jumlah Demand - Jumlah Shortage

Jumlah Demand

= 89%

f. Nomor Material 632-001172

No	Periode	Stock awal	Receipt (History)	Total Stock	Demand (history)	Shortage	Stock akhir
1	Jan-15	0	0	0	0	0	0
2	Feb-15	0	0	0	0	0	0
3	Mar-15	0	0	0	0	0	0

4	Apr-15	0	0	0	0	0	0
5	May-15	0	15	15	0	0	15
6	Jun-15	15	0	15	6	0	9
7	Jul-15	9	0	9	5	0	4
8	Aug-15	4	0	4	3	0	1
9	Sep-15	1	0	1	0	0	1
10	Oct-15	1	0	1	0	0	1
11	Nov-15	1	0	1	1	0	0
12	Dec-15	0	0	0	0	0	0
13	Jan-16	0	0	0	0	0	0
14	Feb-16	0	0	0	0	0	0
15	Mar-16	0	0	0	0	0	0
16	Apr-16	0	0	0	0	0	0
17	May-16	0	0	0	0	0	0
18	Jun-16	0	0	0	0	0	0
19	Jul-16	0	0	0	0	0	0
20	Aug-16	0	0	0	0	0	0
21	Sep-16	0	0	0	25	25	0
22	Oct-16	0	55	30	20	0	10
23	Nov-16	10	20	30	12	0	18
24	Dec-16	18	0	18	6	0	12
25	Jan-17	12	0	12	4	0	8
26	Feb-17	8	0	8	8	0	0
27	Mar-17	0	0	0	0	0	0
28	Apr-17	0	45	45	32	0	13
29	May-17	13	22	35	28	0	7
30	Jun-17	7	73	80	8	0	72
31	Jul-17	72	20	92	21	0	71
32	Aug-17	71	20	91	35	0	56
33	Sep-17	56	0	56	7	0	49
34	Oct-17	49	0	49	9	0	40
35	Nov-17	40	0	40	1	0	39
36	Dec-17	39	0	39	19	0	20
37	Jan-18	20	0	20	6	0	14
38	Feb-18	14	0	14	4	0	10
39	Mar-18	10	0	10	7	0	3
40	Apr-18	3	0	3	0	0	3
41	May-18	3	0	3	3	0	0
42	Jun-18	0	0	0	0	0	0
43	Jul-18	0	0	0	0	0	0
44	Aug-18	0	0	0	0	0	0
45	Sep-18	0	0	0	0	0	0
46	Oct-18	0	0	0	0	0	0
47	Nov-18	0	0	0	0	0	0

48	Dec-18	0	0	0	0	0	0
49	Jan-19	0	0	0	0	0	0
50	Feb-19	0	0	0	0	0	0
51	Mar-19	0	0	0	0	0	0
52	Apr-19	0	0	0	0	0	0
53	May-19	0	10	10	25	15	0
54	Jun-19	0	0	0	0	0	0
55	Jul-19	0	0	0	0	0	0
56	Aug-19	0	15	0	0	0	0
57	Sep-19	0	15	15	15	0	0
58	Oct-19	0	0	0	0	0	0
59	Nov-19	0	0	0	0	0	0
60	Dec-19	0	0	0	10	10	0
	Total		310		320	50	476

= 55,927,525

Biaya Pemesanan = Jumlah Order x Order Cost

7,105,817

Biaya Pembelian = Jumlah satuan x Item Price

170,500,000

Total Biaya = Biaya Penyimpanan + Biaya Pemesanan +

Biaya Pembelian

= 233,533,342

Service Level = Jumlah Demand - Jumlah Shortage

Jumlah Demand

= 84%

g. Nomor Material 626-007992

No	Periode	Stock awal	Receipt (History)	Total Stock	Demand (history)	Shortage	Stock akhir
1	Jan-15	0		0		0	0
2	Feb-15	0		0		0	0
3	Mar-15	0		0		0	0
4	Apr-15	0	20	20		0	20
5	May-15	20		20	20	0	0
6	Jun-15	0		0		0	0
7	Jul-15	0		0		0	0
8	Aug-15	0		0		0	0
9	Sep-15	0		0		0	0
10	Oct-15	0		0		0	0
11	Nov-15	0		0		0	0

12	Dec-15	0		0		0	0
13	Jan-16	0		0	10	10	0
14	Feb-16	0		0		0	0
15	Mar-16	0		0		0	0
16	Apr-16	0	34	24	1	0	23
17	May-16	23	10	33	23	0	10
18	Jun-16	10		10		0	10
19	Jul-16	10		10		0	10
20	Aug-16	10		10		0	10
21	Sep-16	10		10		0	10
22	Oct-16	10		10		0	10
23	Nov-16	10		10	10	0	0
24	Dec-16	0		0		0	0
25	Jan-17	0		0		0	0
26	Feb-17	0		0		0	0
27	Mar-17	0		0		0	0
28	Apr-17	0		0		0	0
29	May-17	0		0		0	0
30	Jun-17	0	9	9	3	0	6
31	Jul-17	6	9	15	27	12	0
32	Aug-17	0	6	0		6	0
33	Sep-17	0	23	17		0	17
34	Oct-17	17		17	2	0	15
35	Nov-17	15	9	24	1	0	23
36	Dec-17	23		23	1	0	22
37	Jan-18	22		22		0	22
38	Feb-18	22		22	2	0	20
39	Mar-18	20		20		0	20
40	Apr-18	20		20		0	20
41	May-18	20		20		0	20
42	Jun-18	20		20		0	20
43	Jul-18	20		20		0	20
44	Aug-18	20		20		0	20
45	Sep-18	20		20	2	0	18
46	Oct-18	18		18	1	0	17
47	Nov-18	17		17	1	0	16
48	Dec-18	16		16		0	16
49	Jan-19	16		16	1	0	15
50	Feb-19	15		15	1	0	14
51	Mar-19	14		14		0	14
52	Apr-19	14		14		0	14
53	May-19	14		14		0	14
54	Jun-19	14		14		0	14
55	Jul-19	14		14		0	14

56	Aug-19	14		14		0	14
57	Sep-19	14		14		0	14
58	Oct-19	14		14		0	14
59	Nov-19	14		14		0	14
60	Dec-19	14		14		0	14
	Total		120		106	28	584

= 68,037,830

Biaya Pemesanan = Jumlah Order x Order Cost

4,974,072

Biaya Pembelian = Jumlah satuan x Item Price

=

= 656,637,600

Total Biaya = Biaya Penyimpanan + Biaya Pemesanan +

Biaya Pembelian

= 729,649,502

Service Level = <u>Jumlah Demand - Jumlah Shortage</u>

Jumlah Demand

= 74%

h. Nomor Material 632-001184

No	Periode	Stock awal	Receipt (History)	Total Stock	Demand (history)	Shortage	Stock akhir
		awai	(History)		(instary)		GATT
1	Jan-15	0		0	0	0	0
2	Feb-15	0		0	0	0	0
3	Mar-15	0		0	0	0	0
4	Apr-15	0	3	3	0	0	3
5	May-15	3		3	0	0	3
6	Jun-15	3		3	0	0	3
7	Jul-15	3		3	0	0	3
8	Aug-15	3	10	13	6	0	7
9	Sep-15	7	10	17	3	0	14
10	Oct-15	14	24	38	29	0	9
11	Nov-15	9		9	0	0	9
12	Dec-15	9		9	3	0	6
13	Jan-16	6		6	0	0	6
14	Feb-16	6		6	1	0	5
15	Mar-16	5		5	0	0	5
16	Apr-16	5		5	0	0	5
17	May-16	5		5	0	0	5

18	Jun-16	5		5	0	0	5
19	Jul-16	5		5	0	0	5
20	Aug-16	5		5	0	0	5
21	Sep-16	5	9	14	9	0	5
22	Oct-16	5	6	11	0	0	11
23	Nov-16	11		11	0	0	11
24	Dec-16	11		11	2	0	9
25	Jan-17	9		9	1	0	8
26	Feb-17	8		8	2	0	6
27	Mar-17	6		6	0	0	6
28	Apr-17	6		6	3	0	3
29	May-17	3		3	0	0	3
30	Jun-17	3		3	0	0	3
31	Jul-17	3		3	10	7	0
32	Aug-17	0	15	8	11	3	0
33	Sep-17	0		0	4	4	0
34	Oct-17	0		0	0	0	0
35	Nov-17	0		0	0	0	0
36	Dec-17	0	10	3	0	0	3
37	Jan-18	3		3	5	2	0
38	Feb-18	0		0	0	0	0
39	Mar-18	0		0	0	0	0
40	Apr-18	0		0	0	0	0
41	May-18	0	30	28	15	0	13
42	Jun-18	13		13	0	0	13
43	Jul-18	13		13	2	0	11
44	Aug-18	11		11	0	0	11
45	Sep-18	11		11	0	0	11
46	Oct-18	11		11	0	0	11
47	Nov-18	11		11	1	0	10
48	Dec-18	10		10	0	0	10
49	Jan-19	10		10	0	0	10
50	Feb-19	10		10	2	0	8
51	Mar-19	8		8	5	0	3
52	Apr-19	3		3	0	0	3
53	May-19	3		3	0	0	3
54	Jun-19	3		3	0	0	3
55	Jul-19	3		3	0	0	3
56	Aug-19	3		3	0	0	3
57	Sep-19	3	20	23	6	0	17
58	Oct-19	17		17	5	0	12
59	Nov-19	12		12	0	0	12
60	Dec-19	12		12	6	0	6
	Total		137		131	16	339

= 40,833,330

Biaya Pemesanan (Rp.) = Jumlah Order x Order Cost

6,395,235

Biaya Pembelian (Rp.) = Jumlah satuan x Item Price

144,809,000

Total Biaya (Rp.) = Biaya Penyimpanan + Biaya Pemesanan +

Biaya Pembelian

192,037,565

Service Level = Jumlah Demand - Jumlah Shortage

Jumlah Demand

= 88%

i. Nomor Material 632-000118

No	Periode	Stock awal	Receipt (History)	Total Stock	Demand (history)	Shortage	Stock akhir
1	Jan-15	0		-		0	0
2	Feb-15	0		ı		0	0
3	Mar-15	0	3	3		0	3
4	Apr-15	3		3	3	0	0
5	May-15	0		-		0	0
6	Jun-15	0		-		0	0
7	Jul-15	0		-		0	0
8	Aug-15	0		-		0	0
9	Sep-15	0		-		0	0
10	Oct-15	0		-		0	0
11	Nov-15	0		1		0	0
12	Dec-15	0		ı		0	0
13	Jan-16	0		1		0	0
14	Feb-16	0		-		0	0
15	Mar-16	0		-		0	0
16	Apr-16	0		-		0	0
17	May-16	0		-		0	0
18	Jun-16	0		-		0	0
19	Jul-16	0		-		0	0
20	Aug-16	0		-		0	0
21	Sep-16	0		-		0	0
22	Oct-16	0	4	4	2	0	2
23	Nov-16	2		2	2	0	0
24	Dec-16	0		ı		0	0

25	Jan-17	0		-		0	0
26	Feb-17	0		_		0	0
27	Mar-17	0		-		0	0
28	Apr-17	0	3	3	3	0	0
29	May-17	0	_	-	_	0	0
30	Jun-17	0		-		0	0
31	Jul-17	0		-		0	0
32	Aug-17	0		-		0	0
33	Sep-17	0		-	1	1	0
34	Oct-17	0		-		0	0
35	Nov-17	0	3	2		0	2
36	Dec-17	2		2	2	0	0
37	Jan-18	0		-	1	1	0
38	Feb-18	0	3	2		0	2
39	Mar-18	2		2		0	2
40	Apr-18	2		2		0	2
41	May-18	2		2		0	2
42	Jun-18	2		2		0	2
43	Jul-18	2		2	1	0	1
44	Aug-18	1		1		0	1
45	Sep-18	1		1		0	1
46	Oct-18	1		1		0	1
47	Nov-18	1		1		0	1
48	Dec-18	1		1		0	1
49	Jan-19	1		1		0	1
50	Feb-19	1		1		0	1
51	Mar-19	1		1		0	1
52	Apr-19	1		1		0	1
53	May-19	1		1		0	1
54	Jun-19	1		1		0	1
55	Jul-19	1		1		0	1
56	Aug-19	1		1		0	1
57	Sep-19	1		1		0	1
58	Oct-19	1		1		0	1
59	Nov-19	1		1		0	1
60	Dec-19	1		1	1	0	0
	Total		16		16	2	34

= 18,314,490

Biaya Pemesanan (Rp.) = Jumlah Order x Order Cost

= 3,552,908

Biaya Pembelian (Rp.) = Jumlah satuan x Item Price

= 1,164,000,000

Total Biaya (Rp.) = Biaya Penyimpanan + Biaya Pemesanan +

Biaya Pembelian

= 1,185,867,398

Service Level = Jumlah Demand - Jumlah Shortage

Jumlah Demand

= 88%

j. Nomor Material 626-007278

No	Periode	Stock	Receipt	Total	Demand	Shortage	Stock
		awal	(History)	Stock	(history)		akhir
1	Jan-15	0		-		0	0
2	Feb-15	0		-		0	0
3	Mar-15	0		-		0	0
4	Apr-15	0		-		0	0
5	May-15	0		-		0	0
6	Jun-15	0		-		0	0
7	Jul-15	0		-		0	0
8	Aug-15	0		-		0	0
9	Sep-15	0		-		0	0
10	Oct-15	0		-		0	0
11	Nov-15	0		-		0	0
12	Dec-15	0	10	10	10	0	0
13	Jan-16	0		-		0	0
14	Feb-16	0	15	15	15	0	0
15	Mar-16	0		-		0	0
16	Apr-16	0		-		0	0
17	May-16	0		-		0	0
18	Jun-16	0		-		0	0
19	Jul-16	0		-		0	0
20	Aug-16	0		-		0	0
21	Sep-16	0		-		0	0
22	Oct-16	0		-		0	0
23	Nov-16	0		-		0	0
24	Dec-16	0	20	20	20	0	0
25	Jan-17	0		-		0	0
26	Feb-17	0	11	11	6	0	5

28 Apr-17 9 9 0 9 29 May-17 9 9 0 9 30 Jun-17 9 9 4 0 5 31 Jul-17 5 5 5 0 0 32 Aug-17 0 - 0 0 0 33 Sep-17 0 - 0 0 0 34 Oct-17 0 - 0 0 0 36 Dec-17 0 - 0 0 0 36 Dec-17 0 - 0 0 0 38 Feb-18 0 - 0 0 0 39 Mar-18 0 - 0 0 0 40 Apr-18 0 - 0 0 0 41 May-18 0 - 0 0 0 43								
29 May-17 9 9 4 0 5 31 Jul-17 5 5 5 0 0 32 Aug-17 0 - 0 0 33 Sep-17 0 - 0 0 34 Oct-17 0 - 0 0 35 Nov-17 0 - 0 0 36 Dec-17 0 - 0 0 37 Jan-18 0 - 0 0 38 Feb-18 0 - 0 0 39 Mar-18 0 - 0 0 40 Apr-18 0 - 0 0 41 May-18 0 - 0 0 42 Jun-18 0 - 0 0 43 Jul-18 0 20 20 0 20 44 <	27	Mar-17	5	9	14	5	0	
30 Jun-17 9 9 4 0 5		Apr-17	1		1		0	
31 Jul-17 5 5 5 0 0 32 Aug-17 0 - 0 0 33 Sep-17 0 - 0 0 34 Oct-17 0 - 0 0 35 Nov-17 0 - 0 0 36 Dec-17 0 - 0 0 37 Jan-18 0 - 0 0 38 Feb-18 0 - 0 0 39 Mar-18 0 - 0 0 40 Apr-18 0 - 0 0 41 May-18 0 - 0 0 42 Jun-18 0 - 0 0 43 Jul-18 0 20 20 0 20 44 Aug-18 20 20 10 0 10 45	29	May-17					0	
32 Aug-17 0 - 0 0 33 Sep-17 0 - 0 0 34 Oct-17 0 - 0 0 35 Nov-17 0 - 0 0 36 Dec-17 0 - 0 0 37 Jan-18 0 - 0 0 38 Feb-18 0 - 0 0 39 Mar-18 0 - 0 0 40 Apr-18 0 - 0 0 40 Apr-18 0 - 0 0 41 May-18 0 - 0 0 41 May-18 0 - 0 0 42 Jun-18 0 - 0 0 43 Jul-18 0 20 20 0 20 44 Aug-18 20	30	Jun-17					0	5
33 Sep-17 0 - 0 0 34 Oct-17 0 - 0 0 35 Nov-17 0 - 0 0 36 Dec-17 0 - 0 0 37 Jan-18 0 - 0 0 38 Feb-18 0 - 0 0 39 Mar-18 0 - 0 0 40 Apr-18 0 - 0 0 40 Apr-18 0 - 0 0 41 May-18 0 - 0 0 42 Jun-18 0 - 0 0 42 Jun-18 0 - 0 0 43 Jul-18 0 20 20 10 0 44 Aug-18 20 20 10 0 10 45 Sep-18	31	Jul-17	5		5	5	0	0
34 Oct-17 0 - 0 0 35 Nov-17 0 - 0 0 36 Dec-17 0 - 0 0 37 Jan-18 0 - 0 0 38 Feb-18 0 - 0 0 39 Mar-18 0 - 0 0 40 Apr-18 0 - 0 0 41 May-18 0 - 0 0 42 Jun-18 0 - 0 0 43 Jul-18 0 20 20 0 20 44 Aug-18 20 20 10 0 10 45 Sep-18 10 10 38 28 0 46 Oct-18 0 - 0 0 47 Nov-18 0 - 0 0 48	32	Aug-17	0		-		0	0
35	33	Sep-17	0		-		0	0
36 Dec-17 0 - 0 0 37 Jan-18 0 - 0 0 38 Feb-18 0 - 0 0 39 Mar-18 0 - 0 0 40 Apr-18 0 - 0 0 41 May-18 0 - 0 0 42 Jun-18 0 - 0 0 43 Jul-18 0 20 20 0 20 44 Aug-18 20 20 10 0 10 45 Sep-18 10 10 38 28 0 46 Oct-18 0 - 0 0 47 Nov-18 0 - 0 0 48 Dec-18 0 - 2 2 2 50 Feb-19 0 - 0 0	34	Oct-17	0		-		0	0
37 Jan-18 0 - 0 0 38 Feb-18 0 - 0 0 39 Mar-18 0 - 0 0 40 Apr-18 0 - 0 0 41 May-18 0 - 0 0 42 Jun-18 0 - 0 0 43 Jul-18 0 20 20 0 20 44 Aug-18 20 20 10 0 10 45 Sep-18 10 10 38 28 0 46 Oct-18 0 - 0 0 47 Nov-18 0 - 0 0 48 Dec-18 0 - 0 0 49 Jan-19 0 - 2 2 0 50 Feb-19 0 - 0 0 0	35	Nov-17	0		-		0	0
38 Feb-18 0 - 0 0 39 Mar-18 0 - 0 0 40 Apr-18 0 - 0 0 41 May-18 0 - 0 0 42 Jun-18 0 - 0 0 43 Jul-18 0 20 20 0 20 44 Aug-18 20 20 10 0 10 45 Sep-18 10 10 38 28 0 46 Oct-18 0 - 0 0 47 Nov-18 0 - 0 0 48 Dec-18 0 - 0 0 49 Jan-19 0 - 2 2 2 50 Feb-19 0 - 0 0 51 Mar-19 0 - 0 0	36	Dec-17	0		-		0	0
39 Mar-18 0 - 0 0 40 Apr-18 0 - 0 0 41 May-18 0 - 0 0 42 Jun-18 0 - 0 0 43 Jul-18 0 20 20 0 20 44 Aug-18 20 20 10 0 10 45 Sep-18 10 10 38 28 0 46 Oct-18 0 - 0 0 47 Nov-18 0 - 0 0 48 Dec-18 0 - 0 0 49 Jan-19 0 - 2 2 0 50 Feb-19 0 - 0 0 0 51 Mar-19 0 - 0 0 0 52 Apr-19 0 - 0	37	Jan-18	0		-		0	0
40 Apr-18 0 - 0 0 41 May-18 0 - 0 0 42 Jun-18 0 - 0 0 43 Jul-18 0 20 20 0 20 44 Aug-18 20 20 10 0 10 45 Sep-18 10 10 38 28 0 46 Oct-18 0 - 0 0 47 Nov-18 0 - 0 0 48 Dec-18 0 - 0 0 49 Jan-19 0 - 2 2 0 50 Feb-19 0 - 0 0 0 51 Mar-19 0 - 0 0 0 52 Apr-19 0 - 0 0 0 54 Jun-19 0 -	38	Feb-18	0		-		0	0
41 May-18 0 - 0 0 42 Jun-18 0 20 20 0 20 43 Jul-18 0 20 20 0 20 20 10 0 10 44 Aug-18 20 20 10 0 10 40 10 48 28 0	39	Mar-18	0		-		0	0
42 Jun-18 0 - 0 0 43 Jul-18 0 20 20 0 20 44 Aug-18 20 20 10 0 10 45 Sep-18 10 10 38 28 0 46 Oct-18 0 - 0 0 47 Nov-18 0 - 0 0 48 Dec-18 0 - 0 0 49 Jan-19 0 - 2 2 0 50 Feb-19 0 - 0 0 0 51 Mar-19 0 - 0 0 0 52 Apr-19 0 - 0 0 0 53 May-19 0 - 0 0 0 54 Jun-19 0 - 0 0 0 55 Jul-19	40	Apr-18	0		-		0	0
43 Jul-18 0 20 20 0 20 44 Aug-18 20 20 10 0 10 45 Sep-18 10 10 38 28 0 46 Oct-18 0 - 0 0 47 Nov-18 0 - 0 0 48 Dec-18 0 - 0 0 49 Jan-19 0 - 2 2 2 50 Feb-19 0 - 0 0 51 Mar-19 0 - 0 0 51 Mar-19 0 - 0 0 52 Apr-19 0 - 0 0 53 May-19 0 - 0 0 54 Jun-19 0 - 0 0 55 Jul-19 0 - 0 0	41	May-18	0		-		0	0
44 Aug-18 20 20 10 0 10 45 Sep-18 10 10 38 28 0 46 Oct-18 0 - 0 0 47 Nov-18 0 - 0 0 48 Dec-18 0 - 0 0 49 Jan-19 0 - 2 2 2 0 50 Feb-19 0 - 0 0 0 0 51 Mar-19 0 - 0	42	Jun-18	0		_		0	0
45 Sep-18 10 10 38 28 0 46 Oct-18 0 - 0 0 47 Nov-18 0 - 0 0 48 Dec-18 0 - 0 0 49 Jan-19 0 - 2 2 0 50 Feb-19 0 - 0 0 51 Mar-19 0 - 0 0 52 Apr-19 0 - 0 0 53 May-19 0 - 0 0 54 Jun-19 0 - 0 0 55 Jul-19 0 - 0 0 56 Aug-19 0 - 0 0 57 Sep-19 0 - 0 0 58 Oct-19 0 30 - 0 0 59	43	Jul-18	0	20	20		0	20
46 Oct-18 0 - 0 0 47 Nov-18 0 - 0 0 48 Dec-18 0 - 0 0 49 Jan-19 0 - 2 2 0 50 Feb-19 0 - 0 0 0 51 Mar-19 0 - 0 0 0 52 Apr-19 0 - 0 0 0 53 May-19 0 - 0 0 0 54 Jun-19 0 - 0 0 0 55 Jul-19 0 - 0 0 0 56 Aug-19 0 - 0 0 0 57 Sep-19 0 - 0 0 0 58 Oct-19 0 30 - 0 0 0 59 <td>44</td> <td>Aug-18</td> <td>20</td> <td></td> <td>20</td> <td>10</td> <td>0</td> <td>10</td>	44	Aug-18	20		20	10	0	10
47 Nov-18 0 - 0 0 48 Dec-18 0 - 0 0 49 Jan-19 0 - 2 2 0 50 Feb-19 0 - 0 0 0 51 Mar-19 0 - 0 0 0 52 Apr-19 0 - 0 0 0 53 May-19 0 - 0 0 0 54 Jun-19 0 - 0 0 0 55 Jul-19 0 - 0 0 0 56 Aug-19 0 - 0 0 0 57 Sep-19 0 - 0 0 0 58 Oct-19 0 30 - 0 0 0 59 Nov-19 0 - 0 0 0 0	45	Sep-18	10		10	38	28	0
48 Dec-18 0 - 0 0 49 Jan-19 0 - 2 2 0 50 Feb-19 0 - 0 0 0 51 Mar-19 0 - 0 0 0 0 52 Apr-19 0 - 0 <t< td=""><td>46</td><td>Oct-18</td><td>0</td><td></td><td>-</td><td></td><td>0</td><td>0</td></t<>	46	Oct-18	0		-		0	0
49 Jan-19 0 - 2 2 0 50 Feb-19 0 - 0 0 51 Mar-19 0 - 0 0 52 Apr-19 0 - 0 0 53 May-19 0 - 0 0 54 Jun-19 0 - 0 0 55 Jul-19 0 - 0 0 56 Aug-19 0 - 0 0 57 Sep-19 0 - 0 0 58 Oct-19 0 30 - 0 0 59 Nov-19 0 - 0 0	47	Nov-18	0		-		0	0
50 Feb-19 0 - 0 0 51 Mar-19 0 - 0 0 52 Apr-19 0 - 0 0 53 May-19 0 - 0 0 54 Jun-19 0 - 0 0 55 Jul-19 0 - 0 0 56 Aug-19 0 - 0 0 57 Sep-19 0 - 0 0 58 Oct-19 0 30 - 0 0 59 Nov-19 0 - 0 0 0	48	Dec-18	0		-		0	0
51 Mar-19 0 - 0 0 52 Apr-19 0 - 0 0 53 May-19 0 - 0 0 54 Jun-19 0 - 0 0 55 Jul-19 0 - 0 0 56 Aug-19 0 - 0 0 57 Sep-19 0 - 0 0 58 Oct-19 0 30 - 0 0 59 Nov-19 0 - 0 0	49	Jan-19	0		-	2	2	0
52 Apr-19 0 - 0 0 53 May-19 0 - 0 0 54 Jun-19 0 - 0 0 55 Jul-19 0 - 0 0 56 Aug-19 0 - 0 0 57 Sep-19 0 - 0 0 58 Oct-19 0 30 - 0 0 59 Nov-19 0 - 0 0	50	Feb-19	0		-		0	0
53 May-19 0 - 0 0 54 Jun-19 0 - 0 0 55 Jul-19 0 - 0 0 56 Aug-19 0 - 0 0 57 Sep-19 0 - 0 0 58 Oct-19 0 30 - 0 0 59 Nov-19 0 - 0 0	51	Mar-19	0		_		0	0
54 Jun-19 0 - 0 0 55 Jul-19 0 - 0 0 56 Aug-19 0 - 0 0 57 Sep-19 0 - 0 0 58 Oct-19 0 30 - 0 0 59 Nov-19 0 - 0 0	52	Apr-19	0		_		0	0
55 Jul-19 0 - 0 0 56 Aug-19 0 - 0 0 57 Sep-19 0 - 0 0 58 Oct-19 0 30 - 0 0 59 Nov-19 0 - 0 0	53	May-19	0		_		0	0
56 Aug-19 0 - 0 0 57 Sep-19 0 - 0 0 58 Oct-19 0 30 - 0 0 59 Nov-19 0 - 0 0	54	Jun-19	0		_		0	0
57 Sep-19 0 - 0 0 58 Oct-19 0 30 - 0 0 59 Nov-19 0 - 0 0	55	Jul-19	0		_		0	0
57 Sep-19 0 - 0 0 58 Oct-19 0 30 - 0 0 59 Nov-19 0 - 0 0	56		0		-		0	0
59 Nov-19 0 - 0 0			0		-		0	0
	58	Oct-19	0	30	-		0	0
60 Dec-19 0 - 0 0	59	Nov-19	0		-		0	0
	60	Dec-19	0		-		0	0
Total 115 115 30 67		Total		115		115	30	67

8,356,086

Biaya Pemesanan (Rp.) Jumlah Order x Order Cost =

4,974,072

Biaya Pembelian (Rp.) Jumlah satuan x Item Price =

> 205,644,265 =

Total Biaya (Rp.) Biaya Penyimpanan + Biaya Pemesanan +

Biaya Pembelian

218,974,423

Service Level Jumlah Demand - Jumlah Shortage

Jumlah Demand

74%

LAMPIRAN C. PERHITUNGAN PARAMETER INPUT

a. Nomor Material 627-000279

Data Spare part 627-000279	Jumlah	UOM
Rata-rata permintaan 632-001172 per Tahun (D)	196.8	Ea
Standar Deviasi permintaan (δD)	57.2	Ea
Lead time (L)	0.19	Tahun
Standar deviasi lead time (δL)	0.15	Tahun
Standar Deviasi permintaan selama lead time (δDL)	38	
Biaya setiap kali pesan (A)	710,582	Rp
Biaya Kekurangan per unit (Cu)	1,632,000,000	Rp
Biaya simpan per unit per tahun (h)	1,408,045	Rp
Harga Barang per unit (v)	522,958	Rp

Ite	erasi 1		
a	q_o	14.094	Meter
b	α	0.000062	
	Ζα	3.84	
	r'	132	Meter
С	f(Za)	0.00025	
	$\Psi(Z\alpha)$	0.00001	
	N	0.01	
	q_{01}	60.09	Meter
d	α	0.000263	
	Ζα	3.465	
	r ₁ '	122	Meter
Ite	erasi 2		
e	f(Za)	0.000986	
	$\Psi(Z\alpha)$	0.000067	
	N	0.029	
	q ₀₂	115.51	Meter
f	α	0.000506	
	Ζα	3.29	
	r ₂ '	118	Meter
Ite	erasi 3		
e	f(Za)	0.002	
	Ψ(Ζα)	0.00013	
	N	0.052	
	q 03	155.12	Meter

C		0.000.000	
f	α	0.000680	
	Ζα	3.21	
	r ₃ '	115.9	Meter
Ite	erasi 4		
e	f(Za)	0.002	
	$\Psi(Z\alpha)$	0.00018	
	N	0.067	
	q ₀₄	176.01	Meter
f	α	0.000772	
	Ζα	3.17	
	r ₄ '	114.9	Meter
Ite	erasi 5		
e	f(Za)	0.003	
	$\Psi(Z\alpha)$	0.00021	
	N	0.076	
	q ₀₅	187.270	Meter
f	α	0.000821	
	Ζα	3.15	
	r5'	114.5	Meter
Di	peroleh Kebijak	an:	
1	q'	188	Meter
2	r'	115	Meter
3	SS	78	Meter
4	S	303	Meter

b. Nomor Material 631-000490

Data Spare part 631-000490	Jumlah	UOM
Rata-rata permintaan 632-001172 per Tahun (D)	2166.4	Meter
Standar Deviasi permintaan (δD)	2134.8	Meter
Lead time (L)	0.58	Tahun
Standar deviasi lead time (δL)	0.00	Tahun
Standar Deviasi permintaan selama lead time (δDL)	1630	
Biaya setiap kali pesan (A)	710,582	Rp
Biaya Kekurangan per unit (Cu)	5,040,000,000	Rp
Biaya simpan per unit per tahun (h)	1,400,405	Rp
Harga Barang per unit (v)	413,820	Rp

	Iterasi 1		
a	q_o	46.888	Meter
b	α	0.000006	

	Ζα	4.095	
	r'	7941	Meter
С	f(Za)	0.000091	
	Ψ(Ζα)	0.000005	
	N	0.12	
	q 01	1353.67	Meter
d	α	0.000174	
	Ζα	3.575	
	r ₁ '	7093	Meter
	Iterasi 2		
e	f(Za)	0.000669	
	Ψ(Ζα)	0.000043	
	N	0.839	
	q ₀₂	3617.35	Meter
f	α	0.000464	
	Ζα	3.31	
	r2'	6661	Meter
	Iterasi 3		
e	$f(Z\alpha)$	0.002	
	$\Psi(Z\alpha)$	0.000123	
	N	2.056	
	q_{03}	5662.51	Meter
f	α	0.000726	
	Ζα	3.19	
	r3'	6457	Meter
	Iterasi 4		
e	f(Za)	0.003	
	$\Psi(Z\alpha)$	0.000	
	N	3.061	
	q 04	6908.94	Meter
f	α	0.000886	
	Ζα	3.13	
	r ₄ '	6359	Meter
	Iterasi 5		
e	f(Za)	0.003	
	Ψ(Ζα)	0.000244	
	N	3.684	
	q 05	7,579.75	Meter
f	α	0.000972	
	Ζα	3.10	

	r ₅ '	6310	Meter
	Diperoleh K	ebijakan :	
1	q'	7,580	Meter
2	r'	6,311	Meter
3	SS	5,047	Meter
4	S	13,891	Meter

c. Nomor Material 602-001378

Data Spare part 602-001378	Jumlah	UOM
Rata-rata permintaan 632-001172 per Tahun (D)	860	Meter
Standar Deviasi permintaan (δD)	156.7	Meter
Lead time (L)	0.37	Tahun
Standar deviasi lead time (δL)	0.21	Tahun
Standar Deviasi permintaan selama lead time (δDL)	206.78	
Biaya setiap kali pesan (A)	710,582	Rp
Biaya Kekurangan per unit (Cu)	3,280,695,652	Rp
Biaya simpan per unit per tahun (h)	1,398,038	Rp
Harga Barang per unit (v)	380,000	Rp

Ite	rasi 1		
a	q _o	29.567	Meter
b	α	0.0000147	
	Ζα	4.095	
	r'	714.71	Meter
c	$f(Z\alpha)$	0.000091	
	$\Psi(Z\alpha)$	0.000005	
	N	0.01	
	q 01	246.89	Meter
d	α	0.000122	
	Ζα	3.67	
	r_1 '	673.96	Meter
Ite	rasi 2		
e	$f(Z\alpha)$	0.000474	
	$\Psi(Z\alpha)$	0.000029	
	N	0.076	
	q ₀₂	554.01	Meter
f	α	0.000275	
	Ζα	3.455	
	r ₂ '	653.34	Meter
Ite	erasi 3		

e	f(Za)	0.001021	
	$\Psi(Z\alpha)$	0.000070	
	N	0.161	
	q ₀₃	806.90	Unit
f	α	0.000400	
	Ζα	2.65	
	r ₃ '	576.40	Unit
Ite	rasi 4		
e	$f(Z\alpha)$	0.011834	
	$\Psi(Z\alpha)$	0.001237	
	N	1.768	
	q ₀₄	2671.82	Meter
f	α	0.001324	
1	Ζα	3.01	
	<u>r4'</u>	610.20	Meter
Ite	rasi 5	010.20	TVICTO
e		0.004366	
	$\frac{f(Z\alpha)}{\Psi(Z\alpha)}$	0.004300	
	N	0.669	
		1644.07	Meter
f	q ₀₅	0.000815	Wicter
1	$\frac{\alpha}{Z\alpha}$	3.15	
	r ₅ '	624.10	Meter
Ita	rasi 6	024.10	Meter
		0.002704	
e	$\frac{f(Z\alpha)}{\Psi(Z\alpha)}$	0.002794 0.000223	
	$\frac{\Psi(Z\alpha)}{N}$	0.000223	
			Meter
	q 06	1321.88	Meter
f	α	0.000655	
	Ζα	3.22	Makan
Τ.	r ₆ '	630.33	Meter
	rasi 7	0.000000	
e	$f(Z\alpha)$	0.002272	
	Ψ(Ζα)	0.000175	
	N	0.353	3.6 :
	q ₀₇	1194.60	Meter
f	α	0.000592	
	Ζα	3.24	
	r ₇ '	632.73	Meter
Di	<mark>peroleh Keb</mark>	oijakan:	

1	q'	1195	Meter
2	r'	633	Meter
3	SS	311	Meter
4	S	1828	Meter

d. Nomor Material 628-000239

Data Spare part 628-000239	Jumlah	UOM
Rata-rata permintaan 632-001172 per Tahun (D)	143.2	Ea
Standar Deviasi permintaan (δD)	41.3	Ea
Lead time (L)	0.19	Tahun
Standar deviasi lead time (δL)	0.06	Tahun
Standar Deviasi permintaan selama lead time (δDL)	20	
Biaya setiap kali pesan (A)	710,582	Rp
Biaya Kekurangan per unit (Cu)	1,622,400,000	Rp
Biaya simpan per unit per tahun (h)	1,384,738	Rp
Harga Barang per unit (v)	190,000	Rp

	Iterasi 1		
a	q_{o}	12.123	Ea
ь	α	0.000072	
	Ζα	3.805	
	r'	94	Ea
c	f(Za)	0.00029	
	$\Psi(Z\alpha)$	0.00002	
	N	0.0044	
	q_{01}	40.20	Ea
d	α	0.000240	
	Ζα	3.49	
	r ₁ '	88	Ea
	Iterasi 2		
	Ittiasi 2		
e	$f(Z\alpha)$	0.000904	
e		0.000904 0.000061	
e	f(Za)		
e	$f(Z\alpha)$ $\Psi(Z\alpha)$	0.000061	Ea
e	$\begin{array}{c} f(Z\alpha) \\ \Psi(Z\alpha) \\ N \end{array}$	0.000061 0.014	Ea
	$f(Z\alpha)$ $\Psi(Z\alpha)$ N q_{02}	0.000061 0.014 68.55	Ea
	$\begin{array}{c} f(Z\alpha) \\ \Psi(Z\alpha) \\ N \\ q_{02} \\ \alpha \end{array}$	0.000061 0.014 68.55 0.000409	Ea Ea
	$f(Z\alpha)$ $\Psi(Z\alpha)$ N q_{02} α $Z\alpha$	0.000061 0.014 68.55 0.000409 3.35	
	$\begin{array}{c} f(Z\alpha) \\ \Psi(Z\alpha) \\ N \\ q_{02} \\ \alpha \\ Z\alpha \\ r_2' \end{array}$	0.000061 0.014 68.55 0.000409 3.35	
f	$f(Z\alpha)$ $\Psi(Z\alpha)$ N q_{02} α $Z\alpha$ r_{2}' Iterasi 3	0.000061 0.014 68.55 0.000409 3.35 86	

	q_{03}	86.92	Ea
h	α	0.000518	
	$Z\alpha$	3.28	
	r ₃ '	84.8	Ea
	Iterasi 4		
i	f(Za)	0.002	
	Ψ(Ζα)	0.00014	
	N	0.027	
	q ₀₄	96.42	Ea
j	α	0.000575	
	Ζα	3.25	
	r ₄ '	84.2	Ea
	Diperoleh Ke	bijakan :	
1	q'	97	Ea
2	r'	85	Ea
3	SS	58	Ea
4	S	182	Ea

e. Nomor Material 631-000542

Data Spare part 631-000490	Jumlah	UOM
Rata-rata permintaan 632-001172 per Tahun (D)	3620.4	Meter
Standar Deviasi permintaan (δD)	621.9	Meter
Lead time (L)	0.20	Tahun
Standar deviasi lead time (δL)	0.11	Tahun
Standar Deviasi permintaan selama lead time (δDL)	500	
Biaya setiap kali pesan (A)	710,582	Rp
Biaya Kekurangan per unit (Cu)	1,792,000,000	Rp
Biaya simpan per unit per tahun (h)	1,384,738	Rp
Harga Barang per unit (v)	190,000	Rp

	Iterasi 1		
a	q_{o}	60.956	Meter
b	α	0.000013	
	Ζα	4.095	
	r'	1892	Meter
c	f(Za)	0.00009	
	$\Psi(Z\alpha)$	0.00000	
	N	0.0360	
	q ₀₁	583.94	Meter
d	α	0.000125	
	Ζα	3.665	

	r ₁ '	1771	Meter
	Iterasi 2		
e	f(Za)	0.000483	
	Ψ(Ζα)	0.000030	
	N	0.187	
	q ₀₂	1324.06	Meter
f	α	0.000283	
	Ζα	3.45	
	r ₂ '	1711	Meter
	Iterasi 3		
e	f(Za)	0.001	
	$\Psi(Z\alpha)$	0.000	
	N	0.396	
	q_{03}	1927.78	Meter
f	α	0.000411	
	Ζα	3.35	
	r3'	1681.5	Meter
	Iterasi 4		
e	f(Za)	0.001	
	$\Psi(Z\alpha)$	0.000	
	N	0.562	
	q ₀₄	2296.51	Meter
f	α	0.000490	
	Ζα	3.30	
	r4'	1667.4	Meter
	Diperoleh Ke	3	
1	q'	2297	Meter
2	r'	1668	Meter
3	SS	927	Meter
4	S	3965	Meter

f. Nomor Material 632-001172

Perhitungan sesuai yang tertulis pada Sub bab 4.8.2

g. Nomor Material 626-007992

Data Spare part 626-007992	Jumlah	UOM
Rata-rata permintaan 632-001172 per Tahun (D)	21.2	Unit
Standar Deviasi permintaan (δD)	8.9	Unit
Lead time (L)	0.47	Tahun
Standar deviasi lead time (δL)	0.23	Tahun
Standar Deviasi permintaan selama lead time (δDL)	7.85	
Biaya setiap kali pesan (A)	710,582	Rp
Biaya Kekurangan per unit (Cu)	4,090,285,714	Rp
Biaya simpan per unit per tahun (h)	1,398,038	Rp
Harga Barang per unit (v)	5,471,980	Rp

Iterasi 1			
a	q_{o}	4.642	Unit
ь	α	0.0000748	
	Ζα	3.79	
	r'	32.91	Unit
С	f(Za)	0.000303	
	$\Psi(Z\alpha)$	0.000	
	N	0.00	
	q 01	15.85	Unit
d	α	0.000256	
	Ζα	3.475	
	r ₁ '	30.99	Unit
Iterasi 2			
e	f(Za)	0.001	
	$\Psi(Z\alpha)$	0.000	
	N	0.006	
	q_{02}	27.03	Unit
f	α	0.000436	
	Ζα	3.33	
	r_2 '	30.11	Unit
Diperoleh	Kebijakan:		
1	q'	28	Unit
2	r'	31	Unit
3 4	SS	21	Unit
	S	59	Unit

h. Nomor Material 632-001184

Data Spare part 632-001184	Jumlah	UOM
Rata-rata permintaan 632-001172 per Tahun (D)	26.2	Unit
Standar Deviasi permintaan (δD)	4.7	Unit
Lead time (L)	0.30	Tahun
Standar deviasi lead time (δL)	0.14	Tahun
Standar Deviasi permintaan selama lead time (δDL)	4.42	Unit
Biaya setiap kali pesan (A)	710,582	Rp
Biaya Kekurangan per unit (Cu)	2,616,000,000	Rp
Biaya simpan per unit per tahun (h)	1,445,428	Rp
Harga Barang per unit (v)	1,057,000	Rp

Iterasi 1			
a	q_{o}	5.075	Meter
b	α	0.000107	
	Ζα	3.7	
	r'	17.4	Meter
c	f(Za)	0.000425	
	$\Psi(Z\alpha)$	0.000026	
	N	0.001455	
	q 01	12.80	Meter
d	α	0.000270	
	Ζα	3.46	
	r ₁ '	16.8	Meter
Iterasi 2			
e	f(Za)	0.001003	
	$\Psi(Z\alpha)$	0.000069	
	N	0.003388	
	q ₀₂	18.63	Meter
f	α	0.000393	
	Ζα	3.36	
	r2'	16.5	Meter
Diperoleh 1	Kebijakan:		
1	q'	19	Meter
2	r'	17	Meter
3	SS	9	Meter
4	S	36	Meter

i. Nomor Material 632-000118

Data Spare part 632-000118	Jumlah	UOM
Rata-rata permintaan 632-001172 per Tahun (D)	3.2	Ea
Standar Deviasi permintaan (δD)	0.8	Ea
Lead time (L)	0.80	Tahun
Standar deviasi lead time (δL)	0.13	Tahun
Standar Deviasi permintaan selama lead time (δDL)	0.86	
Biaya setiap kali pesan (A)	710,582	Rp
Biaya Kekurangan per unit (Cu)	6,192,000,000	Rp
Biaya simpan per unit per tahun (h)	6,463,938	Rp
Harga Barang per unit (v)	72,750,000	Rp

Iter	asi 1		
a	q_{o}	0.839	Ea
b	α	0.000274	
	Ζα	3.775	
	r'	5	Ea
c	f(Za)	0.000	
	Ψ(Ζα)	0.000	
	N	0.00	
	q ₀₁	1.42	Ea
d	α	0.000463	
	Ζα	3.645	
	r_1 '	5	Ea
Dip	eroleh Keb	ijakan :	
1	q'	2	Meter
2	r'	6	Meter
3	SS	3	Meter
4	S	8	Meter

j. Nomor Material 626-007278

Data Spare part 631-000490	Jumlah	UOM
Rata-rata permintaan 632-001172 per Tahun (D)	23	Meter
Standar Deviasi permintaan (δD)	10.8	Meter
Lead time (L)	0.51	Tahun
Standar deviasi lead time (δL)	0.18	Tahun
Standar Deviasi permintaan selama lead time (δDL)	9	
Biaya setiap kali pesan (A)	710,582	Rp
Biaya Kekurangan per unit (Cu)	4,440,000,000	Rp
Biaya simpan per unit per tahun (h)	1,496,612	Rp
Harga Barang per unit (v)	1,788,211	Rp

]	Iterasi 1		
a	q_o	4.67	Ea
b	α	0.000068	
	Ζα	3.815	
	r'	41	Ea
С	f(Za)	0.00028	
	Ψ(Ζα)	0.00002	
	N	0.00189	
	q 01	16.71	Ea
d	α	0.000245	
	Ζα	3.485	
	r ₁ '	38.8	Ea
]	Iterasi 2		
e	f(Za)	0.000920	
	$\Psi(Z\alpha)$	0.000062	
	N	0.006	
	q ₀₂	29.40	Ea
f	α	0.000431	
	Ζα	3.33	
	r ₂ '	37.6	Ea
]	Iterasi 3		
e	f(Za)	0.002	
	$\Psi(Z\alpha)$	0.00011	
	N	0.010	
	q ₀₃	37.91	Ea
f	α	0.000556	
	Ζα	3.26	
	r3'	37.0	Ea
Dipe	eroleh Kebija	ıkan :	
1	q'	38	Ea
2	r'	38	Ea
3	SS	26	Ea
4	S	76	Ea

LAMPIRAN D. PERHITUNGAN PERENCANAAN SKENARIO

a. Nomor Material 627-000279

- Pembangkitan Bilangan Acak

No	Existing
1	0
2	0
3	0
4	0
5	0
1 2 3 4 5 6 7 8	0
7	0
8	0
9	0
10	0
11	0
12	0
13	0
14	0
15	0
57 58 59	0
58	158
59	0
60	40

	No	Xi	Frekuens	ens Probabili Frekuens Proba	Probabilita	Interval	
	NO	Λl	i Xi	tas	i	S	Angka
	1	0	46	0.77	46	0.77	0 - 77
	2	12	1	0.02	47	0.78	78 - 78
	3	15	1	0.02	48	0.80	79 - 80
	4	18	1	0.02	49	0.82	81 - 82
	5	20	1	0.02	50	0.83	83 - 83
	6	24	1	0.02	51	0.85	84 - 85
	7	40	2	0.03	53	0.88	86 - 88
	8	50	1	0.02	54	0.90	89 - 90
	9	81	1	0.02	55	0.92	91 - 92
	10	88	1	0.02	56	0.93	93 - 93
	11	120	1	0.02	57	0.95	94 - 95
	12	150	1	0.02	58	0.97	96 - 97
	13	158	1	0.02	59	0.98	98 - 98
	14	168	1	0.02	60	1.00	99 - 100
-			60				

	Replika	asi 1	Replikasi 2		Replika	ısi 3		Replikas	i 100
No	Random	Dema	Random		Random	Dem		Random	Dem
110	Number	nd	Number	and	Number	and	•••	Number	and
1	83	20	42	0	19	0		83	20
2	29	0	99	168	36	0		26	0
3	5	0	88	40	36	0		17	0
4	3	0	30	0	49	0		32	0
5	20	0	54	0	47	0		21	0
6	78	12	17	0	88	40		37	0
7	78	12	28	0	25	0		74	0
8	4	0	27	0	47	0		99	168
9	34	0	90	50	50	0		98	158
10	18	0	5	0	21	0		87	40
11	61	0	95	120	6	0		43	0
12	66	0	69	0	36	0		89	50
13	88	40	57	0	48	0		78	12
14	40	0	85	24	80	15		48	0
15	58	0	44	0	44	0		89	50
57	82	18	50	0	19	0		99	168
58	53	0	68	0	10	0		96	150
59	2	0	32	0	89	50		82	18
60	11	0	68	0	16	0		62	0

- Hasil Validasi Bilangan Acak denga T-Test

Repli kasi	t Stat	t Critical	Hasil Uji	Repli kasi	t Stat	t Critical	Hasil Uji
1	0.027047	1.657870	t Stat < t Critical	51	0.408909	1.657870	t Stat < t Critical
2	-0.161360	1.657870	t Stat < t Critical	52	0.457606	1.657870	t Stat < t Critical
3	1.012360	1.657870	t Stat < t Critical	53	-0.674564	1.657870	t Stat < t Critical
4	0.055544	1.657870	t Stat < t Critical	54	-0.437750	1.657870	t Stat < t Critical
5	1.596382	1.657982	t Stat < t Critical	55	0.509434	1.657870	t Stat < t Critical
6	0.068955	1.657870	t Stat < t Critical	56	-0.123052	1.657870	t Stat < t Critical
7	-0.148935	1.657870	t Stat < t Critical	57	-0.500752	1.657870	t Stat < t Critical
8	0.046371	1.657870	t Stat < t Critical	58	-1.121110	1.657870	t Stat < t Critical
9	1.346143	1.657870	t Stat < t Critical	59	1.290420	1.657870	t Stat < t Critical
10	-0.237410	1.657870	t Stat < t Critical	60	0.088300	1.657870	t Stat < t Critical
11	-1.250677	1.657870	t Stat < t Critical	61	-0.993555	1.657870	t Stat < t Critical
12	1.393883	1.657982	t Stat < t Critical	62	0.226534	1.657870	t Stat < t Critical
13	-0.006869	1.657870	t Stat < t Critical	63	-0.590252	1.657870	t Stat < t Critical
14	-0.677740	1.657870	t Stat < t Critical	64	-0.008802	1.657870	t Stat < t Critical
15	-0.811684	1.657870	t Stat < t Critical	65	0.597226	1.657870	t Stat < t Critical
16	-0.634332	1.657870	t Stat < t Critical	66	-0.738014	1.657870	t Stat < t Critical
17	-0.777890	1.657870	t Stat < t Critical	67	1.259308	1.657870	t Stat < t Critical
18	0.339025	1.657870	t Stat < t Critical	68	0.502892	1.657870	t Stat < t Critical
19	1.359246	1.657870	t Stat < t Critical	69	-0.486946	1.657870	t Stat < t Critical
20	-1.197328	1.657870	t Stat < t Critical	70	-0.686387	1.657870	t Stat < t Critical

21	0.827794	1.657870	t Stat < t Critical	71	0.642941	1.657870	t Stat < t Critical
22	-0.559095	1.657870	t Stat < t Critical	72	-0.062217	1.657870	t Stat < t Critical
23	-0.026479	1.657870	t Stat < t Critical	73	-0.778180	1.657870	t Stat < t Critical
24	1.551390	1.657870	t Stat < t Critical	74	-0.267018	1.657870	t Stat < t Critical
25	0.647730	1.657870	t Stat < t Critical	75	0.647186	1.657870	t Stat < t Critical
26	-0.609506	1.657870	t Stat < t Critical	76	-0.806462	1.657870	t Stat < t Critical
27	1.230616	1.657870	t Stat < t Critical	77	1.186718	1.657870	t Stat < t Critical
28	-0.189283	1.657870	t Stat < t Critical	78	-0.046008	1.657870	t Stat < t Critical
29	1.150504	1.657870	t Stat < t Critical	79	0.747267	1.657870	t Stat < t Critical
30	-0.818228	1.657870	t Stat < t Critical	80	1.223020	1.657870	t Stat < t Critical
31	0.833865	1.657870	t Stat < t Critical	81	-1.890364	1.657982	t Stat < t Critical
32	0.070934	1.657870	t Stat < t Critical	82	-0.492439	1.657870	t Stat < t Critical
33	0.345936	1.657870	t Stat < t Critical	83	-0.165964	1.657870	t Stat < t Critical
34	-0.739701	1.657870	t Stat < t Critical	84	0.148630	1.657870	t Stat < t Critical
35	-0.572901	1.657870	t Stat < t Critical	85	-0.892449	1.657870	t Stat < t Critical
36	0.462217	1.657870	t Stat < t Critical	86	-0.004394	1.657870	t Stat < t Critical
37	0.282041	1.657870	t Stat < t Critical	87	-0.076094	1.657870	t Stat < t Critical
38	-0.239735	1.657870	t Stat < t Critical	88	0.316223	1.657870	t Stat < t Critical
39	-0.291975	1.657870	t Stat < t Critical	89	-1.092978	1.657870	t Stat < t Critical
40	-0.198744	1.657870	t Stat < t Critical	90	-0.460416	1.657870	t Stat < t Critical
41	0.496999	1.657870	t Stat < t Critical	91	0.738614	1.657870	t Stat < t Critical
42	0.880578	1.657870	t Stat < t Critical	92	0.495869	1.657870	t Stat < t Critical
43	-0.623969	1.657870	t Stat < t Critical	93	-0.572807	1.657870	t Stat < t Critical

44	0.961360	1.657870	t Stat < t Critical	94	0.075158	1.657870	t Stat < t Critical
45	-1.400071	1.657870	t Stat < t Critical	95	-0.546592	1.657870	t Stat < t Critical
46	-0.422259	1.657870	t Stat < t Critical	96	-0.641591	1.657870	t Stat < t Critical
47	0.396743	1.657870	t Stat < t Critical	97	-0.195156	1.657870	t Stat < t Critical
48	-0.435014	1.657870	t Stat < t Critical	98	1.376771	1.657870	t Stat < t Critical
49	0.667905	1.657870	t Stat < t Critical	99	-0.783	1.658	t Stat < t Critical
50	-0.034101	1.657870	t Stat < t Critical	100	-1.204	1.658	t Stat < t Critical

b. Nomor Material 631-000490

- Pembangkitan Bilangan Acak

No	Existing
1	0
2	0
1 2 3 4 5 6 7 8	0
4	350
5	0
6	0
7	0
8	240
	0
10	0
11	0
12	0
13	0
14	500
15	320
16	0
17	0
18	0
19	0
20	0
21	6760
57 58	0
58	0
59	0
60	0

									Replikasi 1 Replikasi 2		si 2	Replika	ısi 3		Replikas	si 99	Replikas	i 100	
NIa	Xi	Frekuens	Probabili	Frekuens	Probabilita	Interval		No	Random	Dema	Random	Dem	Random	Dem		Random	Dem	Random	Dem
No	A1	i Xi	tas	i	S	Angka	-	NO	Number	nd	Number	and	Number	and		Number	and	Number	and
1	0	51	0.85	51	0.85	0 - 85		1	43	0	22	0	26	0		8	0	19	0
2	42	1	0.02	52	0.87	86 - 87		2	60	0	97	1000	16	0		25	0	40	0
3	120	1	0.02	53	0.88	88 - 88		3	74	0	71	0	87	42		81	0	25	0
4	240	1	0.02	54	0.90	89 - 90		4	40	0	82	0	15	0		52	0	27	0
5	320	1	0.02	55	0.92	91 - 92		5	16	0	20	0	90	240		56	0	84	0
6	350	1	0.02	56	0.93	93 - 93		6	32	0	36	0	80	0		87	42	41	0
7	500	1	0.02	57	0.95	94 - 95		7	66	0	4	0	59	0		3	0	38	0
8	1000	1	0.02	58	0.97	96 - 97		8	79	0	1	0	38	0		40	0	62	0
9	1500	1	0.02	59	0.98	98 - 98		9	73	0	89	240	94	500		83	0	99	6760
10	6760	1	0.02	60	1.00	99 - 100		10	34	0	97	1000	33	0		57	0	14	0
		60						11	86	42	72	0	64	0		19	0	26	0
								12	32	0	73	0	87	42		12	0	68	0
								13	22	0	35	0	7	0		13	0	30	0
								14	41	0	34	0	64	0	•••	63	0	12	0
							_	15	11	0	47	0	34	0		3	0	45	0
							<u> </u>	16	63	0	69	0	61	0		77	0	47	0
								17	43	0	48	0	18	0		58	0	11	0
								18	29	0	84	0	78	0	•••	19	0	38	0
								19	34	0	79	0	34	0	•••	95	500	57	0
								20	60	0	12	0	77	0	•••	11	0	0	0
								21	37	0	60	0	6	0		84	0	89	240
							_	•••		•••			•••						
								57	59	0	16	0	53	0	•••	78	0	94	500
							_	58	33	0	29	0	28	0	•••	2	0	45	0
							_	59	82	0	66	0	86	42		39	0	59	0
								60	21	0	37	0	2	0		59	0	50	0

- Hasil Validasi Bilangan Acak denga T-Test

Replikasi	t Stat	t Critical	Hasil Uji	Replikasi	t Stat	t Critical	Hasil Uji
1	1.418	1.65787	t Stat < t Critical	51	-0.853196	1.65787	t Stat < t Critical
2	-0.225	1.65787	t Stat < t Critical	52	0.911696	1.65787	t Stat < t Critical
3	1.341	1.65787	t Stat < t Critical	53	1.365711	1.65787	t Stat < t Critical
4	0.128	1.65787	t Stat < t Critical	54	-0.433908	1.65787	t Stat < t Critical
5	0.601	1.65787	t Stat < t Critical	55	1.073305	1.65787	t Stat < t Critical
6	0.227	1.65787	t Stat < t Critical	56	-0.637306	1.65787	t Stat < t Critical
7	-0.863	1.65787	t Stat < t Critical	57	-0.610714	1.65787	t Stat < t Critical
8	0.064	1.65787	t Stat < t Critical	58	0.785504	1.65787	t Stat < t Critical
9	-0.559	1.65787	t Stat < t Critical	59	0.811447	1.65787	t Stat < t Critical
10	-0.122	1.65787	t Stat < t Critical	60	0.047887	1.65787	t Stat < t Critical
11	-1.208808	1.65787	t Stat < t Critical	61	0.154946	1.65787	t Stat < t Critical
12	0.244780	1.65787	t Stat < t Critical	62	1.297850	1.65787	t Stat < t Critical
13	-1.234015	1.65787	t Stat < t Critical	63	0.242015	1.65787	t Stat < t Critical
14	1.032103	1.65787	t Stat < t Critical	64	1.178670	1.65787	t Stat < t Critical
15	-0.583841	1.65787	t Stat < t Critical	65	-0.215565	1.65787	t Stat < t Critical
16	-0.081582	1.65787	t Stat < t Critical	66	0.901125	1.65787	t Stat < t Critical
17	-0.500880	1.65787	t Stat < t Critical	67	0.228636	1.65787	t Stat < t Critical
18	0.271631	1.65787	t Stat < t Critical	68	1.187517	1.65787	t Stat < t Critical
19	-0.727989	1.65787	t Stat < t Critical	69	-0.491233	1.65787	t Stat < t Critical
20	1.103924	1.65787	t Stat < t Critical	70	0.004881	1.65787	t Stat < t Critical
21	-1.377016	1.65787	t Stat < t Critical	71	-0.195950	1.65787	t Stat < t Critical

22	0.50005	1 (5707	1 Ct 1 ct C :: 1	70	0.017200	1 (5707	1 Ct 1 Ct C ::: 1
22	-0.523995	1.65787	t Stat < t Critical	72	0.017298	1.65787	t Stat < t Critical
23	0.171108	1.65787	t Stat < t Critical	73	-0.125875	1.65787	t Stat < t Critical
24	1.305406	1.65787	t Stat < t Critical	74	0.798756	1.65787	t Stat < t Critical
25	-1.454001	1.65787	t Stat < t Critical	75	-0.064428	1.65787	t Stat < t Critical
26	-0.348469	1.65787	t Stat < t Critical	76	1.320349	1.65787	t Stat < t Critical
27	-0.007974	1.65787	t Stat < t Critical	77	1.277400	1.65787	t Stat < t Critical
28	0.985668	1.65787	t Stat < t Critical	78	-0.038145	1.65787	t Stat < t Critical
29	1.176583	1.65787	t Stat < t Critical	79	-0.313420	1.65787	t Stat < t Critical
30	-0.640457	1.65787	t Stat < t Critical	80	1.053996	1.65787	t Stat < t Critical
31	1.319368	1.65787	t Stat < t Critical	81	1.160367	1.65787	t Stat < t Critical
32	-0.363791	1.65787	t Stat < t Critical	82	-1.127515	1.65787	t Stat < t Critical
33	0.770282	1.65787	t Stat < t Critical	83	-0.138543	1.65787	t Stat < t Critical
34	0.194063	1.65787	t Stat < t Critical	84	0.981485	1.65787	t Stat < t Critical
35	1.153773	1.65787	t Stat < t Critical	85	0.155100	1.65787	t Stat < t Critical
36	-0.662983	1.65787	t Stat < t Critical	86	0.902797	1.65787	t Stat < t Critical
37	-0.344439	1.65787	t Stat < t Critical	87	-0.403232	1.65787	t Stat < t Critical
38	1.096618	1.65787	t Stat < t Critical	88	-0.581704	1.65787	t Stat < t Critical
39	0.374168	1.65787	t Stat < t Critical	89	-0.268604	1.65787	t Stat < t Critical
40	-1.141761	1.65787	t Stat < t Critical	90	-0.946328	1.65787	t Stat < t Critical
41	-0.460415	1.65787	t Stat < t Critical	91	1.256313	1.65787	t Stat < t Critical
42	-0.544267	1.65787	t Stat < t Critical	92	0.000614	1.65787	t Stat < t Critical
43	1.068793	1.65787	t Stat < t Critical	93	-0.044042	1.65787	t Stat < t Critical
44	1.076170	1.65787	t Stat < t Critical	94	-0.039331	1.65787	t Stat < t Critical

45	0.145723	1.65787	t Stat < t Critical	95	0.069130	1.65787	t Stat < t Critical
46	0.069579	1.65787	t Stat < t Critical	96	0.093737	1.65787	t Stat < t Critical
47	1.340547	1.65787	t Stat < t Critical	97	-0.823738	1.65787	t Stat < t Critical
48	0.008179	1.65787	t Stat < t Critical	98	0.050875	1.65787	t Stat < t Critical
49	0.432012	1.65787	t Stat < t Critical	99	1.319	1.65787	t Stat < t Critical
50	-1.176110	1.65787	t Stat < t Critical	100	-1.193	1.65787	t Stat < t Critical

c. Nomor Material 602-001378

No	Existing
1	200
2 3 4 5 6 7 8	0
3	0
4	300
5	0
6	0
7	0
8	0
9	0
10	0
11	0
12	0
13	700
14	0
15	200
16	0
17	0
18	0
57 58 59	0 0
58	0
59	250
60	50

No	Xi	Frekuens	Probabili	Frekuens	Probabilita	Interval	
INO	ΛI	i Xi	tas	i	S	Angka	
1	0	41	0.68	41	0.68	0 - 68	
2	50	3	0.05	44	0.73	69 - 73	
3	100	2	0.03	46	0.77	74 - 77	
4	150	1	0.02	47	0.78	78 - 78	
5	200	4	0.07	51	0.85	79 - 85	
6	250	6	0.10	57	0.95	86 - 95	
7	300	1	0.02	58	0.97	96 - 97	
8	500	1	0.02	59	0.98	98 - 98	
9	700	1	0.02	60	1.00	99 - 100	
		60					

	Replika	asi 1	Replika	asi 2	Replika	ısi 3		Replikas	i 100
No	Random	Repli	Random	Repli	Random	Repli		Random	Repli
110	Number	kasi 1	Number	kasi	Number	kasi	•••	Number	kasi
1	34	0	7	0	83	200		93	250
2	71	50	15	0	96	300		20	0
3	76	100	75	100	2	0		16	0
4	40	0	62	0	15	0		60	0
5	12	0	23	0	46	0		65	0
6	9	0	27	0	68	0	•••	94	250
7	15	0	13	0	30	0	•••	49	0
8	4	0	59	0	24	0	•••	27	0
9	11	0	47	0	62	0		7	0
10	86	250	33	0	87	250		42	0
11	19	0	56	0	26	0	•••	42	0
12	49	0	80	200	10	0	•••	96	300
13	27	0	49	0	2	0	•••	65	0
14	43	0	75	100	40	0	•••	96	300
15	15	0	25	0	89	250		45	0
16	13	0	55	0	2	0		95	250
17	7	0	49	0	84	200	•••	39	0
18	57	0	43	0	15	0		6	0
					•••				
57	40	0	51	0	29	0		61	0
58	78	150	79	200	3	0		83	200
59	15	0	38	0	78	150		88	250
60	84	200	71	50	66	0		84	200

Replikasi	t Stat	t Critical	Hasil Uji	Replikasi	t Stat	t Critical	Hasil Uji
1	-0.554964	1.65787	t Stat < t Critical	51	-0.103779	1.65787	t Stat < t Critical
2	0.649318	1.65787	t Stat < t Critical	52	0.209824	1.65787	t Stat < t Critical
3	0.159660	1.65787	t Stat < t Critical	53	-0.418571	1.65787	t Stat < t Critical
4	-0.786165	1.65787	t Stat < t Critical	54	0.348324	1.65787	t Stat < t Critical
5	0.195625	1.65787	t Stat < t Critical	55	1.128875	1.65787	t Stat < t Critical
6	1.473858	1.65787	t Stat < t Critical	56	-0.411886	1.65787	t Stat < t Critical
7	-0.579796	1.65787	t Stat < t Critical	57	-0.104545	1.65787	t Stat < t Critical
8	0.267525	1.65787	t Stat < t Critical	58	-0.609884	1.65787	t Stat < t Critical
9	-0.913496	1.65787	t Stat < t Critical	59	-1.096964	1.65787	t Stat < t Critical
10	-0.360229	1.65787	t Stat < t Critical	60	-1.031968	1.65787	t Stat < t Critical
11	-1.153658	1.65787	t Stat < t Critical	61	-0.127244	1.65787	t Stat < t Critical
12	-0.613961	1.65787	t Stat < t Critical	62	0.417217	1.65787	t Stat < t Critical
13	-1.057924	1.65787	t Stat < t Critical	63	-0.570159	1.65787	t Stat < t Critical
14	0.525329	1.65787	t Stat < t Critical	64	-0.708080	1.65787	t Stat < t Critical
15	1.596260	1.65787	t Stat < t Critical	65	0.424339	1.65787	t Stat < t Critical
16	0.291756	1.65787	t Stat < t Critical	66	-0.562890	1.65787	t Stat < t Critical
17	0.258384	1.65787	t Stat < t Critical	67	-0.294668	1.65787	t Stat < t Critical
18	-0.359836	1.65787	t Stat < t Critical	68	0.139312	1.65787	t Stat < t Critical
19	0.325788	1.65787	t Stat < t Critical	69	0.709153	1.65787	t Stat < t Critical
20	0.668862	1.65787	t Stat < t Critical	70	-1.202759	1.65787	t Stat < t Critical
21	0.678579	1.65787	t Stat < t Critical	71	1.352685	1.65787	t Stat < t Critical
22	0.674220	1.65787	t Stat < t Critical	72	-0.661532	1.65787	t Stat < t Critical

23	-0.365034	1.65787	t Stat < t Critical	73	-1.658828	1.65787	t Stat < t Critical
24	-0.172755	1.65787	t Stat < t Critical	74	0.560578	1.65787	t Stat < t Critical
25	-0.589082	1.65787	t Stat < t Critical	75	0.627214	1.65787	t Stat < t Critical
26	-0.191464	1.65787	t Stat < t Critical	76	-0.578156	1.65787	t Stat < t Critical
27	0.209824	1.65787	t Stat < t Critical	77	-0.470910	1.65787	t Stat < t Critical
28	0.245153	1.65787	t Stat < t Critical	78	0.130583	1.65787	t Stat < t Critical
29	-0.654052	1.65787	t Stat < t Critical	79	0.159660	1.65787	t Stat < t Critical
30	0.037181	1.65787	t Stat < t Critical	80	0.033030	1.65787	t Stat < t Critical
31	-0.199251	1.65787	t Stat < t Critical	81	1.593632	1.65787	t Stat < t Critical
32	-0.230159	1.65787	t Stat < t Critical	82	-0.059590	1.65787	t Stat < t Critical
33	0.170225	1.65787	t Stat < t Critical	83	-0.464815	1.65787	t Stat < t Critical
34	0.268135	1.65787	t Stat < t Critical	84	0.540695	1.65787	t Stat < t Critical
35	-0.068361	1.65787	t Stat < t Critical	85	-0.475043	1.65787	t Stat < t Critical
36	0.389078	1.65787	t Stat < t Critical	86	1.572415	1.65787	t Stat < t Critical
37	-0.062539	1.65787	t Stat < t Critical	87	-0.285772	1.65787	t Stat < t Critical
38	-0.440766	1.65787	t Stat < t Critical	88	-0.296169	1.65787	t Stat < t Critical
39	0.069043	1.65787	t Stat < t Critical	89	-0.469501	1.65787	t Stat < t Critical
40	-0.350068	1.65787	t Stat < t Critical	90	-1.779498	1.65787	t Stat < t Critical
41	0.172685	1.65787	t Stat < t Critical	91	0.345070	1.65787	t Stat < t Critical
42	0.827842	1.65787	t Stat < t Critical	92	0.273825	1.65787	t Stat < t Critical
43	0.497617	1.65787	t Stat < t Critical	93	1.327589	1.65787	t Stat < t Critical
44	0.351372	1.65787	t Stat < t Critical	94	1.221523	1.65787	t Stat < t Critical
45	-0.271548	1.65787	t Stat < t Critical	95	0.164327	1.65787	t Stat < t Critical
46	0.191425	1.65787	t Stat < t Critical	96	0.145550	1.65787	t Stat < t Critical
47	-0.770042	1.65787	t Stat < t Critical	97	-1.512119	1.65787	t Stat < t Critical

48	0.170831	1.65787	t Stat < t Critical	98	-1.585483	1.65787	t Stat < t Critical
49	0.064924	1.65787	t Stat < t Critical	99	0.681002	1.65787	t Stat < t Critical
50	1.354410	1.65787	t Stat < t Critical	100	-0.556335	1.65787	t Stat < t Critical

d. Nomor Material 628-000239

No	Existing
1	0
2 3 4	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0
10	1
11	0
12	0
13	0
14	0
15	0
16	0
17	0
18	0
57	100
58	110
59	0
60	0

No Xi		Frekuensi	Probabilit	Frekuensi	Probabilitas	Interval
NO	ΧΙ	Xi	as	Kumulatif	Kumulatif	Angka
1	0	48	0.80	48	0.80	0 - 80
2	1	1	0.02	49	0.82	81 - 82
3	3	1	0.02	50	0.83	83 - 83
4	15	1	0.02	51	0.85	84 - 85
5	30	1	0.02	52	0.87	86 - 87
6	50	1	0.02	53	0.88	88 - 88
7	60	1	0.02	54	0.90	89 - 90
8	65	1	0.02	55	0.92	91 - 92
9	70	1	0.02	56	0.93	93 - 93
10	90	1	0.02	57	0.95	94 - 95
11	100	1	0.02	58	0.97	96 - 97
12	110	1	0.02	59	0.98	98 - 98
13	122	1	0.02	60	1.00	99 - 100
		60				

	Replika	si 1	Replik	asi 2	Repliks	si 3	 Replikas	i 100
No	Random	Dema	Random	Deman	Random	Dema	Random	Dema
NO	Number	nd	Number	d	Number	nd	 Number	nd
1	83	3	42	0	19	0	 83	3
2	29	0	99	122	36	0	 26	0
3	5	0	88	50	36	0	 17	0
4	3	0	30	0	49	0	 32	0
5	20	0	54	0	47	0	 21	0
6	78	0	17	0	88	50	 37	0
7	78	0	28	0	25	0	 74	0
8	4	0	27	0	47	0	 99	122
9	34	0	90	60	50	0	 98	110
10	18	0	5	0	21	0	 87	30
11	61	0	95	90	6	0	 43	0
12	66	0	69	0	36	0	 89	60
13	88	50	57	0	48	0	 78	0
14	40	0	85	15	80	0	 48	0
15	58	0	44	0	44	0	 89	60
16	51	0	25	0	0	0	 76	0
17	63	0	86	30	0	0	 31	0
18	54	0	43	0	56	0	 77	0
57	82	1	50	0	19	0	 99	122
58	53	0	68	0	10	0	 96	100
59	2	0	32	0	89	60	 82	1
60	11	0	68	0	16	0	 62	0

- Validasi Bilangan Acak

Replikasi	t Stat	t Critical	Hasil Uji	Replikasi	t Stat	t Critical	Hasil Uji
1	0.100308	1.6579	t Stat < t Critical	51	0.288084	1.6579	t Stat < t Critical
2	-0.221392	1.6579	t Stat < t Critical	52	0.386032	1.6579	t Stat < t Critical
3	0.939949	1.6579	t Stat < t Critical	53	-0.691632	1.6579	t Stat < t Critical
4	0.125934	1.6579	t Stat < t Critical	54	-0.524513	1.6579	t Stat < t Critical
5	0.125934	1.6579	t Stat < t Critical	55	0.457355	1.6579	t Stat < t Critical
6	-0.068482	1.6579	t Stat < t Critical	56	0.028076	1.6579	t Stat < t Critical
7	0.059016	1.6579	t Stat < t Critical	57	-0.593383	1.6579	t Stat < t Critical
8	-0.128663	1.6579	t Stat < t Critical	58	-1.048642	1.6579	t Stat < t Critical
9	1.400356	1.6579	t Stat < t Critical	59	0.984661	1.6579	t Stat < t Critical
10	-0.258043	1.6579	t Stat < t Critical	60	-0.083911	1.6579	t Stat < t Critical
11	-1.379819	1.6579	t Stat < t Critical	61	-0.950716	1.6579	t Stat < t Critical
12	1.637470	1.6579	t Stat < t Critical	62	0.222227	1.6579	t Stat < t Critical
13	0.142805	1.6579	t Stat < t Critical	63	-0.524566	1.6579	t Stat < t Critical
14	-0.687593	1.6579	t Stat < t Critical	64	0.051131	1.6579	t Stat < t Critical
15	-0.602769	1.6579	t Stat < t Critical	65	0.585078	1.6579	t Stat < t Critical
16	-0.588430	1.6579	t Stat < t Critical	66	-0.770290	1.6579	t Stat < t Critical
17	-0.561322	1.6579	t Stat < t Critical	67	1.035568	1.6579	t Stat < t Critical
18	0.232394	1.6579	t Stat < t Critical	68	0.572422	1.6579	t Stat < t Critical
19	1.303116	1.6579	t Stat < t Critical	69	-0.428515	1.6579	t Stat < t Critical
20	-1.146480	1.6579	t Stat < t Critical	70	-0.582436	1.6579	t Stat < t Critical
21	0.902208	1.6579	t Stat < t Critical	71	0.721178	1.6579	t Stat < t Critical
22	-0.599699	1.6579	t Stat < t Critical	72	0.155616	1.6579	t Stat < t Critical

22	0.050000	1 (550		50	0.000050	1 (550)	
23	0.072803	1.6579	t Stat < t Critical	73	-0.929950	1.6579	t Stat < t Critical
24	1.319612	1.6579	t Stat < t Critical	74	-0.464386	1.6579	t Stat < t Critical
25	0.947108	1.6579	t Stat < t Critical	75	0.682691	1.6579	t Stat < t Critical
26	-0.418301	1.6579	t Stat < t Critical	76	-0.846839	1.6579	t Stat < t Critical
27	1.339995	1.6579	t Stat < t Critical	77	1.266812	1.6579	t Stat < t Critical
28	-0.120758	1.6579	t Stat < t Critical	78	0.278248	1.6579	t Stat < t Critical
29	0.932085	1.6579	t Stat < t Critical	79	0.639458	1.6579	t Stat < t Critical
30	-0.757512	1.6579	t Stat < t Critical	80	1.441818	1.6579	t Stat < t Critical
31	0.802197	1.6579	t Stat < t Critical	81	-1.750507	1.6579	t Stat < t Critical
32	0.053324	1.6579	t Stat < t Critical	82	-0.444164	1.6579	t Stat < t Critical
33	0.378624	1.6579	t Stat < t Critical	83	-0.244301	1.6579	t Stat < t Critical
34	-0.580502	1.6579	t Stat < t Critical	84	0.248959	1.6579	t Stat < t Critical
35	-0.772135	1.6579	t Stat < t Critical	85	-0.935853	1.6579	t Stat < t Critical
36	0.490788	1.6579	t Stat < t Critical	86	0.107802	1.6579	t Stat < t Critical
37	0.143342	1.6579	t Stat < t Critical	87	-0.119871	1.6579	t Stat < t Critical
38	-0.351671	1.6579	t Stat < t Critical	88	0.413577	1.6579	t Stat < t Critical
39	-0.113584	1.6579	t Stat < t Critical	89	-1.054477	1.6579	t Stat < t Critical
40	0.878399	1.6579	t Stat < t Critical	90	-0.424788	1.6579	t Stat < t Critical
41	0.591149	1.6579	t Stat < t Critical	91	0.720901	1.6579	t Stat < t Critical
42	0.911874	1.6579	t Stat < t Critical	92	0.288804	1.6579	t Stat < t Critical
43	-0.744437	1.6579	t Stat < t Critical	93	-0.606775	1.6579	t Stat < t Critical
44	-0.171577	1.6579	t Stat < t Critical	94	0.057262	1.6579	t Stat < t Critical
45	-1.258194	1.6579	t Stat < t Critical	95	-0.470873	1.6579	t Stat < t Critical
46	-0.474661	1.6579	t Stat < t Critical	96	-0.623125	1.6579	t Stat < t Critical
47	0.549960	1.6579	t Stat < t Critical	97	-0.289464	1.6579	t Stat < t Critical

48	-0.325004	1.6579	t Stat < t Critical	98	1.401600	1.6579	t Stat < t Critical
49	0.664389	1.6579	t Stat < t Critical	99	-0.917991	1.6579	t Stat < t Critical
50	-0.189965	1.6579	t Stat < t Critical	100	-1.193828	1.6579	t Stat < t Critical

e. Nomor Material 631-000542

No	Existing
1	0
2	0
3	0
4	200
5	0
6	0
2 3 4 5 6 7 8	300
8	0
9	0
10	0
11	300
12	500
13	0
14	0
15	0
16	300
17	1000
18	200
57 58 59	0
58	0
	0
60	0

No	Xi	Frekuens	Probabili	Frekuens	Probabilita	Interval
110	Λl	i Xi	tas	i	S	Angka
1	0	31	0.52	31	0.52	0 - 52
2	100	3	0.05	34	0.57	53 - 57
3	150	1	0.02	35	0.58	58 - 58
4	200	5	0.08	40	0.67	59 - 67
5	300	3	0.05	43	0.72	68 - 72
6	400	1	0.02	44	0.73	73 - 73
7	500	6	0.10	50	0.83	74 - 83
8	600	1	0.02	51	0.85	84 - 85
9	750	1	0.02	52	0.87	86 - 87
10	802	1	0.02	53	0.88	88 - 88
11	900	1	0.02	54	0.90	89 - 90
12	1000	3	0.05	57	0.95	91 - 95
13	1200	1	0.02	58	0.97	96 - 97
14	2300	1	0.02	59	0.98	98 - 98
15	2800	1	0.02	60	1.00	99 - 100
		60				

	Replika	asi 1	Replik	asi 2	Replika	si 3		Replikas	i 100
No	Random	Dema	Random	Dema	Random	Dem		Random	Dem
110	Number	nd	Number	nd	Number	and	•••	Number	and
1	83	500	42	0	19	0	•••	83	500
2	29	0	99	2800	36	0		26	0
3	5	0	88	802	36	0		17	0
4	3	0	30	0	49	0	•••	32	0
5	20	0	54	100	47	0	•••	21	0
6	78	500	17	0	88	802	•••	37	0
7	78	500	28	0	25	0	•••	74	500
8	4	0	27	0	47	0	•••	99	2800
9	34	0	90	900	50	0		98	2300
10	18	0	5	0	21	0		87	750
11	61	200	95	1000	6	0		43	0
12	66	200	69	300	36	0		89	900
13	88	802	57	100	48	0		78	500
14	40	0	85	600	80	500		48	0
15	58	150	44	0	44	0		89	900
16	51	0	25	0	0	0		76	500
17	63	200	86	750	0	0		31	0
18	54	100	43	0	56	100		77	500
57	82	500	50	0	19	0		99	2800
58	53	100	68	300	10	0		96	1200
59	2	0	32	0	89	900		82	500
60	11	0	68	300	16	0		62	200

- Validasi Bilangan Acak

Replikasi	t Stat	t Critical	Hasil Uji	Replikasi	t Stat	t Critical	Hasil Uji
1	0.058321	1.6579	t Stat < t Critical	51	0.848861	1.6579	t Stat < t Critical
2	-0.317326	1.6579	t Stat < t Critical	52	0.506048	1.6579	t Stat < t Critical
3	0.954594	1.6579	t Stat < t Critical	53	-0.712266	1.6579	t Stat < t Critical
4	-0.041702	1.6579	t Stat < t Critical	54	-0.573253	1.6579	t Stat < t Critical
5	1.554346	1.6579	t Stat < t Critical	55	0.872352	1.6579	t Stat < t Critical
6	-0.063315	1.6579	t Stat < t Critical	56	0.252698	1.6579	t Stat < t Critical
7	0.094756	1.6579	t Stat < t Critical	57	-0.142532	1.6579	t Stat < t Critical
8	0.099415	1.6579	t Stat < t Critical	58	-0.686954	1.6579	t Stat < t Critical
9	1.216577	1.6579	t Stat < t Critical	59	0.836016	1.6579	t Stat < t Critical
10	-0.294244	1.6579	t Stat < t Critical	60	0.039590	1.6579	t Stat < t Critical
11	-1.183402	1.6579	t Stat < t Critical	61	-0.848673	1.6579	t Stat < t Critical
12	1.381825	1.6579	t Stat < t Critical	62	0.402708	1.6579	t Stat < t Critical
13	-0.145550	1.6579	t Stat < t Critical	63	-0.257563	1.6579	t Stat < t Critical
14	-0.456721	1.6579	t Stat < t Critical	64	-0.057966	1.6579	t Stat < t Critical
15	-0.955901	1.6579	t Stat < t Critical	65	0.800744	1.6579	t Stat < t Critical
16	0.007857	1.6579	t Stat < t Critical	66	-0.629249	1.6579	t Stat < t Critical
17	0.018616	1.6579	t Stat < t Critical	67	0.651207	1.6579	t Stat < t Critical
18	0.309735	1.6579	t Stat < t Critical	68	0.508493	1.6579	t Stat < t Critical
19	1.323916	1.6579	t Stat < t Critical	69	-0.185401	1.6579	t Stat < t Critical
20	-1.675150	1.6579	t Stat < t Critical	70	-0.703233	1.6579	t Stat < t Critical
21	1.325902	1.6579	t Stat < t Critical	71	0.443502	1.6579	t Stat < t Critical
22	-0.394946	1.6579	t Stat < t Critical	72	-0.329436	1.6579	t Stat < t Critical

22	0.122740	1 (570	1011111111	72	0.675000	1 (570	1 0 1 1 0 1 1
23	0.133648	1.6579	t Stat < t Critical	73	-0.675288	1.6579	t Stat < t Critical
24	1.118336	1.6579	t Stat < t Critical	74	-0.297746	1.6579	t Stat < t Critical
25	0.487027	1.6579	t Stat < t Critical	75	0.574826	1.6579	t Stat < t Critical
26	-0.680709	1.6579	t Stat < t Critical	76	-0.774124	1.6579	t Stat < t Critical
27	0.983248	1.6579	t Stat < t Critical	77	1.069304	1.6579	t Stat < t Critical
28	0.479374	1.6579	t Stat < t Critical	78	0.112067	1.6579	t Stat < t Critical
29	1.353229	1.6579	t Stat < t Critical	79	0.395997	1.6579	t Stat < t Critical
30	-0.924453	1.6579	t Stat < t Critical	80	0.629033	1.6579	t Stat < t Critical
31	1.142920	1.6579	t Stat < t Critical	81	-1.871088	1.6579	t Stat < t Critical
32	-0.311132	1.6579	t Stat < t Critical	82	-0.306063	1.6579	t Stat < t Critical
33	0.455174	1.6579	t Stat < t Critical	83	0.123715	1.6579	t Stat < t Critical
34	-0.564593	1.6579	t Stat < t Critical	84	0.159756	1.6579	t Stat < t Critical
35	-0.403357	1.6579	t Stat < t Critical	85	-0.443669	1.6579	t Stat < t Critical
36	0.347186	1.6579	t Stat < t Critical	86	-0.300169	1.6579	t Stat < t Critical
37	0.493299	1.6579	t Stat < t Critical	87	-0.206867	1.6579	t Stat < t Critical
38	-0.489281	1.6579	t Stat < t Critical	88	0.376975	1.6579	t Stat < t Critical
39	-0.127306	1.6579	t Stat < t Critical	89	-0.981849	1.6579	t Stat < t Critical
40	0.675221	1.6579	t Stat < t Critical	90	-0.654118	1.6579	t Stat < t Critical
41	0.792866	1.6579	t Stat < t Critical	91	0.853298	1.6579	t Stat < t Critical
42	0.884582	1.6579	t Stat < t Critical	92	1.361565	1.6579	t Stat < t Critical
43	-0.267821	1.6579	t Stat < t Critical	93	-0.132734	1.6579	t Stat < t Critical
44	-0.139645	1.6579	t Stat < t Critical	94	0.453350	1.6579	t Stat < t Critical
45	-1.430085	1.6579	t Stat < t Critical	95	-0.575111	1.6579	t Stat < t Critical
46	-0.416702	1.6579	t Stat < t Critical	96	-0.438959	1.6579	t Stat < t Critical
47	0.339189	1.6579	t Stat < t Critical	97	0.247116	1.6579	t Stat < t Critical

	48	-0.767920	1.6579	t Stat < t Critical	98	1.400253	1.6579	t Stat < t Critical
Ī	49	0.988398	1.6579	t Stat < t Critical	99	-0.793809	1.6579	t Stat < t Critical
	50	-0.047244	1.6579	t Stat < t Critical	100	-1.386330	1.6579	t Stat < t Critical

f. Nomor Material 632-001172

Perhitungan sesuai pada Sub Bab 4.9

g. Nomor Material 626-007992

												Replika	asi 1	Replika	si 2	Replika	si 3		Replikas	i 100
No	Existing		No	Xi	Frekuens	Probabili	Frekuens	Probabilita	Interval		lo	Random	Dema	Random	Dem	Random	Dem		Random	Dem
190	Existing		INO	ΛΙ	i Xi	tas	i	S	Angka	Г	10	Number	nd	Number	and	Number	and	•••	Number	and
1	0		1	0	44	0.73	44	0.73	0 - 73		1	34	0	7	0	83	1		93	10
2	0		2	1	7	0.12	51	0.85	74 - 85		2	71	0	15	0	96	20		20	0
3	0		3	2	3	0.05	54	0.90	86 - 90		3	76	1	75	1	2	0		16	0
4	0		4	3	1	0.02	55	0.92	91 - 92		4	40	0	62	0	15	0		60	0
5	20		5	10	2	0.03	57	0.95	93 - 95		5	12	0	23	0	46	0		65	0
6	0		6	20	1	0.02	58	0.97	96 - 97		6	9	0	27	0	68	0		94	10
7	0		7	23	1	0.02	59	0.98	98 - 98	,	7	15	0	13	0	30	0		49	0
8	0		8	27	1	0.02	60	1.00	99 - 100		8	4	0	59	0	24	0		27	0
9	0	-	-		60						9	11	0	47	0	62	0		7	0
10	0				,	•				1	0	86	2	33	0	87	2		42	0
11	0									1	1	19	0	56	0	26	0		42	0
12	0									1	2	49	0	80	1	10	0		96	20
13	10									1	3	27	0	49	0	2	0		65	0
14	0									1	4	43	0	75	1	40	0		96	20
15	0									1	5	15	0	25	0	89	2		45	0
16	1									1	6	13	0	55	0	2	0		95	10
17	23									1	7	7	0	49	0	84	1		39	0
18	0									1	8	57	0	43	0	15	0		6	0
	•••															•••				
57	0									5	7	40	0	51	0	29	0		61	0
58	0									5	8	78	1	79	1	3	0		83	1
59	0									5	9	15	0	38	0	78	1		88	2
60	0									6	0	84	1	71	0	66	0		84	1

Replikasi	t Stat	t Critical	Hasil Uji	Replikasi	t Stat	t Critical	Hasil Uji
1	-0.331132	1.65787	t Stat < t Critical	51	0.359573	1.65787	t Stat < t Critical
2	0.383710	1.65787	t Stat < t Critical	52	1.065523	1.65787	t Stat < t Critical
3	0.133737	1.65787	t Stat < t Critical	53	-0.323688	1.65787	t Stat < t Critical
4	-0.336800	1.65787	t Stat < t Critical	54	0.457337	1.65787	t Stat < t Critical
5	1.629274	1.65787	t Stat < t Critical	55	0.414004	1.65787	t Stat < t Critical
6	1.556736	1.65787	t Stat < t Critical	56	-0.678809	1.65787	t Stat < t Critical
7	-0.869990	1.65787	t Stat < t Critical	57	0.468637	1.65787	t Stat < t Critical
8	0.067992	1.65787	t Stat < t Critical	58	-1.014188	1.65787	t Stat < t Critical
9	-1.259087	1.65787	t Stat < t Critical	59	-0.400599	1.65787	t Stat < t Critical
10	-0.066209	1.65787	t Stat < t Critical	60	-1.150064	1.65787	t Stat < t Critical
11	-0.620331	1.65787	t Stat < t Critical	61	-0.213327	1.65787	t Stat < t Critical
12	-0.438168	1.65787	t Stat < t Critical	62	0.121158	1.65787	t Stat < t Critical
13	-0.729928	1.65787	t Stat < t Critical	63	-0.598830	1.65787	t Stat < t Critical
14	0.297461	1.65787	t Stat < t Critical	64	0.017546	1.65787	t Stat < t Critical
15	1.142614	1.65787	t Stat < t Critical	65	0.286934	1.65787	t Stat < t Critical
16	0.569824	1.65787	t Stat < t Critical	66	0.286934	1.65787	t Stat < t Critical
17	0.850774	1.65787	t Stat < t Critical	67	-0.308939	1.65787	t Stat < t Critical
18	-0.229704	1.65787	t Stat < t Critical	68	-0.226987	1.65787	t Stat < t Critical
19	0.365096	1.65787	t Stat < t Critical	69	0.915845	1.65787	t Stat < t Critical
20	0.331491	1.65787	t Stat < t Critical	70	-1.449275	1.65787	t Stat < t Critical
21	0.826830	1.65787	t Stat < t Critical	71	1.369974	1.65787	t Stat < t Critical
22	0.729846	1.65787	t Stat < t Critical	72	-0.583718	1.65787	t Stat < t Critical

23	-0.662631	1.65787	t Stat < t Critical	73	-1.336452	1.65787	t Stat < t Critical
24	0.658055	1.65787	t Stat < t Critical	74	0.652449	1.65787	t Stat < t Critical
25	-0.579396	1.65787	t Stat < t Critical	75	0.529343	1.65787	t Stat < t Critical
26	-0.049680	1.65787	t Stat < t Critical	76	-0.592022	1.65787	t Stat < t Critical
27	-0.529652	1.65787	t Stat < t Critical	77	-0.412832	1.65787	t Stat < t Critical
28	0.760368	1.65787	t Stat < t Critical	78	0.000000	1.65787	t Stat < t Critical
29	-0.236401	1.65787	t Stat < t Critical	79	-0.114755	1.65787	t Stat < t Critical
30	0.239401	1.65787	t Stat < t Critical	80	-0.578756	1.65787	t Stat < t Critical
31	-0.163812	1.65787	t Stat < t Critical	81	-1.010610	1.65787	t Stat < t Critical
32	-0.697435	1.65787	t Stat < t Critical	82	-0.397154	1.65787	t Stat < t Critical
33	0.661875	1.65787	t Stat < t Critical	83	0.496351	1.65787	t Stat < t Critical
34	-0.227291	1.65787	t Stat < t Critical	84	0.364424	1.65787	t Stat < t Critical
35	-0.067345	1.65787	t Stat < t Critical	85	-0.035780	1.65787	t Stat < t Critical
36	-0.111110	1.65787	t Stat < t Critical	86	1.269808	1.65787	t Stat < t Critical
37	-0.111110	1.65787	t Stat < t Critical	87	-0.334558	1.65787	t Stat < t Critical
38	-0.402834	1.65787	t Stat < t Critical	88	0.994627	1.65787	t Stat < t Critical
39	0.402542	1.65787	t Stat < t Critical	89	-0.553841	1.65787	t Stat < t Critical
40	-0.150526	1.65787	t Stat < t Critical	90	-1.172684	1.65787	t Stat < t Critical
41	-0.181507	1.65787	t Stat < t Critical	91	0.456067	1.65787	t Stat < t Critical
42	0.786338	1.65787	t Stat < t Critical	92	0.051905	1.65787	t Stat < t Critical
43	0.439172	1.65787	t Stat < t Critical	93	1.370540	1.65787	t Stat < t Critical
44	-0.067248	1.65787	t Stat < t Critical	94	1.354626	1.65787	t Stat < t Critical
45	0.303343	1.65787	t Stat < t Critical	95	0.168750	1.65787	t Stat < t Critical
46	-0.285290	1.65787	t Stat < t Critical	96	0.809304	1.65787	t Stat < t Critical
47	-1.257030	1.65787	t Stat < t Critical	97	-1.500483	1.65787	t Stat < t Critical

48	-0.066581	1.65787	t Stat < t Critical	98	-1.453062	1.65787	t Stat < t Critical
49	0.120536	1.65787	t Stat < t Critical	99	0.580174	1.65787	t Stat < t Critical
50	1.635619	1.65787	t Stat < t Critical	100	-0.601133	1.65787	t Stat < t Critical

h. Nomor Material 632-001184

No	Existing
1	0
2	0
3	0
4	0
5	0
1 2 3 4 5 6 7 8	0
7	0
8	6
9	6 3
10	29
11	29
12	3 0
13	0
14	1
14 15	0
16	0
17	0
18	0
57 58	6
58	6 5
59	0
60	6

No	Xi	Frekuens	Probabili	Frekuens	Probabilita	Interval	
INO	Λl	i Xi	tas	i	S	Angka	
1	0	38	0.63	38	0.63	0 - 63	
2	1	3	0.05	41	0.68	64 - 68	
3	2	4	0.07	45	0.75	69 - 75	
4	3	3	0.05	48	0.80	76 - 80	
5	4	1	0.02	49	0.82	81 - 82	
6	5	3	0.05	52	0.87	83 - 87	
7	6	3	0.05	55	0.92	88 - 92	
8	9	1	0.02	56	0.93	93 - 93	
9	10	1	0.02	57	0.95	94 - 95	
10	11	1	0.02	58	0.97	96 - 97	
11	15	1	0.02	59	0.98	98 - 98	
12	29	1	0.02	60	1.00	99 - 100	
		60					

No Number kasi Number N	90 29 67 29	Repli ka 6 0 1
Number kasi Number kasi <th< td=""><td>90 29 67 29</td><td>6 0 1</td></th<>	90 29 67 29	6 0 1
2 22 0 97 11 44 0 3 22 0 42 0 86 5 4 0 0 37 0 77 3 5 92 6 63 0 29 0 6 82 4 95 10 3 0 7 8 0 14 0 33 0 8 27 0 49 0 38 0 9 80 3 99 29 78 3 10 38 0 3 0 1 0 11 77 3 1 0 100 29	29 67 29	0
3 22 0 42 0 86 5 4 0 0 37 0 77 3 5 92 6 63 0 29 0 6 82 4 95 10 3 0 7 8 0 14 0 33 0 8 27 0 49 0 38 0 9 80 3 99 29 78 3 10 38 0 3 0 1 0 11 77 3 1 0 100 29 12 46 0 42 0 90 6	67 29	1
4 0 0 37 0 77 3 5 92 6 63 0 29 0 6 82 4 95 10 3 0 7 8 0 14 0 33 0 8 27 0 49 0 38 0 9 80 3 99 29 78 3 10 38 0 3 0 1 0 11 77 3 1 0 100 29 12 46 0 42 0 90 6	29	
5 92 6 63 0 29 0 6 82 4 95 10 3 0 7 8 0 14 0 33 0 8 27 0 49 0 38 0 9 80 3 99 29 78 3 10 38 0 3 0 1 0 11 77 3 1 0 100 29 12 46 0 42 0 90 6		
6 82 4 95 10 3 0 7 8 0 14 0 33 0 8 27 0 49 0 38 0 9 80 3 99 29 78 3 10 38 0 3 0 1 0 11 77 3 1 0 100 29 12 46 0 42 0 90 6	0.2	0
7 8 0 14 0 33 0 8 27 0 49 0 38 0 9 80 3 99 29 78 3 10 38 0 3 0 1 0 11 77 3 1 0 100 29 12 46 0 42 0 90 6	93	9
8 27 0 49 0 38 0 9 80 3 99 29 78 3 10 38 0 3 0 1 0 11 77 3 1 0 100 29 12 46 0 42 0 90 6	40	0
9 80 3 99 29 78 3 10 38 0 3 0 1 0 11 77 3 1 0 100 29 12 46 0 42 0 90 6	22	0
10 38 0 3 0 1 0 11 77 3 1 0 100 29 12 46 0 42 0 90 6	92	6
11 77 3 1 0 100 29 12 46 0 42 0 90 6	43	0
12 46 0 42 0 00 6	25	0
12 46 0 42 0 90 6	1	0
12 40 0 42 0 90 0	38	0
13 61 0 6 0 75 2	0	0
14 10 0 86 5 43 0	36	0
15 68 1 90 6 46 0	51	0
16 29 0 78 3 73 2	71	2
17 77 3 8 0 63 0	73	2
18 33 0 63 0 79 3	30	0
		•••
57 7 0 86 5 16 0	81	4
58 80 3 82 4 67 1	65	1
59 80 3 94 10 9 0	77	3
60 34 0 40 0 19 0	21	0

Replikasi	t Stat	t Critical	Hasil Uji	Replikasi	t Stat	t Critical	Hasil Uji
1	0.3211	1.6579	t Stat < t Critical	51	0.1411	1.6579	t Stat < t Critical
2	-1.6325	1.6579	t Stat < t Critical	52	1.0107	1.6579	t Stat < t Critical
3	-0.7331	1.6579	t Stat < t Critical	53	0.4392	1.6579	t Stat < t Critical
4	0.1056	1.6579	t Stat < t Critical	54	-0.3274	1.6579	t Stat < t Critical
5	-0.6159	1.6579	t Stat < t Critical	55	0.5480	1.6579	t Stat < t Critical
6	0.4147	1.6579	t Stat < t Critical	56	-1.0030	1.6579	t Stat < t Critical
7	0.4896	1.6579	t Stat < t Critical	57	1.0850	1.6579	t Stat < t Critical
8	-1.7050	1.6579	t Stat < t Critical	58	0.0221	1.6579	t Stat < t Critical
9	-0.8968	1.6579	t Stat < t Critical	59	-0.7507	1.6579	t Stat < t Critical
10	-0.0572	1.6579	t Stat < t Critical	60	-0.8823	1.6579	t Stat < t Critical
11	0.1354	1.6579	t Stat < t Critical	61	0.2676	1.6579	t Stat < t Critical
12	0.4873	1.6579	t Stat < t Critical	62	0.5688	1.6579	t Stat < t Critical
13	-0.0872	1.6579	t Stat < t Critical	63	0.0612	1.6579	t Stat < t Critical
14	-0.5475	1.6579	t Stat < t Critical	64	-0.1696	1.6579	t Stat < t Critical
15	-0.2322	1.6579	t Stat < t Critical	65	0.1085	1.6579	t Stat < t Critical
16	-0.4602	1.6579	t Stat < t Critical	66	-0.4824	1.6579	t Stat < t Critical
17	0.3133	1.6579	t Stat < t Critical	67	0.0358	1.6579	t Stat < t Critical
18	-0.7909	1.6579	t Stat < t Critical	68	0.5761	1.6579	t Stat < t Critical
19	-0.6794	1.6579	t Stat < t Critical	69	-0.0581	1.6579	t Stat < t Critical
20	1.2674	1.6579	t Stat < t Critical	70	0.8209	1.6579	t Stat < t Critical
21	-0.5000	1.6579	t Stat < t Critical	71	-0.3992	1.6579	t Stat < t Critical
22	1.5973	1.6579	t Stat < t Critical	72	0.7705	1.6579	t Stat < t Critical

_			7				
23	0.9752	1.6579	t Stat < t Critical	73	0.3707	1.6579	t Stat < t Critical
24	-0.6137	1.6579	t Stat < t Critical	74	0.0195	1.6579	t Stat < t Critical
25	0.0399	1.6579	t Stat < t Critical	75	-0.2974	1.6579	t Stat < t Critical
26	0.6733	1.6579	t Stat < t Critical	76	-0.7179	1.6579	t Stat < t Critical
27	0.2358	1.6579	t Stat < t Critical	77	1.2179	1.6579	t Stat < t Critical
28	-1.0998	1.6579	t Stat < t Critical	78	-0.3245	1.6579	t Stat < t Critical
29	0.8851	1.6579	t Stat < t Critical	79	-0.1543	1.6579	t Stat < t Critical
30	0.3988	1.6579	t Stat < t Critical	80	0.0980	1.6579	t Stat < t Critical
31	-0.2047	1.6579	t Stat < t Critical	81	0.3326	1.6579	t Stat < t Critical
32	0.2133	1.6579	t Stat < t Critical	82	-0.5206	1.6579	t Stat < t Critical
33	0.3575	1.6579	t Stat < t Critical	83	-0.3852	1.6579	t Stat < t Critical
34	-0.1768	1.6579	t Stat < t Critical	84	0.1048	1.6579	t Stat < t Critical
35	1.4019	1.6579	t Stat < t Critical	85	-0.2944	1.6579	t Stat < t Critical
36	1.4392	1.6579	t Stat < t Critical	86	0.1354	1.6579	t Stat < t Critical
37	-0.0909	1.6579	t Stat < t Critical	87	0.5197	1.6579	t Stat < t Critical
38	-0.9230	1.6579	t Stat < t Critical	88	-0.8148	1.6579	t Stat < t Critical
39	1.1843	1.6579	t Stat < t Critical	89	0.6807	1.6579	t Stat < t Critical
40	1.0279	1.6579	t Stat < t Critical	90	0.5354	1.6579	t Stat < t Critical
41	1.2494	1.6579	t Stat < t Critical	91	0.1526	1.6579	t Stat < t Critical
42	-0.2008	1.6579	t Stat < t Critical	92	0.1884	1.6579	t Stat < t Critical
43	-1.0841	1.6579	t Stat < t Critical	93	0.5550	1.6579	t Stat < t Critical
44	0.3177	1.6579	t Stat < t Critical	94	0.8210	1.6579	t Stat < t Critical
45	0.4341	1.6579	t Stat < t Critical	95	0.0399	1.6579	t Stat < t Critical
46	-0.5044	1.6579	t Stat < t Critical	96	0.0192	1.6579	t Stat < t Critical
47	0.7111	1.6579	t Stat < t Critical	97	0.0532	1.6579	t Stat < t Critical

48	-0.5671	1.6579	t Stat < t Critical	98	-0.5202	1.6579	t Stat < t Critical
49	0.8045	1.6579	t Stat < t Critical	99	0.3464	1.6579	t Stat < t Critical
50	0.0600	1.6579	t Stat < t Critical	100	1.0656	1.6579	t Stat < t Critical

i. Nomor Material 632-000118

- Pembangkitan Bilangan Acak

No	Existing
1	0
1 2 3 4 5 6 7 8	0
3	0 3 0 0
4	3
5	0
6	0
7	0
8	0
	0
10	0
11	0
12	0
13 14 15	0
14	0
15	0
16	0
17	0
18	0
57	0
57 58 59	0
59	0
60	1

									Replikasi 1		Replika	ısi 2	Replika	si 3		Replikasi 100	
No	Xi	Frekuens	Probabili	Frekuens	Probabilita	Interval		No	Random	Dema	Random	Dem	Random	Dem		Random	Dem
INO	Λl	i Xi	tas	i	S	Angka		110	Number	nd	Number	and	Number	and	••••	Number	and
1	0	51	0.85	51	0.85	0 - 85		1	43	0	22	0	29	0		19	0
2						2	60	0	97	2	18	0		40	0		
3	3 2 3 0.05 58 0.97 93 - 97						3	74	0	71	0	59	0		25	0	
4								4	40	0	82	0	33	0		27	0
		60						5	16	0	20	0	75	0		84	0
								6	32	0	36	0	22	0		41	0
								7	66	0	4	0	55	0		38	0
								8	79	0	1	0	23	0		62	0
								9	73	0	89	1	22	0		99	3
								10	34	0	97	2	41	0		14	0
								11	86	1	72	0	57	0		26	0
								12	32	0	73	0	52	0		68	0
								13	22	0	35	0	30	0		30	0
								14	41	0	34	0	65	0		12	0
								15	11	0	47	0	60	0		45	0
								16	63	0	69	0	96	2		47	0
								17	43	0	48	0	88	1		11	0
								18	29	0	84	0	20	0		38	0
								57	59	0	16	0	30	0		94	2
								58	33	0	29	0	38	0		45	0
								59	82	0	66	0	39	0		59	0
									2.1	_	2.5	_	1.5			5 0	_

17

50

Replikasi	t Stat	t Critical	Hasil Uji	Replikasi	t Stat	t Critical	Hasil Uji
1	1.585174	1.65787	t Stat < t Critical	51	-0.120327	1.65787	t Stat < t Critical
2	-0.375647	1.65787	t Stat < t Critical	52	0.279176	1.65787	t Stat < t Critical
3	1.053870	1.65787	t Stat < t Critical	53	-0.287287	1.65787	t Stat < t Critical
4	0.133732	1.65787	t Stat < t Critical	54	-0.239919	1.65787	t Stat < t Critical
5	-0.388232	1.65787	t Stat < t Critical	55	0.741456	1.65787	t Stat < t Critical
6	0.429762	1.65787	t Stat < t Critical	56	-0.247265	1.65787	t Stat < t Critical
7	-0.124035	1.65787	t Stat < t Critical	57	-0.128108	1.65787	t Stat < t Critical
8	0.133732	1.65787	t Stat < t Critical	58	0.131364	1.65787	t Stat < t Critical
9	-0.247265	1.65787	t Stat < t Critical	59	0.429762	1.65787	t Stat < t Critical
10	-0.122139	1.65787	t Stat < t Critical	60	0.279176	1.65787	t Stat < t Critical
11	-0.236483	1.65787	t Stat < t Critical	61	0.405145	1.65787	t Stat < t Critical
12	-1.674537	1.65787	t Stat < t Critical	62	1.030387	1.65787	t Stat < t Critical
13	-1.105458	1.65787	t Stat < t Critical	63	0.710365	1.65787	t Stat < t Critical
14	0.858182	1.65787	t Stat < t Critical	64	1.449365	1.65787	t Stat < t Critical
15	-0.491735	1.65787	t Stat < t Critical	65	-0.247265	1.65787	t Stat < t Critical
16	-0.381784	1.65787	t Stat < t Critical	66	0.840867	1.65787	t Stat < t Critical
17	-0.381784	1.65787	t Stat < t Critical	67	1.008406	1.65787	t Stat < t Critical
18	0.696218	1.65787	t Stat < t Critical	68	0.284878	1.65787	t Stat < t Critical
19	-0.723293	1.65787	t Stat < t Critical	69	-0.128108	1.65787	t Stat < t Critical
20	0.279176	1.65787	t Stat < t Critical	70	-0.126022	1.65787	t Stat < t Critical
21	-1.186044	1.65787	t Stat < t Critical	71	-0.243509	1.65787	t Stat < t Critical
22	-0.124035	1.65787	t Stat < t Critical	72	1.046903	1.65787	t Stat < t Critical

23	0.553619	1.65787	t Stat < t Critical	73	0.564729	1.65787	t Stat < t Critical
24	1.275769	1.65787	t Stat < t Critical	74	0.138879	1.65787	t Stat < t Critical
25	-1.172265	1.65787	t Stat < t Critical	75	-0.132611	1.65787	t Stat < t Critical
26	-1.095927	1.65787	t Stat < t Critical	76	1.378477	1.65787	t Stat < t Critical
27	-0.662132	1.65787	t Stat < t Critical	77	-0.854970	1.65787	t Stat < t Critical
28	0.576537	1.65787	t Stat < t Critical	78	-0.507584	1.65787	t Stat < t Critical
29	0.589117	1.65787	t Stat < t Critical	79	0.543139	1.65787	t Stat < t Critical
30	-0.477283	1.65787	t Stat < t Critical	80	0.696218	1.65787	t Stat < t Critical
31	0.131364	1.65787	t Stat < t Critical	81	1.214496	1.65787	t Stat < t Critical
32	0.131364	1.65787	t Stat < t Critical	82	-1.021605	1.65787	t Stat < t Critical
33	0.239408	1.65787	t Stat < t Critical	83	-0.247265	1.65787	t Stat < t Critical
34	0.553619	1.65787	t Stat < t Critical	84	0.710365	1.65787	t Stat < t Critical
35	1.186994	1.65787	t Stat < t Critical	85	0.696218	1.65787	t Stat < t Critical
36	-0.484347	1.65787	t Stat < t Critical	86	-0.135048	1.65787	t Stat < t Critical
37	0.533233	1.65787	t Stat < t Critical	87	-0.264239	1.65787	t Stat < t Critical
38	0.576537	1.65787	t Stat < t Critical	88	-0.247265	1.65787	t Stat < t Critical
39	1.378477	1.65787	t Stat < t Critical	89	-0.477283	1.65787	t Stat < t Critical
40	0.000000	1.65787	t Stat < t Critical	90	-0.259670	1.65787	t Stat < t Critical
41	0.741456	1.65787	t Stat < t Critical	91	1.053870	1.65787	t Stat < t Critical
42	0.129118	1.65787	t Stat < t Critical	92	-0.395017	1.65787	t Stat < t Critical
43	0.896286	1.65787	t Stat < t Critical	93	-0.132611	1.65787	t Stat < t Critical
44	1.186994	1.65787	t Stat < t Critical	94	0.397833	1.65787	t Stat < t Critical
45	0.543139	1.65787	t Stat < t Critical	95	0.390904	1.65787	t Stat < t Critical
46	0.273803	1.65787	t Stat < t Critical	96	0.136233	1.65787	t Stat < t Critical
47	-0.499471	1.65787	t Stat < t Critical	97	0.247009	1.65787	t Stat < t Critical

48	-0.786381	1.65787	t Stat < t Critical	98	0.131364	1.65787	t Stat < t Critical
49	-0.723293	1.65787	t Stat < t Critical	99	1.412589	1.65787	t Stat < t Critical
50	-0.477283	1.65787	t Stat < t Critical	100	-0.353762	1.65787	t Stat < t Critical

i. Nomor Material 626-007278

										Replika	asi 1	Replika	ısi 2	Replika	si 3		Replikas	i 100
No	Existing	No	Xi	Frekuensi	Probabilit	Frekuensi	Probabilitas	Interval	No	Random	Replik	Random	Repli	Random	Repli		Random	Repli
INO	EXISTING	INO	ΛI	Xi	as	Kumulatif	Kumulatif	Angka	INO	Number	asi 1	Number	kasi 2	Number	kasi 3	•••	Number	kasi
1	0	1	0	50	0.83	50	0.83	0 - 83	1	17	0	46	0	24	0		97	15
2	0	2	2	1	0.02	51	0.85	84 - 85	2	92	6	27	0	60	0		69	0
3	0	3	4	1	0.02	52	0.87	86 - 87	3	22	0	99	38	34	0		58	0
4	0	4	5	2	0.03	54	0.90	88 - 90	4	84	2	77	0	47	0		3	0
5	0	5	6	1	0.02	55	0.92	91 - 92	5	3	0	6	0	38	0		33	0
6	0	6	10	2	0.03	57	0.95	93 - 95	6	73	0	79	0	68	0		24	0
7	0	7	15	1	0.02	58	0.97	96 - 97	7	93	10	97	15	86	4		96	15
8	0	8	20	1	0.02	59	0.98	98 - 98	8	59	0	64	0	72	0		28	0
9	0	9	38	1	0.02	60	1.00	99 - 100	9	84	2	13	0	95	10		93	10
10	0			60					10	69	0	41	0	20	0		99	38
11	0								11	51	0	26	0	20	0		57	0
12	10								12	96	15	67	0	55	0		90	5
13	0								13	20	0	66	0	25	0		8	0
14	15								14	17	0	64	0	30	0		96	15
15	0								15	75	0	48	0	23	0		38	0
16	0								16	87	4	23	0	5	0		5	0
17	0								17	55	0	79	0	51	0		20	0
18	0								18	71	0	20	0	82	0		68	0
57	0								57	25	0	74	0	3	0		39	0
58	0								58	53	0	19	0	20	0		38	0
59	0								59	35	0	57	0	25	0		60	0
60	0								60	7	0	10	0	28	0		19	0

Replikasi	t Stat	t Critical	Hasil Uji	Replikasi	t Stat	t Critical	Hasil Uji
1	0.742	1.65787	t Stat < t Critical	51	0.079001	1.65787	t Stat < t Critical
2	-0.483	1.65787	t Stat < t Critical	52	-0.027584	1.65787	t Stat < t Critical
3	0.623	1.65787	t Stat < t Critical	53	0.046737	1.65787	t Stat < t Critical
4	-0.187	1.65787	t Stat < t Critical	54	0.435039	1.65787	t Stat < t Critical
5	0.417	1.65787	t Stat < t Critical	55	1.223577	1.65787	t Stat < t Critical
6	0.382	1.65787	t Stat < t Critical	56	0.219373	1.65787	t Stat < t Critical
7	-0.801	1.65787	t Stat < t Critical	57	0.852521	1.65787	t Stat < t Critical
8	0.077	1.65787	t Stat < t Critical	58	0.398605	1.65787	t Stat < t Critical
9	0.901	1.65787	t Stat < t Critical	59	-0.602205	1.65787	t Stat < t Critical
10	0.507	1.65787	t Stat < t Critical	60	-0.343058	1.65787	t Stat < t Critical
11	0.504407	1.65787	t Stat < t Critical	61	0.125421	1.65787	t Stat < t Critical
12	0.230010	1.65787	t Stat < t Critical	62	1.013375	1.65787	t Stat < t Critical
13	-0.538027	1.65787	t Stat < t Critical	63	0.142230	1.65787	t Stat < t Critical
14	-0.150116	1.65787	t Stat < t Critical	64	0.154195	1.65787	t Stat < t Critical
15	-0.721916	1.65787	t Stat < t Critical	65	-0.464391	1.65787	t Stat < t Critical
16	0.669926	1.65787	t Stat < t Critical	66	1.280956	1.65787	t Stat < t Critical
17	-0.765564	1.65787	t Stat < t Critical	67	1.595971	1.65787	t Stat < t Critical
18	-0.962177	1.65787	t Stat < t Critical	68	-1.201032	1.65787	t Stat < t Critical
19	0.809564	1.65787	t Stat < t Critical	69	0.945971	1.65787	t Stat < t Critical
20	1.222020	1.65787	t Stat < t Critical	70	-0.834526	1.65787	t Stat < t Critical
21	1.344654	1.65787	t Stat < t Critical	71	-0.210922	1.65787	t Stat < t Critical
22	-0.692377	1.65787	t Stat < t Critical	72	-0.800676	1.65787	t Stat < t Critical

0.636309	1.65787	t Stat < t Critical	73	1.637451	1.65787	t Stat < t Critical
1.235617	1.65787	t Stat < t Critical	74	0.574316	1.65787	t Stat < t Critical
-0.373823	1.65787	t Stat < t Critical	75	0.541672	1.65787	t Stat < t Critical
0.414791	1.65787	t Stat < t Critical	76	-1.681888	1.65787	t Stat < t Critical
0.529840	1.65787	t Stat < t Critical	77	-0.210922	1.65787	t Stat < t Critical
-0.105702	1.65787	t Stat < t Critical	78	-0.795294	1.65787	t Stat < t Critical
-0.352888	1.65787	t Stat < t Critical	79	0.785854	1.65787	t Stat < t Critical
0.393555	1.65787	t Stat < t Critical	80	-0.837800	1.65787	t Stat < t Critical
-0.136700	1.65787	t Stat < t Critical	81	-1.416098	1.65787	t Stat < t Critical
-0.178026	1.65787	t Stat < t Critical	82	1.109996	1.65787	t Stat < t Critical
0.091443	1.65787	t Stat < t Critical	83	-0.068966	1.65787	t Stat < t Critical
-0.333047	1.65787	t Stat < t Critical	84	0.413828	1.65787	t Stat < t Critical
0.921475	1.65787	t Stat < t Critical	85	0.594479	1.65787	t Stat < t Critical
-0.818806	1.65787	t Stat < t Critical	86	-0.248851	1.65787	t Stat < t Critical
1.641857	1.65787	t Stat < t Critical	87	0.397281	1.65787	t Stat < t Critical
-0.163078	1.65787	t Stat < t Critical	88	0.281074	1.65787	t Stat < t Critical
0.291175	1.65787	t Stat < t Critical	89	-0.283742	1.65787	t Stat < t Critical
-0.565574	1.65787	t Stat < t Critical	90	-0.432168	1.65787	t Stat < t Critical
0.224510	1.65787	t Stat < t Critical	91	-0.200806	1.65787	t Stat < t Critical
-0.328338	1.65787	t Stat < t Critical	92	0.123401	1.65787	t Stat < t Critical
-0.650674	1.65787	t Stat < t Critical	93	0.378119	1.65787	t Stat < t Critical
1.267204	1.65787	t Stat < t Critical	94	-0.351694	1.65787	t Stat < t Critical
0.083629	1.65787	t Stat < t Critical	95	-0.014949	1.65787	t Stat < t Critical
-0.382075	1.65787	t Stat < t Critical	96	-0.556753	1.65787	t Stat < t Critical
-0.740337	1.65787	t Stat < t Critical	97	-0.615891	1.65787	t Stat < t Critical
	1.235617 -0.373823 0.414791 0.529840 -0.105702 -0.352888 0.393555 -0.136700 -0.178026 0.091443 -0.333047 0.921475 -0.818806 1.641857 -0.163078 0.291175 -0.565574 0.224510 -0.328338 -0.650674 1.267204 0.083629 -0.382075	1.235617 1.65787 -0.373823 1.65787 0.414791 1.65787 0.529840 1.65787 -0.105702 1.65787 -0.352888 1.65787 0.393555 1.65787 -0.136700 1.65787 -0.178026 1.65787 -0.333047 1.65787 -0.818806 1.65787 -0.818806 1.65787 -0.163078 1.65787 -0.291175 1.65787 -0.291175 1.65787 -0.328338 1.65787 -0.650674 1.65787 -0.650674 1.65787 0.083629 1.65787 -0.382075 1.65787	1.235617 1.65787 t Stat < t Critical	1.235617 1.65787 t Stat < t Critical	1.235617 1.65787 t Stat < t Critical	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

48	0.971783	1.65787	t Stat < t Critical	98	0.459467	1.65787	t Stat < t Critical
49	-0.259160	1.65787	t Stat < t Critical	99	0.135	1.65787	t Stat < t Critical
50	0.310448	1.65787	t Stat < t Critical	100	-0.912	1.65787	t Stat < t Critical

BIOGRAFI PENULIS

Penulis bernama Imran lahir di Toli-toli pada 24
Nopember 1983. Penulis menempuh pendidikan di
SDN Borong, SMPN 8 Makassar, SMAN 5 Makassar.
Selajutnya penulis menempuh pendidikan S1 Teknik
Mesin di Universitas Hasanuddin pada tahun (2001 –
2007). Saat ini, penulis melanjutkan kuliah S2 di
Institut Teknologi Sepuluh Nopember Surabaya
Program Studi Magister Teknologi dan Rekayasa
Industri). Penulis dapat dihubungi via email

imranst22@gmail.com