

BACHELOR THESIS - ME 184841

SCRUBBER APPLICATION FOR MT SENIPAH TO MEET THE REGULATIONS IN 2020

OSCAR ALFINZA FADIWI NRP. 04211641000034

Supervisors: Taufik Fajar Nugroho, S.T, M.Sc. Ir. Hari Prastowo, M.Sc.

DOUBLE DEGREE PROGRAM DEPARTMENT OF MARINE ENGINEERING FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER 2020

TUGAS AKHIR - ME 184841

PEMASANGAN SCRUBBER UNTUK MT SENIPAH UNTUK MEMENUHI PERSYARATAN DI TAHUN 2020

OSCAR ALFINZA FADIWI NRP. 04211641000034

Dosen Pembimbing: Taufik Fajar Nugroho, S.T, M.Sc. Ir. Hari Prastowo, M.Sc.

PROGRAM DOUBLE DEGREE DEPARTEMEN TEKNIK SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER 2020

APPROVAL SHEET

SCRUBBER APPLICATION FOR MT SENIPAH TO MEET THE REGULATIONS IN 2020

BACHELOR THESIS

Proposed to fulfill a requirements for Bachelor Engineering Degree

On

Marine Machinery Fluid and System (MMS) Bachelor Program Department of Marine Engineering Faculty of Marine Technology Institut Teknologi Sepuluh Nopember

> Prepared By: OSCAR ALFINZA FADIWI 04211641000034

Approved by: 1. Taufik Fajar Nugroho, S.T, M.Sc NIP. 197603102000031001

2. Ir. Hari Prastowo, M.Sc. NIP. 196510301991021001

SURABAYA AUGUST, 18th 2020

APPROVAL SHEET

SCRUBBER APPLICATION FOR MT SENIPAH TO MEET THE REGULATIONS IN 2020

BACHELOR THESIS

Proposed to fulfill a requirements for Bachelor Engineering Degree On Marine Machinery Fluid and System (MMS) Bachelor Program Department of Marine Engineering

Faculty of Marine Technology Institut Teknologi Sepuluh Nopember

> Prepared By: OSCAR ALFINZA FADIWI 04211641000034

SURABAYA AUGUST, 18th 2020

DECLARATION OF HONOR

As the result of this who signed below declare that:

This Bachelor Thesis has been written and developed independently without any plagiarism act. All contents and ideas drawn directly from internal and external sources are indicated, such as cited sources, literature, and other professional sources.

Name	: Oscar Alfinza Fadiwi
NRP	: 04211641000034
Bachelor Thesis Title	: Scrubber Application For MT Senipah To Meet The
	Regulations In 2020
Department	: Marine Engineering

If there is a plagiarism act in the future, I will fully responsible and receive the penalty given by ITS according to the regulation applied.

Surabaya, 21 August 2020

Oscar Alfinza Fadiwi

SCRUBBER APPLICATION FOR MT SENIPAH TO MEET THE REGULATIONS IN 2020

Nama Mahasiswa : Oscar Alfinza FadiwiNRP: 04211641000034Pembimbing: 1. Taufik Fajar Nugroho, S.T, M.Sc.2. Ir. Hari Prastowo, M.Sc.

ABSTRAK

Jika kita melihat aturan IMO tentang mengendalikan emisi lingkungan yang disebabkan oleh mesin utama kapal, pada tahun 2020, semua kapal yang berlayar di area Internasional, harus membatasi kandungan sulfur pada gas buang sebesar 0,5% atau kurang. Melihat kurangnya batasan sulfur yang diatur oleh IMO, hampir semua kapal harus mengurangi kandungan sulfur yang terkandung di Exhaustnya. Jadi, alternatif untuk mengurangi kandungan sulfur di gas buang adalah menginstal alat, bernama Scrubber. Prinsip kerja Scrubber adalah membersihkan gas buang dari partikel keras dan menurunkan suhu gas hingga batas tertentu. Kandungan sulfur pada gas buang berkurang karena air pancuran. Dan kemudian, air diproses dan dialirkan kembali ke laut. Jadi, kapal berbendera Indonesia yang berlayar di area Internasional harus siap memasang scrubber untuk berlayar sampai tujuan yang kami tuju. Karena harga Scrubber terlalu mahal dan peralatan ini relatif baru, kita perlu mempersiapkan scrubber dan dianggap mungkin untuk efektivitas lingkungan laut. Harga pemasangan Scrubber Hybrid loop ini sekitar 1,282 Juta Euro dan diprediksi perbedaannya 57% lebih murah dari perkiraan Berqvist et al yang mencapai 3 juta Euro. Perbedaan estimasi biaya per tahun dalam Open Loop dan Closed loop berbeda sekitar 1,073 Miliar Rupiah atau 1061,1% per tahun. Sedangkan pada Operational Expenditure, Open Loop dan Closed Loop memiliki nilai perbedaan yang sama, namun dengan persentase 100,23% per tahun.

Kata Kunci: Scrubber, kandungan sulfur, gas buang, estimasi biaya, kapal

SCRUBBER APPLICATION FOR MT SENIPAH TO MEET THE REGULATIONS IN 2020

Student Name : Oscar Alfinza FadiwiNRP: 04211641000034Supervisor: 1. Taufik Fajar Nugroho, S.T, M.Sc2. Ir. Hari Prastowo, M.Sc.

ABSTRACT

If we see IMO rules about controlling environmental emissions caused by ship's main engine, by 2020, all the ship that sailed in International zone, must limit the sulphur content at the exhaust gas at 0.5% or less. See the lack of sulphur limitation refered by IMO, almost all ships must decrease the sulphur content that contain at its exhaust. So, the alternative for decreasing sulphur content at the exhaust gas is installing the tool, named Scrubber. The work principal of Scrubber is to clean the exhaust gas from hard particles and decrease gas temperature until at certain limit. The sulphur content at exhaust gas is decreased because of the shower water. And then, the water is processed and flowed back to the sea. So, the ship with Indonesian flag that sail at International area must be prepared for attaching a scrubber for sailing until the destination that we demand. Because Scrubber price is too expensive and this equipment is relatively new, we need to prepare the scrubber and considered as possible for effectivity of marine environment. The cost estimated for Scrubber attachment is about 1,282 Million Euro and predicted difference is about 57% cheaper than Berqvist et al Estimation which is 3 Million Euro. Cost Estimation per year between Open Loop and Closed Loop is about 1,073 Billion Rupiah or 1061,1% per year. While at Operational Expenditure, Open Loop and Closed Loop have a same difference, but in percentage is 100,23% per year.

Keyword: Scrubber, sulphur content, exhaust gas, cost estimation, ship

PREFACE

Thanks to Allah SWT that gives me chance to make this thesis named "SCRUBBER APPLICATION FOR MT SENIPAH TO MEET THE REGULATIONS IN 2020" with an optimal result. This thesis is proposed for a graduation requirement for Bachelor Engineering at Double Degree Marine Engineering program at Institut Teknologi Sepuluh Nopember Surabaya. Writer also think this thesis also have some mistake so this needs critics and suggestions, so this thesis would be useful later on.

In the way of working this thesis, and process to get Bachelor Engineering achievement can be achieved by help from people and another side. So, the writer say thank you for these people below,

- 1. Writer Family, Ms. Hermin Fariyana, Mr. Edy Widarto, Auviera Pascafiwi that always support and bless this writer
- 2. Mr. Gandung and Mrs. Linda that give me some required data for this thesis
- 3. Mr. Beny Cahyono, S.T., M.T., Ph. D, as Head of Marine Engineering Department
- 4. Mr. Ir. Dwi Priyanta, M.SE as Lecturer that always bless and motivate this writer.
- 5. Mr. Dr. I Made Ariana, S.T, M.T. that supervise my thesis Proposal
- 6. Mr. Taufik Fajar Nugroho, S.T, M.Sc and Mr. Ir. Hari Prastowo, M.Sc, as supervisor and supervise this thesis
- 7. Aghnia, Rian, Endah, Rifqi, Marfen, Rendy that supports this writer
- 8. All friends on VOYAGE'16 that always supports me while working on this thesis, even SALVAGE '15 etc.
- 9. And everyone that I cannot mention one by one

Surabaya, 30 May 2020

Oscar Alfinza Fadiwi

TABLE OF CONTENTS

APPROVAL SHEET	i
APPROVAL SHEET	iii
DECLARATION OF HONOR	v
ABSTRAK	vii
ABSTRACT	ix
PREFACE	xi
TABLE OF CONTENTS	xiii
LIST OF FIGURES	xvii
LIST OF TABLES	xix
LIST OF NOMENCLATURE	xxi
CHAPTER 1 INTRODUCTION	1
1.1. Background	1
1.2. Problem Statement	3
1.3. Research Objectives	3
1.4. Scope of Study/Research Limitation	3
1.5. Research Benefits	4
1.6. Pros and Cons of Scrubber Application	4
CHAPTER 2 LITERATURE STUDY	5
2.1. Scrubber	5
2.2. Wet Scrubber	6
2.3. Dry Scrubber	7
2.4. Open Loop Scrubber System	8
2.5. Closed Loop Scrubber System	9
2.6. Hybrid Loop Scrubber System	10
2.7. Wash Water Requirements	11
2.8. The Effect if The Sulphur Content is Too High	11
2.9. Heat Exchanger	12
CHAPTER 3 METHODOLOGY	13
3.1. Research Scheme	13
3.2. Methodology Identification	14
3.3. Research Steps	14
3.3.1. Problem and Scope of Study Identification	14
3.3.2. Literature Study	15
3.3.3. Data Collection	15
3.3.4. Selecting Scrubber Loop and Fuel Analysis	15
3.3.5. PFD Drawing	15
3.3.6. Calculating and Selecting Components for	Scrubber
System	15
3.3.7. Implementation Drawing, P&ID Drawing and 3d Drawin	g15
3.3.8. Economical Analysis of Scrubber Attachment	15
3.3.9. Conclussions	15
3.4. Data Sources	16
3.4.1. Primary Data	16
3.4.2. Secondary Data	16

3.5. Data Collection Method	16
3.5.1. Literature Study	16
3.5.2. Calculation and Estimation	16
3.6. Schedule	16
CHAPTER 4 RESEARCH AND ANALYSIS	17
4.1 Ship' Main Data	17
4.2 Why Hybrid Loop?	17
4.3 Fuel Analysis	18
4.4 Data of Main Engine	19
4.5 Data of Auxiliary Engine	20
4.6 Data of Boiler	21
4.7 Vessel Load Patterns	21
4.8 Gas Rate	22
4.8.1 Gas Rate of Main Engine	22
4.8.2 Gas Rate of Auxiliary Engine	24
4.8.3 Total Gas Flow Rate	26
4.9 Emission Content	26
4.10 Chemical Reaction and NaOH Addition	27
4.11 Heat Exchange	30
4.11.1 Calculation of Heat Exchange	31
4.11.2 Heat Exchange Between Freshwater and Seawater	31
4.11.3 Sea Water Coolant Required	31
4.12 Tank Calculation.	32
4.12.1 Calculation of Expansion Tank	32
4.12.2 Calculation of NaOH Tank	33
4.12.3 Calculation of Sludge Tank	33
4.13 Pipe Calculation	33
4.13.1 NaOH Pipe Calculation	33
4.13.2 Fresh Water Pipe Calculation	34
4.13.3 Sea Water Pipe Calculation	34
4.13.4 Makeup Water Pipe Calculation	34
4.14 Pump Calculation	35
4.14.1 Sea Water Pump	35
4.14.2 Fresh Water Pump	39
4.14.3 NaOH Pump	43
4.14.4 Makeup Water Pump	48
4.15 Summary List of Electrical Load	52
4.16 Scrubber Specifications	52
4.17 Water Consumption for Scrubber Use	52
4.18 Power Consumption for Scrubber	53
4.19 Pumps for Scrubber	53
4.19.1 Sea Water Pump	53
4.19.2 Fresh Water Pump	54
4.19.3 NaOH Pump	54
4.19.4 Makeup Water Pump	54
4.20 Fans	55

4.20.1 Sealing Air Fan	55
4.21 Others	55
4.21.1 Wash Water Treatment	55
4.21.2 Heat Exchanger	55
4.21.3 Pipe and Fittings	56
4.22 Electrical Load after Scrubber Attachment	57
4.23 Cost Estimations	59
4.23.1 Cost Estimation of All Components	59
4.23.2 Direct Costs	60
4.23.3 Direct Installation Costs	60
4.23.4 Indirect Costs	60
4.23.5 Total Costs	61
4.24 Operational Expenditure Calculation	61
4.24.1 Component Cost for Operational Expenditure	61
4.24.2 Fuel Consumption	62
4.24.3 Cost Estimation (Open Loop)	62
4.24.4 Cost Estimation (Closed Loop)	63
4.24.5 Operational Expenditure (Open Loop)	63
4.24.6 Operational Expenditure (Closed Loop)	63
CHAPTER 5 CONCLUSION	65
5.1 Conclusion	65
5.2 Suggestions	65
REFERENCES	67
ATTACHMENTS	69
WRITER BIODATA	107

LIST OF FIGURES

Figure 1.1 The geographical and regulatory aspects (sulfur content in bunker fuel) of Sulfur Emission Control Areas [4]
Figure 2.1 Scrubber System[15]5
Figure 2.2 Wet Scrubber. [3]6
Figure 2.3 Dry Scrubber [17]7
Figure 2.4 Open Loop Scrubber System [18]8
Figure 2.5 Closed Loop Scrubber System [16]9
Figure 2.6 Hybrid Loop Scrubber System [8]10
Figure 2.7 Schematic of a typical wet open loop exhaust gas scrubber setup [9]11
Figure 2.8 Heat Exchanger [20]12
Figure 3.1 Research Scheme
Figure 4.1 MT Senipah [21]17
Figure 4.2 Main Engine
Figure 4.3 Auxiliary Engine

LIST OF TABLES

Table 1.1 Outside and Inside ECA Limit of SOx and particulate matter [11]	1
Table 1.2 MT Senipah's First Data	2
Table 1.3 Sulphur Content and Ratio Emission Equivalence [12]	2
Table 1.4 Cost Estimation of Scrubber Application [14]	2
Table 1.5 Comparation price of Fuel Oil by some Studies[14]	
Table 3.1 Research Schedule	16
Table 4.1 Main Data of MT Senipah	17
Table 4.2 Fuel Consumption for All Engines	18
Table 4.3 Fuel Consumption (in Liter).	18
Table 4.4 Fuel Price Per Trip	
Table 4.5 Data of Main Engine	19
Table 4.6 Data of Auxiliary Engine	20
Table 4.7 Data of Boiler	21
Table 4.8 Vessel Load Patterns	21
Table 4.9 Emission Content	26
Table 4.10 Detail of Exhaust Gas Content	30
Table 4.11 Summary List of Electrical Load	52
Table 4.12 Scrubber Specifications	
Table 4.13 Water Consumption for Scrubber Use	52
Table 4.14 Power Consumption of Scrubber Usage	53
Table 4.15 Sea Water Pump (Goulds 3181 M)	53
Table 4.16 Fresh Water Pump (Taiko EMC250-C)	54
Table 4.17 NaOH Pump (Teflow CQB20-15-75F)	54
Table 4.18 Makeup Water Pump (Taiko EMC100-C)	54

Table 4.19 Sealing Air Fan (Kruger ASA 355)	55
Table 4.20 Wash Water Treatment	55
Table 4.21 Heat Exchanger	55
Table 4.22 Pipe List	56
Table 4.23 Fittings List	56
Table 4.24 Electrical Load Before Scrubber Attachment	57
Table 4.25 Cost Estimations for All Components	59
Table 4.26 Direct Costs	60
Table 4.27 Direct Installation Costs	60
Table 4.28 Indirect Costs	60
Table 4.29 Total Costs	61
Table 4.30 Component Cost for OPEX	61
Table 4.31 Fuel Consumption	62
Table 4.32 Cost Estimation (Open Loop)	62
Table 4.33 Cost Estimation (Closed Loop)	63
Table 4.34 Operational Expenditure (Open Loop)	63
Table 4.35 Operational Expenditure (Closed Loop)	63

LIST OF NOMENCLATURE

- SECA: Sulphur Emission Control Areas
- IMO: International Maritime Organization
- ppm: Parts Per Million
- MW: Mega Watt
- USD: US Dollar
- ECA: Emission Control Areas
- mmbtu: million british thermal unit
- LNG: Liquefied Natural Gas
- DNV GL: Det Norske Veritas Germanischer Lloyd
- rpm: Revolution per Minute
- g/kWh: Gram per Kilowatt Hour
- SO_x: Sulphur Oxide
- m/m: Mass by Mass
- MGO: Marine Gas Oil
- MDO: Marine Diesel Oil
- HFO: Heavy Fuel Oil
- HSD: High Speed Diesel
- EGE: Exhaust Gas Economizer
- SCR: Selective Catalytic Reduction
- MEPC: Marine Environment Protection Committee
- Add. : Addendum
- Pa: Pascal
- Nm³/h: Normal Meter Cubic per Hour
- m/s: Meter Per Second
- F.W: Fresh Water
- P: Power
- t: Time
- SFOC: Specific Fuel Oil Consumption

- mm: milimetre
- ft: feet
- kW: Kilo Watt
- CL: Continous Load
- NRV: Non Return Valve
- S.W: Sea Water

CHAPTER 1 INTRODUCTION

1.1. Background

In Indonesia, there are many ships that sails to international areas to export commodities or import commodities. Based on IMO Regulations, the ship that sails at International areas start at 1 January 2020, must limit the sulphur content at 0,5 % at local SECA (Sulphur Emission Control Areas) and 0,1% (SECA Areas) (Makkonen, 2017). If we see the lack of emission that refered to IMO rules, almost all ships in Indonesia must attach the Scrubber into their ships. It will be predicted about 3000 ships, new built or existing one will chose Scrubber attachment to comply the rules of IMO 2020. Based on DNV GL, the ship that install scrubber until May 2019 reached 3266 units. And for the tanker itself have 470 ships including MT Senipah.

Figure 1.1 The geographical and regulatory aspects (sulfur content in bunker fuel) of Sulfur Emission Control Areas (SECAs) [4]

Based on the regulation, the sulphur content that will be permitted in marine fuels is 3,5% while ships operating at ECA (Emission Control Areas) at 1%(10000 ppm), global limitations will decrease the sulphur content at 0,5%(5000 ppm) at 2020 and at Emission Control areas is decreased from 1% to 0,1% (1000 ppm) since 2015.

Outside an ECA established to limit Sox and particulate matter emissions	Inside an ECA established to limit Sox and particulate matter emissions
4.50% m/m prior to 1 January 2012	1.50 % m/m prior to 1 July 2010
3.50% m/m on and after 1 January 2012	1.00% m/m on and after 1 July 2010
0.50% m/m on and after 1 January 2020	0.10% m/m and after 1 January 2015

Table 1.1 Outside and Inside ECA Limit of SOx and particulate matter [11]

C	on MT Senipah's data, the first data will be		
	Table 1.2 MT Senipah's first data		
	Parameter	Results	
	Fuel Oil Consumption (100%)	181,31 g/kWh (+5%	
		margin)	

Based on MT Senipah's dat	ta, the first data will be
	Table 1.2 MT Senipah's fit

Engine Power Engine Speed

Exhaust Gas temperature (110% load) Fuel Oil Sulphur Content

For the equivalence with Sulphur Content itself with Emission ratio, can be seen on data below:

margin) 4440 kW

173 rpm 418⁰ C

0,23% m/m

Fuel Oil Sulphur Content (%m/m)	Emission Ratio (SO2(ppm)/CO ₂ (%
	v/v))
4,50	195,0
3,50	151,7
1,50	65,0
1,00	43,3
0,50	21,7
0,10	4,3

Table 1.3 Sulphur Content and Ratio Emission Equivalence [12]

Based for the equivalence predictions, the fuel of MT Senipah have an emission ratio about 9,959 SO₂(ppm)/CO₂(%v/v)

For the estimation cost for Scrubber Application, there are several types of scrubbers as shown on data below:

	<u> </u>	
Types of Scrubbers	Retrofit cost(20 MW	New Buid cost (20
	Cargo Vessel	MW Cargo Vessel)
Open System	2,4 Million Euro	2,1 Million Euro
Closed System	2,4 Million Euro	1,9 Million Euro
Hybrid System	3,0 Million Euro	2,6 Million Euro

Table 1.4 Cost Estimation of Scrubber Application [14]

Based on the table, the retrofit cost may be expensive than new build cost because we add an addition systems to the ship.

For the fuel oil price prediction can be arise from 57% to 85% from some studies Table 1.5 Comparation price of Fuel Oil by some Studies [14]

Study	Forecasted price of MGO/MDO with 0.1 % sulphur content year 2015 per tonne	Forecasted price increase between HFO with 1.5% sulphur content and MGO/MDO with 0.1 % sulphur content
COMPASS	883 USD	65%
ISL	Low Cost Scenario: 850 USD	70-86%
	High Cost Scenario: 1300 USD	57-75%
Kalli et al.	633-673 USD	73-85%

And the prediction of LNG fuel mentioned by Santoso, 2014 is 21 USD /MMBTU and assumption with using 65% LNG and 35% Diesel. Sometimes LNG and Low Sulphur Diesel oil is available only in several areas, but Heavy Fuel Oil is cheap and available on many ports. So, retrofitting Scrubber is an option to comply Marpol IMO Regulation Annex 6 to keep allowance to use HFO.

1.2. Problem Statement

From the description above, then we can determine the main issues that will be discussed more as mentioned below:

- 1. How is the effect of Scrubber Application for MT Senipah?
- 2. How to determining the result after Scruber Application?
- 3. How to calculate the system before Scrubber Application?
- 4. How much the price estimation for Scrubber Application?

1.3. Research Objectives

Based on problems mentioned above, the goals of this research are:

- 1. Provide the effect of Scrubber Application for MT Senipah.
- 2. Provide the result after Scrubber Application.
- 3. Calculating the Scrubber system to Applied in MT Senipah
- 4. Estimating the cost for Scrubber Application

1.4. Scope of Study/Research Limitation

This final project will be focused and organized with limitations on problem, which are:

- 1. Analysis of Sulphur content after Scrubber attachment.
- 2. Analysis of calculation at Scrubber System.
- 3. This research will be done on MMS PT. Pertamina Shipping International Project with SEPCO
- 4. Estimating cost for Scrubber Application
- 5. Assuming if this ship using Hybrid loop system

1.5. Research Benefits

This final project is expected to give benefits for various parties. The benefits that can be obtained are:

- 1. Sulphur content can comply to the IMO Regulations in 2020.
- 2. Knowing the effect after Scrubber Application.
- 3. Estimating costs for scrubber application

1.6. Pros and Cons of Scrubber Application

There are several pros about Scrubber Instalation, such as:

- 1. The Sulphur content (SO_x) can comply to regulations in Marpol regulation in 2020
- 2. Can continously run with HFO which is cheaper than Compliant fuel.
- Beside of that, there are several consequences of Scrubber Application, such as:
- 1. Redesign the system of the aft side of the ship
- 2. Off duty due to scrubber system installation (approx. 18 days)
- 3. Class approval
- 4. Engine Room space may be limited
- 5. Weight addition of required systems
- 6. Calculating the existing electrical system and make sure the generator can supply all electricals including scrubber system (e.g monitoring systems and water pumps)

CHAPTER 2 LITERATURE STUDY

2.1 Scrubber

Scrubber is a system that used to remove harmful materials from exhaust gases that can give an effect to the environment. The basic of the Scrubber system is spraying the exhaust gas with the seawater to capture the carbon particles and SO_x gas content that formed into Sulphuric Acid (H₂SO₄) when the gas is on contact with water and reduce PM (Particulate Matter). Before the wash water is discharge into the sea, the wash water itself is filtered from sludge that contains carbon particles and other particulate fuel impurities. Depending on onboard treatment and discharge pipe configuration it is likely that the wash water will be in the form of a warm acidic jet. The immediate effects of the acidic discharge nozzle. The scrubber itself has 2 categories of Scrubbers, which is Wet Scrubbers (Open Loop, Closed Loop, Hybrid) and Dry Scrubbers.

Figure 2.1 Scrubber System [15]

2.2 Wet Scrubber

Wet Scrubbing is an Original type of Scrubbing Systems. In a wet Scrubber System, the gas is going through in an exhaust pipe and then, seawater is actively sprayed. Water is used when the gas needs dust and particulate matter is removed. Basically, other chemicals are added that react with certain airborne contaminants. Since this process adds so much vapor to the exhaust, if the gas is vented, it typically looks like white smoke.

The sprayed liquid is collected in the Sludge Tank. This liquid is funneled away from the spraying chamber and collected for disposal. Since the liquid contains a wide range of potentially harmful materials, it cannot be reused or simply poured down the drain. Wet Scrubber also have a several components, such as a scrubber unit, a treatment plant, a residue handling facility for sludge, and a scrubber control and its monitoring system.

Figure 2.2 Wet Scrubber [3]

2.3 Dry Scrubber

Dry Scrubber or Dry Scrubbing system is a system that remove the pollution from harmful gases. Dry Scrubbers are used to remove harmful gases and particulate matter from Industrial exhaust gas, even to reduce exhaust gases that cause acidic rain. These scrubbers are applicated on Asphalt Processing, Pharmanauticals, and Oil and Gas. And the works is same as Wet Scrubbers but it uses dry reagents as a spray on this system. There are three steps to neutralize the gas, such as gas cooling, reagent injection, and filtering. First, gas cooling can be done to prepare exhaust gases. In gas cooling, the exhaust gas is cooled to remove the pollutant easier to remove pollutants and other toxins at the gas, then the dry reagents can be injected into the system. The compontent of dry reagent is Sodium Bicarbonate because of the neutralizing capabilities. And the system can be placed before gas exhaust economizer (EGE) or by using Selective Catalytic Reduction (SCR) which is require an exhaust gas above 350° C to enable the catalyst to operate corretly. This system also uses Caustic Lime (Ca(OH)₂) as granules and react with Sulphur Dioxide (SO₂) which form calcium Sulphate

$$SO_2 + Ca(OH)_2 \rightarrow CaSO_2 + H_2O \tag{1}$$

Then, Calcium Sulphate is Air-oxidized to form Gypsum (calcium sulphate dehydrate)

$$CaSO_3 + \frac{1}{2}O_2 \to CaSO_4 \tag{2}$$

And, the reaction of caustic lime with sulphur trioxide is:

$$SO_3 + Ca(OH)_2 \rightarrow CaSO_4 + H_2O \tag{3}$$

Figure 2.3 Dry Scrubber [17]

2.4 Open Loop Scrubber System

In Open Loop Scrubber System, it uses seawater for purification, and then the water is pumped back to the sea. This system is efficient in sea areas with high salt levels and also needs sea environments with high salinity and alkalinity to discharge the wash water to neutralize. The systems located near chimney of the ship and also needs space for water monitoring system and pumps, so it takes a lot of space, which can reduce the cargo capacity. Sea water is supplied by pump. CO_2 dissolves into sea water forms carbonic acid, bicarbonate, or carbonate ions. Depends on pH. The positive ions can be Calcium (Ca^{2+}) or sodium (Na^+), the example of salts in this case is sodium carbonate. When the ions reacts with an acid, CO_2 is released with the following formula.

$$Na_2CO_3 + H_2SO_4 \to Na_2SO_4 + H_2O + CO_2$$
 (4)

$$Na_2SO_3 + \frac{1}{2}O_2 \to Na_2SO_4 \tag{5}$$

Figure 2.4 Open Loop Scrubber System [18]

2.5 Closed Loop Scrubber System

Closed Loop Scrubber system use freshwater and seawater to clean the exhaust gas. The filtered waste is generated and collected in special tanks. And then, the waste is unloaded in specialized port facilities that can handle the scrubber waste. In some ports, vessels will charged per amounts of scrubber waste discharged. This system requires more equipment that open loop system because this system requires extra tanks for chemicals (caustic soda) and waste. The water is circulated through the system to keep the scrubbing process, in addition possibility of water discharge is little or no water discharge. Most of the wash water will be processed and this system uses a chemical which is sodium hydroxide or caustic soda. And some manufacturers claim that this system is more efficient because this system requires half or less of the wash water at the same scrubbing efficiency because of the higher levels of alkalinity levels can be controlled using caustic soda injection process. For the fresh water scrubbers, SO₂ Combines with a salt and do not react with the natural bicarbonate of seawater. And no release of CO₂. The reaction formula for closed loop can be seen on the formula below:

$$Na_2SO_3 + SO_2 + H_2O \rightarrow 2NaHSO_3$$
(6)

$$NaOH + H_2SO_4 \rightarrow NaHSO_4 + H_2O$$
(7)

Figure 2.5 Closed Loop Scrubber System [16]

2.6 Hybrid Loop Scrubber System

Hybrid Loop Scrubber System is a combination of open loop scrubber system and closed loop scrubber system. This system enables closed loop operation if needed. Sometimes, at sea the system can be made to open loop system that using only seawater. Hybrid loop Scrubber System can combine many advantages of scrubber system, such as avoiding of purchasing and handling caustic soda in open loop system and have the same efficiency when there is zero discharge zone in Closed loop system.

Figure 2.6 Hybrid Loop Scrubber System [8]
2.7 Wash Water Requirements

Based on Ülpre (2014), the wash water requirements are comply with the MEPC 59/24/Add.1 Annex 9 regulation, which is:

- I. The discharge wash water have a required pH at minimum 6,5 measured at ship's overboard discharge via monitoring systems. Except during manouvering and transit, the maximum difference between inlet and outlet is 2 pH units is allowed measured at the ship inlet and overboard discharge via monitoring systems.
- II. After scrubber installation, the discharged wash water should be measured externally from the ship, and the discharge pH at the ship's monitoring point will be recorded when the plume at 4 m from the discharge point equals or is above 6,5

Figure 2.7 Schematic of a typical wet open loop exhaust gas scrubber setup [9]

2.8 The Effect if The Sulphur Content is Too High

Based on IMO regulation 14 that regulates Sulphur Oxides (SO_X) and Particulate matter, SO_X and another particulate matter is a component that apply on all fuel oils. SO_X is generated by combustion of fuel oil due to sulphur content that will not be removed from fossil oils. If the sulphur content is too high (SO_X) have many effects, e.g Acidic rain that will decrease the water pH, plant damage (that happened at 0,5 ppm of sulphur) and so on.

2.9 Heat Exchanger

Heat Exchanger is a heat transfer device that is used to transfer the heat one fluid to another fluid or more fluid at different temperatures. This system consists of heat exchanging elements such as a core or matrix contains heat transfer surface, and fluid distribution elements, such as headers or tanks, inlet and outlet nozzles or pipes, etc. There are several types of Heat Exchangers such as tubular heat exchanger, plate heat exchangers, etc. This system is used on automobile radiators, air conditioning, and scrubber system (closed-loop or hybrid loop) in this case.

Figure 2.8 Heat Exchanger [20]

3.1 Research Scheme

Figure 3.1 Research Scheme

3.2. Methodology Identification

The methodology identification is an explanation based on analysis method that will be conducted in order to encounter the problem of this research. The problem analysis in this research is Sulphur content that need to be comply in 2020, which is 0,1% for SECA areas, and the cost when the Scrubber is applied, and Emission content from the ship.

3.3. Research Steps

The research will be based on a various steps to achieve its result and goals. Hereby are the further explanation of methodological flow from the beginning of the process, collecting data, until the final process resulting the objectives of this research:

3.3.1. Problem and Scope of Study Identification

In the initial step of this research, the researcher will learn about the regulations of IMO, the effect of sulphur content, and . The research process will be based on literature, observation, and discussion with supervisor. From the initial identification, then the parameter, data analysis, research method, and limitation of this research will be determined.

3.3.2. Literature Study

The next step of this research is study literature. The study shall be related to the existing problems and in accordance with the purpose of the study. The aim of literature study is to have a better understanding for the researcher about the supporting information and problem related to this research. Literature-related issues can be used as a reference to understand the problem.

3.3.3. Data Collection

At this stage, the researcher do an analysis of Scrubber Application on MT Senipah based on following data that provided from internet and the ship owner, PT Pertamina Shipping.

3.3.4. Selecting Scrubber Loop and Fuel Analysis

At this stage, the researcher will choose the Scrubber Loop of MT Senipah, in this case the researcher will use Hybrid Loop and analyse the difference of fuel consumption per trip

3.3.5. PFD Drawing

In this stage, the researcher will draw the PFD (Process Flow Diagram) comply to the scrubber system that the researcher use to make the flow of water in the scrubber system.

3.3.6. Calculating and Selecting Components for Scrubber System

After that, the researcher will calculate the required components for scrubber system, calculating load factors for each system and comparing between the existing one and new one.

3.3.7. Implementation Drawing, P&ID Drawing, and 3d Drawing

After calculating all components for Scrubber system, the researcher will continue to draw the Implementation Drawing, P&ID Drawing, and 3d Drawing of the system based on Engine Room Layout from MT Senipah. And possibility to draw Heat and Balance diagram based on P&ID Diagram

3.3.8. Economical Analysis of Scrubber Attachment

After Selecting the components and make the allocation on the drawing, the researcher will calculate the cost of all components that the ship uses, including Installation costs, indirect costs, Capital Expenditure, and Operational Expenditure for additional items on this ship.

3.3.9. Conclussions

This is the final stage of this research when the researcher will conclude the result of this research.

3.4. Data Sources

The source of data in this thesis are divided into two parts, which are:

3.4.1. Primary Data

The primary data is data that will be received from the original source. The data will be obtained through a resource or expert that are capable in their field. The information will be directly send from the Ship Owner, in this case the reliable source will be coming from PT Pertamina Shipping. Through interviews the author will received the information that will be used for data processing of this thesis.

3.4.2. Secondary Data

The secondary data is known from indirect source. The indirect source can be obtained from data of documentation, journals, books, and Internet as references. The secondary data act as a support for primary data.

3.5. Data Collection Method

3.5.1. Literature Study

Literature study is an information research on related data, methods, and problems that are raised in the research, through internet, journals, papers, project guide, and books.

3.5.2. Calculation and Estimation

For this case, the researcher will calculate the requirements of Scrubber System, and estimating the price for scrubber attachment for MT Senipah.

3.6 Research Schedule

Below is the research schedule based on studying activities in Even Semester 2019/2020. The research, from problem identification to the final report will be done in 16 weeks, until the fourth week of May 2020.

			Week No.														
No.	Activity]	Febr	uary	/		Ma	rch			A	pril			Μ	Iay	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Problem																
1	Identification																
	Literature																
2	Study																
3	Research																
4	Conclusion																
	Report																
5	Drafting																
	Report																
6	Finalization																

Table 3.1 Research Schedule

CHAPTER 4

RESEARCH AND ANALYSIS

4.1 Ship's Main Data

Figure 4.1 MT Senipah [21]

The main data of the ship is based on following table below:

Ship Name	MT Senipah
Ship Owner	PT Pertamina Persero
Manager	PT Pertamina Persero – Shipping Department
Vessel Type	Product Oil Tanker
Flag State	Indonesia
Class	DNV
Year of Built	2014
Length	180 m
Draught	9,204 m
Breadth	30,53 m
Deadweight	29754 tons

Table 4.1 Main Data of MT Senipah

4.2 Why Hybrid Loop?

Hybrid Loop Scrubber system is a combination of Open Loop and Closed Loop system, so the ship can choose Open Loop or Closed Loop based on the sailing route. This system also use remote controlled equipment to switch between Open Loop and Closed loop. Even this type can help ships to sail over zero discharge areas without compliance based on Marpol Annex VI.

4.3 Fuel Analysis

Taken from Vesselfinder.com about the trips of MT Senipah, the ship sails from Wayame – Cilacap – Gresik – Cilacap – Tanjung Priok (based on the latest voyage). Voyage range is 2859,079 Nautical Miles with a duration of 10 days. Based on a trip on this ship, shown the data of fuel consumption below

Parameter	HFO Combined (t)	MDO Combined (t)
Main Engine	432,682	432,682
Auxiliary Engine (all)	271,696	271,696
Boiler	156,832	149,320

	Table 4.2 I	Fuel Con	nsumption	of all	engines
--	-------------	----------	-----------	--------	---------

Based on the fuel data, the density of fuel in kg/l, are 0,89 (MDO, Exxon Mobil), 1,01 (HFO, powerplants.man-es.com) and 0,85 (HSD, Speight J.G, 2011), the volume of the fuel are based on the data below:

Table 4.3 Fuel Consumption (in Liter)

Parameter	HFO and HSD (l)	MDO and HSD (1)
Main Engine	428397,68	486159,17
Auxiliary Engine	319642,47	319642,47
Boiler	155279,62	167775,64

Based on Pertamina, the fuel price of HSD is IDR 9700, and for MDO is IDR 9550, and for HFO is IDR 7000, the price can be seen on the table below:

Table 4.4 Fuel Price per Trip

Parameter	HFO and HSD	MDO and HSD		
Fuel Price per trip	Rp7.186.273.084,39	Rp9.345.609.338,48		
Price Difference (IDR)	Rp 2.15	9.336.254,09		
Price Difference (%)	30,0)5%		

4.4 Data of Main Engine

The main data of Main engine can be seen on the following data:

Maker / Model	Hyundai MAN B&W 6S42MC7
Power @100% MCR (MW)	6,48
Fuel Consumption @ 100%	
MCR (mt/day)	25,92
Flue Gas Temp After	
Economiser	220°C
Allowable Exhaust Gas	
Backpressure (mmAq)	50
Max Flue Gas Flow (kg/hr)	6798,825
Annual Fuel Consumption	
Mt/Year	14824,01

Table 4.5 Data of Main Engine

Figure 4.2 Main Engine [22]

4.5 Data of Auxiliary Engine

The data of Auxiliary Engine can be seen based on the following data:

Table 4.6 Data of	Auxiliary Engine
-------------------	------------------

Maker/Model	Anqing Daihatsu 6DK-26
Quantity of AE	3
Power @100% MCR (MW)	1,3
Fuel Consumption @ 100% MCR (mt/day)	6,27
Flue Gas Temp After TC, C	340
Max Flue Gas Flow (kg/hr)	2695,385 (per unit)
Annual Fuel Consumption Mt/Year	9308,52

Figure 4.3 Auxiliary Engine

4.6 Data of Boiler

Data of Boiler can be seen in following data:

Maker/ Model	Euroboiler THM/V 5000
Max Power (kW)	4300
Steam @Max Power T/hr	0,008
Max FO Cons., Oil- Fired section; kg/hr	439
Flue Gas Temp; IN/OUT ISO NCR, C	140/190
Max Flue Gas Flow (kg/hr) / Back pressure (mBar)	8495/
Annual Fuel Consumption Mt/year	5373,2

Table 4.7 Data of Boiler

4.7 Vessel Load Patterns

Vessel load patterns at testing can be seen at the following data:

Parameter	Design Capacity (Max)	Required Design Capacity	At-Sea 1	In- Port	Maneuvering
Number of Days					
per Year	340	340	340	340	340
% of Power of ME	100	85	58	0	85
% of Power of AE1	100	70	70	70	70
% of Power of AE2	100	70	70	70	70
% of Power of AE3	100	70	70	70	70
% of Power of AE4	-	-	-	-	-
% of Power of					
Boiler	100	75	75	75	50

Table 4.8 Vessel Operating Patterns

4.8 Gas Rate

To calculate the gas rate, we need to calculate fuel mass and air mass for each engines to know the mass result for the next calculation

4.8.1 Gas Rate of Main Engine

Brand	=	Hyundai MAN B&W	
Туре	=	6S42MC7	
Horse Power	=	6480	kW
Rotation	=	136	RPM
Number of Cylinder	=	6	
Bore	=	420	mm
Stroke	=	1764	mm
SFOC	=	0,1869	kg/kWh
Quantity	=	1	

To calculate the flow rate of exhaust gas, we can use the formula below:

 $\dot{m}E = \dot{m}f + \dot{m}a$

Where:

- mE : Exhaust Gas Mass Flow Rate
- mif : Fuel Mass Flow Rate
- ma : Air Mass Flow Rate

to calculate fuel mass flow rate, we can calculate the rate, so we can get

 $\dot{m}f = SFOC \times Power$

= 0,1869 x 6480

= 1211,112 kg/h

Then, we calculate the Air Mass flow rate based on the formula

 $\dot{m}a = \eta_v x \rho_a x n x V_s$

Where:

- η_v : volumetric efficiency (0.8-0.9) (assumed at 0,8)
- ρ_a : Air Fuel Density (1,167 kg/m³)
- n : Speed/2 (136/2 = 68 rpm)
- V_s: Volume of Combustion Chamber

To calculate Volume of Combustion Chamber can be calculated on the following formula

 $V_s = \pi x \text{ bore}^2 x \text{ stroke } x \text{ number of cylinder } / 4$

Then, we can get

 $V_s = \pi x 0,42^2 x 1,764 x 6 / 4$

$$=$$
 1,466942 m³

So, the result of Air mass flow rate is

 $\dot{m}a = \eta_v \ x \ \rho_a \ x \ n \ x \ V_s$

= 0,8 x 1,167 x 68 x 1,466942

= 93,12854 kg/min

Then, the total air mass flow rate of Main Engine is

$$\dot{m}E = \dot{m}f + \dot{m}a$$

= 1211,112 + 5587,713

= 6798,825 kg/h

To calculate into m^3/hr , the result is divided by the density of Air, which is 1,225 kg/m³, and the result is

Flow rate = air mass flow rate / Air density

= 6798,825 / 1,225 $= 5550,061 \text{ m}^3/\text{h}$

4.8.2 Gas Rate of Auxiliary Engine

Brand	=	Anqing Daihatsu	
Туре	=	6DK-26	
Horse Power	=	1300	kW
Rotation	=	720	RPM
Number of Cylinder	=	6	
Bore	=	260	mm
Stroke	=	380	mm
SFOC	=	0,195	kg/kWh
Quantity	=	3	

To calculate the flow rate of exhaust gas, we can use the formula below:

 $\dot{m}E = \dot{m}f + \dot{m}a$

Where:

- mE : Exhaust Gas Mass Flow Rate
- min : Fuel Mass Flow Rate
- ma : Air Mass Flow Rate

to calculate fuel mass flow rate, we can calculate the rate, so we can get

 $\dot{m}f = SFOC \times Power$

= 0,195 x 1300

= 253,5 kg/h

Then, we calculate the Air Mass flow rate based on the formula

 $\dot{m}a = \eta_v x \rho_a x n x V_s$

Where:

- η_v : volumetric efficiency (0.8-0.9) (assumed at 0,8)
- ρ_a : Air Fuel Density (1,167 kg/m³)
- n : Speed/2 (720/2 = 360 rpm)
- V_s: Volume of Combustion Chamber

To calculate Volume of Combustion Chamber can be calculated on the following formula

 $V_s = \pi x \text{ bore}^2 x \text{ stroke } x \text{ number of cylinder } / 4$

Then, we can get

 $V_s = \pi \times 0.26^2 \times 0.38 \times 6 / 4$

$$= 0,121101 \text{ m}^3$$

So, the result of Air mass flow rate is

 $\dot{m}a = \eta_v \ x \ \rho_a \ x \ n \ x \ V_s$

= 0,8 x 1,167 x 360 x 0,121101

= 40,70142 kg/min

Then, the total air mass flow rate of Auxiliary Engine is

 $\dot{m}E = \dot{m}f + \dot{m}a$

= 253,5 + 2442,085

= 2695,585 kg/h

To calculate into m^3/hr , the result is divided by the density of Air, which is 1,225 kg/m³, and the result is

Flow rate = air mass flow rate / Air density

= 2695,585/1,225 $= 2200,478 \text{ m}^3/\text{h}$

Because, Auxiliary engine in this ship has 3 units, so the total is 6601,433 m³/h

4.8.3 Total Gas Flow Rate

Based on the calculation above known as the summary of calculation

- Total Main Engine Gas Flow Rate : 5550,061 m³/h
- Total Auxiliary Engine Gas Flow Rate : 6601,433 m³/h
- Boiler Gas Flow Rate : 6585 m³/h (refer to Scrubber detail measurement data)

So, the total flow rate is:

 $\begin{aligned} Q_{Total} &= Q_{ME} + Q_{AE} + Q_{Boiler} \\ &= 5550,061 + 6649,188 + 6585 \end{aligned}$

```
= 18736,49 \text{ m}^3
```

4.9 Emission Content

For the data shown is the data for emission content of MT Senipah based on Following data below (assumed as Diesel Engine)

Substance	Content
\mathbf{N}_2	76% by Volume
CO ₂	10% by Volume
H ₂ O	3 % by Volume
02	5 % by Volume
SO ₂	0.23 % by Volume
NO _x	0.3 % by Volume
СО	0.4 % by Volume

Table 4.9 Emission Content

Based on the data, we calculate the emission rate of the ship.

Known: Gas Rate = $18736,49 \text{ m}^3/\text{h}$

Item that to be removed:

\Box SO ₂ =	0.23%
--------------------------	-------

NO = 90% from 0,04% Vol. NOx

 $NO_2 = 10\%$ from 0,04% Vol. NOx

Sulphur Dioxide (SO₂)

$V SO_2$	= 18736,49 x 0.23%
	$= 43,093 \text{ m}^3/\text{h}$
$ ho SO_2$	$= 2.63 \text{ kg/m}^3$
m SO ₂	= 43,093 x 2.63
	= 113,33 kg/h

Nitrogen Monoxide (NO)

V NO	= 18736,49 x 0.03% x 90%
	$= 5,058 \text{ m}^{3}/\text{h}$
ρ ΝΟ	$= 1.34 \text{ kg/m}^3$
m NO	= 5,058 x 1,34
	= 6,777 kg/h

Nitrogen Dioxide (NO₂)

V NO₂ = 18736,49 x 0,03% x 10% = 0,562 m3/h ρ NO₂ = 1450 kg/m3

m NO₂ = 0,562 x 1450 = 814,9 **kg/h**

4.10 Chemical Reaction and NaOH Addition

Based on the Chemical Reaction, The Chemical reaction of SO_x Scrubber divided into 3 reactions, which is:

Reaction 1. NaOH + SO₂

Mass Number:	Na = 23 $S = 32$	H = 1 $O = 16$				
Reaction	2NaOH	+ SO_2	\leftrightarrow	Na ₂ SO ₃	+	H_2O
Mass Rate	141,51 kg/h	113,33 kg/h		222,97 kg/h		31,86 kg/h
Mass Number	40	64		126		18
Mole rate	3,54 mol/h	1,77 mol/h		1,77 mol/h		1,77 mol/h

Reaction Results:

Na₂SO₃ = 222,97 kg/h
 H₂O = 31,86 kg/h

Reaction Remaining:

 \square NaOH = 28,18 kg/h

Reaction Mass Bata	2Na ₂ SO ₃ 222 kg/h	+	O ₂ 28 18 kg/h	\leftrightarrow	2Na ₂ SO ₄ 250 18 kg/h
Mass Number	126		32		142
Mole Rate	1,76 mol/h		0,88 mol/h		1,76 mol/h

Reaction Result:

• $Na_2SO_4 = 250,18 \text{ kg/h}$

Reaction remaining

• $Na_2SO_3 = 193,82 \text{ kg/h}$

Reaction 2. NaOH + NO

Mass Number	r: $Na = 23$ O = 16	H = 1 $N = 14$							
Reaction	2NaOH	+	4NO	\leftrightarrow	2NaNO ₂	+	N_2O	+	H_2O
Mass Rate	4,516 kg/h		6,777 kg/h		7,79 kg/h		2,48 kg/h		1,01 kg/h
Mass Number	40		30		69		44		18
Mole Rate	0,113 mol/h		0,226 mol/h		0,113 mol/h		0,056 mol/h		0,056 mol/h

Reaction Result:

- NaNO₂ = 7,79 kg/h
- N_2O = 2,48 kg/h

• H_2O = 1,01 kg/h

Reaction Remaining:

• NO = 2,261 kg/h

Reaction 3. NaOH + NO₂

Reaction Mass Rate	2NaOH 708,47 kg/h	+	2NO ₂ 814,9 kg/h	\leftrightarrow	NaNO ₂ 611,06 kg/h	+	NaNO ₃ 752,75 kg/h	+	H ₂ O 159,55 kg/h
Mass Number	40		46		69		85		18
Mole Rate	17,71 mol/h		17,71 mol/h		8,85 mol/h		8,85 mol/h		8,85 mol/h

Reaction Result:

•	$NaNO_2$	= 611,06 kg/h
---	----------	---------------

• NaNO₃ =
$$752,75 \text{ kg/h}$$

• H_2O = 159,55 kg/h

For NaOH addition for one scrubbing process, we need to know NaOH Required for all chemical reactions

Reaction 1. NaOH + SO₂

NaOH Required = 113,33 kg/h

Reaction 2. NaOH + NO

NaOH Required = 4,516 kg/h

Reaction 3. NaOH + NO₂

NaOH Required = 708,47 kg/h

So, the total NaOH required for one scrubbing process is:

Total NaOH Required = 113,33 kg/h + 4,516 kg/h + 708,47 kg/h

= 826,31 kg/h

Then, calculating the flow rate of NaOH with following formula:

$$NaOH Flow Rate = \frac{NaOH Required}{NaOH Density}$$
$$NaOH Flow Rate = \frac{826,31 \ kg/h}{2130 \ kg/m^3}$$

Then, the flow rate of NaOH is 0,387 m³/h

4.11 Heat Exchange

Based on the exhaust gas content, this is the detail of exhaust gas content can be seen on table below

Sub.	Total Vol. (m3/hr)	Content (%)	Content (m ³ /hr)	Density (kg/m ³)	Flow Mass (kg/hr)	Specific Heat, Cp (kJ/kgK)	m x Cp
N ₂		76,0%	14239,73527	1,0564	15042,85634	1,042	15674,66
CO ₂		10,0%	1873,649377	1,6597	3109,696	0,8666	2694,862
H_2O		3,0%	562,0948132	0,6794	381,8872161	1,874	715,6566
O ₂	19726 40	5,0%	936,8246886	1,2068	1130,560	0,9217	1042,037
SO_2	18750,49	0,23%	43,09393568	2,927	126,136	0,64	80,72701
NO		0,30%	56,20948132	1,34	75,32070496	0,995	74,9441
NO ₂		0,03%	5,620948132	1450	8150,374791	4,69	38225,26
CO		0,4%	74,94597509	1,0563	79,16543348	1,039	82,25289
						Total	58590.4

Table 4.10 Detail of Exhaust Gas Content

Where:

- ρ Water = 997 kg/m³
- m Water = 269578 kg/h
- cp water = 4.18 kJ/kgK
- m x cp Gas = 58590,4 kg/h

4.11.1 Calculation of Heat Exchange

Q1	=	Q2
m x c x ΔT	=	$m \ge c \ge \Delta T$
269578 x 4.18 x (T2-308,15)	=	58590,4 x (553,15-323,15)
T2-308,15	=	13475792 / 269578 x 4.18
T2-308,15	=	11,95
T2	=	320,1 K
	=	46,95°C

4.11.2 Heat Exchange between Washwater and Seawater

Known:

- T Water Inlet = $46,95^{\circ}C(320,1K)$
- T Water Outlet = $35^{\circ}C(308, 15 \text{ K})$
- m Water = 269578 kg/h
- cp Water = 4,18 kJ/kgK

so, the Calories released is

- $Q = m x c x \Delta T$
- Q = 269578 x 4.18 x (320,1-308.15)
- Q = 13465690,68 kJ/hr
- Q = 3740,46 kW
- Q = 5012,21 HP

4.11.3 Sea Water Coolant Required

known :

- T Water Inlet = 35° C = 308.15 K
- T Water Outlet = 50° C = 323,15 K
- Calories (Q) = 13465690,68 kJ/h
- cp Sea Water = 4.012 kJ/kgK

So, the mass of Sea Water can be calculated using the formula:

$$m = \frac{Q}{cp x \Delta T}$$

Where:

m = Mass of Water

 ΔT = Temperature difference (K)

So,

 $m = \frac{13465690,68}{4,012 \times (323,15 - 308,15)}$ m = 223756,9 kg/hr ρ Sea Water = 1025 kg/m³

Sea Water Flow Rate = $218,29 \text{ m}^3/\text{hr}$

4.12 Tank Calculation

Because this ship is using scrubber as the modification to comply with IMO 2020, we need to calculate the tank capacity to contain NaOH, Expansion Tank, and Sludge tank for Scrubbing. It's also to know tank capacity required for this system

4.12.1 Calculation of Expansion Tank

Fresh water tank in system = $269,578 \text{ m}^3$ Tank size estimation = 3-4 %Expansion Tank Required = 269,578 x 3,5%= $9,435 \text{ m}^3$

4.12.2 Calculation of NaOH Tank

Flow rate $= 0,387 \text{ m}^3/\text{hr}$

Tank size Estimation = Capacity of Exhaust gas

= 18736,49 m3/h

Cargo Tank $= 42072,403 \text{ m}^3$

NaOH Required tank = $42072,403 / 18736,49 \ge 0.387$

$$= 5.8 \text{ m}^3 \text{ per trip}$$

= 11.6 m³

4.12.3 Calculation of Sludge Tank

Estimation of Sludge	= 0,1 - 0,4 gr / MWh of Scrubbed engine
Power of Engine	= 6,48 MW (Main Engine)
	= 1,3 MW (3 set of Auxiliary Engine; 3,9 mW)
	= 4,3 MW (Boiler)
	= 14,68 MW
Sludge Quantity	$= 0,3 \times 14,68 \times 23$
	= 101,292 kg
Ash Density	$= 610 \text{ kg/m}^3$
Sludge Tank Volume	= 101,292 / 610
	$= 0,16 \text{ m}^3$

4.13 Pipe Calculation

The Scrubber system also requires a piping system, in this case, we used Carbon Steel pipe to recover all the piping systems of the Scrubber

4.13.1 NaOH Pipe Calculation

$= 0,387 \text{ m}^{3}/\text{hr}$
= 14,95 mm
= 0,01495 m
= 3,14 x (0,01495)^2 /4
= 0,0001754 m2
= 0,387/0,0001754
= 2206,38 m/h
= 0,612 m/s

4.13.2 Fresh Water Pipe Calculation

Flow Rate	$= 270 \text{ m}^{3}/\text{hr}$
Pipe Diameter	= 261 mm
	= 0,261 m
Pipe Area	= 3,14 x (0,261)^2 /4
	= 0,0534 m2
flow rate	= 270/0,0534
	= 5056,17 m/h
	= 1,404 m/s

4.13.3 Sea Water Pipe Calculation

Flow Rate	$= 467 \text{ m}^{3}/\text{hr}$
Pipe Diameter	= 311,5 mm
	= 0,3115 m
Pipe Area	= 3,14 x (0,3115)^2 /4
	= 0,0761 m2
flow rate	= 467/0,0761
	= 6136,66 m/h
	= 1,704 m/s

4.13.4 Makeup Water Pipe Calculation

Flow Rate	$= 20 \text{ m}^{3}/\text{hr}$
Pipe Diameter	= 24,3 mm
	= 0,0243 m
Pipe Area	= 3,14 x (0,0243)^2 /4
	= 0,00463 m2
flow rate	= 20/0,00463
	= 4319,65 m/h
	= 1,199 m/s

4.14 Pump Calculation

This system also requires a pump to transfer fluids for seawater, freshwater, and NaOH to do a scrubbing process. To know the required specs to flowing the fluid on Hybrid Loop Scrubber System

4.14.1 Sea Water Pump

a) Head Static (Hs)

Head static is the difference height of suction and the Scrubber (from the seachest)

- Head at Z=0 at Discharge = 17,73 m
- Head at Z=0 at Suction = 0 m

So, $H_s = 17,73 + 0 = 17,73 \text{ m}$

b) Head Velocity (Hv)

Head velocity is the difference velocity of suction and discharge side. Since the velocity is same, which is 1,704 m/s each

$$Hv = (V^2d - V^2s) / 2 g$$

Where

 $g = 9,81 \text{ m/s}^2$

Hv = (2,9-2,9) / 2 x 9,81

= 0 m

c) Head Pressure (Hp)

at Suction Side = Atmospheric Pressure + Hidrostatic Pressure = $101.325 \text{ N/m}^2 + (0 \rho \text{ g})$ = $101.325 \text{ N/m}^2 + (0 \text{ x } 1025 \text{ x } 9,81)$ = 101.325 N/m^2

At Discharge side = 101.325 N/m^2

$$Hp = (Pd - Ps) / \rho x g$$

Where

 $\rho = 1025 \text{ kg/m}^3$

 $g = 9,81 \text{ m/s}^2$

Hp = (101.325 - 101.325) / (1025 x 9,81)

Hp: 0 m

d) Reynold Number

For calculating reynold Number, you can use the formula below:

$$Rn = \frac{v \times dH}{n}$$

Where:

n = Kinematic Viscosity (0,000000796 N.s/m²)

dH = Inside diameter of Seawater pipe (0,3115 m)

v = Fluid Velocity of Seawater (1,704 m/s)

so,

Rn = (1,704 x 0,3115)/ 0,000000796

= 666829,1

If Rn < 2300 is Laminar Flow and Rn > 2300 is Turbulent flow, in this case is turbulent flow.

Based on the calculation above, it is known that the flow is a turbulent flow. Therefore, the value of friction factor can be defined with Colebrook Equation.

$$f = 0.02 + (0.0005/D)$$
$$= 0.02 + (0.0005/0.3115)$$

= 0,022

e) Major Losses ($h_{\rm f}$) at Suction Side

For Major losses, we can calculate the major losses using the formula below

$$h_{f \ suction} = \frac{f \times L \times v^2}{D \times 2g}$$

Where:

L = Pipe Length at suction side (61,2 m)

$$g = Gravity (9,81 m/s^2)$$

So, the major losses at the suction side of the pump is

 $h_{f \text{ suction}} = 0,022 \text{ x } 61,2 \text{ x } 1,704^2 / (0,3115 \text{ x } 2 \text{ x } 9,81)$

No	Accessories	n	k	n x k
1	Butterfly Valve	7	0,4	2,8
2	T joint	5	1	5
3	Elbow	8	0,3	2,4
4	Filter	1	2,5	2,5
5	NRV	1	2	2
			$\Sigma nk =$	14,7

f) Minor Losses (h_{m}) at Suction Side

So, the value of minor losses at suction side is:

 $h_{m \text{ suction}} = \Sigma nk \ge v^2 / 2g$ = 14,7 \text{ x 1,704}^2 / 2 \text{ x 9,81} = 2,17 m

g) Total Head Loss at Suction Side

$$h_{L \text{ suction}} = h_{f \text{ suction}} + h_{m \text{ suction}}$$

h) Major Losses (hf) at Discharge Side

For Major losses, we can calculate the major losses using the formula below

$$h_{f \ discharge} = \frac{f \times L \times v^2}{D \times 2g}$$

Where:

L = Pipe Length at discharge side (37 m)

 $g = Gravity (9,81 m/s^2)$

So, the major losses at the discharge side of the pump is

 $h_{f \, discharge} = 0,022 \ x \ 37 \ x \ 1,704^2 / \ (0,3115 \ x \ 2 \ x \ 9,81)$

= 0,386 m

i) Minor Losses (h_m) at Discharge Side

No	Accessories	n	k	n x k
1	Non Return Valve	1	2	2
2	Butterfly Valve	1	0,4	0,4
3	T joint	1	1	1
4	Elbow 90	4	0,3	1,2
			$\Sigma nk =$	4,6

So, the value of minor losses at discharge side is:

 $h_{m \text{ discharge}} = \Sigma nk \ge v^2 / 2g$

= 4,6 x 1,704² / 2 x 9,81

= 0,68 m

j) Total Head Loss at Discharge Side

 $h_{L\,discharge} = h_{f\,discharge} + h_{m\,discharge}$

= 0,386 + 0,68

= 1,06 m

k) Total Head Loss of Pump

 $h_{L pump} = h_{L suction} + h_{L discharge}$

= 2,809 + 1,06

= 3,869 m

l) Head Total of Pump

 $H_{pump} = H_s + H_v + H_p + H_L + HE$ = 17,73 + 0 + 0 + 3,869 +12,75 = 34,34 m

m) Heat Exchanger

This ship is using Hisaka LX-30 which is have 1,25 MPa means have 12,75 meter head

n) Required Pump's Specification

Head: 34,34 m

Capacity: 467 m³/h

4.14.2 Fresh Water Pump

a) Head Static (Hs)

Head static is the difference height of suction and the Scrubber (from the Expansion Tank)

- Head at Z=0 at Discharge = 10,59 m
- Head at Z=0 at Suction = 0 m

So, $H_s = 10,59 + 0 = 10,59 \text{ m}$

b) Head Velocity (Hv)

Head velocity is the difference velocity of suction and discharge side is same, which is 1,404 m/s each

$$Hv = (V^2d - V^2s) / 2g$$

Where

 $g = 9,81 \text{ m/s}^2$

Hv = (1,97-1,97) / 2 x 9,81

= 0 m

c) Head Pressure (Hp)

at Suction Side = Atmospheric Pressure + Hidrostatic Pressure = $101.325 \text{ N/m}^2 + (0 \text{ p g})$ = $101.325 \text{ N/m}^2 + (0 \text{ x } 1000 \text{ x } 9,81)$ = 101.325 N/m^2 At Discharge side = 101.325 N/m^2 Hp = $(Pd - Ps) / \rho x g$ Where $\rho = 1000 \text{ kg/m}^3$ $g = 9,81 \text{ m/s}^2$ Hp = (101.325 - 101.325) / (1000 x 9,81)Hp: 0 m

d) Reynold Number

For calculating reynold Number, you can use the formula below:

$$Rn = \frac{v \times dH}{n}$$

Where:

n = Kinematic Viscosity (0,000000796 N.s/m²)

dH = Inside diameter of Freshwater (0,261 m)

v = Fluid Velocity of Freshwater (1,404 m/s)

so,

Rn = (1,404 x 0,261)/ 0,000000796

= 460356,8

If Rn < 2300 is Laminar Flow and Rn > 2300 is Turbulent flow, in this case is turbulent flow.

Based on the calculation above, it is known that the flow is a turbulent flow. Therefore, the value of friction factor can be defined with Colebrook Equation.

f = 0.02 + (0.0005/D)

= 0,02 + (0,0005/0,261)

= 0,022

e) Major Losses (h_f) at Suction Side

For Major losses, we can calculate the major losses using the formula below

$$h_{f \ suction} = \frac{f \times L \times v^2}{D \times 2g}$$

Where:

L = Pipe Length at suction side (45,5 m)

$$g = Gravity (9,81 m/s^2)$$

So, the major losses at the suction side of the pump is

$$h_{f \text{ suction}} = 0,022 \text{ x } 45,5 \text{ x } 1,404^2 / (0,261 \text{ x } 2 \text{ x } 9,81)$$

= 0,38 m

f) Minor Losses (h_m) at Suction Side

No	Accessories	n	k	n x k
1	Butterfly Valve	6	0,4	2,4
2	T joint	5	1	5
3	Elbow	4	0,3	1,2
4	Filter	2	2,5	5
5	NRV	1	2	2
			$\Sigma nk =$	15,6

So, the value of minor losses at suction side is:

 $h_{m \text{ suction}} = \Sigma nk \ge v^2 / 2g$

 $= 15,6 \text{ x } 1,404^2 / 2 \text{ x } 9,81$

= 1,56 m

g) Total Head Loss at Suction Side

 $h_{L\,suction} = h_{f\,suction} + h_{m\,suction}$

= 0,38 + 1,56

= 1,94 m

h) Major Losses (hf) at Discharge Side

For Major losses, we can calculate the major losses using the formula below

$$h_{f \ discharge} = \frac{f \times L \times v^2}{D \times 2g}$$

Where:

L = Pipe Length at discharge side (38,2 m)

$$g = Gravity (9,81 m/s^2)$$

So, the major losses at the discharge side of the pump is

$$h_{f \text{ discharge}} = 0,022 \text{ x } 38,2 \text{ x } 1,404^2 / (0,261 \text{ x } 2 \text{ x } 9,81)$$

= 0,323 m

i) Minor Losses (h_m) at Discharge Side

No	Accessories	n	k	n x k
1	NRV	0	2	0
2	Butterfly Valve	2	0,4	0,8
3	T joint	1	1	1
4	Elbow 90	4	0,3	1,2
			$\Sigma nk =$	3

So, the value of minor losses at discharge side is:

 $h_{m \, discharge} = \Sigma nk \ x \ v^2 / 2g$

$$= 3 \times 1,404^2 / 2 \times 9,81$$

= 0,3 m

j) Total Head Loss at Discharge Side

 $h_{L\,discharge} = h_{f\,discharge} + h_{m\,discharge}$

= 0,623 m

k) Total Head Loss of Pump

 $h_{L \text{ pump}} = h_{L \text{ suction}} + h_{L \text{ discharge}}$

= 2,56 m

l) Head Total of Pump

$$\begin{split} H_{pump} &= H_s + H_v + H_p + H_L + HE \\ &= 10{,}59 + 0 + 0 + 2{,}56 + 12{,}75 \\ &= 25{,}9 \ m \end{split}$$

m) Heat Exchanger

This ship is using Hisaka LX-30 which is have 1,25 MPa means have 12,75 meter head

n) Required Pump's Specification

Head: 25,9 m

Capacity: 300 m³/h

4.14.3 NaOH Pump

a) Head Static (Hs)

Head static is the difference height of suction and the Scrubber (from NaOH Tank)

- Head at Z= 0 at Discharge = 3 m
- Head at Z=0 at Suction = 0 m

So, $H_s = 3 + 0 = 3 m$

b) Head Velocity (Hv)

Head velocity is the difference velocity of suction and discharge side. In this case, the velocity is same, which is 0,612 m/s each

 $Hv = (V^2d - V^2s) / 2g$

Where

 $g = 9,81 \text{ m/s}^2$ Hv = (0,37-0,37) / 2 x 9,81 = 0 m

c) Head Pressure (Hp)

Head pressure is the difference pressure of suction and discharge side. The design pressure of both side is same, so the head pressure is 0.

at Suction Side = Atmospheric Pressure + Hidrostatic Pressure = $101.325 \text{ N/m}^2 + (0 \rho \text{ g})$ = $101.325 \text{ N/m}^2 + (0 \text{ x } 1500 \text{ x } 9,81)$ = 101.325 N/m^2

At Discharge side = 101.325 N/m^2

 $Hp = (Pd - Ps) / \rho x g$

Where

 $\rho = 1500 \text{ kg/m}^3$

 $g = 9,81 \text{ m/s}^2$

Hp = (101.325 – 101.325) / (1000 x 9,81) Hp: 0 m

d) Reynold Number

For calculating reynold Number, you can use the formula below:

$$Rn = \frac{v \times dH}{n}$$

Where:

```
n = Kinematic Viscosity (0.085 N.s/m<sup>2</sup>)
```

```
dH = Inside diameter of NaOH pipe (0,01495 m)
```

```
v = Fluid Velocity of NaOH (0,612 m/s)
```

so,

Rn = (0,635 x 0,01495)/ 0,085

$$= 0,1$$

If Rn < 2300 is Laminar Flow and Rn > 2300 is Turbulent flow, in this case is Laminar flow.

Based on the calculation above, it is known that the flow is a laminar flow. Therefore, the value of friction factor can be defined with Colebrook Equation.

$$f = 0.02 + (0.0005/D)$$
$$= 0.02 + (0.0005/0.01495)$$
$$= 0.053$$

e) Major Losses (h_f) at Suction Side

For Major losses, we can calculate the major losses using the formula below

$$h_{f \ suction} = \frac{f \times L \times v^2}{D \times 2g}$$

Where:

L = Pipe Length at suction side (0,76 m)

 $g = Gravity (9,81 m/s^2)$

So, the major losses at the suction side of the pump is

 $h_{f \text{ suction}} = 0,053 \text{ x } 0,76 \text{ x } 0,612^2 / (0,01495 \text{ x } 2 \text{ x } 9,81)$

= 0,05 m

No	Accessories	n	k	n x k
1	Gate Valve	0	0,14	0
2	T joint	0	1	0
3	Elbow	0	0,3	0
			$\Sigma nk =$	0

f) Minor Losses (h_m) at Suction Side

So, the value of minor losses at suction side is:

 $h_{m \text{ suction}} = \sum nk x v^2 / 2g$ = 0x 0,612² / 2 x 9,81 = 0 m

g) Total Head Loss at Suction Side

 $h_{L\,suction}\!=h_{f\,suction}\!+h_{m\,suction}$

$$= 0.05 + 0$$

= 0.05 m

h) Major Losses (hf) at Discharge Side

For Major losses, we can calculate the major losses using the formula below

$$h_{f \ discharge} = \frac{f \times L \times v^2}{D \times 2g}$$

Where:

L = Pipe Length at discharge side (3,2 m)

$$g = Gravity (9,81 m/s^2)$$

So, the major losses at the suction side of the pump is

$$h_{f \text{ discharge}} = 0.053 \text{ x } 3.2 \text{ x } 0.612^2 / (0.01495 \text{ x } 2 \text{ x } 9.81)$$

$$= 0,22 \text{ m}$$
No	Accessories	n	k	n x k
1	NRV	1	2	2
2	Gate Valve	0	0,14	0
3	T joint	0	0	0
4	Elbow 90	2	0,3	0,6
			$\Sigma nk =$	2,6

i) Minor Losses (h_m) at Discharge Side

So, the value of minor losses at discharge side is:

 $h_{m \text{ discharge}} = \Sigma nk x v^2 / 2g$

 $= 2,6 \ge 0,612^2 / 2 \ge 9,81$ = 0,049 m

j) Total Head Loss at Discharge Side

 $h_{L \, discharge} = h_{f \, discharge} + h_{m \, discharge}$

= 0,22 + 0,049

= 0,269 m

k) Total Head Loss of Pump

 $h_{L pump} = h_{L suction} + h_{L discharge}$

$$= 0.05 + 0.269$$

= 0,319 m

l) Head Total of Pump

$$H_{pump} = H_s + H_v + H_p + H_L$$

= 3 + 0 + 0 + 0,319
= 3.319 m

m) Required Pump's Specification

Head: 3,319 m

Capacity: 0,387 m³/h

4.14.4 Makeup Water Pump

a) Head Static (Hs)

Head static is the difference height of suction and Expansion Tank

- Head at Z=0 at Discharge = 0 m
- Head at Z=0 at Suction = 0 m

So, $H_s = 0 m$

b) Head Velocity (Hv)

Head velocity is the difference velocity of suction and discharge side is same, is 1,404 m/s each

 $Hv = (V^2d - V^2s) / 2 g$

Where

 $g = 9,81 \text{ m/s}^2$ Hv = (1,97-1,97) / 2 x 9,81 = 0 m

c) Head Pressure (Hp)

Head pressure is the difference pressure of suction and discharge side. The design pressure of both side is same, so the head pressure is 0.

at Suction Side = Atmospheric Pressure + Hidrostatic Pressure = $101.325 \text{ N/m}^2 + (0 \text{ p g})$ = $101.325 \text{ N/m}^2 + (0 \text{ x } 1000 \text{ x } 9,81)$ = 101.325 N/m^2

At Discharge side = 101.325 N/m^2

 $Hp = (Pd - Ps) / \rho x g$

Where

 $\rho = 1000 \text{ kg/m}^3$

 $g = 9,81 \text{ m/s}^2$

Hp = (101.325 – 101.325) / (1000 x 9,81) Hp: 0 m

d) Reynold Number

For calculating reynold Number, you can use the formula below:

$$Rn = \frac{v \times dH}{n}$$

Where:

n = Kinematic Viscosity (0,000000796 N.s/m²)

dH = Inside diameter of Freshwater pipe (0,0243 m)

v = Fluid Velocity of Freshwater (1,199 m/s)

so,

Rn = (1,199 x 0,0243)/ 0,000000796

= 36602,63

If Rn < 2300 is Laminar Flow and Rn > 2300 is Turbulent flow, in this case is Turbulent flow.

Based on the calculation above, it is known that the flow is a Turbulent flow. Therefore, the value of friction factor can be defined with Colebrook Equation.

$$f = 0.02 + (0.0005/D)$$
$$= 0.02 + (0.0005/0.0243)$$
$$= 0.041$$

e) Major Losses (h_f) at Suction Side

For Major losses, we can calculate the major losses using the formula below

$$h_{f \ suction} = \frac{f \times L \times v^2}{D \times 2g}$$

Where:

L = Pipe Length at suction side (1,37 m)

 $g = Gravity (9,81 \text{ m/s}^2)$

So, the major losses at the suction side of the pump is

$$h_{f \text{ suction}} = 0.041 \text{ x } 1.37 \text{ x } 1.199^2 / (0.0243 \text{ x } 2 \text{ x } 9.81)$$

$$= 0,17 \text{ m}$$

f) Minor Losses (h_m) at Suction Side

No	Accessories	n	k	n x k
1	Gate Valve	0	0,14	0
2	T joint	0	1	0
3	Elbow	0,3	0	
			$\Sigma nk =$	0

So, the value of minor losses at suction side is:

 $h_{m \text{ suction}} = \sum nk \ x \ v^2 / 2g$ = 0 x 1,199² / 2 x 9,81 = 0

g) Total Head Loss at Suction Side

 $h_{L \text{ suction}} = h_{f \text{ suction}} + h_{m \text{ suction}}$

$$= 0,17 + 0$$

= 0,17 m

h) Major Losses (hf) at Discharge Side

For Major losses, we can calculate the major losses using the formula below

$$h_{f \ discharge} = \frac{f \times L \times v^2}{D \times 2g}$$

Where:

L = Pipe Length at discharge side (12,22m)

$$g = Gravity (9,81 m/s^2)$$

So, the major losses at the discharge side of the pump is

 $h_{f\,discharge} \ = 0,041 \ x \ 12,22 \ x \ 1,199^2 / \ (0,01495 \ x \ 2 \ x \ 9,81)$

$$= 1,5 \text{ m}$$

No	Accessories	n	k	n x k
1	NRV	1	2	2
2	Gate Valve	0	0,14	0
3	T joint	0	1	0
4	Elbow 90	0	0,3	0
			$\Sigma nk =$	2

i) Minor Losses (h_{m}) at Discharge Side

So, the value of minor losses at discharge side is:

 $h_{m \, discharge} = \Sigma nk \ x \ v^2 / 2g$

 $= 2 \times 1,199^2 / 2 \times 9,81$ = 0,146 m

j) Total Head Loss at Discharge Side

 $h_{L\,discharge} = h_{f\,discharge} + h_{m\,discharge}$

= 1,5 + 0,146

= 1,646 m

k) Total Head Loss of Pump

 $h_{L \text{ pump}} = h_{L \text{ suction}} + h_{L \text{ discharge}}$

= 0,17 + 1,646

= 1,82 m

l) Head Total of Pump

$$H_{pump} = H_s + H_v + H_p + H_L$$

= 0 + 0 + 0 + 1,82

= 1,82 m

m) Required Pump's Specification

Head: 1,82 m

Capacity: 20 m³

4.15 Summary list of Electrical Load

	READY RECKONER OF POWER CONSUMPTION								
		NORMAL DEP. &	NAV. WITH		HARBOUR	EM'CY SERVICE			
		SERVICE	ARR./PORT	TANK CLEAN.	CARGOISERVICE	SERVICE	BLACK OUT	FIRE	
CONTINUOUS LOAD (KW)		500.4	500.4	625.3	1727.4	225.6	102.1	117.5	
INTERMITTENT	TOTAL	(KW)	522.1	649.4	512.8	639.8	573.1		
LOAD	DIVERSITY	FACTOR	1.5	1.5	1.5	1.5	1.5		
	REQUIRED	POWER	348.0	432.9	341.8	426.5	382.1		
TOTAL REQUIRED POWER (KW)		848.4	933.3	967.2	2153.9	607.7	102.1	117.5	
OUTPUT OF GENERATOR (KW)		1300KW x 1	1300KW x 1	1300KW x 1	1300KW x 2	1300KW x 1	150KW x 1	150KW x 1	
LOAD FACT	LOAD FACTOR OF GENERATOR		65.3%	71.8%	74.4%	82.8%	46.7%	68.1%	78.4%
	CONTINUOUS LO	AD (KW)				734.9			
		TOTAL				391.4			
AFTER	INT. REQUIRED POWER	DIVERSITY FACTOR				1.5			
PREFERENCE TRIP		REQUIRED POWER				260.9			
	TOTAL POWER (K)	W)				1126.3			
	OUTPUT OF GEN.					1300KW x 1			
	LOAD FACTOR OF GEN.					86.6%			

Table 4.11 Summary list of Electrical Load

4.16 Scrubber Specifications

This ship will be retrofitted with a scrubber with following specifications:

Description	Value
Model	U-Type
Diameter (mm)	2700
Length (mm)	5300
Height (mm)	8700
Weight (tons)	16,9

Table 4.12 Scrubber Specifications

4.17 Water Consumption for Scrubber Use

Based on the Project guide of Scrubber, we use 2 different capacities that seen on the table below

Table 4.13	Water	Consumption	for	Scrubber	Use
------------	-------	-------------	-----	----------	-----

Operation Condition	Open Loop	Closed Loop
Sea Water Pump to Scrubber	467 m ³ /h	
Fresh Water Pump for Circulating		300 m ³ /h

4.18 Power Consumption for Scrubber

Item	Operation (kW)	Open Loop (kW)	Closed Loop (kW)	Load (%)
No. 1 Sealing Air Fan	6,4	6,4	6,4	100
No. 2 Sealing Air Fan	6,4			0
No. 1 S.W Feed Pump	98	98	98	100
No. 2 S.W Feed Pump	98	0	0	0
No. 1 F.W Circulating Pump	45		45	100
No. 2 F.W Circulating Pump	45		0	0
Makeup Water Pump	5,5		5,5	100
NaOH Pump	0,18		0,18	100
Others	16,5	16,5	16,5	100
Wash Water Treatment	6		6	100
Total		120,9	177,58	

Table 4.14 Power Consumption of Scrubber usage

4.19 Pumps for Scrubber

After we calculate the head and knowing capacity requirement, we need to choose the right pump for scrubbing process, the result is on the table below

4.19.1 Sea Water Pump

Description	Value
Capacity (m ³ /h)	467
Head (m)	50
Motor (kW)	98 @1800 rpm
Туре	Vert. Centrifugal
Control	VFD
Quantity	2

Table 4.15 Sea Water Pump (Goulds 3181 M)

4.19.2 Fresh Water Pump

Description	Value
Capacity (m ³ /h)	300
Head (m)	28,9
Motor (kW)	45 @1800 rpm
Туре	Centrifugal
Control	VFD
Quantity	2

Table 4.16 Fresh Water Pump (Taiko EMC250-C)

4.19.3 NaOH Pump

Table 4.17 NaOH Pump (Teflo	ow COB20-15-75F)
-----------------------------	------------------

Description	Value
Capacity (m ³ /h)	1,6
Head (m)	7
Motor (kW)	0,18 @2900 rpm
Туре	Magnetic
Control	VFD
Quantity	1

4.19.4 Makeup Water Pump

Table 4.18 Makeup Water Pump (Taiko EMC100-C)

Description	Value
Capacity (m ³ /h)	20
Head (m)	1,7
Motor (kW)	5,5 @1800 rpm
Туре	Centrifugal
Control	VFD
Quantity	1

4.20 Fans

4.20.1 Sealing Air Fan

Description	Value
Static Head (Pa)	5000
Capacity (m ³ /h)	2500
Motor (kW)	6,4
Quantity	2

Table 4.19 Sealing Air Fan (Kruger ASA 355)

4.21 Others

At this case, we choose the right equipment to be installed on the Scrubber system, the data of selected component is on the table below, including pipe, wash water treatment, fittings, etc.

4.21.1 Wash Water Treatment

Table 4.20 Wash Water Treatment

Brand	Wartsila SWT 500
Capacity	5 m3/h
Power	6 kW

4.21.2 Heat Exchanger

Table 4.21	Heat	Exchanger
------------	------	-----------

Merk	Hisaka LX-30
Max. Flow Rate	481 m3/h
Max. Working	
Temperature	180 °C
Max. Working Pressure	12,5 Bar

4.21.3 Pipe and Fittings

Table 4.22 Pipe List

No	Material	Nominal Diameter		length 13,59	Schedule
1	Carbon Steel	20	mm	m	40
2	Carbon Steel	250	mm	83,7 m	40
3	Carbon steel	10	mm	3,47 m	40
4	Carbon steel	300	mm	98,2 m	40

No	Item	Size	Qty.
1	Butterfly Valve	300 mm	8
2	Elbow 90	300mm	12
3	Filter	300 mm	1
4	NRV	300 mm	2
5	T Joint	300 mm	5
6	Elbow 90	250 mm	8
7	Filter	250 mm	2
8	NRV	250 mm	1
9	T Joint	250 mm	5
10	Butterfly Valve	250 mm	8
11	Gate Valve	20 mm	0
12	Butterfly Valve	25 mm	0
13	Elbow 90	10 mm	2
14	T Joint	10 mm	0
15	Pressure Indicator		12
16	Safety Valve	5 Bar	3
17	Level Alarm		3
18	Sounding Pipe		2
19	NRV	20 mm	1
20	NRV	10 mm	1

4.22 Electrical Load after Scrubber Attachment

Electrical load of all components are supplied by generator, generator uses to supply all electrical component on the ship. If more components it means more load to be supplied by generator. So, we need to recalculate load factor to know the new demand power for this ship.

Item		Sea going	Manuvering	Cargo Operation	Harbour	Emergency
Intermitten	Total	522,1	649,4	639,8	573,1	0
	Diversity factor	1,5	1,5	1,5	1,5	1,5
	Demand power	348,1	432,9	426,5	382,1	0,0
Continous Demand load (kW) power		500,4	500,4	1727,4	393,77	117,5
Total continous & intermitten load		848,47	933,33	2153,93	775,84	117,50
Design margin (2%) (kW)		16,97	18,67	43,08	15,52	2,35
Total deman with provisio design margi	d power on for in (kw)	865,44	952,00	2197,01	791,35	119,85

Table 4.24 Electrical load before Scrubber Attachment

In the table above, this is the old electrical load data and we calculate the new factor of continous load, will be

New CL = Old CL + (Load Factor x Required power for scrubbing)

= 1727,4 + (1 x 177,58)

= 1904,98 kW

Total demand power = Total IL & CL x (1 + design margin)

= 426,5 + 1904,98 x (1 + 2%)

= 2369,6 kW

Then, we calculate the new load factor of Generator and the result is

Load Factor = Required power / Total generator power

and, if we use all generators, the new percentage will be

Load Factor = Required power / Total generator power

= 2369,6/(1300 x 3)

= 60,75 %

And then, we calculate the start power, and the total is

Start Power = Loading Unloading (w/o Cargo oil pump) + Cargo Oil Pump

= 670,06 + (618,28 x 3) = 2524,9 kW

And the generator efficiency is:

Generator Efficiency = Start power / total generator force

= 64,74%

4.23 Cost Estimation

Next, we need to find all components and prices, so all components and prices can be seen on the table below

4.23.1 Cost Estimation of All Components

No	Item	Specification	Quantity		Unit Co	st	Tota	l Cost
1	Sea Water Pump		2	pcs	Rp 93	3.600.000	Rp	1.867.200.000
2	Fresh Water Pump		2	pcs	Rp 13	9.495.400	Rp	278.990.800
3	NaOH Pump		2	pcs	Rp	6.410.720	Rp	12.821.440
4	Heat Exchanger		1	pcs	Rp	7.780.000	Rp	7.780.000
5	Wash Water Treatme	nt	1	pcs	Rp 14	1.265.000	Rp	141.265.000
6	Carbon Steel Pipe	300 mm	322,19	ft	Rp 1	0.182.620	Rp	3.280.781.105
7	Carbon Steel Pipe	250 mm	274,62	ft	Rp 1	0.182.620	Rp	2.796.348.050
8	Carbon Steel Pipe	20 mm	44,59	ft	Rp 1	4.988.014	Rp	668.297.409
9	Carbon Steel Pipe	10 mm	11,39	ft	Rp 1	6.131.986	Rp	183.663.790
10	Butterfly Valve	12"	8	pcs	Rp	1.556.000	Rp	12.448.000
11	Butterfly Valve	10"	8	pcs	Rp	3.656.600	Rp	29.252.800
12	Elbow 90	12"	12	pcs	Rp	155.600	Rp	1.867.200
13	Elbow 90	0,4"	2	pcs	Rp	311.200	Rp	622.400
14	Elbow 90	10"	8	pcs	Rp	933.600	Rp	7.468.800
15	NRV	12"	2	pcs	Rp	1.400.400	Rp	2.800.800
16	NRV	10"	1	pcs	Rp	1.322.600	Rp	1.322.600
17	NRV	3/4"	1	pcs	Rp	933.600	Rp	933.600
18	NRV	0,4"	1	pcs	Rp	778.000	Rp	778.000
19	Filter	12"	1	pcs	Rp	2.053.920	Rp	2.053.920
20	Filter	10"	2	pcs	Rp	2.053.920	Rp	4.107.840
21	T Joint	12"	5	pcs	Rp	142.500	Rp	712.500
22	T Joint	10"	5	pcs	Rp	142.500	Rp	712.500
23	Level Alarm		3	pcs	Rp	169.000	Rp	507.000
24	Sealing Air fan	2500 m3/h	2	pcs	Rp	9.930.236	Rp	19.860.472
25	Plastic Tank	1000 1	2	pcs	Rp	1.000.000	Rp	2.000.000
26	Scrubber Tower		1	pcs	Rp 38	9.000.000	Rp	389.000.000
27	Sensor package		2	pcs	Rp 11	3.577.975	Rp	227.155.950
28	Makeup Water Pump		1	pcs	Rp 2	0.383.600	Rp	20.383.600
29	Temperature Indicato	r	2	pcs	Rp	209.000	Rp	418.000
30	Pressure Indicator		12	pcs	Rp	209.000	Rp	2.508.000
31	Sounding Pipe		2	pcs	Rp 1	8.672.000	Rp	37.344.000
32	Safety Valve		6	pcs	Rp	209.000	Rp	1.254.000
33	Emission Monitoring	(Scrubber)	1	pcs	Rp 11	3.577.975	Rp	113.577.975
					Total		Rp	10.116.237.550

Table 4.25 Cost Estimation of All components

Based on the table above, the total price is 10,116 Billion Rupiah

4.23.2 Direct Costs

Direct costs is based on Equipment Cost, Instrumentation, Tax, and freight. Tax is based on Bea Cukai, which is now Import Duty is 7,5% and PPN 10%, the rest is based on HarlanH.

Direct Costs				
Equipment Cost	Rp 10.116.237.550,00			
Instrumentation (10%)	Rp 1.011.623.755,00			
Sales Taxes (17,5%)	Rp 1.770.341.571,25			
Freight (5%)	Rp 505.811.877,50			
Total Direct Costs	Rp 13.404.014.753,75			

Table 4.26 Direct C	Costs
---------------------	-------

4.23.3 Direct Installation Costs

The price of Direct Installation costs are based on total direct costs that we calculated before for Scrubber modification on this ship, and the price based on IPERINDO 2019, can be seen on attachments.

Table 4.27	Direct	Installation	Costs
------------	--------	--------------	-------

Direc	ct Installation costs
As Summarized	Rp 3.096.412.615,00

4.23.4 Indirect Costs

Indirect Installation costs are also based on Direct Costs.

Table 4.28 Indirect Costs

Indirect Costs		
Engineering (10%)	Rp	1.340.401.475,38
Construction and Field Expenses		
(10%)	Rp	1.340.401.475,38
Contractor Fees (10%)	Rp	1.340.401.475,38
Start up (1%)	Rp	134.040.147,54
Performance Test		-
Model Study (3%)	Rp	402.120.442,61
Contingencies (3%)	Rp	402.120.442,61
Total Indirect Costs	Rp	4.959.485.458,89

4.23.5 Total Costs

Summary					
Total Costs (USD)	\$	1.379.171,77			
Total Costs (EURO)	€	1.282.629,75			
Total Costs (IDR)	Rp	21.459.912.787,10			
Cost Estimated by Berqvist et al.	€	3.000.000,00			
Estimated difference (€)	€	1.717.418,06			
Estimated difference(%)		57%			

Table 4.29 Total Costs

4.24 Operational Expenditure Calculation

After Scrubber attachment, we need to analyze the economical aspect between Open Loop and Closed Loop, and also we need to predict the cost for all equipment's spare parts by calculating the total cost. so, we will know the operational costs after scrubber installation.

4.24.1 Component Cost for Operational Expenditure

	Component List							
No	ltem	Specification	Qty	Unit	Cost /	Item		Total Cost
1	Sea Water Pump	Brand : Goulds 3181 M Flow Rate : 467 m3/h Head : 50 m Power : 98 kW	2	Pcs	Rp 9	33.600.000	Rp	1.867.200.000
2	Fresh Water Pump	Brand : Taiko EMC250-C Capacity : 300 m3/h Head : 28,9 m Power : 45 kW	2	Pcs	Rp 1	39.495.400	Rp	278.990.800
3	NaOH Pump	Brand : Teflow CQB20-15-75F Capacity : 1,6 m3/h Head : 7 m Power : 0,18 kW	2	Pcs	Rp	6.410.720	Rp	12.821.440
4	Makeup Water Pump	Brand : Taiko EMC100-C Capacity : 20 m3/h Head : 7 m Power : 5,5 kW	1	Pcs	Rp	20.383.600	Rp	20.383.600
4	Heat Exchanger	Brand : Hisaka LX-30 Max. Flow Rate : 481 m3/h Max. Working Temperature : 180°C Max. Working Pressure : 12,5 Bar	1	Pcs	Rp	7.780.000	Rp	7.780.000
5	Wash Water Treatment	Brand : Wartsila SWT 500 Capacity : 5 m3/h Power : 6 kW	1	Pcs	Rp 1	41.265.000	Rp	141.265.000
6	Component Spare Parts	5% of Component Cost					Rp	116.422.042
					Total Comp	onent Cost	Rp	2.444.862.882

Table 4.30 Component Cost for OPEX

4.24.2 Additional Fuel Consumption

	Fuel Consumption Cost Calculation							
No	Formula/Data	Information	Value	Unit				
1	Equipment's Power Consumption	Sea Water Pump : 98 kW x 2 Fresh Water Pump : 45 x 2 NaOH Pump : 0,18 kW x 2 Wash Water Treatment : 6 kW Makeup Water Pump: 5,5 kW	297,86	kW				
2	Exhaust gas production t = V/Q	t = (42072,403 / 18736,49) x 2	4,49	hour				
3	Equipment's Energy Consumption	kWh = 261,5 x 22,8	1337,68	kWh				
	kWh = P x t							
4	SFOC	Generator Specification	195	g/kWh				
5	Additional Fuel Consumption (ton)	Fuel Consumption = 5962,2 x	0.26	ton				
1	Energy Consumption x SFOC x 10 ⁻⁶	189 x 10 ⁻⁶	0,20	ton				
6	HSD Fuel Price	Pertamina	9700,00	IDR/1				
	Fuel Consumption Cost	$Cost = ((0.26 \times 1000)/0.85) \times$						
7	Cost = ((Fuel Consumption x 1000)/0,85) x fuel price	9700	2.976.725	Rupiah				

4.24.3 Cost Estimation (Open Loop)

Table 4.32	Cost Estimation (Ó	pen	Looi	D))
1 4010 10 -	Cost Bottimetron (\sim	P • • •		~ /	

	Operational Cost						
No.	Price Type	Specification	Quantity	Unit	Price/Unit	Total Price	
	Fuel	((0,26 ton x 1000)/0,85) x					
1	Consumption	9700	34	Voyage	Rp 2.976.725	Rp101.208.642,55	
2	NaOH	No NaOH Required	0	Voyage	Rp 31.586.800	-	
		Generated by F.W					
3	Fresh Water	Generator	34	Voyage	-	-	
					Total	Rp101.208.642,55	

4.24.4 Cost Estimation (Closed Loop)

	Operational Cost						
No.	Price Type	Specification	Quantity	Unit		Price/Unit	Total Price
	Additional						
	Fuel	((0,26 x 1000)/0,85) x					
1	Consumption	9700	34	Voyage	Rp	2.976.725	Rp101.208.642,55
2	NaOH	5,8 m3	34	Voyage	Rp	31.586.800	Rp1.073.951.200,00
		Generated by F.W					
3	Fresh Water	Generator	34	Voyage		-	-
						Total	Rp1.175.159.842,55

Table 4.55 Cost Estimation (Closed Loop	Table 4.33	Cost	Estimation	(Closed	Loop
---	------------	------	------------	---------	------

In those Table, we know if Cost estimated for open loop at 101 Million Rupiah and for Closed loop is estimated at 1,175 Billion Rupiah. So, it has a difference about IDR 1,073 Billion Rupiah per year. And this have a difference about 1061,1%

4.24.5 Operational Expenditure (Open Loop)

Table 4.34 Operational Expenditure (Open Loop)

Operation Cost per Year							
No.	Item	Total Cost					
	Maintenance &						
1	Repair Cost	15% of Installation Cost	Rp 464.461.892				
	Maintenance of						
2	Equipment	5% of Equipment Cost	Rp 505.811.878				
3	Operational Cost	Described at 4.24.3	Rp 101.208.643				
		Total	Rp 1.071.482.412,21				

4.24.6 Operational Expenditure (Closed Loop)

Table 4.35 Operational Expenditure (Closed Loop)

Operation Cost per Year										
No.	Item	Estimation	Total Cost							
	Maintenance &									
1	Repair Cost	15% of Installation Cost	Rp 464.461.892							
	Maintenance of									
2	Equipment	5% of Equipment Cost	Rp 505.811.878							
3	Operational Cost	Described at 4.24.4	Rp 1.175.159.843							
		Total	Rp 2.145.433.612,21							

At another case, they have same difference, but at 100,23% per year.

This page intentionally left blank

CHAPTER 5

CONCLUSION

5.1 Conclusions

So, we can conclude this research, and the research results are:

- Scrubber System is divided into 3 kinds, such as Open Loop, Closed Loop, and Hybrid Loop
- Hybrid loop is a combination between open loop and closed loop so the operators can choose between open loop and closed loop, so the operators can not worried if the ship is on Zero Discharge areas as ruled on IMO 2020 Annex VI but with cheaper operation price outside Zero Discharge Area.
- If we assumed Main engine and boilers on this ship using HFO but generators is using HSD, the predicted cost as at IDR 7,18 Billion per trip, and increase just a little bit if Generators and Boilers using MDO. If Main Engine and Boilers using MDO, the predicted cost will be IDR 9,34 Billion per trip using Pertamina Price which is 9550 IDR per litre for MDO and 7000 IDR per litre for HFO and 9700 IDR per litre for HSD, resulting with a price difference at 30,05%
- The total of required powers are now increasing about 120,9 kW at Open Loop and 177,58 kW at Closed Loop
- The new total demand for this ship is 2341,9 kW
- For scrubber components, the cost of all components is 650143,80 USD or 10,116 Billion Rupiah(based on 24th April exchange rate which is IDR 15560 per USD)
- For Scrubber attachment, the cost is predicted about 1,282 million Euro. Based on Hybrid Loop Scrubber Application cost based on Berqvist et al. Which is 3 million Euro, the price differences is predicted about 57%
- The estimated price for Cost estimation between Open Loop and Closed Loop have a price difference at IDR 1,073 Billion per year and estimated at 1061,1%. And for the operational expenditure, cost per year between Open Loop and Closed Loop is estimated at same value as Cost estimation per year but at 100,23% in difference
- Overall, The Scrubber system is also an effective way to face based on IMO Regulation Annex VI 2020, the installation take time about 18 days.

5.2 Suggestions

After designing, calculating, and designing system for this ship, here are the suggestions:

- To modify this system for this ship needs analysis on required dimension, so the attachment will be precisely attached
- Make sure the new load factor can endure by existing generator at ship.
- To analyse cost estimation, we need to know installation costs, indirect costs, direct costs, and operation cost each loop so we can compare them.

This page intentionally left blank

REFERENCES

- https://airpollution2014.weebly.com/dampak-pencemaran-udara--sulfur-dioksida (accessed at 25/09/19 14:15)
- [2] J.M.K.C. Donev et al. (2018). Energy Education Scrubber [Online]. Available: https://energyeducation.ca/encyclopedia/Scrubber (accessed at 23/12/19 18:30)
- [3] J.M.K.C. Donev et al. (2018). Energy Education Wet scrubber [Online]. Available: https://energyeducation.ca/encyclopedia/Wet_scrubber.((accessed at 23/12/19 18:54)
- [4] Makkonen, Teemu;Inkinen,Tommi (2018). "Sectoral and technological systems of environmental innovation: The case of marine scrubber systems".Journal of Cleaner Production 200. Elsevier
- Jurna Maritim,2019,https://jurnalmaritim.com/imo-2020-lebih-dari-3000-kapaldipastikan-gunakan-scrubber/ (accessed at 13/01/20 11:52)
- [6] http://www.gcesystems.com/dry-scrubber.html (accessed at 13/01/20 19:04)
- J.M.K.C. Donev et al. (2018). Energy Education Dry scrubber [Online]. Available: https://energyeducation.ca/encyclopedia/Dry_scrubber (accessed at 13/01/20 19:05)
- [8] Wartsila Product Guide, SOX Scrubber Technology, Page 6
- [9] Ülpre,H; Eames,I (2014). "Environmental policy constraints for acidic exhaust gas scrubber discharges from ships". Marine Pollution Bulletin 88. Elsevier
- [10] http://www.worldshipping.org/industry-issues/environment/air-emissions/nox-sox-pm (Accessed at 17/01/20 16:21)
- [11] Tran, T.A. (2017) "Research of the Scrubber Systems to Clean Marine Diesel Engine Exhaust Gases on Ships". J Marine Sci Res Dev 7: 243. doi: 10.4172/2155-9910.1000243
- [12] RESOLUTION MEPC.184(59) Adopted on 17 July 2009 GUIDELINES FOR EXHAUST GAS CLEANING SYSTEMS
- [13] Santoso, Nurhadi Budi, 2014.' Jurnal Rekayasa Proses'. Pemanfaatan LNG Sebagai Sumber Energi di Indonesia. Vol.8, No,1, pp.39
- [14] Berqvist et al, 2015.' European Transport Research Review''. Sulphur Emission Control Areas and Transport Strategies -The Case of Sweden and the Forest Industry. DOI: 10.1007/s12544-015-0161-9

- [15] https://meproduction.com/front-page/marine-scrubbers/hybrid-loop/ (accessed at 22/1/20 15:30)
- [16] https://meproduction.com/front-page/marine-scrubbers/closed-loop/ (accessed at 28/1/20 17:23)
- [17] http://www.gcesystems.com/dry-scrubber.html (accessed at 28/1/20 17:23)
- [18] https://meproduction.com/front-page/marine-scrubbers/open-loop/ (accessed at 28/1/20 17:37)
- [19] https://www.stscanadainc.com/dry-scrubber.html (accessed at 2/2/20 18:32)
- [20] Thulukkanam, Kuppan. 2013. Heat Exchanger Design Handbook, Second Edition. Boca Raton: CRC Press
- [21] marinetraffic.com (accessed at 24/2/20 16:00)
- [22] Hyundai MAN B&W 6S42MC7 Project guide
- [23] https://www.kameliacleantech.com/media-centre/how-to-choose-the-right-scrubber/ (Accessed at 2/4/20 8:14)
- [24] Sasono, D. A. (1996). Studi Tentang Desain Pipas Gas Buang pada Kapal Caraka Jaya Niaga III-24 Milik Pelayaran PT. Meratus. Surabaya: Institut Teknologi Sepuluh Nopember.
- [25] Technical Specification of the Exhaust Gas Scrubber of MT Senipah. October 31, 2019. JW-ENC Co., Ltd
- [26] Bea Cukai, https://www.beacukai.go.id/berita/siap-siap-aturan-impor-barang-kiriman-terbaru-mulai-berlaku-30-januari-2020.html (accessed at 10/5/2020 10:30)
- [27] Bengston, Harlan H., Air Pollution Control: Wet Scrubbers
- [28] Zulfar R, Faris, 2019, MODIFIKASI SISTEM SCRUBBER DARI SISTEM AIR LAUT MENJADI AIR TAWAR PADA SISTEM INERT GAS KAPAL CRUDE OIL TANKER 85.000 DWT, Surabaya, ITS
- [29] Pedoman Standard Tarip Pemeliharaan dan Perbaikan Kapal Tahun 2019, Jakarta, IPERINDO

ATTACHMENTS

a. Data of Main Engine

Δ		INDUS		AL AL														
0		ial e	hon	test	reel	ılt fe	ar.	Hull	No.	C	H-0	\$02	Wea	ther			FINE	
	and the	.141 S	nop Lain	Engi	ino		"	Engi	ne No	A	A3	983	Mea	suring	Time		19:20	
		141	am	Eng	me		_	Eng.	Туре	65	42)	4C7	Test	Date		Ma	y.23,2	010
Dat	a s	heet	of 10	0%	Loa	d tes	t	Class DNV				Operator			S.C.KIM		M	
* Roor	n Ta	empera	ature :	20.4	i n	* Atr	nosnh	oric Pr		. ·	101	40 mł	l obe	10105			Catt	
Ene	ine.	Sneed	nure .	Wa	fer Br	ake	Bea	de Po	wer	Indicated Power		Mech Efficiency		iencv	NOTCH		н	
2.110	1.	36.0	rom	64.	78	tonf	64	80 kW		6834 kW		94.87		%		7.7		
	Sv	stem		м	lain L.O			P.C.0	PCO		Cam L O			Fuel O	il Coe		sline F.W	
	Pre	ss.(ba	ð					2.1						7.4			4.0	
In	Ter	mp.()	2)					43.0						38.0			70.0	_
	Cy	I. No.		Avg. 1 2 3				4	5	6	7	8	9	10	11	12	13	14
Pmax			bar	145.0	145	145	145	145	145	145								
Pcom	ıp.		bar	125.8	126	125	126	126	126	126			1					
Pi			bar	20.56	20.69	20.59	20.57	20.51	20.44	28.56		-						
			P0	66.0	66	66	66	66	66	66	Г	BLAN	ĸ					
F.0 F	'um	P	VIT	-	-	-		-	-	-			<u> </u>					
Exh.Gas Out. C		378.0	380	376	388	372	372	380										
C.F.W Out. C		r	78.0	78.0	77.0	78.0	78.0	78.0	79.0									
Cam L.O Out. C		c	45.0	45.0														
P.C.0	0	ut	c	55.3	56.0	54.0	56.0	54.0	56.0	56.0			-					
				Air C	oole	r			1				Scav	engir	ıg Ai	r		
	1	No.		1	2	3	4	A	Pressure					Tempe	arature	;		
Bef. C	oole	r Press	mmHg	2160				21	60		2.9	1	bar			40 °C		
Press.	Dre	op	mmAq	195				19	95	Airr	ecei	ver pres	sure			2130	mn	iHg
Air In	ι,		r	186	БВ	LAN	K	11	86	Exha	ust	Manife	d Pre	ssare		2.62	b	ar
Air O	ut.		τ	40.0				40),0		Sţ	pecific	Fue	l Oil	Cons	ump	tion	
Cooli	ng	In	τ	15.0				15	5.0	Me	as.()	.g/h)	Me	as.(g/k	Wh)	Corro	ect(g/l	(Wh)
Wate	H,	Out	r	54.0				54	1.0		121	1.2		186.91	4	1	83,52)
								Turt	ocha	arger	_							
Turb	och	arger	Spo	eed	Ble	ower I	nlet	Befe	ne Tu	rbine	A	fter Tu	bine	LC).(°C,	bar)	F.W	Tomp
			rp	600	1	C.	madq	τ	m	nHg	r	: 101	nAq	In	Out	Press.	1	С
1	√o.∶	1	193	260	20,0	20.0	50	449	18	80	26	6 2	30	43.0	87.0	1.70		-
1	No. 2	2																
1	No. :	3			BL/	NK												
1	Vo. 4	4																
Avg. 19260 20.00 50			449 1880 266			6 2	230 43.0 87.0 1.70 -											
 Pres 	sure	vit :	-	bar			*Gov	emor	Positi	on :	89	.6		* Thr	ust Pa	d :	52.0	C
Note	: T	he Fue	d Oil C	consum	nption	is cor	rected	i to Lo	wer C	alorifi	ic V	ahue 10	200 k	al/kg å	& I.S.(O cond	lition	

b. Data of Auxiliary Engine

1-1 Engine Specifications

Mode	el		5DK-26	6DK-26					
Туре	e		Vertical water-cooling direct inj	ection type 4-cycle diesel engine					
Number of c	cylinde	rs	5	6					
Cylinders bor	e	mm	260						
Piston stroke	e	mm	3	80					
Engine speed min-1				*					
Output kW				*					
Ignition sequence	Consta	ant speed	1-3-5-4-2	1-5-3-6-2-4					
Ignition sequence	Variab	le speed	_	1-2-4-6-5-3					
Rotating d	irection	ı I	Clockwise when se	en from the flywheel					
Turbochargin	g meth	nod	Turbocharged by exhaust gas	turbine equipped with air cooler					
Starting method,Compressed air			Air motor	Direct (Starting valve)					
Cooling metho	d	Jacket	Fresh	water					
Cooling method Co		Cooler	Fresh (or Sea) water						

c. Data of Emission Measurement

Туре	Division	Unit	MCR	Design	at SEA	In-Port	Maneuverin g
	No. of set		1	1	1	1	1
	Power	kW	6,480	5,508	5,508	0	4,212
Main Engine	Exhaust Gas	kg/h	55,080	46,818	46,818	0	35,802
Main Engine	Flow	Nm [°] /h	42,304	35,959	35,959	0	27,498
	Temp.	℃	220	220	220	220	220
	Load	%	100%	85%	85.0%	0%	65%
	No. of set		3	3	1	3	1
	Power (each)	kW	1,020	714	714	714	714
	Exhaust Gas	kg/h	8,160	5,712	5,712	5,712	5,712
	Flow (each)	Nm [°] /h	6,267	4,387	4,387	4,387	4,387
Engine	Power (Total)	kW	3,060	2,142	714	2,142	714
Lingine	Exhaust Gas	kg/h	24,480	17,136	5,712	17,136	5,712
	Flow (Total)	Nm [°] /h	18,802	13,161	4,387	13,161	4,387
	Temp.	℃	300.0	300.0	300.0	300.0	300.0
	Load	%	100%	70%	70%	70%	70%
	No. of set		1	1	1	1	1
	Max. Power	kW	4,300				
	Steam Capacity	kg/hr	8.0	6.0	6	6	4
Aux. Boiler	Exhaust Gas	kg/h	8,495	6,371	6,371	6,371	33,979
	Flow	Nm ^e /h	6,585	4,939	4,939	4,939	3,293
	Temp.	℃	346	346	346	346	346
	Load	%	100%	75%	75%	75%	50%
Data of	Max. Power	kW	13,840	7,650	6,222	2,142	4,926
Max. power	Exhaust Gas	kg/h	83,860	70,325	58,901	23,507	75,493
by the	Flow	Nm [°] /h	67,691	54,059	45,284	18,100	35,177
customer	Temp.	°C	254	251	241	313	242

c. Data of Boiler

1.2. Technical description Thermal Oil Heater

Model:		THM/V 5000
Version:		Vertical
Number of units:		1
	Kcal/	
Capacity:	h	3706897
	kW	4300
Efficiency:	%	87
Out-let temperature:	$^{\circ}C$	190
ΔT - Temperature jump	°C	50
Thermal oil content:	lt.	1851
Fuel		MDO/HFO 380cSt at 50oC
Fuel consumption :		
Diesel oil (10.200 Kcal/kg)	Kg/h.	418
Heavy oil (9.700 Kcal/kg)	Kg/h.	439
Electric data		440/60/3
0.0		MDO/HFO Riello
Burner regulation:		Modulating
Burner installed electrical power :		
Diesel oil	kW	18
Heavy oil	kW	0
Thermal oil circulation pump		F 222
capacity:	m³/h	168
Pressure loss oil side heater	m	21
Dimensions (burner excluded) :		
Length	mm	2100
Width	mm	2300
Height	mm	5700
Weight	kg	7950
Exhaust gas connection diameter	Ømm	ø550

d. Data of Heat Exchanger

	cat Exchanger				
	Max. flow rate / unit	481m³/h	Their		← 606~4.221 →
	Max. working pressure	1.25MPaG	l Dog		
1 2 20	Max. working temperature	180℃			
LX-30	Max. heat transfer area / unit	100m²			
	Porthole Dia.	156mm			
-	Connection Dia.	150A	1 000 4		

e. Wash Water Treatment

f. Data of Sea Water Pump

g. Data of Freshwater Pump

Educated Day	Mc	ntor	B	are.	Dimension (mm)																	
Model No.	KW	imin ¹	Suc.	Dis.	A	8	C	0	E	F	0	н	J	L	W	7.						
EMC-1000	6.5 7,5	1800	100	100	280	560	150	360	150	25	290	240	100	480	840	28						
	11	1	, ×.	- 535 B			1000	1.00	500			1.000	1000	595	955	2012						
	7.5								150					480	850							
EMC-125C	11	1800	125	125	300	600	160	370	1.000	25	290	240	100	595	965	28						
122200000000000000	15		10.98	1.000	19100	1000	10122	a section of	500	1.000	1.1000	1000		635	1005	1.122						
ALCONT TO THE REAL	11		1.000	· · · · · · · · · · · · · · · · · · ·		Sec. 19		·		1	1		· · · · · ·	595	988							
EMC-150C	15	1800	150	150	315	630	160	393	200	25	360	290	100	635	1028	28						
0.010.000.000000	18,5	1												685	1078							
	15													635	1063							
EWC-500C	18,5	1800	1800	1800	1800	1800	3,5 1800	1800	200	200	335	670	190	418	200	25	360	290	100	685	1103	28
	26	1				· · · · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · ·			725	1143							
	22													685	1175							
EMC-2500	26 30	1800	250	250	400	800	220	490	200	26	410	326	100	725	1215	28						
	45								250					800	1290							
	30								200					725	1245							
EMC-2800	37	1800	250	250	400	800	220	520	520 250	25	410	325	100	800	1320	28						
	55	1	100					esco 250 5		250 250		410 363 100		950	1470							
	65	1	1			5							1	1050	1570							

h. Data of Makeup Water Pump

Educated Film	Mc	tor	Bo	Bore		Dimension (mm)																
Model No.	KW	min ¹	Suc.	Dis,	A	8	C	0	E	- F -	0	н		L	W	7.						
EMC-1000	7.5	1800	100	100	280	560	150	360	150	25	290	240	100	480	840	28						
	11								500			1.00		595	955	2010						
	7.5								150					480	850							
EMC-125C	11	1800	125	125	300	600	160	370	200	25	290	240	100	595	965	28						
CONTRACTOR CONTRACT	15		10000					1	200					635	1005							
	11	Sec. and		in the second	0.32	Sec. 1	0000	"oreard"		1.00	1	1	1	595	988							
EMC-150C	15	1800	150	150	315	630	160	393	200	25	360	290	100	635	1028	28						
	18,5													685	1078							
	15													635	1053							
EWC-500C	18,5	1800	1800	1800	1800	1800	1800	1800	200	500	335	670	190	418	200	25	360	290	100	685	1103	28
	26							· · · · · · · · · · · · · · · · · · ·			· · · · ·		· · · · · · · · · · · · · · · · · · ·	725	1143							
	55										+			685	1175							
	26								200													
EMC-250C	30	1800	250	250	400	800	220	490		25	410	325	100	725	1215	28						
	37								250													
	45													800	1290							
	30					1		1 2	200				1 1	725	1245							
EMC-260C	<u>37</u> 45	37 45 1800	250	250	400	800	220	20 520 250		25	410	325	325 100	800	1320	28						
1000	55		100	1.2.2.2	1.00		0.00		250	250 80		060	10 263 100	950	1470							
	65	1				2		S						1050	1570							

i. Data of NaOH Pump

NO.	Туре	Flow	Head	EFF	NPSH	Aperture	Speed	Power	Weight
NO.	TYPE	FLOW m ³ /h	HEAD	EFF %	NPSH m	Import× export mm	SPEED r/min	POWER kw	WEIGHT kg
	CQB16-12-50F	0.6	2	8	9	16×12	2900	0.025	5
	CQB15-15-65F	0.8	3.2	16	6	15×15	2900	0.18	7
	CQB20-15-75F	1.6	7	-22	6	20×15	2900	0.18	8
	CQB25-20-100F	2.5	10.5	28	6	25×20	2900	0.37	12
Classical	CQB32-20-110F	5.5	13	35	6	32×20	2900	0.55	18
type	CQB32-20-160F	5.5	32	35	6	32×20	2900	2.2	65
	CQB40-25-120F	6.3	15	42	5	40×25	2900	0.75	35
	CQB40-25-125F	6.3	20	43	5	40×25	2900	1.1	20
	CQB40-40-125F	6.5	17.5	42	3.7	40×40	2900	1.1	40
	COB40-32-160F	6.5	32	42	3.7	40×32	2900	4	70

j. Pipe Price List

SIZ	e siz	e MSL	ISMT	JSL	USL	BAO	Lontrin	SMTM	TNRS	V&M	Wuxi
INC	H Nomi	inal PRICE	PRICE	PRICE	PRICE	E PRICE	PRICE	PRICE	PRICE	PRICE	PRICE
	Bor	e LIST	LIST	LIST	LIST	LIST	LIST	LIST	LIST	LIST	LIST
1/2	15	1,323.53	1,316.18	1.330.88	-	1,029.41	1,036.76	1,460.59	1,396.06	1,425.47	1,012.06
3/4	20	1,102.94	1.095.59	1,110.29	-	954.88	963.24	1,250.00	1,176.47	1,205.88	938.53
1	25	945.88	948.53	963.24	-	881.35	889.71	1,102.94	1,029.41	1,058.82	875.00
1.25	32	901.76	904.41	919.12	-	851.94	860.29	1,058.82	985.29	1,014.71	845.59
1.5	40	808.82	801.47	816.18	-	807.82	816.18	955.88	882.35	911.76	801.47
2	50	784.12	786.76	801.47	-	617.65	625.00	941.18	867.65	897.06	610.29
2.5	65	784.12	786.76	801.47	-	617.65	625.00	941.18	867.65	897.06	610.29
3	80	794.12	786.76	801.47	-	617.65	625.00	941.18	867.65	897.06	610.29
3.5	90	794.12	786.76	801.47	-	617.65	625.00	941.18	867.65	897.06	610.29
4	100	794.12	786.76	801.47	735.29	617.65	625.00	941.18	867.65	897.06	610.29
5	125	794.12	786.76	801.47	735.29	617.65	625.00	941.18	867.65	897.06	610.29
6	150	794.12	786.76	801.47	735.29	617.65	625.00	941.18	867.65	897.06	610.29
8	200	794.12	786.76	801.47	735.29	647.06	654.41	941.18	867.65	897.06	639.71
10	250	794.12	786.76	-	735.29	647.06	654.41	941.18	867.65	897.06	639.71
12	300	852.94	-	-	735.29	647.06	654.41	1,000.00	926.47	955.88	639.71
14	350	852.94	-	-	735.29	661.76	669.12	1,000.00	926.47	955.88	654.41
16	400	882.35	-	-	-	661.76	669.12	1,029.41	955.88	985.29	654.41
18	450	882.35	-	-	-	676.47	683.82	1,029.41	955.88	985.29	669.12
20	500	882.35	-	-	-	676.47	683.82	1,029.41	955.88	985.29	669.12
22	550	-	-	-	-	705.88	713.24	1,176.47	1,029.41	1,132.35	698.53
24	600	-	-	-	-	705.88	713.24	1,176.47	1,029.41	1,132.35	698.53

k. Fuel Price

MINYAK SOLAR/HSD (High Speed Diesel) :

HARGA DASAR HSD Solar Industri (Wilayah 1)	Rp.	9.450,-
HARGA DASAR HSD Solar Industri (Wilayah 2)	Rp.	9.450,-
HARGA DASAR HSD Solar Industri (Wilayah 3)	Rp.	9.550,-
HARGA DASAR HSD Solar Industri (Wilayah 4)	Rp.	9.700,-

(Harga diatas belum termasuk PPn, PPH dan PBBKB)

MINYAK BAKAR/MFO (Marine Fuel Oil) :

HARGA DASAR MFO (Wilayah 1)	Rp. 7.000,-
HARGA DASAR MFO (Wilayah 2)	Rp. 7.000,-
HARGA DASAR MFO (Wilayah 3)	Rp. 7.000,-
HARGA DASAR MFO (Wilayah 4)	Rp. 7.000,-

I. Sealing Air Fan

m. Installation Costs list

QUOTATION OF DOCKING REPAIR								
		Chin Do	tioulor					
Vessel Name	e : MT Senipah	LOA	:	180,00	Meter			
Owner	: PT Pertamina Persero – Shipping Department	LBP	1	173,00	Meter			
Survey		Draft		9,20	Meter			
Date		GRT		24.167	Ton			
Job Code	URAIAN PEKERJAAN	vo	LUME	UNIT PRICE	TOTAL (RP)			
1.1	GENERAL SERVICE Drv docking and docking preparation							
	a. Assistance for Docking Undocking	1	Ship set	47.312.640	47.312.640			
	b. Docking undocking		Ship set Ship set	217.645.056 27 905 472	217.645.056			
	d. Vessel to be on dry dock for service and repair	18	Days	32.645.376	587.616.768			
	Drawing reference : General Arrangement, Docking Plan & Tank Capacity							
1. 2	Tug boat service							
	a. Tug's assistant during vessel's arrival and sail out at yard (x2 tugboat)	2	Hours	32.758.000	65.516.000 65.516.000			
	b. Age accident daming accounting, using you down age	-	1 Iouro	02.700.000	00.010.000			
1. 3	Pilotage	2	Houre	3 377 376	6 754 752			
' ł	 b. Pilotage assistant during docking undocking, est. 2 hours. 	2	Hours	3.377.376	6.754.752			
	Dission Constant							
1. 4	a. Line handler assistant during vessel's arrival and sail out at yard (mooring unmooring)	1	Ls	30.753.216	30.753.216			
	Line handler assistant during docking undocking.	1	Ls	30.753.216	30.753.216			
1.5	Wharfage							
	a. To be provided wharf age facilities during floating repair	2	Days	16.322.688	32.645.376			
1.6	Shore Power Supply							
	a. Supply electricity during on repair periode assume (380 Volt, 50A, 50Hz, 3 Phase)	18	Days	1.737.542	31.275.763			
	Assistant for connect disconnect cable line	1	Times	346.000	346.000			
1. 7	Fire Line	10		206.000	7 109 000			
	b. Suppy 2 Hose During Repair	18	Days	400.000	7.200.000			
	c. Assistant for connect disconnect fire line	2	Times	241.000	482.000			
1. 8	Fire Guard							
	To be provided firewatchman and fire patrols during repair period 2 men/day	18	Days	768.000	13.824.000			
1. 9	Gas Free Inspection							
	To carry out gas free inspection and reported to OS (for 3 tanks x 1 time)	3	times	577.000	1.731.000			
1. 10	Toilet Facilities		_					
	To be provided toilet facilities for ships crew during on docking	18	Days	350.000	6.300.000			
1, 11	Garbage Disposal	10	Dava	250.000	4 500 000			
	to be browned membrane and brace on Anna's Annada risbosar		Days	250.000	4.500.000			
1. 12	Fresh Water Supply	40	T	92 200	2 222 000			
	a. Presh water supply, est 40 tons b. Assistant for connect disconnect for line	40	Times	241.000	241.000			
1.42	6							
1. 15	Cangway To be provided gangway facilities during docking period	18	Days	300.000	5.400.000			
1. 14	Crane Services							
	a. To be provided docking crane facilities (cap. 10.0 tons), est.	5	Hours	644.000	3.220.000			
1. 15								
	To be provided staging		112	50.100	524.040			
	a. Engine room 1st floor 6,8 x 0,5 x 3,1	11	M3 M3	50.400	531.216 921.816			
	c. Engine Room 3rd floor 11,8 x 0,5 x 4,19	25	M3	50.400	1.245.938			
	d. Upper deck 2,45 x 0,5 x 5,14	6	M3	64.800	408.013			
П.	INSTALLMENT SCRUBBER SYSTEM							
2.1	Sea Water Pump 467 m3 /hour 2 unit (material by owner) Fresh Water Pump 300 m3 /hour 2 unit (material by owner)	2	unit Unit	16.365.710 11.178.000	32.731.420			
	NaOH Pump 1,6 m3 /hour 2 unit (material by owner)	2	Unit	2.608.200	5.216.400			
	Makeup Water Pump 20 m3 /hour 1 unit (material by owner) Butterfly Valve 12" 8 pcs (material by owner)	1 8	Unit pcs	3.726.000 4.725.600	3.726.000 37.804.800			

1							
1	Butterfly Valve 10"	8 pcs	(material by owner)	8	pcs	3.955.200	31.641.600
1	Heat Exchanger	1 pcs	(material by owner)	1	Unit	10.498.393	10.498.393
1	Sensor Packane	2 000	(material by owner)	2	ncs	5 600 000	11 200 000
1	Sensor ackaye	2 pcs	(matched by owner)	2	pea	3.000.000	C 400.000
	Pressure Indicator	8 pcs	(material by owner)	8	pcs	800.000	6.400.000
	Emission Monitoring	1 pcs	(material by owner)	1	pcs	5.600.000	5.600.000
	Level Alarm	3 pcs	(material by owner)	3	pcs	800.000	2.400.000
	Wash Water Treatment	1 nce	(material by owner)	1	nce	3 200 000	3 200 000
	Sefety Velve	6 pea	(matchar by owner)		peo	4 725 600	20 252 600
	Safety valve	6 pcs		0	pcs	4.725.600	20.353.000
	Sounding Pipe	2 pcs		2	pcs	200.000	400.000
	NRV 12"	2 pcs		2	pcs	2.624.400	5.248.800
	NRV 10"	1 ncs		1	nce	2 239 200	2 239 200
	NDV 2(4"	1 000			peo	2.220.200	2 220 200
	NRV 5/4	i pos			pes	2.235.200	2.235.200
	NRV 0,4"	1 pcs		1	pcs	2.239.200	2.239.200
L	Sealing Air fan	<u>2 pcs</u>		2	pcs	600.000	1.200.000
2.2	Pining Installment in Engine Room						
	Oastan Obash dia 400 0011 40 st 4270 4 start			4.070		0.050.500	2,050,425
	- Carbon Steel dia. 12 3CH.40 X 1376,4 mm			1,570	meter	2.000.020	3.050.135
	 Carbon Steel dia. 12" SCH.40 x 530,4mm 			1	meter	2.658.528	2.658.528
	 Carbon Steel dia. 12" SCH.40 x 1593,6 mm 			1,594	meter	2.658.528	4.236.630
	 Carbon Steel dia, 12" SCH.40 x 5119.2 mm 			5.119	meter	2.658.528	13.609.537
	Carbon Stool, dia, 12° SCH 40 x 6643.2 mm			6 643	motor	2 669 629	17 661 133
	- Caldon Steel dia: 12 SCH.40 X 0043,2 mm			0,043	meter	2.030.320	00 040 000
	 Carbon Steel dia: 12" SCH.40 x 9871,2 mm 			9,871	meter	2.658.528	26.242.862
	 Carbon Steel dia. 12" SCH.40 x 1732,8 mm 			1,724	meter	2.658.528	4.582.771
	 Carbon Steel dia, 12" SCH.40 x 5475.6 mm 			5,476	meter	2.658.528	14.557.036
1	- Carbon Steel dia 12° SCH 40 x 10890 mm			10 890	meter	2 658 528	28 951 370
1	Carbon Greet Ja 10° COU 40 - 014 0 -			10,000	moter	2.030.320	20.001.010
1	 Carbon Steel dia: 12 SCH.40 x 211,2 mm 			1	meter	2.658.528	2.658.528
L	 Carbon Steel dia. 12" SCH.40 x 3972 mm 			3,972	meter	2.658.528	10.559.673
1	 Carbon Steel dia. 12" SCH.40 x 4494 mm 			4,494	meter	2.658.528	11.947.425
1	 Carbon Steel dia 12° SCH 40 x 7752 mm 			7 752	meter	2 658 528	20 608 909
1	Carbon Stool dia, 12: SCH 40 v 221.2 mm			4	motor	2 652 520	2 650 500
1	- Carbon Steel dia. 12 SCH.40 X 331,2 mm				meter	2.000.020	2.000.020
1	 Carbon Steel dia. 12" SCH.40 x 3740,4 mm 			3,740	meter	2.658.528	9.943.958
	 Carbon Steel dia. 12" SCH.40 x 854,4 mm 			1	meter	2.658.528	2.658.528
	 Carbon Steel dia 10° SCH 40 x 2252 4 mm 			2 252	meter	2 197 080	4 948 703
	Carbon Otosi dia: 10° COLL40 v 1727 C mm			1 720		2.107.000	2.047.040
	- Carbon Steer dia. 10 SCH.40 X 1757,6 mm			1,730	meter	2.197.000	3.017.040
	 Carbon Steel dia. 10" SCH.40 x 138 mm 			1	meter	2.197.080	2.197.080
	 Carbon Steel dia. 10" SCH.40 x 225,6 mm 			1	meter	2.197.080	2.197.080
	 Carbon Steel dia 10" SCH 40 x 8977 2 mm 			8 977	meter	2 197 080	19 723 627
	Carbon Shael dia 10° SCH 40 y 1172 C mm			1 174		0 107 090	0.579.402
	- Carbon Steer dia. 10 SCH.40 X 1175,6 mm			1,174	meter	2.137.000	2.5/0.433
	- Carbon Steel dia. 10" SCH.40 x 9300 mm			9,300	meter	2.197.080	20.432.844
	 Carbon Steel dia. 10" SCH.40 x 4268,4 mm 			4,268	meter	2.197.080	9.378.016
	 Carbon Steel dia 10° SCH 40 x 6638 4 mm 			6 638	meter	2 197 080	14 585 096
	Carbon Stool, dia, 10° SCH 40 x 349.2 mm			1	motor	2 197 080	2 197 080
	- Calbon Steel dia. 10 SCH.40 X 545,2 mm				meter	2.137.000	2.137.000
	 Carbon Steel dia: 10" SCH.40 x 3057,6 mm 			3,058	meter	2.197.080	6./1/./92
	 Carbon Steel dia. 10" SCH.40 x 5770,8 mm 			5,771	meter	2.197.080	12.678.909
	 Carbon Steel dia, 10° SCH.40 x 2878.8 mm 			2.878	meter	2.197.080	6.323.196
	Carbon Steel dia 10° SCH 40 x 747.6 mm			1	motor	2 197 080	2 197 080
					meter	2.107.000	2.137.000
	 Carbon Steel dia: 10" SCH.40 x 2107,2 mm 			2,107	meter	2.197.080	4.629.687
	 Carbon Steel dia. 10° SCH.40 x 9841,2 mm 			9,841	meter	2.197.080	21.621.904
	 Carbon Steel dia: 3/4" SCH.40 x 3277.2 mm 			3.277	meter	222,768	730.055
	- Carbon Steel dia 3//* SCH /0 x 11886 mm			11,886	meter	222 768	2 647 820
	- Caldon Steel dia: 3/4 Sch.40 X Hodo min			11,000	meter	222.100	2.047.020
	 Elbow dia: 12" SCH: 40 			6	pcs	1.488.000	8.928.000
	 T Joint dia. 12" SCH. 40 			2	pcs	1.488.000	2.976.000
1	- Flange 12 K			74	pcs	890.000	65.860.000
1	- Bolt and Nut (12 K Flange)			1,776	DCS	10,000	17,760,000
<u> </u>	Don and that (12 to thange)				pea	10.000	0.000.000
	 Packing 3 mm (for 12 inch Flange) 			37	pcs	60.000	2.220.000
	 T Joint dia. 10" SCH. 40 			3	pcs	1.126.800	3.380.400
1	 Elbow dia, 10" SCH, 40 			6	DCS	1,126 800	6,760 800
1	- Elange 10 K			60	nce	788 000	47 220 000
1				00	pus	100.000	47.200.000
	 Bolt and Nut (10 K Flange) 			1.440	pcs	50.000	72.000.000
1	 Packing 3 mm (for 10 inch Flange) 			30	pcs	8.000	240.000
1	- Filter 12 mm			1	DCS	1,653,960	1.653 960
1	- Filter 10 mm			2	nce	1 38/ 220	2 769 640
1	- Interiorini			4	pus	1.304.320	2.100.040
	 Flange 3/4 inch 			8	pcs	113.000	904.000
	 Bolt and Nut (3/4 inch Flange) 			48	pcs	5.000	240.000
	- Packing 3 mm (for 3/4 inch Flance)			4	DCS	11 250	45 000
	(II Mate falls are see file for some)			+	P03		40.000
	(all inaterials are provided by owner)						
2.3	Piping Installment at Upper Deck						
1	 Carbon Steel dia. 12" SCH.40 x 3747.6 mm 			3,748	meter	2.658.528	9.963.100
	Carbon Steel dia 12" SCH 40 x 226 8 mm			1	meter	2 658 528	2 658 528
1	Ourbon Groot and 12 GOT 40 A 220,0 mm				motor .	2.000.020	2.000.020
	 Carbon Steel dia: 12 SCH.40 x 896,4 mm 			1	meter	2.658.528	2.658.528
	 Carbon Steel dia. 12" SCH.40 x 1054,8 mm 			1,054	meter	2.658.528	2.802.089
	- Carbon Steel dia, 12" SGH.40 x 1017.6 mm			1,918	meter	2.658.528	2,705.318
	Carbon Steel dia 12" SCH 40 v 072 2 mm			4	motor	2 659 529	2 650 500
	- Caruon Steer dia. 12 SCH.40 X 973,2 mm				meter	2.000.020	2.000.020
1	 Carbon Steel dia. 12" SCH.40 x 224,4 mm 			1	meter	2.658.528	2.658.528
1	Carbon Steel dia: 12" SCH.40 x 441.6 mm			1	meter	2.658.528	2.658.528
	Carbon Steel dia 12" SCH 40 x 895.2 mm			1	meter	2 658 528	2 658 528
	- Garbon Green dia. 12. GOT 40 X 033,2 IIIII			1.005	meter	2.030.020	2.030.020
	 Carbon Steel dia. 12" SCH.40 x 4234,8 mm 			4,235	meter	2.658.528	11.258.334
	 Carbon Steel dia. 10" SCH.40 x 3757,2 mm 			3,757	meter	2.197.080	8.254.869
	 Carbon Steel dia, 10" SCH 40 x 1248 mm 			1,278	meter	2,197,080	2,807 868
	Carbon Steel dia 10° COLL40 - 505 0			1,210	motor	2 107 000	2 107 000
	 Carbon Steel dia. 10 SCH.40 x 565,2 mm 			1	meter	2.197.080	2.197.080
1	 Carbon Steel dia, 10" SCH.40 x 1089.6 mm 			1.090	meter	1 2.197.080	2.393.938

	 Carbon Steel dia. 10° SCH.40 x 3886.8 mm Carbon Steel dia. 0.4° SCH.40 x 306 mm Carbon Steel dia. 0.4° SCH.40 x 969.6 mm Carbon Steel dia. 0.4° SCH.40 x 1083.6 mm Carbon Steel dia. 0.4° SCH.40 x 536.4 mm Elbow dia. 12° SCH.40 T Joint dia. 12° SCH.40 Flange 12 K Packing 3 mm (for 10 inch Flange) Elbow dia. 0.4° SCH.40 Flange 10 K Packing 3 mm (for 10 inch Flange) Elbow dia. 0.4° SCH.40 Flange 10 K Packing 3 mm (for 0.4 inch Flange) Bolt and Nut (0.4° Flange) Bolt and Nut (0.4° Flange) 								3,887 1 1,04 2 3 46 23 1.104 3 40 20 960 2 16 8 128	meter meter meter pcs pcs pcs pcs pcs pcs pcs pcs pcs pcs	2.197.080 283.560 283.560 283.560 283.560 283.560 1.488.000 890.000 60.000 1.488.000 1.126.800 788.000 8.000 8.000 8.000 6.000 5.000 5.000	8.539.611 283.560 283.560 293.560 2.976.000 4.464.000 4.040.000 1.380.000 11.040.000 3.380.400 3.380.400 3.380.400 7.680.000 7.680.000 4.8.000 6.40.000			
3		Replati a.	ng Exhaust Gas ma	in deck											
		u .	NO. Desc	cription	DIM	ENSION (mr	n)	QTY	REM	ARKS					
				•	Length	Breadth	thk								
			1 - Plate		6873,6	8180,4	6	1				2.648	kg	34.200	90.574.471
			Plate si	de cover	3094,8	8180,4	6	2				2.385	kg	34.200	81.561.300
			Plate Co	over top	4182	3094,8	6	1				610	kg	34.200	20.847.963
			side Co	ver (p)	4182	5937,6	6	1				1.170	kg	34.200	39.998.341
			Sideboa	-rame rd Stiffener	10371.6	211.2	6	10	-			1 960	kg kg	34.200	28.096.396
				iu ounener	10071,0			1.10				1.500	Ng	47.000	33.031.331
4	1.	Paintin	g (Primary Coat)												
		No	Description	Length (m)	Breadth (m)	Area (m2)	Paint (litre)	Layer	Qty.					
L	_	1	Plate side cover	3,095	8,180	25,317	6,	329	1	2		13	Litre		
		2	Plate cover top	4,182	3,0948	12,942	3,	236	1	1		3	Litre		
		3	Side Cover (p)	4,182	5,9376	24,831	6,	208	Pade /			20	Litre	45.000	000.000
		Dofe	rence Price: jualcatkar	al (Cat Marak	Sinma (Pn. 90)	0.000/20 liter)			i age (<i>.</i>		20	Litre	45.000	900.000
			i i i i i i i i i i i i i i i i i i i		o.g										
	2.	Painting	(Finish Coat)												
		No	Description	Length (m)	Breadth (m)	Area (m2)	Paint (litre)	Layer	Qty.					
		1	Plate side cover	3,095	8,180	25,317	6,	329	1	2		13	Litre		
		2	Side Cover (p)	4,102	5,0340	24 831	5,	208	1	1		6	Litro		
			(bide obter (p)	4,102	0,0010	24,001		200				20	Litre	45.000	900.000
-		Conne													
9		in this c	ase we use dock	Goliath Cror	no with est of	4 hours						24	Hours	21 479 000	515 496 000
		ar tina t	use, we use dock	Conaut of al	ie mui eat. z							24	rioura	21.475.000	515.450.000
6		Scrubb	er Tower Installm	nent								1	set	75.000.000	75.000.000
		Installm	ent included Erecti	on and Sett	ing										
								_							
								-							
Says : Thre	e l	billion N	inety six million f	our hundre	ed twelve th	ousand six I	nundred	d fifteen	Rupiah				тоти	NL	3.096.412.615

Note: In Dollars: One Hundred Ninety Eight Thousand Nine hundred Ninety eight Dollars and Twenty Four Cent (\$ 198998,24)

n. costs based on IPERINDO 2019

A. PELAYANAN UMUM

PELAYANAN UMUM		1.2
1	D-	Thn 2019
Periksa bebas gas per tangki	Kp.	577,000
2 Pembuangan sampah kapal per hari	Rp.	241,000
3 Pemadam kebakaran		
3.1 Penjaga kebakaran/orang/hari	Rp.	198,000
3.2 Sambung & lepas 1x pelaksanaan	Rp.	241,000
3.3 Sewa selang pemadam kebakaran/hari	Rp.	200,000
4 Pelayanan air :		
4.1 Air tawar dari tongkang	Rp.	98,600
4.2 Air tawar dari darat / kade	Rp.	83,300
4.3 Pasang/lepas slang/pipa air satu kali	Rp.	241,000
sambungan		
5 Pelayanan listrik :		
5.1 Disesuaikan dengan tarip PLN		
5.2 Penyambungan dan pelepasan kabel	Rp.	346,000
satu kali sambung dan lepas		
6 Penjagaan Keamanan		284 000
Selama kapal docking / floating	Kp.	384,000
7 Pelayanan Telephon lokal		
a. Sambung lepas kabel	Rp.	
b. Tarip telephon	Rp.	
8 Pelayanan Saluran Ventilasi		
a. Sambung saluran	Rp.	698,000
b. Tarip penggunaan(day/unit)	Rp.	262800
9 Perança/m3, pemasangan di :		
a. Luar ruangan	Rp.	31,200
b. Dalam ruangan	Rp.	50,400
c. Posisi tinggi	Rp.	64,800
10 Pelayanan Derek		
a. Derek apung (floating crane)		
1) Kapasitas s/d 50 ton/jam	Rp.	8,258,000
2) Kapasitas s/d 200 ton/jam	Rp.	21,479,000
3) Tidak termasuk biaya kapal tunda		
4) Penggunaan dihitung minimum 2 jam		
b. Mobile Crane		
1) Kapasitas 10 ton/jam	Rp.	328,000
2) Kapasitas 20 ton s/d 25 ton/jam	Rp.	644,000
3) Kapasitas 50 ton s/d 75 ton/jam	Rp.	1,817,000
4) Kapasitas 100 ton/jam	Rp.	2,724,000
Penggunaan dihitung minimum 8 jam (termas	uk mob/demo	ob)
11 Jasa TUNDA dan PANDU

1 Penundaan Kapal di daerah Perairan Galangan

NO	GRT KAPAL	Harga per Jam (Rp.)
1	s/d 500 GT	2,285,000
2	501 GT s/d 1500 GT	2,666,000
3	1501 GT s/d 3500 GT	3,428,000
4	3501 GT s/d 8000 GT	4,952,000
5	8001 GT s/d 14000 GT	7,237,000
6	14001 GT s/d 20000 GT	11,616,000
7	20001 GT s/d 30000 GT	16,379,000

Catatan :

Penggunaan minimum 2 jam

Penundaan kapal berbendera asing tarif diperhitungkan tersendiri

2 Pelayanan PANDU per gerakan di daerah Galangan

NO	GRT KAPAL	Harga per Jam (Rp.)
1	s/d 500 GT	353,000
2	501 GT s/d 1500 GT	476,000
3	Lebih dari 1000 GT	-
	dan setiap kelebihan s/d 500 GT	64,000

Tarif sewa / biaya dibedakan menurut jam hari

	Jam	07.30 - 16.30	16.30 - 22.30	22.30 - 07.30
Hari				
Senin s/d Jum'at		100%	150%	200%
Sabtu / Minggu Libur resmi		200%	250%	300%

catatan :

12

1 proses di intrnal galangan

2. Bila ada kepentingan dari sisi owner

3. Kapal sudah selesai

C	DAI	GUNA	N KAPAL			
C1	Pem	bersiha	n badan kapal :			
	1	Watan				
	2	Water	letting air tawar	Rp.	27,700	/M ²
	2	water	letting air laut	Rp.	10,000	/M ²
	3	Spot bi	asting	Rp.	82,300	/M ²
	4	rull Sa	ind blasting	Rp.	72,100	/M ²
	2	Sweep	blasting	Rp.	61,600	/M ²
	0	Scrapp	ing	Rp.	21,560	/M ²
	1	Wire b	rushing	Rp.	41,100	/M ²
	8	Ultraso	nic test	Rp.	30,900	/titik
	9	Ampla	shing	Rp.	45,200	/M ²
	10	Cuci ai	r tawar pada lambung	Rp.	15,990	/M ²
	11	Chippin	ng	Rp.	30,900	/M ²
	Cata	tan :				
	a.	Penger	jaan dengan lembur dihitung tersendiri			
	b.	Untuk	ultrasonic minimum 100 titik			
	c.	Gamba	r laporan bukaan kulit sebagai lampiran ultrasonic mak	simal 6	lembar.	
	h	Penami	hahan gambar langan hulegen to the too the			
	·	ultraco	nic			
	e	Pekeris	an di dalam mangan mania di 2000(Rp.	440,000	/lembar
	f	Area T	on Side ditember 109/ doi: to in tit			
	0	Intuk	pekeriaan blasting minimum la la 100 kg			
	h.	Dikena	kan nanambahan taria untuk			
	n.	h 1	Kondisi kanal sanast lata			
		h 2	Pembersihon donoon alounit 1			
		h 3	Kondisi oot ware manual 11			
		h 4	Korosi yang sangat porsh			
		h 5	Penetanan nangaantan SDC die 1 1 Coord 1 to 1			
	1	Dikena	kan tarin ekstre watuk			
		11	Pekeriaan dalam tanaki musi di asaay			
		12	Pelcarican badan baral l			
	i	Untuk	pekerioon blosting untul So - 2 5 11 1			
02	Pen	recatan	(cat owner supplied)			
	114	mbung	1 1 Dengeosten men lante			
	1. 1.	anoung	1.1 rengecatan per lapis	: Rp.	8,900	M ² / layer
	Cata	ton . I In	1.2 Pengecatan per Touch Up	: Rp.	15,600	M ² / layer touch up
	Lala	uan : Un	uk pengecalan dalam tangki menjadi 250%			

2 Tanda syarat dan garis air

GT		PAINTING OF DRAFT & PLIMSOL MARK	PAINTING OF WATER LINE	PAINTING OF SHIP NAME + REGISTER PORT
s/d -	300	791,600	1,243,800	452.000
301 -	500	1,130,600	1,696,000	565,000
501 -	1500	1,469,900	2,261,300	792,000
1501 -	2500	1,809,000	3,391,900	967 000
2501 -	3500	2,148,300	4,522,400	1 131 000
3501 -	5000	2,487,300	6,218,400	1,357,000
5001 - ke	atas	2,487,300	8,005,900	1,357,000
	_	+ 120 (GRT-5000)	+200 (GRT-5000)	+ 70 (GRT-5000)

Catatan : Tidak termasuk biaya peranca

B TARIP PENGEDOKAN

I TAME FENGEDUKA	11	1
------------------	----	---

		Assistensi	Docking &	Docking	Docking
GT		Naik & Turun	Undocking	Per Hari	Report
		Dock (Rp.	(Rp.)	(Rp.)	(Rp.)
s/d -	500	6,501,000	11,304,000	1,719,000	4,847,000
501 -	1500	7,267,000	14,534,000	2,202,000	4,847,000
1501 -	2500	8,882,000	17,764,000	2,686,000	4,847,000
2501 -	3500	10,497,000	22,607,000	3,389,000	8,073,000
3501 -	5000	12,112,000	29,067,000	4,360,000	8,073,000
5001 -	7000	13,723,000	38,754,000	5,815,000	8,073,000
7001 -	9000	15,340,000	48,442,000	7,267,000	8,073,000
9001 -	11000	17,764,000	61,361,000	9,204,000	8,073,000
11001 -	13000	20,184,000	74,279,000	11,143,000	8,073,000
13001 -	15000	22,607,000	90,428,000	13,564,000	8,073,000
15001 -	17000	25,031,000	106,575,000	15,986,000	11,304,000
17001 -	19000	27,380,000	125,952,000	18,892,000	16,149,000
	21		4		

Catatan :

a. Tarip ini berlaku naik / turun dock di dalam jam kerja normal pada hari kerja, di luar jam kerja normal akan dikenakan tarip sesuai butir 8

b. Pengedokan kurang dari 2 hari, dihitung dua hari.

c. Apabila selama docking perlu dilakukan penggeseran balok lunas, akan dikenakan biaya tambahan sebesar 100% dari tarip docking / undocking.

- d. Apabila diperlukan pengaturan khusus balok lunas atau fasilitas darat lainnya akan dikenakan biaya tambahan.
- e. Emergency docking dikenakan biaya ekstra.
- f. Kapal type khusus (KRI, Ferry Roro, TD, Yacht, Barge, Kapal Kerja) dihitung tersendiri
- g. Untuk kapal type khusus dikenakan index / dihitung tersendiri berdasarkan :
 - a. KRI, Ferry Roro, Yacht

= index tambahan min. 150% tarip

1,2

- b. Kapal dengan draft 4 Meter s/d 5 Meter, = index tambahan min. 200% tarip = index tambahan min. 500% tarip
- c. Kapal dengan draft 5 Meter s/d 6 Meter,
- h. Bongkar & pasang kembali Dock block dikenakan biaya : a.
 - Keel Block Rp. 650.000,-/buah
 - Side Block Rp. 520.000,-/buah
 - Bottom Share Rp. 650.000,-/buah

Catatan : Dock block khusus dikenakan tarip tersendiri

- i Docking Report diberikan maksimal 6 rangkap.
- j Air Bag dihitung tersendiri

b.

C.

k Biaya sandar 50 % dari docking perhari

C3 Penggantian baru plat baja/plat lurus

TEBAL PLAT	BIAYA DASAR
s/d 1/4" / 6 mm	Rp. 34,200 / Kg
8 mm s/d 12 mm	Rp. 32,600 / Kg
lebih besar 12 mm	Rp. 32,600 / Kg

Catatan :

1 a. Penggantian plat baja (mild steel) menurut jumlah :

-	50 kg =	200%
1 -	100 kg =	175%
1 -	500 kg =	150%
	1 -	1 - 500 kg =

Material dari galangan

- b. High Tensile Steel, Grade plate type D&E dikenakan tarip ekstra
- c. Doubling plate, tarip ditambah 75% dari tarip replating (minimal 10 kg/pieces)
- Plat dengan dimensi khusus (trapesium) dihitung berdasarkan dimensi terbesar.
- e. Berlaku untuk plat (marine use) dengan standar BKI
- f. Bila berat replate atau doubling kurang dari 50 kg, maka dihitung 50 kg
- g Asumsi harga plat di pasaran Rp. 10.000/ kg. Apabila terjadi perubahan dari asumsi tersebut tarip akan disesuaikan.
- h Apabila material plat disuplai oleh owner maka harga jasa sebesar 65% dari tarif.
- i Belum termasuk peranca
- j Belum termasuk test kekedapan

2 Penggantian plat menurut lokasi :

LOKASI	%
a Side shell	100
b Bottom	110
c. Keel plates	115
d. Deck plates	100
e. Tank tops	110
f. Engine room (side shell and deck)	150
g. Bulkhead	120
h. Fore and aft peak keel plate	140
1. Internals in DBT	250
i. Internals in room and casings	120
k. Mixed frame	140
I. Internal in aft and fore peak	140
m. Fore and aft stem (linggi haluan dan buritan)	200
n Bulbows Bow	300
o. Internal Engine room & propulsion system (bottom)	300

F SISTIM MINYAK

DIAN	METER	PIPA SCH 40 (Rp.)	PIPA SCH 80 · (Rp.)
s/d	1/2"	236,300	347,500
s/d	1"	309,400	455,000
s/d	2"	601,800	885,000
s/d	3"	858,500	1,262,500
s/d	4"	1,179,800	1,735,000
s/d	5"	1,487,500	2,187,500
s/d	6"	1,774,800	2,610,000
s/d	8"	2,383,400	3,505,000
s/d	10"	3,051,500	4,487,500
s/d	12"	3,692,400	5,430,000

F1 GANTI BARU PIPA LURUS PER METER

Catatan :

- a. Bongkar / pasang pipa sebagai penghalang 40% harga per meter.
- b. Bongkar / pasang pipa dan perbaikan 60% harga per meter.
- c. Panjang pipa kurang dari 1 meter dihitung jadi 1 meter.
- d. Pekerjaan pipa di dalam DBT 150% harga per meter.
 Pekerjaan pipa di dalam tangki 125% harga per meter.
- e. Pipa aluminium dihitung 11/2 kali pipa putih.
- g. Pipa tembaga dihitung 31/2 kali pipa putih.
- h. Pipa Cuni dihitung 41/2 kali pipa putih.
- i. Proses galvanish dihitung tersendiri.
- j. Untuk pipa diameter lebih dari 12", minimum dihitung 6 meter.
- k. Untuk pipa di engine room dan funnel menjadi 120%

Karena berlaku dibawah Jawa Timur (Font Merah)

FZ	Penggantian	Klem	Pipa
----	-------------	------	------

DIAM	ETER (INCH)	Per BUAH (Rp.)		
	s/d	1/2"	90,000		
0.55	s/d	1"	113,000		
1.1	s/d	2"	134,000		
2.1	s/d	3"	198,000		
3.1	s/d	4"	266,000		
4.1	s/d	6"	355,000		
6.1	s/d	8"	534,000		
8.1	s/d	10"	788,000		
10.1	s/d	12"	890,000		
d	iatas 12	2"	dihitung tersendiri		

F3 Penggantian Plendes

DIAM	ETER (INCH)	Per BUAH (Rp.)		
·	·s/d	1/2"	113,000		
0.55	s/d	1"	140,000		
1.1	s/d	2"	198,000		
2.1	s/d	3"	265,000		
3.1	s/d	4"	378,000		
4.1	s/d	5"	461,000		
5.1	s/d	6"	562,000		
6.1	s/d	8"	758,000		
8.1	s/d	10"	936,000		
10.1	s/d	12"	1,190,000		
d	liatas 12	2"	dihitung tersendiri		

Catatan :

- 1 Ukuran standard katup s/d 10K / 150 psi
- 2 Tekanan diatas 16K harga ditambah 100%
- 3 Material packing dan baut dihitung tersendiri

F4 Penggantian Elbow, Potongan-T

	HARGA Per BUAH				
DIAMETER (INCH)	Elbow Galvanish	Elbow Steel			
	(Rp.)	(Rp.)			
s/d 1/2"	86,000	139,000			
1"	95,000	155,000			
2"	152,000	202,000			
3"	212,000	286,000			
4"	324,000	467,000			
5"	377,000	545,000			
6"	429,000	621,000			
8"	515,000	746,000			
10"	647,000	939,000			
12"	857,000	1,240,000			
diatas 12"	dihitung tersendiri	dihitung tersendiri			

Catatan :

1 Untuk bahan Sch 40 ditambah 100%

F5 Bengkokan (Bending) per Bengkokan (Untuk Pekerjaan Pipa Putih)

DIAMETER (Inch)		Per BUAH (Rp.)		
	s/d 1/2"	83,000		
0.55	s/d 1"	126,000		
1.1	s/d 2"	179,000		
2.1	s/d 3"	306,000		
3.1	s/d 4"	380,000		
4.1	s/d 5"	436,000		
5.1	s/d 6"	494,000		
6.1	s/d 8"	722,000		
8.1	s/d 10"	1,520,000		
10.1	s/d 12"	1,777,000		
diatas 12"		dihitung tersendiri		

G. SISTIM AIR LAUT

Penggantian pipa, flendes, Elbow dan sebagainya lihat item F1 - F5

G1. Katup-katup air laut

a. Kran-kran laut

DIAMETER (INCH)			TNICLD	GLOBE VALVE	GATE VALVE	
			(INCH)	(BUAH) (Rp.)	(BUAH) (Rp.)	
		s/d	1"	385,000	876,000	
	1.1	s/d	2"	701,000	1,107,000	
	2.1	s/d	3"	876,000	1,313,000	
	3.1	s/d	4"	1,107,000	1,749,000	
	4.1	s/d	5"	1,547,000	2,189,000	
	5.1	s/d	6"	2,189,000	2,625,000	
	6.1	s/d	8"	2,625,000	3,062,000	
	8.1	s/d	10"	3,296,000	3,732,000	
	10.1	s/d	12"	3,938,000	4,374,000	
	12.1	s/d	14"	5,045,000	5,481,000	
	14.1	s/d	16"	6,123,000	6,560,000	

Catatan:

- 1 Buka pasang, dibersihkan, diperiksa dikonserver untuk pemeriksaan dicat meni, untuk pemeriksaan class dan dicoba sampai baik.
- 2 Pekerjaan dan test di bengkel biaya menjadi 200%.
- 3 Belum termasuk biaya bongkar pasang penghalang.
- 4 Lokasi pekerjaan di tangki, DBT menjadi 120%.
- 5 Pekerjaan Butterfly Valve menjadi 200% dari type Globe Valve.
- 6 Pekerjaan Angle Valve menjadi 300% dari type Globe Valve.
- 7 Penggantian material packing dan baut mur dihitung tersendiri.
- 8 Stop Valve dan jenis katup lainnya dihitung tersendiri.

p. Implementation Drawing

q. P&ID Drawing

r. 3d Drawing

s. General Arrangement of Ship

t. Carbon Steel Pipe List

 STEEL PIPE STANDARD (JIS & METRIC SIZE) ABBREVIATION SGP (KS D3507) :CARBON STEEL PIPE FOR ORDINARY PIPING. STPG(JIS G3454):CARBON STEEL PIPE FOR PRESSURE SERVICE. STS (JIS G3455):CARBON STEEL PIPE FOR HIGH PRESSURE SERVICE. STPY(JIS G3457):ELECTRIC ARC WELDED CARBON STEEL PIPE. 											
	 ERW S :ELECTRIC RESISTANCE WELDED SPECIAL CARBON STEEL PIPE. STET(JIS G3456):CARBON STEEL PIPE FOR HIGH TEMPERATURE SERVICE. 										
NOM.	OUT.		,		PIPE WALL	THICKNE	SS (MM)				
(A)	(mm)	_	7.9MM	# 40	9.5MM	9.5MM	# 80	12.7MM	12.7MM	# 160	16.0MM
10	17.3	2.35		2.3	FOR #	40	3.2	FOR #	80	_	FOR
15	21.7	2.65		2.8	PIPING	SYS.	3.7	PIPING	SYS.	4.7	#160
(20)	27.2	2.65		2.9			3.9			5.5	PIPING
25	34.0	3.25		3.4			4.5			6.4	SYSTEM
(32)	42.7	3.25		3.6			4.9			6.4	
40	48.6	3.25		3.7			5.1			7.1	
50	60.5	3.65		3.9			5.5			8.7	
65	76.3	4.0		5.2			7.0			9.5	
80	89.1	4.05		5.5			7.6			11.1	
100	114.3	4.5		6.0			8.6			13.5	
125	139.8	4.85		6.6			9.5			15.9	
150	165.2	4.85		7.1			11.0				16.0
200	216.3	5.85		8.2			12.7				16.0
250	267.4	6.4		9.3				12.7			16.0
300	318.5	7.0			9.5			12.7			16.0
350	355.6	7.6			9.5			12.7			16.0
400	406.4	7.9			9.5			12.7			16.0
450	457.2	7.9			9.5			12.7			16.0
500	508.0	7.9			9.5			12.7			16.0
550	558.8	7.9			9.5			12.7			16.0
600	609.6	7.9			9.5			12.7			16.0
650	660.4		7,9			9.5			12.7		
700	711.2		7.9			9.5			12.7		
750	762.0		7.9			9.5			12.7		
800	812.8		7.9			9.5			12.7		
850	863.6		7.9			9.5			12.7		

u. Trip Information

MT Senipah				
Route Wayame - Cilacap - Gresik - Cilacap - Tanjung Pri				
Total Range (km)	5236			
Total Range (Nm)	2858,079			
Vs (knot)	12			
Time (hr)	238,1732			
Time (day)	10			
Days/year	340			
Trips	34			

u. Heat and Balance Diagram

This page intentionally left blank

WRITER BIODATA

Oscar Alfinza Fadiwi or Oscar is a first son of two brothers. Born in Surabaya, 20 September 1997. This writer is located at Pondok Tjandra Indah, Kecamatan Waru, Kabupaten Sidoarjo, East Java. Education background that taken by the authors is at Permata Hati Kindergarten School, SDN Wadungasri 1 Waru, Sidoarjo graduated at 2010. SMP Al-Hikmah Kebonsari Elveka, Surabaya, Graduated at 2013. And SMA Al-Hikmah Kebonsari Elveka, Surabaya, Graduated at 2016. This author also had an experience at First On The Job Training at PT. Industri Kapal Indonesia, Makassar and Second On The Job Training at PT. Pelabuhan Indonesia IV (First Class), Makassar. In other side, the author also join student activity units at Ju-Jitsu and Robotics at 2016 to 2017. This writer also

join Ini Lho ITS as committee from SMA Al Hikmah Surabaya at 2016. Members of Students Association of Marine Engineering at 2017 until now. This writer also joins 3 Marine Company Visits (MCV) at Bali and Jakarta. And join the seminar named "Optimis Saja" at the first week of 7th semester. Also, this writer also a member of Marine Electrical and Automation System (MEAS), Marine Power Plant (MPP), and Marine Fluid Machinery and System (MMS) as Thesis Member. And also, the writer also contribute at at PLC Training as Committee, International Workshop on Alternative fuels for Marine Diesel Engine and Propulsion System as Committee. AutoCad Training, Character Building by Student Organization, if you want further discussion about this paper and this author, this writer can be emailed via <u>oscaralfinzaf@gmail.com</u>