Regresi Cox Proportional Hazard untuk Analisis Survival Pasien Kanker Otak di C-Tech Labs Edwar Technology Tangerang

Pertiwi, Izdiharti Noni (2020) Regresi Cox Proportional Hazard untuk Analisis Survival Pasien Kanker Otak di C-Tech Labs Edwar Technology Tangerang. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img] Text
06211640000093-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (1MB) | Request a copy

Abstract

Kanker otak adalah pertumbuhan sel-sel otak yang tidak terkendali yang terjadi di otak. Di Indonesia kanker otak merupakan salah satu kanker terbanyak pada anak. Meskipun demikian, tumor ini dapat terjadi pada umur berapapun. Risiko kanker otak meningkat seiring dengan bertambahnya usia. Berbagai treatment dilakukan sebagai usaha untuk memperpanjang ketahanan hidup pasien kanker otak, seperti operasi, kemoterapi, radioterapi, pengobatan herbal, dan ECCT. ECCT merupakan metode untuk mengobati kanker menggunakan sumber gelombang elektrostatis intensitas rendah (<30Vpp) dan frekuensi rendah (<100KHz) yang dipasang pada pakaian yang dipakai setiap hari oleh pasien. Pasien disarankan melakukan konsultasi untuk memeriksa kinerja alat dan perkembangan penyebaran sel kanker. Penelitian ini bertujuan untuk mendapatkan faktor yang mempengaruhi model survival pasien kanker otak berdasarkan faktor treatment dan faktor resiko seperti usia dan jenis kelamin. Model regresi Cox PH digunakan karena semua variabel telah memenuhi asumsi PH. Data yang digunakan yaitu pasien yang melakukan konsultasi lebih dari 6 bulan. Berdasarkan pemodelan dengan menggunakan regresi Cox PH menghasilkan variabel yang berpengaruh terhadap waktu survival pasien kanker otak yaitu frekuensi konsultasi dan radioterapi. Didapatkan bahwa setiap bertambahnya 1 kali konsultasi resiko untuk mengalami kematian semakin turun sebesar 1,15 kali dan pasien kanker otak yang memiliki riwayat radioterapi memiliki resiko untuk meninggal 3 kali lebih besar daripada pasien yang tidak memiliki riwayat. ================================================================================================================== Brain cancer is an uncontrolled growth of brain cells in the brain. In Indonesia brain cancer is one of the most cancers in children. However, this tumor can occur at any age. The risk of brain cancer increases with age. Various treatments were carried out as an effort to extend the survival of brain cancer patients, such as surgery, chemotherapy, radiotherapy, herbal treatments, and ECCT. ECCT is a method for treating cancer using a source of low-intensity (<30Vpp) and low-frequency (<100KHz) electrostatic waves that is attached to clothing worn every day by patients. Patients were advised to consult to check the performance of the tool and the development of the spread of cancer cells. This study goals are to obtain factors that influence the survival model of brain cancer patients based on treatment factors and risk factors such as age and gender. The Cox PH regression model was used because all the variables had fulfilled the PH assumptions. The data used are patients who have been consulting for more than 6 months. Based on modeling using Cox PH regression produces variables that affect the survival time of brain cancer patients, namely frequency of consultation and radiotherapy. It was found that each increase of 1 consultation time the risk of death decreased by 1.15 times and brain cancer patients who have a history of radiotherapy have a risk of dying 3 times greater than patients who have no history.

Item Type: Thesis (Undergraduate)
Additional Information: RSSt 519.546 Per r-1 • Pertiwi, Izdiharti Noni
Uncontrolled Keywords: Analisis Survival, Kanker Otak, Regresi Cox Proportional Hazard. ========================================================================================================================== Survival Analysis, Brain Cancer, Cox Proportional Hazard Regression.
Subjects: H Social Sciences > HA Statistics > HA31.3 Regression. Correlation
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis
Depositing User: Izdiharti Noni Pertiwi
Date Deposited: 27 Aug 2020 08:21
Last Modified: 07 Oct 2020 00:42
URI: https://repository.its.ac.id/id/eprint/81481

Actions (login required)

View Item View Item