

TUGAS AKHIR - RF184838

IDENTIFIKASI STRUKTUR BAWAH PERMUKAAN MENGGUNAKAN METODE GAYA BERAT DENGAN INVERSI SINGULAR VALUE DECOMPOSITION DAN INVERSI OCCAM DI AREA KARST PACITAN

ACHMAD DWI CAHYA NRP. 03411640000060

DOSEN PEMBIMBING I : Dr. Ayi Syaeful Bahri, S.Si, M.T NIP. 19690906 199702 1 001

DOSEN PEMBIMBING II : Juan Pandu G.N.R, S.Si, M.T NIP. 19890612 201504 1 003

DEPARTEMEN TEKNIK GEOFISIKA FAKULTAS TEKNIK SIPIL, PERENCANAAN, DAN KEBUMIAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2020

TUGAS AKHIR - RF184838

IDENTIFIKASI STRUKTUR BAWAH PERMUKAAN MENGGUNAKAN METODE GAYA BERAT DENGAN INVERSI SINGULAR VALUE DECOMPOSITION DAN INVERSI OCCAM DI AREA KARST PACITAN

ACHMAD DWI CAHYA NRP. 03411640000060

DOSEN PEMBIMBING I : Dr. Ayi Syaeful Bahri, S.Si, M.T NIP. 19690906 199702 1 001

DOSEN PEMBIMBING II : Juan Pandu G.N.R, S.Si, M.T NIP. 19890612 201504 1 003

DEPARTEMEN TEKNIK GEOFISIKA FAKULTAS TEKNIK SIPIL, PERENCANAAN, DAN KEBUMIAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2020 Halaman ini sengaja dikosongkan

IDENTIFICATION OF SUB SURFACE STRUCTURE USING THE GRAVITY METHOD WITH INVERSION OF SINGULAR VALUE DECOMPOSITION AND OCCAM INVERSION IN THE KARST AREA PACITAN

ACHMAD DWI CAHYA NRP. 03411640000060

ADVISOR I : Dr. Ayi Syaeful Bahri, S.Si, M.T NIP. 19690906 199702 1 001

ADVISOR II : Juan Pandu G.N.R, S.Si, M.T NIP. 19890612 201504 1 003

GEOPHYSICAL ENGINEERING DEPARTMENT FACULTY OF CIVIL, PLANNING, AND GEOENGINEERING SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY SURABAYA 2020 Halaman ini sengaja dikosongkan

HALAMAN PENGESAHAN

Tugas akhir ini diajukan oleh Nama NRP Departemen Judul Tugas Akhir

1

2.

3.

: Achmad Dwi Cahya

: 0341 16 40000 060

: Teknik Geofisika

: Identifikasi Struktur Bawah Permukaan Menggunakan Metode Gaya Berat Dengan Inversi *Singular Value Decomposition* Dan Inversi *Occam* Di Area Karst Pacitan

Telah berhasil dipertahankan di hadapan tim penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Departemen Teknik Geofisika, Fakultas Teknik Sipil, Perencanaan dan Kebumian, Institut Teknologi Sepuluh Nopember.

Surabaya, 30 Juli 2020

Dr. Avi Svæful Bahri, S.Si, M.T 1) NIP 49690906 199702 1 001

Juan Pandu Gya Nur Rochman, S.Si, M.T 2) NIP. 19890612 201504 1 003

<u>Marivanto, S.Si., M.T</u> 1) NIP. 19911002 201711 0 004

Dr. Amien Widodo, Ir., MS 2) NIP. 19591010 198803 1 00 (Pembimbing

(Pembimbing

(Penguji

(Penguji

Menyetujui, Kapala Departemen Teknik Geofisika Fakulua, Teknik Sinit Perencanaan dan Kebumian Departemen, Teknik Geofisika-FTSPK Institut Teknalagi Sepuluh Nopember

DEPARTEMEN Dr. Dwa Desa Warnana, S.Si., M.Si NIP. 19760123 200003 1 001

Halaman ini sengaja dikosongkan

PERNYATAAN KEASLIAN TUGAS AKHIR

Dengan ini saya menyatakan bahwa isi sebagian maupun keseluruhan Tugas Akhir saya dengan judul "Identifikasi Struktur Bawah Permukaan Menggunakan Metode Gaya Berat Dengan Inversi *Singular Value Decomposition* Dan Inversi *Occam* Di Area Karst Pacitan" adalah benar-benar hasil karya intelektual mandiri, diselesaikan tanpa menggunakan bahan-bahan yang tidak diizinkan dan bukan merupakan karya pihak lain yang saya akui sebagai karya sendiri.

Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap pada daftar pustaka.

Apabila ternyata pernyataan ini tidak benar, saya bersedia menerima sanksi sesuai peraturan yang berlaku.

Surabaya, 30 Juli 2020

Achmad Dwi Cahya NRP. 03411640000060

Halaman ini sengaja dikosongkan

KATA PENGANTAR

Puji syukur kepada Tuhan Yang Maha Esa atas berkat dan kasih-Nya sehingga penulis dapat menyelesaikan Laporan Tugas Akhir yang berjudul "Identifikasi Struktur Bawah Permukaan Menggunakan Metode Gaya Berat Dengan Inversi *Singular Value Decomposition* dan Inversi *Occam* di Area Karst Pacitan" dengan baik. Pelaksanaan dan penyusunan Laporan Tugas Akhir ini tidak terlepas dari bantuan dan dukungan dari berbagai pihak, maka pada kesempatan ini penulis megucapkan terima kasih kepada:

- 1. Tuhan Yang Maha Esa yang telah memberi kelancaran dalam mengerjakan Tugas Akhir.
- 2. Kedua orang tua dan seorang kakak dari penulis yang telah memberikan dukungan secara motivasi, fasilitas dan doa.
- 3. Dr. Ayi Syaeful Bahri, M.T, Juan Pandu G.N.R, S.Si, M.T, dan Dr. Amien Widodo, Ir., MS selaku dosen yang telah membimbing penulis atas arahan, saran dan kritik yang membangun dalam pelaksanaan Tugas Akhir.
- 4. Para dosen dan tenaga Pendidikan Departemen Teknik Geofisika ITS atas bimbingan dan bantuan selama pengerjaan Tugas Akhir dan perkuliahan.
- 5. Seluruh Tim TA Pacitan 2020 yang telah bekerja sama dalam pengerjaan Tugas Akhir.
- 6. Silmi Afina Aliyan, Putry Vibry Hardyani, Hanif F. Falah yang telah membantu dan memberikan saran selama pengerjaan Tugas Akhir.
- 7. Teman-teman kontrakan Robert dan manusia warkuy yang menemani pengerjaan Tugas Akhir selama Pandemi COVID-19.
- 8. Teman-teman TG-05 atas semangat dan dukungannya selama perkuliahan.

Penulis menyadari dalam penyelesaian Tugas Akhir ini masih jauh dari kata sempurna. Oleh karena itu, kritik dan saran yang membangun sangat diharapkan sebagai pembelajaran penulis dan khalayak umum. Semoga tugas akhir ini membawa manfaat bagi penulis pribadi maupun bagi pembaca.

Surabaya, 30 Juli 2020

Penulis

Halaman ini sengaja dikosongkan

DAFTAR ISI

HALAMA	AN PENGESAHANi
PERNYA	TAAN KEASLIAN TUGAS AKHIRiii
KATA PE	NGANTAR
DAFTAR	GAMBARix
DAFTAR	TABELxi
ABSTRA	Kxiii
BAB I PE	NDAHULUAN1
1.1	Latar Belakang
1.2	Perumusan Masalah2
1.3	Tujuan2
1.4	Batasan masalah
1.5	Manfaat
BAB II TI	NJAUAN PUSTAKA3
2.1	Dasar Teori
2.1.	1. Geologi Regional3
2.1.2	2. Metode Geofisika7
2.2	Penelitian Terdahulu13
BAB III M	15 METODOLOGI
3.1	Lokasi dan Waktu Penelitian15
3.2	Data Penelitian
3.3 Alu	r Kerja
3.4	Tahapan Penelitian
BAB IV H	IASIL DAN PEMBAHASAN23
4.1 Esti	masi Densitas Batuan23
4.2 Pen	nisahan Anomali23
4.3 Prot	fil Anomali Residual24
4.4 Ana	lisis Spektrum

4.5 Hasil Inversi Penampang 2D	27
4.6 Korelasi Penampang 2D dengan Profil Anomali Bouguer	30
BAB V KESIMPULAN DAN SARAN	33
5.1 Kesimpulan	33
5.2 Saran	33
DAFTAR PUSTAKA	35
LAMPIRAN	38
BIOGRAFI PENULIS	42

DAFTAR GAMBAR

Gambar 2. 1 Pembagian Fisiografi Regional Jawa bagian Tengan dan Timur
(Van Bemmelen, 1949)
Gambar 2. 2 Peta Geologi Lembar Pacitan (Samodra dkk, 1990)4
Gambar 2. 3 Konsep gaya tarik – menarik antara dua benda (Hinze dkk., 2010)
Gambar 2. 4 Contoh profil anomali bouguer berdasarkan litologi dibawahnya
(Telford dkk., 1990)10
Gambar 2. 5 Nilai Densitas Batuan (Hinze dkk., 2010)11
Gambar 3. 1 Peta Desain Akuisisi Metode Gaya Berat di Bagian Barat Pacitan
Gambar 3. 2 Peta Desain Akuisisi Metode Gaya Berat di Bagian Barat Pacitan
Gambar 4. 1 Profil anomali residual dari arah barat ke timur
Gambar 4. 2 Profil anomali residual dari arah selatan ke utara
Gambar 4. 3 Plot In Amplitudo (In A) dengan bilangan gelombang (k) pada
a.lintasan selatan – utara dan b.barat - timur
Gambar 4. 4 Hasil inversi penampang 2D arah barat - timur
Gambar 4. 5 Hasil inversi penampang 2D arah barat - timur
Gambar 4. 7 Hasil inversi penampang 2D arah selatan - utara
Gambar 4. 9 Korelasi profil anomali bouguer dengan penampang densitas 2D
dari arah barat ke timur

Halaman ini sengaja dikosongkan

DAFTAR TABEL

Tabel 4.1 Rentang nilai densitas batuan daerah Pacitan (Tenzer dkk., 2011) 23

Halaman ini sengaja dikosongkan

Identifikasi Struktur Bawah Permukaan Menggunakan Metode Gaya Berat Dengan Inversi *Singular Value Decomposition* dan Inversi *Occam* di Area Karst Pacitan

Nama	: Achmad Dwi Cahya
NRP	: 03411640000060
Departemen	: Teknik Geofisika
Pembimbing I	: Dr. Ayi Syaeful Bahri, S.Si, M.T
Pembimbing II	: Juan Pandu G.N.R, S.Si, M.T

ABSTRAK

Kondisi geologi wilayah Pacitan umumnya berupa vulkanik dan karst. Satuan Karst menyebar di sepanjang pantai selatan, terutama disusun oleh batu gamping, yang setempat bersifat tufan. Permasalahan yang kompleks dan proses geologi yang beragam di daerah karst memerlukan metode geofisika yang khusus dalam penelitian. Salah satu metode yang dapat digunakan adalah metode gaya berat. Penggunaan metode ini cukup efektif karena dapat mendelineasi struktur bawah permukaan. Pemodelan inversi 2D akan menghasilkan model densitas dengan visualisasi dan resolusi kedalaman. Pemodelan inversi secara 2D ini dilakukan terhadap data anomali residual menggunakan perangkat lunak Grablox, yang menggabungkan 2 (dua) metode inversi yaitu Singular Value Decomposition dan inversi Occam. Kemudian model penampang densitas tersebut dianalisis berdasarkan informasi geologi untuk menghasilkan interpretasi model bawah permukaan yang lebih akurat. Dalam penelitian ini struktur geologi berupa sesar dapat terlihat pada lintasan barat - timur dengan koordinat X 506 - 507,5. Dan pada lintasan selatan – utara struktur geologi berupa sesar terlihat pada koordinat Y 9102 – 9103. Ketebalan karbonat pada lintasan barat – timur memiliki ketebalan 100 meter hingga 750 meter. Batuan karbonat semakin ke arah timur semakin masif. Sementara itu ketebalan karbonat pada lintasan selatan - utara memiliki ketebalan 600 meter hingga 750 meter.

Kata Kunci: Struktur Geologi, Singular Value Decomposition (SVD), Occam

Halaman ini sengaja dikosongkan

Identification Of Sub Surface Structure Using The Gravity Method With Inversion Of Singular Value Decomposition and Occam Inversion in The Karst Area Pacitan

Name	: Achmad Dwi Cahya
Student ID	: 03411640000060
Department	: Geophysical Engineering
Advisor I	: Dr. Ayi Syaeful Bahri, S.Si, M.T
Advisor II	: Juan Pandu G.N.R, S.Si, M.T

ABSTRACT

The geological conditions in the Pacitan region are mainly volcanic and karstic. Karst units spread along the south coast, mainly composed by limestone, which is locally tuff. Complex problems and diverse geological processes in karstic areas require special geophysical methods in research. One method that can be used is the gravity method. The use of this method is quite effective because it can delineate subsurface structures. 2D inversion modeling will produce density models with depth visualization and resolution. 2D inversion modeling is performed on residual anomaly data using Grablox software, which combines 2 (two) inversion methods, namely Singular Value Decomposition and Occam inversion. Then the density cross section model is analyzed based on geological information to produce a more accurate interpretation of subsurface models. In this study the geological structure in the form of a fault can be seen in the westeast path with coordinates X 506 - 507.5. And on the south - north path the geological structure in the form of a fault is seen at coordinates Y 9102 - 9103. The thickness of the carbonate on the west - east path has a thickness of 100 meters to 750 meters. Carbonate rocks are getting more and more eastward. Meanwhile carbonate thickness on the south-north line has a thickness of 600 meters to 750 meters

Keyword : Geologic Structure, Occam, Singular Value Decomposition (SVD),

Halaman ini sengaja dikosongkan

BAB I PENDAHULUAN

1.1 Latar Belakang

Daerah Pacitan dan sekitarnya secara regional merupakan zona peralihan antara jalur subduksi Zaman Kapur dengan Zaman Tersier, sehingga kemungkinan pola dan perkembangan struktur utamanya pada Paleogeon dan Neogen akan terpengaruh. Dari kenampakan citra landsat dan data pengukuran di lapangan, didapatkan bahwa daerah telitian struktur geologinya sangat komplek (Indrianti dkk., 2016). Kondisi geologi wilayah Pacitan umumnya berupa vulkanik dan karst. Satuan Karst menyebar di sepanjang pantai selatan, terutama disusun oleh batu gamping, yang setempat bersifat tufan (Van Bemmelen, 1949). Karst dikenal sebagai suatu kawasan yang unik dan dicirikan oleh topografi eksokarst seperti lembah karst, doline, uvala, polje, karren, kerucut karst dan berkembangnya sistem drainase bawah permukaan yang jauh lebih dominan dibandingkan dengan sistem aliran permukaannya (Haryono dan Adji, 2016). Permasalahan yang kompleks dan proses geologi yang beragam di daerah karst memerlukan metode geofisika yang khusus dalam penelitian. Salah satu metode yang dapat digunakan adalah metode gaya berat.

gaya berat adalah salah satu Metode metode geofisika dengan parameter fisis yang diukur adalah variasi medan gaya berat Bumi. Penggambaran struktur bawah permukaan menggunakan data anomali gaya berat Bouguer yang berkaitan dengan topografi dan anomali udara bebas (free air anomaly) yang di ukur di permukaan Bumi. Metode ini merupakan metode geofisika yang didasarkan pada pengukuran variasi medan gravitasi bumi. Kondisi bawah permukaan ini diturunkan dari anomali gaya berat Bouguer yang diamati di permukaan (Setianingsih dkk., 2013). Penggunaan metode ini cukup efektif karena dapat mendelineasi struktur bawah permukaan (Atef dkk., 2016) berupa zona patahan yang ditandai dengan kontras densitas rendah dengan batuan sekitarnya (Parapat dkk., 2017). Kelurusan anomali gaya berat dapat diinterpretasikan sebagai struktur geologi berupa sesar (fault) (Felix dkk., 2015).

Pemodelan geofisika bersifat tidak unik sehingga dapat menghasilkan beberapa model (Grandis, 2009). Pemodelan inversi adalah salah satu teknik pemodelan yang parameter modelnya diperoleh langsung dari data pengamatan (Banu dkk., 2018). Pemodelan inversi 2D akan menghasilkan model densitas dengan visualisasi (Banu dkk., 2018) dan resolusi kedalaman (Fedi dan Rapolla, 1999). Pemodelan inversi secara 2D ini dilakukan terhadap data anomali residual menggunakan perangkat lunak *Grablox* dari (Pirttijärvi, 2008) yang menggabungkan 2 (dua) metode inversi yaitu *Singular Value Decomposition* dan inversi Occam (Hjelt, 1992). Kemudian model penampang densitas tersebut dianalisis berdasarkan informasi geologi untuk menghasilkan interpretasi model bawah permukaan yang lebih akurat.

1.2 Perumusan Masalah

Adapun masalah yang dihadapi pada pelaksanaan Tugas Akhir ini antara lain yaitu :

- 1. Bagaimana struktur geologi bawah permukaan di area karst Pacitan
- 2. Bagaimana ketebalan karbonat di area karst Pacitan

1.3 Tujuan

Tujuan dari penelitian ini adalah sebagai berikut:

- 1. Identifikasi struktur geologi bawah permukaan menggunakan metode gaya berat dengan inversi singular value decomposition dan inversi occam di area karst Pacitan.
- 2. Menghitung ketebalan karbonat di area karst Pacitan

1.4 Batasan masalah

- 1. Analisis yang dilakukan berupa analisis profil anomali bouguer dan pemodelan inversi 2D struktur bawah permukaan dari anomali residual.
- 2. Metode inversi yang digunakan untuk mendapatkan nilai densitas pada permodelan adalah *Singular Value Decomposition* dan *Occam*

1.5 Manfaat

Manfaat dari penelitian ini adalah memperoleh gambaran bawah permukaan dan ketebalan karbonat area karst Kabupaten Pacitan dan hasil yang diperoleh dapat digunakan sebagai informasi bagi berbagai pihak dalam kajian pembangunan kawasan karst berkelanjutan.

BAB II TINJAUAN PUSTAKA

2.1 Dasar Teori

2.1.1. Geologi Regional

2.1.1.1. Fisiografi Regional

Secara umum Jawa Timur dibagi menjadi 4 (empat) zona jalur fisiografi, yaitu Zona Rembang di bagian Utara, kemudian ke bagian Selatan terdapat Zona Kendeng, kemudian Zona Solo dan di bagian paling Selatan adalah Zona Pegunungan Selatan (Van Bemmelen, 1949). Zona Pegunungan Selatan pada umumnya merupakan blok yang terangkat dan di Jawa Timur miring ke arah selatan. Daerah Pegunungan Selatan yang membujur mulai dari Yogyakarta kearah timur, Wonosari, Wonogiri, Pacitan menerus ke daerah Malang selatan, terus ke daerah Blambangan. Diantara Parangtritis dan (kapur) Pacitan merupakan tipe karst vang disebut Pegunungan Seribu atau Gunung Sewu, dengan luas kurang lebih 1400 km² (Lehmann, 1981). Kawasan karst Gunungsewu di hasilkan oleh pengangkatan yang dimulai pada Pleiosen Akhir.

Gambar 2. 1 Pembagian Fisiografi Regional Jawa bagian Tengan dan Timur (Van Bemmelen, 1949)

Kabupaten Pacitan secara geografis terletak pada posisi 110° 55' - 111° 25' Bujur Timur dan 7° 55' - 8° 17' Lintang Selatan dengan luas wilayah mencapai 1.342 km². Kabupaten Pacitan memiliki topografi datar hingga bergunung, dengan elevasi tertinggi 1.200m di atas permukaan air laut (Kecamatan Bandar, Gunung Gembes). Wilayah Kabupaten Pacitan dengan kondisi topografi bergunung terutama terletak di bagian utara DAS Grindulu, meliputi Kecamatan Nawangan, Bandar, Tegalombo dan sebagian Kecamatan Arjosari (Kabupaten Pacitan).Topografi berbukit mencakup wilayah bagian tengah sebagian Kecamatan Tegalombo, Arjosari dan wilayah barat di kecamatan Donorojo, Punung dan Pringkuku serta di wilayah timur Kecamatan Tulakan, Ngadirojo dan Sudimoro. Sedangkan daerah dengan topografi datar terdapat di sebagian sekitar Kota Pacitan, Arjosari dan Kebonagung.

Gambar 2. 2 Peta Geologi Lembar Pacitan (Samodra dkk, 1990)

Satuan perbukitan karst ini tersebar di bagian selatan, sekitar 25% dari luas Kabupaten Pacitan, meliputi hamper seluruh wilayah Kecamatan Donorojo, Punung bagian barat daya, Pringkuku bagian selatan, Pacitan sebelah barat dan tenggara, Kebonagung bagian utara, barat daya dan tenggara, Tulakan bagian utara dan selatan, Ngadirojo bagian selatan, Sudimoro bagian selatan. Daerah perbukitan tersebut mempunyai kemiringan 20 - 400, tersebar di daerah terra rosa (lempung yang berwarna coklat kemerahan) sebagai sisa hasil pelapukan batugamping.

2.1.1.2. Stratigrafi Regional

Stratigrafi di daerah penelitian yaitu di bagian barat Pacitan tersusun oleh Formasi Mandalika (Tomm), Formasi Arjosari (Toma), Formasi Jaten (Tmj), Formasi Wuni (Tmw), Formasi Nampol (Tmn), Formasi Oyo (Tmo), Formasi Wonosari (Tmwl), dan Formasi Kalipucang (Qpk).

2.1.1.2.1. Formasi Jaten (Tmj)

Formasi Jaten dapat ditemukan di sekitar kali Jaten – Donorojo, Pacitan (Sartono 1964), tersusun oleh konglomerat, batupasir kuarsa, batulempung (mengandung fosil Gastrophoda), Pelecypoda, Coral, Bryozoa, Foraminifera), dengan sisipan tipis lignit. Ketebalan satuan ini mencapai 20-150 m. Diendapkan pada lingkungan transisi – neritik tepi pada Kala Miosen Tengah (N9 – N10)

2.1.1.2.2. Formasi Wuni (Tmw)

Formasi Wuni dapat ditemukan di sekitar kali Wuni(anak Sungai S Basoka) – Punung, Pacitan (Sartono, 1964), tersusun oleh breksi, aglomerat, batupasir tufan, lanau, dan batugamping. Berdasarkan fauna koral satuan ini berumur Miosen Bawah (Te.5 – Tf.1), berdasarkan hadirnya Globorotalia siakensis, Globigerinoides trilobus & Globigerina praebuloides berumur Miosen Tengah (N9-N12) (Tim Lemigas). Ketebalan Formasi Wuni = 150 -200 m. Satuan ini terletak selaras menutupi Formasi Jaten, dan selaras di bawah Formasi Nampol

2.1.1.2.3. Formasi Nampol (Tmn)

Tersingkap baik di Kali Nampol, Kec Punung, Pacitan (Sartono, 1964), dengann susunan batuan sebagai berikut: bagian bawah terdiri dari konglomerat, batupasir tufan, dan bagian atas: terdiri dari perselingan batulanau, batupasir tufan, dan sisipan serpih karbonan dan lapisan lignit. Diendapkan pada Kala Miosen Awal (Hutterer dan Bartstra, 1982), (Berggren dkk., 1998) menghitungnya berumuri Miosen Awal – Miosen Tengah. Ketiga formasi (Jaten, Wuni, Nampol) berhubungan jarijemari dengan bagian bawah Formasi Punung.

2.1.1.2.4. Formasi Oyo (Tmo)

Lokasi tipe formasi ini berada di Kali Oyo. Batuan penyusun pada bagian bawah terdiri dari tuf dan napal tufan. Sedangkan ke atas secara berangsur didominasi oleh batugamping berlapis dengan sisipan batulempung karbonatan. Batugamping berlapis tersebut umumnya kalkarenit, namun terkadang dijumpai kalsirudit yang mengandung fragmen andesit membulat. Formasi Oyo tersebar luas di sepanjang Kali Oyo. Ketebalan formasi ini lebih dari 140 meter dan kedudukannya menindih secara tidak selaras di atas Formasi Semilir, Formasi Nglanggran dan Formasi Sambipitu serta menjemari dengan Formasi Oyo. (Samodra & Gafoer, 1990)

Formasi Oyo umumnya berlapis baik, sedangkan fosil yang dijumpai antara lain Cycloclypeus annulatus Martin, Lepidocyclina rutteni Vlerk, Lepidocyclina ferreroi Provale, Miogypsina polymorpha Rutten dan Miogypsina thecideaeformis Rutten yang menunjukkan umur Miosen Tengah hingga Miosen Akhir. Lingkungan pengendapannya pada laut dangkal (zona neritik) yang dipengaruhi kegiatan gunungapi

2.1.1.2.5. Formasi Wonosari (Tmwl)

Formasi Wonosari tersusun atas batugamping koral, batugamping lempungan, batugamping tufan, batu gamping pasiran, napal, batugamping, batugamping hitam bergambut dan kasidurit (Hamidi-Hashemi dan Shiva, 1992). Ketebalan formasi ini diduga lebih dari 800 meter. Kedudukan stratigrafinya di bagian bawah menyebar dengan Formasi Oyo, sedangkan di bagian atas menyebar dengan Formasi Kepek. Batugamping pada Formasi wonosari ditemukan fosil foraminifera besar berupa *Miogysina sp.* dan *Lapidocyclina sp.* Berumur Miosen Tengah hingga Miosen Akhir, dan terbentuk di lingkungan laut. (Samodra dkk, 1990)

2.1.1.3. Sejarah Geologi

Daerah penelitian merupakan daerah cekungan pengendapan Pegunungan Selatan yang mengalami pengangkatan dan berubah menjadi dangkalan pada akhir Miosen Awal atau permulaan Miosen Tengah. Setelahnya terjadi perubahan muka laut, dimana hal itu menyebabkan terjadinya proses genang laut, yang diikuti dengan pengendapan batuan Formasi Oyo. Kegiatan tektonik gunung api di daratan mempengaruhi sedimentasi (karbonat) yang sedang terjadi di lingkungan laut dangkal. Beragam jenis klastika asal daratan dan tuf masuk ke dalam cekungan, menghasilkan Formasi Oyo yang bersifat klastik. Di dasar paparan yang berbatasan dengan daratan yang mulai stabil terbentuk terumbu-terumbu koral Formasi Wonosari (Samodra, 2003) . Pada permulaan Miosen Akhir keadaan tektonik yang stabil berhasil menciptakan kondisi yang sangat memungkinkan bagi pertumbuhan dan perkembangan batugamping terumbu paparan Formasi Wonosari. Kegiatan tektonik yang aktif pada Miosen Akhir menghasilkan sesar-sesar turun sehingga kawasan menciptakan bentukan sembulan (horst) dan amblesan (graben). Daerah tinggian kemudian mengalami pengikisan, dan batuan rombakan yang dihasilkan diendapkan pada cekungan yang semakin dangkal. Kemudian terbentuk Formasi Kepek berumur Miosen Akhir-Pliosen Awal. Pada Pliosen cekungan terangkat ke permukaan laut, dibuktikan dengan tidak ada endapan yang berlingkungan laut. Pada saat seluruh kawasan Gunung Sewu terangkat di permukaan laut, gejala karstifikasi pun dimulai. Kekar dan sesar yang menyertai proses pengangkatan di Gunung Sewu merupakan bidang-bidang lemah yang mudah sekali mengalami pengikisan dan pelarutan. Air permukaan yang mengalir di sepanjang struktur geologi tersebut akan mengubah lembah sungai menjadi lebih dalam dan lebar. Beberapa mulut gua berukuran kecil yang tersingkap bersebelahan di beberapa bagian lereng lembah dan mempunyai ketinggian yang hampir sama, menunjukkan adanya gejala pemotongan sistem lorong bawah tanah oleh sesar. Lorong-lorong gua yang pernah aktif sebelum terjadi pengangkatan mempunyai arah hampir barat-timur (Samodra, 2003).

2.1.1.4. Sistem Geologi Karst

Karst merupakan istilah dalam Bahasa Jerman yang diturunkan dari bahasa Slovenia (kras) yang memiliki arti lahan gersang berbatu. Karst sebagai medan dengan kondisi hidrologi yang khas sebagai akibat dari batuan yang mudah larut dan mempunyai porositas sekunder yang berkembang baik (Ford dan Williams, 2013). Karst dicirikan sebagai berikut :

1. Terdapatnya cekungan tertutup dan atau lembah kering dalam berbagai ukuran dan bentuk.

2. Jarang ditemukan adanya drainase/sungai permukaan

3. Terdapatnya goa dari sistem drainase bawah tanah.

Area karst Pacitan termasuk dalam klasifikasi tropical karst. Tropical karst berbeda dengan karst di iklim sedang dan kutub terutama disebabkan oleh presipitasi dan evaporasi yang besar. Presipitasi yang yang besar menghasilkan aliran permukaan sesaat yang lebih besar, sedangkan evaporasi menhasilkan rekristalisasi larutan karbonat membentuk lapisan keras di permukaan. Hal ini menyebabkan dolin membulat seperti di iklim sedang jarang ditemukan digantikan oleh dolin berbentuk bintang yang tidak beraturan. Dolin tipe ini sering disebut kockpit. Di antara dolin ditemukan bukit-bukit yang tidak teratur disebut dengan bukit kerucut. Lebih rincinya area karst Pacitan termasuk dalam kategori kagelkarst. Kegelkarst dicirikan oleh kumpulan bukit-bukit berbentuk kerucut yang sambung menyambung. Sela antar bukit kerucut membentuk cekungan dengan bentuk seperti bintang yang dikenal dengan kockpit. Kockpit seringkali membentuk pola kelurusan sebagai akibat kontrol kekar atau sesar. Cekungan di area karst selain doline juga ada polje. polje merupakan bentuklahan karst yang mempunyai elemen: cekungan yang lebar, dasar yang rata, drainase karstik, bentuk memanjang yang sejajar dengan struktur lokal, dasar polje mempunyai lapisan batuan Tersier (Haryono dan Adji, 2016)

2.1.2. Metode Geofisika

2.1.2.1. Konsep Dasar Metode Gaya Berat

Metode gaya berat adalah metode eksplorasi geofisika berupa pengukuran medan gravitasi yang disebabkan oleh variasi densitas secara vertikal di bawah permukaan bumi (Hinze dkk., 2010). Metode ini merupakan salah satu hal penting dalam banyak masalah yang melibatkan pemetaan bawah permukaan bumi dan studi geologi. Metode gaya berat ini didasarkan atas sifat massa dari benda-benda di alam, dimana besarnya massa tersebut sangat menentukan besarnya gaya tarik-menarik diantara benda tersebut (Djujun,2005). Metode ini dapat digunakan di daerah prospek panas bumi karena sistem panas bumi tersusun dari komponen-komponen batuan yang masing-masing mempunyai kontras densitas berbeda dengan sekitarnya.

Teori paling mendasar dalam metode gaya berat adalah Hukum Newton tentang gaya tarik-menarik antara benda dengan massa tertentu seperti pada Gambar 2.8. Sesuai dengan Hukum I Newton, bahwa kedua benda tersebut akan saling tarik-menarik karena adanya fenomena gravitasi yang disebut medan gaya gravitasi yang besarnya dapat dinyatakan dengan persamaan (Hinze dkk., 2010):

$$F_g = G \frac{m_1 m_2}{r^2}$$
(2.1)

dimana F_g adalah gaya tarik-menarik (N), G adalah konstanta Gravitasi Universal (6,67 x 10^{-11} Nm²/kg²), m₁ dan m₂ adalah massa benda (kg), serta r adalah jarak antar pusat kedua buah benda (m).

Gambar 2. 3 Konsep gaya tarik - menarik antara dua benda (Hinze dkk., 2010)

Medan gravitasi bumi tidak dapat diukur secara independen dari suatu massa. Percepatan gravitasi dari sebuah massa yang jatuh sebagai respon medan gravitasi digunakan untuk menggambarkan gaya gravitasi (Hinze dkk., 2010). Oleh karena itu, Hukum II Newton dapat dikorelasikan dengan Hukum I Newton, sehingga dari persamaan (2.1) dapat dihasilkan persamaan (Hinze dkk., 2010):

$$F_g = m_1 a$$
 (2.2)

$$G \frac{m_1 m_2}{r^2} = m_1 . a$$
 (2.3)
 $G \frac{m_2}{r^2} = a$ (2.4)

 $G_{\frac{r^2}{r^2}} = a$ (2.4) dimana a adalah percepatan (m/s²) yang kemudian disebut sebagai percepatan gravitasi. Percepatan gravitasi a adalah besaran yang diukur dalam eksplorasi geofisika yang secara umum disimbolkan dengan g sehingga persamaan (2.4) dapat ditulis menjadi persamaan:

$$g = G \frac{m_2}{r^2} \tag{2.5}$$

Dapat dilihat bahwa besarnya percepatan gravitasi **g** berbanding lurus dengan massa m, yaitu perkalian antara massa jenis (densitas) ρ dengan volume benda, sehingga besarnya g yang terukur merupakan pencerminan dari densitas dan volume massa penyebabnya. Gaya gravitasi selalu positif karena semua

objek yang terlibat saling tarik-menarik antara satu sama lain, tetapi variasi gravitasi bisa saja negatif dalam eksplorasi geofisika sebagai akibat hasil dari massa yang lebih rendah dari massa normal sesuai dengan variasi densitas vertikal di dalam bumi (Hinze dkk., 2010).

Dalam kenyataannya bentuk bumi tidaklah bulat tetapi berbentuk elipsoid, sehingga besarnya percepatan gravitasi **g** yang terukur di setiap permukaannya berbeda-beda (Telford dkk., 1990). Variasi gaya berat tersebut dipengaruhi oleh 5 (lima) faktor yaitu posisi lintang, ketinggian, topografi, pasang surut, dan variasi densitas batuan di bawah permukaannya. Oleh karena itu, hasil pengukuran metode gaya berat di lapangan harus dikoreksi terlebih dahulu untuk mereduksi gangguan (dikenal dengan sebutan *noise*) yang ditimbulkan. Hasil pengukuran terkoreksi ini akan menghasilkan anomali percepatan gaya berat yang disebut dengan anomali Bouguer (Blakely, 1995), yang siap diolah dan diinterpretasi lebih lanjut untuk mendapatkan informasi bawah permukaannya.

2.1.2.2. Anomali Bouguer

Konsep anomali gaya berat (anomali Bouguer) adalah perbedaan nilai gaya berat terukur dengan nilai gaya berat acuan, yaitu nilai gaya berat teoritis untuk suatu model teoritis bumi (Blakely, 1995). Anomali Bouguer adalah selisih antara harga gravitasi pengamatan dengan harga gravitasi teoritis yang didefenisikan pada titik pengamatan tertentu (Hinze dkk., 2010). Perbedaan tersebut merefleksikan variasi rapat massa yang terdapat pada suatu daerah dengan daerah sekelilingnya ke arah lateral maupun vertikal. Sebagai contoh karena keterdapatan suatu material tertentu seperti batuan sumber panas di dalam kulit bumi. Tujuan akhir penerapan metoda gaya berat pada eksplorasi sumber daya alam maupun studi keilmuan adalah mendapatkan gambaran bawah permukaan berdasarkan variasi persebaran densitas (Hinze dkk., 2010).

Anomali Bouguer bisa bernilai positif ataupun negative (Hinze dkk., 2010). Nilai anomali positif mengindikasikan adanya kontras densitas yang lebih besar dari densitas rata-rata batuan di sekitarnya, sedangkan anomali negatif menggambarkan perbedaan densitas yang lebih kecil. Anomali ini ditimbulkan oleh keseluruhan massa yang ada di bawah permukaan atau dengan kata lain merupakan gabungan dari anomali regional dan anomali residual. Anomali regional yaitu anomali yang ditimbulkan oleh benda-benda yang letaknya jauh atau dalam, sedangkan anomali residual yaitu anomali yang disebabkan oleh benda-benda dangkal. Dalam proses pengolahan, kedua anomali ini perlu dipisahkan sehingga anomali yang kita harapkan bisa digunakan dalam pemodelan untuk mendapatkan gambaran kondisi bawah permukaan (Setianingsih dkk., 2013) sesuai dengan target penelitian yang dilakukan.

Gambar 2. 4 Contoh profil anomali bouguer berdasarkan litologi dibawahnya (Telford dkk., 1990)

2.1.2.3. Densitas Batuan

Dalam metoda gaya berat, distribusi parameter fisika yaitu densitas dari material di bawah permukaan bumi berasosiasi dengan kondisi dan struktur geologi di dalam bumi. Hal ini karena nilai percepatan gravitasi terukur di permukaan bumi yang bervariasi dipengaruhi oleh distribusi densitas material (batuan) yang berada di bawah permukaan bumi. Menurut (Hinze dkk., 2010), nilai densitas setiap batuan dapat dibedakan sesuai dengan jenisnya yang dapat dilihat pada Gambar 2.4. Dengan membandingkan persebaran densitas hasil pengolahan data anomali (dalam penelitian ini anomali residual) dengan nilai densitas referensi (Gambar 2.4), maka kita bisa menginterpretasikan batuan penyusun bawah.

Namun dari hasil pengolahan, data anomali Bouguer yang sama bisa menghasilkan kondisi bawah permukaan penyebab anomali yang berbeda disebut dengan ambiguitas (Grandis, 2009). Hal ini disebabkan karena nilai densitas batuan memiliki nilai rentang yang saling tumpang-tindih antara satu jenis dengan yang lainnya (lihat Gambar 2.4). Kondisi ini akan mempengaruhi keakuratan interpretasi hasil yang akan dilakukan. Oleh karena itu dalam proses interpretasi, nilai densitas yang dihasilkan perlu dikorelasikan dengan informasi geologi yang ada untuk mendapatkan hasil intepretasi yang lebih akurat.

Gambar 2. 5 Nilai Densitas Batuan (Hinze dkk., 2010)

2.1.2.4 Analisis Spektrum

Data anomali Bouguer yang diperoleh merupakan hasil superposisi dari komponen anomali dari berbagai kedalaman. Kedalaman anomali menjadi suatu persoalan yang sangat penting pada tahap interpretasi lebih lanjut untuk mengetahui posisi dan jangkauan kedalaman data yang dimiliki. Analisis spektrum merupakan sebuah metode yang dapat digunakan untuk membantu mengetahui estimasi kedalaman anomali pada sebaran frekuensi dari data anomali Bouguer (Rochman dkk., 2018)

Proses analisis spektrum biasanya dilakukan dalam satu dimensi, dimana anomali Bouguer yang terdistribusi pada penampang cross section 1D diekspansi dengan deret Fourier. Proses Transformasi Fourier dilakukan dengan tujuan mengubah data dari domain waktu atau spasial menjadi domain frekuensi atau bilangan gelombang. Dapat dilihat pada gambar 2.2 dengan menganalisis bilangan gelombang (k) dan amplitudo (A), kita dapat memperkirakan besar kedalaman estimasi anomali regional dan residual serta dapat menentukan lebar jendela filter dari perhitungan frekuensi cutoff dari analisis spektrum.

Gambar 2. 5 Analisis spektrum menggunakan nilai slope untuk mengetahui kedalaman anomali (Mandal dkk., 2017)

2.1.2.5 Pemodelan 2D

Teori inversi sebagai suatu kesatuan teknik antara metode matematika dan statistika untuk memperoleh informasi yang berguna mengenai suatu sistem fisika berdasarkan observasi terhadap sistem tersebut (Menke, 2012). Pemodelan inversi adalah salah satu teknik pemodelan dimana parameter modelnya diperoleh langsung dari data pengamatan (Banu dkk., 2018). Menurut (Grandis, 2009), pemodelan inversi sering pula disebut sebagai pencocokan data (data fitting) karena dalam prosesnya adalah mencari parameter model yang menghasilkan respon yang cocok dengan data pengamatan. Respon model dan data pengamatan diharapkan memiliki kesesuaian yang tinggi sehingga akan menghasilkan model yang optimum (Supriyadi dkk., 2017). Pemodelan inversi merupakan fokus kebanyakan atau hampir semua bidang geofisika karena kita dituntut untuk dapat memperkirakan model atau parameter model berdasarkan hasil pengamatan atau pengukuran data lapangan. Salah satu contoh pemodelan inversi yang diaplikasikan dalam penelitian ini adalah memperkirakan model struktur bawah permukaan dalam bentuk persebaran nilai densitas dari data pengukuran metode gaya berat.

Pemodelan struktur bawah permukaan ini dilakukan dengan teknik inversi dua dimensi (2D). Data gaya berat anomali residual menggunakan perangkat lunak *Grablox 1.6* dari (Pirttijärvi, 2008) sehingga menghasilkan model penampang densitas berbentuk 2D. model 2D yang dihasilkan bisa ditampilkan sebagai penampang 2D. Perangkat lunak *Grablox 1.6* ini menggabungkan dua metode inversi yaitu inversi *Singular Value Decomposition* (SVD) dan inversi Occam (Hjelt, 1992) yang diproses secara berurutan. Inversi *Singular Value Decomposition* adalah suatu teknik pemfaktoran matriks dengan menguraikan suatu matriks ke dalam dua matriks, sebagai contoh dari matriks A menjadi matriks U dan V. Secara matematis persamaannya (Parapat dkk., 2017) dapat ditulis sebagai:

 $\mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^{\mathrm{T}} \tag{2.6}$

dimana U adalah matriks ortogonal sebelah kiri, S adalah suatu matriks diagonal, dan V adalah matriks ortogonal sebelah kanan. Perhitungan inversi matriks menggunakan teknik SVD relatif lebih stabil. Dalam penerapan teknik SVD, nilai singulir yang lebih kecil dari harga tertentu dapat diabaikan atau dianggap sama dengan nol sehingga tidak diikutsertakan pada proses perhitungan solusi. Penerapan teknik SVD pada pemodelan inversi (khususnya pada perhitungan matriks) umumnya dapat menghasilkan solusi inversi yang cukup baik (Grandis, 2009).

Inversi Occam adalah suatu metode inversi yang memanfaatkan tingkat kekasaran (roughness) suatu model (Constable dkk, 1987) yang secara matematis dapat ditulis sebagai berikut:

$$\begin{split} U &= \|\delta m\|^2 + \mu^{-1} \left\{ \|Wd\text{-}WGm\|^2 - X^2 \right\} \end{split} \tag{2.7} \\ \text{Metode inversi Occam merupakan inversi untuk memaksimalkan kecocokan} \end{split}$$

antara hasil pengukuran dan data hasil perhitungan. Inversi Occam terdiri atas 3 bagian yakni occam d (occam density) untuk mengoptimalkan atau memaksimalkan nilai densitas blok sehingga model yang dihasilkan lebih halus, occam h (occam heights) untuk mengoptimalkan ketinggian blok atau kedalaman lapisan, dan occam h+d untuk mengoptimalkan nilai densitas dan ketinggian blok secara bersamaan untuk tiap lapisan.

2.2 Penelitian Terdahulu

Salah satu daerah karst yang menarik adalah Pegunungan Sewu, karena keberadaan sistem sungai bawah tanah yang dikembangkan di bawahnya. Sistem sungai bawah tanah Bribin di Gunung Kidul, Yogyakarta adalah salah satu bukti yang ditemukan oleh para peneliti sebelumnya. Di Kabupaten Pacitan ada pemandangan karst yang belum banyak diteliti. Wilayah karst Pacitan berada di bagian timur area karst Pegunungan Sewu. Seperti karakteristik wilayah karst secara umum, di wilayah karst Pacitan, ada bukit kecil, lubang vertikal, depresi tertutup, singkapan permukaan kasar dan runcing, stalaktit dan stalagmit, dan keberadaan sumber air berlumpur dan air. Wilayah karst Pacitan mirip dengan wilayah karst Gunung Kidul yang memiliki sistem sungai bawah tanah. Namun, pengembangan sistem sungai bawah tanah dari kedua wilayah ini dianggap berbeda. Ternyata sistem sungai bawah tanah khas yang dikembangkan di kawasan karst Pacitan, Jawa Timur berbeda dengan sistem sungai bawah tanah

yang dikembangkan di Gunung Kidul, Yogyakarta. Ini terlihat dari hasil penelitian yang dilakukan di kawasan karst Desa Dersono, Pacitan di mana sistem sungai bawah tanah berkembang dalam bentuk gua kosong sebanyak dua level dianalisis berdasarkan perbedaan anomali resistivitas rendah hingga tinggi pada kedalaman. sekitar 25 meter dan 40 meter. Dibandingkan dengan sistem pengembangan di Gunung Kidul, sistem sungai bawah tanah di Desa Dersono lebih dangkal dan diduga berada di Zona Vadose di mana pengembangan gua berlangsung di atas permukaan air dan dikendalikan oleh pergerakan air dari permukaan yang masuk melalui fraktur batu. Diasumsikan bahwa rekahan batuan di daerah karst Pacitan terbentuk karena kontrol struktural oleh Sesar Grindulu. Sedangkan pada sistem sungai bawah tanah di Bribin, Gunung Kidul, terbentuk pada ketinggian air tanah pada kedalaman relatif dalam 100 meter (Bahri dkk., 2019).

Wilayah Indonesia merupakan salah satu area yang memiliki tingkat kerentanan tertinggi terjadinya gempabumi. Tidak hanya gempabumi laut tetapi juga gempabumi darat yang diakibatkan aktifitas sesar di darat sangatlah berbahaya. Kini, sesar-sesar tersebut menjadi perhatian khusus gempabumi Jogja 2006 terjadi. Kejadian serupa pernah juga terjadi setelah pada bulan Februari 2011 dimana gempabumi terjadi di wilavah Pacitan dengan lokasi episenter di sekitar jalur sesar Grindulu. Oleh karena itu, diperlukan kajian khususnya pemodelan bawah suatu dan identifikasi pola dengan menggunakan software struktur sesar GRAV3D dan metode Second Vertical Derivative (SVD). Hasil penelitian memperlihatkan bahwa dua segmen sesar mengarah timur lautdaya yang memiliki pola sesar turun dengan sedikit oblique dan pola barat sesar transform. Selain itu, hasil kajian ini menunjukkan perbedaan nilai densitas pada area sesar yang memiliki variasi kedalaman sampai enam kilometer(Felix dkk., 2015).

BAB III METODOLOGI

3.1 Lokasi dan Waktu Penelitian

Pengambilan data dilakukan pada tanggal 6–9 Juli 2019 dengan jumlah 55 stasiun titik pengukuran di area karst Pacitan, Jawa Timur. Lintasan pengambilan data yaitu 18,5 km untuk selatan-utara dan 20.5 km untuk barat-timur, dengan spasi antar stasiun 500 m hingga 1 km meter. Peta Persebaran titik pengukuran dapat dilihat pada gambar 3.1. Pengerjaan pengolahan data dan interpretasi dilakukan di Institut Teknologi Sepuluh Nopember Surabaya.

Gambar 3. 1 Peta Desain Akuisisi Metode Gaya Berat di Bagian Barat Pacitan

Gambar 3. 2 Penampang geologi dari arah barat ke timur (B-T)

Gambar 3. 3 Penampang geologi dari arah selatan ke utara (S-U)

Pada gambar 3.2 dan gambar 3.3 merupakan penampang sayatan peta geologi di area penilitian. Garis sayatan sejajar dengan titik pengukuran yang dilakukan. Gambar 3.2 merupakan sayatan dari titik akuisisi 1 hingga titik akuisisi 29. Dan pada gambar 3.3 merupakan sayatan titik akuisisi 30 hingga titik akuisisi 55.

3.2 Data Penelitian

1. Nilai Percepatan Gravitasi

Nilai percepatan gravitasi yang didapatkan pada akuisisi data. Selain nilai percepatan gravitasi juga didapatkan waktu pengukuran, koreksi tidal, dan elevasi.

2. Peta Geologi

Peta geologi yang digunakan adalah Peta Geologi yang dibuat oleh Pusat Penelitian dan Pengembangan Geologi (PPPG) pada tahun 1998

3. Peta Digital Elevasi Model SRTM

Data DEM SRTM yang dipakai adalah SRTM 90m DEM versi 4. Data ini didapatkan secara bebas dari website sumber terbuka (open source) yaitu United States Geology Survey Explorer dengan alamat website yaitu *https://earthexplorer.usgs.gov/*

Peralatan dan perangkat lunak yang digunakan dalam penelitian Tugas Akhir ini antara lain:

-Perangkat Keras:

a.Gravimeter Scintrex CG-5
Nama Alat : Scintrex CG-5
Sensor : Fused Quartz using electrostatic nulling
Resolusi Bacaan : 1 mGal
Perusahaan : Scintrex Ltd
Manufaktur: Canada

b.Laptop
Operating System: Windows 10 Pro (64-bit)
Processor:10thGen.IntelCore i7-10510U @ 3.10 GHz
GPU : NVIDIA GeForce MX250
RAM: 8 GB

-Perangkat Lunak : a.Microsoft Office 365 b.Grablox 2.1 c.Bloxer 1.6 d.Adobe Illustrator 2020

3.3 Alur Kerja

Alur kerja pada penelitian ini digambarkan melalui diagram alir berikut:

Gambar 3. 4 Alur kerja penelitian tugas akhir

3.4 Tahapan Penelitian Koreksi Data

Dalam pengolahan data gayaberat diperlukan adanya koreksi untuk menghasilkan nilai anomali bouguer dari daerah penelitian, yaitu :

1. Menghitung Koreksi Pasang Surut (Tide Correction)

Benda di sekitar bumi (matahari dan bulan) turut menyumbang nilai dalam pengukuran gravitasi sehingga harus dikoreksi. Proses perhitungan nilai pasang surut menggunakan persamaan (6) dan proses perhitungan dilakukan oleh alat.

2. Menghitung Koreksi Apungan (Drift Correction)

Koreksi *drift* dilakukan karena kelelahan alat yang dibawa dari awal pengukuran ke titik-titik pengukuran di berbagai elevasi sehingga menyebabkan pegas tidak stabil dan harus dikalibrasi ulang. Proses perhitungan koreksi *drift* menggunakan persamaan (7).

3. Menghitung nilai G. Observasi

Gravitasi observasi merupakan nilai gravitasi yang diperoleh dari pengukuran dilapangan dengan kondisi yang sebenarnya pada tiap titiknya. Proses perhitungan nilai gravitasi observasi mengunakan persamaan (8).

4. Menghitung Koreksi Lintang (Latitude Correction)

G. Normal atau G. Lintang merupakan nilai gravitasi pada titik pengukuran secara teoritis dengan menganggap bumi berbentuk elipsoid. Nilai gravitasi teoritis berubah terhadap posisi lintang. Pendekatan terbaru perhitungan G. Lintang dengan menggunakan persamaan (9).

5. Menghitung Koreksi Udara Bebas (Free Air Correction)

Efek free air perlu dihitung karena proses pengukuran dilakukan di topografi bukan di datum (*Mean Sea Level*). Proses perhitungan koreksi udara bebas (Free Air Correction) menggunakan persamaan (13).

6. Menghitung Nilai Koreksi Bouguer (Bouguer Correction)

Pada koreksi *free air* membawa nilai gravitasi teoritis ke topografi. Koreksi Bouguer untuk menghitung efek massa yang ada antara datum (Mean Sea Level) dengan topografi. Perhitungan koreksi Bouguer menggunakan persamaan (15) dan didapatkan anomali Bouguer serta didapatkan anomali Bouguer.

7. Menghitung Koreksi Medan (Terrain Correction)

Lembah dan bukit di sekitar titik pengukuran turut menyumbang nilai pada pengukuran. Untuk menambahkan efek tersebut karena tadi di koreksi Bouguer kita menganggap massa yang ada dibawah permukaan berbentuk slab tak berhingga, maka koreksi *Terrain* ini dilakukan untuk menambahkan adanya efek bukit dan lembah. Proses perhitungan secara fisis menggunakan persamaan (16). Proses pencarian koreksi *Terrain* menggunakan *software* Geosoft Oasis Montaj dengan bekal peta DEM (*Digital Elevation Model*) daerah penelitian untuk menentukan jari - jari lokal dan regionalnya.

Filtering Moving Average

Proses ini dilakukan karena nilai anomali bouguer yang telah didapat masih tercampur antara anomali regional dan residual, oleh karena itu harus dilakukan pemisahan anomali terlebih dahulu, pada penelitian ini jenis filter yang digunakan untuk melakukan pemisahan adalah metode *Moving Average*. Target dari penelitian ini adalah dalam, maka target yang dicari dari metode ini adalah anomali regional. Pemisahan dengan metode *moving average* dilakukan dengan kalkulasi yang menghasilkan nilai anomali regional. Anomali regional adalah hasil perhitungan rata – rata anomali bouguer yang terdapat di lokasi penelitian. Nilai anomali regional dipengaruhi oleh nilai-nilai anomali dalam di lokasi penelitian. Anomali Residual dapat dihasilkan dengan mengurangkan anomali regional terhadap anomali bouguer.

Analisis Spektrum

Data Anomali Bouguer yang diperoleh merupakan hasil superposisi dari komponen anomali dari berbagai kedalaman. Kedalaman anomali menjadi suatu persoalan yang sangat penting pada tahap interpretasi lebih lanjut untuk mengetahui posisi dan jangkauan kedalaman data yang dimiliki. Proses analisis spektrum dilakukan dalam satu dimensi, anomali bouguer yang terdistribusi pada penampang *cross-section 1D* diekspansi dengan deret Fourier. Data dari domain waktu atau spasial diubah menjadi domain frekuensi atau bilangan gelombang, proses ini disebut Transformasi Fourier. Dengan menganalisis bilangan gelombang (k) dan amplitudo (A), kita dapat memperkirakan besar kedalaman estimasi anomali regional dan residual serta dapat menentukan lebar jendela *filter* dari perhitungan frekuensi *cut-off* dari analisis spektrum.

Singular Value Decomposition

Pada proses Inversi *Singular Value Decomposition* ada 2 tahap optimasi yang dilakukan, yaitu Optimasi *Base* (Dasar) yang bertujuan untuk mengoptimalkan nilai-nilai parameter dasar anomali dan Optimasi *Density* (Densitas) bertujuan untuk optimasi nilai densitas agar nilai densitas antara data pengukuran dan data perhitungan lebih mendekati atau cocok. Pada proses optimasi ini juga bergantung pada jumlah iterasi, jumlah blok yang dimasukan, semakin tinggi iterasi maka semakin kecil nilai *error* yang didapatkan, semakin banyak blok minor yang digunakan akan menghasilkan resolusi yang baik, akan tetapi juga mempengaruhi lama waktu optimasi.

Inversi Occam

Jika pada optimasi dengan SVD dihasilkan data densitas perhitungan (komputasi) dengan data pengukuran belum cocok, maka dilakukan optimasi Occam hingga kedua data tersebut hampir cocok atau cocok. Optimasi Occam *density* bertujuan untuk memperkecil perbedaan antara kedua data, sehingga didapatkan kecocokan antara keduanya. Proses optimasi ini akan membuat nilai *error* (antara data observasi dengan data hasil perhitungan) menjadi semakin kecil baik dari sisi nilai densitas maupun dimensinya. Nilai *error* (*rms*) minimum antara keduanya menunjukkan kesesuaian data, sehingga model densitas dari hasil tersebut dianggap sebagai model yang paling optimum

Halaman ini sengaja dikosongkan

BAB IV HASIL DAN PEMBAHASAN

4.1 Estimasi Densitas Batuan

Rentang nilai densitas diperlukan dalam penetuan model awal sebeleum dilakukannya permodelan dengan tahapan inversi. Rentang nilai berikut diambil berdasarkan uji sampel yang telah dilakukan oleh (Tenzer dkk., 2011) dan sudah diverifikasi oleh PETLAB database

No	Jenis Batuan	Range Density (p)
1	Batu Pasir / Sandstone	1.51 - 3.0
2	Batu Lanau / Siltstone	1.56 - 2.88
3	Batu Lempung / Claystone	1.52 - 2.42
4	Batu Gamping / Limestone	1.89 - 3.01
5	Tufan / <i>Tuff</i>	1.41 - 2.94
6	Napal / Marl	2,20 – 2,60
7	Lava / Lava	2.54 - 2.82
8	Breksi / Breccia	1.54 - 3.0
9	Lignit / Lignite	1.41 - 2.62
10	Konglomerat / Conglomerate	2.11 - 3.00

Tabel 4 1	Rentang nilai	densitas hatuan	daerah Pacitan	(Tenzer dkk –	2011)
1 aber 4. 1	Kentang innar	densitas Datuan	uaeran Facilian	(Telizei ukk., .	2011)

Berdasarkan Tabel 4.1, dapat dilihat bahwa rentang nilai densitas batuan yaitu berkisar antara 1,21 – 3,21 g/cm^3 . Nilai rentang densitas tersebut akan digunakan sebagai acuan dalam penentuan model awal dan juga interpretasi dari hasil pengolahan.

4.2 Pemisahan Anomali

Berdasarkan desain akuisisi yang ditampilkan pada gambar 3.1 perlu dilakukan metode griding yang tepat sesuai dengan persebaran data nya. Karena penentuan pemilihan metode griding akan mempengaruhi profil dari anomali bouguer lengkap. Pada penelitian kali ini menggunakan metode griding *Inverse*

Distance to a Power Method. Pemilihan metode tersebut dipertimbangkan berdasarkan persebaran data yang tidak terdistribusi normal. Dengan Inverse Distance to a Power, data antar titik memiliki pengaruh berdasarkan nilai power yang ditentukan. Semakin besar nilai power maka semakin kecil pengaruh data yang jauh, sehingga proses interpolasi hanya difokuskan berdasarkan data disekitarnya berdasarkan nilai power yang telah ditentukan (Kao dan Hung, 2004). Dalam menentukan nilai power penulis melakukan beberapa percobaan, yang pada akhirnya ditentukan power dengan orde 6 yang cocok dengan kondisi data dan kondisi lapangan daerah penelitian.

Setelah mendapatkan nilai persebaran anomali bouguer lengkap perlu dilakukan pemisahan antara regional dan residual. Anomali residual merupakan anomali lokal yang dipengaruhi oleh sumber-sumber anomali gravitasi yang berada pada posisi dangkal (Burger dkk., 2006). Dalam penelitian kali ini anomali residual digunakan sebagai data inputan saat melakukan pemodelan 2D dengan proses inversi. Hal ini dikarenakan anomali residual lebih baik dalam menggambarkan adanya anomali dangkal seperti sesar dan juga perbedaan litologi di area penilitian. Pemisahan anomali pada penelitian ini menggunakan metode moving average, metode ini dilakukan dengan merata ratakan nilai anomalinya dan akan menghasilkan anomali regional. Nilai anomali residual didapatkan dengan menggunakan metode tersebut akan didapatkan anomali yang jelas pada profil anomali bouguer ketika adanya sesar ataupun perbedaan litologi yang signifikan.

4.3 Profil Anomali Residual

Setelah melewati tahapan yang dijelaskan pada sub-bab 4.2, selanjutnya akan mendapatkan profil anomali bouguer seperti gambar 4.1 dan gambar 4.2. Profil anomali bouguer dipengaruhi oleh keadaan dibawah permukaan, baik berupa adanya sesar ataupun perbedaan litologi yang signifikan seperti contoh pada gambar 2.4. Terlihat pada gambar tersebut ketika adanya sesar akan terlihat pada profil anomali berupa perubahan grafik dengan kemiringan tertentu. Kemiringan tersebut terjadi bisa juga karena adanya perbedaan densitas yang signifikan. Hasil dari inversi penampang 2D adalah sebagai berikut :

Gambar 4. 1 Profil anomali residual dari arah barat ke timur

Pada gambar 4.1 yang merupakan profil anomali bouguer dari arah barat ke timur memiliki range nilai anomali dari -23 mGal hingga 9 mGal.

Gambar 4. 2 Profil anomali residual dari arah selatan ke utara

Sementara itu pada gambar 4.2 yang merupakan profil anomali bouguer dari arah selatan ke utara memiliki rentang nilai anomali dari -27 mGal hingga 13 mGal.

4.4 Analisis Spektrum

Proses ini yaitu mengetahui informasi kedalaman regional maupun residual pada daerah penelitian dengan menggunakan persamaan gradien hasil dari plot antara ln A dengan bilangan gelombang k yang menyatakan kedalaman. Dengan menganalisis bilangan gelombang (k) dan amplitudo (A), kita dapat memperkirakan besar kedalaman estimasi anomali regional dan residual. Dengan analisis spektrum dapat diketahui frekuensi dari data, sehingga kedalaman dari anomali gaya berat dapat diestimasi. Frekuensi rendah yang berasosiasi dengan panjang gelombang panjang mengindikasikan daerah regional yang mewakili struktur dalam dan luas. Sedangkan sebaliknya, frekuensi tinggi yang berasosiasi dengan panjang gelombang pendek mengindikasikan daerah residual (lokal) yang mewakili struktur dangkal.

Gambar 4. 3 Plot ln Amplitudo (ln A) dengan bilangan gelombang (k) pada a.lintasan selatan – utara dan b.barat - timur

Dari masing-masing grafik diperoleh dua gradient garis utama yang mencerminkan dua kedalaman, yaitu regional dan residual. Grafik yang memiliki

frekuensi rendah menggambarkan kedalaman yang lebih dalam (regional), sedangkan grafik dengan frekuensi tinggi mencerminkan kedalaman yang lebih dangkal (residual). Hasil dari analisis spektrum pada lintasan selatan – utara menunjukkan kedalaman anomali pertama adalah -2803.2 m yang diinterpretasikan sebagai kedalaman regional dan kedalaman anomali kedua adalah -242.83m kedalaman residual. Kemudian hasil dari analisis spektrum pada lintasan barat – timur menunjukkan kedalaman anomali pertama adalah -3193.1m yang diinterpretasikan sebagai kedalaman regional dan kedalaman anomali kedua anomali kedua adalah -396.5m kedalaman residual

4.5 Hasil Inversi Penampang 2D

Sebelum melakukan tahapan inversi perlu dilakukan pembuatan model awal. Model awal yang digunakan disesuaikan dengan daerah penelitian. Ukuran daerah penelitian yang akan dimodelkan adalah sekitar 20.5 km ke arah timur (sumbu X) dan 18 km ke arah utara (sumbu Y), sedangkan target kedalaman model adalah 3 km ke arah vertikal (sumbu Z). Kedalaman model dibatasi hanya 3 km saja karena berdasarkan analisis spektrum jangankauan kedalaman berdasarkan data hingga 3 km. Parameter X,Y, dan Z merupakan ukuran blok mayor (dX, dY, dan dZ). Untuk model awal, sumbu X dibagi menjadi 45 blok (nx), sumbu Y menjadi 45 blok (ny), dan sumbu Z menjadi 15 blok (nz) sehingga menghasilkan 30.375 blok minor penyusun blok mayor.

Proses inversi dengan teknik optimasi dilakukan untuk mendapatkan model dengan persebaran nilai densitas. Bebeberapa tahapan optimasi yang dilakukan pada pemodelan inversi ini yaitu optimasi Base, Density, dan Occam's d. Proses optimasi ini dilakukan menggunakan metode singular value decomposition (SVD) dan optimasi Occam's. Optimasi Base bertujuan untuk mengoptimalkan nilai-nilai parameter dasar anomali. Optimasi densitas bertujuan untuk mengoptimasi nilai densitas agar nilai densitas antara data pengukuran dan data perhitungan lebih mendekati atau cocok.. Occam's d bertujuan untuk mengoptimasi model dengan cara mengurangi nilai misfit dan tingkat kekasaran model. Jumlah blok minor dan iterasi sangat menentukan resolusi dan lamanya proses inversi. Dalam penelitian ini menggunakan 30.375 blok minor dan 5 iterasi. Hasil dari inversi memiliki error sebesar 5,9%. Hasil dari inversi penampang 2D adala sebagai berikut :

Gambar 4. 4 Hasil inversi penampang 2D arah barat - timur

Pada hasil inversi penampang 2D arah barat - timur dapat dilihat bahwa rentang nilai densitas sekitar 1,4 - 3,2 g/cm^3 . Berdasarkan referensi rentang nilai densitas pada table 4.1 batuan gamping (*limestone*) yang merupakan batuan karbonat memiliki rentang nilai densitas sebesar $1,89 - 3,01 \text{ g/cm}^3$. Pada area penelitian diketahui bahwa formasi yang memiliki ketebalan karbonat paling tebal berada pada formasi wonosari dengan ketebalan 750m (Surono, 2009).Formasi wonosari pada gambar 4.4 berada pada koordinat X 490 - 499. Berdasarkan penelitian yang dilakukan oleh (Rahmat dkk., 2018) rentang nilai densitas batu gamping (*limestone*) adalah $2.23 - 2.31g/cm^3$ sehingga rentang nilai tersebut yang menjadi acuan untuk analisa ketebalan karbonat karena nilai densitas tersebut lebih representatif karena menggunakan sampel di area penelitian yang sama dengan penelitian ini. Ketebalan karbonat berdasarkan gambar 4.4 memiliki rentang sekitar 100 meter hingga 750 meter. Ketebalan batuan karbonat di koordinat X 490 – 495 memiliki batuan karbonat yang lebih tebal dibanding koordinat X 496 – 499. Hal ini dikarenakan semakin ke arah timur proses karstifikasi semakin tidak berkembang dengan baik. Oleh karena itu semakin ke arah timur batuan lebih masif dan memiliki densitas yang lebih tinggi. Nilai densitas yang tinggi di tepi area penelitian pada kedalaman 1,5 km hingga 3 km merupakan hasil yang kurang valid karena disebabkan adanya efek tepi dari proses inversi. Pada koordinat tersebut merupakan ujung dari titik pengukuran sehingga hasil inversi nya menjadi kurang valid.

Gambar 4. 5 Hasil inversi penampang 2D arah selatan - utara

Pada hasil inversi penampang 2D arah selatan - utara dapat dilihat bahwa rentang nilai densitas sekitar 1,4 - 3,2 g/cm^3 . Berdasarkan referensi rentang nilai densitas pada table 4.1 batuan gamping (*limestone*) yang merupakan batuan karbonat memiliki rentang nilai densitas sebesar $1,89 - 3,01 \text{ g/cm}^3$. Pada area penelitian diketahui bahwa formasi yang memiliki ketebalan karbonat paling tebal berada pada formasi wonosari dengan ketebalan 750m (Surono, 2009). Formasi wonosari pada gambar 4.5 berada pada koordinat Y 9090 – 9095. Berdasarkan penelitian yang dilakukan oleh (Rahmat dkk., 2018) rentang nilai densitas batu gamping (*limestone*) adalah $2.23 - 2.31g/cm^3$ sehingga rentang nilai tersebut yang menjadi acuan untuk analisa ketebalan karbonat karena nilai densitas tersebut lebih representatif karena menggunakan sampel di area penelitian yang sama dengan penelitian ini. Ketebalan karbonat berdasarkan gambar 4.5 memiliki rentang sekitar 150 meter hingga 750 meter. Ketebalan batuan karbonat di koordinat Y 9090 - 9092,5 memiliki batuan karbonat yang lebih tebal dibanding koordinat X 9092,6 - 9095. Hal ini dikarenakan semakin ke arah utara proses karstifikasi semakin tidak berkembang dengan baik. Oleh karena itu semakin ke arah utara batuan lebih masif dan memiliki densitas yang lebih tinggi. Nilai densitas yang tinggi di tepi area penelitian pada kedalaman 1 km hingga 3 km merupakan hasil yang kurang valid karena disebabkan adanya efek tepi dari proses inversi. Pada koordinat tersebut merupakan ujung dari titik pengukuran sehingga hasil inversi nya menjadi kurang valid.

4.6 Korelasi Penampang 2D dengan Profil Anomali Bouguer

Untuk menganalisis lebih dalam perlu dilakukan korelasi antara penampang 2D densitas dengan profil anomali bouguer. Dengan mengkorelasikan antara penampang 2D densitas dengan profil anomali bouguer maka analisa yang dilakukan akan lebih representatif terhadap kondisi bawah permukaan. Berikut adalah analisa berdasarkan korelasi penampang 2D densitas dengan profil anomali bouguer :

Gambar 4.6 Korelasi profil anomali bouguer dengan penampang densitas 2D dari arah barat ke timur

Pada gambar 4.6 dapat dilihat bagian atas merupakan profil anomali bouguer dan yang dibawah merupakan penampang 2D densitas hasil inversi. Penulis telah membuat tanda-tanda yang menandakan anomali. Lingkaran merah pada profil anomali bouguer pada koordinat X 506 - 507,5 mengindikasikan adanya anomali yang menandakan adanya sesar. Anomali yang dimaksud adalah adanya peningkatan nilai anomali yang cukup signifikan. Untuk lebih mudah membayangkan hubungan antara profil anomali bouguer dengan kondisi di

bawah permukaan dapat dilihat kembali pada gambar 2.4.Hal tersebut didukung dengan peta geologi yang dapat dilihat pada gambar 3.1 bahwa pada koordinat tersebut memang benar adanya sesar. Garis dugaan sesar ditandai oleh penulis dengan garis merah pada koordinat X 506 – 507,5 di penampang 2D densitas hasil inversi. Sementara perubahan anomali signifikan yang menjadi rendah seperti yang ditandai lingkaran kuning pada profil anomali bouguer dan daerah yang memiliki densitas rendah pada penampang 2D densitas. Jika dilihat berdasarkan topografi nya pada gambar 3.2 daerah yang diberi lingkaran kuning merupakan cekungan. Cekungan tersebut dapat di interpretasikan sebagai polje dan juga doline. Polje yang berada pada koordinat X 505 dan X 510 disebut sebagai polje struktural yang berarti polje tersebut terbentuk karena adanya kontrol dari struktur berupa sesar. Dan pada koordinat X 490 – 497,5 merupakan doline

Gambar 4. 7Korelasi profil anomali bouguer dengan penampang densitas 2D dari arah selatan ke utara

Pada gambar 4.7 dapat dilihat bagian atas merupakan profil anomali bouguer dan yang dibawah merupakan penampang 2D densitas hasil inversi. Penulis telah membuat tanda-tanda yang menandakan anomali. Lingkaran merah pada profil anomali bouguer pada koordinat Y 9102 - 9103 mengindikasikan adanya anomali yang menandakan adanya sesar. Anomali yang dimaksud adalah adanya peningkatan nilai anomali yang cukup signifikan. Untuk lebih mudah membayangkan hubungan antara profil anomali bouguer dengan kondisi di bawah permukaan dapat dilihat kembali pada gambar 2.4.Hal tersebut didukung dengan peta geologi yang dapat dilihat pada gambar 3.1 bahwa pada koordinat tersebut memang benar adanya sesar. Garis dugaan sesar ditandai oleh penulis dengan garis merah pada koordinat Y 9102 – 9103 di penampang 2D densitas hasil inversi. Sedangkan lingkaran merah dengan garis putus-putus pada profil anomali bouguer pada koordinat Y 9097,5 – 9010 berdasarkan informasi geologi terdapat adanya sesar geser di koordinat tersebut. Namun hasil dari penelitian ini tidak dapat menggambarkan adanya sesar geser. Hal ini terjadi karena desain akuisisi yang dilakukan belum cukup untuk memvisualkan adanya sesar geser. Perlu adanya titik pengukuran tambahan sehingga mampu untuk memvisualkan adanya sesar geser tersebut. Sementara perubahan anomali signifikan yang menjadi rendah seperti yang ditandai lingkaran kuning pada profil anomali bouguer dan daerah yang memiliki densitas rendah pada penampang 2D densitas. Jika dilihat berdasarkan topografi nya pada gambar 3.3 daerah yang diberi lingkaran kuning merupakan cekungan. Cekungan tersebut dapat di interpretasikan sebagai polje. Polje yang berada pada koordinat Y 9106 disebut sebagai polje struktural yang berarti polje tersebut terbentuk karena adanya kontrol dari struktur berupa sesar. Dan pada koordinat Y 9091 – 9094 merupakan doline

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

1. Struktur geologi berupa sesar dapat terlihat pada lintasan barat – timur dengan koordinat X 506 – 507,5. Dan pada lintasan selatan – utara struktur geologi berupa sesar terlihat pada koordinat Y 9102 – 9103. Namun pada koordinat Y 9097,5 – 9010 penulis tidak dapat memvisualisasikan adanya sesar geser.

2. Ketebalan karbonat pada lintasan barat – timur memiliki ketebalan 100 meter hingga 750 meter. Batuan karbonat semakin ke arah timur semakin masif. Sementara itu ketebalan karbonat pada lintasan selatan – utara memiliki ketebalan 150 meter hingga 750 meter. Batuan karbonat semakin ke utara semakin masif. Tingkat kemasifan dipengaruhi karena proses kartisifikasinya yang tidak berkembang dengan baik

5.2 Saran

1. Perlu adanya penambahan titik pengukuran supaya dapat lebih maksimal dalam memvisualkan struktur geologi di area karst Pacitan.

2. Pengukuran petrofisika disarankan untuk dilakukan dengan mencakup semua formasi di area karst Pacitan supaya dapat lebih baik dalam analisis nilai densitas.

Halaman ini sengaja dikosongkan

DAFTAR PUSTAKA

- Atef, H., Abd El-Gawad, A.M.S., Abdel Zaher, M. dan Farag, K.S.I. (2016), "The contribution of gravity method in geothermal exploration of southern part of the Gulf of Suez–Sinai region, Egypt", *NRIAG Journal* of Astronomy and Geophysics, http://doi.org/10.1016/j.nrjag.2016.02.005.
- Bahri, A.S., Hardyani, P. V., Utama, W., Hilyah, A., Purwanto, M.S. dan Fajar, M.H.M. (2019), "Controlling factors of underground river system of karst region in Pacitan Regency, East Java", *IOP Conference Series: Earth and Environmental Science*, Vol.311, No.1. http://doi.org/10.1088/1755-1315/311/1/012033.
- Banu, B., Zaenudin, A. dan Rustadi (2018), "Pemodelan 3D Gaya Berat dan Analisis Struktur Detail untuk Mengembangkan Lapangan Panasbumi Kemojang", *Jurnal Geofisika*,.
- Berggren, W.A., Pringgoprawiro, H., Kadar, D. dan Skwarko, S.K. (1998), "Foraminifera in Indonesian Stratigraphy", *Micropaleontology*, http://doi.org/10.2307/1486076.
- Blakely, R.J. (1995), *Potential Theory in Gravity and Magnetic Applications*. http://doi.org/10.1017/cbo9780511549816.
- Burger, H.R., Sheehan, A.F. dan Jones, C.H. (2006), "Introduction to Applied Geophysics", dalam *Introduction to applied geophysics : exploring the shallow subsurface*,.
- Constable, S.C., Parker, R.L. dan Constable, C.G. (1987), "Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data.", *Geophysics*, http://doi.org/10.1190/1.1442303.
- Dkk, S. (1990), Peta Geologi Indonesia Lembar Surakarta & Giritontro.
- Fedi, M. dan Rapolla, A. (1999), "3-D inversion of gravity and magnetic data with depth resolution", *GEOPHYSICS*, http://doi.org/10.1190/1.1444550.
- Felix, A., Parera, T., Ketut, I.G., Bunaga, S., Yusuf, M., Tinggi, S., Klimatologi, M., No, J.P., Meteorologi, B., Angkasa, J., Kemayoran, I.N. dan Pusat, J. (2015), *Pemodelan Tiga Dimensi Anomali Gravitasi Dan Di Daerah Pacitan Snf2015-Ix-45 Snf2015-Ix-46*, Vol.IV, No.October 2014, hal. 45–48.

- Ford, D. dan Williams, P. (2013), Karst Hydrogeology and Geomorphology. http://doi.org/10.1002/9781118684986.
- Grandis, H. (2009), Pengantar Pemodelan Inversi Geofisika.
- Hamidi-Hashemi, H. dan Shiva, M. (1992), "Design of optimal frequency sampling filters by the method of lagrange multipliers", *Midwest Symposium on Circuits and Systems*, http://doi.org/10.1109/MWSCAS.1992.271304.
- Haryono, E. dan Adji, T.N. (2016), Bahan Ajar Geomorfologi dan Hidrologi Karst, hal. 45.
- Hinze, W.J., Von Frese, R.R.B. dan Saad, A.H. (2010), Gravity and magnetic exploration: Principles, practices, and applications. http://doi.org/10.1017/CBO9780511843129.
- Hjelt (1992), *Pragmatic Inversion of Geophysical Data*. http://doi.org/10.1007/bfb0011079.
- Hutterer, K.L. dan Bartstra, G.-J. (1982), "Contributions to the Study of the Palaeolithic Patjitan Culture, Java, Indonesia, Part I", *Journal of the American Oriental Society*, http://doi.org/10.2307/602353.
- Indrianti, Y.W., Susilo, A. dan Gultaf, H. (2016), Pemodelan Konfigurasi Batuan Dasar Dan Struktur Geologi Bawah Permukaan Menggunakan Data Anomali Gravitasi Di Daerah Pacitan – Arjosari – Tegalombo, Jawa Timur, hal. 1–50.
- Kao, C.Y.S. dan Hung, F.L.P. (2004), *Twelve Different Interpolation Methods : a Case Study*,.
- Lehmann, H. (1981), "Morphological studies in Java.", Karst geomorphology,.
- Mandal, A., Niyogi, S. dan Franck Eitel, K.G. (2017), A comparative study on trend surface analysis (TSA), wavelet filtering and bi-dimensional empirical mode decomposition (BEMD) for gravity anomaly separation, http://doi.org/10.1190/segam2017-17780222.1.
- Menke, W. (2012), *Geophysical Data Analysis: Discrete Inverse Theory*. http://doi.org/10.1016/C2011-0-69765-0.
- Parapat, J., Hilyah, A., Utama, W. dan Rahadinata, T. (2017), "PEMODELAN 3D DATA GAYA BERAT UNTUK MENGIDENTIFIKASI SUMBER PANAS DAERAH PANAS BUMI SIPOHOLON, SUMATERA

UTARA", Jurnal Geosaintek, http://doi.org/10.12962/j25023659.v3i3.3215.

- Pirttijärvi, M. (2008), *Gravity Interpretation and Modelling Software based on A 3-D Block Model*, hal. 1–60.
- Rahmat, M., Pembimbing, D. dan Hilyah, A. (2018), ANALISIS PARAMETER FISIS (VP, BULK DENSITY, RESISTIVITAS),.
- Rochman, J.P.G.N., Warnana, D.D., Widodo, A., Syaifuddin, F., Lestari, W. dan Mahsa, A. (2018), "Application of gravity method for local geological structures identification in Surabaya", *EAGE-HAGI 1st Asia Pacific Meeting on Near Surface Geoscience and Engineering*, http://doi.org/10.3997/2214-4609.201800437.
- Samodra (2003), Nilai strategis kawasan kars di indonesia dan usaha pengelolaannya secara berkelanjutan (*), hal. 1–170.
- Setianingsih, Efendi, R., Kadir, W.G.A., Santoso, D., Abdullah, C.I. dan Alawiyah, S. (2013), "Gravity Gradient Technique to Identify Fracture Zones in Palu Koro Strike-slip Fault", *Procedia Environmental Sciences*, http://doi.org/10.1016/j.proenv.2013.02.035.
- Supriyadi, Khumaedi, Qudus, N., Wibowo, P.A. dan Gunawan, D. (2017), "Strategy implementation time lapse microgravity method for monitoring subsidence", *AIP Conference Proceedings*, http://doi.org/10.1063/1.4976921.
- Surono (2009), "Litostratigrafi Pegunungan Selatan Bagian Timur Daerah Istimewa Yogyakarta dan Jawa Tengah", *J.S.D.Geol*, Vol.19, No.3, hal. 31–43.
- Telford, W.M., Geldart, L.P. dan Sheriff, R.E. (1990), "Telford Applied Geophysics" *Book*. http://doi.org/10.1180/minmag.1982.046.341.32.
- Tenzer, R., Sirguey, P., Rattenbury, M. dan Nicolson, J. (2011), "A digital rock density map of New Zealand", *Computers and Geosciences*, Vol.37, No.8, hal. 1181–1191. http://doi.org/10.1016/j.cageo.2010.07.010.
- Van Bemmelen, R.W. (1949), "The Geology of Indonesia. General Geology of Indonesia and Adjacent Archipelagoes" *Government Printing Office, The Hague*. http://doi.org/10.1109/VR.2018.8447558.

LAMPIRAN

Gambar 1. Dokumentasi Akuisisi data

			TIME								
STATION	Bacaan Alat	RATA-RATA Bacaan Alat	Hour	Minute	Second	Total Second	Average Second	LATTITUDE	LONGITUDE	Elevation GPS Handheld	Nilai Tide Correction
	6763,729	r	10	36	34	38194			Humanicia	0.046	
	6763.726		10	37	28	38248					0.046
BASE	6763.726	6763.72575	10	38	17	38297	38271.5	-8.11168	110.97986	370	0.046
	6763,722		10	39	7	38347					0.046
	6763.358	6763.361	11	3	37	39817					0.036
40	6763 361		11	4	31	39871					0.036
	6763 363		11	5	20	39920	39894.5	-8.13698	111.0009	376	0.035
	6763 362		11	6	10	39970					0.035
	6762 381	•	11	20	52	40852					0.027
	6762.382		11	20	46	40906					0.027
41	6762.305	6762.37825	11	22	35	40955	40929.5	-8.13959	111.00636	384	0.027
	6762.373		11	23	25	41005					0.026
	6767.687	•	11	35	20	41720					0.019
	6767.693		11	36	14	41774					0.019
42	6767.694	6767.693	11	37	3	41823	41797.5	-8.13718	111.01164	370	0.018
	6767.698		11	37	53	41873					0.017
	6766 399	r	11	47	3	42423					0.011
	6766.402		11	47	57	42425					0.011
43	6766.403	6766.4015	11	48	47	42527	42501	-8.1369	111.01611	378	0.01
	6766.402		11	40	37	42527					0.01
	6767.14	,	12	45	33	43293					0.001
	6767.14		12	2	27	43233					0.001
44	6767.14	6767.14	12	3	16	43396	43370.5	-8.13703	111.0209	379	0.001
	6767.14		12	4	6	43446					0
	6765 804	r	12	13	46	44026					0.007
	6765.807		12	14	40	44080	44103.5				0.008
45	6765 809	6765.80675	12	14	20	44030		-8.13707	111.02534	385	0.008
	6765 807		12	15	10	44125					0.008
	6757 729	r	12	21	14	44175					0.000
	6757 722		12	32	9	45074					0.02
46	6757.733	6757.7325	12	32	5	45120			111.0305		0.021
	6757 725		12	32	47	45177					0.021
	6770 710		12	55	47	43227					0.022
	0778.718	6778.71825	13	51	30	49050	49975.5 -8.146		5 111.0388	312	0.084
16	6770 716		13	52	32	45532 E0001		-8.14655			0.084
	6770 72		13	55	11	50001					0.085
	6764 415		14	12	16	50031					0.000
	6764.435		14	12	10	51100		-8.15595	111.03912	378	0.000
17	6764.423	6764.425	14	13	10	51130	51213.5				0.035
	6764.420		14	14		51235					0.101
	6769 792		14	26	49	52008					0.101
	6769 790		14	20	40	52008		-8.15973	111.03919		0.100
18	6769 702	6768.7905	14	27	42	52002	52085.5			362	0.109
	6769 709		14	20	21	52111					0.109
	0708.758		14	29	21	52101					0.105
	6763.455		14	38	28	52708					0.115
19	6762.447	6763.44425	14	39	11	52702	52785.5	-8.16417	111.03869	388	0.115
	6762 422		14	40	1	52861					0.110
	6762.222		14	41	2	52601					0.110
	6763.323		14	54	2	53042					0.123
20	6762 226	6763.3325	14	55	45	53745	53719.5	-8.16873	111.03876	391	0.125
	6762.34		14	55	45	53745					0.124
	6769 550		14	0	35	53/95					0.124
	6768 543		15		55	54595					0.125
21	6768 542	6768.56075	15	5		54644	54618.5	-8.17329	111.03896	373	0.13
	0708.303		15	10		54044					0.13
	6775 542		15	22	54	55074					0.13
	6775 542		15	22	49	56028					0.137
22	6775 5 43	6775.54275	15	24	40	50020	56051.5	-8.18287	111.03903	351	0.137
	6775 544		15	34	3/	500//					0.137
	6775.544		15	35	2/	56127					0.137
	6778.424		15	48	30	20210					0.139
23	6778.422	6778.4255	15	49	24	50904	56987.5	-8.19138	111.03874	342	0.139
	6778.426		15	50	13	57013			56 111.056/4		0.14
	6//8.43		15	51	5	57063					0.14
	6/63.583		1/	28	50	62930					0.118
BASE	6763.589	6763.58975	1/	29	44	62984	63007.5	-8.11168	110.97986	370	0.117
	6763.594		1/	30	55	63033					0.117
	b763.593		17	31	23	63083					0.117

Gambar 2. Data Hasil Pengukuran Hari Pertama

					TIME						
STATION	BACAAN ALAT	RATA-RATA	Hour	Minute	Second	Total Second	Average Second	LATTITUDE	LONGITUDE	Elevation GPS Handheld	Nilai Tide Correction
	6763.897		7	34	56	27296					0.049
BASE	6763.898	6763 8977	7	35	50	27350	27373 5	-8 11168	110 97986	370	0.048
	6763.897		7	36	39	27399					0.047
	6760.051	-	2	37	12	27449					0.047
	6760.053		8	25	7	30307					0.016
15	6760.052	6760.0525	8	25	56	30356	30330.5	-8.13719	111.03891	363	0.016
	6760.054		8	26	46	30406					0.015
	6756.673	ſ	8	38	31	31111					0.008
14	6756.671	6756.67025	8	39	25	31165	31188.5	-8.13264	111.03876	397	0.008
	6756.667		8	40	14	31214					0.007
	6761.096	r	8	51		31916			-		0.007
	6761.099	C7.C4 40075	8	52	50	31970		0.407.47		200	0
13	6761.108	6/61.102/5	8	53	39	32019	31993.5	-8.12/4/	111.0394	398	0
	6761.108		8	54	29	32069					0
	6773.117		9	5	26	32726					0.006
12	6773.123	6773.122	9	7	9	32829	32803.5	-8.12332	111.03853	365	0.007
	6773.125		9	7	59	32879					0.007
	6772.042		9	18	10	33490					0.012
11	6772.049	6772.0495	9	19	4	33544	33567.5	-8.1191	111.03881	382	0.013
	6772.052		9	19	53	33593					0.013
	6761.601	-	9	33	3	34383					0.019
	6761.609	0000 00	9	33	57	34437		0.44465		107	0.019
10	6761.614	6761.61	9	34	46	34486	34460.5	-8.11465	111.03885	437	0.02
	6761.616		9	35	36	34536					0.02
	6759.275		9	50	58	35458					0.026
9	6759.279	6759.27675	9	52	41	35561	35535.5	-8.10994	111.03906	447	0.026
	6759.278		9	53	31	35611					0.026
	6763.102	· · · · · ·	10	4	44	36284					0.03
8	6763.102	6763.10225	10	5	38	36338	36361.5	-8.10543	111.03919	424	0.03
	6763.102		10	6	27	36387					0.03
	6769.934	-	10	17	19	37039			-		0.033
	6769.936	6760 0047F	10	18	13	37093		0.404.07			0.033
	6769.93	6/69.931/5	10	19	2	37142	37116.5	-8.10107	111.03887	384	0.033
	6769.927		10	19	52	37192					0.033
	6787.753	£	11	8	11	40091					0.036
6	6787 757	6787.75525	11	9	54	40143	40168.5	-8.09122	111.03898	292	0.036
	6787.756		11	10	44	40244					0.036
	6789.712		11	27	27	41247					0.034
5	6789.725	6789.725	11	28	21	41301	41324.75	1324.75 -8.08728	111.0389	285	0.033
	6789.73		11	29	10	41350					0.033
	6787 603		11	39	43	41983			-		0.033
1	6787.609		11	40	37	42037					0.031
4	6787.613	6/8/.6105	11	41	26	42086	42060.5	-8.08351	111.03906	299	0.031
	6787.617		11	42	16	42136					0.03
	6757.672		12	2	43	43363					0.024
3	6757.67	6757.673	12	4	26	43466	43443	-8.07298	111.03777	440	0.023
	6757.676		12	5	16	43516					0.023
	6740.037		12	18	19	44299					0.018
1	6740.035	6740.035	12	19	13	44353	44376.5	-8.06452	111.03875	526	0.017
	6740.034		12 20 2 44402				0.017				
	6755.40		12	32	32	45152					0.011
	6755.408	6755 41275	12	33	26	45206	45330.5	8 OSOAF	111.03819	462	0.011
2 ×	6755.41	0/33.412/3	12	34	15	45255	43229.5	-8.06945			0.01
	6755.424		12	35	5	45305					0.01
	6786.959		14	53	57	53637					0.079
24	6786.984	6786.97275	14	55	40	53740	53714.5	5 -8.20066	111.03861	302	0.08
	6786.971		14	56	30	53790					0.08
	6790.544		15	14	22	54862					0.091
25	6790.552	6790.55425	15	15	16	54916	54939.5	-8.20361	111.03902	288	0.092
	6790.559		15	16	55	54965					0.092
	6810.323		15	33	25	56005			1		0.102
26	6810.328	6810 2255	15	34	19	56059	56092 5	-8 20000	111 02702	207	0.102
10	6810.326	2010.3133	15	35	8	56108	50002.5	-0.20555		107	0.103
	6810.325		15	35	58	56158					0.103
1	6809.314		15	58	25	57565					0.113
29	6809.323	6809.32075	16	0	14	57614	57588.5	-8.22794	111.04019	250	0.114
	6809.326		16	1	4	57664					0.114
	6792.829		16	20	2	58802					0.12
27	6792.834	6792.83475	16	20	56	58856	58879.5	-8.21577	111.03953	290	0.121
	6792.836		16	21	35	58955					0.121
	6796.037		16	30	21	59421					0.123
29	6796.042	6796 042	16	31	15	59475	59498 5	-8 21921	111 0202	2.90	0.123
10	6796.045	57 50.042	16	32	4	59524	33430.3	-0.22521	111.0332	105	0.123
	6796.044		16	32	54	59574					0.124
	6764.102		17	25	21	62781					0.127
39	6764.111	6764.10875	17	27	10	62830	62804.5	-8.13721	110.99346	370	0.127
	6764.114		17	28	0	62880					0.127
	6770.449		17	39	16	63556					0.125
38	6770.459	6770.45525	17	40	10	63610	63633.5	-8.13706	110.98448	338	0.125
	6770.454		17	40	49	63709					0.125
	6769.024		17	58	38	64718			-		0.121
27	6769.026	6760 0075	17	59	32	64772	64705 5	-9 13707	110.0750	242	0.121
57	6769.029	0/09.02/5	18	0	21	64821	04/55.5	*0.1370/	110.5736	342	0.12
	6769.031		18	1	11	64871					0.12
	6767.957		18	15	64	65754					0.115
36	6767 967	6767.965	18	16	43	65803	65777.5	-8.13576	110.96804	341	0.115
	6767.972		18	17	33	65853					0.115
	6763.958		18	43	41	67421					0.103
BASE	6763.977	6763.96425	18	44	35	67475	67498.5	-8.11168	110.97986	370	0.103
	6763.96		18	45	14	67574					0.102

Gambar 3. Data Hasil Pengukuran Hari Kedua

STATION			TIME					_		Elevation GPS	
	BACAAN ALAT	RATA-RATA	Hour	Minute	Second	Total Second	Average Second	LATTITUDE	LONGITUDE	Handheld (mdpl)	Nilai Tide Correction
	6764.188		7	23	19	26599					0.092
DACE	6764.185	C7C4 40575	7	24	13	26653	20070 5	-8.11168	110.97986		0.091
BASE	6764.185	6/64.185/5	7	25	2	26702	26676.5			370	0.091
	6764.185		7	25	52	26752					0.091
	6743.613	3	8	30	3	30603					0.059
	6743.625	6742 6295	8	30	57	30657	20690 5	-9 12622	111 00020	479	0.058
33	6743.634	0745.0285	8	31	46	30706	50080.5	-0.13035	111.05525	4/9	0.057
	6743.642		8	32	36	30756					0.057
	6765.354		9	9	19	32959	_				0.036
54	6765.36	6765.36	9	10	13	33013	33036.5	-8.13901	111.09222	407	0.036
	6765.363		9	11	2	33062					0.035
	6/65.363		9	11	52	33112					0.035
	6751.779		9	20	52	24019					0.026
53	6751 792	6751.78075	0	27	42	24122	34096.5	-8.13586	111.0804	464	0.020
	6751.782		9	20	32	34172					0.025
	6758.522		9	45	29	35129					0.016
	6758.526		9	46	23	35183					0.016
52	6758.529	6758.52625	9	47	12	35232	35206.5	-8.13783	111.07449	433	0.015
	6758.528		9	48	2	35282					0.015
	6754.428		10	9	44	36584					0.004
	6754.436	6754 424	10	10	38	36638	20000	0.4262	444 000774		0.003
51	6754.436	6/54.434	10	11	27	36687	36661.5	-8.1362	111.06571	440	0.003
	6754.436		10	12	17	36737					0.003
	6768.855		10	24	10	37450					0.002
50	6768.86	i carco oc	10	25	4	37504	275 27 5	9 12760	111.06076	205	0.002
50	6768.861	0708.80	10	25	53	37553	5/32/.3	0.13/03	111.00070	505	0.003
	6768.864		10	26	43	37603					0.003
	6766.232		10	43	14	38594			111 05777	389	0.009
49	6766.234	6766.23175	10	44	8	38648	38671.5	-8.13765			0.01
	6766.233		10	44	57	38697					0.01
	6766.22		10	45	47	38747					0.011
48	6764.51	6764.51575	10	57	34	39454					0.015
	6764.516		10	58	28	39508	39531.5	-8.13678	111.0529	392	0.015
	6764.518		10	59	17	39557					0.015
	6764.519	-	11	0	7	39607					0.015
	6769.789	6769.79475	11	1/	46	40666	-			365	0.02
47	6769.796		11	18	40	40720	40743.5	-8.13698	111.04684		0.02
	6760,793		11	19	10	40709					0.02
	6776 625		12	20	22	40819					0.021
	6776.624		12	38	17	45497		-8.13707	110.91793	339	0.024
31	6776.624	6776.625	12	39	6	45546	45520.5				0.024
	6776.625		12	39	56	45596					0.024
	6784.453	-	12	49	34	46174					0.022
	6784.462		12	50	28	46228			110.91297	308	0.022
30	6784.465	6784.4625	12	51	17	46277	46251.5	-8.14091			0.022
	6784.47		12	52	7	46327					0.022
	6775.679	r	13	9	17	47357					0.017
22	6775.682	6775 60375	13	10	11	47411	47424 5	0 12727	110 02004	222	0.017
32	6775.684	0775.08275	13	11	0	47460	4/434.5	-8.13/2/	110.92994	352	0.017
	6775.686		13	11	50	47510					0.016
	6768.217	1	13	25	8	48308					0.012
22	6768.226	6768 226	13	26	2	48362	48385 5	-8,14019	110.93985	357	0.012
	6768.23	5700.220	13	26	51	48411	40303.3	-0.14013	110.55505	557	0.011
	6768.231		13	27	41	48461					0.011
	6770.724	[.	13	35	33	48933					0.008
34	6770.723	6771.2485	13	36	27	48987	49010.5	-8.13613	110.9465	338	0.008
	6770.273		13	37	16	49036					0.008
	6773.274		13	38	6	49086					0.007
	6768.073		13	53	3	49983					0.001
35	6768.075	6768.07325	13	53	57	50037	50060.5	-8.13645	110.95597	346	0
	6768.072		13	54	46	50086			110.92231		0
	6768.073	-	13	55	36	50136					0
	6/64.183		14	1/	49	51469					0.011
BASE	6764.187	6764.185	14	18	43	51523	51546.5	-8.11168	110.97986	370	0.011
	0/04.185		14	19	32	51572					0.011
	6/64.185		14	20	22	51622					0.012

Gambar 4. Data Hasil Pengukuran Hari Ketiga

BIOGRAFI PENULIS

Penulis bernama Achmad Dwi Cahya lahir di Jakarta, 8 Mei 1998. Penulis merupakan anak kedua dari 2 bersaudara. Pendidikan formal penulis dimulai di SDN 01 Jatinegara Kaum, Jakarta (2004-2010), SMPN 92 Jakarta (2010-2013), SMAN 59 Jakarta (2013-2016) lalu penulis menempuh perkuliahan di Teknik Geofisika ITS pada 2016. Selama menjadi mahasiswa Teknik Geofisika ITS, penulis aktif dalam organisasi dan mendapatkan beberapa pengalaman. Penulis aktif di organisasi antara lain : Himpunan Mahasiswa

Teknik Geofisika (HMTG) ITS sebagai staff Departemen Hubungan Luar (2017-2018) dan sebagai Kepala Divisi Wawasan Eksternal pada Departemen Hubungan Luar (2018-2019); Society of Exploration Geophysicists (SEG) ITS SC sebagai staff Departemen Keprofesian (2019-2020); Asisten Sekretaris Jendral Al-Ard (2017); dan staff divisi keprofesian Himpunan Mahasiswa Geofisika Indonesia (HMGI) Wilayah IV (2017-2018). Penulis juga memiliki beberapa pengalaman dalam kepanitian antara lain : sebagai Ketua Pelaksana di Geophysics Goes to School 2017 yang diadakan oleh HMTG ITS; sebagai staff Sie Acara di GEOSPHERE 2017 dan sebagai staff Sie Creative Design di GEOSPHERE 2019 yang diadakan oleh HMTG ITS. Selain itu penulis juga mempunyai riwayat pelatihan antara lain : LKMM tingkat Pra-TD yang diselenggarakan oleh BEM FTSP ITS (2016); LMM Tingkat Dasar yang diselenggarakan HMTG ITS; dan LKMW yang diselenggarakan oleh BEM ITS (2016). Pada bidang akademik, penulis juga memliki pengalaman pelatihan antara lain : Field Trip Wringinanom (2017) yang diselenggarakan oleh Departemen Teknik Geofisika ITS; Petrophysics Training 2017 yang diselenggrakan oleh HMTG ITS; Kuliah Lapangan Geologi, Karang Sambung (2018); dan Kuliah Lapangan Terpadu Gondang, Bojonegoro (2019) yang diselenggarakan oleh Departemen Teknik Geofisika ITS. Selain itu penulis juga mendapatkan pengalaman menjadi Asisten praktikum elektronika dasar dalam naungan Laboratorium Petrofisika (2018) dan Asisten praktikum eksplorasi seismic dalam naungan Laboratorium Eksplorasi Mineral dan Air Tanah (2019). Apabila pembaca ingin berdiskusi lebih lanjut terkait Tugas Akhir dapat menghubungi penulis melalui alamat e-mail achmaddwicahya8@gmail.com