PERANCANGAN ACTIVE FAULT TOLERANT CONTROL PADA PENAMPUNG STEAM KONDENSAT DI PT BADAK BONTANG NGL KALIMANTAN TIMUR DENGAN KESALAHAN PADA SENSOR

Nama Mahasiswa : Rhadityo Shakti Budiman

NRP : 2410 100 038 Jurusan : Teknik Fisika

Dosen Pembimbing: Dr. Bambang Lelono W, S.T, M.T

Abstrak

Active fault tolerant control adalah suatu algoritma kontrol yang bekerja ketika ada suatu kesalahan yang terjadi pada komponen sistem. Pada Tugas Akhir ini adalah berkaitan dengan kesalahan pada sensor level transmitter di penampung steam kondensat PT Badak Bontang NGL. Langkah awal yang dilakukan adalah pembuatan simulasi dengan MATLAB dari data proses yang sama seperti yang ada di real plant. Metode rekonfigurasi sinyal kontrol yang digunakan untuk merancang active fault tolerant control adalah dengan pemberian sinyal refrensi tambahan. Sinval refrensi tambahan tidak lain merupakan besarnya kesalahan sensor yang diestimasi dengan menggunakan observer. Observer dibangun dengan menggunakan algoritma pole placement. Kesalahan yang diberikan berupa kesalahan bias dan sensitivitas yang merupakan karateristik statik dari sensor. Hasil simulasi yang didapatkan menunjukkan bahwa active fault tolerant control yang dibangun dapat mengakomodasi kesalahan sensor dengan lebih baik dibandingkan sistem kontrol PID konvensional.

Kata kunci: aktif fault tolerant control, pole placement, penampung steam kondesat

DESIGN ACTIVE FAULT TOLERANT CONTROL IN STEAM CONDENSAT TANK AT PT BADAK BONTANG NGL KALIMANTAN TIMUR WITH FAULT AT THE SENSOR

Name : Rhadityo Shakti Budiman

Student Number : 2410 100 038

Department : Engineering Physics

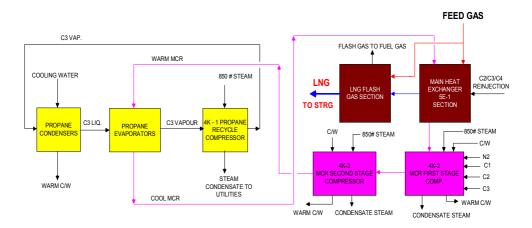
Supervisor : Dr. Bambang Lelono W, S.T, M.T

Abstract

Active fault tolerant control is a control algorithm that works when there is an error that occurs in a system. In this final project is related to errors in the level sensor transmitter in the steam condensate tank at PT Badak NGL Bontang. The first step in this final project is build simulation in MATLAB with the same data process as in the real plant. Control signal reconfiguration method is part of the active fault tolerant control for estimate the fault with additional references signal. Additional references no other signal is the residual of the sensor errors are estimated using the observer. Observer constructed by using pole placement algorithm. Errors are given like bias error and sensitivity error which is characteristic static of sensors. The simulation results obtained show that the active fault tolerant control is built to accommodate the sensor faults better than the conventional PID control system.

Keywords: Active Fault Tolerant Control, Pole Placement, Steam Condensate Tank

DAFTAR GAMBAR


Gambar 2.1	MCR Refrigerant System di PT Badak	5			
	Bontang NGL				
Gambar 2.2	Surface Condensor di PT Badak Bontang	7			
	NGL				
Gambar 2.3	Diagram Blok Proses pada Surface	8			
	Condensor				
Gambar 2.4	Straight Tube Heat Exchanger	9			
Gambar 2.5	Diagram Blok PID Kontroler	10 11			
Gambar 2.6	Split Range Control pada DCS				
Gambar 2.7	Displacer dan Bagiannya				
Gambar 2.8	Displacer pada Surface Condensor				
Gambar 2.9	General Active Fault Tolerant Control	13			
Gambar 2.10	Strategi Fault Tolerant Control	14			
Gambar 2.11	Diagram Blok Fault Tolerant Control				
Gambar 2.12	Diagram Blok Estimasi	16			
Gambar 2.13	Real System Proses dengan Observer	18			
Gambar 3.1	Flowchart Penelitian	19			
Gambar 3.2	Diagram Blok Proses pada Surfac	23			
	Condensor				
Gambar 3.3	Grafik Open Loop	24			
Gambar 3.4	Respon Osilasi	25			
Gambar 3.5	Grafik Closed Loop	26			
Gambar 3.6	Full Order State Observer	28			
Gambar 3.7	Skema FTC	30			
Gambar 4.1	Respon Open Loop	34			
Gambar 4.2	Respon Closed Loop				
Gambar 4.3	Hasil Observer dibadingkan Respon				
	Closed Loop				
Gambar 4.4	Respon PID tanpa Algoritma FTC dengan	37			
	Kesalahan Bias 10%				
Gambar 4.5	Respon PID dengan Algoritma FTC	38			
	dengan Kesalahan Bias 10%				
Gambar 4.6	Respon PID tanpa Algoritma FTC dengan	39			
	Kesalahan Senstivitas 50%				

Gambar 4.7	Respon PID denganAlgoritma FTC	40
	dengan Kesalahan Sensitivitas 50%	
Gambar 4.8	Respon Uji Noise maksimal 10 ⁻²	42
Gambar 4.9	Respon PID dengan Perubahan Set Point	43
	Kesalahan Bias 10%	
Gambar 4.10	Respon PID dengan Perubahan Set Point	44
	Kesalahan Sensitivitas 10%	

BAB II

TINJAUAN PUSTAKA

2.1 MCR (Multi Component Refrigerant) System

Gambar 2. 1 MCR Refrigerant System di PT Badak Bontang NGL [1]

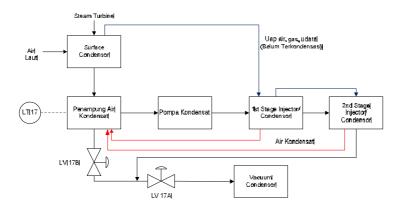
Multi Component Refrigerant berfungsi untuk mendinginkan dan mencairkan gas alam sehingga menjadi LNG di Main Heat Exchanger. Komponen dari MCR terdiri dari nitrogen, methane, ethane dan propane. Untuk komponen nitrogen didapat dari system distribusi nitrogen yang dipasok dari seksi utilitas. Sedang methane diambil dari gas keluaran sistem srub coulomn condensate drum. Untuk komponen ethane dan propane didapat dari produksi deethanizer dan depropanizer.

Sistem pendingin *MCR* ini menggunakan 2 buah kompresor dimana *discharge* dari kompresor pertama sebagai *suction* dari kompesor kedua. *Discharge* dari kompressor tingkat kedua bertekanan sekitar 47,5 kg/cm2 yang kemudian didinginkan di *exchanger* dengan media pendingin air laut dan terkondensasi

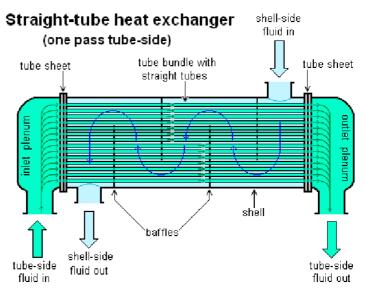
ketika melewati high level propane evaporator, medium level propane evaporator dan low level propane evaporator.

Dari *evaporator* tersebut *MCR* dialirkan ke *MCR* high separator dimana liquid dan vapour dari *MCR* tersebut akan terpisah. Komposisi liquid dan vapour yang keluar dari separator ini berbeda. Phase liquidnya terdiri dari ethane dan propane sedang phase vapournya terdiri dari komponent *nitrogen* dan methane. Phase *MCR* cair dan uap tersebut kemudian dialirkan ke main heat exchanger untuk mendinginkan sweet gas sehingga menjadi *LNG* di unit *Liquefaction Section*. [1]

2.2 Surface Condensor

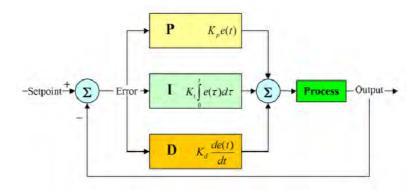

Surface condenser termasuk sebuah alat heat exchanger (penukar panas) yang bertugas untuk mengkondensasikan steam dengan bantuan air laut. Heat exchanger yang digunakan adalah tipe shell and tube heat exchanger dimana steam mengalir di sisi shell dan air laut mengalir di sisi tube. Steam berkontak secara tidak langsung dengan air laut sehingga panas yang ada di dalam steam diserap oleh air laut dan steam berubah menjadi kondensat.

Tekanan operasi yang ada di *surface condenser* adalah tekanan vakum. Hal ini dilakukan untuk menghasilkan kerja turbin semaksimal mungkin karena dengan *pressure drop* yang semakin besar maka perubahan entalpi yang dihasilkan semakin besar juga sehingga kerja turbin yang dihasilkan juga maksimal. [2]


Gambar 2. 2 Surface Condensor di PT Badak Bontang

Pada proses refrigerant di surface condensor, input yang masuk berupa steam dari turbin kompresor dan air laut sebagai pendingin. Setelah terjadi proses pendinginan oleh air laut, hasil kondensasi ditampung pada penampung air kondensat. Sedangkan steam yang belum terkondensasi berupa uap air, gas dihisap oleh Ist injector yang kemudian dikondensasikan. Hasil air kondensat dari Ist injector dikembalikan ke penampung kondensat. Sedangkan sisa uap air pada Ist injector/condensor dihisap oleh 2nd stage injector dengan tekanan yang lebih tinggi. Hasil kondensat dari 2nd stage injector dikembalikan ke penampung air kondensat. Air kondensat dari 2nd stage injector dialirkan menuju ke vacuum condensor dengan bukaan level kontrol valve 17A.

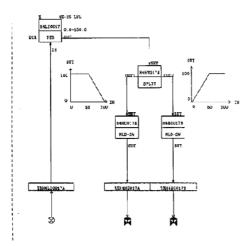
Gambar 2. 3 Diagram Blok Proses pada Surface Condensor


Heat exchanger adalah suatu alat penukar panas antara dua fluida yang berbeda temperatur satu sama lain dimana satu fluida memberikan panasnya kepada fluida yang lain sedangkan fluida dingin sebagai penerima panas. Shell and tube heat exchanger merupakan tipe yang paling umum dijumpai dikarenakan harga relatif murah, mudah pembersihannya, tersedia dalam beberapa ukuran, dapat didesain pada tekanan biasa maupun tekanan tinggi.

Gambar 2. 4 Straight Tube Heat Exchanger [3]

2.3 Sistem Kontrol pada Surface Condensor

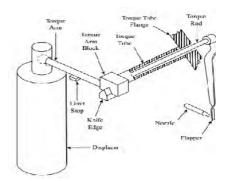
Sistem kontrol pada *surface condensor* ini mengggunakan *PID* kontroler sebagai pengendalinya. *PID (Proportional Integral Derivative)* kontroler merupakan kontroler untuk menentukan suatu kestabilan atau kepresisian sistem instrumentasi dengan adanya *feedback* atau umpan balik pada sistem tersebut. Komponen PID terdiri dari 3 jenis yaitu, *proportional, integral* dan *derivatif*, ketiga komponen tersebut bisa digunakan secara bersamaan ataupun dengan sendiri-sendiri, tergantung respon yang kita inginkan dari suatu *plant* tersebut.


Gambar 2. 5 Diagram Blok PID Controller [4]

Kontroler *proportional* digunakan sebagai penguat sehingga mencapai *set point* atau hasil yang diinginkan. *Output proportional* adalah hasil perkalian antara konstanta *proportional* dengan nilai eror yang dihasilkan. Namun penggunaan kontrol *proportional* menghasilkan efek yaitu *maximum overshoot* yang cukup besar karena itu adanya kontroler *integral* untuk mengurangi adanya *maximum overshoot* namun *settling time* untuk mencapai nilai kestabilan dari suatu sistem lebih lama dibandingakan dengan *proportional*.

Beberapa parameter dalam kontroler yang juga harus diketahui dalam suatu sistem closed loop yaitu rise time, overshoot, settling time dan error steady state. Rise time adalah waktu yang dibutuhkan dari output plant melebihi 90% dari tingkat saat suatu sistem dijalankan. Overshoot adalah adalah peak level lebih tinggi dari keadaan steady state. Settling time adalah waktu yang dibutuhkan sistem untuk sistem menjadi stabil. [5]

2.3.1 Split Range Control

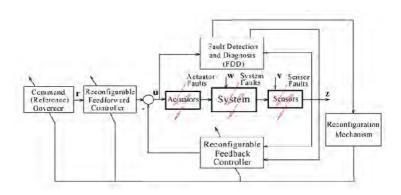

Pada pengontrolan dengan sistem ini hanya ada satu sinyal kontrol dan satu sinyal pengukuran. Sinyal kontrol kemudian dipecah untuk menggerakkan bagian yang berbeda tetapi memiliki efek sama terhadap variabel yang dikontrol. Jadi pada *split* range control menggunakan dua buah *final* control element yang dioperasikan oleh sebuah kontroler. Dimana setting kalibrasi dari dua buah control valve diset pada harga yang berlainan. [6]

Gambar 2. 6 Split Range Control pada DCS [7]

2.4 Displacer Level Transmitter

Displacer level transmitter merupakan suatu alat ukur yang berasaskan dari prinsip hukum fisika yaitu Hukum Archimedes yaitu prinsip pengapungan benda diatas air. Secara real dalam pengkuran level pada *chamber* yaitu dengan cara mendeteksi level dengan terus mengukur permukaan batang *displacer* yang terendam dalam fluida. Proses kerja pada *displacer* yaitu seiring dengan peningkatan level yang terjadi, batang displacer mengalami gaya apung yang lebih besar, sehingga akan mengapung dan perubahan yang terjadi dari titik awal hingga terjadi pergerakan pada batang displacer adalah sebagai sinyal ouput yang akan diterima sebagai ketinggian level pada chamber tersebut. Dan juga kebalikannya ketika level pada suatu chamber menurun. [6]

Gambar 2. 7 Displacer dan Bagiannya [8]


Gambar 2. 8 Displacer pada Surface Condensor

Kesalahan atau *fault* yang terjadi pada *displacer* adalah pada bagian *spring balance* atau pegas yang membatasi pergerakan untuk setiap adanya perbedaan level yang terjadi pada plant. Prinsip kerjanya yaitu magnet menarik bola yang melekat pada batang *displacer* secara kontinyu naik turun sebagai respon

pergerakan dari *displacer* yang menunjukan sebagai indikasi adanya perubahan level yang kemudian dilanjutkan oleh sebuah pemancar yang disebut dengan *LVDT* (*Linier Variable Diffrential Transformer*) yang fungsinya adalah mendenteksi perubahan level yang terjadi.

2.5 Fault Tolerant Control

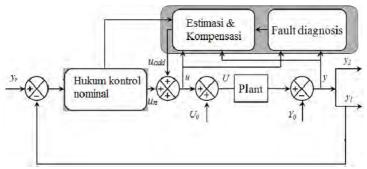
Dalam suatu sistem kontrol, dibutuhkan suatu peningkatan performa dan keamanan yang cukup tinggi. Dengan *design feedback* kontrol dapat mengakibatkan kinerja tidak memuaskan sehingga terkadang terjadi kerusakan pada aktuator, sensor ataupun komponen yang lainnya. Untuk mengatasi kerusakan tersebut, dilakukan design kontrol yang mentolerir kerusakan yang terjadi dengan tetap menjaga stabilitas sistem yang diinginkan. Secara umum *fault tolerant control* adalah suatu sistem kontrol yang mampu mengatasi terjadinya kegagalan secara otamatis dengan menjaga stabilitas sistem dan kinerja yang dapat diterima dalam suatu kegagalan. [9]

Gambar 2. 9 General Active Fault Tolerant Control [9]

Fault tolerant control systems (FTCS) dapat dibagi menjadi dua tipe yaitu pasif fault tolerant control systems (PFTCS) dan active

fault tolerant control systems (AFTCS). pasif fault tolerant control system merupakan suatu kontroler tetap yang dirancang untuk mempertahankan sistem dari kegagalan yang terjadi pada aktuator ataupun sensor yang biasa disebut dengan robust kontrol system. Sedangkan active fault tolerant control systems bersifat reaksi terhadap suatu kegagalan komponen dengan mengkonfigurasi aksi kontrol sehingga kestabilan dan kinerja pada sistem dapat dijaga. Active fault tolerant control terdiri atas 2 sub system vaitu ; fault detection and identification dan mekanisme reconfiguration controller. Pada reconfiguration controller dan fault detection and identification pada keseluruhan sistem adalah kelebihan dari active fault tolerant control bila dibandingkan dengan pasif fault tolerant control. Yang utama dari active fault tolerant control adalah merancang kontroler yang mudah direkonfigurasi, kemudian dibuat skema fault detection and identification yang sensitif terhadap kegagalan pada sensor ataupun aktuator dan sensitif gangguan eksternal terhadap serta memiliki rekonfigurasi kontrol yang mengarah pada kinerja kegagalan sistem.

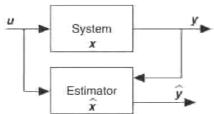
Gambar 2. 10 Strategi Faul Tolerant Control [10]


2.5.1 Klasifikasi Fault and Identification (FDI)

Fault Detection and Identification merupakan suatu tahapan dimana dalam Fault Tolerant Control System ini mendeteksi fault atau kesalahan yang terjadi pada komponen yang berupa aktuator maupun sensor, sehingga pada tahapan ini akan mengirimkan signal informasi yang dilanjutkan untuk dalam rangka toleransi yang diberikan terhadap kesalahan yang terjadi. Dalam Fault Detection and Identification ada 3 hal yang perlu dilakukan yaitu; mendeteksi keselahan pada sistem serta waktu selang selama terjadinya kesalahan, mengisolasi kesalahan lokasi dan tipe terjadinya kesalahan dan yang terakhir adalah mengidentifikasi besarnya kesalahan yang terjadi. Untuk itu juga tahapan FDD juga biasa disebut dengan FDI yaitu Fault Detection and Identification.

Pendekatan pada tahapan FDI ini dibagi 2 kategori yaitu model based dan data based kedua skema ini diklasifikasikan dengan pendekatan kwantitatif dan kualitatif. Klasifikasi pendekeatan kwantitatif dengan model matematika dari skema Fault Detection and Identification biasanya secara real time, penggunaannya secara umum dengan 2 teknik yaitu berdasarkan state estimation dan parameter estimation [11]

2.5.2 Klasifikasi Reconfiguration Control


Reconfiguration control adalah suatu aksi yang diberikan oleh kontroler yang bertujuan memperbaiki kesalahan yang terjadi dengan berbagai cara. Pendekatan yang dilakukan dalam reconfiguration control salah satunya metodenya yaitu dengan set point refrensi dan u add.

Gambar 2. 11 Diagram Blok Fault Tolerant Control [12]

2.5.3 Estimasi State dengan Observer

Observer adalah suatu algoritma yang bertujuan untuk mengestimasi state sistem berdasarkan model sistem yang utamanya.

Gambar 2. 12 Diagram Blok Estimasi [5]

Observer dihitung dari dinamika error estimasi yang telah ditentukan. Model matematis dari proses yang terjadi dilakukan simulasi dengan data proses yang sama seperti pada sistem atau plant. Jika model matematis telah sempurna, maka x estimate akan sama dengan state dari sistem yaitu x. Namun dalam pengaplikasiannya, banyak terjadi kesalahan model yang kurang tepat, sehingga akan ada perbedaan antara x dan x estimate yang kemudian diasumsikan bahwa setidaknya salah satu dari state yang terukur. Perbedaan antara x dan x estimate menyebabkan juga perbedaan y estimate dan y dari sistem, perbedaan ini menyebabkan

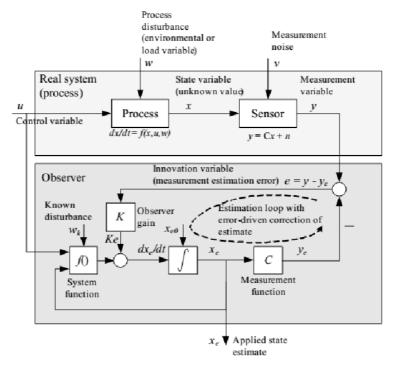
erorr dari estimasi pengukuran sehingga dapat dirumuskan sebagai berikut ;

$$e = Y - Y$$
 estimate (2.1)

Dengan menggunakan parameter yang pada pemodelan *state space* dari sistem atau *plant*, yang dirumuskan sebagai berikut;

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u} \tag{2.2}$$

$$y = Cx + Du (2.3)$$

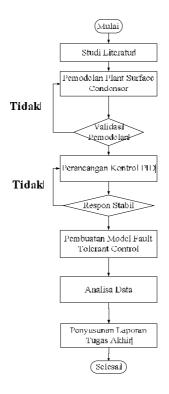

Sehingga untuk mendapatkan nilai state estimasi dapat dilakukan dengan menggunaka persemaan sebagai berikut ;

$$x = Ax + Bu + Kobs (y - Cx)$$
 (2.4)

$$= (A - Kobs C)x + Bu + Kobs y)$$
 (2.5)

Sehingga hasil estimasi pengukuran dapat digunukan untuk mendeteksi kesalahan dan kemudian bisa dilakukan prosedur selanjutnya dalam metode *fault tolerant control* ini. Berikut hasil estimasi yang didapatkan dengan perumusan sebagai berikut ;

$$y \ estimasi = Cx \ estimasi$$
 (2.7)



Gambar 2. 13 Real System Proses dengan Observer [5]

BAB III METODELOGI PENELITIAN

3.1. Prosedur Umum Peneletian

Pada penelitian ini dilakukan beberapa tahapan percobaan untuk merealisasikan metode *fault tolerant control* pada penampung steam kondensat dari *surface condensor* PT Badak Bontang NGL. Berikut flowchart penelitian yang ditunjukkan pada **Gambar 3.1**;

Gambar 3. 1 Flowchart Penelitian

3.2. Studi Literatur

Pada awal peneletian ini dilakukan tinjauan *plant* pada *Surface Condensor* di PT Badak Bontang NGL, meliputi proses yang terjadi pada *loop plant* tersebut serta peralatan *instrument* yang dipasang pada *plant*. Selanjutnya dilakukan tinjauan pustaka mengenai penampung *steam* kondensat dari *surface condensor* dan metode kontrol yang digunakan pada *plant* tersebut yaitu dengan *split range control*.

Setelah dilakukan kajian pada setiap komponenya, dilanjutkan dengan tinjauan pustaka mengenai pengertian *fault tolerant control* (FTC) dari jenis *fault tolerant control* dan pendekatan yang digunakan pada fault tolerant control ini, serta implementasi yang telah dilakukan dengan metode *fault tolerant control*.

3.3. Fault pada Displacer Level Transmitter

Kesalahan pada displacer level transmitter cukup sering terjadi karena pada sensor level transmitter ini mempunyai bagian komponen mekanik antara satu dengan yang lainnya yang cukup banyak berhubungan. Komponen pada displacer yaitu terdiri dari batang displacer atau float, spring displacer, torque arm dan kopling magnet. Kerusakan yang sering terjadi yaitu pada spring displacer karena pada bagian ini selalu mengikuti pergerakan level terus – menerus sehingga bisa terjadinya keausan pada bagian ini sehingga akan mengurangi tingkat kesensitivitasan dari sensor itu sendiri. Selain itu kerusakan bisa diakibatkan oleh menyangkutnya batang displacer yang tidak mengikuti pergerakan dari level sehingga pembacaan sensor bisa tidak sesui dengan keadaan sesungguhnya.

3.4. Pemodelan Plant Surface Condensor

Pada pemodelan *plant* di *surface condensor* ini, masukan utama berupa *steam* dan *cooling water* yang masuk menuju *surface condensor*. Pada *surface condensor* terjadi pertukan panas sehingga dihasillkan air kondesat yang dipompa menuju ke ejektor. Pada ejektor pertama, air kondesat adalah sebagai pedingin dari

steam yang tidak sempurna yang berasal dari hasil pertukaran panas yang terjadi pada surface condensor.

Disini terjadi pertukaran panas kembali yang menghasilkan air kondesat yang menuju kembali ke penampung kondesat, sedangkan air kondensat diteruskan sebagai pendingin di ejektor kedua dengan proses yang sama dengan sebelumnya. Setelah itu pendingin kondensat ini akan menuju ke utitlies dan ada juga yang kembali ke penampung kondesat dengan adanya kontrol valve yang mengatur aliran yang kembali. Secara hukum kesetimbangan energi, plant ini dapat dibuat persamaannya sebagai berikut;

$$\frac{dh}{dt} = \frac{min - mout}{A} \tag{3.1}$$

$$m in = m con + m cc + ejektor (3.2)$$

$$m \ out = m \ pompa$$
 (3.3)

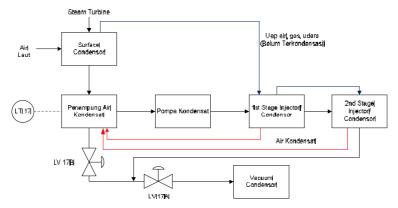
Hasil perhitungan dari pemodelan penampung steam kondensat adalah sebagai berikut dari perumusan diatas ;

• m in = m con + m cc + ejektor
=
$$135819 + \frac{4.33e3}{0.009s+1} + \frac{1}{s+1}$$

= $135819 + \frac{4330,009(s+1)+0.009s+1}{(0.009s+1)(s+1)}$
= $135819 + \frac{4330s+4330+0.009s+1}{0.009s2+0.009s+s+1}$
= $135819 + \frac{4330,009s+4331}{0.009s2+1.009s+1}$

$$\begin{split} \frac{dh}{dt} = & (\frac{135819 - 147201}{307.5}) + \frac{(4330.009s + 4331)}{0.009s2 + 1.009s + 1(307.5)} \\ &= (\frac{-11382}{307.5}) + \frac{(4330.009s + 4331)}{2.7675s2 + 310.2675s + 307.5} \\ &= -37.0146 + \frac{(4330.009s + 4331)}{2.7675s2 + 310.2675s + 307.5} \\ &= \frac{-37.0146(2.7675s2 + 310.2675s + 307.5) + 4330.009s + 4331}{2.7675s2 + 310.2675s + 307.5) + 4330.009s + 4331} \\ &= \frac{-102.4416s2 - 11484.4274s - 11381.9895 + 4330.009s + 4331}{2.7675s2 + 310.2675s + 307.5} \\ &= \frac{-102.4416s2 - 7154.4182s - 7050.9895}{2.7675s2 + 310.2675s + 307.5} \cdot \frac{1}{s} \\ &= \frac{-102.4416s2 - 7154.4182s - 7050.9895}{2.7675s2 + 310.2675s + 307.5} \cdot \frac{1}{s} \\ &= \frac{-102.4416s2 - 7154.4182s - 7050.9895}{2.7675s2 + 310.2675s + 307.5} \cdot \frac{1}{s} \end{split}$$

Keterangan:


msteam = aliran uap kompresor turbin

mcond = aliran kondesat

mcc = aliran cooling kondesat mpompa = aliran keluaran dari pompa

xcon = fraksi kondensat

A = luas penampang surface condensor

Gambar 3. 2 Diagram Blok Proses pada Surface Condensor

• Fungsi Transfer Transmitter

Transmitter memiliki input dengan range 0 - 438 mm dan output arus 4 - 20 mA. Gain transmitter dapat diperoleh;

$$Gt = \frac{output}{input} = \frac{signal\ output}{(max-min\ perubahan\ level)}$$

$$= \frac{20-4\ mA}{438-0\ mm} = 0.03\ \frac{mA}{mm}$$

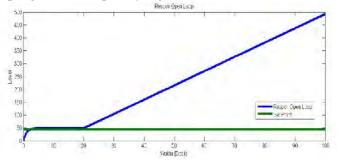
$$\tau = \frac{63.2}{100}\ x\ 0.03 = 0.018$$

$$\frac{G(S)}{U(S)} = \frac{Gt}{\tau s+1} = \frac{0.03}{0.018s+1}$$

$$(3.4)$$

• Funsgsi Transfer Valve

$$Gv = \frac{ouput}{Input} = \frac{Flowrate\ yang\ mengalir}{Bukaan\ valve\ (Psi)}$$


$$= \frac{(52-0)}{(15-3)} = 4.33$$

$$Tv = \frac{Yc}{Cv} = \frac{0.676}{75} = 0.009$$
(3.5)

$$\frac{G(s)}{U(s)} = \frac{Gv}{Tv(s)+1} = \frac{4.33}{0.009s+1}$$

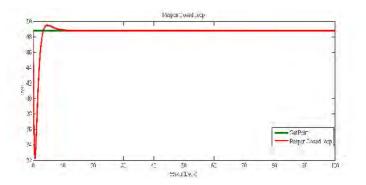
3.4 Perancangan Kontrol PID


Pada penelitian ini juga dilihat dari respon open loop dan closed loop dari blok function yang telah dibuat di Simulink. Respon open loop dianalisa untuk memastikan sistem yang dibuat bisa dikontrol atau tidak. Berikut hasil grafik analisa open loop tanpa pengendali dari plant yang telah dibuat di Simulink;

Gambar 3. 3 Grafik Open Loop

Untuk analisa closed disini menggunakan pengendalian dasar PID (Proporsional Integral Derivative) dengan cara menentukan nilai Kp, Ti dan Td yang paling stabil dengan maximum overshoot tidak besar namun settling time yang cukup cepat. Disini untuk mendapatkan nilai yang stabil menggunakan metode tuning Ziegler Nichols. Pada tuning Ziegler Nichols mempunyai dua metode yaitu metode osilasi dan metode kurva. Tuning yang dilakukan disini menggunakan metode osilasi. Langkah pertama yang dilakukan adalah mentuning sistem agar mencapai osilasi yang stabil dengan amplitudo yang sama tiap lembahnya, dari tuning yang dilakukan didapatkan nilai Kcr atau biasanya disebut dengan gain kritis. Dengan mendapatkan gain kritis kemudian dimasukkan ke

parameter tuning ziegler nichols. Hasil tuning yang didapatkan dengan nilai Kp sebesar 9.8 dan nilai Ti sebesar 3.8.


Gambar 3. 4 Respon Osilasi

Setelah mendapatkan nilai Kcr, kemudian dimasukkan ke parameter tuninng Ziegler Nichols. Berikut parameter tuning tersebut;

Tabel 3. 1 Parameter Tuning Ziegler Nichols

Parameter Kontrol	K _P	Ti	T _d
P	0.5 K _{cr}	?	0
PI	0.45 K _{cr}	1/1.2 P _{cr}	0
PID	0.6 K _{cr}	0.5 P _{cr}	0.125 P _{cr}

Berikut hasil dari tuning yang dilakukan dengan parameter tuning Ziegler Nichols;

Gambar 3. 5 Grafik Closed Loop

3.5 Perancangan Fault Tolerant Control

3.5.1 Perancangan Observer

Perancangan observer didapatkan dengan cara mencari nilai pole dari persamaan matriks yang didapatkan fungsi transfer keselurahan. Untuk nilai matriks didapatkan dengan cara merubah fungsi transfer total menjadi state space. Pada software MATLAB disini pada m file bisa dicari dengan *ft to ss (function transfer to state space)*. Berikut nilai matrik yang didapatkan dari fungsi transfer dari plant. Dengan perumusan sebagai berikut ;

$$x = Ax + Bu$$

$$y = Cx + Du$$
(3.7)
(3.8)

$$A = \begin{bmatrix} 1 & 0 & -3 & 0 \\ 8.7 & 1 - 65.4 & 14.08 \\ 0.15 & 0.01 - 1.15 & 0.25 \\ 0.0005 & 0 & -0.04 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0\\ 8.72\\ 0.15\\ 0.005 \end{bmatrix}$$

$$C = [0 \ 1 \ 0 \ 0]$$

 $D = 0$

Kemudian yang dilakukan untuk mencari *gain observer* yaitu mencari nilai pole, didapatkan dari *eigen value matrik a* dari hasil state space yang didapatkan dari persamaan. Berikut persamaan yang digunakan untuk mencari nilai pole dan observer beserta hasil yang didapatkan;

$$eig (A - KC) = \{s1, s2 \dots sn\}$$

$$det(sI - (A - KC)] = (s - s1)(s - s2) \dots (s - sn)$$

$$P = \begin{bmatrix} -0.5 \\ -1 \\ -111.1 \\ -150 \end{bmatrix}$$
(3.9)

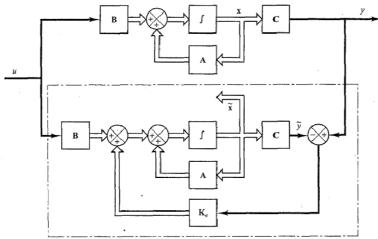
Dengan nilai {s1, s2....., sn} adalah nilai pole yang didapatkan dari persamaan fungsi transfer sehingga didapatkan nilai pole yang diinginkan yaitu berupa K sebesar

$$K = 1e4 [3.6 \ 0.02 \ 1.02 \ 2.5]$$

Keterangan;

 $K = Gain\ Observer$

A = Matriks State space A


B = Matriks State space B

C = Matriks State space C

D = Matriks State space D

P = Nilai pole

Setelah didapatkan semua parameter untuk pembentukan *gain observer*, kemudian dilakukan validasi dari hasil *observer* dengan data *real plant*. Hasil yang didapatkan harus sesuai karena keluaran dari observer merupakan estimasi yang digunakan untuk mengidentifikasi suatu besarnya kesalahan yang diberikan. Berikut diagram blok *observer* yang digunakan.

Gambar 3. 6 Full Order State Observer [5]

3.5.2 Perancangan Fault Detection Identification (FDI)

Setelah didapatkan nilai gain observer, langkah selanjutnya yang dilakukan adalah merancang *Fault Detection Identification* yang bertujuan untuk mengetahui besarnya fault atau kesalahan yang terjadi pada suatu sistem yang diakibatkan sensor yang bermasalah. Fault Detection Identification juga berfungsi untuk membedakan adanya noise atau distrubance pada sistem dengan adanya kesalahan yang diakibatkan kesalahan selain sensor seperti kesalahan pada pemodelan. Berikut langkah – langkah untuk merancang sebuah *Fault Detection Identification*;

 Menentukan besarnya residual yang didapat dari pengurangan data pengukuran sensor dengan hasil estimasi yang diperoleh dari observer. Atau bisa dirumuskan sebagai berikut;

$$R = Y - Yestimation$$
 (3.11)

 Memberikan batasan kesalahan akibat sensor dengan membuat filter menggunakan rumus standart deviasi yang diperoleh dari hasil pengukuran. Berikut perumusan untuk UCL dan LCL untuk;

$$UCL = +standard\ deviasi$$
 (3.12)
 $LCL = -standard\ deviasi$ (3.13)

• Jika R > UCL dan R < LCL maka signal alarm akan menyala kemudian FDI akan aktif dan menunjukkan bahwa adanya terjadi kesalahan sehingga rekonfigurasi kontrol bekerja.

3.5.3 Perancangan Rekonfigurasi Kontrol

Rekonfigurasi kontrol adalah merupakan suatu tahapan pada metode *Fault Tolerant Control* yang bertugas untuk menghilangkan atau mengembalikan stabilitas kontrol yang tidak stabil karena adanya fault atau kesalahan yang terjadi pada sensor. Rekonfigurasi kontrol ini dilakukan dengan merubah keluaran dari kontroller *(u)* dan dengan menambahkan *setpoint (r)* atau *radd*. Berikut perhitungan untuk mendapatkan nilai error dari aksi kontrol dengan menggunakan PID dan saat terjadinya fault pada sensor sehingga nilai error mengalami perubahan ;

$$e = r - Y \tag{3.14}$$

Ketika diberikan suatu kesalahan, nilai eror akan mengalami perubahan yang akan menjadi ;

$$e' = r - (Y + R)$$
 (3.15)

Untuk mengambalikan nilai eror yang diberikan kesalahan pada kondisi normalnya, maka dari itu nilai r harus ditambahkan dari nilai R yaitu residual. Maka dari itu didapat nilai radd atau set point penambahan saat diberikan kesalahan sama dengan nilai

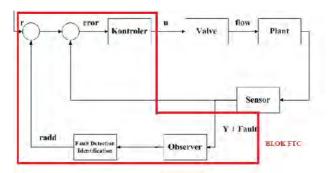
residual atau nilai R. Sehingga didapatkan perumusan yang baru sebagai berikut ;

$$r - Y = (r + radd) - (Y + R)$$
 (3.16)

Keterangan;

e = error

e' = error ketika terjadinya fault


r = set point

radd = penambahan set point ketika terjadinya fault

y = proses variable

R = residul (Kesalahan pada Sensor)

3.6 Skema Fault Tolerant Control

Gambar 3. 7 Skema FTC

Perancangan skema *fault tolerant control* dibentuk dari beberapa blok diagram yang berujuk dari proses yang terjadi pada plant tersebut. Disini dirajuk dari proses yang terjadi di *surface condensor plant* yang lebih tepatnya di penampung *steam* kondensat. Proses yang terjadi terdiri dari beberapa input yaitu berupa *steam turbin* dari kompresor turbin, *cooling water* dari *subsea* dan juga ada pengaruh pompa yang memompa hasil kondesat dari penampung menuju ke *ejector* namun dengan flow

yang dipompa konstan. Selanjutnya setelah terbentuk diagram blok proses secara general, dilakukan pembentukan diagram pengendalian *closed loop*. Pengendalian disini digunakan untuk mengatur flow pendingin kondensat yang kembali menuju penampung steam kondensat.

Langkah pembentukan *fault tolerant control* dilakukan pendekatan dengan *observer* yang bertujuan untuk mengatahui estimasi kesalahan yang diberikan yang berupa kesalahan bias dan sensitivitas. Nilai observer yang terdiri dari *gain a, b,* dan *c* yang mengeluarkan *gain k* atau gain pengamat disini harus sama seperti hasil respon plant utama. Dari kesalahan yang diberikan akan mendapatkan nilai residual dan diberi tambahan gangguan berupa *distrubusi gaussian* dengan nilai *range* tertentu yang didapatkan dari hasil pengukuran *real plant*.

Setelah diberikan kesalahan bias dan sensitivitas serta tambahan gangguan berupa distribusi gaussian. Selanjutnya membentuk suatu blok fault detection identification yang bertujuan untuk mengenali suatu sistem tersebut sedang mengalami suatu kesalahan, fault detection dapat dianologikan seperti on/off yang ketika terjadi kesalahan akan on dan dilanjutkan menuju blok rekonfigurasi kontrol. Rekonfigurasi kontrol adalah tahapan akhir dari fault tolerant control yang bertujuan untuk mengembalikan sistem menuju kontrol nominalnya saat terjadi kesalahan yang diberikan

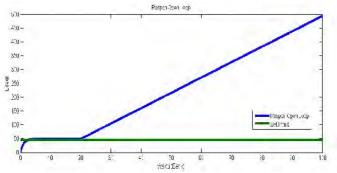
3.7 Uji Performansi

Uji performansi dilakukan untuk menguji algoritma *fault tolerant control* yang telah dibuat berjalan dengan baik atau tidak. Uji ini dilakukan ketika algoritma *fault tolerant control* sedang berjalan dan diberikan suatu kesalahan pada sensor. Kesalahan yang diberikan berupa kesalahan bias dan sensitivitas. Pada uji performansi ini juga dilakukan uji noise untuk mengetahui noise seberapa besar yang dapat diakomodasi oleh fault tolerant control serta dilakukan uji tracking set point ketika sudah mencapai kondisi mantapnya.

Halaman ini Sengaja dikosongkan

BAB IV ANALISA DATA DAN PEMBAHASAN

4.1 Validasi Pemodelan

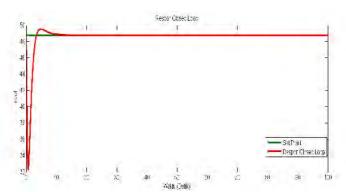

Dari rumus kesetimbangan massa menerangkan pemodelan *plant* yang sesuai dengan yang ada di lapangan, maka didapatkan fungsi transfer keselurahan dari hasil perhitungan seperti pada sebelumya. Setelah didapatkan hasil perhitungan model dan observer, dilakukan validasi untuk mengetahui eror yang didapat seberapa besar dibandingkan dengan kondisi mantapnya yaitu ketika 63% untuk pengukuran dari design awal pembuatan plant. Dari hasil perhitungan didapatkan nilai eror antara design plant awal dengan hasil pemodelan *plant* 0.44%. Untuk hasil *observer* yang didapatkan dari parameter *state space* juga dilakukan validasi dari hasil pengukuran lapangan saat kondisi mantapnya. Hasil yang didapatkan nilai eror antara *observer* dengan data pengukuran sebesar 0.71%.

Untuk validasi yang kedua yaitu antara perhitungan model dan observer dengan pengukuran yang langsung di lapangan yaitu dari tanggal 1 Januari hingga 7 Juli 2013. Hasil eror yang didapatkan antara hasil pemodelan dan pengukuran di lapangan yaitu sebesar 4.21%. Untuk eror yang didapatkan antara hasil observer dan pengukuran di lapangan sebesar 3.94%. Nilai eror yang didapatkan pada validasi kedua ini lebih besar dikarenakan data pengukuran yang didapat hanya merupakan keluaran dari proses variable namun input yang diberikan tidak diketahui karena di lapangan tidak ada perekaman input yang berupa nilai steam dan cooling water

Tabel 4. 1 Validasi Pemodelan

	Design	Lapangan	Model	Observer
Nilai Rata-Rata	63%	60,06%	62,71%	62.54%
Pengukuran				

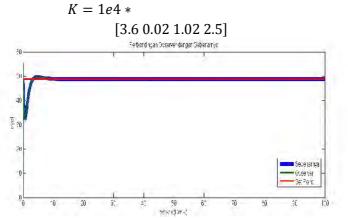
Setelah mendapatkan validasi dengan mengetahui eror antara pemodelan plant dan observer dengan pengukuran saat kondisi mantap, dilanjutkan dengan melakukan respon *open loop* yang dibandingkan dengan *set point* yang sebenarnya yang ada di lapangan. *Set point real plant* dilapangan yaitu sebesar 63% dengan ketinggian *chamber* sebesar 75cm. Jadi *set point* yang seharusnya didapatkan yaitu sebesar 48.75cm. Berikut hasil respon open loop yang diperoleh dari hasil simulasi;



Gambar 4. 1Respon Open Loop

Dari hasil respon open loop diperoleh bawah sistem mencapai nilai set point yang sebesar 48.75 cm kemudian pada detik ke 20 respon menjadi linier naik terus – menerus.

4.2 Respon PID Kontroler

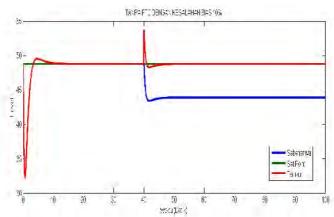

Pada respon kontroler yang menggunakan metode tuning Ziegler Nichols dengan parameter perhitungan yang ada pada bab sebelumnya, maka didapatkan nilai gain proportional sebesar 9.8 dan gain integral sebesar 3.8. Berikut hasil respon yang diperoleh saat menggunakan metode tuning Ziegler Nichols. Disini respon menggambarkan bahwa saat ditambahkannya suatu kontroler bisa mencapai set point yang diinginkan.

Gambar 4. 2 Respon Closed Loop

4.3 Observer

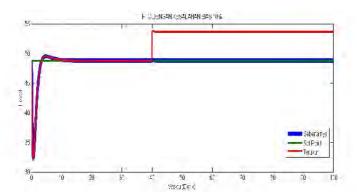
Perumusan hasil observer didapatkan dari hasil pencarian pole dari persamaan state space yang didapatkan pada bab sebelumnya. Berikut hasil gain observer yang didapatkan dari persamaan di bab 3 dan respon yang diperoleh dari hasil observer yang dibandingkan dengan keluaran respon closed loop. Dari hasil yang didapatkan bahwa hasil observer sudah sesuai dengan respon yang terukur. Berikut hasil nilai gain observer yang didapatkan dan hasil antara respon observer dibandingkan dengan respon yang terukur;

Gambar 4. 3 Hasil Observer dibandingkan Respon Closed Loop


4.4 Uji Performansi

4.4.1 Uji Kesalahan Bias dan Sensitivitas

Uji performansi disini bertujuan untuk mengetahui algoritma *Fault Tolerant Control* yang telah dibuat bisa berjalan dengan benar atau tidak jika ada kesalahan yang diberikan. Kesalahan disini berupa kesalahan bias dan sensitivitas serta variasinya.

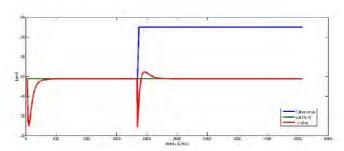

• Uji Kesalahan Bias +10%

Untuk menguji performansi dari sistem maka diberikan kesalahan pada proses *variable* berupa kesalahan bias sebesar 10% dari hasil set point yang telah ditentukan yaitu sebesar 48.75cm.

Gambar 4. 4 Respon PID tanpa algoritma FTC dengan kesalahan Bias 10%

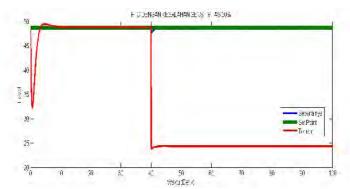
Pada **Gambar 4.4** adalah respon dari PID tanpa adanya algoritma *fault tolerant control* dan saat diberikan kesalahan bias sebesar 10% terhadap sensor. Respon yang didapat pada detik 40 grafik sebenarnya mengalami penurunan yang tidak sesuai dengan set point. Namun hasil dari respon yang terukur tetap di pada set point. Hal ini disebabkan oleh aksi kontrol yang bekerja berdasarkan pembacaan yang terukur sehingga menurunkan level yang sebenarnya menjadi tidak mencapai set point.

Gambar 4. 5 Respon PID dengan algoritma FTC dengan pemberian kesalahan Bias 10%


Untuk **Gambar 4.5** menerangkan respon kontroler dengan *fault tolerant control* pada keadaan diberikan kesalahan bias sebesar 10%. Dari respon yang didapatkan, kondisi sebenarnya mencapai set point yang telah ditentukan, sedangkan untuk kondisi yang terukur melebihi dari set point dikarenakan rekonfigurasi kontrol dari algoritma fault tolerant control yang menambahkan set point refrensi sebesar 10% untuk mengembalikan respon yang sebenarnya menuju ke set point yang ditentukan.

Tabel 4. 2 Pemberian Kesalahan Sensitivitas sebesar +10%

No	Parameter	PID tanpa Algoritma FTC	PID dengan Algoritma FTC
1	Maksimum Overshoot	49.5 cm	49.5 cm
2	Eror Steady State	4.8 cm	0 cm
3	Setling Time	40 detik	40 detik


• Uji Kesalahan Sensitifitas 50%

Pemberian uji kesalahan selain kesalahan bias yaitu dengan uji kesalahan sensitivitas. Disini dilakukan pemberian kesalahan sensitivitas sebesar 50%. Berikut hasil respon yang didapatkan saat dilakukan pemberian kesalahan sensitivitas tanpa adanya algoritma fault tolerant control;

Gambar 4. 6 Respon PID tanpa algoritma FTC dengan kesalahan Sensitivitas sebesar 50%

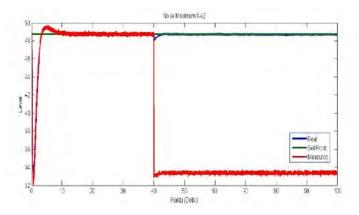
Hasil respon yang didapatkan pada **Gambar 4.6** saat diberikan kesalahan sensitivitas, untuk respon nilai sebenarnya terjadi kenaikan karena adanya kesalahan aksi kontrol yang dibaca oleh sensor atau dari nilai yang terukur. Sehingga respon sebenarnya mengalami penurunan menjauhi set point. Sedangkan untuk respon yang terukur tetap pada range set point karena belum ada rekonfigurasi kontrol baru yang diberikan.

Gambar 4. 7 Respon PID dengan algoritma FTC dengan pemberian kesalahan Sensitivitas 50%

Pada **Gambar 4.7** menunjukkan respon PID dengan algoritma *fault tolerant control* pada kesalahan sensitivitas yang diberikan sebesar 50%. Dari grafik respon yang didapat bahwa level yang sebenarnya tetap pada kondisi nominalnya yaitu di rentan set point. Hal ini dikarenakan karena adanya rekonfigurasi kontrol yang diberikan oleh algoritma fault tolerant control yang menambahkan dari set point refrensi saat terjadinya kesalahan yang diberikan. Efek yang lain, untuk level yang terukur mengalami penurunan menjauhi set point karena adanya efek rekonfigurasi kontrol yang diberikan oleg algoritma *fault tolerant control*.

Tabel 4. 3 Pemberian Kesalahan Sensitivitas sebesar 50%

No	Parameter	PID tanpa Algoritma FTC	PID dengan Algoritma FTC
1	Maksimum Overshoot	49.5 cm	49.5 cm
2	Eror Steady State	26.25 cm	0 cm
3	Setling Time	40 detik	40 detik

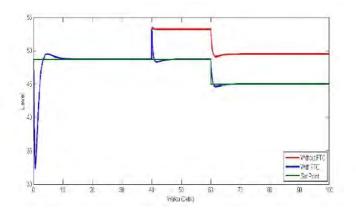

Untuk hasil uji pada Tabel 4.4 menerangkan bahwa ketika pemberian kesalahan bias yang semakin besar dengan nilai kesalahan sensitivitas sebesar 0% hasil nilai eror steady state yang didapatkan semakin besar pula. Untuk kesalahan senstivitas yang semakin besar dengan nilai bias tetap 0% hasil nilai steady state yang diperoleh juga semakin besar sama seperti dengan kesalahan bias. Untuk pemberian kesalahan yang bisa ditolerir oleh algoritma fault tolerant control adalah sebesar 100% untuk sensitivitas dan ketika melebihi itu algoritma fault tolerant control tidak bisa mengakomodasi kembali menuju ke set point. Untuk maksimal error steady state didapatkan nilai sebesar 54% dari set point karena nilai itu merupakan batas maksimum dari penampung steam kondensat di plant ini. Pemberian kesalahan bias dan sensitivitas pada keadaan realnya merupakan kesalahan pada sensor secara nyata. Untuk kesalahan bias pada kondisi nyatanya adanya perubahan nilai zero level pada penampung steam kondensatva sehingga terjadinya eror bias.Untuk kesalahan sensitivitas dikarenakan pada sensor displacer level transmitter memiliki beberapa bagian komponen mekanik yang saling berhubungan antara satu dengan yang lainnya. Contoh komponen yang sering terjadi kesalahan yaitu pada bagian spring atau pegas displacer yang selalu mengikuti perubahan level sehingga komponen ini sering mengalami keausan yang mengakibatkan sensitivitas dari sensor berkurang.

Tabel 4. 4 Nilai Eror Steady State untuk Berbagai Fault

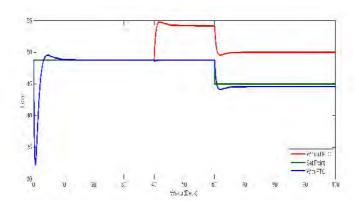
No	Kesalahan Bias	Kesalahan Senstivitas	Error Steady State
1	±10%	0%	10%
2	±20%	0%	20%
3	±30%	0%	30%
4	±40%	0%	40%
5	0%	50%	54%
6	0%	100%	~
7	±20%	50%	54%

4.4.2 Uji Noise

Uji noise ini dilakukan untuk bisa mengetahui seberapa besar nilai noise yang dapat diberikan terhadap algoritma fault tolerant control saat terjadinya kesalahan. Berikut hasil respon uji noise maksimal yang didapatkan saat terjadinya kesalahan.


Gambar 4. 8 Respon Uji Noise Maksimum sebesar 10⁻²

Pada Gambar 4.8 menunjukkan respon sistem level dengan algoritma fault tolerant control dengan noise maksimum yang diberikan terhadap sistem. Pada respon terlihat bahwa saat diberikan uji noise maksimum sebesar 10⁻²Watt algoritma fault tolerant control tetap bisa mengakomodasi untuk kembali menuju ke titik nominalnya atau set pointnya. Dari data pengukuran di lapangan didapatkan nilai standart deviasi sebesar 10^{-6} , nilai ini digunakan pada simulasi sebagai noise power. Algoritma fault tolerant control pada sistem level ini tidak bisa bekerja ketika noise power yang diberikan nilainya lebih besar dari 10⁻²Watt. Hal ini dikarenakan algoritma fault tolerant control membedakan antara noise dan kesalahan yang diberikan saat


kondisi noise maksimum, karena itu respon yang didapat tidak bisa kembali menuju ke nominalnya.

4.4.3 Uji Tracking Set Point

Uji tracking set point ini dilakukan untuk mengetahui kinerja atau performa dari algoritma fault tolerant control saat terjadinya perubahan nilai set point. Uji kesalahan yang diberikan juga sama yaitu kesalahan bias dan sensitivitas. Berikut hasil respon uji tracking set point yang telah dilakukan.

Gambar 4. 9 Respon PID dengan Perubahan Set Point Kesalahan Bias 10%

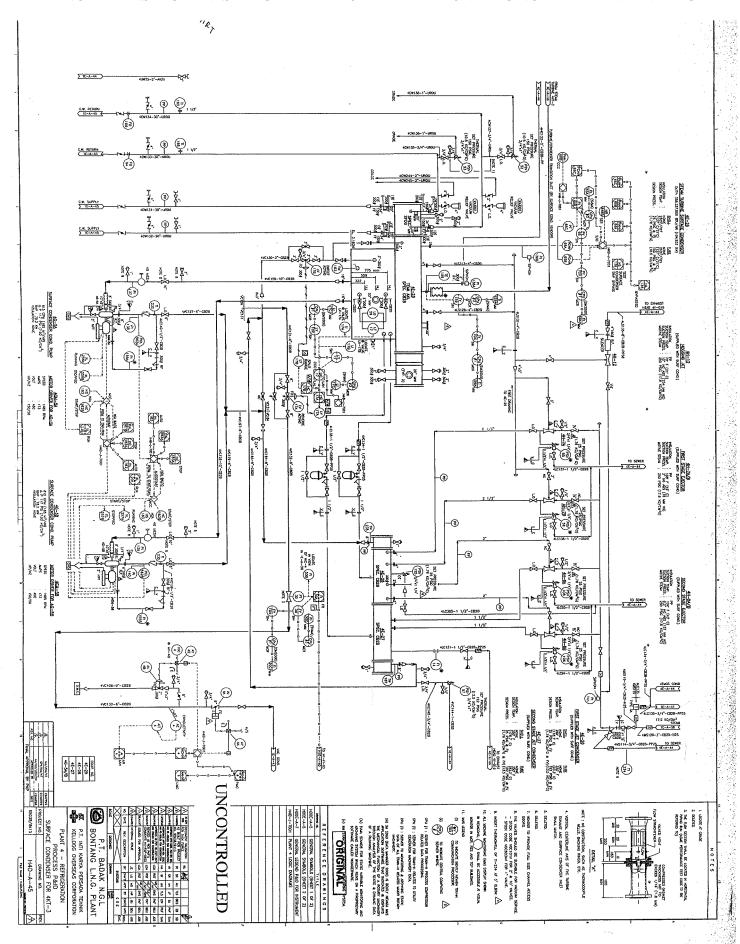
Gambar 4. 10 Respon PID dengan Perubahan Set Point Kesalahan Sensitivitas 10%

Hasil respon yang didapatkan pada Gambar 4.9 dan Gambar 4.10 merupakan respon saat adanya perubahan set point dan saat diberikan kesalahan berupa bias dan sensitivitas. Kesalahan yang diberikan pada detik 40 kemudian pada detik 60 terjadi perubahan set point menjadi 45 cm. Untuk kesalahan bias yang didapatkan pada Gambar 4.9 menerangkan bahwa ketika terjadi perubahan set point algoritma fault tolerat control bisa mengakomodasi kesalahan dan menuju kembali ke set point yang telah ditentukan. Sedangkan pada Gambar 4.10 merupakan respon ketika pemberian kesalahan sensitivitas, disini algoritma fault tolerant tetap bisa mengakomodasi kesalahan tetapi tidak tepat menuju set point. Namun lebih baik dari pada hanya menggunakan PID konvensional yang tidak mendekati dari set point yang ditentukan

BAB V KESIMPULAN DAN SARAN

5.1. Kesimpulan

Kesimpulan yang dapat diambil dari penelitian tugas akhir ini mengenai perancangan *active fault tolerant control* pada penampung *steam* kondensat dari *surface* kondensor di PT Badak Bontang NGL dengan kesalahan pada sensor adalah sebagai berikut:

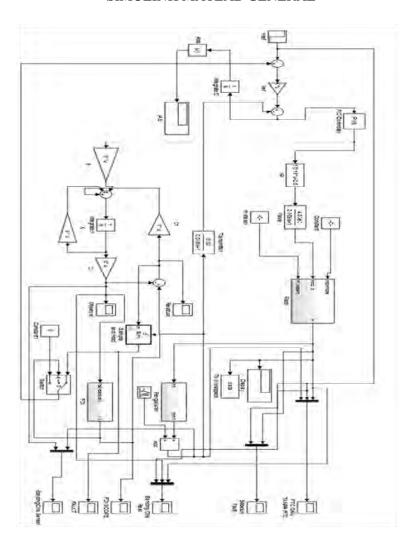

- Berdasarkan data pengukuran dilapangan didapatkan nilai stardard deviasi pengukuran level kondensat sebesar 1x10⁻⁶.
- Hasil estimasi observer yang dirancang memiliki nilai eror terhadap hasil design plant sebesar 0.71% berdasarkan nilai sebenarnya.
- Hasil validasi pemodelan yang dirancang memiliki nilai eror terhadap hasil design plant sebesar 0.44% berdasarkan nilai sebenarnya.
- Berdasarkam uji performansi yang telah dilakukan, algoritama *active fault tolerant control* bisa mengkompensasi kesalahan sensor yang berupa bias dan senstivitas gangguan maksimal sebesar 1x10⁻².
- Dengan adanya algoritma active fault tolerant control hanya mempengaruhi eror steady state, sedangkan performansi tetap dalam artian tergantung pada algoritma kontrol nominalnya.

5.2. Saran

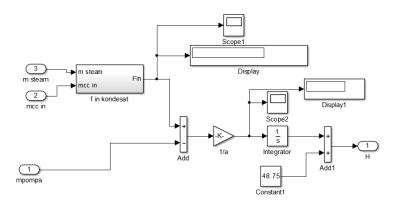
Dalam proses penelitian tugas akhir terhadap beberapa saran penelitian untuk kedepannya. Berikut saran yang dapat diberikan, diantaranya :

• Untuk kondisi *noise* yang berubah, algoritma Fault Detection and Identification (FDI) dapat menggunakan *tracehold* yang adapatif.

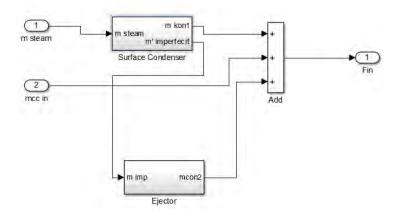
- Dalam pengembangan kedepannya bisa diaplikasikan terhadap real plant skala laboratorium dengan secara real time agar bisa diketahui fault tolerant bisa bekerja dengan baik atau tidak.
- Dalam skala industri kedepanya fault tolerant control bisa digunakan sebagai suatu sistem keamanan sehingga dibutuhkan terhadap perhitungan realibility dari suatu sistem.

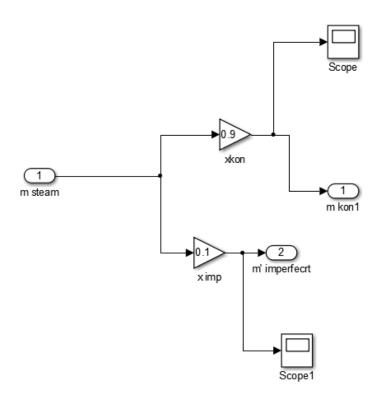


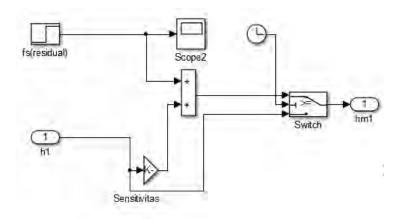
	SURI	ACE CONT	NENSED C	PECIFICATION		
	Client : Pertamina	AOL COM	JENSER SI	-ECIFICATION	SHEET	
	Project: Bontang LNG Expansion Pr Job No.: 95038 / 6413	oject Train-H	Doc. 1	lo : DS-H04-015/0	20/025 Page .	4 Of 11
					97-307	I CA
4N A	Service of unit : STEAM SURFACE	CONDENSER		l+ *1	. : H 4E-25	J.,
	Size: _ Model 94 11	3/ 25 J mm	Type: AXUAK	E (Hor) ; Connec		
<u>4</u> \	Surf/Unit (Eff): 7,3075.3	rm² ر	; Shells/Unit :	1 ; Surf/Sh		rallel Series
	Fluid Allocation		SI	IELL SIDE		75.3 · m²
			INLET	OUTLET	, INLET	E SIDE
۸	Fluid Name		_WE	TSTEAM		OUTLET WATER
717	Fluid Quantity, Total		<u> </u>	00 4 1/2-1/2-1		4 m³/hr :
	Vapor (In/Out)				· · · · · · · · · · · · · · · · · · ·	
	Liquid					
	Steam		154,910			··
Λ	Water		11,660	166,570		
47	Noncondensable		€ 20.4	****	_** +	
<u> </u>	Temperature (In/Out)	*C	51.9	41.97	34 `	43.74
	Specific Gravity				1.03 .	
	Viscosity, Liquid	сР			0.85	
	Molecular Weight, Vapor					-i
	Molecular Weight, Noncondensable Specific Heat					
	Thermal Conductivity	W.h/kg*C			AVG	AVG
	Latent Heat	W/m°C				
	Inlet Pressure	W.h/kg			•	
Λ	Velocity			mHg_(ABS)	2.1 K	(g(cm²G
Λ	PressureDrop, Allow./Calc.	m/s kg/cm²		93.66		3.06
ZN	Fouling Resistance (Min.)	- Agrain		<u>/</u>	. 1.0 ي در د	/ 0.98
2/1	Heat Exchanged :	87,125,456		% 1. 57 خ		
2		286.6		kcal/hr; LMTD (Corre		
		UCTION OF ON	E CHELL		004.5	W/m²· °C
		Shell Side	Tube Side	Sketch (Bun	dle/Nozzle Orienta	tion)
	Design/Test Pressure kg/cm*G	1.76&FV/Flood	10.5&FV/Code			
	Design Temperature *C	126.7/21	126,7/21			
Λ	No. Passes per Shell	(1)	€23			
3 \(\bar{\lambda}\)	Corrosion Allowance mm	3.0	NONE	_		
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Connection In mm	1829x3048	E 2/34"/125#FF	3 150# FF AU	vcuA	
21	Size & Out	2-16"	2/34"/125#FF	150" FF AW	KWA	. 1
Δ	Rating Intermediate Tube No. (6.858) OD 19.05 mm;				America.	
4	Tube No. (, 6,656.) OD 19.05 mm;	Thk (Min) 0.711	mm; Length: 7	.62 m:Pitch Specia	I mm (30):/	√ 60 = 90 - 45
Λ	Tube Type : Plain-Seal Welded to Shell SA-516-70		Tubes Materi	al TITANIUM	65565	
		D 2,845) (Note 5 Page 7	mm ! Shell (. (Integ.) (Remov.)
(X)	Tubesheet-Stationary K.C.S Cl	ad with Titanium	Ondani	el Cover K.C.S W/Hin	ge (see note 5 pa	ge 7 of 11)
///	7-2-2-3 Control of Con	ad with manight		heet-Floating		
4	Baffles-Cross -		Imping	ement Protection : Inc	luded (SA-516-70)	-
Δ	Baffles-Long SA- 516-70	ype		(Diam/Area)	Spacing:c/c	Inletmm
<i>1</i> 1	Supports-Tube : SA-516-70	, U-Ben	Seal T	Tania		
Δ	Bypass Seal Arrangement	3 0-0611			Type Plate	
Δ	Expansion Joint Expansion Pro	vision Included		ubesheet Joint \ ROLI Flexible End Type .		DEU
A A	pv iniet Nozzie		Entrance	Trexible Life Type		
ZZ. <u>(1)</u>	Gaskets - Shell Side		Tube S	ide Peroxide Cured	Bundle Exit	
1		DE); ASME VIII (NV 17tijee eree			
	Weight/Shell (60,800)			:)	TEMA Class	R
	Remarks: 1.) Surface Condenser Desi	on shall include F	with Water	`	Bundle	N.A Kg
	2.) Steam Flow at Case 1 P	ower (36681 kW)	x 1.1	ouppor Design.		.
	3.) Inlet Enthaply = 574.9 kg	al/kg	·- · · · · · · · · · · · · · · · · · ·			
l						~ · · ·

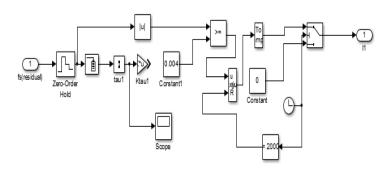

LAMPIRAN CDATA SHEET VALVE

DATA MR N		ET NO. : H4J028-34 : PGH-MR-J-028		REV	DA 01-01)4	CONTR DESCRIPT Issued For		BY knl	CHK DJR	APP DJR
PRO:	IECT I	NO. : 95038/6413										
	1	Service Description	4E-25 STEA	M TU	ID DTNE	21100	ACE (CONDENSED				
G	2	P & ID / Ref Dwg. No.	H4E-A-45	IMI TO	INDINE 3	JUKI	ACE (CONDENSER				
E	3	Line / Equipment No.	4VC130-3"-	-CB2E	B / 4F-2	5						
N	4	Pipe Line Size	3	ODZ	inche			Schedule STD)			
	5	Hazardous Area Class	Class 1				roup (Division	II		
			Units		M	inim		Normal	м	aximum	Ci-	
Р	6	Flow Rate	m³/hr		M	inim	ium	Normal	52	aximum		ing
R	7	Inlet Pressure	kg/cm² A					NO	8.54			
0	8	Outlet Pressure	kg/cm² A					NOR	0.14			
С	9	Inlet Temperature	°C						52			
Е	10	Diff, Pressure	kg/cm²					FLOW	8.4			
S	11	Calc. Flow Coef.	Cv						25.2	5		
5	12	Calc. Sound Level	dB (A)						57.1			
8	13	Fluid Name	LIQUID				22	Sp. Heats Ratio				
	14	Fluid	LIQUID				23	Critical Pressure		225 kg/	cm² A	
S	15	Opr. Density					24	Critical Tempera		Kg/		
Е	16	Opr. Sp. Gravity	0.99 SG				25	Base Sp. Gravit				
R	17	Opr. Mol. Weight					26	Base Pressure				
V	18	Opr. Viscosity	1 cP				27	Base Temperat	ure			
c	19	Opr. Vapor Pressure	0.13 kg/cm	² A			28	Max. Shutoff Diff.		13.5 kg	/cm²	
E	20	Opr. Compress Fact.					29	Max. Allowable	SPL.			
	21	Design.Temp	80 °C				30	Design.Press		13.5 kg	/cm² G	
	31	Body Type	GLOBE				42	Trim Size No.	Port	(*1)		(*1)
	32	Bonnet Type	STD				43	Characteristic		LINEAR		(-/
V A	33	Conn. Size - Type	3" - RF			44	Plug Type			V. TRIM /		
L	34	Nom Press Rating	300#			45	Guide Type					
V	35	Packing Type	V-RING			T	46	Trim Spec (Lett	er)			
Е	36	Flow Direction			R		47	Act. Push To F			CLC	SE
В	37	Body-Bonnet Material	A 216-WCC	;		M	48	Leak, SCCM Te	st Sp.			
o	38	Packing Material	TFE				49	Class No.		IV		
D Y	39	Plug/Seat Material	(316/ALLOY (ALLOY6)	/6) /			50	Shaft Size Ma	terial		316	SS
	40	Trim Material	SS				51	Flow Coef.		75 (Cv)		
	41	Disc Material					52	Bearing Type				
	53	Actuator Type	DIAPHRAGN 16 SPRING	4			70	Positioner Type		PNEUMA	TIC	
	54	Model No.	DIAPHRAGM				71	Positioner Supp	,		1 / -	
	55 56	Actuator Size On Decr. Air Stem	16			Α	72	Positioner Input Positioner Outp		0.2-1.0	kg/cm²	
	57	Max. Thrust B. Away				U	74	Positioner Outp		DIRECT		
A	58	Max. Thrust Opr.				Х	75	Pos ByPass G		(*1)	YES	
C T	59	Max. Thrust Supply				Ī	76	Airset-Mntd. & 7	_	YES	160	
Ü	60	Spring Range Nom.				L	77	Model No.		4610B		
A	61	Air Supply				I	78	Manufacturer		MASON	ILAN	
T	62	Bench Set				A	79	I/P Tag no.		H4-LY-1		
0	63	Input Signal	1.5-3.2 kg/	cm²		R I	80	Solenoid Type/I	Vema			
R	64	Input Maximum				Ė	81	Energized				
	65	Ovride, Type & Mnt.	NO			S	82	Solenoid Mfg./N	1odel			
	66	Closing Time (Min.)					83	Solenoid Tag				
	67	Adj. Travel Stop					84	LS Type/Nema				
	68 69	Fail-Safe Action	OPEN				85 86	LS Mfg./Model LS Tag				
lotes	:	o Advise 2. Act. Lmt Dp : 18 kg	/cm²				- 30	_ 10 Tug				
		ent Type Tag			M	nf-	cturer		odel Numbe		S/N	
Len		ent rype I ad	INII									


LAMPIRAN D-1SIMULINK MATLAB GENERAL


LAMPIRAN D-2 SIMULINK MATLAB PLANT


LAMPIRAN D-3SIMULINK MATLAB FLOWRATE YANG MASUK


LAMPIRAN D-4 SIMULINK MATLAB PEMBENTUKAN FRAKSI KONDENSAT

LAMPIRAN D-5 SIMULINK MATLAB BLOK PEMBERIAN KESALAHAN BERUPA BIAS DAN SENSITIVITAS

LAMPIRAN D-6 SIMULINK MATLAB BLOK FAULT DETECTION IDENTIFICATION (FDI)

LAMPIRAN E

PERHITUNGAN STANDARD DEVIASI KEADAAN OPERASI DI TANGKI STEAM KONDENSAT DARI BULAN 1 JANUARI – 7 JULI 2013 DI PT BADAK BONTANG NGL KALIMANTAN TIMUR

	Jam	Level(%)	Level (cm)	(X-Xbar) ²
1	2013-01-01 14:00:00	0,556952059	0,4309748	1283,983406
2	2013-01-02 13:00:00	2,939599752	2,2746903	1155,252033
3	2013-01-03 12:00:00	3,130906582	2	1174,000384
4	2013-01-04 11:00:00	2,849164009	2,2047102	1160,014034
5	2013-01-05 10:00:00	2,592731953	2,0062807	1173,570025
6	2013-01-06 09:00:00	5,238515854	4,0536135	1037,488966
7	2013-01-07 08:00:00	3,686161995	2,8523873	1116,315084
8	2013-01-08 07:00:00	2,568214417	1,9873088	1174,870241
9	2013-01-09 06:00:00	2,746197701	2,1250339	1165,447769
10	2013-01-10 05:00:00	2,47350359	1,9140206	1179,899716
11	2013-01-11 04:00:00	42,75567627	33,084749	10,10565635
12	2013-01-12 03:00:00	43,02937698	33,296542	8,803962992
13	2013-01-13 02:00:00	46,01819611	35,609318	0,428200856
14	2013-01-14 01:00:00	45,84507751	35,475358	0,621466388
15	2013-01-15 00:00:00	44,80821228	34,673021	2,530223375
16	2013-01-15 23:00:00	45,39572525	35,127645	1,290597007
17	2013-01-16 22:00:00	45,57549286	35,26675	0,99388651
18	2013-01-17 21:00:00	44,37643814	34,33891	3,704772386

	ı			
19	2013-01-18 20:00:00	44,57665253	34,493838	3,132371608
20	2013-01-19 19:00:00	45,20514297	34,98017	1,647420603
21	2013-01-20 18:00:00	44,17463303	34,182752	4,330299834
22		,	,	,
23	2013-01-21 17:00:00	47,30381775	36,604145	0,115910078
24	2013-01-22 16:00:00	44,70671082	34,594479	2,78626332
25	2013-01-23 15:00:00	44,03378296	34,073761	4,795786276
	2013-01-24 14:00:00	45,17970276	34,960484	1,698342536
26	2013-01-25 13:00:00	44,89890671	34,743202	2,311881861
27	2013-01-26 12:00:00	43,78242493	33,879257	5,68551411
28	2013-01-27 11:00:00	43,26030731	33,475238	7,775460063
29	2013-01-28 10:00:00	43,6556015	33,78112	6,163147776
30	2013-01-29 09:00:00	46,52297592	35,999922	0,06957311
31	2013-01-30 08:00:00	43,52693176	33,681554	6,667419377
32	2013-01-31 07:00:00	42,86371231	33,168349	9,581130851
33	2013-02-01 06:00:00	44,02028275	34,063314	4,841649992
34	2013-02-02 05:00:00	42,39872742	32,808539	11,93806099
35	2013-02-03 04:00:00	46,05846024	35,640475	0,388395457
36	2013-02-04 03:00:00	49,02272415	37,934251	2,790776849
37			,	,
38	2013-02-05 02:00:00	49,61690903	38,394037	4,538381544
39	2013-02-06 01:00:00	50,70750046	39,237947	8,846209387
	2013-02-07 00:00:00	52,78594208	40,846265	21,00000012
40	2013-02-07 23:00:00	51,15843964	39,586888	11,04365039
41	2013-02-08 22:00:00	50,14955521	38,806203	6,464379668

42	2013-02-09 21:00:00	48,52967072	37,552721	1,661604507
43	2013-02-10 20:00:00	49,0500946	37,95543	2,861988807
44	2013-02-11 19:00:00	48,76541901	37,735146	2,165184715
45	2013-02-12 18:00:00	48,2390976	37,327873	1,132487892
46	2013-02-13 17:00:00	49,22694016	38,092275	3,343727215
47	2013-02-14 16:00:00	48,65402985	37,648952	1,918952669
48	2013-02-15 15:00:00	49,40444183	38,229628	3,864914634
49	2013-02-16 14:00:00	46,76903915	36,190328	0,005381848
50	2013-02-17 13:00:00	47,52477264	36,775122	0,2615634
51	2013-02-18 12:00:00	47,61063004	36,841559	0,333933691
52	2013-02-19 11:00:00	49,21903229	38,086156	3,321385753
53	2013-02-20 10:00:00	39,32820892	30,432543	34,00226806
54	2013-02-21 09:00:00	39,80483627	30,801361	29,83702274
55	2013-02-22 08:00:00	37,20680237	28,790978	55,84140928
56	2013-02-23 07:00:00	48,38132858	37,437933	1,378848588
57	2013-02-24 06:00:00	45,58060455	35,270706	0,986015419
58	2013-02-25 05:00:00	46,04686737	35,631505	0,39965722
59	2013-02-26 04:00:00	45,35310364	35,094664	1,36662054
60	2013-02-27 03:00:00	45,95439148	35,559946	0,495254502
61	2013-02-28 02:00:00	43,75314331	33,856599	5,794082292
62	2013-03-01 01:00:00	44,04715729	34,08411	4,750565443
63	2013-03-02 00:00:00	44,20478821	34,206086	4,23372962
64	2013-03-02 23:00:00	43,48844147	33,65177	6,822119882
	2013-03-02 23.00.00	+3,+00++1+/	33,03177	0,022117002

65	2013-03-03 22:00:00	47,17295074	36,502879	0,057211644
66	2013-03-04 21:00:00	44,0279808	34,069271	4,81547095
67	2013-03-05 20:00:00	43,30323029	33,508452	7,591330863
68	2013-03-06 19:00:00	24,77239418	19,169115	292,2244757
69	2013-03-07 18:00:00	43,52642059	33,681159	6,669462249
70	2013-03-08 17:00:00	58,81816483	45,514056	85,56929185
71	2013-03-09 16:00:00	58,70018005	45,422758	83,8885519
72		·		
73	2013-03-10 15:00:00	57,42731476	44,437803	66,81614118
74	2013-03-11 14:00:00	54,74808502	42,36459	37,22098819
75	2013-03-12 13:00:00	51,75990295	40,052306	14,35361773
76	2013-03-13 12:00:00	51,86623383	40,134586	14,98384129
77	2013-03-14 11:00:00	49,42674255	38,246884	3,933062898
	2013-03-15 10:00:00	51,7456665	40,04129	14,270266
78	2013-03-16 09:00:00	49,25002289	38,110137	3,409369343
79	2013-03-17 08:00:00	47,1751976	36,504617	0,058046396
80	2013-03-18 07:00:00	42,7299614	33,064851	10,23256401
81	2013-03-19 06:00:00	43,8523407	33,933359	5,430438476
82	2013-03-20 05:00:00	44,42163086	34,373881	3,571374175
83	2013-03-21 04:00:00	45,22138596	34,992739	1,615313554
84	2013-03-22 03:00:00	38,32536316	29,656531	43,65453656
85	2013-03-23 02:00:00	-2,68724966	-2,079419	1470,19396
86	2013-03-24 01:00:00	47,39151382	36,672005	0,166721752
87	2013-03-25 00:00:00	50,49008179	39,069706	7,873732243
	2013 03 23 00.00.00	20,17000177	57,007700	.,073732243

88	2013-03-25 23:00:00	50,12116241	38,784233	6,353141176
89	2013-03-26 22:00:00	49,58293915	38,367751	4,427074947
90	2013-03-27 21:00:00	34,45479202	26,661446	92,20306655
91	2013-03-28 20:00:00	35,1792984	27,222076	81,75076296
92		·	,	,
93	2013-03-29 19:00:00	34,99606323	27,080287	84,33487175
94	2013-03-30 18:00:00	34,71716309	26,864471	88,34529074
95	2013-03-31 17:00:00	34,77229309	26,907132	87,54516707
	2013-04-01 16:00:00	34,83827972	26,958193	86,59226235
96	2013-04-02 15:00:00	35,01452255	27,094571	84,07272439
97	2013-04-03 14:00:00	34,427845	26,640594	92,60395063
98	2013-04-04 13:00:00	35,34751892	27,352247	79,41380228
99	2013-04-05 12:00:00	34,91344452	27,016356	85,51316979
100	2013-04-06 11:00:00	34,84373856	26,962417	86,51366557
101	2013-04-07 10:00:00	35,1530304	27,20175	82,1187436
102	2013-04-08 09:00:00	35,45161438	27,432797	77,98465623
103	2013-04-09 08:00:00	34,81811523	26,942589	86,88290196
104				,
105	2013-04-10 07:00:00	34,54049683	26,727765	90,93383879
106	2013-04-11 06:00:00	35,10687637	27,166035	82,76730296
	2013-04-12 05:00:00	50,54684448	39,11363	8,122161787
107	2013-04-13 04:00:00	50,76330566	39,281129	9,104946493
108	2013-04-14 03:00:00	50,08197021	38,753906	6,201178357
109	2013-04-15 02:00:00	44,90609741	34,748766	2,294992122
110	2013-04-16 01:00:00	29,39718246	22,74782	182,6787211
			,	•

111	2013-04-17 00:00:00	59,24550247	45,844734	91,79642445
112	2013-04-17 23:00:00	60,18296814	46,570154	106,2232192
113	2013-04-18 22:00:00	59,47568893	46,022855	95,24131198
114	2013-04-19 21:00:00	59,97852325	46,411953	102,9872525
115	2013-04-20 20:00:00	60,06588745	46,479556	104,3639339
116	2013-04-21 19:00:00	59,88729858	46,341362	101,5594932
117				
118	2013-04-22 18:00:00	60,99077606	47,195243	119,4988813
119	2013-04-23 17:00:00	59,16744995	45,784336	90,64272456
	2013-04-24 16:00:00	60,45563507	46,781146	110,6169058
120	2013-04-25 15:00:00	60,32020569	46,67635	108,4235017
121	2013-04-26 14:00:00	59,15452576	45,774335	90,45239517
122	2013-04-27 13:00:00	60,21077728	46,591673	106,6672515
123	2013-04-28 12:00:00	60,61161804	46,901847	113,170412
124	2013-04-29 11:00:00	60,39376831	46,733273	109,6121913
125	2013-04-30 10:00:00	60,09837341	46,504694	104,8781776
126	2013-05-01 09:00:00	59,71927643	46,211345	98,95585711
127	2013-05-02 08:00:00	60,36700439	46,712563	109,1789664
128	2013-05-03 07:00:00	59,86024475	46,320427	101,1379891
129	2013-05-04 06:00:00	60,23669434	46,611728	107,0819063
130	2013-03-04 00.00.00	00,23007434	70,011/20	107,0017003
131	2013-05-05 05:00:00	60,24211502	46,615922	107,1687352
132	2013-05-06 04:00:00	60,0834465	46,493143	104,6417318
	2013-05-07 03:00:00	59,16008759	45,778639	90,53427746
133	2013-05-08 02:00:00	60,33306122	46,686297	108,6307654

1			
2013-05-09 01:00:00	60,2851181	46,649199	107,8588083
2013-05-10 00:00:00	60,37423325	46,718157	109,2958945
2013-05-10 23:00:00	60,19685364	46,580899	106,444815
2013-05-11 22:00:00	60,42240906	46,755436	110,0767464
2013-05-12 21:00:00		45,677786	88,62522858
2013-05-13 20:00:00		45,864942	92,18406722
			93,50408589
	·	,	111,9134984
	,	,	99,61876898
	ŕ	,	106,0451361
	,		101,4092036
		,	100,4355959
2013-05-20 13:00:00		,	93,45819334
2013-05-21 12:00:00	59,31871033	45,901383	92,88514556
2013-05-22 11:00:00	60,62882233	46,91516	113,4538374
2013-05-23 10:00:00	60,22295761	46,601098	106,8620281
2013-05-24 09:00:00	60,27839279	46,643994	107,7507408
2013-05-25 08:00:00	59,57747269	46,101616	96,78480322
2013-05-26 07:00:00	59,94897461	46,389087	102,5236948
2013-05-27 06:00:00	60,67543411	46,951229	114,2235066
2013-05-28 05:00:00	60,92254257	47,142444	118,347303
2013-05-29 04:00:00	60,23085022	46,607206	106,9883342
2013-05-30 03:00:00	60,61933899	46,907822	113,297564
	2013-05-10 00:00:00 2013-05-10 23:00:00 2013-05-11 22:00:00 2013-05-12 21:00:00 2013-05-13 20:00:00 2013-05-14 19:00:00 2013-05-15 18:00:00 2013-05-16 17:00:00 2013-05-17 16:00:00 2013-05-18 15:00:00 2013-05-20 13:00:00 2013-05-21 12:00:00 2013-05-22 11:00:00 2013-05-23 10:00:00 2013-05-24 09:00:00 2013-05-25 08:00:00 2013-05-26 07:00:00 2013-05-27 06:00:00 2013-05-28 05:00:00 2013-05-29 04:00:00	2013-05-10 00:00:00 60,37423325 2013-05-10 23:00:00 60,19685364 2013-05-11 22:00:00 60,42240906 2013-05-12 21:00:00 59,02975464 2013-05-13 20:00:00 59,27161789 2013-05-14 19:00:00 59,36013794 2013-05-15 18:00:00 60,53506088 2013-05-16 17:00:00 59,76226425 2013-05-17 16:00:00 60,17179871 2013-05-18 15:00:00 59,87765884 2013-05-19 14:00:00 59,87765884 2013-05-20 13:00:00 59,35707092 2013-05-21 12:00:00 59,31871033 2013-05-22 11:00:00 60,62882233 2013-05-23 10:00:00 60,22295761 2013-05-24 09:00:00 60,27839279 2013-05-25 08:00:00 59,57747269 2013-05-26 07:00:00 59,94897461 2013-05-28 05:00:00 60,92254257 2013-05-29 04:00:00 60,23085022	2013-05-10 00:00:00 60,37423325 46,718157 2013-05-10 23:00:00 60,19685364 46,580899 2013-05-11 22:00:00 60,42240906 46,755436 2013-05-12 21:00:00 59,02975464 45,677786 2013-05-13 20:00:00 59,27161789 45,864942 2013-05-14 19:00:00 59,36013794 45,93344 2013-05-15 18:00:00 60,53506088 46,842607 2013-05-16 17:00:00 59,76226425 46,244609 2013-05-17 16:00:00 60,17179871 46,561511 2013-05-18 15:00:00 59,87765884 46,333903 2013-05-19 14:00:00 59,81503677 46,285445 2013-05-20 13:00:00 59,31871033 45,901383 2013-05-21 12:00:00 59,31871033 45,901383 2013-05-22 11:00:00 60,62882233 46,91516 2013-05-24 09:00:00 60,27839279 46,643994 2013-05-25 08:00:00 59,57747269 46,101616 2013-05-26 07:00:00 59,94897461 46,389087 2013-05-28 05:00:00 60,67543411 46,951229 2013-05-2

	T .			
157	2013-05-31 02:00:00	59,71153259	46,205353	98,83667526
158	2013-06-01 01:00:00	60,86296082	47,096339	117,3463002
159	2013-06-02 00:00:00	59,81028748	46,28177	100,3619484
160	2013-06-02 23:00:00	61,43076324	47,53571	127,0584497
161	2013-06-03 22:00:00	60,33602142	46,688588	108,6785194
162	2013-06-04 21:00:00	-0,597784281	-0,462571	1348,818186
163	2013-06-05 20:00:00	50,96455002	39,436854	10,06897729
164	2013-06-06 19:00:00	49,28166962	38,134625	3,500402651
165	2013-06-07 18:00:00	50,27144241	38,900521	6,952882573
166	2013-06-08 17:00:00	50,60595703	39,159372	8,384977239
167	2013-06-09 16:00:00	49,19387817	38,066691	3,25081783
168	2013-06-10 15:00:00	49,9742775	38,670572	5,793085183
169	2013-06-11 14:00:00	50,43508148	39,027146	7,636696744
170	2013-06-12 13:00:00	48,92074585	37,855339	2,533349898
171	2013-06-13 12:00:00	50,16694641	38,819661	6,532992446
172	2013-06-14 11:00:00	49,34410858	38,182941	3,683528888
173	2013-06-15 10:00:00	49,16806412	38,046716	3,179186303
174	2013-06-16 09:00:00	49,40646362	38,231192	3,871068425
175	2013-06-17 08:00:00	50,29715347	38,920416	7,058200385
176	2013-06-18 07:00:00	49,67259979	38,437131	4,723849243
177	2013-06-19 06:00:00	49,96066284	38,660037	5,742482431
178	2013-06-20 05:00:00	49,23609543	38,09936	3,369686414
179	2013-06-21 04:00:00	50,35417938	38,964544	7,294615432

180	2013-06-22 03:00:00	50,47090912	39,05487	7,790692246
181	2013-06-23 02:00:00	49,57217026	38,359417	4,392077803
182	2013-06-24 01:00:00	49,5463562	38,339442	4,308751776
183	2013-06-25 00:00:00	49,94112015	38,644914	5,670234428
184	2013-06-25 23:00:00	50,0583725	38,735645	6,110568393
185	2013-06-26 22:00:00	50,34817886	38,9599	7,269555459
186	2013-06-27 21:00:00	49,88361359	38,600415	5,460289707
187	2013-06-28 20:00:00	49,55097961	38,34302	4,323617176
188	2013-06-29 19:00:00	49,79080582	38,5286	5,129820677
189	2013-06-30 18:00:00	49,17671585	38,053411	3,203105123
190	2013-07-01 17:00:00	49,52833557	38,325498	4,251055397
191	2013-07-02 16:00:00	49,78594208	38,524836	5,112786372
192	2013-07-03 15:00:00	49,70611572	38,463066	4,837258055
193	2013-07-04 14:00:00	49,15570831	38,037155	3,145182529
194	2013-07-05 13:00:00	50,13192368	38,79256	6,395188493
195	2013-07-06 12:00:00	49,07482147	37,974564	2,927094084
196	2013-07-07 11:00:00	50,42765808	39,021402	7,604981494

$$\bullet \qquad S = \sqrt{\sum \frac{(x-\dot{x})^2}{n-1}}$$

• $\dot{x} = 46.4780$

S = 0.00412

BIODATA PENULIS

Penulis lahir di kota Bontang, Kalimatan Timur pada 22 Nopember 1991 dengan nama Rhadityo Shakti Budiman sebagai anak kedua dari dua bersaudara dari Ayahanda Muchid dan Ibunda Lies Wahyuningsih. Riwayat pendidikan penulis adalah SD YPVDP Bontang tahun (1998 – 2004), SMPN 39 Surabaya tahun (2004 – 2007), SMAN 16 Surabaya tahun (2007 –

2010). Penulis diterima sebagai mahasiswa S1 Teknik Fisika ITS pada tahun 2010 hingga saat ini dan mengambil bidang minat rekayasa instrumentasi dan kontrol. Untuk menghubungi penulis, dapat memalui email dan no telepon:

<u>srhadityo@yahoo.com</u> atau <u>didid.jeleg.banget@gmail.com</u> +62 856 4535 6300 atau +62 813 3058 1790

"Terus belajar menggapai cita-cita, bahagiakan kedua orangtua serta keluarga yang dicinta dan jangan lupa berdoa kepada Allah SWT untuk sukses kita semua"