ANALISA PERBANDINGAN KETELITIAN PENENTUAN POSISI DENGAN GPS RTK-NTRIP DENGAN BASE CORS BADAN INFORMASI GEOSPASIAL (BIG) DARI BERBAGAI MACAM MOBILE PROVIDER

(STUDI KASUS : SURABAYA)

Nama Mahasiswa : Atika Sari NRP : 3510100041

Dosen Pembimbing : Khomsin, ST, MT

Abstrak

Penentuan posisi dalam pemetaan menggunakan penginderaan jauh dan foto udara memerlukan pengamatan GPS geodetik sebagai titik kontrol vang memilki ketelitian tinggi. Sistem koreksi data penentuan posisinya diperoleh dari transmisi data dari stasiun base ke receiver. Dalam perkembangan sekarang ini metode pengukuran RTK telah menggunakan metode NTRIP (Networked Transport of RTCM via Internet Protocol) sebagai metode transmisi koreksi data dengan menggunakan intenet sehingga pengukuran tersebut masih bisa dilakukan dengan jarak yang lebih jauh dari base-nya. Pada metode NTRIP ini menggunakan metode pengiriman koreksi data GNSS melalui jaringan internet. Pengembangan sistem dengan fasilitas akses internet mobile melalui general packet radio service (GPRS) dan global system for mobile (GSM), menyediakan metode cepat dan handal untuk mendistribusikan baris data GPS atau koreksi diferensial real-time (DGPS / RTK) ke penerima GPS di daerah manapun yang berada di bawah jangkauan jaringan telepon seluler. Sehingga untuk mengetahui provider yang sesuai digunakan dalam wilayah surabaya dalam menggunakan metode RTK-NTRIP maka dilakukanlah penelitian ini. Dari hasil pengamatan dari pengukuran dengan menggunakan metode *RTK-NTRIP* dengan *base GPS CORS* BIG didapat nilai rata-rata dari masing-masing *provider* sekitar < 4 meter.

Kata Kunci: GPS, CORS, RTK, NTRIP, BIG, Provider.

COMPARATION ANALYSIS OF GPS RTK-NTRIP POSITIONING ACCURACY USING GEOSPATIAL INFORMATION AGENCY (BIG) CORS WITH SEVERAL MOBILE PROVIDER

(CASE STUDY: SURABAYA)

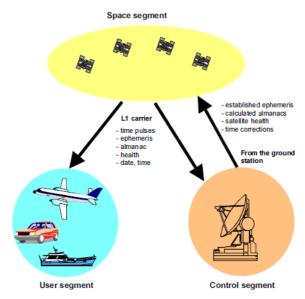
Name Student : Atika Sari Id Number : 3510100041

Advisor : Khomsin, ST, MT

Abstract

Determination of position in mapping uses remote sensing and aerial photography that requires geodetic GPS observations as control points which have high accuracy. Correction systems of position determining data are derived by the data transmission from the base station to the receiver. In the present development of RTK measurement methods have used the NTRIP (Networked Transport of RTCM via Internet Protocol) method as a transmission method of data correction using internet correction so that the measurement can still be performed with farther distance from the base. NTRIP method uses the transmission method of correction GNSS data through the Internet. Development of systems with mobile internet access facilities via general packet radio service (GPRS) and global system for mobile (GSM), fast providing and reliable method to distribute GPS data row or real-time differential correction (DGPS / RTK) to GPS receivers in any area under mobile phone network coverage. So, appropriate provider can be known and used in the Surabaya using RTK-NTRIP method then this research done. This observation result of the measurement using the RTK-NTRIP

method with GPS CORS BIG base that obtained the average value of each provider about <4 meters.


Keyword: GPS, CORS, RTK, NTRIP, BIG, Provider.

BAB II DASAR TEORI

2.1. <u>GPS (Global Positioning System)</u>

GPS (Global Positioning System)adalah sistem satelit navigasi dan penetuan posisi menggunakan satelit. Nama formalnya adalah NAVSTAR-GPS (Navigation System with Timing and Ranging Global Positioning System) yang dibuat oleh Amerika Serikat. Sistem yang dapat digunakan oleh banyak orang sekaligus dalam segala cuaca ini, didesain untuk memberikan posisi dan kecepatan tiga dimensi yang teliti, dan juga informasi mengenai waktu, secara kontinyu di seluruh dunia. Satelit GPS pada dasarnya terdiri dari : solar panel, komponen internal dan komponen eksternal. Setiap satelit GPS mempunyai dua sayap yang dilengkapi dengan sel-sel pembangkit tenaga surya (surya panel), yang merupakan sumber energi untuk satelit. Satelit juga mempunyai komponen internal seperti jam atom dan pembangkit sinyal. Selain itu, satelit GPS akan membawa 4 jam atom berketelitian tinggi. Satelit GPS juga dilengkapi dengan peralatan untuk mengontrol attitude satelit, serta sensor-sensor untuk mendeteksi peledakan nuklir dan lokasinya. Komponen eksternal satelit GPS adalah beberapa antena yang digunakan untuk menerima dan memancarkan sinyal-sinyal ke dan dari satelit GPS.

Satelit *GPS* bisa dianalogikan sebagai stasiun radio di angkasa yang dilengkapi dengan antena pengirim dan penerima sinyal. Sinyal tersebut selanjutnya diterima oleh receiver *GPS* di permukaan bumi yang digunakan untuk menetukan informasi posisi, kecepatan, waktu serta parameter-parameter turunannya. Spesifikikasi *GPS* adalah terdiri dari dua puluh delapan satelit dengan sudut inklinasi 55° dari ekuator dengan orbit satelit mengelilingi bumi adalah 11 jam 58 menit pada ketinggian 20.180 km dalam 6 orbit planet. *GPS* sendiri terdiri dari tiga segmen yaitu:

Gambar 2. 1Tiga segmen GPS (Zogg, 2002)

- 1. Segmen angkasa (*the space segment*), segmen ini berisi tentang semua fungsional dari satelit dan pada segmen ini terdiri dari 28 operasional satelit yang terbagi dalam 6 orbit,tinggi orbitnya 20.180 km di atas bumi dan dengan inklinasi 55° dari ekuator dan juga bagian dari satelit *GPS* sendiri seperti sinyal, kontruksi, komunikasi *link*-nya.
- 2. Segmen kontrol, penggunaan terpenting dari segmen kontrol ini adalah mengamati pergerakan satelit dan mendefinisikan data *orbital*, memantau jam satelit dan memprediksi kebiasaan satelit, mensinkronkan waktu satelit, menyebarkan *orbital* data yang sesuai yang diterima dari satelit melalui komunikasi, menyebarkan almanak, menyebarkan informasi lain seperti kondisi satelit dan jam yang *eror*.
- 3. Segmen pengguna, yaitu pengguna dari kalangan sipil maupun militer. Sinyal ditransmisikan oleh satelit kira –

kira 67 *ms* untuk dijangkau *receiver*. Dikarenakan sinyal berjalan dengan kecepatan cahaya, maka transit waktunya tergantung pada jarak antara satelit dan juga pengguna.

2.2. <u>CORS (Continuously Operating Reference Station)</u>

CORS (Continuously Operating Reference Station) biasa disebut juga stasiun referensi permanen adalah sistem yang terdiri dari receiver GPS dan antena GPS yang diatur secara baik pada lokasi yang aman dengan ketersediaan sumber energi yang handal serta dengan perangkat TIK (Teknologi Informasi dan Komunikasi) yang dapat melayani layanan koreksi.

Sejarah perkembangan *CORS* erat kaitannya dengan *National Oceanic and Atmospheric Administration's* (*NOAA*'s) yang bertujuan untuk mendefinisikan, memelihara, dan menyediakan akses kepada *U.S. National Spatial Reference System (NSRS)*. *NSRS* merupakan sistem resmi pemerintah sipil Amerika yang memungkinkan para pengguna *GPS* untuk menentukan lintang geodetik, bujur dan tinggi, ditambah tinggi orthometrik, geopotensial, percepatan gravitasi, dan defleksi vertikal pada setiap titik di Amerika Serikat dan wilayahnya (Snay dan Soler, 2008).

Global Navigation Satellite System (GNSS) dapat disebut sebagai sistem navigasi dan penentuan posisi menggunakan satelit. GNSS didesain untuk memberikan informasi waktu dan posisi secara kontinu di seluruh dunia. GNSS merupakan metode pengukuran ekstra-terestris, yaitu penentuan posisi yang dilakukan dengan melakukan pengamatan dan pengukuran terhadap satelit atau benda angkasa lainnya.

Receiver GNSS geodetik yang digunakan adalah rover receiver GNSS yang mempunyai tipe dual frequency, sehingga dalam pengamatannya dapat menerima data pengamatan satelit-satelit GNSS berupa data code dan data phase. Selain itu, rover receiver GNSS yang digunakan tersebut juga harus memiliki teknologi komunikasi, dapat

menggunakan teknologi radio/ *GSM*/ *GPRS*/ *CDMA*, sehingga dapat berhubungan dengan stasiun referensi atau pusat kontrol untuk mengirimkan dan atau menerima koreksi data koordinat posisi. Dengan adanya stasiun referensi-stasiun referensi yang bekerja di bawah kendali *server*, maka dapat diperoleh koordinat atau posisi suatu titik dengan ketelitian yang sangat tinggi (akurasi 1-5cm).

Untuk menghasilkan data pengukuran yang akurat, pengukuran yang dilakukan harus memenuhi syarat-syarat, yaitu lokasi pengukuran harus memiliki ruang pandang yang terbuka ke langit agar sinyal satelit *GNSS* yang mencapai *receiver* dapat diterima secara baik atau tidak ada *obstruksi* (halangan) , serta lokasi pengukuran harus jauh dari obyek atau benda yang mudah memantulkan sinyal dari satelit *GNSS* untuk meminimalkan efek *multipath*.

Untuk dapat mengakses *GNSS-CORS*, *receiver* harus dilengkapi dengan sambungan internet sebagai komunikasi data dari stasiun *GNSS-CORS* ke *receiver* klien. Dalam hal ini data *GNSS-CORS* tersedia melalui web dalam format *RINEX* (*Receiver Independent Exchange*) maupun *Streaming NTRIP*.

NTRIP adalah sebuah metode untuk mengirim koreksi data GPS/GLONASS (dalam format RTCM) melalui internet. RTCM sendiri adalah kependekan dari Radio Technical Commission for Maritime Services, yang merupakan komite khusus yang menentukan standard radio navigasi dan radio komunikasi maritim internasional. Data format RINEX disediakan untuk pengolahan data secara post-processing, sedangkan data NTRIP untuk pengamatan posisi secara realtime.

BIG (Badan Informasi Geospasial) merupakan salah satu badan pemerintahan yang bertanggung jawab dalam mengatur dan mengoperasikan *CORS* di Indonesia. BIG sekarang ini mengatur dan megoperasikan 124 *CORS* di seluruh Indonesia dan 19 dari itu berkolaborasi dengan *Geo*

Forschungs Zentrum (GFZ) Jerman yang mendukung dalam sistem peringatan dini tsunami dan 3 stasiun GNSS berkolaborasi dengan TU Delft Netherland.

2.3. RTK (Real Time Kinematic)

Sistem *RTK* merupakan sistem penentuan posisi *real-time* secara differensial menggunakan data fase. Untuk merealisasikan tuntutan *real time*-nya, stasiun referensi harus mengirimkan data fase dan *psedorange*-nya ke pada pengguna secara *real-time* menggunakan sistem komunikasi data tertentu. Stasiun referensi dan pengguna harus dilengkapi dengan perangkat pemancar dan penerima data.

Ketelitian tipikal posisi yang diberikan oleh sistem *RTK* adalah sekitar 1-5 cm, dengan asumsi bahwa ambiguitas fase dapat ditentukan secara benar. Untuk mencapai tingkat ketelitian tersebut, sistem *RTK* harus dapat menentukan ambiguitas fase dengan menggunakan jumlah data yang terbatas dan juga selagi *receiver* bergerak. Mekanisme penentuan ambiguitas fase yang kerap dinamakan *on the fly ambiguity* ini bukanlah hal yang mudah dilaksanakan. Dalam hal ini untuk dapat menentukan ambiguitas secara cepat dan benar umumnya diperlukan penggunaan data fase dan pseudorange dua frekuensi, geometri satelit yang relatif baik, algoritma perhitungan yang relatif handal dan mekanisme eliminasi kesalahan dan bias yang relatif baik dan tepat.

Sistem *RTK* dapat digunakan untuk penentuan posisi obyek-obyek yang diam maupun bergerak, sehingga sistem *RTK* tidak hanya dapat merealisasikan survei *GPS real-time*, tetapi juga navigasi berketelitan tinggi. Aplikasi-aplikasi yang dapat dilayani oleh sistem ini cukup beragam, antara lain *staking out*, penentuan dan rekonstruksi batas persil tanah, survei pertambangan, survei rekayasa dam utilitas, serta aplikasi-aplkasi lainnya yang memerlukan informasi posisi horisontal secara cepat (*real-time*) dengan ketelitian yang relatif tinggi dalam orde beberapa cm.

Metode Penentuan Posisi secara *Real Time Kinematic* dibagi dalam dua bagian yaitu:

1. Single base RTK.

Pengamatan yang dilakukan pada metode *single* base *RTK* adalah pengamatan secara diferensial dengan menggunakan minimal dua *receiver GNSS* yang bekerja secara simultan dengan menggunakan data fase. Koreksi data dikirimkan secara satu arah dari base *station* kepada *rover* melalui transmisi radio.

Keterbatasan dari metode *RTK* ini adalah semakin panjang *baseline* antara *rover* dengan stasiun referensi, maka tingkat ketelitiannya akan semakin berkurang. Hal ini disebabkan oleh adanya kesalahan *distance dependent* (seperti perlambatan sinyal satelit *GNSS* akibat pengaruh ionosfer) yang semakin tinggi, karena semakin jauh jarak antara *rover* dengan stasiun referensi sehingga proses pemecahan resolusi ambiguitas (*ambiguity resolution*) antara *base station* dengan *rover* sukar untuk dilakukan.

2. Network RTK

Metode *Network Real Time Kinematic (NRTK)* merupakan sebuah metode penentuan posisi secara relatif dari pengamatan *GNSS. NRTK* merupakan pengembangan dari metode *single base RTK* (Martin, 2013).

Prinsip kerja *NRTK* secara umum adalah sebagai berikut. Stasiun referensi-stasiun referensi merekam data dari satelit *GNSS* secara kontinyu yang kemudian disimpan dan atau dikirim ke *server Network RTK* melalui jaringan internet secara serempak.

Data yang dikirimkan oleh stasiun referensi-stasiun referensi adalah data dalam format *raw* data atau data mentah yang kemudian oleh *server Network RTK* digunakan sebagai bahan untuk melakukan koreksi data yang dapat digunakan oleh pengguna (*rover*). Data

dalam format *raw* tersebut dikirimkan secara kontinu dalam interval tertentu kepada *server Network RTK* melalui jaringan internet. Oleh *server*, data tersebut diolah dan disimpan dalam bentuk *RINEX* yang dapat digunakan untuk *post processing*, maupun dalam bentuk RTCM yang dikirimkan kepada *rover* yang membutuhkan koreksi data dari stasiun referensi.

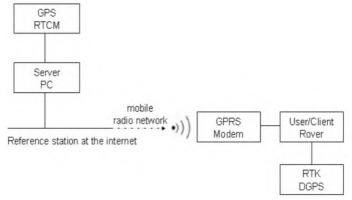
Rover berkomunikasi dengan server Network RTK menggunakan jaringan GSM/GPRS/CDMA, sehingga dapat memperoleh data koreksi hasil hitungan dengan metode Area Correction Parameter (ACP/FKP) atau Master Auxiliary Concept (MAC) atau Virtual Reference Station (VRS) atau metode-metode lainnya, melalui jaringan internet).

Pada saat ini, NRTK dianggap lebih memberikan banyak keuntungan dalam dunia penentuan posisi menggunakan GNSS, dibandingkan dengan penggunaan metode single base RTK. Hal ini dikarenakan pada single base RTK hanya terdapat satu master referensi sehingga kendala jarak antara rover dan stasiun referensi (base station) menjadi masalah utama. Jarak akan mempengaruhi ketelitian posisi yang dihasilkan. Semakin jauh jarak antara rover dan stasiun referensi (base station), maka kualitas posisi pun akan menurun. Faktor jarak yang jauh ini, menjadi kendala dalam pemecahan ambiguity resolution, begitu juga dengan jangkauan radio komunikasi yang jauh sehingga memungkinkan terjadinya data loss dalam penyampaian informasi data dari stasiun referensi (base station) ke rover (BPN, 2011).

Faktor – faktor yang berpengaruh pada layanan *RTK* adalah negara indonesia dengan dengan garis khatulistiwa (*low attitude*), efek ionosfer, jangkauan dan kekuatan komunikasi data tergantung alat yang digunakan, *network* area, *bateray rover*, jarak antara

rover dengan base station semakin jauh jaraknya maka semakin menurun kualitasnya (± 30 km) (Sandi, 2012)

2.4. NTRIP (Network Transport of via RTCM Internet Protocol)


Internet dan aplikasi yang sesuai yang memungkinkan pertumbuhan semakin melesat pada beberapa tahun terakhir. Teknik untuk menentukan isi multimedia dengan internet semakin menjadi pilihan, seperti adanya web-tv, Mp-3 file, internet radio dan web yang didasarkan oleh service telepon. Dengan penambahan kemampuan streaming pada internet, komunikasi mobile jaringan provider yang memungkinkan penggunaan kemampuan wireless dari internet akses. Kebanyakan streaming aplikasi transfer data dengan Internet protocol (IP) dengan data ukuran sewajarnya. Ukuran dari satu pak adalah terbatas dengan maksimum 65536 bytes dan setiap paket mendapatkan IP addres untuk mengetahui sumber tujuannnya. Menyamakan dalam ukuran data (bandwidth) memerlukan streaming yang efektif dengan internet vang memerlukan bandwidth untuk menyediakan data real time Differential GPS correction (DGPS) dengan didasarkan pada menit.

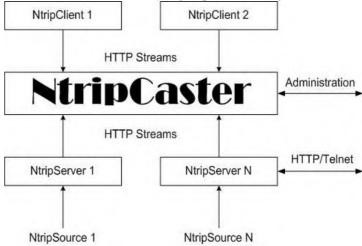
Teknik baru menggunakan internet untuk streaming dan sharing DGPS untuk menyediakan posisi yang presisi dan navigasi yang yang telah dikenal dengan nama "Networked Transport of RTCM via Internet Protocol (NTRIP)". Tujuan utama penggunaan internet adalah sebagai alternative servis koreksi secara real-time dengan transmisi radio (LF, MF, HF, UHF) atau mobile komunikasi network seperti GSM, GPRS, EDGE atau UMTS. NTRIP telah digunakan secara umum, protokol dasar pada Hypertext Transfer Protocol HTTP/1.1 dan telah di upgrade ke dalam sistem GNSS data streaming.

Tidak ada kerugian dalam penggunaan *NTRIP* sebagai alternatif untuk diterapkan dalam koreksi data *real-time DGPS*. *NTRIP* memungkinkan data streaming dari stasiun

referensi atau data dasar untuk aplikasi *GIS. Mobile* digunakan untuk *RTK* atau pemetaan/*GIS*, dapat menggunakan *hardware*-nya dengan menggunakan *mobile* phone GPRS untuk mengakses internet di lapangan.

Pada *NTRIP* ada 2 kemungkinan dalam pengiriman data koreksi. Itu dapat ditangani secara langsung dengan stasiun *single* referensi atau semua pengamatan dengan beberapa stasiun referensi mengunakan jaringan yang dapat diteruskan ke unit pusat (*server*) untuk proses lebih lanjut sebelum *broadcast*. Dalam kedua keadaan *NTRIP* mengunakan medium ideal untuk *transporting* data.

Gambar 2.2 *Streaming* data *RTCM* pada internet sumber BKG (Lenz. 2004)


Gambar 2.2 menjelaskan tentang bentuk klasik dari pengguna *rover* di lapangan. Pengguna mendapatkan akses internet dengan menggunakan modem (*mobile phone*) dengan menggunakan *software* pengguna yang *streaming* koreksi *DGPS* data dari *server* ke *receiver rover GPS*. Koreksi data butuh untuk dikirim dari *server* /pc dengan kabel koneksi internet dan kemudian digunakan untuk *rover* dari *mobile radio network*.

Dalam memulai sebuah pengukuran pengguna dapat memilih dengan memutuskan teknik dalam teknik penerimaan data yaitu dengan *DGPS* atau *Real Time Kinematic (RTK)* dengan mengunakan internet. *GSM*, *GPRS*, *EDGE* dan *UMT* adalah pilihan yang sesuai.

- a. GSM (Global System for mobile Communication) adalah teknik jaringan seluler digital yang umum digunakan transmisi data. Jaringan GSM digunakan selain untuk layanan telepon komunikasi data pada suatu lingkaran atau paket mode/ kuota. Mayoritas jaringan yang digunakan untuk tramsmisi data adalah 900 MHz dan 1800 MHz untuk Eropa dan untuk Amerika Serikat 850 MHz dan 1900 MHz.
- b. GPRS (General Packet Radio Service) merupakan sistem global dari sistem komunkasi mobile yang meningkat dengan kecepatan 9600 14400 bits per second (bps) dengan penambahan data kompresi. Dengan GPRS, transmisi data mobile dapat digunakan dengan kecepatan 115000 bps namun tergantung dengan kesesuaian pada stasiun basenya.
- c. EDGE (Enhance Datarate for Global Evolution) merupakan skema modulasi baru yang efisiensi bandwithnya lebih banyak untuk digunakan dalam standar jaringan GSM. Skema modulasinya biasa disebut 8PSK (8 Phase shift keying modulation) dan masing masing saluran dapat membawa 3 bits informasi sedangkan GPRS hanya dapat membawa 1 bit. EDGE dapat meningkatkan kecepatan data dari suatu sistem GSM dengan kecepatan akasesnya 384 kbit/s.
- d. *UMT*S (*Universal Mobile Telephone System*) merupakan generasi ketiga dari sistem *mobile* komunikasi di Eropa. Biasa disebut dengan *Wideband Code-division Multiple Acces (WCDMA)* merupakan generasi ke-3 (3G) dari *GSM*. Teknologi ini tidak kompatibel dengan *CDMA*. Spektrum untuk *UMTS* berada diantara 1900 *MHz* 2025

Mhz dan 2110 *MHz* – 2200 *MHz*. Dengan transmisi data maksimum 2 *Mbit/s*.

NTRIP adalah metode dalam pengiriman koreksi data GNSS (Global Navigation Satellite System) melalui jaringan "jaringan" terdiri internet. **NTRIP** dari NTRIPClient NTRIPServer (stasiun referensi). (penguna), NTRIPCaster (pusat kendali). Data yang dikirim dengan menngunakan NTRIP melalui HTTP versi 1.1 dengan lalu lintas data melalui www sehingga semua tipe receiver memiliki koneksi internet yang dapat terhubung.

Gambar 2.3Komponen *NTRIP* sumber *BKG* (Lenz, 2004)

a. NTRIPCaster

Merupakan pusat komunikasi dalam sistem NTRIP. NTRIPCaster mengumpulkan data dari NTRIPSources dan mendistribusikan data ke NTRIPClients. NTRIPCaster menerima data streaming dari NTRIPServer (yang dihasilkan dari NTRIPSources) dan mengolah seperti menangani masalah mountpoint untuk NTRIPSources, password, billing dan aksesnya.

b. NTRIPSource

NTRIPSource merupakan titik stasioner geografis yang menyediakan streaming data RTCM secara kontinyu. Menghubungkan DGPS dan RTK data streaming pada lokasi khusus. NTRIPSource adalah receiver GNSS yang memberikan data seperti koreksi RTCM yang digunakan untuk mengetahui koordinat suatu posisi.

c. NTRIPServer

Praktisnya, *NTRIPServer* adalah software yang berjalan pada PC konvensional yang mengirim koreksi data dari *receiver GNSS* ke pemasangan ketiga (dari *NTRIPSource* ke *NTRIPCaster*). Digunakan untuk mentransfer data dari satu atau banyak sumber ke *NTRIP*.

d. NTRIPClient

NTRIPClient merupakan suatu komponen yang di pasang pada sistem penerima perangkat pengguna di GPS. NTRIPClient meminta data dari NTRIPCaster yaitu berupa data stream suatu mountpoint tertentu dan diberikan tersendiri oleh tabel yang berasala dari NTRIPCaster

2.5. <u>Infrastruktur dari Koneksi Internet Via Mobile Provider IP</u> Network di Indonesia

Penggunaan dari layanan GNSS CORS membutuhkan koneksi internet. Koneksi internet tergantung dari pelayanan mobile provider IP network. Di Indonesia beberapa mobile provider IP network yang ada diantaranya adalah Indosat, Telkomsel, XL dan lain sebagainya. Pelayanan dari mobile provider IP network digunakan untuk mendukung koneksi internet pada GNSS CORS. Mobile provider IP network di Indonesia. Telkomsel telah melauncing HSDPA (High Speed Downlink Packet Acces) yang mendominasi di 31 kota besar di Indonesia (yang memungkinkan adanya peningkatan di

masa yang akan datang). Setiap pengguna *HSDPA* dari Telkomsel Flash dapat mengakses koneksi internet dengan kecepatan *download* hingga 3,2 *Mbps*.

Tabel 2.1 *Mobile Provider IP* di Indonesia (menurut Koesoemo (2008) pada Sunantyo, 2009)

No	Provider Product		Network
		Mentari	GSM
		Matrix	GSM
1	Indosat	IM2	GSM
		IM3	GSM
		StarOne	CDMA
2	Natrindo Telepon Seluler	Axis	GSM
		Simpati	GSM
3	Telkomsel	KartuAs	GSM
		KartuHALO	GSM
		Bebas	GSM
4	XL	Jempol	GSM
-		Xplor	GSM
		Jimat	GSM
5	Pasifik Satelit Nusantara	ByRU	GSM
	T asilik Satelit Nusalitara	PASTI	GSM
6	Hutchinson Indonesia	3	GSM
7	Mobile-8	Fren	CDMA
,	IVIODITE-0	Нері	CDMA
8	Smart Telecom	Smart	CDMA
9	Sampoerna Telekom	Ceria	CDMA
10	Bakrie Telecom	Esia	CDMA

Memperkirakan kualitas penerimaan sinyal dari masing – masing stasiun pengendalian dari GNSS CORS, itu sesuai

digunakan untuk mengetahui peta dari pendominasian area dimana *mobile provider* dioperasikan.

Dalam penggunaan akses internet dalam metode *RTK-NTRIP* biasa menggunakan *APN*, *username* dan *password* untuk menghubungkan koneksi internet dari masing – masing *provider*, maka berikut *APN* dari masing – masing *provider*:

Tabel 2.2 Daftar Masing – Masing *Provider*

Kartu Operator GSM	User name	Passwor d	Acces Point
XL	xlgprs	xlgprs	www.xlgprs.ne t
Telkomsel	Wap	Wap123	Telkomsel
Mentari	Indosat	Indosat	indosatgprs
IM3	Gprs	lm3	www.indosat- m3.net
3 (Three)	3gprs	3GPRS	3gprs
Axis	Axis	123456	axis

2.6. Penelitian Terdahulu

Penelitian dengan menggunakan *GPS CORS* metode *RTK* – *NTRIP* dengan menggunakan berbagai *mobile provider* internet protokol telah dilakukan dengan pada beberapa studi kasus.

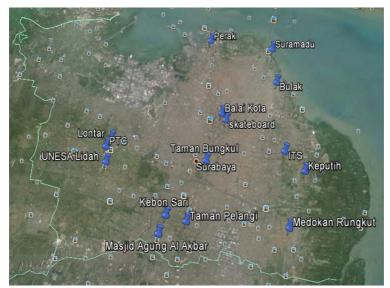
Menurut Sunantyo dkk (2010) pada penelitiannya ini digunakan untuk mengetahui perbedaan dan karakteristik kinerja dalam pengiriman data koreksi antara *rover* dan *reference station* dari tiga *provider* yang digunakan yaitu Telkomsel, Indosat dan XL dengan menggunakan pengamatan *RTK NTRIP* untuk rekontruksi TDT orde – 4. Dari hasil penenelitian tersebut didapat bahwa XL lebih baik dari pada *provider* lainnya. Dan pada *provider* Telkomsel untuk nilai *easting* tidak terdapat perbedaan signifikan

namun untuk nilai *northing* terdapat nilai perbedaan yang signifikan.

Pada penelitian lain telah dilakukan di area kota metropolitan Jakarta dengan membandingkan mobile network Indosat, Telkomsel, XL untuk provider IP pengukuran DGPS NTRIP yang digunakan untuk keperluan persil dan pajak. Pada penelitian tersebut, Koesoemayang tercantum dalam Sunatyo, 2009 menyebutkan bahwa kecepatan akses dari Telkomsel adalah yang paling tinggi dengan rentang 32 - 64 Kbps, kemudian Indosat dengan rentang 20 – 48 Kbps dan XL kira – kira 22 Kbps. Kualitas sinyal dari semua pulau di Indonesia adalah berbeda dari satu tempat ke tempat lain. Di Jawa dan Bali kualitas sinyal dari Indosat dan XL mungkin masih bagus namun kadang tidak stabil. Di Sumatra, Kalimantan, Sulawesi dan Irian. Telkomsel mungkin yang bagus dalam melingkupi area tersebut namun tarifnya masih sangat mahal menurut Koesoema pada tahun 2008 (Sunantyo, 2009).

"Halaman ini sengaja dikosongkan"

BAB III METODOLOGI PENELITIAN


3.1. Lokasi Penelitian

Penelitian dalam tugas akhir ini dilakukan di 15 titik di wilayah Surabaya dengan menggunakan *base station GPS CORS* BIG.

Tabel 3.1 Lokasi Penelitian

No	Lintang	Bujur Lokasi		
1	7°16'50"	112°47'32"	ITS	
2	7°20'07"	112°42'57"	Masjid Al Akbar	
3	7°19'41"	112°43'53"	Taman Pelangi	
4	7°19'34"	112°43'06"	Kebon Sari	
5	7°18'00"	112°40'31"	UNESA Lidah	
6	7°17'26"	112°40'24"	PTC	
7	7°17'07"	112°40'33"	Lontar	
8	7°12'33"	112°44'04"	Perak	
9	7°12'36"	112°46'44"	Suramadu	
10	7°14'03"	112°46'59"	Bulak	
11	7°15'50"	112°45'00"	Lap. Skatebiard & BMX	
12	7°15'36"	112°44'49"	Balai Kota	
13	7°17'29"	112°44'23"	Taman Bungkul	
14	7°19'28"	112°47'41"	Rungkut	
15	7°17'24"	112°48'13"	Keputih	

Berikut merupakan gambar persebaran daerah 15 titik pengukurannya:

Gambar 3.1 Gambar Persebaran 15 Titik Pengukuran di Surabaya (*Google Earth*, 2014)

Lokasi awal ditentukan melalui *google earth* serta *mapsource*, hal ini digunakan untuk memilih lokasi dengan jarak pandangan bebas ke langit sehingga mengurangi resiko pengaruh *multipath*.

Lokasi pengamatan titik – titik yang dijadikan sampel pada penelitian terdiri dari 15 titik yang tersebar di Surabaya. Berikut ini merupakan gambaran mengenai tiap lokasi pengamatan.

1. Area ITS

Lokasi pengamatan terletak di tengah taman alumni ITS. Area ini dipilih dikarenakan dapat digunakan mahasiswa untuk praktikum *Survey GPS* dalam memilih *provider* yang sesuai dengan menggunakan metode *RTK-NTRIP* menggunakan *CORS* BIG.

2. Area Masjid Al Akbar

Area ini dipilih karena lokasinya yang berbatasan dengan tol maka bisa dimanfaatkan untuk rekomendasi pengukuran di daerah tersebut.

3. Area Taman Pelangi

Area ini dipilih karena untuk mengetahui jenis *provider* apa yang sesuai pada lokasi yang padat dengan kendaraan hal ini dikarenakan daerah taman pelangi lokasinya dekat dengan Jl. Ahmad Yani yang notabene selalu ramai.

4. Area Kebon Sari

Area ini dipilih karena merupakan area perumahan yang rentan dengan pembangunan yang besar dan juga berdekatan dengan rel kereta api, hal ini bisa dimanfaatkan dalam hal pengukuran di daerah tersebut dalam rangka pembangunan.

5. Area UNESA Lidah

Area ini dipilih dikarenakan dapat digunakan mahasiswa untuk praktikum *Survey GPS* dalam memilih *provider* yang sesuai dengan menggunakan metode *RTK-NTRIP* menggunakan *CORS* BIG di daerah Surabaya Barat.

6. Area PTC

Area ini dipilih karena di daerah ini sering dilakukan pembangunan sehingga dapat digunakan dalam pemilihan *provider* yang sesuai dalam memanfaatkan pengukuran *survey GPS* dengan menggunakan *GPS RTK-NTRIP* menggunakan *CORS* BIG

7. Area Lontar

Area ini posisinya dekat dengan perumahan penduduk yang padat, sehingga untuk mengetahui pengaruh penggunaan berbagai *provide*r dalam pengukuran di lingkungan tersebut.

8. Area Perak

Area ini dipilh dikarenakan dekat dengan wilayah pelabuhan dan terletak pada *BM* Pelindo dan pada area

ini juga banyak kendaraan seperti truk yang melintas, sehingga untuk mengetahui *provider* yang sesuai pada area ini untuk pengukuran *GPS RTK-NTRIP* menggunakan *CORS* BIG.

9. Area Suramadu

Area ini dipilih karena pada area ini merupakan jembatan Suramadu yang sering dijadikan obyek penelitian sehingga bisa dimanfaatkan dalam memilih provider yang sesuai dalam pengukuran GPS RTK-NTRIP menggunakan base CORS BIG

10. Area Bulak

Area ini posisinya dekat dengan perumahan penduduk yang padat, sehingga untuk mengetahui pengaruh penggunaan berbagai *provider* dalam pengukuran di lingkungan tersebut.

11. Area Lapangan Skateboard dan BMX

Area ini dipilih karena posisinya di Surabaya Pusat yang sarat dengan banyaknya gedung serta posisinya yang disamping sungai sehingga apabila ada penelitian tentang sungai di sekitar lapangan tersebut dengan menggunakan metode *RTK-NTRIP* yang menggunakan *base CORS* BIG bisa memilih *provider* yang sesuai.

12. Area Balai Kota

Area ini dipilih dikarenakan terletak di pusat kota dan merupakan pusat administrasi kota Surabaya, sehingga dengan dapat dimanfaatkan untuk pemetaan detail dengan memilih *provider* yang sesuai dalam pemetaan dengan menggunakan *GPS RTK-NTRIP* dengan *base CORS* BIG.

13. Area Taman Bungkul

Area ini dipilih karena merupakan taman kota yang menjadi andalan kota Surabaya yang posisinya dekat dengan jalan utama Surabaya, pada taman ini terdapat wifi sehingga untuk mengetahui pengaruh dari penggunaan wifi terhadap pemilihan provider yang seuai

dalam pengukuran *GPS* dengan metode *RTK-NTRIP*, selain itu dapat dimanfaatkan untuk pemetaan detail taman bungkul.

14. Area Rungkut

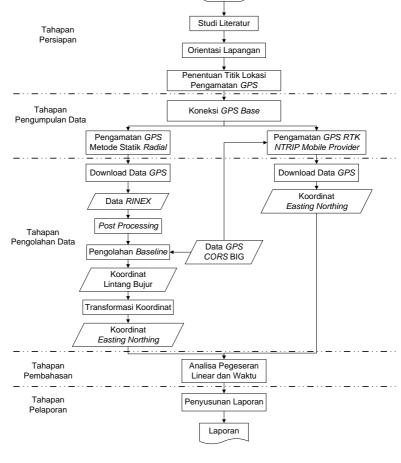
Area ini posisinya dekat dengan perumahan penduduk yang padat, sehingga untuk mengetahui pengaruh penggunaan berbagai *provider* dalam pengukuran di lingkungan tersebut.

15. Area Keputih

Area ini posisinya dekat dengan perumahan penduduk yang padat, sehingga untuk mengetahui pengaruh penggunaan berbagai *provider* dalam pengukuran di lingkungan tersebut.

3.2. Data dan Peralatan

- 3.1.1. <u>Data yang Digunakan Dalam Penelitian Adalah :</u>
 - 1. Data koordinat titik hasil pengamatan dengan *GPS* metode statik
 - 2. Data koordinat titik hasil pengamatan dengan *GPS* metode *RTK-NTRIP* dari berbagai *provider*


3.1.2. Peralatan yang Digunakan Dalam Penelitian Adalah:

- 1. Hardware
 - Laptop
 - Printer
- 2. Software
 - Sistem operasi Windows 7 Profesional
 - Microsoft Office 2007
 - Pengolahan data GPS
- 3. 1 set GPS ProMark 100/200
- 4. Base GPS CORS BIG
- 5. Mobile Provider

3.3. Metodologi Penelitian

Metodologi yang digunakan dalam penelitian adalah sebagai berikut :

Mulai

Gambar 3.2 Diagram Alir Tahapan Penelitian

Penjelasan dari diagram alir di atas adalah:

1. Tahapan Persiapan

Tahapan ini terdiri dari identifikasi dan perumusan masalah beserta penetapan tujuan penelitian, studi literatur yang berhubungan dengan pengukuran *GPS* dengan metode *RTK – NTRIP* dengan berbagai *mobile provider IP network*, dan orientasi lapangan serta penentuan lokasi titik.

- a. Lokasi yang digunakan sebagai penelitian adalah sekitar Surabaya.
- b. Jumlah titik yang digunakan 15 buah dengan masing masing titik dilakukan pengamatan dengan menggunakan *mobile provider IP network* yang berbeda sebagai pembanding. Kriteria penentuan lokasi adalah didasarkan pada tempat pemukiman, jalan ramai, daerah kawasan pendidikan.

2. Tahapan Pengumpulan Data

Pada tahapan ini adalah dilakukan pengambilan data secara langsung di lokasi penelitian dengan menghubungkan ke server base terlebih dahulu. Pengumpulan data dilakukan dengan cara pengukuran GPS dengan metode RTK - NTRIP dengan menggunakan mobile provider IP network yang berbeda pada tahap ini dilakukan pengukuran untuk mengetahui kecepatan masing – masing provider dalam mencapai nilai fix pengukuran dan apabila tidak bisa mencapai nilai fix pengukuran waktunya dibatasi sampai 15 menit dan data di record sesuai dengan nilainya, hal ini dikarenakan data yang digunakan acak karena tidak menggunakan base yang tetap pada pengukuran dikarenakan pada saat pengukuran base terdekat tidak selalu menyala sehingga mempengaruhi pencapaian nilai fix . Pengambilan data suatu titik dilakukan dalam 3 kali yaitu pagi (jam 8-10), siang (12-16) dan malam hari (19-22) untuk menentukan waktu pengukuran yang baik dalam pengukuran GPS dengan *RTK-NTRIP*. Dan juga dilakukan pengukuran dengan menggunakan statik sebagai acuan nilai yang dianggap benar.

3. Tahapan Pengolahan Data

Pada tahapan ini dilakukan pengolahan data dengan software. Data yang telah diperoleh dari lapangan didownload dari server lalu diolah dengan software sehingga menghasilkan nilai koordinat titik fix. Pada tahap pengolahan dengan software diperoleh dari data RINEX yang diolah post processing, pengolahan baseline lalu dari koordinat lintang buiur ditransformasikan menjadi koordinat easting dan northing. Dari hasil pengukuran tersebut juga dibandingkan dengan hasil pengukuran menggunakan metode statik sebagai acuan koordinatnya.

4. Tahapan Pembahasan

Pada tahapan ini adalah untuk menganalisa perbandingan yang diperoleh dari hasil pengukuran dengan menggunakan berbagai *mobile provider IP network*. Dari hasil pengukuran yang diperoleh perbandingan ketelitian serta dari kecepatan dalam pengamatan mencapai nilai *fix*. Pada tahap ini juga dilakukan analisa pergeseran linear. Maka dari hasil analisa itu dapat ditarik kesimpulan dari hasil pengukuran dan analisa dari penelitian tersebut.

5. Tahapan Pelaporan

Pada tahapan ini dilakukan penyusunan dan penulisan laporan dari hasil yang didapat serta pelaporan hasil berupa perbandingan keakuratan dan ketelitian dari berbagai *mobile provider IP network*.

BAB IV HASIL DAN ANALISA

4.1. <u>Data Koordinat Hasil Pengamatan GPS dengan Metode</u> <u>RTK-NTRIP dari Berbagai Mobile Provider dengan</u> Menggunakan base GPS CORS BIG

Dari hasil pengamatan dengan menggunakan metode *GPS RTK-NTRIP* dengan *base GPS CORS* BIG dengan menggunakan 15 titik di Surabaya dengan menggunakan berbagai 5 *mobile provider* yang sering digunakan diantaranya adalah Axis, Telkomsel, XI, Indosat dan Three (3). Dalam pengamatan ini bertujuan untuk mengetahui *provider* yang sesuai dalam pengukuran metode *RTK-NTRIP* dengan *base GPS CORS* BIG di wilayah Surabaya.

Dalam pengamatan ini diperoleh untuk *provider* Axis dengan waktu kecepatan akses paling cepat adalah 0,73 menit pada titik 15 diperoleh nilai pergeseran linear 3,091 m untuk waktu kecepatan akses paling lama adalah 29,95 menit dengan pergeseran linear 7,047 m pada titik 3. Sedangkan nilai persereran linear terendah adalah 0,419 m dengan kecepatan akses 11,3 menit pada titik 4, untuk nilai pergeseran linear tertinggi adalah 7,529 m dengan kecepatan akses 15,6 menit pada titik 8.

Pada pengamatan dengan menggunakan *provider* Telkomsel dengan waktu kecepatan akses paling cepat adalah 0,63 menit pada titik 15 diperoleh nilai pergeseran linear 3,715 m untuk waktu kecepatan akses paling lama adalah 21,35 menit dengan pergeseran linear 1,605 m pada titik 7. Sedangkan nilai pergereran linear terendah adalah 0,097 m dengan kecepatan akses 9,3 menit pada titik 4, untuk nilai pergeseran linear tertinggi adalah 7,838 m dengan kecepatan akses 15,03 menit pada titik 8.

Pada pengamatan dengan menggunakan *provider* XL dengan waktu kecepatan akses paling cepat adalah 0,16 menit pada titik 15 diperoleh nilai pergeseran linear 2,952 m

untuk waktu kecepatan akses paling lama adalah 20 menit dengan pergeseran linear 1,703 m pada titik 4. Sedangkan nilai pergeseran linear terendah adalah 0,533 m dengan kecepatan akses 17,63 menit pada titik 13, untuk nilai pergeseran linear tertinggi adalah 7,69 m dengan kecepatan akses 15,05 menit pada titik 8.

Pada pengamatan dengan menggunakan *provider* Indosat dengan waktu kecepatan akses paling cepat adalah 0,2 menit pada titik 15 diperoleh nilai pergeseran linear 3,193 m untuk waktu kecepatan akses paling lama adalah 29 menit dengan pergeseran linear 7 m pada titik 3. Sedangkan nilai pergeseran linear terendah adalah 0,308 m dengan kecepatan akses 18,9 menit pada titik 4, untuk nilai pergeseran linear tertinggi adalah 7 m dengan kecepatan akses 29 menit pada titik 3.

Pada pengamatan dengan menggunakan *provider* Three (3) dengan waktu kecepatan akses paling cepat adalah 0,03 menit pada titik 15 diperoleh nilai pergeseran linear 3,175 m untuk waktu kecepatan akses paling lama adalah 20 menit dengan pergeseran linear 7 m pada titik 3. Sedangkan nilai pergeseran linear terendah adalah 0,69 m dengan kecepatan akses 15,2 menit pada titik 6, untuk nilai pergeseran linear tertinggi adalah 7,488 m dengan kecepatan akses 15,28 menit pada titik 8.

Dari data tersebut diperoleh bahwa lamanya waktu tidak menentukan bagusnya nilai pergeseran linear dan juga besarnya pergeseran linear tidak dipengaruhi dengan adanya waktu, hal ini dikarenakan hasil dalam pengamatan tersebut datanya acak.

N.T.	Provider	Pergeseran Linear	Waktu Rata-	
No		Rata-rata (m)	rata (menit)	
1	Axis	3,795	14,3	
2	Telkomsel	3,273	12,315	
3	XL	3,533	14,773	
4	Indosat	3,562	14,542	
5	Three	3,288	12,308	

Tabel 4.1 Tabel Hasil Pengukuran rata-rata

Pengamatan yang telah dilakukan dengan menggunakan 15 titik di Surabaya melalui pengukuran GPS metode RTK-NTRIP dengan menggunakan berbagai provider digunakan untuk mengetahui provider yang paling bagus untuk digunakan pengukuran GPS di wilayah Surabaya. Dari hasil pengamatan tersebut untuk rata-rata waktu yang dibutuhkan dalam mencapai fix/float dengan maksimal waktu 14,77 menit yaitu provider XL, diperoleh waktu yang relatif lama dalam masing-masing kartu hal ini bisa disebabkan karena jarak baseline yang jauh dan konektifitas internet yang tidak stabil sehingga transmisi data dari base ke rover sering putus.

Dari hasil pengamatan juga diperoleh nilai rata-rata pergerseran linear dari masing-masing kartu dengan data statik sebagai acuannnya. Dengan hasil nilai rata-rata < 4 meter.

Dammalage (2006) melakukan penelitian tentang penggunaan metode *NTRIP* dengan menggunakan dual frekuensi di Thailand. Dengan menggunakan metode *RTK NTRIP* dan *RTK* dengan menggunakan komunukasi radio menghasilkan nilai akurasi sebesar 0,158 m dan 0,16 m dengan jarak *baseline* 5 – 30 km. Selain itu, metode *NTRIP* dapat meningkatkan akurasi hasil pengamatan dengan berbagai variasi jarak *baseline* antara *base* dan *rover*

dibandingkan dengan menggunakan pengukuran *GPS* yang menggunakan gelombang radio.

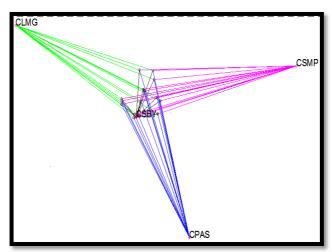
Pada hasil diatas diperoleh bahwa nilai pergeseran linear dari masing-masing kartu sangat tinggi yaitu lebih dari 3 meter setara dengan penggunaan *GPS* Navigasi. Ada beberapa faktor yang menyebabkan tingginya nilai pergeseran linear tersebut diantaranya adalah:

- a. Tidak stabilnya jaringan pada sistem *base GPS CORS*BIG
- b. Jarak *base* dan *rover* yang tidak selalu sama dikarenakan keadaan sistem yang kurang stabil
- c. Koneksi internet sendiri yang kurang stabil juga dimungkinkan sehingga data koreksi ada yang hilang sehingga data tidak sempurna
- d. Disebabkan oleh faktor troposfer dan ionesfer
- e. Pengukuran dengan menggunakan satu referemsi satelit sehingga nilai koordinatnya hanya dikoreksi oleh satu stasiun saja.

Pada saat dilakukannya pengukuran base CORS sedang dalam keadaan kurang stabil sering putus pada waktu pengukuran, sulitnya menghubungkan dengan basenya sehingga apabila digunakan dalam pengukuran tersebut untuk mendapat nilai fix terkadang sangat sulit, sehingga dalam waktu 15 menit belum mendapatkan nilai fix. Dalam pengukuran data yang didapat acak dikarenakan tidak selalu terhubung dengan base yang sama hal ini dikarenakan kondisi base GPS CORS yang masih yang tidak sehat sehingga oleh sistem akan dihubungkan dengan base yang lain yang dalam kondisi baik dan bisa digunakan, namun ini dapat mempengaruhi hasil dari pengukuran dikarenakan jauhnya dari base sehingga pada saat pengukuran RTK-NTRIP sulit untuk mencapai nilai fix. Dan hal itu pula mempengaruhi nilai linearnya serta kecepatan dalam mencapai fix. Dalam GPS CORS BIG sendiri mempunyai 2 sistem yang ada untuk menghubungkan dengan server CORS

BIG yaitu dengan base yang lain yang menggunakan server spider. Server Trimble pivot merupakan server milik trimble, sebenarnya server ini digunakan hampir semua jaringan CORS BIG sehingga apabila GPS CORS BIG dengan mountpoint multistation atau nearest dalam keadaan kurang baik atau sistemnya sedang tidak berjalan maka akan dihubungkan dengan base GPS CORS yang posisinya relatif tidak terlalu jauh namun kadang jaringan. Spider adalah sistem milik leica yang koneksinya lumayan cepat apabila mountpoint nearest/multistation-nya yang terhubung dengan base terdekat layanan dan kondisi GPS CORS-nya bagus namun apabila kondisi GPS CORS-nya sedang bermasalah maka sistem akan menghubungkan base-nya dengan base lain yang menggunakan sistem leica yang jaraknya relatif pengukuran iauh. Dan dalam melakukan sebaiknya memantau menggunakan GPS CORS BIG aktivitas GPS CORS BIG sekitar daerah pengukuran apakah dalam keadaan baik dan siap digunakan hal ini untuk melakukan pengukuran secara lancar.

4.2. <u>Analisa Penggunaan data RTK-NTRIP dengan base GPS</u> CORS BIG


Berdasarkan hasil yang diperoleh pada penelitian ini diperoleh rata-rata nilai pergeseran linear adalah < 4 m. Dari hasil tersebut apabila digunakan sebagai *GCP* (*Ground Control Point*) untuk citra satelit, maka masing-masing *provider* dengan menggunakan metode *RTK-NTRIP* dapat digunakan untuk *GCP* citra satelit resolusi sebagai berikut:

Tabel 4.2 Tabel Daftar Citra dan Resolusinya

No	Citra Satelit	Resolusi Spasial (m)
1	Landsat	30 x 30
2	Spot	10 x 10
3	NOAA	1000 x 1000
4	Terra	30 x 30
5	IRS	6 x 6

4.3. Analisa Berdasarkan Panjang Baseline Pengamatan

Dari hasil pengamatan *GPS RTK-NTRIP* di wilayah Surabaya dengan menggunakan *GPS CORS* BIG, ada beberapa *base* yang digunakan apabila *base* jarak terdekat dari pengukuran sedang dalam keadaan bermasalah. Berikut gambar jarak *baseline* dari *base CORS* dengan lokasi pengukuran :

Gambar 4.1 Jarak Pengukuran dengan Base CORS BIG

Dan beikut adalah jarak masing-masing titik dengan masing-masing *base CORS* yang digunakan apabila *base CORS* terdekat sedang bermasalah :

Tabel 4.3 Panjang *Baseline* dari Beberapa *Base GPS CORS*BIG Terdekat

DIG Tercekut					
Titik	Titik CSBY (m) C		CSMP (m)	CLMG (m)	
1	9555,56	42733,05	51655,48	55475,09	
2	957,76	40499,95	61212,97	50681,02	
3	1057,97	40387,11	59330,4	51736,03	
4	1105,85	41225,62	60672,76	50413,56	
5	6603,441	46160	64721,26	44844,52	
6	7140,357	46939,51	64454,97	44435,92	
7	7611,213	47501,24	64404,1	44085,02	
8	13905,59	52273,29	57186,25	46861,5	
9	15023,94	50655,23	52271,77	51635,17	
10	12828,06	47935,39	51964,52	52814,68	
11	8296,98	45988,63	55947,34	50474,13	
12	8591,269	46508	56230,26	49999,42	
13	5051,2	43637,48	57576,93	50637,81	
14	7833,098	38014,57	52494,27	57711,53	
15	10021,1	41401,76	50628,23	57023,32	
Rata2	7705,56	44790,72	57383,43	50588,58	

Dari gambar 4.1 dan tabel 4.7 dapat dilihat bahwa dengan jarak yang relatif jauh dari *base CORS* BIG yaitu sekitar > 44 km maka menyebabkan pergeseran linear yang di peroleh sekitar < 4 m. Untuk *base CORS* BIG CSBY jarak *base*-nya memang dekat dengan lokasi pengukuran namun dalam waktu pengukuran tersebut kondisi CSBY sedang tidak stabil sehingga pada saat pengukuran *RTK NTRIP*-nya sering dihubungkan dengan *base CORS* lain yang terdekat seperti CPAS, CSMP dan CLMG tergantung pada sistem dan

kondisi *GPS CORS*-nya apakah dalam keadaan sehat atau tidak untuk digunakan sebagai *base* dalam pengukuran.

4.4. Analisa Berdasarkan Waktu Pengukuran

Dari hasil pengukuran dengan menggunakan *metode GPS RTK-NTRIP* dengan *base CORS* BIG dari berbagai *mobile provider* diperoleh hasil rata-rata pergeseran linear serta rata-rata waktu yang dibutuhkan dengan menggunakan acuan waktu pagi, siang dan malam yang sesuai dalam melakukan penggukuran, berikut adalah tabelnya:

Tabel 4.4 Tabel Nilai Rata-Rata Nilai Pergeseran Linear dari Waktu Pagi Siang dan Malam

The state of the s							
I		Rata-rata Pergeseran Linear					
l	Waktu	Axis(m)	Telkomsel (m)	XI (m)	Indosat (m)	Three(3) (m)	Rata2 keseluruhan (m)
	Pagi	4,469	3,162	3,401	3,528	3,592	3,630
I	Siang	3,465	3,498	3,229	3,896	3,198	3,457
	Malam	3,452	3,157	3,970	2,961	3,074	3,323

Dari tabel 4.8 diperoleh bahwa untuk pengukuran terbaik adalah pada malam hari dengan hasil rata-rata yang kurang dari 4 m nilai pergeseran linearnya. Hal ini bisa disebabkan karena kurang stabilnya jaringan dan koneksi dari *base* ke *rover* sehingga menyebabkan nilai pergeseran linearnya < 4 m.

4.5. <u>Analisa Berdasarkan Sistem *Base CORS* BIG *Trimble* dan *Spide*r</u>

Dari hasil pengukuran dengan menggunakan metode *GPS RTK-NTRIP* dengan *base CORS BIG* yang menggunakan dua sistem koneksi yaitu menggunakan *trimble* serta *leica*, berikut adalah tabel perbedaan hasilnya:

Tabel 4.5 Tabel Nilai Rata-Rata Nilai Pergeseran Linear dari Sistem *Trimble* dan Sistem *Spider*

	Rata-rata					
	Pergeseran linear (m) Waktu (mo					
Trimble	3,515	14,840				
Spider	3,143	5,9				

Dari tabel 4.9 diperoleh bahwa dengan sistem *Spider* lebih bagus daripada *Trimble* dikarenakan dalam waktu untuk mencapai nilai *fix* adalah 5,9 menit namun nilai dari pergeseran linearnya tetap tinggi yaitu kurang dari 4 m.

"Halaman ini sengaja dikosongkan"

BAB V PENUTUP

5.1. Kesimpulan

- 1. Hasil pengukuran dengan menggunakan metode *RTK-NTRIP* dengan *base CORS* BIG didapat ketelitian rata-rata yang diperoleh dari masing masing *provider* adalah Axis 3,795 m, Telkomsel 3,273 m, Xl 3,533 m, Indosat 3,462 m dan Three (3) 3,288 m.
- 2. Kecepatan rata-rata akses koneksi internet dari masing-masing *provider* yaitu Axis 14,3 menit, Telkomsel 12,315 menit, Xl 14,773 menit, Indosat 14,542 menit dan Three (3) 12,308 menit.

5.1. Saran

- 1. Perlu adanya monitoring *GPS CORS* BIG khususnya untuk wilayah daerah Jawa Timur agar bisa dimanfaatkan dalam hal penelitian.
- 2. Apabila menggunakan *base GPS CORS* BIG sebaiknya memantau aktivitas *GPS CORS* BIG terdekat melalui web terdekat agar pengukuran bisa dilakukan dengan maksimal.
- 3. Perlu adanya kajian khusus mengenai pengaruh penggunaan *traffic* data penggunaan internet terhadap ketelitian serta kecepatan dalam mencapai nilai *fix*.

"Halaman ini sengaja dikosongkan"

LAMPIRAN A

Tabel 1 Tabel Pengukuran RTK-NTRIP Axis

		Statik Axis					,
No	waktu			Fasthing (m)	Northing (m)	Pergeseran linear (m)	Waktu (menit)
	Pagi	Edstillig (III)	Northing (III)		9194834,092	3,123	8,283
1	Siang	697856 3829	9194831,078		9194833,982	2,988	44,067
-	Malam	037030,3023	313 1031,070	697857,1364			10,367
	Pagi			689395,5573			25,333
2	Siang	689394 7086	9188813,512			2,769	5,383
-	Malam	003334,7000	5100015,512	689395,5014		2,479	15,450
	Pagi			691129,3172		7,122	15,333
3	Siang	601130 6070	9189631,251			2,714	15,150
,	Malam	031130,0373	5105051,251	691129,2746		7,047	29,950
	Pagi			689701,5268		4,791	15,333
4	Siang	689700,9443	9189828,68	689701,568		4,608	15,817
4	Malam	003700,3443	9109020,00	689700,7385		0,419	11,300
	_			684958,151		3,973	
5	Pagi	684956,2987	9192738,99	684957,8928		3,737	15,333
3	Siang	064930,2967	9192736,99				15,000
	Malam			684958,1527		2,096	20,000
_	Pagi	COFOCO 1CO1	0402720 472	685061,3563		3,678	15,000
6	Siang	685060,1601	9193730,173			1,107	15,200
	Malam			685059,8158		4,505	15,000
_	Pagi	605044503	0404060 050	685013,9916		7,444	15,350
7	Siang	685014,582	9194363,853			1,185	15,533
	Malam			685013,3915		1,191	16,033
_	Pagi	691514,7097		691514,4256		7,529	15,667
8	Siang		9202774,972			7,020	15,200
	Malam			691514,3949		7,196	9,033
_	Pagi			696433,211		3,439	17,033
9	Siang	696433,358	9202665,406			2,619	15,483
	Malam			696434,56		2,049	18,383
	Pagi		9199970,315	696881,9783			15,300
10	Siang	696877,1269		,			15,217
	Malam			696882,4013		6,792	15,333
	Pagi			693221,0823		3,357	3,467
11	Siang	693220,3163	9196706,017			4,304	15,033
	Malam			693225,2237	,	3,713	15,067
	Pagi			692881,4613		3,241	15,950
12	Siang	692883,3063	9197137,588	,		3,326	15,333
	Malam			692882,6676		0,865	15,567
	Pagi	1		692048,1236		3,063	15,067
13	Siang	692049,4867	9193679,388	,		2,739	15,867
	Malam			692052,6045		4,811	15,133
	Pagi	1		698108,9864	,	2,956	4,767
14	Siang	698108,0944	9189976,269			2,958	2,000
	Malam			698109,4743		2,765	8,283
	Pagi]		699104,1424		3,126	2,450
15	Siang	699103,2279	9193794,868	699104,6157		2,955	7,933
	Malam			699104,1033	9193797,757	3,019	0,733
		-	Rata-rata			3,795	14,300

Tabel 2 Tabel Pengukuran RTK-NTRIP Telkomsel

No	waktu	Statik			Telkomsel		
		Easthing (m)	Northing (m)	Easthing (m)	Northing (m)		Waktu (menit)
	Pagi	0. /	J. 7	697857,2558	9194833,736	2,798	20,300
1	Siang	697856,3829	9194831,078	697856,6154	9194833,298	2,232	3,717
	Malam			697857,1775		2,991	3,183
	Pagi			689395,2114		,	16,967
2	Siang	689394.7086	9188813,512	689395,582	9188816,346	2,966	3,833
	Malam	1		689395,7034		2,998	15,433
	Pagi			691129,3285		7,192	14,900
3	Siang	691130,6979	9189631,251	691129,4919		2,484	15,333
	Malam	1		691129,2907	9189638,038	6,932	3,517
	Pagi			689700,8121		0,377	4,350
4	Siang	689700,9443	9189828,68	689701,6778		5,261	15,017
·	Malam	003700,3113	3103020,00	689701,0372		0,097	9,333
	Pagi			684957,7077	9192742,072	3,389	15,333
5	Siang	684956,2987	9192738,99	684962,9854		8,288	15,050
3	Malam	20.550,2507	3132,30,33	684959,3778	,	3,145	15,083
	Pagi			685061,1831	9193729,606	1,170	15,667
6	Siang	685060,1601	9193730,173	685061,0246	,	0,872	17,200
O	Malam	003000,1001	3133730,173	685060,6694	9193730,535	0,625	6,083
	Pagi			685013,817	9194362,442	1,605	21,350
7	Siang	685014,582	9194363,853	685013,6835			15,483
,	Malam	083014,382	9194303,633	685014,4452		0,279	,
		691514,7097	9202774,972	691514,5999		7,838	15,033 15,033
8	Pagi			691514,4445			
٥	Siang Malam					7,169	15,333
				691514,7377		7,281	16,050
9	Pagi	696433,358	0202665 406	696434,9019		2,177	15,333
9	Siang	090433,358	9202665,406	696435,0017		2,322	15,367
	Malam			696435,7428		3,044	10,883
10	Pagi	COC077 12CO	0100070 215	696877,8259		3,055	15,333
10	Siang Malam	696877,1269	9199970,315	696878,2005	9199973,057	2,945	15,217
				696877,7071	9199973,989	3,720	15,333
11	Pagi	500000 0450	9196706,017	693220,8062	9196709,3	3,319	15,183
11	Siang	693220,3163	9196706,017	693220,4638	9196709,773	3,758	15,250
	Malam			693220,8704	9196709,229	3,260	9,500
12	Pagi	602002 2062	0107127 500	692884,0679		3,196	15,083
12	Siang	692883,3063	9197137,588	692884,7783		3,432	15,500
	Malam			692883,9279		2,690	15,433
12	Pagi	602040 4067	0102670 200	692051,0686		2,415	15,217
13	Siang	692049,4867	9193679,388	692050,4356		3,430	7,433
	Malam			692049,6185	9193683,193	3,807	7,183
14	Pagi	C00100 0044	0100076 360	698108,9646		3,018	9,933
14	Siang	698108,0944	9189976,269	698109,0036		3,121	15,400
	Malam			698109,1005			12,200
45	Pagi	C00402 2272	9193794,868	699104,0359		3,175	0,633
15	Siang	699103,2279		699104,1771	9193797,794	3,076	2,433
	Malam	L	Rata-rata	699104,5575	9193798,094	3,490	1,750
		f	3,273	12,315			

Tabel 1 Tabel Pengukuran RTK-NTRIP XL

	1 4	Statik		IIgukuran KTK-IVTKIP AL				
No	waktu	Statik Easthing (m) Northing (m)		Fasth: ()	Nambhiae (ma)			
		Eastning (m)	Northing (m)		-		Waktu (menit)	
1	Pagi	CO70FC 2020	0404024 070	697857,1404		2,892	26,617	
	Siang	697856,3829	9194831,078	697856,4019		2,227	4,017	
	Malam			697857,1489		3,185	34,350	
2	Pagi			689395,4987	,	2,833	15,683	
	Siang	689394,7086	9188813,512	689397,5211		3,890	15,350	
	Malam			689396,5583		3,595	15,267	
1	Pagi	691130,6979			9189638,126	6,986	13,000	
3	Siang		9189631,251		9189632,404	1,620	15,517	
	Malam				9189638,191	7,075	13,017	
	Pagi				9189823,631	5,115	15,417	
4	Siang	689700,9443	9189828,68	689701,5875	,	4,806	15,400	
	Malam				9189830,368	1,703	20,017	
	Pagi			684957,1041	9192736,157	2,945	15,100	
5	Siang	684956,2987	9192738,99	684958,2539		3,978	15,000	
	Malam			684957,5824	9192734,603	4,571	15,333	
	Pagi			685060,5647	9193728,113	2,099	15,017	
6	Siang	685060,1601	9193730,173	685061,0942	9193729,45	1,182	15,733	
	Malam			685059,6239	9193721,586	8,604	15,000	
	Pagi			685013,423	9194362,921	1,487	15,083	
7	Siang	685014,582	9194363,853	685012,9738	9194362,878	1,881	15,683	
	Malam	1		685014,1823	9194363,187	0,777	15,267	
	Pagi			691514,8837	9202782,904	7,934	15,450	
8	Siang	691514,7097	9202774,972	691514,1317	9202782,64	7,690	15,050	
	Malam			691514,4214	9202782,336	7,370	18,250	
	Pagi	696433,358		696434,5876	9202667,058	2,059	17,467	
9	Siang		9202665,406	696434,43	9202666,768	1,733	15,000	
	Malam		<u> </u>	696435,185	9202666,831	2,317	8,100	
	Pagi	696877,1269		696878,2261	9199973,014	2,915	15,183	
10	Siang		9199970,315	696878,2162	9199972,835	2,746	14,033	
	Malam			696877,9826	9199973,832	3,619	15,300	
	Pagi			693220,9677	9196709,649	3,690	18,333	
11	Siang	693220,3163	9196706,017	693221,0523	9196709,151	3,219	15,117	
	Malam	1		693221,2679	9196709,703	3,807	15,600	
	Pagi			692883,6097	9197140,743	3,170	15,017	
12	Siang	692883,3063	9197137,588	692884,2489	9197141,332	3,861	16,000	
	Malam	1		692884,0918		3,214	16,283	
	Pagi			692048,9824	9193679,56	0,533	17,633	
13	Siang	692049,4867	9193679,388	692049,4443		3,490	15,033	
	Malam	1		692050,4511		3,626	11,917	
14	Pagi			698110,0719		3,362	12,767	
	Siang	698108,0944	9189976,269	698108,9321		3,160	11,433	
	Malam			698109,1175		3,091	15,267	
	Pagi			699104,1584		2,993	2,683	
15	Siang	699103,2279	9193794,868	699104,6469		2,952	0,167	
	Malam			699104,0996		2,999	6,850	
			Rata-rata	, . , . , . , . , . , . , . , . , .	,	3,533	14,773	
			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,				

	7	Γabel 2 T	abel Pen	gukuran	RTK-NT	RIP Indosat	
No	waktu	Statik		Indosat			
NO		Easthing (m)	Northing (m)	Easthing (m)	Northing (m)	Pergeseran linear (m)	Waktu (menit
	Pagi			697857,3421	9194834,14	3,208	26,617
1	Siang	697856,3829	9194831,078	697856,7573	9194833,806	2,754	16,017
	Malam			697857,0364	9194834,115	3,106	10,800
	Pagi			689397,0865	9188816,611	3,906	15,967
2	Siang	689394,7086	9188813,512	689396,908	9188816,597	3,789	15,050
	Malam			689396,9562	9188816,686	3,889	15,100
	Pagi			691129,8772	9189633,129	2,050	15,167
3	Siang	691130,6979	9189631,251	691129,8018	9189633,129	2,081	15,083
	Malam			691129,3646	9189638,125	7,002	29,000
	Pagi			689701,104	9189823,558	5,125	15,017
4	Siang	689700,9443	9189828,68	689701,3336	9189823,441	5,254	15,133
	Malam	1		689700,8523	9189828,974	0,308	18,900
	Pagi			684955,9886	9192741,059	2,092	25,333
5	Siang	684956,2987	9192738,99	684957,725	9192742,291	3,596	25,717
	Malam			684958,7528	9192739,032	2,454	15,283
	Pagi			685060,8151	9193729,128	1,233	6,333
6	Siang	685060,1601	9193730,173	685066,8721	9193724,663	8,684	17,017
	Malam			685060,9855	9193729,929	0,861	15,467
	Pagi	685014,582	9194363,853	685013,6584	9194362,369	1,748	15,033
7	Siang			685013,1525	9194362,933	1,700	15,050
	Malam			685013,7629	9194363,743	0,826	15,233
	Pagi	691514,7097	9202774,972	691511,1543	9202782,955	8,739	17,050
8	Siang			691513,0247	9202782,97	8,174	15,400
	Malam			691513,1936	9202781,388	6,593	15,217
	Pagi	696433,358		696434,913	9202667,413	2,539	16,183
9	Siang		9202665,406	696434,7406		2,195	15,517
	Malam			696434,998	9202667,029	2,307	13,350
	Pagi	696877,1269		696878,0017	9199973,059	2,880	13,667
10	Siang		9199970,315	696878,3775	9199973,118	3,070	15,033
	Malam			696878,1698	9199973,676		15,117
	Pagi			693221,1883	9196709,586	3,674	17,033
11	Siang	693220,3163	9196706,017	693221,2876	9196709,554	3,668	15,083
	Malam	,.		693223,707	9196704,503	3,713	15,050
	Pagi			692881,0364	9197132,123	5,918	15,317
12	Siang	692883,3063	9197137,588	692884,2616	9197140,822	3,372	15,783
	Malam			692883,4569	9197137,863	0,313	15,333
	Pagi			692050,3621	9193682,231	2,975	8,067
13	Siang	692049,4867	9193679,388	692050,0228	9193683,018	3,669	4,050
	Malam			692050,0141	9193682,212	2,873	15,083
	Pagi			698109,0499	9189979,78		0,100
14	Siang	698108,0944	9189976,269	698109,0866	9189979,302	3,191	14,333
	Malam	1		698109,2871	9189979,722	3,653	6,200
	Pagi			699104,0305	9193797,958	3,193	0,200
15	Siang	699103,2279	9193794,868	699104,2881	9193797,935	3,246	10,217
	Malam		,	699104,0794	9193797,748	,	7,700
			Rata-rata		,	3,462	14,542

Tabel 3 Tabel Pengukuran RTK-NTRIP Three (3)

No	waktu	Statik				Three	
		Easthing (m)	Northing (m)	Easthing (m)	Northing (m)	Pergeseran linear (m)	Waktu (menit
1	Pagi			697857,187	9194834,028	3,057	29,000
	Siang	697856,3829	9194831,078	697857,032	9194833,942	2,936	33,083
	Malam			697857,2733	9194833,976	3,031	1,417
2	Pagi			689395,3921	9188816,264	2,836	0,150
	Siang	689394,7086	9188813,512	689395,2834	9188816,224	2,772	4,167
	Malam			689395,7247	9188815,66		15,050
	Pagi			691129,4059		7,190	10,183
3	Siang	691130,6979	9189631,251	691129,6764		2,095	15,333
	Malam			691129,4181	9189638,141	7,008	20,000
	Pagi			689701,7967		4,990	15,633
4	Siang	689700,9443	9189828,68	689701,9651	9189823,506	5,273	15,300
	Malam			689700,5199	9189827,715	1,055	2,667
	Pagi			684958,1212	9192742,42	3,884	7,667
5	Siang	684956,2987	9192738,99	684957,9079			9,333
	Malam			684958,219	9192741,484	3,147	9,067
	Pagi			685061,0161			15,167
6	Siang	685060,1601	9193730,173	685060,8181			15,183
	Malam			685060,906		0,761	15,617
7	Pagi			685013,8583	9194362,659	1,396	15,033
	Siang	685014,582	9194363,853	685014,0404	9194362,633	1,335	16,033
	Malam			685013,8383	9194362,744	1,335	15,133
	Pagi	691514,7097	9202774,972	691514,0443	9202782,43		15,283
8	Siang			691514,2272	9202782,11	7,155	18,017
	Malam			691514,2331	9202782,204	7,248	17,400
	Pagi	696433,358	9202665,406	696434,6924	9202667,04	2,109	4,350
9	Siang			696434,6924	9202667,025	2,098	3,333
	Malam			696434,9954	9202666,826	2,167	15,333
	Pagi	696877,1269	9199970,315	696878,0872		3,101	15,717
10	Siang			696878,6781	9199973,268	3,336	15,017
	Malam			696877,8767	9199973,578	3,348	15,600
	Pagi			693220,842		3,546	16,450
11	Siang	693220,3163	9196706,017	693220,4755			15,500
	Malam			693219,5302			16,167
	Pagi			692884,3518		3,384	15,167
12	Siang	692883,3063	9197137,588	692884,0475			15,167
	Malam			692884,3206			15,017
	Pagi			692050,3304		·	9,250
13	Siang	692049,4867	9193679,388	692050,8105			15,183
	Malam			692050,294			15,117
	Pagi			698109,0478			0,667
14	Siang	698108,0944	9189976,269	698109,0056		·	2,283
	Malam			698108,9955			7,083
	Pagi		9193794,868	699104,0304		·	0,033
15	Siang	699103,2279		699104,1575		3,232	9,500
	Malam			699104,5447	9193798,12	3,509	1,000
Rata-rata						3,288	12,308

LAMPIRAN B

Gambar Lokasi Pengukuran di 15 Titik di Surabaya

Gambar 1 Lokasi di ITS

Gambar 2 Lokasi di Masjid Al Akbar

Gambar 3 Lokasi di Taman Pelangi

Gambar 4 Lokasi di Kebonsari

Gambar 5 Lokasi di UNESA Lidah

Gambar 6 Lokasi di PTC

Gambar 7 Lokasi di Lontar

Gambar 8 Lokasi di Perak

Gambar 9 Lokasi di Suramadu

Gambar 10 Lokasi di Bulak

Gambar 11 Lokasi di Lapangan Skateboard & BMX

Gambar 12 Lokasi di Balai Kota

Gambar 13 Lokasi di Taman Bungkul

Gambar 14 Lokasi di Rungkut

Gambar 15 Lokasi di Keputih

PROFIL PENULIS

Atika Sari, dilahirkan di Kediri, 6 April 1992. Pendidikan pertama di TK Dharma Wanita. Turus. menyelesaikan pendidikan dasar di SDN TURUS 1 dan lulus pada tahun 2004, pendidikan menengah pertama di SMPN 2 Gampengrejo dan lulus Melanjutkan pada tahun 2007. pendidikan menengah atas di SMAN 1 Papar Kediri dan lulus pada tahun 2010. Penulis kemudian melanjutkan pendidikan untuk perguruan tinggi di

Institut Teknologi Sepuluh Nopember dan mengambil jurusan Teknik Geomatika melalui jalur SNMPTN. Selama menjadi mahasiswa S1, penulis cukup aktif dalam kegiatan intra kampus yaitu Himpunan Mahasiswa Teknik Geomatika (HIMAGE ITS). Dalam penyelesaian Tugas Akhir, penulis memilih bidang keahlian Geodesi, dengan judul tugas Akhir "Analisa Perbandingan Ketelitian Penentuan Posisi dengan *GPS RTK-NTRIP* dengan *Base CORS* Badan Informasi Geospasial (BIG) dari Berbagai *Mobile Provider*"

