Identifikasi Tingkat Kesegaran Telur Ayam Menggunakan Kamera Termal

Hidayatullah, Muhammad Syarif Maulana (2021) Identifikasi Tingkat Kesegaran Telur Ayam Menggunakan Kamera Termal. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img] Text
07111640000047-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2023.

Download (7MB) | Request a copy

Abstract

Telur merupakan bahan makanan yang sering dikonsumsi masyarakat sehari-hari karena sumber protein yang baik bagi tubuh. Tetapi jangka waktu penyimpanan yang lama dapat mengakibatkan telur menjadi tak layak konsumsi, sehingga sering kali telur yang telah busuk masih beredar di pasar tradisional. Untuk mengidentifikasi telur yang masih layak konsumsi dan tidak, biasanya menggunakan cara manual seperti mencium aroma dari telur dan menerawang telur ke sumber cahaya sehingga masih banyak konsumen yang kurang teliti dalam memilih telur yang layak konsumsi. Maka dari itu, pada tugas akhir ini akan dilakukan rancang bangun sistem untuk mengidentifikasi tingkat kesegaran menggunakan kamera termal. Sistem ini akan mengidentifikasi tingkat kesegaran telur melalui suhu cairan di dalam telur. Seiring bertambahnya waktu penyimpanan maka akan muncul rongga udara di dalam telur. Rongga udara di dalam telur akan semakin membesar seiring dengan bertambahnya waktu penyimpanan telur. Rongga udara tersebut akan menghalangi suhu cairan telur yang diambil oleh kamera termal. Citra yang diperoleh dari kamera termal akan diproses oleh Raspberry Pi. Pengolahan citra yang terjadi di dalam Raspberry Pi berupa mengonversikan citra dengan ruang warna RGB menjadi ruang warna HSV. Setelah proses konversi ruang warna citra tersebut akan diproses lagi dengan filter HSV, operasi morfologi, dan blob detection. Hasil pengujian terdapat 3 tingkat kesegaran telur yaitu segar, kurang segar, dan busuk. Sedangkan pengujian dengan 64 telur dari pasar tradisional di Kota Surabaya dan peternakan telur ayam didapatkan akurasi sebesar 94,98%. ====================================================================================================== Eggs are regarded as one of the protein sources for human body which can be consumed daily. Fresh eggs have a limited shelf life and good quality, however, they may losses its quality because of an improperly storage in markets. Eggs quality and freshness could be determined manually by consumer from its smell and enlargement air cell size with help of the lights. Determination of freshness can be main concern because consumers may perceive variability lack quality of eggs. This study has conducted a system which has been developing to identify eggs freshness by thermal camera. The system can detect the freshness quality of eggs by evaluate the liquid’s temperature inside the eggs. In addition, enlargement of air cell size increased with increasing storage time. The air cell will increase in size as time of storage passes and it can inhibit the liquid’s temperature in eggs. The air cell will Images which were obtained from thermal camera can be processing by Raspberry Pi. When images processing performs in Raspberry Pi, it can converse the color of image with RGB color model become HSV color model. After conversion processing, this color model will be re-processing with HSV filter, morphological operator, and blob detection. The result of this study is divided egg freshness into 3 levels, such as fresh eggs, less-fresh eggs, and rotten eggs. Meanwhile, the result shows 94.98% accuracy in the analysis of 64 eggs from traditional market in Surabaya City and poultry.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Blob Detection, Kamera Termal, Rongga Udara, Telur Ayam, Blob Detection, Thermal Camera, Air Cell, Chicken Eggs. Blob Detection, Thermal Camera, Air Cell, Chicken Eggs.
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA1637 Image processing--Digital techniques
T Technology > TA Engineering (General). Civil engineering (General) > TA1650 Face recognition. Optical pattern recognition.
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20201-(S1) Undergraduate Thesis
Depositing User: Muhammmad Syarif Maulana Hidayatullah
Date Deposited: 24 Feb 2021 23:36
Last Modified: 24 Feb 2021 23:36
URI: https://repository.its.ac.id/id/eprint/82793

Actions (login required)

View Item View Item