Analisa Pengaruh Jumlah Layer Separator, Jarak Separator-Katoda dan Modifikasi Katoda Dalam Tubular Microbial Fuel Cell Untuk Aplikasi Reduksi Limbah Cr (VI)

Rakhmania, Citra Dewi (2021) Analisa Pengaruh Jumlah Layer Separator, Jarak Separator-Katoda dan Modifikasi Katoda Dalam Tubular Microbial Fuel Cell Untuk Aplikasi Reduksi Limbah Cr (VI). Masters thesis, Institut Teknologi Sepuluh Nopember.

[img] Text
02211850012005-Mater_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2023.

Download (4MB) | Request a copy

Abstract

Microbial Fuel Cell (MFC) merupakan bioreaktor yang mengkonversi energi kimia dari degradasi bahan-bahan organik menjadi listrik melalui reaksi biokatalis oleh mikroorganisme. Kinerja dari MFC dalam menghasilkan energi listrik dipengaruhi oleh beberapa faktor, seperti jenis elektroda, modifikasi elektroda, jenis mikroba, jenis kontaminan, jenis konfigurasi, serta jenis separator dan kondisi operasi. Pada penelitian ini digunakan konfigurasi MFC Tubular double chamber, yang mana penggunaan MFC Tubular mampu meningkatkan efisiensi energi dan degradasi limbah, biaya konstruksi murah, mudah di scale up. Salah satu kendala pada aplikasi MFC adalah transfer proton yang lambat dari ruang anoda ke katoda, hal tersebut menyebabkan peristiwa pH splitting, yang menyebabkan menurunnya stabilitas sistem dan kinerja bioelektrokimia, serta meningkatkan resistansi internal keseluruhan MFC. Penelitian ini mempelajari pengaruh jumlah layer separator GORE-Tex®, modifikasi elektroda dan pengaruh jarak separator-katoda terhadap performa tubular microbial fuel cell. Anolyte pada penilitian ini berupa molase (berfungsi sebagai carbon source) dan catholyte berupa limbah Cr (VI), sedangkan mikroorganisme yang digunakan pada sisi anoda adalah Shewanella oneidensis MR-1. Layer separator divariasikan sejumlah 1, 3 dan 5 layer, sedangkan jarak separator-katoda divariasikan mulai dari 0 cm, 0,5 cm dan 1 cm, serta variasi katoda carbon cloth tanpa modifikasi dan modifikasi katoda carbon cloth dengan penmabahan Cu. Hasil penelitian menunjukkan bahwa penambahan jumlah layer separator pada 3 dan 5 layer mampu mengatasi permasalahan pH splitting sejak operasi hari ke-3, namun penambahan jumlah layer menyebabkan penurunan nilai power density yang dihasilkan. Penggunaan 5 layer separator menurunkan stabilitas sistem berupa rendahnya pertumbuhan mikroba EAB (Electrochemically Active Bacteria) dan penurunan power density hingga 30%-50%. Sedangkan pada peningkatan jarak separator-katoda mampu meningkatkan power density hingga 15-70%, dikarenakan adanya peningkatan surface area elektroda. Penggunaan modifikasi katoda mampu mempercepat kondisi electroneutrality dan meningkatkan power density 150%. Variasi terbaik dicapai dengan 3 jumlah layer separator dan 1 cm jarak separator-katoda dan dengan menggunakan modifikasi katoda, yang menghasilkan power density rata-rata sebesar 9,49 mW/m2 total power density sebesar 5325 mW/m2, dikarenakan pada variasi tersebut tidak mengalami pH splitting setelah hari ke-3. ==================================================================================================== Microbial fuel cell (MFC) is a bioreactor which can produce an electricity through pollutant degradation using microbes. MFC performances was influenced by the type of electrodes, bacteria, cell configuration, separator and contaminant used. MFC Tubular double chamber configuration was used in this study, tubular MFC will improve energy efficiency and waste degradation, have low construction costs and the easiest to scale up. One of major concerns in MFC application is pH splitting. pH splitting was caused by the competitions of proton transfer and the slow proton transport from anode to cathode, resulting in non-electroneutrality state in system. pH splitting will disturbs the biochemical performances and MFC stability, and decrease the power density. This problem can be eliminitaed by using size selective membrane as a MFC separator. This study focused on analysing the effect of GORE-Tex® separator layers number, the cathode-separator space and modified cathode on MFC tubular performance. The anolyte used in this research is molasses (as a carbon source) and the catholyte used is chromium hexavalent, while the microbes used is Shewanella oneidensis MR-1. The variation of separator layers number used is 1, 3 and 5 layers, while the separator-cathode spacing was varied from 0 cm, 0.5 cm and 1 cm, and the modification of cathode was using non-modified carbon cloth and carbon cloth modified with copper metal. The results show that the increasing of layer numbers will caused the decreasing of total power density. The problem of pH splitting can be solved on the 3rd day of operation by using 3 and 5 layers separator, but the increasing of separator layers number was resulting in lower power density value. Although increasing layers number further than 3 layer does not have any effect in pH splitting but it will decrease the overall MFC tubular performances. By using 5 layer separator, the MFC system stability was disturbed, indicated by low EAB (Electrochemically Active Bacteria) microbial growth and decrease in power density by 30%-50%. Meanwhile, increasing the separator-cathode space will increase the power density up to 15-70%, due to the increasing of electrode surface area which will increase the active site for the reduction reaction takes places. Furthermore the modification of cathode can accelerate the electroneutrality in system and increase the power density up to 150%. The best variation was achieved with 3 layers of separator and 1 cm separator-cathode space and using cathode modification, which resulted in average power density of 9.49 mW/m2, total power density 5325 mW/m2 and did not experience a pH splitting after the 3rd days of MFC operations.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Tubular MFC, Limbah Cr (VI), Shewanella oneidensis MR-1, GORE-Tex®, Carbon Cloth, Modifikasi Katoda, Cr (VI) wastewater, Cathode Modification
Subjects: Q Science > QD Chemistry > QD553 Electrochemistry. Electrolysis
Q Science > QR Microbiology > QR74.8 Bacteria
T Technology > T Technology (General) > TA404 Materials--Biodegradation
T Technology > TD Environmental technology. Sanitary engineering > TD195.B56 Biomass energy
T Technology > TD Environmental technology. Sanitary engineering > TD756.45 Anaerobic treatment
T Technology > TP Chemical technology > TP248.3 Biochemical engineering. Bioprocess engineering
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Chemical Engineering > 24101-(S2) Master Thesis
Depositing User: Citra Dewi Rakhmania
Date Deposited: 05 Mar 2021 02:34
Last Modified: 05 Mar 2021 02:34
URI: https://repository.its.ac.id/id/eprint/83472

Actions (login required)

View Item View Item