Permainan Bayesian Tiga Pemain

Rahmanullah, Lindung Harmoni (2021) Permainan Bayesian Tiga Pemain. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img] Text
01111640000039-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (1MB) | Request a copy

Abstract

Permainan Bayesian merupakan permainan yang informasinya tak sempurna. Adanya sebuah input yang diberikan oleh juri kepada pemain merupakan ciri khas dari permainan Bayesian sekaligus pembeda dari permainan yang informasinya sempurna. Pada tugas akhir ini, kami akan mengkuantisasi permainan Bayesian untuk tiga pemain yaitu Alice, Bob dan Charlie, yang mana kepentingan antar pemain saling berbenturan. Metode perhitungan yang digunakan untuk mengkuantisasi permainan ini adalah metode Pappa. Dari hasil perhitungan, diperoleh nilai payoff pada rentang tertentu apabila divariasikan dengan variabel sudut ============================================================================================== Bayesian games are games whose information is imperfect. The existence of an input given by the judge to the player is a hallmark of Bayesian play as well as a differentiator from games with perfect information. In this final project, we will quantize a Bayesian game for three players, namely Alice, Bob and Charlie, in which the interests of the players collide. The calculation method used to quantify this game is the Pappa method. From the calculation results, the payoff value is obtained in a certain range when varied with the angle variable.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Bayesian Game, Entanglement, Quantum Mechanics, Keterbelitan, Mekanika Kuantum, Permainan Bayesian
Subjects: Q Science > Q Science (General)
Q Science > QC Physics
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Physics > 45201-(S1) Undergraduate Thesis
Depositing User: Lindung Harmoni Rahmanullah
Date Deposited: 05 Mar 2021 03:49
Last Modified: 05 Mar 2021 03:49
URI: https://repository.its.ac.id/id/eprint/83526

Actions (login required)

View Item View Item