Pengembangan Prototipe Aplikasi Kesehatan Berbasis Mobile Untuk Prediksi Tingkat Risiko Stunting Menggunakan Rule-Based Expert Systems

Jauhar, Ikhwan (2021) Pengembangan Prototipe Aplikasi Kesehatan Berbasis Mobile Untuk Prediksi Tingkat Risiko Stunting Menggunakan Rule-Based Expert Systems. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 05211740000044-Undergraduate_Thesis.pdf] Text
05211740000044-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2023.

Download (2MB) | Request a copy

Abstract

Stunting merupakan suatu permasalahan gizi yang terjadi pada balita dan menjadi salah satu perhatian utama di dunia kesehatan saat ini. Menurut data WHO (World Health Organization), Indonesia berada di posisi ketiga dengan prevalensi stunting tertinggi di Kawasan Asia Tenggara. Tingginya tingkat kejadian stunting di Indonesia dipengaruhi oleh berbagai macam faktor. Balita yang terkena stunting dapat disebabkan oleh kondisi sosial ekonomi, gizi ibu saat hamil, kesakitan pada bayi, dan kurangnya asupan gizi pada bayi. Balita stunting di masa yang akan datang akan mengalami kesulitan dalam mencapai perkembangan fisik dan kognitif yang optimal. Berbagai upaya telah dilakukan oleh pemerintah seperti tertulis dalam Peraturan Menteri Kesehatan Nomor 39 Tahun 2016 tentang Pedoman Penyelenggaraan Program Indonesia Sehat dengan Pendekatan Keluarga. Akan tetapi dalam hal eksekusi program kerja tersebut pemerintah perlu mengetahui kondisi lapangan karena di setiap daerah memiliki kondisi yang berbeda-beda. Selain itu masyarakat masih belum mengetahui kondisi balita yang dimilikinya terkena stunting atau tidak. Banyak masyarakat yang masih cenderung mengabaikan status gizi balitanya. Hal tersebut merupakan suatu alasan diperlukannya suatu sistem berbentuk aplikasi mobile yang dapat digunakan untuk menghasilkan prediksi tingkat risiko stunting pada balita dengan menggunakan data riwayat kesehatan yang dimiliki balita tersebut. Untuk menentukan hasil prediksi, metode yang digunakan yaitu rule based expert system dan model Decision Tree yang merujuk pada penelitian terdahulu sebagai acuan pengembangan rules dalam menentukan status risiko terkena stunting. Model tersebut diimplementasikan ke dalam aplikasi kesehatan berbasis mobile sebagai media untuk memasukkan data, memproses data, dan menampilkan hasil prediksi yang didapat. Hasil didapatkan dalam tugas akhir ini yaitu berupa aplikasi mobile yang dapat digunakan untuk membuat akun, memasukkan data user, ibu, dan anak, dan menampilkan hasil prediksi yang dikelompokkan dalam beberapa kelas, yaitu stunted, underweight, wasted, dan normal.
=======================================================================================================
Stunting is a nutritional problem that occurs in toddlers and is one of the main concerns in today's health world. According to WHO (World Health Organization) data, Indonesia is in the third position with the highest prevalence of stunting in the Southeast Asia Region. The high incidence of stunting in Indonesia is influenced by various factors. Toddlers who are affected by stunting can be caused by socioeconomic conditions, maternal nutrition during pregnancy, infant illness, and lack of nutritional intake in infants. Toddlers with stunting in the future will experience difficulties in achieving optimal physical and cognitive development. Various efforts have been made by the government as written in the Minister of Health Regulation Number 39 of 2016 concerning Guidelines for Implementing a Healthy Indonesia Program with a Family Approach. However, in terms of executing the work program, the government needs to know the conditions in the field because in each region there are different conditions. In addition, people still do not know the condition of their toddlers who are stunted or not. Many people still tend to ignore the nutritional status of their children. This is a reason for the need for a system in the form of a mobile application that can be used to produce predictions of the risk level of stunting in toddlers using medical history data that the toddler has. To determine the prediction results, the method used is the rule-based expert system and the Decision Tree model which refers to previous studies as a reference for developing rules in determining the risk status of stunting. The model is implemented into a mobile-based health application as a medium for entering data, processing data, and displaying the predicted results obtained. The results obtained in this final project are in the form of a mobile application that can be used to create accounts, enter user, mother and child data, and display prediction results grouped into several classes, namely stunted, underweight, wasted, and normal.

Item Type: Thesis (Other)
Uncontrolled Keywords: Aplikasi Mobile, Prediksi, Balita, Stunting, Mobile Application, Prediction, Toddlers, Stunting
Subjects: T Technology > T Technology (General) > T174 Technological forecasting
T Technology > T Technology (General) > T58.5 Information technology. IT--Auditing
T Technology > T Technology (General) > T58.62 Decision support systems
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Information System > 57201-(S1) Undergraduate Thesis
Depositing User: Ikhwan Jauhar
Date Deposited: 05 Mar 2021 14:20
Last Modified: 04 Oct 2024 02:01
URI: http://repository.its.ac.id/id/eprint/83607

Actions (login required)

View Item View Item