Anggoh, David Joel Joshua Lermans (2021) Perancangan Sistem Monitoring Remaining Useful Lifetime Pada Motor Induksi. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
Text
02311640000076-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 April 2023. Download (2MB) | Request a copy |
Abstract
Tugas akhir ini bertujuan untuk merancang sistem monitoring remaining useful lifetime pada motor induksi. Untuk memenuhi tujuan tugas akhir tersebut, langkah awal dari tugas akhir ini adalah merancang pemodelan motor induksi pada software Matlab2020a. Pemodelan motor induksi dilakukan dengan memasukkan persamaan-persamaan dan parameter kedalam software tersebut. Setelah merancang pemodelan motor induksi, dirancang juga particle filtering untuk mengestimasi kecepatan dari motor induksi. Setelah merancang particle filtering, dirancang juga recursive least square estimator untuk memprediksi estimasi kecepatan dari partikel yang diterima dari particle filtering. Kemudian hasil kecepatan dari recursive least square estimator akan diberi threshold sebesar 200 rad/s untuk menghasilkan pengkondisian kinerja motor induksi. Pengkondisian terdiri dari 2 kondisi, yaitu kondisi 0 jika kecepatan motor induksi dibawah 200 rad/s (motor induksi bekerja secara normal) dan kondisi 1 jika kecepatan motor induksi diatas 200 rad/s (motor induksi bekerja secara overload). Pengkondisian kinerja motor induksi akan dijadikan acuan untuk menghitung remaining useful lifetime dari motor induksi. Jika kondisi bernilai 0 maka remaining useful lifetime akan berkurang 10 persen tiap 0,1 waktu simulasi dan jika kondisi bernilai 1 maka remaining useful lifetime akan berkurang 20 persen tiap 0,1 waktu simulasi.
======================================================================================================
This final project aims to design a monitoring system for the remaining useful lifetime of the induction motor. To fulfill the objectives of this final project, the first step of this final project is to design an induction motor modeling in Matlab2020a software. Induction motor modeling is done by entering the equations and parameters into the software. After modeling the induction motor, a particle filter is designed to estimate the velocity of the induction motor. After designing the particle filtering, a recursive least square estimator is also designed to predict the velocity of the particles received from particle filtering. Then the velocity results from the recursive least square estimator will be given a threshold value of 200 rad/s to produce the induction motor performance conditioning. Conditioning consists of 2 conditions, namely condition 0 if the velocity of the induction motor is less than 200 rad/s (the motor works normal) and condition 1 if the velocity of the induction motor is above 200 rad/s (the motor is working overload). Induction motor performance conditioning will be used as a reference for calculating the remaining useful lifetime of the induction motor. If the condition is worth 0 then the remaining useful lifetime will be reduced by 10 percent each 0.1 time of simulation and if the condition is worth 1 then the remaining useful lifetime will be reduced by 20 percent each 0.1 time of simulation.
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | motor induksi, particle filtering, recursive least square estimator, remaining useful lifetime, induction motor, particle filtering, recursive least square estimator, remaining useful lifetime. |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) > TA169 Reliability (Engineering) T Technology > TA Engineering (General). Civil engineering (General) > TA169.5 Failure analysis T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2785 Electric motors, Induction. |
Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Physics Engineering > 30201-(S1) Undergraduate Thesis |
Depositing User: | David Joel Joshua Lermans Anggoh |
Date Deposited: | 07 Mar 2021 20:57 |
Last Modified: | 07 Mar 2021 20:57 |
URI: | http://repository.its.ac.id/id/eprint/83706 |
Actions (login required)
View Item |