Studi Numerik Distribusi Temperatur Dan Perpindahan Panas Pada Lithium-Ion Battery Pack Dengan Variasi Arus Discharge Dan Konfigurasi Susunan Battery

Wijaya, Oliver (2021) Studi Numerik Distribusi Temperatur Dan Perpindahan Panas Pada Lithium-Ion Battery Pack Dengan Variasi Arus Discharge Dan Konfigurasi Susunan Battery. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02111740000076-Undergraduate_Thesis.pdf] Text
02111740000076-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2023.

Download (5MB) | Request a copy

Abstract

Li-ion cells banyak digunakan di berbagai bidang teknik sebagai penyimpan energi karena kelebihannya jika dibandingkan dengan penyimpan energi jenis lain. Li-ion cells menawarkan kepadatan energi yang lebih unggul, kepadatan daya, dan juga kemampuannya untuk digunakan secara terus menerus. Penggunaan sel Li-ion ini sudah banyak diaplikasikan pada beberapa bidang seperti otomotif, pembangkit listrik, sistem industri, dan bahkan pada dunia penerbangan.
Pada penelitian ini, dilakukan simulasi mengenai distribusi temperatur dan perpindahan panas pada lithium-ion battery pack dengan menggunakan software ANSYS 19.2. Permodelan panas pada battery cell dilakukan dengan memberikan input heat generation rate sesuai dengan panas yang terjadi akibat proses charge dan discharge. Simulasi yang digunakan pada penelitian ini adalah discharge rate dan konfigurasi susunan battery. Discharge rate yang digunakan adalah 3C, 1C, dan 0,6C. Konfigurasi susunan battery yang digunakan adalah susunan aligned dan staggered.
Hasil yang didapatkan dari penelitian ini berupa kontur temperatur, nilai dan letak temperatur maksimal, kontur kecepatan udara, dan kecepatan maksimal udara. Distribusi temperatur pada kedua variasi susunan aligned dan staggered terpusat pada tengah battery pack, perisitwa ini diakibatkan oleh jumlah cell yang banyak dan celah antar cell yang sempit. Temperatur maksimal melewati batas optimal operasi lithium-ion battery pada penggunaan discharge rate 3C sebesar 60,67 oC, sedangkan untuk penggunaan discharge rate 1C dan 0,6C temperatur maksimal masih berada pada batas optimal operasi. Kecepatan udara maksimal terjadi pada discharge rate 3C sebesar 0,0761678 m/s, kecepatan ini lebih tinggi daripada pada discharge rate 3C dan 0,6C karena pada 3C panas yang dihasilkan lebih tinggi sehingga proses perpindahan panas yang terjadi lebih besar sehingga udara lebih terpaksa untuk bergerak. Pada susunan staggered, temperatur maksimal lebih tinggi daripada susunan aligned karena pada model yang digunakan dimensi battery pack staggered lebih kecil. Perbedaan kecil pada temperatur maksimal antara susunan aligned dan staggered masih dapat ditolerir karena penggunaan susunan staggered juga memberikan suatu kelebihan yaitu konsumsi ruang yang lebih kecil.
=====================================================================================================
Li-ion cells are widely used in various engineering fields as energy storage because of its advantages when compared to other types of energy storage. Li-ion cells offer superior energy density, power density, and also the ability to be used continuously. The use of Li-ion cells has been widely applied in several fields such as automotive, power generation, industrial systems, and even in the world of aviation. In this study, simulations were conducted on temperature distribution and heat transfer in lithium-ion battery packs using ANSYS 19.2 software. Heat modeling on the battery cell is done by providing heat generation rate input in accordance with the heat that occurs due to the charge and discharge process. The simulation used in this study is discharge rate and battery arrangement configuration. Discharge rates used are 3C, 1C, and 0.6C. The battery array configurations used are aligned and staggered. The results obtained from this study are the contour of temperature, value and location of maximum temperature,
contour of air speed, and maximum speed of air. Temperature distribution in both aligned and staggered array variations is centered in the middle of the battery pack, which is due to the large number of cells and the narrow gaps between cells. The maximum temperature exceeds the optimal operating limit of lithium-ion battery at the use of discharge rate 3C of 60.67 oC, while for the use of discharge rate 1C and 0.6C the maximum temperature is still at the optimal operating limit. The maximum air speed occurs at a discharge rate of 3C of 0.0761678 m/s, this speed is higher than at discharge rates of 3C and 0.6C because at 3C the heat generated is higher so that the heat transfer process that occurs is greater so that the air is more forced to move. In staggered arrays, the maximum temperature is higher than the aligned array because on the model used the dimensions of the staggered battery pack are smaller. Small differences in maximum temperature between aligned and staggered arrays can still be tolerated because the use of staggered arrangements also provides an advantage that is smaller space consumption.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Lithium-ion battery, discharge rate, konfigurasi susunan battery, discharge rate, battery arrangement configuration
Subjects: Q Science > QC Physics > QC320 Heat transfer
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2921 Lithium cells.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2941 Storage batteries
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Oliver Wijaya
Date Deposited: 04 Aug 2021 07:10
Last Modified: 04 Aug 2021 07:10
URI: http://repository.its.ac.id/id/eprint/84807

Actions (login required)

View Item View Item