Analisis Faktor Penerimaan Masyarakat Indonesia Terhadap Vaksin COVID-19 dengan Pendekatan Structural Equation Modeling (SEM)

Syadza, Azizah Tamma (2021) Analisis Faktor Penerimaan Masyarakat Indonesia Terhadap Vaksin COVID-19 dengan Pendekatan Structural Equation Modeling (SEM). Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img] Text
02411740000052-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2023.

Download (4MB) | Request a copy

Abstract

COVID-19 merupakan penyakit yang membahayakan nyawa manusia dan telah menginfeksi jutaan orang di Indonesia. Vaksin merupakan antigen yang digunakan untuk mendapatkan respon imun. Target vaksinasi di Indonesia belum terpenuhi karena masih adanya penolakan akibat berbagai aspek. Maka diperlukan analisis faktor untuk mengetahui faktor-faktor yang mempengaruhi penerimaan masyarakat terhadap vaksin COVID-19, serta hubungan antar faktor tersebut. Structural Equation Modeling (SEM) digunakan untuk menguji hubungan antar variabel, yaitu demografi, karakteristik individu, kebutuhan individu, kesiapan pemerintah, kemudahan akses, keamanan vaksin, pemahaman individu, informasi eksternal, dan penerimaan vaksin COVID-19. Data diperoleh menggunakan kuesioner dengan jumlah minimal responden 195 orang. Setelah dilakukan analisis, 4 variabel secara langsung mempengaruhi penerimaan vaksin COVID-19, yaitu kesiapan pemerintah, karakteristik individu, kebutuhan individu, dan keamanan vaksin. Selain itu, variabel kesiapan pemerintah mempengaruhi kemudahan akses, karakteristik individu mempengaruhi kebutuhan individu dan informasi eksternal, serta informasi eksternal mempengaruhi pemahaman individu. Sementara itu, pemahaman individu, kemudahan akses, informasi eksternal, dan demografi tidak mempengaruhi penerimaan vaksin COVID-19 secara signifikan, serta variabel demografi pun tidak berpengaruh terhadap karakteristik individu. ======================================================================================================= COVID-19 is a disease that endangers human life and were infecting millions people in Indonesia. Vaccine is an antigen that used to get an immune response. The target for vaccine recipients in Indonesia has not been met because there are still people who refuse due to several aspects. Then a factor analysis is needed to find out the factors that affect public acceptance towards COVID-19 vaccine and the relationship between those factors. Structural Equation Modeling (SEM) is used to test the relationship between variables used, namely demographics, individual characteristics, individual needs, government readiness, accessibility, vaccine safety, individual knowledge, external information, and acceptance toward COVID-19 vaccine. Data obtained using a questionnaire with a minimum number of respondents are 195 people. After the analysis was done, 4 variables are directly affecting the acceptance toward COVID-19 vaccine, namely government readiness, individual characteristics, individual needs, and vaccine safety. Beside that, government readiness is affecting accessibility, individual characteristics are affecting individual needs and external information, and external information is affecting individual knowledge. Meanwhile, individual knowledge, accessibility, external information and demographics are not affecting the acceptance toward COVID-19 vaccine significantly, and also demographics are not affecting individual characteristics.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Acceptance Factor, COVID-19 Vaccine, Indonesian, Structural Equation Modeling, Faktor Penerimaan, Vaksin COVID-19, Masyarakat Indonesia, Structural Equation Modeling
Subjects: H Social Sciences > HA Statistics > HA29 Theory and method of social science statistics
Q Science > QA Mathematics > QA278.3 Structural equation modeling.
Q Science > QA Mathematics > QA278.5 Principal components analysis. Factor analysis. Correspondence analysis (Statistics)
Q Science > QA Mathematics > QA278 Cluster Analysis. Multivariate analysis. Correspondence analysis (Statistics)
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Industrial Engineering > 26201-(S1) Undergraduate Thesis
Depositing User: Azizah Tamma Syadza
Date Deposited: 04 Aug 2021 21:27
Last Modified: 04 Aug 2021 21:27
URI: https://repository.its.ac.id/id/eprint/84833

Actions (login required)

View Item View Item