Analisis Koefisien Serapan Untuk Neutron Termal Dari Bahan Komposit Polimer Uhmwpe (Ultra High Molecular Weight Polyethilene) Dengan Filler H3BO3 Dan GD2O3

Fadilla, Fadilla (2021) Analisis Koefisien Serapan Untuk Neutron Termal Dari Bahan Komposit Polimer Uhmwpe (Ultra High Molecular Weight Polyethilene) Dengan Filler H3BO3 Dan GD2O3. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02511850010005-Master_Thesis.pdf] Text
02511850010005-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2023.

Download (4MB) | Request a copy

Abstract

Ultra High Molecular Weight Polyethylene (UHMWPE) mengandung elemen hidrogen sebanyak 14% beratnya, sehingga dapat menyerap dan memperlambat energi radiasi neutron. Pada penilitian ini bahan yang digunakan adalah sampel UHMWPE dengan filler H3BO3 dan Gd2O3 masing masing dengan kompisisi 5%, 10%, dan 15%. Tujuan penelitian adalah menganalisa proses serapan neutron termal dan menganalisa ukuran ketebalan yang efektif untuk shielding neutron termal. Metode yang digunakan pada penelitian ini menggunakan metode film radiografi. Data mendukung untuk penelitian ini yaitu berdasarkan hasil daru uji karakterisasi masing-masing sampel. Hasil dari XRD kita dapat menentukkan ukuran kristal untuk UHMWPE adalah 18,5 nm, UHMWPE-H3BO3 14,1 nm dan Gd2O3 15,3 nm. Hasil dari SEM pada penelitian ini, morfologi yang terlihat pada permukaan sampel terlihat berbeda di antara masing masing sampel hal ini di pengaruhi oleh temperature saat proses blending dan kompaksi. Hasil FTIR menunjukkan sampel UHMWPE tanpa filler yang menunjukkan puncak spectrum sekitar 2840–2940 cm-1, 1735 cm-1, 1470 cm-1, dan 727 cm-1 dengan memiliki ikatan CH2, Untuk hasil dari uji DSC menunjukkan bahwa filler H3BO3 lebih mengikat UHMWPE dibanding dengan filler Gd2O3. Hasil perhitungan penyerapan neutron menunjukkan bahwa proses serapan neutron tertinggi terdapat pada sampel UHMWPE-H3BO3 15% dengan nilai atenuasi 0.157cm-1 dengan ketebalan 25 cm dan UHMWPE-Gd2O3 15% dengan nilai atenuasi 0,439 cm-1 dengan ketebalan 15-25 cm.
=========================================================================
Ultra High Molecular Weight Polyethylene (UHMWPE) contains the element hydrogen as much as 14% by weight, so it can absorb and slow down the energy of neutron radiation. In this study, the materials used were UHMWPE samples with H3BO3 and Gd2O3 as fillers, each with a composition of 5%, 10%, and 15%. The purpose of this research is to analyze the process of thermal neutron absorption and to analyze the size of the effective thickness for thermal neutron shielding. The method used in this study used the radiographic film method. Supporting data for this research is based on the results of the characterization test of each sample. The results from XRD we can determine the crystal size for UHMWPE is 18.5 nm, UHMWPE-H3BO3 14.1 nm and Gd2O3 15.3 nm. The results of the SEM in this study, the morphology seen on the surface of the sample looks different between each sample, this is influenced by the temperature during the blending and compacting process. The FTIR results show that the UHMWPE sample without filler shows spectrum peaks around 2840–2940 cm-1, 1735 cm-1, 1470 cm-1, and 727 cm-1 with a CH2 bond. The results of the neutron absorption calculation show that the highest neutron absorption process is found in the 15% UHMWPE-H3BO3 sample with an attenuation value of 0.157cm-1 with a thickness of 25cm and UHMWPE-Gd2O3 15% with an attenuation value of 0.439 cm-1 with a thickness of 15-25 cm.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Ultra High Molecular Weight Polyethylene (UHMWPE), Radiation shielding, boric acid (H3BO3), Gadolinium (Gd2O3) Ultra High Molecular Weight Polyethylene (UHMWPE), Perisai radiasi, Asam borat (H3BO3), Gadolinium (Gd2O3)
Subjects: Q Science > QC Physics > QC173.4.C63 Composite materials
T Technology > TA Engineering (General). Civil engineering (General) > TA418.9 Composite materials. Laminated materials.
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Material & Metallurgical Engineering > 27101-(S2) Master Thesis
Depositing User: Fadilla Fadilla
Date Deposited: 13 Aug 2021 11:15
Last Modified: 13 Aug 2021 11:15
URI: http://repository.its.ac.id/id/eprint/86379

Actions (login required)

View Item View Item