Perancangan Spektrometer Pentakromatik Sederhana Dengan Jaringan Syaraf Tiruan Untuk Identifikasi Molekul Organik/Anorganik Pada Air Limbah

Rahmawati, Varisa (2021) Perancangan Spektrometer Pentakromatik Sederhana Dengan Jaringan Syaraf Tiruan Untuk Identifikasi Molekul Organik/Anorganik Pada Air Limbah. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02311940005005_Undergraduate_Thesis.pdf] Text
02311940005005_Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2023.

Download (2MB) | Request a copy
[thumbnail of 02311940005005_Undergraduate_Thesis.pdf] Text
02311940005005_Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2023.

Download (2MB) | Request a copy

Abstract

Pencemaran lingkungan dikarenakan pembuangan air limbah yang tidak tertangani dengan baik menimbulkan kerusakan pada ekosistem air tanah, sungai, maupun lautan. Air limbah sendiri dapat mengandung dua jenis senyawa, yaitu senyawa organik dan anorganik baik berasal dari alam maupun hasil sintesis bahan-bahan kimia di industri proses. Untuk merancang sistem pengolahan air limbah maka langkah utama dan krusial yang dibutuhkan adalah identifikasi polutan dalam air limbah. Identifikasi molekul organik ataupun anorganik paling sederhana adalah menggunakan teknik spektroskopi dengan mengevaluasi spektrum absorpsinya terhadap cahaya tampak. Pada penelitian Tugas Akhir ini, dirancang spektrometer pentakromatik untuk mengidentifikasi adanya molekul organik maupun anorganik dalam air limbah. Spektrometer pentakromatik ini memanfaatkan 5 panjang gelombang kisaran 450-650 nm sehingga menghasilkan informasi spektral yang tidak utuh. Untuk itu, spektrometer pentakromatik ini dilengkapi dengan menggunakan algoritma Jaringan Syaraf Tiruan (JST) dengan pendekatan Backpropagation tipe Feed Forwad Neural Network (FFNN) dengan hasil keakurasian 70,7% dan RMSE sebesar 600,0988 untuk mendeteksi dan mengkuantifikasi senyawa organik/anorganik dalam air limbah.
================================================================================================
Environmental pollution due to wastewater disposal that is not handled properly causes damage to the groundwater, rivers, and oceans. Wastewater itself may contain two types of chemical compounds, including organic and inorganic compounds both either derived from nature or the results of the synthetic chemicals from the process industry. To design a wastewater treatment system, the initial and crucial step required is the identification of pollutants in wastewater. The simplest identification of organic or inorganic molecules is to employ spectroscopic techniques by evaluating their absorption spectrum in the visible light. In this work, a pentachromatic spectrometer was designed to identify the presence of organic and inorganic molecules in a wastewater. This pentachromatic spectrometer utilized 5 monochromatic sources with wavelengths in the range of 450-650 nm to generate incomplete spectral information. For this reason, the spectrometer was equipped with an Artificial Neural Network (ANN) algorithm using a Backpropagation approach of Feed Forward Neural Network (FFNN) type with an accuracy of 70.7% and an RMSE of 600,0988 for organic/inorganic compound detection and quantification in a wastewater.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Senyawa organik, Senyawa anorganik, Spektrometer, Jaringan syaraf tiruan, Feed Forwad Neural Network, ANN, Spectrometer, organic and inorganic compounds, Artificial Neural Network, Feed Forwad Neural Network
Subjects: Q Science > QA Mathematics > QA76.758 Software engineering
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Physics Engineering > 30201-(S1) Undergraduate Thesis
Depositing User: Varisa Rahmawati
Date Deposited: 22 Aug 2021 06:57
Last Modified: 22 Aug 2021 06:57
URI: http://repository.its.ac.id/id/eprint/88564

Actions (login required)

View Item View Item