Perancangan Ulang Rangka Skuter Elektrik, Analisa Statik dan Respon Harmonik dengan Metode Elemen Hingga

Mahfudz, Mohammad Muchtar (2021) Perancangan Ulang Rangka Skuter Elektrik, Analisa Statik dan Respon Harmonik dengan Metode Elemen Hingga. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02111740000045_Undergraduate_Thesis.pdf] Text
02111740000045_Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2023.

Download (2MB) | Request a copy

Abstract

Minyak bumi memegang posisi yang sangat dominan dalam pemenuhan kebutuhan energi nasional, khususnya pada moda transportasi. Dengan jumlahnya yang kian menipis, timbul pemikiran untuk mengembangkan energi alternatif guna memenuhi kebutuhan energi. Hal ini didukung dengan melimpahnya potensi sumber daya alternatif yang ada di Indonesia. Di sisi lain penggunaan moda transportasi di Indonesia semakin meningkat. Hal ini bertolak belakang dengan jumlah bahan bakar yang tidak mengalami peningkatan. Kondisi ini merupakan waktu yang tepat untuk mulai beralih menggunakan energi listrik pada penggunaan moda transportasi khususnya sepeda motor. Salah satu komponen penting dari sepeda motor adalah bagian rangka. Dimana sebagai penopang komponen-komponen sepeda motor dan membawa berbagai beban dari sepeda motor.
Dalam penelitian ini membahas mengenai perancangan ulang rangka skuter elektrik yang telah ada dipasaran. Perancangan ulang ini didasari dengan penelitian lain yang mengubah penggerak skuter dari indirect hub motor menjadi direct hub motor. Penelitian ini menganalisa kekuatan rangka akibat dari pembebanan statik dari massa penumpang dan massa baterai. Penelitian ini juga menganalisa respon harmonis yang timbul akibat frekuensi natural yang terjadi pada rangka saat dikenai pembebanan. Material yang digunakan pada rangka adalah baja AISI 1015. Pembebanan 200 N berasal dari massa baterai dan 1500 N berasal dari massa penumpang. Analisa yang dilakukan berupa simulasi menggunakan metode elemen hingga dengan perangkat lunak ANSYS workbench 18.1. Hasil dari analisa berupa tegangan principal maksimal dan minimal, deformasi, dan respon akibat frekuensi. Respon akibat frekuensi didapatkan melalui analisa modal yang dilanjutkan dengan analisa respon harmonis pada software ansys workbench.
Dari tugas akhir ini, didapatkan hasil ketika kendaraan diberi beban statis dari massa penumpang dan massa kendaraan. Pada model single shock didapatkan nilai deformasi maksimum sebesar 1,778 mm, equivalent stress sebesar 207,25 MPa dan safety factor sebesar 1,52. Sedangkan pada model double shock deformasi maksimum sebesar 0,477 mm, equivalent stress sebesar 83,938 MPa dan safety factor sebesar 3,75. Dilakukan modifikasi dengan mengganti dudukan jok dari plat datar menjadi u channel. Didapatkan nilai deformasi maksimum pada model single shock sebesar 1,4448 mm, equivalent stress sebesar 248,82 MPa dan safety factor sebesar 1,26. Sedangkan pada model double shock nilai deformasi maksimum sebesar 0,314 mm, equivalent stress sebesar 95,646 MPa dan safety factor sebesar 3,29. Pada simulasi harmonic response untuk model modifikasi dengan frekuensi 30 Hz, pada arah-x model single shock memiliki nilai normal stress dan directional deformation sebesar 126,98 MPa dan 0,84512 mm. Sedangkan model double shock memiliki nilai sebesar 55,819 MPa dan 0,09452 mm. Pada arah-y model single shock memiliki nilai normal stress dan directional deformation sebesar 349,77 MPa dan 1,4117 mm. Sedangkan model double shock memiliki nilai sebesar 93,595 MPa dan 0,27391 mm. Pada arah-z model single shock memiliki nilai normal stress dan directional deformation sebesar 197,18 MPa dan 0,20511 mm. Sedangkan model double shock memiliki nilai sebesar 39,935 MPa dan 0,027219 mm. Dari hasil yang didapatkan, nilai equivalent stress dan directional deformation model single shock lebih tinggi dibandingkan model double shock.
==================================================================================================
Petroleum holds a dominant position in national energy needs, especially in transportation. But this is contrast to the fact that it is getting decrease. From that, the idea arose to develop alternative energy to meet energy needs. And this is supported by the abundance of potential resources in Indonesia. Other side the amount of transportation in Indonesia also increasing, but the amount of fuel absolutely decrease. Its a right time to move from fuel into electrical energy in the transportation, especially motorcycle. Frame is one of the important component from motorcycle. As a support for motorcycle to carry various components and loads.
In this final project, discusses the redesign of the electric scooter frame that has been on the market. this study analize the strength of the frame due to static load from mass of rider and battery. This study also analyze the harmonic response that occurs due to natural frequencies that occur when tho load was given. The material used is AISI 1015 steel. The load of 200 N from battery mass and 1500 from riders. Also for harmonic response, including force of speed bump for load. The anaysis is carried out as simulation by finite element method from ANSYS software. The result of the analysis are maximum equivalent (von misses) stress and deformation due to static load and bode diagram due to road excitation. The bode diagram obtained through modal analysis followed by harmonic response analysis on ANSYS.
From this final project, the results obtained when the vehicle is given a static load from the mass of passengers and the mass of the vehicle. In the single shock model, the maximum deformation value is 1.778 mm, the equivalent stress is 207.25 MPa and the safety factor is 1.52. Meanwhile, in the double shock model, the maximum deformation is 0.477 mm, the equivalent stress is 83.938 MPa and the safety factor is 3.75. Modifications were made by changing the seat holder from a flat plate to an u channel. The maximum deformation value for the single shock model is 1.4448 mm, the equivalent stress is 248.82 MPa and the safety factor is 1.26. Meanwhile, in the double shock model, the maximum deformation value is 0.314 mm, the equivalent stress is 95.646 MPa and the safety factor is 3.29. The equivalent stress increases but the location not the same as before. Meanwhile the maximum deformation decreases. In the harmonic response simulation for the modified model with a frequency of 30 Hz, in the x-direction the single shock model has normal stress and directional deformation values of 126.98 MPa and 0.84512 mm. While the double shock model has a value of 55.819 MPa and 0.09452 mm. In the y-direction, the single shock model has normal stress and directional deformation values of 349.77 MPa and 1.4117 mm. While the double shock model has a value of 93.595 MPa and 0.27391 mm. In the z-direction, the single shock model has normal stress and directional deformation values of 197.18 MPa and 0.20511 mm. While the double shock model has a value of 39.935 MPa and 0.027219 mm. From the results obtained, the value of equivalent stress and directional deformation of the single shock model is higher than the double shock model. In conclusion, the double shock model is better than the single shock model.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: skuter elektrik, tegangan von misses, deformasi, metode elemen hingga, single shock, double shock, electric scooter, equivalent von misses stress, deformation, finite element method, single shock, double shock
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ230 Machine design
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL440 Motorcycles.
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Mohammad Muchtar Mahfudz
Date Deposited: 27 Aug 2021 04:17
Last Modified: 27 Aug 2021 04:17
URI: http://repository.its.ac.id/id/eprint/89941

Actions (login required)

View Item View Item